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Abstract

The performance of both serial and parallel implementations of matrix multiplication is
highly sensitive to memory system behavior. False sharing and cache conflicts cause tradi-
tional column-major or row-major array layouts to incur high variability in memory system
performance as matrix size varies. This paper investigates the use of recursive array layouts to
improve performance and reduce variability.

Previous work on recursive matrix multiplication is extended to examine several recursive
array layouts and three recursive algorithms: standard matrix multiplication, and the more
complex algorithms of Strassen and Winograd. While recursive layouts significantly outper-
form traditional layouts (reducing execution times by a factor of 1.2–2.5) for the standard al-
gorithm, they offer little improvement for Strassen’s and Winograd’s algorithms. For a purely
sequential implementation, it is possible to reorder computation to conserve memory space and
improve performance between 10% and 20%. Carrying the recursive layout down to the level
of individual matrix elements is shown to be counter-productive; a combination of recursive�
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layouts down to canonically ordered matrix tiles instead yields higher performance. Five recur-
sive layouts with successively increasing complexity of address computation are evaluated, and
it is shown that addressing overheads can be kept in control even for the most computationally
demanding of these layouts.

Keywords: Data layout, matrix multiplication

1 Introduction

High-performance dense linear algebra codes, whether sequential or parallel, rely on good spa-

tial and temporal locality of reference for their performance. Matrix multiplication (the BLAS

3 [14] dgemm routine) is a key linear algebraic kernel. The performance of this routine is inti-

mately related to the memory layout of the arrays. On modern shared-memory multiprocessors

with multi-level memory hierarchies, the column-major layout assumed in the BLAS 3 library

can produce unfavorable access patterns in the memory hierarchy that cause interference misses

and false sharing and increase memory system overheads experienced by the code. These effects

result in performance anomalies as matrix size is varied. In this paper, we investigate recursive

array layouts accompanied by recursive control structures as a means of delivering high and robust

performance for parallel dense linear algebra.

The use of quad- or oct-trees (or, in a dual interpretation, space-filling curves [26, 43]) is known

in parallel computing [2, 28, 29, 44, 47, 52] for improving both load balance and locality. They

have also been applied for bandwidth reduction in information theory [4], for graphics applica-

tions [21, 37], and for database applications [32]. The computations thus parallelized or restruc-

tured are reasonably coarse-grained, thus making the overheads of maintaining and accessing the

data structures insignificant. A series of papers by Wise et al. [18, 55, 56] champions the use of

quad-trees to represent matrices, explores its use in matrix multiplication, and (most recently)
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demonstrates the viability of automatic compiler optimization of a simple recursive algorithmic

specification. This paper addresses several questions that occurred to us while reading the 1997

paper of Frens and Wise [18].

� Previous work using recursive layouts were not greatly concerned with the overhead of ad-

dress computations. The algorithms described in the literature [42] follow from the basic

definitions and are not particularly optimized for performance. Are there fast addressing

algorithms, perhaps involving bit manipulation, that would enable such data structures to

be used for fine-grained parallelism? Or, even better, might the address computations be

embedded implicitly in the control structure of the program?

� Frens and Wise carried out their quad-tree layout of matrices down to the level of matrix

elements. However, another result due to Lam, Rothberg, and Wolf [36]—that a tile that fits

in cache and is contiguous in memory space can be organized in a canonical order without

compromising locality of reference—suggested to us that the quadtree decomposition might

be pruned well before the element level and be made to co-exist with tiles organized in a

canonical manner. Could this interfacing of two layout functions be accomplished without

increasing the cost of addressing? How does absolute performance relate to the choice of

tile size?

� Frens and Wise assumed that all matrices would be organized in quad-tree fashion, and there-

fore did not quantify the cost of converting to and from a canonical order at the routine inter-

face. However, as Section 2.2 of the Basic Linear Algebra Subroutine Technical (BLAST)

Forum standard [3] shows, there is as yet no consensus within the scientific programming

community to adopt such a layout for matrices. We felt it important to quantify the overhead
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of format conversion. Would the performance benefits of quad-tree data structures be lost in

the cost of building them in the first place?

	 There are many variants of recursive orderings. Some of these orderings, such as Gray-

Morton [38] and Hilbert [26], are supposedly better for load balancing, albeit at the expense

of greater addressing overhead. How would these variants compare in terms of complexity

vs. performance improvement for fine-grained parallel computations?

	 Frens and Wise speculated about the “attractive hybrid composed of Strassen’s recurrence

and this one” [18, p. 215]. This is an interesting variation on the problem, for two reasons.

First, Strassen’s algorithm [49] achieves a lower operation count at the expense of more data

accesses in less local patterns. Second, the control structure of Strassen’s algorithm is more

complicated than that of the standard recursive algorithm, making it trickier to work with

quad-tree layouts. Could this combination be made to work, and how would it perform?

Our major contributions are as follows. First, we provide improved performance over that

reported by Frens and Wise [18] by stopping their the quadtree layout of matrices well before

the level of single elements. Second, we integrate recursive data layouts into Strassen’s algorithm

and provide some surprising performance results. Third, we test five different recursive layouts

and characterize their relative performance. We provide efficient addressing routines for these

layout functions that would be useful to implementors wishing to incorporate such layout functions

into fine-grained parallel computations. Finally, as a side effect, we provide an evaluation of the

strengths and weaknesses of the Cilk system [6], which we used to parallelize our code.

As Wise et al. have continued work along these lines, it is worthwhile to place this paper in the

larger context. Their use of the algebra of dilated integers [55] has allowed them to automatically
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unfold the divide-and-conquer recursive control to larger base cases to generate larger basic blocks

and to improve instruction scheduling. Their experimental compiler [56] improves performance

beyond that reported in this paper. All of these further improvements strengthens our conclusions

and opens up the possibility of better support of these concepts in future languages, libraries, and

compilers.

The remainder of this paper is organized as follows. Section 2 introduces the algorithms for

fast matrix multiplication that we study in this paper. Section 3 introduces recursive data layouts

for multi-dimensional arrays. Section 4 describes the implementation issues that arose in com-

bining the recursive data layouts with the divide-and-conquer control structures of the algorithms.

Section 5 offers measurement results to support the claim that these layouts improve the overall

performance. Section 6 compares our approach with previous related work. Section 7 presents

conclusions and future work.

2 Algorithms for fast matrix multiplication

Let 
 and � be two ���� matrices, where we initially assume that ������� . Let ����
���� ,

where the symbol � represents the linear algebraic notion of matrix multiplication (i.e., ������� � 
!� �#" � � � .)
We formulate the matrix product in terms of quadrant or sub-matrix operations rather than by

row or column operations. Partition the two input matrices A and B and the result matrix C into
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quadrants as follows.

$%%
&('�)*)�'�),+
'-+.)�'-+*+

/100
243

$%%
&(56)*)756),+
58+.)758+*+

/100
2:9

$%%
&<;6)*)�;6),+
;8+.)�;8+*+

/100
2 (1)

The standard algorithm that performs =?>,@BADC operations proceeds as shown in Figure 1(a), per-

forming eight recursive matrix multiplication calls and four matrix additions.

Strassen’s original algorithm [49] reduces the number of recursive matrix multiplication calls

from eight to seven at the cost of 18 matrix additions/subtractions, using algebraic identities. This

change reduces the operation count to =E>F@HGJI�KDC . It proceeds as shown in Figure 1(b).

Winograd’s variant [17] of Strassen’s algorithm uses seven recursive matrix multiplication calls

and 15 matrix additions/subtractions; this is known [17] to be the minimum number of multipli-

cations and additions possible for any recursive matrix multiplication algorithm based on division

into quadrants. The computation proceeds as shown in Figure 1(c).

Compared to Strassen’s original algorithm, the noteworthy feature of Winograd’s variant is its

identification and reuse of common subexpressions. These shared computations are responsible

for reducing the number of additions, but can contribute to worse locality of reference.

Figure 2 illustrates the locality patterns of these three algorithms. We observe that the standard

algorithm has good algorithmic locality of reference, accessing consecutive elements in a matrix

row or column.1 In contrast, the access patterns of Strassen’s and Winograd’s algorithms are much

worse in terms of algorithmic locality. This is particularly evident along the main diagonal for

1We add the qualifier “algorithmic” to emphasize the point that we are reasoning about this issue at an algorithmic
level, independent of the architecture of the underlying memory hierarchy. In terms of the 3C model [27] of cache
misses, we are reasoning about capacity misses at a high level, not about conflict misses.
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(a)

Pre-additions Recursive calls Post-additionsLNMPO�Q6M*MBR#S6M*MLUTVO�Q6M,TWR#S8T.MLUXVO�Q8T.MBR#S6M*MLZY-O�Q8T*TWR#S8T.MLU[VO�Q6M*MBR#S6M,TLU\VO�Q6M,TWR#S8T*TLW]^O�Q8T.MBR#S6M,TLU_VO�Q8T*TWR#S8T*T

` M*MaO�LPMcb�LUT` T.MaO�LZXdb�LZY` M,T#O�LZ[db�LU\` T*T#O�LU]Wb�LU_

(b)

Pre-additions Recursive calls Post-additionse MPO�Q6M*MBb�Q�T*Te TVO�Q8T.MBb�Q�T*Te XVO�Q6M*MWfgQ6M,Te Y-O�Q8T.MWfgQ6M*Me [VO�Q6M,TafgQ8T*T
hcMNO�S6M*Mcb�S8T*ThiT-O�S6M,T^fgS8T*ThiX-O�S8T.MdfgS6M*MhjY#O�S6M*Mcb�S6M,Thi[-O�S8T.Mcb�S8T*T

LNMPO e MHR#hcMLUTVO e TUR!S6M*MLUXVO�Q6M*MBR#hiTLZY-O�Q8T*TWR#hiXLU[VO e XUR!S8T*TLU\VO e YWR#hjYLW]^O e [UR#hi[
` M*MPO(LNMHb�LZY^fkLU[UblLU]` T.MPO(LUTUb�LZY` M,TVO(LUXUb�LU[` T*TVO(LNMHb�LUXafkLUTUblLZ\

(c)

Pre-additions Recursive calls Post-additions

e MPO�Q�T.McbkQ8T*Te TVO e MWfgQ6M*Me XVO�QmM*Mdf�Q�T.Me Y-O�QmM,T^f e T
hZMNO�S6M,TafkS6M*MhnT-O�S8T*TafghZMhnX-O�S8T*TafkS6M,ThiY#O�S8T.MWfghnT

LNMPOoQmM*McRpS6M*MLUTVOoQmM,TdRpS8T.MLUXVO e MBR#hcMLZY-O e TWR#hiTLU[VO e XWR#hiXLU\VO e YdR!S�T*TLW]^OoQ�T*TdR-hiY

` M*MNO qaMNO�LPMcb�LUTqWT-O�LPMcb�LZYqWX-OrqUTWblLU[` T.MNO qUY#OrqUXWblLW]` T*T-O qW[-OrqUXWblLUXqW\-OrqUTWblLUX` M,T-O qd]VOrqU\WblLU\
Figure 1: Three algorithms for matrix multiplication. The symbol

R
represents matrix multiplica-

tion. (a) Standard algorithm. (b) Strassen’s algorithm. (c) Winograd variant of Strassen’s algo-
rithm.
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Algorithm Elts of s accessed to compute t Elts of u accessed to compute t

Standard

Strassen

Winograd

Figure 2: Algorithmic locality of reference of the three matrix multiplication algorithms. The
figures show the elements of s and u accessed to compute the individual elements of twvxs�yVu ,
for z|{}z matrices. Each of the six diagrams has an z|{}z grid of boxes, each box representing an
element of t . Each box contains an z~{gz grid of points, each point representing an element of
matrix s or u . The grid points corresponding to accessed elements are indicated by a dot.
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Strassen’s algorithm and for elements �,������� and ( ���D��� for Winograd’s. This raises the question

of whether the benefits of the reduced number of floating point operations for the fast algorithms

would be lost as a result of the increased number of memory accesses.

We do not discuss in this paper numerical issues concerning the fast algorithms, as they are

covered elsewhere [25].

We use Cilk [6] to implement parallel versions of these algorithms. The parallelism is exposed

in the recursive matrix multiplication calls. Each of the seven or eight calls are spawned in parallel,

and these in turn invoke other recursive calls in parallel. Cilk supports this nested parallelism,

providing a very clean implementation.

In order to stay consistent with previous work and to permit meaningful comparisons, all our

implementations follow the same calling conventions as the dgemm subroutine in the Level 3

BLAS library [14].

3 Recursive array layouts

Programming languages that support multi-dimensional arrays must also provide a function (the

layout function � ) to map the array index space into the linear memory address space. We assume

a two-dimensional array with � rows and � columns indexed using a zero-based scheme. The

results we discuss generalize to higher-dimensional arrays and other indexing schemes. Define the

map � such that ���F�.�*��� is the memory offset of the array element in row � and column � from the

starting memory address of the array. We list near the end of the argument list of � , following a

semicolon, any “structural” parameters (such as � and � ) of � , thus: �!�F�.�*�����}���H� .
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3.1 Canonical layout functions

The default layout functions provided in current programming languages are the row-major layout�N�
as used by Pascal and by C for constant arrays, given by

�N�W�,�.�����.�}���B�P���~���j���
and the column-major layout

�^ 
as used by Fortran, given by

�N P�,�¡�*�����}���H�a�x�¢���8���.£
Following the terminology of Cierniak and Li [12], we refer to

�V�
and

�N 
as canonical layout

functions. Figure 3(a) and (b) show these two layout functions.

Lemma 1 The following equalities hold for the canonical layout functions.

�N�d�F�.�*�8�o¤��.�}���B�W¥¦¤8���N�W�,�.�����.�}���B�N���N�P�F�j�o¤������.�}���B�U¥��
(2)

�N N�F�.�*�8�o¤����}�.�B�U¥��§�(�N P�,�¡�*�����}���B�N�o�a N�F�j�o¤������.�}���B�U¥¨¤
(3)

Proof: Follows by simple algebraic manipulation of the definitions. ©
Canonical layouts do not always interact well with cache memories, because the layout function

favors one axis of the index space over the other, causing neighbors in the unfavored direction to

become distant in memory. This dilation effect, which is one interpretation of equations (2)–(3),
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has implications for both parallel execution and single-node performance that can reduce program

performance.

ª In the shared-memory parallel environments in which we experimented, the elements of a

quadrant of a matrix are spread out in shared memory, and a single shared memory block can

contain elements from two quadrants, and thus be written by the two processors computing

those quadrants. This leads to false sharing [13].

ª In a message-passing parallel environment such as those used in implementations of High

Performance Fortran [35], typical array distributions would again spread a matrix quadrant

over many processors, thereby increasing communication costs.

ª The dilation effect can compromise single-node memory system performance in the follow-

ing ways: by reducing or even nullifying the effectiveness of multi-word cache lines; by

reducing the effectiveness of translation lookaside buffers (TLBs) for large matrix sizes; and

by causing cache misses due to self-interference even when a tiled loop repeatedly accesses

a small array tile.

Despite the dilation effect described above, canonical layout functions have one major advan-

tage that is heavily exploited for efficiency in address computation. A different interpretation of

equations (2)–(3) reveals that these layouts allow incremental computation of memory locations

of elements that are adjacent in array index space. This idiom is understood by compilers and is

one of the keys to high performance in libraries such as native BLAS.2 In defining recursive layout

functions, therefore, we will not carry the recursive layout down to the level of individual elements,

2The algebra of dilated integers used by Wise [55] might in principle be equally efficient, but is currently not
incorporated in production compilers.
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but will instead make the base case be a Ð.Ñ}ÒÌÐÏÓ submatrix that fits in cache.

3.2 Recursive layout functions

Assume for the moment that we know how to choose the tile sizes ÐDÑ and ÐÏÓ , and that ÐÏÑ and ÐÏÓ
simultaneously satisfy Ô

ÐÏÑkÕ ÖÐÏÓlÕ(×¯Ø (4)

for some positive integer Ù . (From a quadtree perspective, this means that the quadtree is Ù levels

deep. We relax this constraint in Section 4.) We now view our original

Ô Ò Ö array as a ÚÛÝÜ Ò4ÞÛÝß
array of ÐÏÑlÒgÐÏÓ tiles. Equivalently, we have mapped the original two-dimensional array index

space àFá.â*ã�ä into a four-dimensional space

àFÐ*å*â¡Ð,æçâDèçå�âDèéæêä Õ à,ë-à,á.ì¡ÐÏÑUä�â�ë#àÝã�ì.ÐÏÓWä�â¡íUàFá�ì.ÐÏÑdä�â¡íWàîã�ì.ÐÏÓNä¡ä
using the (nonlinear) transformations ë-à,á¡ì.Ð¡ä Õ á div Ð and íWà,á¡ì.Ð¡ä Õ ácï|ð�ñòÐ . We now partition

this four-dimensional space into two two-dimensional subspaces: the space ó of tile co-ordinates

àFÐ*åôâ.Ð,æéä , and the space õ of tile offsets ( èöå�âDèéæéä . We apply the (canonical) column-major layout

function ÷aÓ in the õ -space (to keep each tile contiguous in memory) and a layout function ÷^ø in

the ó -space (to obtain the starting memory location of the tile), and define our recursive layout

function ÷ as their sum, thus.

÷�àFá.â*ã�ì Ô â Ö â.ÐÏÑZâ.ÐÏÓBä Õ ÷!àFÐ*å*â¡Ð,æçâDèçå�âDèéæçì Ô â Ö â¡ÐÏÑZâ.ÐÏÓHäÕ ÷WøWàFÐ*å*â¡Ð,æçì Ô â Ö â.ÐÏÑZâ.ÐÏÓBäBù�÷aÓNàúèçåôâ�èéæ�ì.ÐÏÑZâ.ÐÏÓBä
13



û üÏýEþÿü��~þ���� ü��	�¡ü�
�����������������
��.üÏý��.ü���� (5)

where ����������� gives the position along the space-filling curve (i.e., the pre-image) of the element

at rectangular co-ordinates ��������� . More precisely, the  "!$#% &! elements of the matrix of tiles

correspond to the nodal points of the '�(*) approximating polygon for the space-filling curve [45,

p. 21].

Equation (5) defines a family of layout functions parameterized by the function � characterizing

the space-filling curve. All of these recursive layout functions have the following operational

interpretation following from Hilbert’s original construction [26] that defined a class of space-

filling curves as the limit of a sequence of nested discrete approximations to it. Divide the original

matrix into four quadrants, and lay out these submatrices in memory in an order specified by �,+ .

Use �-+ to recursively lay out a . ý #/. � submatrix with . ý10�üÏý and . �20 ü�� ; use ��� to lay out aüÏý # ü�� tile.

Space-filling curves are based on the idea of threading a region with self-similar line segments

at multiple scales. The two fundamental operations involved are scaling and orienting (rotating)

the line segments. We classify the five recursive layouts we consider in this paper into three

classes based on the number of orientations needed. Three layouts (U-Morton, X-Morton, and

Z-Morton) require a single orientation; one layout (Gray-Morton) requires two orientations; and

one layout (Hilbert) requires four orientations. We now discuss the structure of these layouts and

the computations involved in calculating their � functions.

We need the following notation to discuss the computational aspects of the recursive layouts.

For any non-negative integer � , let 3 ����� be the bit string corresponding to its standard binary encod-

ing, and let 4 ����� be the bit string corresponding to its Gray code [41] encoding. Correspondingly,
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for any bit string 5 , let 687:9;<5>= be the non-negative integer ? such that 6@;�?�=BAC5 , and let DE7:9;<5�=
be the non-negative integer ? such that DF;�?�=�AG5 , Also, given two bit patterns H/AIHKJ 7:9ML�L�L HON and

P A P J 7:9QL�L�L P N , each of length R , let HTS�U P be the bit pattern of length VWR resulting from the bitwise

interleaving of H and P , i.e., HXS<U P AYHQJ 7:9 P J 7:9KL�L�L HON P N . Finally, we adopt the convention that, for

all layouts, Z�;<[]\^[_=`Aa[ . If rotations and reflections of the layout functions are desired, they are

most cleanly handled by interchanging the ? and b arguments and/or subtracting them from V Jdcfe .

3.2.1 Recursive layouts with a single orientation

The three layouts U-Morton ( g,h ), X-Morton ( gji ), and Z-Morton ( g�k ), illustrated in Figure 3(c)–

(e), are based on a single repeating pattern of ordering quadrants. The mnemonics derive from the

letters of the English alphabet that these ordering patterns resemble. We note that the Z-Morton

layout should properly be called the Lebesgue layout, since it is based on Lebesgue’s space-filling

curve [45, p. 80].

The Z functions for these layouts are easily computed with bit operations, as follows.

For g�h : Z�;�?�\�b�=KAY6F7:9l;�6@;mb�=-S<UX;�6@;�?n= XOR 6@;mb�=�=o=
For g�i : Z�;�?�\�b�=KAY6F7:9l;�;�6p;�?n= XOR 6p;mb�=o=�S�Uq6p;rb]=o=
For gsk : Z�;�?�\�b�=KAY6F7:9l;�6@;�?�=-S�Uq6p;mb�=o=

3.2.2 Recursive layouts with two orientations

The Gray-Morton layout [38] ( g�t ) is based on a C-shaped line segment and its counterpart that

is rotated by 180 degrees. Figure 3(f) illustrates this layout. Computationally, its Z function is

defined as follows: Z�;�?�\nb]=�A%D,7:9l;<DF;�?�=-S<UuDF;rb]=o= .
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3.2.3 Recursive layouts with four orientations

The Hilbert layout [26] ( v�w ) is based on a C-shaped line segment and its three counterparts rotated

by 90, 180, and 270 degrees. Figure 3(g) illustrates this layout. The x function for this layout is

computationally more complex than any of the others. The fastest method we know of is based on

an informal description by Bially [4], which works by driving a finite state machine with pairs of

bits from y and z , delivering two bits of x�{�yo|�z�} at each step. C code performing this computation is

shown in Appendix A.

3.3 Summary

We have described five recursive layout functions in terms of space-filling curves. These layouts

grow in complexity from the ones based on Lebesgue’s space-filling curve to the one based on

Hilbert’s space-filling curve. We now state several facts of interest regarding the mathematical and

computational properties of these layout functions.

~ It follows from the pigeonhole principle that only two of the four cardinal neighbors of {�y�|nz]}
can be adjacent to x,{�y�|�z�} . Thus, any layout function (canonical, recursive, or otherwise)

must necessarily experience a dilation effect. The important difference is that the dilation

occurs at multiple scales for recursive layouts. We note that this dilation effect, which is

manifest in the abrupt jumps in the curves of Figure 3, gets less pronounced as the number

of orientations increases.

~ We do not know of a recursive layout with three orientations. There are, however, space-

filling curves appropriate for triangular or trapezoidal regions. We do not know whether

such curves would be useful for laying out triangular matrices.
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� The ��� layout function has a useful symmetry that is easiest to appreciate visually. Refer to

Figure 3(f) and observe the northwest quadrant (tiles 0–15) and the southeast quadrant (tiles

32–47), which have different orientations. If we remove the single edge between the top

half and the bottom half of each quadrant (edge 7–8 for the northwest quadrant, edge 39–40

for the southeast quadrant), we note that the top and bottom halves of the two quadrants are

identically oriented. That is, two quadrants of opposite orientation differ only in the order

in which their top and bottom halves are “glued” together. We exploit this symmetry in

Section 4.

� In terms of computational complexity of the � functions of the different layout functions, we

observe that bits �&�p��� and �&� of �,��������� depend only on bit � of � and � for the layouts with

a single orientation, while they depend on bits � through �p��� of � and � for the ��� and �s�
layouts.

4 Implementation issues

Section 2 described the parallel recursive control structure of the matrix multiplication algorithms,

while Section 3 described recursive data layouts for arrays. This section discusses how our imple-

mentation combines these two aspects.

4.1 A naive strategy

A naive but correct implementation strategy is to follow equation (5) and, for every reference

to array element �B���o����� in the code, to insert a call to the address computation routine for the

appropriate recursive layout. However, this requires integer division and remainder operations to
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compute �����n�o���>�����n������� from ���o����� at each access, which imposes an unreasonably large overhead.

To gain efficiency, we need to exploit the decoupling of the layout function � shown in equation (5).

Once we have located a tile and are accessing elements within it, we do not recompute the starting

offset of the tile. Instead, we use the incremental addressing techniques supported by the canonical

layout ��� . The following lemma formalizes this observation.

Lemma 2 Let � be as defined in equation (5).

  If ���*¡Q¢j£¤��� , then �8���Q¥%¦_���:§©¨ª��«-����¬�o�����s£Y�`���o���:§©¨ª�©«-�o��¬d��������¥¤¦ .

  If ����¡Q¢�£%��� , then �`���o���@¥¤¦_§©¨ª�©«d����¬d�������j£Y�8�������:§©¨ª��«-����¬��������¥�¨ .

Proof: It follows from the definitions of tile co-ordinate ��� and tile offset �>� that, if ���*¡Q¢j£¤��� , then

���®¡Q¢s£¯���]¥%¦ . Then we have

�`���°¥¤¦_���:§©¨ª�©«d����¬��������±£ ��¬³²´���$²�µ������*¡Q¢��o�����¥��s�s�����®¡Q¢������§���¬�������

£ ��¬³²´���$²�µ������¶�o�����¥��s�s�����]¥¤¦_������§o��¬d�������

£ ��¬³²´���$²�µ������¶�o�����¥��s�s�����������§���¬��������¥¤¦

£ �`���o���:§©¨ª�©«-�o��¬��������¥¤¦_·

The proof of the second equality is analogous. ¸

4.2 Integration of address computation into control structure

Lemma 2 allows us to exploit the incremental address computation properties of the �E� layout in

the recursive setting, but requires the µ function to be computed from scratch for every new tile.
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For the matrix multiplication algorithms discussed in Section 2, we can further reduce addressing

overhead by integrating the computation of the ¹ function into the control structure in an incremen-

tal manner, as follows. Observe that the actual work of matrix multiplication happens on º�»½¼ªº�¾
tiles when the recursion terminates. At each recursive step, we need to locate the quadrants of

the current trio of (sub)matrices, perform pre-additions on quadrants, spawn the parallel recursive

calls, and perform the post-additions on quadrants. The additions have no temporal locality and

are ideally suited to streaming through the memory hierarchy. Such streaming is aided by the fact

that recursive layouts keep quadrants contiguous in memory. Therefore, all we need is the abil-

ity to quickly locate the starting points of the four quadrants of a (sub)matrix. This produces the

correct ¹ number of the tiles when the recursion terminates, which are then converted to memory

addresses and passed to the leaf matrix multiplication routine.

For the recursive layout functions with multiple orientations, we need to retain both the location

and the orientation of quadrants as we go through multiple levels of divide-and-conquer. We

encode orientation in one or two most significant bits of the integers. Appendix B describes these

computations for each of the five layouts.

4.3 Relaxing the constraint of equation (4)

The definitions of the recursive matrix layouts in Section 3 assumed that º^» and º�¾ were constrained

as described in equation (4). This assumption does not hold in general, and the conceptual way of

fixing this problem is to pad the matrix to an ¿ÁÀ�¼ªÂQÀ matrix that satisfies equation (4). There are

two concrete ways to implement this padding process.

Ã Frens and Wise keep a flag at internal nodes of their quad-tree representation to indicate
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empty or nearly full subtrees, which “directs the algebra around zeroes (as additive identities

and multiplicative annihilators)” [18, p. 208].

Maintaining such flags makes this solution insensitive to the amount of padding (in the sense

that no additional arithmetic is performed), but requires maintaining the internal nodes of

the quad-tree and inroduces additional branches at runtime. This scheme is particularly

useful for sparse matrices, where patches of zeros can occur in arbitrary portions of the

matrices. Note that if one carries the quad-tree decomposition down to individual elements,

then Ä³ÅÇÆÉÈ&Ä and ÊQÅËÆÉÈ&Ê in the worst case.

Ì We choose the strategy of picking Í�Î and Í�Ï from an architecture-dependent range, explic-

itly inserting the zero padding, and performing all the additional arithmetic on the zeros. We

choose the range of acceptable tile sizes so that the tiles are neither too small (which would

increase the overhead of recursive control) nor overflow the cache (which would result in ca-

pacity misses). The contiguity of tiles in memory eliminates self-interference misses, which

in turn makes the performance of the leaf-level matrix multiplications almost insensitive to

the tile size [50].

Our scheme is very sensitive to the amount of padding, since it performs redundant compu-

tations on the padded portions of the matrices. However, if we choose tile sizes from the

range Ð ÑQÒ�ÓÕÔ&Ö�ÑMÒ�×�Ø�Ù , the maximum ratio of pad to matrix size is Ú�Û>ÑKÒ�ÓÕÔ .

Figure 4(a) shows how Ä Å corresponding to different padding schemes tracks Ä for values of

Ä between 150 and 1024. Figure 4(b) shows the execution time of matrix multiplication of two

ÄÝÜÞÄ matrices after padding them out to Ä Å ÜqÄ Å matrices (including computations on the padded

zeroes). Choosing the tilesize from a range, with Ñ�ßàâáäãGÚ�å and ÑMß-æ�çÞãéè&ê , we see that Ä Å tracks
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Figure 4: Effect of padding policy on matrix size and execution time. (a) Padded matrix size vs.
original matrix size. (b) Execution time vs. original matrix size.

ë quite closely. Consequently, we see that the redundant computations performed on the padded

elements do not cause any significant increase in execution time. In contrast, if one were to use

a fixed tilesize of 32, for example, ëÁì8íïî&ë for some values of ë . The additional redundant

arithmetic operations implied by this large padding has a significant impact on the execution time

as well.

4.4 Effect of padding on space/execution time

Our imposition of the range ðÕñ°ò�óÕô&õ�ñMò�ö�÷ø of tile sizes is guided by cache considerations, but causes

a problem for rectangular matrices whose aspect ratio ëúù&û is either too large or too small. Let

ü¤ý ñMò�ö�÷ ù ñMò�óÕô , and call a matrix wide, squat, or lean depending on whether ü¯þÿëúù&û , � ùWü��
ëúù&û��¤ü , or � ùWü�� ëúù&û .

Lemma 3 For wide and lean matrices, it is not possible to find tile sizes that simultaneously satisfy
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the constraints of equation (4) and lie in the prescribed range of tile sizes.

Proof: The proof is by contradiction. Let ���
	��� , and assume that we can find ��� and ���
as desired. From equation (4), we have ���
	������������ . Combining the range constraints and

equation (4), we get ����� �"!#���%$&���'!(���*),+ . But this gives �-�������.$( . The case /0�
1�#���
	 is

analogous. 2
This problem can be appreciated by considering the following case: � � /4365
7 , 	8��5:9
; ,

�<��� �=�8/0> , and ���*),+?�(@65 .

The resolution of this problem is quite simple. We divide the wide or lean matrix into squat

submatrices, and reconstruct the matrix product in terms of the submatrix products. There is no

unique subdivision of a lean or wide matrix into squat submatrices. For example, if we consider

A�B5DCE3 , and a wide matrix with dimensions � ��/F3 and G1�H9I3 , the /F3�JK9I3 matrix can be

subdivided into three squat submatrices of /F3LJ'5I3 , /43LJM5I3 , and /43LJK/43 . The same matrix can

also be subdivided into four squat submatrices of dimensions /43NJ(/05 , /F3OJ#/F@ , /F3PJ(/05 , and

/F3QJK/F@ . In our implementation, we repeatedlly sub-divide wide and lean matrices by factors of

2 till they become squat. Thus, our implementation would pick the latter decomposition into four

submatrices for the /F3RJ�9
3 example described above.

Figure 5(a) and Figure 5(b) show two examples of how the input matrices S and T are divided,

and how the result U is reconstructed from results of submatrix multiplications. These figures make

the simplifiying assumption that subdividing the matrices to two equal halves is enough to get squat

submatrices. If this assumption does not hold, we apply the subdivision procedure recursively. For

brevity, we do not describe all possible cases (the cross product of V�WYXFZ6	[S]\_^a`
b<Z:�cSd\_e�f,ghX4Sji and

V�WYXFZ6	�Tk\_^a`�b<Z6��Tl\_e�fmgnXFTli ). These multiple submatrix multiplications are, of course, spawned
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Figure 5: Handling of lean and wide matrices. (a) Lean o and wide p . (b) Wide o and lean p .

to execute in parallel.

4.5 Conversion and transposition issues

In order to stay compatible with dgemm, we assume that all matrices are presented in column-

major layout. Our implementation internally allocates additional storage and converts the matrices

from column-major to the recursive layout. The remapping of the individual tiles is again amenable

to parallel execution. We incorporate any matrix transposition operations required by the opera-

tion into this remapping step. (The experimental data in Section 5 includes these format conversion

times, and Figure 13 quantifies these overheads.) This is handy, because it requires only a single

routine for the core matrix multiplication algorithm. The alternative solution would require multi-

ple code versions or indirection to handle the multiple cases correctly.

4.6 Issues with pre- and post-additions

There is one final implementation issue arising from the interaction of the pre- and post-additions

with the recursive layouts with more than one orientation. Consider, for example, the pre-addition
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qsrut(vjrwryxNv{zwz
in Strassen’s algorithm. For recursive layouts with a single orientation, we simply

stream through the appropriate number of elements from the starting locations of
vRrwr

and
v{zwz

,

adding them and streaming them out to
q|r

. This is not true for }�~ and }Y� layouts, since the

orientations of
vjrwr

and
v{zwz

are different. In other words, while each tile (and the entire set of tiles)

is contiguous in memory, the corresponding sub-tiles and elements of
vRrwr

and
v{zwz

are not at the

same relative position.

For }Y~ , the fix turns out to be very simple, exploiting the symmetry discussed in Section 3.3.

If the orientations of the two tiles are different, and each quadrant contains �:� tiles, then the

ordering of tiles in one orientation is � r_���4�4��� � zw�
while the ordering of tiles in the other orientation

is � ����r_�4���4��� � zw�I� � r_���4�4��� � �
. Therefore, we simply need to perform the pre- and post-additions in

two half-steps.

For }�� , the situation is more complicated, because there is no simple pattern to the ordering

of tiles. Instead, we simply keep global lookup tables of these orders for the various orientations,

and use these tables to identify corresponding tiles in pre- and post-additions. Appendix C shows

the code for initializin these tables. The added cost in loop control appears to be insignificant.

5 Experimental results

Our experimental platform was a Sun Enterprise 3000 SMP with four 170 MHz UltraSPARC

processors, and 384 MB of main memory, running SunOS 5.5.1. We used version 5.2.1 of the Cilk

system [6] compiled with critical path tracking turned off. The Cilk system requires the use of gcc

to compile the C files that its cilk2c compiler generates from Cilk source. We used the gcc-2.7.2

compiler with optimization level -O3. The experimental machine was otherwise idle. We also
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took multiple measurements of every data point to further reduce measurement uncertainty.

We timed the full cross-product of the three algorithms (standard, Strassen, Winograd) and

the six layout functions ( ��� , ��� , �u� , �Y� , �Y� , �Y� ) running on one through four processors on

square matrices with � ranging from 500 through 1500. We verified correctness of our codes by

comparing their outputs with the output of vendor-supplied native version of dgemm, However,

we could not perform the leaf-level multiplications in our codes by calling the vendor-supplied

native version of dgemm, since we could not get Cilk to support such linkage of external libraries.

Instead, we coded up a C version of a 6-loop tiled matrix multiplication routine with the innermost

accumulation loop unrolled four-way. We report all our results in terms of execution time, rather

than megaflop/s (which would not correctly account for the padding we introduce) or speedup

(since the values are sensitive to the baseline).

In another set of experiments, we evaluated a sequential implementation in which we see a

trade-off between memory and execution time. We also compare this sequential implementation

with two state-of-the-art fast matrix multiplication implementations.

5.1 General comments

As predicted by theory, we observed the two fast algorithms consistently outperforming the stan-

dard algorithm. This is apparent from the different y-axis extents in the subgraphs of Figure 8.

From the same figure, we observe virtually no difference between the execution times of the two

fast algorithms. This suggests to us that the worse algorithmic locality of reference of Winograd’s

algorithm compared to Strassen’s (see Figure 2) offsets its advantage of lower operation count.

We observed near-perfect scalability for all the codes, as evident from Figures 7 and 8. By en-
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abling critical path tracing in Cilk, we separately determined that, for �P�8�F�:�:� , there is sufficient

parallelism in the standard algorithm to keep about 40 processors busy; the corresponding number

for the two fast algorithms is around 23. This is as expected, since the total work of the algorithms

is �L���[�c�y��� , while the critical path is �L��� � � ��� .

5.2 Choice of tile size

To back our claim that, for best performance, the recursive layouts should be stopped before the

matrix element level, we timed a version of the standard algorithm with the ¡£¢ layout in which we

explicitly controlled the tile size at which the recursive layout stopped. Figure 6 shows the single-

processor execution times from this experiment with: �¤�¥�F�6¦
§ , ¨£©'ªn�:«�¦D«¬§y«�D«4�F®¯«�°:¦D«�®I§y«��0¦I¯«_¦I±I®¯«_±D�4¦h² ;

and �1���0±I°:® , ¨]©³ª�°¯«¬®¯«4�0¦D«�¦
§y«¬§6D«�´:®¯«4�4´6¦D«�°:
§y«_µI®:h² . (We used these values of � because they

allow us to choose many tile sizes without incurring any padding.) The results for multiple pro-

cessor runs are similar. The shape of the plot confirms our claim. The “bump”s in the curves are

reproducible.

For reference, the native dgemm routine runs for �¶�·�F�6¦
§ in 17.874 seconds. Thus, our best

time of 33.609 seconds (at a tile size of 16) puts us at a slowdown factor of 1.88. The numbers

for �8� �F±I°:® are 61.555 seconds for native dgemm, 96.1996 seconds for our best time, and a

slowdown factor of 1.56.

5.3 Robustness of performance

To study the robustness of the performance of the various algorithms, we timed the standard and

Strassen algorithms using the ¡�¸ and ¡Y¢ layouts for ��©%¹º�F�:�:�¯«��F�I§6
» on 1–4 processors. Figure 7
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Figure 6: Effect of depth of recursive layout on performance. Standard algorithm, ¼£½ layout,¾¤¿8ÀFÁ:Â
Ã , one processor. Note that both axes are logarithmic.

shows the results, which are unlike what we had originally expected. The standard algorithm with

¼YÄ layout exhibits large performance swings which are totally reproducible. The ¼Å½ layout greatly

reduces this variation but does not totally eliminate it. In stark contrast, Strassen’s algorithm does

not display such fluctuation for either layout. In neither case do we observe a radical performance

loss at ¾¤¿AÀ4Á6Â
Ã , which is what we originally expected to observe. The fluctuations for the standard

algorithm appear to be an artifact of paging, although we have not yet been able to confirm this

hypothesis. We offer our explanation of the robustness of Strassen’s algorithm in Section 5.5.

5.4 Relative performance of different layouts

Figure 8 shows the relative performance of the various layout functions at two problem sizes:

¾¤¿8ÀFÁIÁ:Á and ¾¤¿AÀ0ÂIÁ:Á . The scaling is near-perfect for all the codes. The figures reveal two major

points. First, compared to the ¼�Ä layout, the effect of recursive layouts on the standard algorithm
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is dramatic, while their effect on the two fast algorithms is marginal. We offer our explanation

of this effect in Section 5.5. Second, at least for these problem sizes, the performance of all the

recursive layouts is approximately the same. We interpret this to mean that our implementation of

the layouts is sufficiently efficient to control the addressing overheads even of Ò£Ó . An alternate

explanation is that the purported benefits of, say, ÒÔÓ over ÒYÕ , do not manifest themselves until we

reach even larger problem sizes.

5.5 Why the fast algorithms behave differently than the standard algorithm

Our explanation for the qualitative difference in the behavior of the fast algorithms compared to the

standard algorithm is an algorithmic one. Observe that both the Strassen and Winograd algorithms

perform pre-additions, which require the allocation of quadrant-sized temporary storage, while

this is not the case with the standard algorithm. Therefore, when performing the leaf-level matrix

products, the standard algorithm works with tiles of the original input matrices, which have leading

dimension equal to Ö . In contrast, every level of recursion in the fast algorithms reduces the leading

dimension by a factor of approximately two, even if we do not re-structure the matrix at the top

level. This intrinsic feature of the fast algorithms makes them insensitive to the parameters of the

memory system.

5.6 A sequential version : parallelism-space trade-off

For parallel execution of the recursive multiplication, it was necessary to have “live” copies of

all the pre-addition results to allow the recursive calls to execute in parallel. For a sequential

computation, where one wishes to conserve space, one would intersperse recursive calls with pre-
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Figure 8: Comparative performance of the six layouts. The left column is for ×ÙØÛÚFÜIÜ:Ü , while
the right column is for ×OØ�Ú0ÝIÜ:Ü . The rows from top to bottom are for the standard, Strassen, and
Winograd algorithms.
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and post-additions. Such a reordering of the schedule reduces the number of temporaries that

are “live”. This version also behaves more like the standard algorithm with respect to recursive

layouts: ÞYß reduces execution times by 10–20%.

This version is a purely sequential implementation and does not use Cilk. To understand how

the performance of matrix multiplication with recursive layouts compares with other state-of-the-

art sequential matrix multiplication implementations, we compare this version with two other ma-

trix multiplication implementations. Neither of these competing implementations uses padding.

Instead, they use other techniques to deal with the problem of matrix subdivision.

One implementation [30], hereafter referred to as DGEFMM, uses dynamic peeling. This

approach peels off the extra row or column at each level, and separately adds their contributions to

the overall solution in a later fix-up computation. This eliminates the need for extra padding, but

reduces the portion of the matrix to which Strassen’s algorithm applies, thus reducing the potential

benefits of the recursive strategy. The fix-up computations are matrix-vector operations (level 2

BLAS) rather than matrix-matrix operations (level 3 BLAS), which limits the amount of reuse and

reduces performance.

The other implementation [15], hereafter referred to as DGEMMW, uses dynamic overlap.

This approach finesses the problem by subdividing the matrix into submatrices that (conceptually)

overlap by one row or column, computing the results for the shared row or column in both sub-

problems, and ignoring one of the copies. This is an interesting solution, but it complicates the

control structure and performs some extra computations.

We measure the execution time of the various implementations on a 500 MHz DEC Alpha

Miata and a 300 MHz Sun Ultra 60. The Alpha machine has a 21164 processor with an 8KB

direct-mapped level 1 cache, a 96KB 3-way associative level 2 cache, a 2MB direct-mapped level
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3 cache, and 512MB of main memory. The Ultra has two UltraSPARC II processors, each with

a 16 KB level 1 cache, a 2MB level 2 cache, and 512MB of main memory. We use only one

processor on the Ultra 60.

We timed the execution of each implementation using the UNIX system call getrusage for

square matrix sizes ranging from 150 to 1024, and dgemm parameters àâáäã and å8áHæ . We

performed similar measurements for rectangular matrices with the common dimension fixed at

1000. (We measure the time to compute an çéè�ç matrix ê·áAë&ì{í , where ë is an çéè%ãFæ:æ:æ
matrix and B is an ãFæ:æIæjèLç matrix.) For DGEFMM we use the empirically determined recursion

truncation point of 64. For matrices of size less than 500, we compute the average of 10 invocations

of the algorithm to overcome limits in clock resolution. Execution times for larger matrices are

large enough to overcome these limitations. To further reduce experimental error, we execute the

above experiments three times for each matrix size, and use the minimum value for comparison.

The programs were compiled with vendor compilers (cc and f77) with the -fast option. The Sun

compilers are the Workshop Compilers 4.2, and the DEC compilers are DEC C V5.6-071 and

DIGITAL Fortran 77 V5.0-138-3678F.

Figure 9 and Figure 10 show our results for square matrices for the Alpha and UltraSPARC,

respectively. We report results in execution time normalized to the dynamic peeling implementa-

tion (DGEFMM). On the Alpha, we see that DGEFMM generally outperforms dynamic overlap

(DGEMMW), see Figure 9(b). In contrast, our implementation (MODGEMM) varies from 30%

slower to 20% faster than DGEFMM. We also observe that MODGEMM outperforms DGEFMM

mostly in the range of matrix sizes from 500 to 800, whereas DGEFMM is faster for smaller and

larger matrices. Finally, by comparing Figure 9(a) and Figure 9(b), we see that MODGEMM

generally outperforms DGEMMW.
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Figure 9: Performance of Strassen-Winograd implementations on Dec Miata, îÙï�ð:ñ¬òóïõô . (a)
MODGEMM vs. DGEFMM. (b) DGEMMW vs. DGEFMM.
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Figure 10: Performance of Strassen-Winograd implementations on Sun Ultra 60, î#ïöð:ñ�ò&ï÷ô .
(a) MODGEMM vs. DGEFMM. (b) DGEMMW vs. DGEFMM.
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Figure 11: Performance of Strassen Winograd Implementations on DEC Miata for rectangular
matrices ( ø : Matrix Dimension, ù¥ú6ø(ûjüFý:ý:ýDþ�ÿ ú ü4ý:ý:ýuû=øNþ ����� ù�� ÿ	�sú6ø#û=ø ), 
 � ü:þ�� � ý .
(a) MODGEMM vs. DGEFMM. (b) DGEMMW vs. DGEFMM.

The results are quite different on the Ultra (see Figure 10). The most striking difference is

the performance of DGEMMW (see Figure 10(b)), which outperforms both MODGEMM and

DGEFMM for most matrix sizes on the Ultra. Another significant difference is that MODGEMM

is generally faster than DGEFMM for large matrices (  ��� ýIý and larger), while DGEFMM is

generally faster for small matrices.

The results for the rectangular matrices are somewhat similar to that of square matrices. On

the DEC Miata, DGEFMM comprehensively outperforms DGEMMW as with square matrices (see

Figure 11b). But MODGEMM does not outperform DGEFMM at any matrix size (see Figure 11a).

Again, on the Sun Ultra 60, DGEMMW outperforms both MODGEMM and DGEFMM as with

square matrices (see Figure 12a and Figure 12b). We also see that MODGEMM is faster than

DGEFMM at many sizes though no clear trend is obvious.

The final set of results shown in Figure 13 quantify the overhead of format conversion on the

two machines. We represent this overhead as a fraction of the total running time. The trends on both

machines are similar. The overhead is about 12% for small matrix sizes, and diminishes smoothly
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Figure 12: Performance of Strassen Winograd Implementations on Sun Ultra 60 for rectangular
matrices ( � : Matrix Dimension, ������������������� �!�"�����#�$�%�'&�(�)���*!�	+,���-�$� ), ./)0����1%)�� .
(a) MODGEMM vs. DGEFMM. (b) DGEMMW vs. DGEFMM.

0.0 200.0 400.0 600.0 800.0 1000.0
Matrix Size

0.0

5.0

10.0

15.0

C
on

ve
rs

io
n 

C
os

t (
%

ag
e 

of
 E

xe
cu

tio
n 

Ti
m

e)

0.0 200.0 400.0 600.0 800.0 1000.0
Matrix Size

0.0

5.0

10.0

15.0
C

on
ve

rs
io

n 
C

os
t (

%
ag

e 
of

 E
xe

cu
tio

n 
Ti

m
e)

(a) (b)

Figure 13: Overhead of format conversion as percentage of running time, for square matrices. (a)
Sun Ultra 60. (b) DEC Miata.

to about 4% for a matrix size of about 1000. We attribute the decreasing pattern to the fact that

format conversion involves 2�35476�8 operations while the multiplication involves an asymptotically

higher number of operations.

5.7 A critique of Cilk

Overall, we were favorably impressed with the capabilities of the Cilk system [6] that we used to

parallelize our code. For a research system, it was quite robust. The simplicity of the language
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extensions made it possible for us to parallelize our codes in a very short time. The restriction of

not being able to call Cilk functions from C functions, while sound in its motivation, was the one

feature that we found annoying, for a simple reason: it required annotating several intervening C

functions in a call chain into Cilk functions, which appeared to us to be spurious. This problem is

avoidable by using the library version of Cilk.

The intimate connections between Cilk and gcc, and the limitations on linking non-Cilk li-

braries, limit achievable system performance. In order to quantify these performance losses, we

compiled our serial C codes with three different sets of compile and link options: (i) a baseline

version compiled with the vendor cc (Sun’s Workshop Compilers Version 4.2), with optimization

level -fast, and linked against the native dgemm routine from Sun’s perflib library for the leaf-

level matrix multiplications; (ii) a version compiled with the vendor cc with optimization level

-fast, but with our C routine instead of the native dgemm; and (iii) a version compiled with gcc

version 2.7.2, with optimization level -O3, and with our C routine instead of the native dgemm.

Figure 14 summarizes our measurements with these three versions for several problem sizes, al-

gorithms, and layout functions. The results are quite uniform: the lack of native BLAS costs us

a factor of 1.2–1.4, while the switch to gcc costs us a factor of 1.5–1.9. It is interesting that the

incremental loss in performance due to switching compilers is comparable to the loss in perfor-

mance due to the non-availability of native BLAS. The single-processor Cilk running times are

indistinguishable from the running times of version (iii) above, suggesting an extremely efficient

implementation of the Cilk runtime system.
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Figure 14: Overhead of gcc and of non-native BLAS.

6 Related work

We categorize related work into two categories: previous application of recursive array layout func-

tions in scientific libraries and applications, and work in the parallel systems community related to

language design and iteration space tiling for parallelism.

6.1 Scientific libraries and applications

Several projects emphasize the generation of self-tuning libraries for specific problems. We discuss

three such efforts: PHiPAC [5], ATLAS [54], and FFTW [19]. The PHiPAC project aims at pro-

ducing highly tuned code for specific BLAS 3 [14] kernels such as matrix multiplication that are

tiled for multiple levels of the memory hierarchy. Their approach to generating an efficient code is

to explicitly search the space of possible programs, to test the performance of each candidate code

by running it on the target machine, and selecting the code with highest performance. It appears
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that the code they generate is specialized not only for a specific memory architecture but also for a

specific matrix size. The ATLAS project generates code for BLAS 3 routines based on the result

that all of these routines can be implemented efficiently given a fast matrix multiplication routine.

The FFTW project explores fast routines for one- and multi-dimensional fast Fourier transforms.

None of these projects explicitly use data restructuring, although the FFTW project recognizes

their importance.

Several authors have investigated algorithmic restructuring for dense linear algebra compu-

tations. We have already discussed the contributions of Wise et al. [18, 55, 56]. Toledo [51]

investigated the issue of locality of reference for LU decomposition with partial pivoting, and

recommended the use of recursive control structures. Gustavson et al. [1, 16, 23, 53] have indepen-

dently explored recursive control strategies for various linear algebraic computations, and IBM’s

ESSL library [31] incorporates several of their algorithms. In addition, Gustavson [24] has devised

recursive data structures for representing matrices. Stals and Rüde [48] investigate algorithmic re-

structuring techniques for improving the cache behavior of iterative methods, but do not investigate

recursive data reorganization.

The goal of out-of-core algorithms [20, 39] is related to ours. However, the constraints differ in

two fundamental ways from ours: the limited associativity of caches and their fixed replacement

policies are not relevant for virtual memory systems; and the access latencies of disks are far

greater than that of caches. These differences lead to somewhat different algorithms. Sen and

Chatterjee [46] formally link the cache model with the out-of-core model.

The application of space-filling curves is not new to parallel processing, although most of

the applications of the techniques have been tailored to specific application domains [2, 28, 29,

44, 47, 52]. They have also been applied for bandwidth reduction in information theory [4], for
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graphics applications [21, 37], and for database applications [32]. Most of these applications have

far coarser granularity than our target computations. We have shown that the overheads of these

layouts can be reduced enough to make them useful for fine-grained computations.

6.2 Parallel languages and compilers

The parallel compiler literature contains much work on iteration space tiling for gaining paral-

lelism [58] and improving cache performance [7, 57]. Carter et al. [8] discuss hierarchical tiling

schemes for a hierarchical shared memory model. Lam, Rothberg, and Wolf [36] discuss the im-

portance of cache optimizations for blocked algorithms. A major conclusion of their paper was

that “it is beneficial to copy non-contiguous reused data into consecutive locations”. Our recursive

data layouts can be viewed as an early binding version of this recommendation, where the copying

is done possibly as early as compile time.

The class of data-parallel languages exemplified by High Performance Fortran (HPF) [35] rec-

ognizes the fact that co-location of data with processors is important for parallel performance,

and provides user directives such as align and distribute to re-structure array storage into

forms suitable for parallel computing. The recursive layout functions described in this paper can

be fitted into this memory model using the mapped distribution supported in HPF 2.0. Hu et

al.’s implementation [28] of a tree-structured 9 -body simulation algorithm manually incorporated

:<;
within HPF in a similar manner. Support for the recursive layouts could be formally added

to HPF without much trouble. The more critical question is how well the corresponding control

structures (which are most naturally described using recursion and nested dynamic spawning of

computations) would fit within the HPF framework.
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A substantial body of work in the parallel computing literature deals with layout optimization

of arrays. Representative work includes that of Mace [40] for vector machines; of various authors

investigating automatic array alignment and distribution for distributed memory machines [9, 22,

33, 34]; and of Cierniak and Li [12] for DSM environments. The last paper also recognizes the

importance of joint control and data optimization.

7 Conclusions

We have examined the combination of five recursive layout functions with three parallel matrix

multiplication algorithms. We have demonstrated that addressing using these layout functions can

be accomplished cheaply, and that these address computations can be performed implicitly and

incrementally by embedding them in the control structure of the algorithms. We have shown that,

to realize maximum performance, such recursive layouts need to co-exist with canonical layouts,

and that this interfacing can be performed efficiently. We observed no significant performance

variations among the different layout functions. Finally, we observed a fundamental qualitative

difference between the standard algorithm and the fast ones in terms of the benefits of recursive

layouts, which we attribute to the algorithmic feature of pre-additions.
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A = function computation for the Hilbert layout

static const int out[4][4] = {{0,1,3,2},
{2,1,3,0},
{0,3,1,2},
{2,3,1,0}};

static const int next[4][4] = {{2,0,1,0},
{1,1,0,3},
{0,3,2,2},
{3,2,3,1}};

/***
i : row index of tile
j : column index of tile
d : number of significant bits in i and j

return value : the Hilbert sequence number
***/

unsigned int SCnumMO(unsigned int i, unsigned int j, int d)

{
unsigned int in, m = 0;
int s = 0;
int emask = 0x01<<(--d);
for (;d >= 0; d--) {
in = (((i&emask)<<1)|(j&emask))>>d;
m = 4*m + out[s][in];
s = next[s][in];
emask >>= 1;

}
return m;

}
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B Incremental tile number computation for recursive layouts

The following C macros allow incremental computation of tile numbers for various recursive lay-
outs. For each layout, there are five macros: NW(a,n), NE(a,n), SW(a,n), SE(a,n), and
fuzz(n). Given a (sub)quadrant of the matrix containing 2n > 2n tiles, where a encodes the
number and orientation of the lowest-numbered tile, the first four macros gives an encoding of
the number and orientation of the lowest-numbered tile in the corresponding quadrants. The last
macro strips off the high order bits used to encode orientation and returns a valid tile number.

It is assumed that n is a power of two, as in equation (4).
Thus, if an m > m array of doubles is divided into t > t tiles and has starting address A, then we

have:

int naxis = m/t; // the number of tiles along each axis
int num = num*num;
int nn = num/4;
int sw = SW(0,nn); // the starting tile of SW quadrant
int nesw = NE(sw,nn/4); // starting tile of NE quad of SW quad
double *nesw_addr = A + fuzz(nesw)*t*t;

B.1 Single-orientation recursive layouts

/*
* Tile numbers for recursive orders that have a single
* orientation. This covers Z-Morton, U-Morton, and X-Morton.
*/

#ifndef ZMORTON
#define ZMORTON 0
#endif

#ifndef UMORTON
#define UMORTON 0
#endif

#ifndef XMORTON
#define XMORTON 0
#endif

#if ZMORTON
#define QUAD1
#define _NW 0
#define _NE 1
#define _SW 2
#define _SE 3
#endif
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#if UMORTON
#define QUAD1
#define _NW 0
#define _NE 3
#define _SW 1
#define _SE 2
#endif

#if XMORTON
#define QUAD1
#define _NW 0
#define _NE 3
#define _SW 2
#define _SE 1
#endif

#ifdef QUAD1
#define NW(a,n) ((a)+_NW*(n))
#define NE(a,n) ((a)+_NE*(n))
#define SW(a,n) ((a)+_SW*(n))
#define SE(a,n) ((a)+_SE*(n))
#define fuzz(n) (n)
#endif

B.2 Two-orientation recursive layouts

/*
* Tile numbers for recursive orders that have two orientations.
* This covers Gray-Morton.
*
* Encode the (NW,NE,SE,SW) orientation with a positive sign, and
* the (SE,SW,NW,NE) orientation with a negative sign in the "a"
* argument in the macros below.
*/

#ifndef GMORTON
#define GMORTON 0
#endif

#if GMORTON
#define QUAD2
#define NW(a,n) ((a)>=0? ((a) ): (-(a)+2*(n)))
#define NE(a,n) ((a)>=0?-((a)+1*(n)):-(-(a)+3*(n)))
#define SW(a,n) ((a)>=0? ((a)+3*(n)): (-(a)+1*(n)))

47



#define SE(a,n) ((a)>=0?-((a)+2*(n)):-(-(a) ))
#define fuzz(n) (abs(n))
#endif

B.3 Four-orientation recursive layouts

/*
* Tile numbers for recursive orders that have four orientations.
* This covers Hilbert.
*
* Encode the four orientations in the top two bits of the "a"
* argument to the macros below.
*/

#ifndef HILBERT
#define HILBERT 0
#endif

#if HILBERT
#define QUAD4
#define _D 0
#define _R 1
#define _U 2
#define _L 3
#define _NW 0
#define _NE 1
#define _SW 2
#define _SE 3
static const unsigned int dir[4][4] = {{_R,_D,_U,_L},

{_D,_U,_R,_L},
{_L,_R,_U,_D},
{_D,_R,_L,_U}};

static const unsigned int ord[4][4] = {{0,0,2,2},
{1,3,3,1},
{3,1,1,3},
{2,2,0,0}};

#define BITS_IN_BYTE 8
#define BITS_IN_INT (sizeof(int)*BITS_IN_BYTE)
#define SHIFT_AMT (BITS_IN_INT-2)
#define dirmask (3U<<SHIFT_AMT)
#define quad(adir,aint,q,n) \

((dir[(q)][(adir)]<<SHIFT_AMT)| \
(((aint)+ord[(q)][(adir)]*(n))&˜dirmask))

#define xdir(a) (((a)&dirmask)>>SHIFT_AMT)
#define xint(a) ((a)&˜dirmask)
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#define NW(a,n) quad(xdir(a),xint(a),_NW,n)
#define NE(a,n) quad(xdir(a),xint(a),_NE,n)
#define SW(a,n) quad(xdir(a),xint(a),_SW,n)
#define SE(a,n) quad(xdir(a),xint(a),_SE,n)
#define fuzz(n) (xint(n))
#endif

C Global lookup tables for the Hilbert layout

The following code initializes the global lookup tables needed for pre- and post-additions for the
Hilbert layout, as explained in Section 4.6. It uses the SCnumMO function defined in Appendix A
and several macros defined in Appendix B.3.

#define H_MAX_LEVELS 6
int *h_lut[4][H_MAX_LEVELS];

void h_lut_init()

{
int i, j, k, len, n;

h_lut[_U][0] = h_lut[_D][0] = h_lut[_L][0] = h_lut[_R][0] = 0L;
for (i = 1, len = 4; i < H_MAX_LEVELS; i++, len *= 4) {
h_lut[_U][i] = (int *)malloc(len*sizeof(int));
h_lut[_D][i] = (int *)malloc(len*sizeof(int));
h_lut[_L][i] = (int *)malloc(len*sizeof(int));
h_lut[_R][i] = (int *)malloc(len*sizeof(int));

}
for (i = 1, len = 2; i < H_MAX_LEVELS; i++, len *= 2) {
for (j = 0, n = 0; j < len; j++) {

for (k = 0; k < len; k++, n++) {
h_lut[_U][i][n] = SCnumMO(len-j-1, len-k-1, i);
h_lut[_D][i][n] = SCnumMO(j, k, i);
h_lut[_L][i][n] = SCnumMO(len-k-1, len-j-1, i);
h_lut[_R][i][n] = SCnumMO(k, j, i);

}
}

}
}
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