

A Survey of Photon Mapping for Realistic Image Synthesis

by Justin L. Shumaker

ARL-TR-3608 September 2005

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless
so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the
use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5068

ARL-TR-3608 September 2005

A Survey of Photon Mapping for Realistic Image Synthesis

Justin L. Shumaker

Survivability/Lethality Analysis Directorate, ARL

Approved for public release; distribution is unlimited.

 ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to
comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

September 2005
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

1 October 2004–1 February 2005
5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

A Survey of Photon Mapping for Realistic Image Synthesis

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

1L162618AH80
5e. TASK NUMBER

6. AUTHOR(S)

Justin L. Shumaker

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory
ATTN: AMSRD-ARL-SL-BE
Aberdeen Proving Ground, MD 21005-5068

8. PERFORMING ORGANIZATION
 REPORT NUMBER

ARL-TR-3608

10. SPONSOR/MONITOR'S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This report is an overview and discussion of the finer details not found in most of the photon mapping documents that currently
exist. While the vast majority of photon mapping media tends to market this global illumination algorithm as a do-it-all turn-
key solution, they fail to discuss the finer details and pitfalls that developers will encounter in the implementation process.
Finer details are also covered to not only explain what to expect during the implementation process, but also to provide
graphical examples that may serve as a beacon during the various milestones throughout the implementation process.

15. SUBJECT TERMS

photon, mapping, image, synthesis, graphics, 3-D

16. SECURITY CLASSIFICATION OF:
19a. NAME OF RESPONSIBLE PERSON
Justin L. Shumaker

a. REPORT
UNCLASSIFIED

b. ABSTRACT
UNCLASSIFIED

c. THIS PAGE
UNCLASSIFIED

17. LIMITATION
OF ABSTRACT

UL

18. NUMBER
OF PAGES

26 19b. TELEPHONE NUMBER (Include area code)

(410) 278-2834
 Standard Form 298 (Rev. 8/98)
 Prescribed by ANSI Std. Z39.18

 iii

Contents

List of Figures iv

1. Introduction 1
1.1 Purpose ..1

1.2 Applications of Global Illumination and Photon Mapping ...1

2. Overview 2

3. The Photon Map 3
3.1 Emitting Photons ...4

3.2 Photon Propogation ...4

3.3 Separate Photon Maps—Better Caustics and Shadows ..6

4. The kd-tree 7

5. Irradiance Cache 7

6. Optimizations 11
6.1 Importance Mapping ...11

6.2 Multiple Photon Maps for Irradiance Estimates..11

7. Rendering 12
7.1 Direct Illumination ..12

7.2 Global Illumination ...12

8. Degeneracies 13

9. The Big Picture 14

10. Summary 15

11. References 17

Distribution List 18

 iv

List of Figures

Figure 1. Photon mapping for direct and indirect illumination. ...2
Figure 2. A kd-tree lookup..6
Figure 3. Irradiance cache is represented by white dots. Notice the point density is low in

areas where normals are not changing. ..9
Figure 4. Scene rendered with photon mapping using the irradiance cache from figure 3.9
Figure 5. Virtual tesselated unit hemisphere...9
Figure 6. Scene with dark edges, resulting from no correction factor. ...10
Figure 7. “T” degeneracy room views. ...13
Figure 8. “T” degeneracy images..14
Figure 9. Tree scene before and after photon mapping. ...16

 1

1. Introduction

Global illumination is an inherent part of the realistic image synthesis capabilities of any modern
rendering system. Traditionally, much computational work has been required to accurately
simulate the interaction of light and a given environment. In 1995, a paper published by Jensen
and Christensen (1) discussed how one could simulate global illumination with only a fraction of
the computational cost when compared with Kajiya’s path-tracing algorithm (2), which samples
irradiance by tracing a large number of paths. Unlike radiosity, the photon mapping algorithm
has the innate ability to accurately simulate catacaustics and diacaustics found in most reflective
and refractive materials.

1.1 Purpose

As is the case with many graphics algorithms that attempt to speed up a given process, it is rather
common to find degeneracies or even bias in the results those algorithms produce. Thus, when
selecting a global illumination algorithm, one should consider the application in which it will be
used, the amount of deviation from the correct result that is deemed acceptable, and the overhead
associated with the complexity of using the algorithm in the application, i.e., the interface.
Additionally, one should have an unbiased overview of what to expect in terms of
implementation efforts and results to allow the reader to formulate their own opinions with
respect to photon mapping. During the implementation of photon mapping into the BRL-CAD*
raytracer “rt,” the only photon mapping sources available were a few papers, a book by
H. W. Jensen (3), and a handful of incomplete implementations done by various university
students. None of these sources provided an overview that covered the implementation efforts
and problems one might expect to encounter. The purpose of this report is to provide those
considering photon mapping as a global illumination solution in their application with an
overview of the implementation process, some of the hurdles they can expect to encounter, and
methods to compensate for the various degeneracies that crop up. Each of these problematic
areas will be enumerated by a bold number enclosed in square brackets, e.g., [X].

1.2 Applications of Global Illumination and Photon Mapping

Global illumination is used in a variety of applications including energy transport, interactive
graphics simulations, and image synthesis. Photon mapping caters well to applications that are
requiring a form of global illumination at minimal additional computational cost. Photon
mapping caters to applications that require both static and dynamic global illumination. Typical
photon mapping code will vary on average from 500 to 2000 lines of code. The number of lines
will be dependant on the number of heuristics the developer implements to reduce the
complexity of the interface for the end user. While photon mapping requires little CPU power

* BRL-CAD is a registered trademark of the U.S. Army Research Laboratory.

 2

relative to other global illumination algorithms such as path tracing, there exists a need to tune
various functions within the code to deal with the heuristics and degeneracies that will need to be
addressed.

2. Overview

From a top-level perspective, the foundation of photon mapping consists of two passes—
building the photon map and using it to render. More specifically, a photon map is built during
the first pass, which, in turn, is used to generate an irradiance cache (explained in more detail in
section 5). The irradiance cache is used during the rendering pass to determine the irradiance or
incoming light at a geometric point in the scene. While photon mapping is capable of solving
both direct and indirect illumination the preferred method of usage is to select a bidirectional
reflectance distribution function (BRDF) algorithm for direct illumination such as Phong and
utilize photon mapping for only the indirect illumination. Using photon mapping for both direct
and indirect illumination would require significantly more photons in the scene to minimize the
“blobs” that appear when few photons are available for computing an irradiance estimate (see
figure 1).

When photon mapping is used for both direct and indirect illumination, the
results can be very noisy. Even with 256k photons, this scene is still unable to
provide smooth results given the reasonably sized search radius (defined later).
This is why Phong shading makes an excellent choice for direct illumination,
and photon mapping is reserved to compute indirect illumination only.

Figure 1. Photon mapping for direct and indirect illumination.

Using a direct illumination algorithm rather than photon mapping serves two purposes—it not
only speeds up the rendering process, but it also reduces the amount of noise in the image. The
full rendering equation is the sum of four components, which solve the outgoing radiance for a
given geometric location in the scene. These components are derived from the three components
that make up incoming radiance and the two terms that make up the BRDF. Together these
equations form the basis for the full-rendering equation as described by Jensen (3).

 3

'ω d n) '(ω)'ω (x, L ω),'ω (x, f ω) (x, L irr ⋅= ∫ Ω

1 'ω d n) '(ω)'ω (x, L ω),'ω (x, f 1,ir ⋅= ∫ Ω

2 + 'ω d)n 'ω()) 'ω (x,L) 'ω (x,(L)ω,'ω (x,f d,i c,iS r, ⋅+∫ Ω

3 + 'ω d)n 'ω() 'ω (x,L)ω,'ω (x,f c,iD r, ⋅∫ Ω

4 + 'ω d)n 'ω() 'ω (x,L)ω,'ω (x,f d,iD r, ⋅∫ Ω . (1)

The full-rendering equation is an integral over the surface that determines the incoming radiance
or final pixel value at that position in the scene. Each of the four integral components are
computed numerically using a random sample set. The first component is the direct illumination
from the BRDF, such as Phong. The second component accounts for the indirect illumination
from caustics and specular reflections that ultimately gets stored in the caustics map. The third
term is for caustic materials caused from reflective and refractive materials, which comprise the
caustic photon map. The fourth term is the diffuse indirect illumination that comes from the
irradiance cache.

3. The Photon Map

Photon mapping is filled with a plethora of parameters to control both its creation and how it is
utilized in rendering. Automating these parameters by means of heuristics or other logical
methods will prevent the end user from having to enter in values for each of these parameters.
[1] The first parameter is the number of photons used in a scene, which is largely a balance
between bias, memory, and speed. The number chosen should in some way reflect the
complexity of the scene to maintain an acceptable level of detail in the photon map. For the case
of rendering only triangles, one may choose to use an initial value of 10,000 photons and an
additional 1 photon for every 100 triangles in the scene.

While generating the photon map, photons will be emitted from a designated set of light sources
and stored in a data structure such as a one-dimensional array. Ultimately, the photons will be
organized into a kd-tree* data structure that gets used to generate a new kd-tree known as the
irradiance cache. The result of this pass will be a single kd-tree filled with irradiance cache
points, a separate caustic photon map, and, optionally, a separate shadow photon map. The
initial structure containing the diffuse photons will be discarded after the irradiance cache has
been built. [2] The kd-tree is preferred over other data structures such as an octree, bsp, or

* Defined in section 4.

 4

voronoi graph because Jensen (3) has shown that the kd-tree exhibits the most suitable properties
for photon mapping.

3.1 Emitting Photons

Photons are emitted from a set of designated light sources. Unlike real photons that have a static
energy, the energy of these virtual photons will be dynamic. Simulating the quantum physics of
light with real photons would require a tremendous amount of memory and computational
power, thus making it impractical for today’s desktop computer hardware. Therefore, a discrete
number of photons are used, typically many orders of magnitude less than a simulation with real
photons. [3] As photons are generated for each light source, be sure to treat the light sources as
invisible geometry so that photons do not get trapped inside.

The energy of these virtual photons are typically represented by an RGB triplet or wavelength
value. The number of photons used in the scene is typically supplied as a user-definable value.
The photons start with the initial energy of the light source divided by the total number of
photons being emitted from the light source. Photons can either be emitted from a set of random
points on the light source or from a single point representing the center of the light source. The
ray for each photon can be generated using a uniform rejection sampling technique where three
floating values representing the (x, y, z) components of the direction vector are randomly
generated inside of a conditional loop that does not exit until the sum of all three values is less
than or equal to one. Once all of the photons have been emitted from all of the light sources, one
may wish to use a scaling factor to adjust the energy of each photon to increase or decrease the
global illumination contribution.

The data structure of the photon is very important when dealing with large numbers of photons.
Typical scenes may involve many thousands to millions of photons. If a scene utilizes 1 million
photons and the data structure for each photon is 32 bytes, then at least 32-million bytes of
memory will be required for the photon map. As the number of photons approaches infinity, the
bias approaches 0. The photon structure will typically consist of at least a position, normal, and
power. The position will typically be 3 floating values or 12 bytes. The normal can consists of a
short, thus giving it 65,536 unique values, which is 2 bytes. The power can consist of 3 floats,
which is another 12 bytes. Altogether, the base structure size is 26 bytes. [4] Generating a
photon structure that is 32, 48, or 64 bytes should be considered since most processor
architectures operate on 32 or 64 byte cache lines. If the photon structure is not one of these
sizes, then try padding it; this will reduce the amount of cache lines required to get the data into
processor cache and therefore give a noticeable performance boost.

3.2 Photon Propogation

Photons are emitted from a set of light sources and will propagate through the scene as a function
of the material with which they are interacting. This process will generate the photons used in
the diffuse, caustic, and shadow photon maps. With each diffuse interaction, the photons will

 5

have a probability of either continuing to propagate or being absorbed. Emitting photons in this
manner will permit a uniform distribution of photons being deposited throughout the geometry.
Additionally, one will note that the photon energies are diminishing with each propagation, with
the exception of materials having values of 1.0 for a normalized RGB value. As the number of
propagations a photon undergoes increases, the lower the probability it has of continuing. This
implicit property dictates that photons having near zero energies will have a lower probability of
existing in the scene than photons with higher energy values.

As photons are emitted, they should be stored in a linear array or similar data structure once they
finish propagating in the scene. Once all of the photons are done emitting, they should get stored
in a kd-tree, using the linear array as input, i.e., the photon map. The kd-tree is best suited for
storing the photons because of its efficient partitioning and lookup characteristics as shown by
Jensen (3).

For reflective and refractive materials, i.e., caustics, photons will either reflect off of or transmit
through the surface at each intersection point with respect to the parameters assigned to the
material with which the photon is interacting. When the material is partially diffuse, the method
of terminating and spawning new photons still exists, except that the probability of terminating is
multiplied by the diffuse fraction of the material. As is the case with path tracing, in photon
mapping, while each photon propagates through the scene, the energy is multiplied with the
material energy at each intersection. For example, let a photon propagate three times in a diffuse
scene before terminating, where all geometry has an RGB value of (0.8, 0.8, 0.8). For simplicity,
let the initial value of the photon be (1.0, 1.0, 1.0). As the photon propagates, the values of the
photon will be (0.8, 0.8, 0.8), (0.64, 0.64, 0.64), and (0.512, 0.512, 0.512), respectively.

Photon mapping uses a method of Russian roulette to reduce computational costs and storage
requirements. The probability that a photon will continue to propagate decreases as the
propagation depth increases. For materials that have a diffusely reflective value R [0–1.0], one
can choose to reflect N photons with R power, or reflect N/R photons and have 1-N/R photons
absorbed during propagation. [5] Clearly, this second method requires less reflection
computations and photon propagations. For the case of both specular and diffuse reflections, one
can use the following function (3) to control the reflection and absorption probabilities for
various materials where the value of ξ is a randomly generated number between 0 and 1.

 []→∈ dP0,ξ diffuse reflection. (2)

 [] .reflectionspecular P P ,Pξ dsd →+∈ (3)

 []→+∈ 1 ,P Pξ ds absorption. (4)

 6

A new value for ξ is calculated every time the photon propagates. As the number of
propagations increases, the probability that the photon will be absorbed increases. Once the
photon is absorbed, it is stored in the appropriate photon map data structure.

3.3 Separate Photon Maps—Better Caustics and Shadows

The use of separate photon maps is an additional optimization that should be implemented for
improved speed because less photons will be required to achieve the same results as using a
single photon map. Caustic photons from reflections and refractions will typically be the result
of some focusing or reflecting medium, which results in a sharp lighting feature, such as the
focusing of light through a glass sphere or the cardioid formed on the inner circle of a reflective
ring. Because photons in caustics generally have sharp features, the use of a small search radius
in the caustic lookup is paramount. Diffuse photon map lookups generally require a larger
search radius so that one can obtain smooth results. Both diffuse and caustic photons do not
belong in the same photon map. The caustic photon map should only contain caustic photons,
and the diffuse photon map should contain diffusely propagated photons.

Shadow photons are used for creating a smooth shadow region. A shadow photon has a negative
energy, which is used in an additive process to subtract energy from the irradiance estimate.
Shadow photons can exist in their own kd-tree and are usually created during the photon-
emitting phase. When performing an irradiance estimate during the rendering pass, one can
examine the shadow photon map to find the shadow photons in the local area. Shadow photons
are not an essential part of photon mapping, but they are a definite optimization to an already
functional implementation since a shadow photon map lookup is less costly than firing a large
number of shadow rays.

When performing a kd-tree lookup, one must define a search radius that will be used to
determine the results which will be accepted or rejected. This search radius is either a circular or
elliptical region that extends outward from the point where an estimate is being calculated. The
developer may choose to make the size of the search radius (see figure 2) a heuristic that is a
function of the scene’s size or a control that is made available on the graphical user interface.

Each kd-tree lookup requires a position, normal, and search
radius to gather a set of N photons. During the rendering pass,
the kd-tree lookup for the irradiance cache is identical to the kd-
tree lookup for the photon map except that the irradiance cache
kd-tree does not contain photons; it contains irradiance cache
points.

Figure 2. A kd-tree lookup.

 7

4. The kd-tree

The kd-tree is an optimal data structure for storing photons and irradiance cache points in a scene
for quick retrieval. Alternative data structures such as an octree or bsp will work, but the author
found they did not perform as well as the kd-tree. Understanding the mechanics of the kd-tree is
rather important for selecting an optimal median or pivoting algorithm, which is used to
determine the position to split each cell, thus making the kd-tree as balanced as possible. Each
parent node in the kd-tree consists of two child nodes, an axis-aligned splitting plane, and the
axis coordinate where the plane is being split. Once the photon map and the irradiance cache
have been constructed, the original list of diffuse photons can be discarded. With a kd-tree, one
can efficiently locate any elements in O(log n) time using a supplied position, normal, and search
radius. Since the position of each photon is three-dimensional in nature, so too is the kd-tree
used in photon mapping. For a detailed description of kd-trees, see Andrew Moore’s “An
Introductory Tutorial on kd-trees” (4). For information on implementing photon mapping on a
GPU, see Purcell et al. (5), where the use of an alternative data structure used with the GPU as
well as some of the difficulties encountered in implementing the photon mapping algorithm in
this more restrictive programming environment is described.

5. Irradiance Cache

While the photon map is suitable for determining the global illumination in a scene, there is more
information that can be extracted from the photon map to further reduce computational costs.
With only the photon map, one would be required to sample the irradiance using many photon
map lookups during the render pass. Each lookup involves firing a bundle of rays from the eye
rays intersection point and then finding a set of nearest neighbor photons at the intersection point
using the photon map kd-tree. This process would be O(n2 log n) since M sample rays would be
fired to do N photon lookups into an O(log n) kd-tree lookup. If one precomputes the irradiance
for a set of points in the scene, the algorithm becomes a significantly faster O(log n) kd-tree
lookup.

There are two approaches one can take when computing the irradiance cache. The first approach
involves computing the irradiance cache points as they are needed during the render pass. Jensen
(3) suggests the following formula for computing irradiance, which uses previously computed
irradiance values to interpolate a new irradiance value at the position x given normal n.

 8

 E(x, n) ≈ .
)n (x, ω

)x(E)n ,x(ω

1/aωi,
i

ii
a/1ω,i

i

i

i

>

>

∑

∑
 (5)

If there are no previously computed irradiance values that satisfy the condition ω i > 1/a, then a
new value is computed. For computing the weight ω i Jensen (3) uses the following equation
where R0 is the harmonic mean distance from xi.

i
o

i

i

n n 1–1
x–x

1

⋅+

=

R

ω . (6)

The fraction 1/a is a user-definable parameter to control how much deviation can occur using the
previously computed irradiance values for interpolation until the amount of error surpasses the
allowable threshold.

[6] The second approach involves less work by precomputing the irradiance, suggested by
Larsen and Christensen (6). The selection of irradiance points is not as optimal as the first
approach, but the algorithm is faster and less sophisticated. The concept involves selecting a
subset of the photon positions such as every fourth photon and computing the irradiance at that
point. These points, in turn, become the irradiance cache points. During the render pass, the
irradiance estimate involves locating a nearest irradiance cache point or group of points if
preferred.

The stochastic uniform sampling of a tesselated hemisphere is used to generate the sample rays
which, in turn, are used to calculate the irradiance at each of the suitable irradiance cache points.
Each of the sample rays are fired into the scene to obtain an intersection point where a nearest
neighbor lookup into the photon map is performed to obtain a mean radiance. The radiance
estimates from each ray are used to calculate an irradiance estimate. Figure 3 illustrates an
example of the irradiance cache points generated using the irradiance method described by
Jensen (3). Figure 4 illustrates a scene rendered using the irradiance cache in figure 3.

For each irradiance cache point, a virtual unit hemisphere aligned to the surface normal is used
as a template for generating a set of cells. The unit hemisphere is tesselated into M × N cells,
and for each cell, a ray is fired through the center of it plus a random delta. The delta is simply a
random value between 0 and half the size of the cell that is added to each ray direction vector.
For each generated ray, a diffuse photon map lookup occurs so that a radiance estimate can be
calculated. Once all of the radiance estimates are finished, they are averaged to form the final
irradiance estimate for each cache point, which is used during the rendering pass. Figure 5
illustrates an example of the ray generation process using a virtual tesselated unit hemisphere.

 9

Figure 3. Irradiance cache is represented by
white dots. Notice the point density
is low in areas where normals are not
changing.

Figure 4. Scene rendered with photon mapping
using the irradiance cache from
figure 3.

A tesselated unit hemisphere where M = 13 and N = 6. A
single ray is fired stochastically through each cell to
return a radiance estimate. [7] Radiance estimates from
each ray are averaged together to form an irradiance
estimate. Each ray has a random perturbation to the
direction vector, allowing it to shoot anywhere through its
designated cell region.

Figure 5. Virtual tesselated unit hemisphere.

 10

Several heuristics must be employed in order to obtain satisfactory radiance estimates for each
irradiance calculation. While the kd-tree for the diffuse photon map is traversed, one must
compare the normal of each candidate photon to the surface normal at the intersection point to
determine if the photon is within an angular tolerance to be accepted or rejected in the estimate.
For the case of a sphere, the intersection normal will almost always be different than neighboring
photons on the surface. Therefore, one must choose an appropriate tolerance angle such that
those neighboring photons are accepted; 60° typically works well. For the case where two
perpendicular planes meet, such as a wall connected to the floor, one must not accept photons
from the wall if the estimate is being done for the floor; thus, the angular tolerance must be less
than 90°. Divide the sum of the located photon energies by the area of the search radius to find a
mean estimated energy for the given surface position.

When performing a lookup into the photon map, one must supply a search radius to determine
which photons from the resulting search will be accepted or rejected. For the case where a
search is being performed near the boundary where two edges lie perpendicular to one another,
the search radius will extend beyond the edge of the given surface. [8] In the event that this
problem occurs, one must tally the accepted and rejected photons from the search in order to
create a correction factor. The energy of the accepted photons will either be averaged or
processed through a filter so that one can obtain an energy estimate. On edge boundaries, some
photons will be rejected during the search process, resulting in a lower-than-expected energy
estimate (see figure 6). One must divide the resulting energy estimate by the ratio of accepted
photons to the sum of accepted and rejected photons. Doing so will interpolate what the energy
in this area should have actually been, thus removing any dark edges or corners that may appear.
This phenomenon also occurs during the lookup into the irradiance cache as the mechanics are
identical to performing a lookup into the photon map.

.

Dark corners are often the result of a search radius that extends beyond the edge of
the geometry. When this occurs, the estimate picks up fewer photons than it expects.
Thus, when the results are summed and divided by the area, the estimate ends up
smaller than it should be. A correction factor can be calculated to remedy this
problem. No correction factor was applied to this scene, hence the dark edges. The
correction factor is calculated and applied to both photon map lookups and irradiance
cache lookups. One should use the same code for both photon map lookups and
irradiance cache lookups since the algorithm for both processes are nearly identical.

Figure 6. Scene with dark edges, resulting from no correction factor.

The irradiance cache algorithm requires very little work to parallelize. For multiprocessor
systems, one can expect to see a linear speedup in the time it takes to build the irradiance cache.
All that is required to parallelize the irradiance caching algorithm is a single semaphore. The
semaphore is used to protect the irradiance cache list from being written to by more than one

 11

thread at a time. The photon-emitting algorithm can also be parallelized, but the speedup is
negligible since the vast majority of preparation time is spent building the irradiance cache.

6. Optimizations

There are various optimizations one can employ to speed up the entire photon-mapping process.
First, one should precompute the irradiance cache so that this process becomes a prerendering
pass; this ensures unnecessary processing is not done during the rendering pass. Second, the use
of separate photon maps should be employed so that one can still achieve sharp caustics, soft
shadows, and a minimal number of photons for indirect illumination. Third, importance
mapping should be implemented to reduce the number of photons required in a scene, thus
saving on memory. Fourth, one should implement the use of multiple photon maps for
irradiance estimates to improve performance.

6.1 Importance Mapping

Importance mapping is a method of shooting importons from the camera into the scene to reduce
the amount of photons and irradiance cache points needed in a scene. This process changes
photon mapping from a view-independent to a view-dependent algorithm. For scenes with many
lights and nonvisible partitions, there can be a tremendous benefit. For example, envision an
office building that contains hundreds of rooms, each containing a ceiling light, and most of
which are not visible from the camera. Photon mapping will naïvely shoot photons from every
light source and deposit photons throughout the entire building. One does not need photons
stored in any of the rooms that have no visual impact on the rooms currently in view. Importons
are deposited in the same manner that photons are. Finally, one must march through each of the
importons and mark any photons within its location as important. After marching through all of
the importons and marking important photons, any remaining photons in the diffuse photon map
should be discarded.

6.2 Multiple Photon Maps for Irradiance Estimates

It has been shown that various rejection methods must be employed to prevent an estimate from
being contaminated by nearby photons. As a result, Larsen and Christensen (6) have shown that
using multiple photon maps can be employed for the irradiance estimate to improve performance
during the prerendering pass. The idea is to use different photon maps on adjacent surfaces
where there is a sufficiently large angle between them as a way of preventing contamination.
The result of this approach is a collection of separate photon maps assigned to each different
surface. During the building of the irradiance cache, one would then need to perform a lookup
into multiple photon maps instead of just one photon map containing all of the photons for the
diffuse indirect illumination.

 12

7. Rendering

Rendering with photon mapping is a rather straightforward process that involves computing each
of the four components in the full rendering equation. Direct lighting is computed using a BRDF
such as an attenuated version of Phong shading. The irradiance cache is used to sample the
irradiance at the geometric location being rendered. The caustics photon map, which contains
transmissive and reflective photons, and any other additional photon maps, i.e., the shadow
photon map, are used to compute global illumination. The sum of these four components will be
the value of the resulting pixel.

7.1 Direct Illumination

Two popular algorithms for computing direct illumination are Phong (7) and Goraud shading (2).
[9] It is imperative that the direct-illumination algorithm have an attenuation coefficient so that
energy decreases as a function of the distance in the same manner that occurs in photon mapping.
The denominator of the attenuation coefficient in Phong is typically of the form a + bd + cd2 to
prevent dividing by zero and to provide some linear scaling control. One can alternatively
choose to make the denominator p + d2 where p is defined as a very small number and d is the
distance. Östberg and Thorin (8) illustrate an attenuated version of Phong.

 aassdd2 Lk)v)r(LkN1Lk](
cdbda

1[L +⋅+⋅
++

= α . (7)

[10] In addition to including attenuation in the direct-illumination model, it is as equally
important not to include the ambient term. Ambient contributions are not used in any of the
direct illumination models because the intent of ambient lighting is to cheaply simulate indirect
illumination. Since photon mapping is used for indirect illumination, the ambient term should
not be used.

7.2 Global Illumination

The second half of the rendering pass involves finding the indirect illumination from the
irradiance cache. For each ray fired from the camera, an irradiance cache lookup will take place
to find a set of nearby irradiance cache points. The number for the set can be user definable or a
constant such as 50. When the irradiance lookup algorithm returns with a set of points, the
algorithm can then either average the results or process them through a filter. The purpose of the
filter is to further improve the quality of the sample set found. Some of the more common filters
are the gauss and cone filters, which give the irradiance cache points closest to the intersection
point the most influence. In addition to calculating the indirect illumination from the irradiance
cache, the contributions from the caustic and shadow photon maps should also be added to the
result. The net result of this part of the rendering pass is a pixel value that includes the indirect

 13

diffuse, caustic, and shadow contributions. This result is added to the direct-illumination
calculation to generate the final pixel value.

8. Degeneracies

There are several degeneracies in photon mapping that require some additional nontrivial code to
fix. [11] The first degeneracy exists when one geometric plane bisects another, forming the “T”
degeneracy. In the irradiance estimate during the rendering pass, one provides the irradiance
lookup function with the number of photons to use as an estimate, a search radius, a normal, and
a geometric location. If photons have been stored on the side of a bisected plane that receives no
direct light, the irradiance lookup algorithm will locate photons from the side receiving direct
light when doing an irradiance estimate near the corner of the side that is not receiving direct
light. (There is simply not enough information available to the irradiance lookup algorithm to
prevent this degeneracy from occurring without introducing more overhead into the irradiance
estimate code to make some intelligent decisions about what irradiance cache points to accept or
reject based on various geometric partitions that exist in a scene.) Figures 7 and 8 illustrate this
“T” degeneracy. This problem could be corrected by partitioning the geometry where planes
meet at a user-defined angle or by creating an algorithm to fire several rays to determine whether
a partition is nearby; both are nontrivial to implement.

(a) (b) (c)
A wire-frame view of the entire scene.
One room contains a light source, and the
other is completely isolated from light.

A rendering of the room containing the
light source.

A rendering from the unlit room. Notice
that the algorithm is gathering photons
around the edges of the back wall.

Figure 7. “T” degeneracy room views.

[12] A second degeneracy exists when the scene is being illuminated by a small crevice from
another room with sufficient lighting. A scene where this problem exists is one which contains
two rooms that are separated by a door with a keyhole, and the only light the unlit room receives
is from the keyhole and through the crack on the bottom of the door. Because there is only a
small area through which photons may propagate, one must use a large number of photons to
render this scene accurately. Metropolis Light Transport handles this problem with its use of

 14

 (a) (b)

A path-traced reference image exhibiting correct illumination
above the counter. Rendered with 8192 rays per pixel using
ADRT.

A photon-mapped rendering of the same scene. Notice
that the area above the counter is darker than it should
be. Rendered with 16,384 photons using BRL-CAD.

Figure 8. “T” degeneracy images.

various mutation strategies (9), which sample the scene based on the probability a ray will reach
a light source. Path tracing uses a large number of samples; therefore, this does not become an
issue. Photon mapping requires an importance map.

[13] A third type of degeneracy occurs in the case of simulating motion blur (10). A single
photon map cannot be reused for each frame of an animation that contains dynamic geometry.
The use of a temporal photon map must be used to accommodate the dynamic global
illumination. This approach requires a four-dimensional kd-tree in which photons have a time
parameter so that when a lookup occurs, only the photons from that temporal region are included
in the estimate. With this method, one can interpolate between temporal regions without
requiring a new photon map for each frame.

9. The Big Picture

Now that all of the finer details of photon mapping have been presented, it is important to
understand how all of the various parts of photon mapping fit together to form the finished
product. Again, think of photon mapping as a two-pass algorithm. During the first pass, a bunch
of photons are emitted from all of the light sources into the scene. Importance mapping is used
to optimize this part of the first pass to reduce the amount of photons needed. The photons
propagate through the scene and are stored in their respective diffuse, caustic, or shadow photon
lists. Each list of photons is used to construct a kd-tree, i.e., the photon maps. Next, the diffuse
photon map is used to generate the irradiance cache by selecting a subset of the photons in the
scene as irradiance cache points, whereby a virtual tesselated hemisphere is used to shoot out a

 15

number of sample rays to compute the irradiance. Once the first pass is complete, there should
exist an irradiance cache, a caustic photon map, and a shadow photon map if implemented.

During the second pass, the rendering pass, rays are shot from the camera into the scene. Each
time a ray from the camera intersects a piece of geometry in the scene, the full lighting equation
is evaluated. The direct lighting is computed using Phong, and an irradiance lookup is done to
determine indirect illumination at that point. Finally, the caustic and shadow photon maps
perform a lookup. The results are summed together to form the final pixel value, and the step is
repeated until the image is completely rendered.

10. Summary

Different applications have different requirements for global illumination. Photon mapping is an
excellent addition to any rendering system where the overall objective is to increase realism by
the addition of global illumination. The photon-mapping algorithm may be a nontrivial effort to
implement. One will have to find a balance between the controls in photon mapping that will be
managed by heuristics and those that will be exposed in the user interface. Providing the end
user with too many controls results in a nonoptimal interface. Dealing with the various
degeneracies is not an easy feat either, but each of those can be dealt with as the problem arises.
Photon mapping produces some very realistic looking images when implemented and used
correctly (see figure 9).

However, if the underlying objective for the developer is to produce unbiased realistic images by
means of a turn-key solution, then they may wish to exercise other global illumination
algorithms such as path tracing. While path tracing requires approximately two orders of
magnitude more processing time than photon mapping, there are certain techniques to bring the
path-traced rendering process up to the speed of the photon-mapped rendering process. If one
has not already done so, one may wish to improve the performance of one’s ray-tracing engine
by an order of magnitude via the work done by Wald et al. (11). This improvement will, in turn,
make path tracing only an order of magnitude slower than photon mapping. With a small cluster
of networked computers and distributed capabilities in the ray tracer, one can expect path tracing
to now perform on par with photon mapping, but in a turn-key environment. Path tracing
typically requires 50 lines of code, which makes the implementation process quick and the code
base easy to maintain. With this in mind, one may choose to implement a high-performance
distributed ray-tracing engine with path tracing.

 16

The top left image represents standard Phong rendering without the ambient term. The top right image shows Phong
with a constant 0.4 value for ambient light. The bottom left image uses phong for direct illumination and photon
mapping for indirect illumination; notice the subtle color bleeding on the background and on the tree limbs. The
bottom right image is the net result of what photon mapping generated for this image. This result is simply added to
the top left image to generate the bottom left image.

Figure 9. Tree scene before and after photon mapping.

 17

11. References

1. Jensen, H. W.; Christensen, N. J. Photon Maps in Bidirectional Monte Carlo Ray Tracing of
Complex Objects. Computers & Graphics 1995, 19 (2), 215–224.

2. Watt, A.; Watt, M. Advanced Animation and Rendering Techniques; Pearson Education
Limited: Essex, England, 1992; pp 23, 293–295.

3. Jensen, H. W. Realistic Image Synthesis Using Photon Mapping; A K Peters Ltd.: Natick,
MA, 2001; p 97.

4. Moore, A. Efficient Memory-based Learning for Robot Control. Ph.D. Thesis, University
of Cambridge, 1991.

5. Purcell, T. J.; Donner, C.; Cammarano, M.; Jensen, H. W.; Hanrahan, P. Photon Mapping on
Programmable Graphics Hardware. Stanford University, Stanford, CA; Graphics Hardware
2003.

6. Larsen, B. D.; Christensen, N. J. Optimizing Photon Mapping Using Multiple Photon Maps
for Irradiance Estimates. WSCG Proceedings, Plzen, Czech Republic, 3–7 February 2003.

7. Glassner, A. S. Principles of Digital Image Synthesis; Morgan Kaufmann Publishers, Inc.:
San Francisco, CA, 1995; Vol. 2, pp 726–728.

8. Östberg, B.; Thorin, H. Lights. http://www2.hh.se/staff/jovall/dg04/elevwebb/light
/Seminar/Lights_and_the_Phong_model.htm (accessed March 2005).

9. Veach, E.; Guibas, L. J. Metropolis Light Transport. Siggraph 97 Proceedings; Addison-
Wesley: Reading, MA, August 1997.

10. Cammarano, M.; Jensen, H. W. Time Dependent Photon Mapping. Thirteenth
Eurographics Workshop on Rendering, Department of Computer Science, Stanford
University, Stanford, CA, 2002.

11. Wald, I.; Slusallek, P.; Benthin, C.; Wagner, M. Interactive Rendering with Coherent Ray
Tracing. Computer Graphics Group, Saarland University; Eurographics 2001.

NO. OF
COPIES ORGANIZATION

 18

 1 DEFENSE TECHNICAL
 (PDF INFORMATION CTR
 ONLY) DTIC OCA
 8725 JOHN J KINGMAN RD
 STE 0944
 FORT BELVOIR VA 22060-6218

 1 US ARMY RSRCH DEV &
 ENGRG CMD
 SYSTEMS OF SYSTEMS
 INTEGRATION
 AMSRD SS T
 6000 6TH ST STE 100
 FORT BELVOIR VA 22060-5608

 1 INST FOR ADVNCD TCHNLGY
 THE UNIV OF TEXAS
 AT AUSTIN
 3925 W BRAKER LN STE 400
 AUSTIN TX 78759-5316

 1 DIRECTOR
 US ARMY RESEARCH LAB
 IMNE ALC IMS
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

 3 DIRECTOR
 US ARMY RESEARCH LAB
 AMSRD ARL CI OK TL
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

 3 DIRECTOR
 US ARMY RESEARCH LAB
 AMSRD ARL CS IS T
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

ABERDEEN PROVING GROUND

 1 DIR USARL
 AMSRD ARL CI OK TP (BLDG 4600)

NO. OF NO. OF
COPIES ORGANIZATION COPIES ORGANIZATION

 19

 1 DIRECTOR FORCE DEV
 DAPR FDZ
 RM 3A522
 460 ARMY PENTAGON
 WASHINGTON DC 20310-0460

 1 US ARMY TRADOC ANL CTR
 ATRC W
 A KEINTZ
 WSMR NM 88002-5502

 1 USARL
 AMSRD ARL SL EA
 R FLORES
 WSMR NM 88002-5513

 1 USARL
 AMSRD ARL SL EI
 J NOWAK
 FORT MONMOUTH NJ 07703-5601

ABERDEEN PROVING GROUND

 1 US ARMY DEV TEST COM
 CSTE DTC TT T
 APG MD 21005-5055

 1 US ARMY EVALUATION CTR
 CSTE AEC SVE
 R BOWEN
 4120 SUSQUEHANNA AVE
 APG MD 21005-3013

 1 US ARMY EVALUATION CTR
 CSTE AEC SVE S
 R POLIMADEI
 4120 SUSQUEHANNA AVE
 APG MD 21005-3013

 1 US ARMY EVALUATION CTR
 CSTE AEC SV L
 R LAUGHMAN
 4120 SUSQUEHANNA AVE
 APG MD 21005-3013

 12 DIR USARL
 AMSRD ARL SL
 J BEILFUSS
 P TANENBAUM
 AMSRD ARL SL B
 J FRANZ
 M PERRY
 AMSRD ARL SL BB
 D BELY

 D FARENWALD
 S JUARASCIO
 AMSRD ARL SL BD
 R GROTE
 AMSRD ARL SL BE
 L ROACH
 AMSRD ARL SL E
 M STARKS
 AMSRD ARL SL EC
 J FEENEY
 E PANUSKA

 20

INTENTIONALLY LEFT BLANK.

