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1. Introduction  

Global illumination is an inherent part of the realistic image synthesis capabilities of any modern 
rendering system.  Traditionally, much computational work has been required to accurately 
simulate the interaction of light and a given environment.  In 1995, a paper published by Jensen 
and Christensen (1) discussed how one could simulate global illumination with only a fraction of 
the computational cost when compared with Kajiya’s path-tracing algorithm (2), which samples 
irradiance by tracing a large number of paths.  Unlike radiosity, the photon mapping algorithm 
has the innate ability to accurately simulate catacaustics and diacaustics found in most reflective 
and refractive materials. 

1.1 Purpose 

As is the case with many graphics algorithms that attempt to speed up a given process, it is rather 
common to find degeneracies or even bias in the results those algorithms produce.  Thus, when 
selecting a global illumination algorithm, one should consider the application in which it will be 
used, the amount of deviation from the correct result that is deemed acceptable, and the overhead 
associated with the complexity of using the algorithm in the application, i.e., the interface.  
Additionally, one should have an unbiased overview of what to expect in terms of 
implementation efforts and results to allow the reader to formulate their own opinions with 
respect to photon mapping.  During the implementation of photon mapping into the BRL-CAD* 
raytracer “rt,” the only photon mapping sources available were a few papers, a book by  
H. W. Jensen (3), and a handful of incomplete implementations done by various university 
students.  None of these sources provided an overview that covered the implementation efforts 
and problems one might expect to encounter.  The purpose of this report is to provide those 
considering photon mapping as a global illumination solution in their application with an 
overview of the implementation process, some of the hurdles they can expect to encounter, and 
methods to compensate for the various degeneracies that crop up.  Each of these problematic 
areas will be enumerated by a bold number enclosed in square brackets, e.g., [X]. 

1.2 Applications of Global Illumination and Photon Mapping 

Global illumination is used in a variety of applications including energy transport, interactive 
graphics simulations, and image synthesis.  Photon mapping caters well to applications that are 
requiring a form of global illumination at minimal additional computational cost.  Photon 
mapping caters to applications that require both static and dynamic global illumination.  Typical 
photon mapping code will vary on average from 500 to 2000 lines of code.  The number of lines 
will be dependant on the number of heuristics the developer implements to reduce the 
complexity of the interface for the end user.  While photon mapping requires little CPU power 
                                                 

* BRL-CAD is a registered trademark of the U.S. Army Research Laboratory. 
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relative to other global illumination algorithms such as path tracing, there exists a need to tune 
various functions within the code to deal with the heuristics and degeneracies that will need to be 
addressed. 

2. Overview 

From a top-level perspective, the foundation of photon mapping consists of two passes—
building the photon map and using it to render.  More specifically, a photon map is built during 
the first pass, which, in turn, is used to generate an irradiance cache (explained in more detail in 
section 5).  The irradiance cache is used during the rendering pass to determine the irradiance or 
incoming light at a geometric point in the scene.  While photon mapping is capable of solving 
both direct and indirect illumination the preferred method of usage is to select a bidirectional 
reflectance distribution function (BRDF) algorithm for direct illumination such as Phong and 
utilize photon mapping for only the indirect illumination.  Using photon mapping for both direct 
and indirect illumination would require significantly more photons in the scene to minimize the 
“blobs” that appear when few photons are available for computing an irradiance estimate (see 
figure 1). 

 

 

 
 
 
When photon mapping is used for both direct and indirect illumination, the 
results can be very noisy.  Even with 256k photons, this scene is still unable to 
provide smooth results given the reasonably sized search radius (defined later).  
This is why Phong shading makes an excellent choice for direct illumination, 
and photon mapping is reserved to compute indirect illumination only. 

Figure 1.  Photon mapping for direct and indirect illumination. 

Using a direct illumination algorithm rather than photon mapping serves two purposes—it not 
only speeds up the rendering process, but it also reduces the amount of noise in the image.  The 
full rendering equation is the sum of four components, which solve the outgoing radiance for a 
given geometric location in the scene.  These components are derived from the three components 
that make up incoming radiance and the two terms that make up the BRDF.  Together these 
equations form the basis for the full-rendering equation as described by Jensen (3). 
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The full-rendering equation is an integral over the surface that determines the incoming radiance 
or final pixel value at that position in the scene.  Each of the four integral components are 
computed numerically using a random sample set.  The first component is the direct illumination 
from the BRDF, such as Phong.  The second component accounts for the indirect illumination 
from caustics and specular reflections that ultimately gets stored in the caustics map.  The third 
term is for caustic materials caused from reflective and refractive materials, which comprise the 
caustic photon map.  The fourth term is the diffuse indirect illumination that comes from the 
irradiance cache. 

3. The Photon Map 

Photon mapping is filled with a plethora of parameters to control both its creation and how it is 
utilized in rendering.  Automating these parameters by means of heuristics or other logical 
methods will prevent the end user from having to enter in values for each of these parameters.  
[1] The first parameter is the number of photons used in a scene, which is largely a balance 
between bias, memory, and speed.  The number chosen should in some way reflect the 
complexity of the scene to maintain an acceptable level of detail in the photon map.  For the case 
of rendering only triangles, one may choose to use an initial value of 10,000 photons and an 
additional 1 photon for every 100 triangles in the scene. 

While generating the photon map, photons will be emitted from a designated set of light sources 
and stored in a data structure such as a one-dimensional array.  Ultimately, the photons will be 
organized into a kd-tree* data structure that gets used to generate a new kd-tree known as the 
irradiance cache.  The result of this pass will be a single kd-tree filled with irradiance cache 
points, a separate caustic photon map, and, optionally, a separate shadow photon map.  The 
initial structure containing the diffuse photons will be discarded after the irradiance cache has 
been built.  [2] The kd-tree is preferred over other data structures such as an octree, bsp, or 
                                                 

* Defined in section 4. 
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voronoi graph because Jensen (3) has shown that the kd-tree exhibits the most suitable properties 
for photon mapping. 

3.1 Emitting Photons 

Photons are emitted from a set of designated light sources.  Unlike real photons that have a static 
energy, the energy of these virtual photons will be dynamic.  Simulating the quantum physics of 
light with real photons would require a tremendous amount of memory and computational 
power, thus making it impractical for today’s desktop computer hardware.  Therefore, a discrete 
number of photons are used, typically many orders of magnitude less than a simulation with real 
photons.  [3] As photons are generated for each light source, be sure to treat the light sources as 
invisible geometry so that photons do not get trapped inside. 

The energy of these virtual photons are typically represented by an RGB triplet or wavelength 
value.   The number of photons used in the scene is typically supplied as a user-definable value.  
The photons start with the initial energy of the light source divided by the total number of 
photons being emitted from the light source.  Photons can either be emitted from a set of random 
points on the light source or from a single point representing the center of the light source.  The 
ray for each photon can be generated using a uniform rejection sampling technique where three 
floating values representing the (x, y, z) components of the direction vector are randomly 
generated inside of a conditional loop that does not exit until the sum of all three values is less 
than or equal to one.  Once all of the photons have been emitted from all of the light sources, one 
may wish to use a scaling factor to adjust the energy of each photon to increase or decrease the 
global illumination contribution. 

The data structure of the photon is very important when dealing with large numbers of photons.  
Typical scenes may involve many thousands to millions of photons.  If a scene utilizes 1 million 
photons and the data structure for each photon is 32 bytes, then at least 32-million bytes of 
memory will be required for the photon map.  As the number of photons approaches infinity, the 
bias approaches 0.  The photon structure will typically consist of at least a position, normal, and 
power.  The position will typically be 3 floating values or 12 bytes.  The normal can consists of a 
short, thus giving it 65,536 unique values, which is 2 bytes.  The power can consist of 3 floats, 
which is another 12 bytes.  Altogether, the base structure size is 26 bytes.  [4] Generating a 
photon structure that is 32, 48, or 64 bytes should be considered since most processor 
architectures operate on 32 or 64 byte cache lines.  If the photon structure is not one of these 
sizes, then try padding it; this will reduce the amount of cache lines required to get the data into 
processor cache and therefore give a noticeable performance boost. 

3.2 Photon Propogation 

Photons are emitted from a set of light sources and will propagate through the scene as a function 
of the material with which they are interacting.  This process will generate the photons used in 
the diffuse, caustic, and shadow photon maps.  With each diffuse interaction, the photons will 
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have a probability of either continuing to propagate or being absorbed.  Emitting photons in this 
manner will permit a uniform distribution of photons being deposited throughout the geometry.  
Additionally, one will note that the photon energies are diminishing with each propagation, with 
the exception of materials having values of 1.0 for a normalized RGB value.  As the number of 
propagations a photon undergoes increases, the lower the probability it has of continuing.  This 
implicit property dictates that photons having near zero energies will have a lower probability of 
existing in the scene than photons with higher energy values. 

As photons are emitted, they should be stored in a linear array or similar data structure once they 
finish propagating in the scene.  Once all of the photons are done emitting, they should get stored 
in a kd-tree, using the linear array as input, i.e., the photon map.  The kd-tree is best suited for 
storing the photons because of its efficient partitioning and lookup characteristics as shown by 
Jensen (3). 

For reflective and refractive materials, i.e., caustics, photons will either reflect off of or transmit 
through the surface at each intersection point with respect to the parameters assigned to the 
material with which the photon is interacting.  When the material is partially diffuse, the method 
of terminating and spawning new photons still exists, except that the probability of terminating is 
multiplied by the diffuse fraction of the material.  As is the case with path tracing, in photon 
mapping, while each photon propagates through the scene, the energy is multiplied with the 
material energy at each intersection.  For example, let a photon propagate three times in a diffuse 
scene before terminating, where all geometry has an RGB value of (0.8, 0.8, 0.8).  For simplicity, 
let the initial value of the photon be (1.0, 1.0, 1.0).  As the photon propagates, the values of the 
photon will be (0.8, 0.8, 0.8), (0.64, 0.64, 0.64), and (0.512, 0.512, 0.512), respectively. 

Photon mapping uses a method of Russian roulette to reduce computational costs and storage 
requirements.  The probability that a photon will continue to propagate decreases as the 
propagation depth increases.  For materials that have a diffusely reflective value R [0–1.0], one 
can choose to reflect N photons with R power, or reflect N/R photons and have 1-N/R photons 
absorbed during propagation.  [5] Clearly, this second method requires less reflection 
computations and photon propagations.  For the case of both specular and diffuse reflections, one 
can use the following function (3) to control the reflection and absorption probabilities for 
various materials where the value of ξ  is a randomly generated number between 0 and 1. 

 

 [ ]→∈ dP0,ξ diffuse reflection. (2) 

 [ ] .reflectionspecular P  P ,Pξ dsd →+∈  (3) 

 [ ]→+∈ 1 ,P  Pξ ds absorption. (4) 
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A new value for ξ  is calculated every time the photon propagates.  As the number of 
propagations increases, the probability that the photon will be absorbed increases.  Once the 
photon is absorbed, it is stored in the appropriate photon map data structure. 

3.3 Separate Photon Maps—Better Caustics and Shadows 

The use of separate photon maps is an additional optimization that should be implemented for 
improved speed because less photons will be required to achieve the same results as using a 
single photon map.  Caustic photons from reflections and refractions will typically be the result 
of some focusing or reflecting medium, which results in a sharp lighting feature, such as the 
focusing of light through a glass sphere or the cardioid formed on the inner circle of a reflective 
ring.  Because photons in caustics generally have sharp features, the use of a small search radius 
in the caustic lookup is paramount.  Diffuse photon map lookups generally require a larger 
search radius so that one can obtain smooth results.  Both diffuse and caustic photons do not 
belong in the same photon map.  The caustic photon map should only contain caustic photons, 
and the diffuse photon map should contain diffusely propagated photons. 

Shadow photons are used for creating a smooth shadow region.  A shadow photon has a negative 
energy, which is used in an additive process to subtract energy from the irradiance estimate.  
Shadow photons can exist in their own kd-tree and are usually created during the photon-
emitting phase.  When performing an irradiance estimate during the rendering pass, one can 
examine the shadow photon map to find the shadow photons in the local area.  Shadow photons 
are not an essential part of photon mapping, but they are a definite optimization to an already 
functional implementation since a shadow photon map lookup is less costly than firing a large 
number of shadow rays. 

When performing a kd-tree lookup, one must define a search radius that will be used to 
determine the results which will be accepted or rejected.  This search radius is either a circular or 
elliptical region that extends outward from the point where an estimate is being calculated.  The 
developer may choose to make the size of the search radius (see figure 2) a heuristic that is a 
function of the scene’s size or a control that is made available on the graphical user interface. 

 

 

 

Each kd-tree lookup requires a position, normal, and search 
radius to gather a set of N photons.  During the rendering pass, 
the kd-tree lookup for the irradiance cache is identical to the kd-
tree lookup for the photon map except that the irradiance cache 
kd-tree does not contain photons; it contains irradiance cache 
points. 

Figure 2.  A kd-tree lookup. 
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4. The kd-tree 

The kd-tree is an optimal data structure for storing photons and irradiance cache points in a scene 
for quick retrieval.  Alternative data structures such as an octree or bsp will work, but the author 
found they did not perform as well as the kd-tree.  Understanding the mechanics of the kd-tree is 
rather important for selecting an optimal median or pivoting algorithm, which is used to 
determine the position to split each cell, thus making the kd-tree as balanced as possible.  Each 
parent node in the kd-tree consists of two child nodes, an axis-aligned splitting plane, and the 
axis coordinate where the plane is being split.  Once the photon map and the irradiance cache 
have been constructed, the original list of diffuse photons can be discarded.  With a kd-tree, one 
can efficiently locate any elements in O(log n) time using a supplied position, normal, and search 
radius.  Since the position of each photon is three-dimensional in nature, so too is the kd-tree 
used in photon mapping.  For a detailed description of kd-trees, see Andrew Moore’s “An 
Introductory Tutorial on kd-trees” (4).  For information on implementing photon mapping on a 
GPU, see Purcell et al. (5), where the use of an alternative data structure used with the GPU as 
well as some of the difficulties encountered in implementing the photon mapping algorithm in 
this more restrictive programming environment is described. 

5. Irradiance Cache 

While the photon map is suitable for determining the global illumination in a scene, there is more 
information that can be extracted from the photon map to further reduce computational costs.  
With only the photon map, one would be required to sample the irradiance using many photon 
map lookups during the render pass.  Each lookup involves firing a bundle of rays from the eye 
rays intersection point and then finding a set of nearest neighbor photons at the intersection point 
using the photon map kd-tree.  This process would be O(n2 log n) since M sample rays would be 
fired to do N photon lookups into an O(log n) kd-tree lookup.  If one precomputes the irradiance 
for a set of points in the scene, the algorithm becomes a significantly faster O(log n) kd-tree 
lookup. 

There are two approaches one can take when computing the irradiance cache.  The first approach 
involves computing the irradiance cache points as they are needed during the render pass.  Jensen 
(3) suggests the following formula for computing irradiance, which uses previously computed 
irradiance values to interpolate a new irradiance value at the position x given normal n.  
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If there are no previously computed irradiance values that satisfy the condition ω i > 1/a, then a 
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The fraction 1/a is a user-definable parameter to control how much deviation can occur using the 
previously computed irradiance values for interpolation until the amount of error surpasses the 
allowable threshold.   

[6] The second approach involves less work by precomputing the irradiance, suggested by 
Larsen and Christensen (6).  The selection of irradiance points is not as optimal as the first 
approach, but the algorithm is faster and less sophisticated.  The concept involves selecting a 
subset of the photon positions such as every fourth photon and computing the irradiance at that 
point.  These points, in turn, become the irradiance cache points.  During the render pass, the 
irradiance estimate involves locating a nearest irradiance cache point or group of points if 
preferred. 

The stochastic uniform sampling of a tesselated hemisphere is used to generate the sample rays 
which, in turn, are used to calculate the irradiance at each of the suitable irradiance cache points.  
Each of the sample rays are fired into the scene to obtain an intersection point where a nearest 
neighbor lookup into the photon map is performed to obtain a mean radiance.  The radiance 
estimates from each ray are used to calculate an irradiance estimate.  Figure 3 illustrates an 
example of the irradiance cache points generated using the irradiance method described by 
Jensen (3).  Figure 4 illustrates a scene rendered using the irradiance cache in figure 3. 

For each irradiance cache point, a virtual unit hemisphere aligned to the surface normal is used 
as a template for generating a set of cells.  The unit hemisphere is tesselated into M × N cells, 
and for each cell, a ray is fired through the center of it plus a random delta.  The delta is simply a 
random value between 0 and half the size of the cell that is added to each ray direction vector.  
For each generated ray, a diffuse photon map lookup occurs so that a radiance estimate can be 
calculated.  Once all of the radiance estimates are finished, they are averaged to form the final 
irradiance estimate for each cache point, which is used during the rendering pass.  Figure 5 
illustrates an example of the ray generation process using a virtual tesselated unit hemisphere.  
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Figure 3.  Irradiance cache is represented by 
white dots.  Notice the point density 
is low in areas where normals are not 
changing. 

Figure 4.  Scene rendered with photon mapping 
using the irradiance cache from  
figure 3. 

 

 
 
A tesselated unit hemisphere where M = 13 and N = 6.  A 
single ray is fired stochastically through each cell to 
return a radiance estimate.  [7] Radiance estimates from 
each ray are averaged together to form an irradiance 
estimate.  Each ray has a random perturbation to the 
direction vector, allowing it to shoot anywhere through its 
designated cell region. 

Figure 5.  Virtual tesselated unit hemisphere. 
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Several heuristics must be employed in order to obtain satisfactory radiance estimates for each 
irradiance calculation.  While the kd-tree for the diffuse photon map is traversed, one must 
compare the normal of each candidate photon to the surface normal at the intersection point to 
determine if the photon is within an angular tolerance to be accepted or rejected in the estimate.  
For the case of a sphere, the intersection normal will almost always be different than neighboring 
photons on the surface.  Therefore, one must choose an appropriate tolerance angle such that 
those neighboring photons are accepted; 60° typically works well.  For the case where two 
perpendicular planes meet, such as a wall connected to the floor, one must not accept photons 
from the wall if the estimate is being done for the floor; thus, the angular tolerance must be less 
than 90°.  Divide the sum of the located photon energies by the area of the search radius to find a 
mean estimated energy for the given surface position.   

When performing a lookup into the photon map, one must supply a search radius to determine 
which photons from the resulting search will be accepted or rejected.  For the case where a 
search is being performed near the boundary where two edges lie perpendicular to one another, 
the search radius will extend beyond the edge of the given surface.  [8] In the event that this 
problem occurs, one must tally the accepted and rejected photons from the search in order to 
create a correction factor.  The energy of the accepted photons will either be averaged or 
processed through a filter so that one can obtain an energy estimate.  On edge boundaries, some 
photons will be rejected during the search process, resulting in a lower-than-expected energy 
estimate (see figure 6).  One must divide the resulting energy estimate by the ratio of accepted 
photons to the sum of accepted and rejected photons.  Doing so will interpolate what the energy 
in this area should have actually been, thus removing any dark edges or corners that may appear.  
This phenomenon also occurs during the lookup into the irradiance cache as the mechanics are 
identical to performing a lookup into the photon map. 

. 

 
Dark corners are often the result of a search radius that extends beyond the edge of 
the geometry.  When this occurs, the estimate picks up fewer photons than it expects. 
Thus, when the results are summed and divided by the area, the estimate ends up 
smaller than it should be.  A correction factor can be calculated to remedy this 
problem.  No correction factor was applied to this scene, hence the dark edges.  The 
correction factor is calculated and applied to both photon map lookups and irradiance 
cache lookups.  One should use the same code for both photon map lookups and 
irradiance cache lookups since the algorithm for both processes are nearly identical. 

Figure 6.  Scene with dark edges, resulting from no correction factor. 

The irradiance cache algorithm requires very little work to parallelize.  For multiprocessor 
systems, one can expect to see a linear speedup in the time it takes to build the irradiance cache.  
All that is required to parallelize the irradiance caching algorithm is a single semaphore.  The 
semaphore is used to protect the irradiance cache list from being written to by more than one 
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thread at a time.  The photon-emitting algorithm can also be parallelized, but the speedup is 
negligible since the vast majority of preparation time is spent building the irradiance cache. 

6. Optimizations 

There are various optimizations one can employ to speed up the entire photon-mapping process.  
First, one should precompute the irradiance cache so that this process becomes a prerendering 
pass; this ensures unnecessary processing is not done during the rendering pass.  Second, the use 
of separate photon maps should be employed so that one can still achieve sharp caustics, soft 
shadows, and a minimal number of photons for indirect illumination.  Third, importance 
mapping should be implemented to reduce the number of photons required in a scene, thus 
saving on memory.  Fourth, one should implement the use of multiple photon maps for 
irradiance estimates to improve performance. 

6.1 Importance Mapping 

Importance mapping is a method of shooting importons from the camera into the scene to reduce 
the amount of photons and irradiance cache points needed in a scene.  This process changes 
photon mapping from a view-independent to a view-dependent algorithm.  For scenes with many 
lights and nonvisible partitions, there can be a tremendous benefit.  For example, envision an 
office building that contains hundreds of rooms, each containing a ceiling light, and most of 
which are not visible from the camera.  Photon mapping will naïvely shoot photons from every 
light source and deposit photons throughout the entire building.  One does not need photons 
stored in any of the rooms that have no visual impact on the rooms currently in view.  Importons 
are deposited in the same manner that photons are.  Finally, one must march through each of the 
importons and mark any photons within its location as important.  After marching through all of 
the importons and marking important photons, any remaining photons in the diffuse photon map 
should be discarded. 

6.2 Multiple Photon Maps for Irradiance Estimates 

It has been shown that various rejection methods must be employed to prevent an estimate from 
being contaminated by nearby photons.  As a result, Larsen and Christensen (6) have shown that 
using multiple photon maps can be employed for the irradiance estimate to improve performance 
during the prerendering pass.  The idea is to use different photon maps on adjacent surfaces 
where there is a sufficiently large angle between them as a way of preventing contamination.  
The result of this approach is a collection of separate photon maps assigned to each different 
surface.  During the building of the irradiance cache, one would then need to perform a lookup 
into multiple photon maps instead of just one photon map containing all of the photons for the 
diffuse indirect illumination. 
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7. Rendering 

Rendering with photon mapping is a rather straightforward process that involves computing each 
of the four components in the full rendering equation.  Direct lighting is computed using a BRDF 
such as an attenuated version of Phong shading.  The irradiance cache is used to sample the 
irradiance at the geometric location being rendered.  The caustics photon map, which contains 
transmissive and reflective photons, and any other additional photon maps, i.e., the shadow 
photon map, are used to compute global illumination.  The sum of these four components will be 
the value of the resulting pixel. 

7.1 Direct Illumination 

Two popular algorithms for computing direct illumination are Phong (7) and Goraud shading (2).  
[9] It is imperative that the direct-illumination algorithm have an attenuation coefficient so that 
energy decreases as a function of the distance in the same manner that occurs in photon mapping.  
The denominator of the attenuation coefficient in Phong is typically of the form a + bd + cd2 to 
prevent dividing by zero and to provide some linear scaling control.  One can alternatively 
choose to make the denominator p + d2 where p is defined as a very small number and d is the 
distance.  Östberg and Thorin (8) illustrate an attenuated version of Phong. 

 aassdd2 Lk)v)r(LkN1Lk](
cdbda

1[L +⋅+⋅
++

= α . (7) 

[10] In addition to including attenuation in the direct-illumination model, it is as equally 
important not to include the ambient term.  Ambient contributions are not used in any of the 
direct illumination models because the intent of ambient lighting is to cheaply simulate indirect 
illumination.  Since photon mapping is used for indirect illumination, the ambient term should 
not be used. 

7.2 Global Illumination 

The second half of the rendering pass involves finding the indirect illumination from the 
irradiance cache.  For each ray fired from the camera, an irradiance cache lookup will take place 
to find a set of nearby irradiance cache points.  The number for the set can be user definable or a 
constant such as 50.  When the irradiance lookup algorithm returns with a set of points, the 
algorithm can then either average the results or process them through a filter.  The purpose of the 
filter is to further improve the quality of the sample set found.  Some of the more common filters 
are the gauss and cone filters, which give the irradiance cache points closest to the intersection 
point the most influence.  In addition to calculating the indirect illumination from the irradiance 
cache, the contributions from the caustic and shadow photon maps should also be added to the 
result.  The net result of this part of the rendering pass is a pixel value that includes the indirect 
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diffuse, caustic, and shadow contributions.  This result is added to the direct-illumination 
calculation to generate the final pixel value. 

8. Degeneracies 

There are several degeneracies in photon mapping that require some additional nontrivial code to 
fix.  [11] The first degeneracy exists when one geometric plane bisects another, forming the “T” 
degeneracy.  In the irradiance estimate during the rendering pass, one provides the irradiance 
lookup function with the number of photons to use as an estimate, a search radius, a normal, and 
a geometric location.  If photons have been stored on the side of a bisected plane that receives no 
direct light, the irradiance lookup algorithm will locate photons from the side receiving direct 
light when doing an irradiance estimate near the corner of the side that is not receiving direct 
light.  (There is simply not enough information available to the irradiance lookup algorithm to 
prevent this degeneracy from occurring without introducing more overhead into the irradiance 
estimate code to make some intelligent decisions about what irradiance cache points to accept or 
reject based on various geometric partitions that exist in a scene.)  Figures 7 and 8 illustrate this 
“T” degeneracy.  This problem could be corrected by partitioning the geometry where planes 
meet at a user-defined angle or by creating an algorithm to fire several rays to determine whether 
a partition is nearby; both are nontrivial to implement. 

 

(a) (b) (c) 
A wire-frame view of the entire scene.  
One room contains a light source, and the 
other is completely isolated from light. 

A rendering of the room containing the 
light source. 

A rendering from the unlit room.  Notice 
that the algorithm is gathering photons 
around the edges of the back wall. 
 

Figure 7.  “T” degeneracy room views. 

[12] A second degeneracy exists when the scene is being illuminated by a small crevice from 
another room with sufficient lighting.  A scene where this problem exists is one which contains 
two rooms that are separated by a door with a keyhole, and the only light the unlit room receives 
is from the keyhole and through the crack on the bottom of the door.  Because there is only a 
small area through which photons may propagate, one must use a large number of photons to 
render this scene accurately.  Metropolis Light Transport handles this problem with its use of 
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 (a) (b) 

A path-traced reference image exhibiting correct illumination 
above the counter.  Rendered with 8192 rays per pixel using 
ADRT. 

A photon-mapped rendering of the same scene.  Notice 
that the area above the counter is darker than it should 
be.  Rendered with 16,384 photons using BRL-CAD. 

Figure 8.  “T” degeneracy images. 

various mutation strategies (9), which sample the scene based on the probability a ray will reach 
a light source.  Path tracing uses a large number of samples; therefore, this does not become an 
issue.  Photon mapping requires an importance map. 

[13] A third type of degeneracy occurs in the case of simulating motion blur (10).  A single 
photon map cannot be reused for each frame of an animation that contains dynamic geometry.  
The use of a temporal photon map must be used to accommodate the dynamic global 
illumination.  This approach requires a four-dimensional kd-tree in which photons have a time 
parameter so that when a lookup occurs, only the photons from that temporal region are included 
in the estimate.  With this method, one can interpolate between temporal regions without 
requiring a new photon map for each frame. 

9. The Big Picture 

Now that all of the finer details of photon mapping have been presented, it is important to 
understand how all of the various parts of photon mapping fit together to form the finished 
product.  Again, think of photon mapping as a two-pass algorithm.  During the first pass, a bunch 
of photons are emitted from all of the light sources into the scene.  Importance mapping is used 
to optimize this part of the first pass to reduce the amount of photons needed.  The photons 
propagate through the scene and are stored in their respective diffuse, caustic, or shadow photon 
lists.  Each list of photons is used to construct a kd-tree, i.e., the photon maps.  Next, the diffuse 
photon map is used to generate the irradiance cache by selecting a subset of the photons in the 
scene as irradiance cache points, whereby a virtual tesselated hemisphere is used to shoot out a 
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number of sample rays to compute the irradiance.  Once the first pass is complete, there should 
exist an irradiance cache, a caustic photon map, and a shadow photon map if implemented. 

During the second pass, the rendering pass, rays are shot from the camera into the scene.  Each 
time a ray from the camera intersects a piece of geometry in the scene, the full lighting equation 
is evaluated.  The direct lighting is computed using Phong, and an irradiance lookup is done to 
determine indirect illumination at that point.  Finally, the caustic and shadow photon maps 
perform a lookup.  The results are summed together to form the final pixel value, and the step is 
repeated until the image is completely rendered. 

10. Summary 

Different applications have different requirements for global illumination.  Photon mapping is an 
excellent addition to any rendering system where the overall objective is to increase realism by 
the addition of global illumination.  The photon-mapping algorithm may be a nontrivial effort to 
implement.  One will have to find a balance between the controls in photon mapping that will be 
managed by heuristics and those that will be exposed in the user interface.  Providing the end 
user with too many controls results in a nonoptimal interface.  Dealing with the various 
degeneracies is not an easy feat either, but each of those can be dealt with as the problem arises.  
Photon mapping produces some very realistic looking images when implemented and used 
correctly (see figure 9). 

However, if the underlying objective for the developer is to produce unbiased realistic images by 
means of a turn-key solution, then they may wish to exercise other global illumination 
algorithms such as path tracing.  While path tracing requires approximately two orders of 
magnitude more processing time than photon mapping, there are certain techniques to bring the 
path-traced rendering process up to the speed of the photon-mapped rendering process.  If one 
has not already done so, one may wish to improve the performance of one’s ray-tracing engine 
by an order of magnitude via the work done by Wald et al. (11).  This improvement will, in turn, 
make path tracing only an order of magnitude slower than photon mapping.  With a small cluster 
of networked computers and distributed capabilities in the ray tracer, one can expect path tracing 
to now perform on par with photon mapping, but in a turn-key environment.  Path tracing 
typically requires 50 lines of code, which makes the implementation process quick and the code 
base easy to maintain.  With this in mind, one may choose to implement a high-performance 
distributed ray-tracing engine with path tracing. 
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The top left image represents standard Phong rendering without the ambient term.  The top right image shows Phong 
with a constant 0.4 value for ambient light.  The bottom left image uses phong for direct illumination and photon 
mapping for indirect illumination; notice the subtle color bleeding on the background and on the tree limbs.  The 
bottom right image is the net result of what photon mapping generated for this image.  This result is simply added to 
the top left image to generate the bottom left image. 
 

Figure 9.  Tree scene before and after photon mapping.
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