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1 Introduction

Data assimilation, which can be loosely defined as the techniques to best utilize

_observational data in conjunction with a numerical simulation, has continued to be a
_challenging problem for the atmospheric numerical modeling field. Past techniques of

objective analysis (Cressman, Barnes, etc.) were simple attempts to interpolate randomly-
located observations of basic state variables to a regular grid structure.

Within the past decade, schemes based on variational numerical methods have become
popular. Variational schemes use the concept of the minimization of a cost function. A
simple example of a cost function could be the domain average of the squared differences
between an analyzed field and the observations. By adjusting the analyzed field, the size
of the cost function is affected. The resultant solution is the analyzed field when the cost
function is at a minimum.

Variational data assimilation has the main advantage that it is possible to use non-linear
observation operators and the resulting freedom to use any observed quantities as input to
the assimilation instead of a derived product. This makes it possible to use remote
sensing data, for example satellite radiances in the variational data assimilation schemes,
in addition to the basic state variables. It is not required to first convert the remote data to
the state variables as in traditional data analysis, although a relationship must be
established between the observed and model variables. It is also possible to include
physical constraint terms in the cost function (e.g., non-divergence or gradient wind
balance). Weights (error coefficients) are applied to each term to determine the relative
importance in the final analysis.

The variational data assimilation schemes can be divided into two groups, called 3DVAR
or 4DVAR. A 3DVAR scheme will only analyze the fields at a given point in time, while
the 4DV AR schemes will also take into account the time variation.

A 4DVAR scheme uses a cost function as in a 3DVAR scheme, but the terms in the cost
function encompass multiple times. Minimization of the 4DVAR cost function is (
accomplished through a series of iterative steps in which the full non-linear model is run
forward in time, then an adjoint of a simplified linear version of the model is run
backward in time. This cycle is typically repeated on the order of 100 times for adequate
convergence of the solution.

It has been pointed out (Zupanski 2005; Kalnay et al. 2000) that both 3DVAR and
4DVAR, as well as the commonly used data assimilation method of Optimal
Interpolation (Daley 1991) are approximations to Kalman filtering theory, and that with
certain assumptions, the variational schemes will converge to the basic Kalman Filter.
There is a relatively new technique, also an approximation to the Kalman Filter, that is
starting to gain favor from many researchers. It has been termed an Ensemble Kalman
Filter (EnKF) (or Ensemble Kalman Smoother) and provides similar results to 4DVAR
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schemes without the need of adjoint or linear models. EnKF started being investigated
about 10 years ago in meteorology and oceanography.

The EnKF technique has the advantages that only forward runs are used (no adjoints are
required) and the convergence properties have a similar (or less) level of computational
effort to 4DVAR. Also, since only forward runs are used, all aspects of full model (non-
linearity, all physics scheme, etc.) can be utilized in creating the ensembles.

This project was intended to serve as a preliminary investigation into the variational
schemes, with the goal of determining a reasonable research path to attain the best
possible data assimilation scheme(s) for both the Weather Research and Forecasting
model (WRF) and the Regional Atmospheric Modeling System (RAMS), with a focus on
AFTAC’s applications.

We executed and tested the WRF 3DVAR scheme in the context of the WRF model. We
also developed a converter to transform the WRF output files into the RAMS input
(“varfile”) format, allowing us to use the 3DVAR fields in RAMS simulations.
Simulations were performed over two cases with the two models in several
configurations. Literature reviews of the current state of the 4DVAR and EnKF schemes
were performed. An important result of this project are the recommendations on how best
to proceed in the development and usage of 3DVAR data assimilation schemes in
conjunction with RAMS and WREF and the feasibility of implementation of the 4DVAR
/EnKF schemes in the models.

It should be noted that this project used WRF v2.0.3.1. A new WRF version 2.1 was
released in early August, which included a new version of the 3DVAR scheme. Due to
time constraints, we were unable to test the new version for this report. However, we
have reviewed the code and release notes and have commented in the sections below.




f 2 The WRF 3DVAR scheme

g The following section is partially summarized from Barker et. al. 2003 (hereinafter,
‘ Barker03). Figure 1 shows the main components and a flow diagram of the 3DVAR
scheme. : '

WRF-Var in the WRF Modeling Sysfem

; ' 2T,
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Figure 1: Components of the WRF 3DVAR system (from
http://www.mmm.ucar.edu/wrf/WG4/wrfvar.htm)

The WRF/MMS5 3DVAR code was developed at NCAR, but follows closely the basic
design as implemented operationally at the UKMO (Lorenc et al. 2000), on which most
‘ 3DVAR schemes implemented in forecast centers are based. The main features of the
3DVAR system include (from Barker03):

¢ Quasi-Newton minimization algorithm (Liu and Nocedal 1989) (for minimization
of the cost function)

¢ Computations are performed on an unstaggered grid (Arakawa A grid). The
results are then interpolated to the target MMS5 (B grid) or WRF (C grid), and also
for the results below, the RAMS grid (C grid). Computations are performed on
the sigma-height levels of MMS5, or mass-coordinate levels of WRF.

e For efficiency, preconditionin% is accomplished with a “control variable

transform”: U defined as B=UU . Preconditioned control variables are chosen as
streamfunction, velocity potential, unbalanced pressure and a choice between
, specific or relative humidity. Preconditioning in this manner removes most of the
i error correlations between the analysis variables.

B




Linearized balance terms relating the mass and wind fields (geostrophic and
cyclostrophic terms) are used to define a balanced pressure.

Climatological background error covariances (the B matrix) are estimated with
the “NMC-method” of averaged forecast differences. The details of this
computation can be found in Barker03, but primarily it is based on average
forecast differences from one forecast time to another (e.g., differences in the
model fields taken between the 12-hour and 24-hour forecast).

According to Barker03, 3D variational techniques have the following advantages over

] earlier techniques (e.g., Cressman, Barnes, Optimum Interpolation (OI), etc.):

Observations can be assimilated directly without the need for retrieval algorithms
(i.e., conversion to state variables). This implies a more consistent treatment of all
observations and, since the observation errors may be less correlated (with each
other and the background errors), some simplifications to the analysis algorithm
are attained. (However, the only non-state variable able to be handled by the
current scheme is precipitable water.)

The solution is found using all observations simultaneously, unlike the OI
technique for which a data selection into artificial sub-domains is required.

_ Asynoptic data can be assimilated near its valid time through the use of frequent

updates of the analysis.
Balance constraints (e.g. geostrophy, hydrostatic) can be built into the scheme.

A 3-D variational scheme can be viewed as the solution of the vector x which minimizes
a cost function. In the WRF 3DVAR scheme, the cost function takes the form (in matrix
notation):

J (x)=-;—(x—x”)’B‘l(x—x”)%(y—y")’(E+F>“<y—y")' M

Alternatively, this can be written in vector notation as:

]
( where

Yo

x)=lzwa(x—xb)2 +lZ(wE +wp)‘(y~yo)2
2 b 2 0 . :

— model variables defined at grid points

- “first guess” field (e.g., from larger-scale forecast or analysis)
- model variables transformed to observation type and location - y = Hx where H

is defined as the observation operator, a function or scheme to perform the
transformation.

- observed variable
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w, - weighting factor for each grid point and variable dependent on expected errors
between model and first guess field
w, - weighting factor dependent on observation instrument error

w, - weighting factor dependent on “representivity” error (inaccuracies in H)

In the matrix form, B, E, and F are more commonly described as the background,
observation (instrumental), and representivity error covariance matrices.

The quadratic cost function defined in (1) assumes that the statistics of the observation
and background error covariances are described using Gaussian probability density
functions with zero mean error. Alternative cost functions may be used which relax these
assumptions (e.g. Dharssi et al. 1992), but these are generally more complex and time-
consuming. Also, (1) additionally neglects correlations between observation and
background errors.

Under these assumptions, the minimization of the cost function which defines the field x
is then accomplished by an iterative solution using standard numerical methods.
Convergence of the algorithm as implemented takes on the order of about 50 iterations.

Barker(03 identifies the following drawbacks of the 3DVAR algorithm:

¢ The quality of the output analysis depends crucially on the accuracy of prescribed
errors, especially B.

¢ The method allows for the inclusion of linearized dynamical/physical processes,
but actual errors in the models may be highly nonlinear. This limits the usefulness
of variational data assimilation in highly nonlinear regimes, for example, on the
convective scale or in the tropics.

Expanding on a few of the points above:

e  While the 3DVAR cost function would most commonly incorporate standard
meteorological observations (i.e., rawinsondes and surface observations),
inclusion of nonstandard observations is straightforward. For example, data
collected by satellites, aircraft, Doppler radar, and wind profilers, which occur at
irregular locations, are easily included in the cost function provided that a means
for relating these observations to the model state vector is provided. The easiest
way to do this is to interpolate the state variables to the location of the observation
and formulate the corresponding difference term of the cost function in
observation space rather than in model grid-point space. Observed quantities such
as satellite radiances that are not elements of the model state vector can be
obtained from the state vector using supplementary computation. Missing or
incomplete observational data does not pose any particular numerical problem for
3DVAR; it simply results in fewer terms in the cost functlon
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¢ The 3DVAR implementation for MMS5 and WREF is performed on an Arakawa A

grid and subsequently interpolated to the B grid of MMS or the C grid of WRF.
This interpolation introduces additional error that is not subject to the
minimization procedure of the variational cost function. Interpolation of the _
optimized initial state from the A grid to the RAMS grid (which is Arakawa C as
in WRF) introduces the same type of error, but this procedure is no less valid than
it is for MM5 and WRF.

Hydrostatic, geostrophic, and cyclostrophic balance terms have been included in
the MMS5/WRF 3DVAR system. Imposition of these balances in numerical
forecast initial conditions reduces unrealistic oscillations during the initial model
integration and is likely to provide better forecast results. However, the relative
success of this procedure is highly dependent on the degree to which these
balances exist in the flow. Successful test results are described in Barker et al.
(2004) for a hurricane, which is one of the most highly balanced systems that
exists in the atmosphere. Similar improvement to the solution is not to be
expected for less balanced systems, such as tropical convection and many
mesoscale circulations.

As with all 3DVAR (and 4DVAR) schemes, the cost function may have more
than one local minimum, and the numerical procedure for minimizing the eost
function results in convergence to only one of those minima (usually the one
directly down-slope from the initial conditions). This minimum may not be as
low as another, and hence may not produce the most optimal of all possible state
vectors.

There is no straightforward means of determining optimal values for coefficients
of the covariances in the cost function. These coefficients determine the relative
weight of each term and hence have a strong influence on the solution. In
practice, one must determine empirically which coefficient values result in the
best numerical forecasts. It is helpful to have a large database of forecast results,
which is usually available only in an operational setting. Matters are further
complicated by the fact that optimal coefficients depend on model grid resolution
and the geographic size and location of the model domain, so any changes to
these require a new search for best values. Moreover, the best results are obtained
with coefficients that are allowed to vary both spatially and temporally, at least in
some broad sense such as by latitude, altitude, and season. Because of these
factors, the entire procedure of developing a highly optimized 3DVAR analysis
system is far more complicated than the relatively straightforward tasks of setting
up and minimizing the cost function. The search for optimal coefficients remains
an active area of research.

The current WRF (and MM5) 3DVAR scheme only can input state variables (u,
v, T, P, vapor), except for column precipitable water. Reflectivities and radiances
have not been implemented. Update: the newly-released WRF v2.1 3DVAR is
supposed to process radar reflectivity. There is a mention of “pre-operational

10
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trials in Korea” of this capability. However, no documentation, presentations, or
papers could be found as of this writing. The change logs and code imply that an
observation operator has been added to convert the reflectivities to condensate
species and vertical motion through the use of a 1-D cloud model. The cloud
model is based on the model in the Anthes-Kuo parameterization from the 1970’s.

3 WRF 3DVAR Test Cases

We selected two disparate cases to begin our look at the performance of the WRF
3DVAR scheme: 1) a large-scale, strongly forced winter storm case over the eastern US
that moved from the Midwest into the Northeast, and 2) a smaller-scale, weakly-forced
sea breeze case over Florida. For each case, both WRF and RAMS were run in different
configurations, as noted below. Of course, with an issue as complex as variational data
assimilation, two cases will not provide a definitive answer as to the performance of the
scheme. However, the two cases allowed us to have a starting point to gain familiarity
with the scheme and to be able to compare our results and impressions with other tests
found in the literature.

3.1 The WRF-to-RAMS Converter

In order to initialize RAMS from the WRF 3DVAR fields, we developed a converter to
transform the WREF fields written in netCDF format to the RAMS input format
(“varfiles”). The converter was developed rather generally. It will work on output from
the WRF-SI files (Standard Initialization, which is a simple interpolation from GRIB-
format gridded datasets, such as GFS or Reanalysis fields), the WRF-3DVAR files, or
output files from a WRF model run. In order to properly prepare the RAMS files, several
steps and considerations needed to be taken into account:

¢ Any WRF projection can be used (only the Lambert-Conformal has been tested)
as long as the RAMS domain fits within the WRF coarse grid.
¢ The RAMS grid points will be defined from the highest resolution WRF grid
. present at the grid point locations.
¢ The vertical levels do not need to match between the models. Care is taken to
conserve momentum, energy and water mass in the vertical interpolations.

e Several hydrostatic balance calculations are performed to ensure an appropriate
balance for the RAMS input fields.

The output of the converter is a set of RAMS “variable initialization” files that can be
directly used to start a model run. RAMS/ISAN is not needed in this case.

11
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3.2 Winter snowstorm case

3.2.1 Metebrological summary

A significant winter storm developed over the upper Midwest and traversed through the
Ohio Valley into the mid-Atlantic states from 22-24 January 2005. The origins of the
system were associated with a 500 mb short-wave embedded in northwest flow coming
out of central Canada. Figure 2 shows the evolution of the system at 500 and 1000 mb. At
0000 UTC on 22 January, the 500 mb short wave is entering the northern US with an
associated, small 35 ms-1 jet maxima. Near the surface, the system is reflected as an
inverted trough from Minnesota southward and a cold front is evident across Nebraska.
Significant development is noted over the next 12 hours as the short-wave tightens and
the jet maxima increases to 45 ms-1. A closed off surface low pressure system is centered
over northern Indiana and a large high pressure circulation, moving south out of Canada,
is reinforcing the cold front.

The jet maxima begins to round the base of the trough over the lower Ohio Valley at
0000 UTC on 23 January that causes the surface low, now centered over Washington DC,
to turn eastward. The jet maximum continues to round the base of the 500 mb trough over
the next 24 hours as the surface low intensifies off the Eastern Seacoast. Cold air behind
the cold front has now reached well into the Gulf of Mexico. By the end of the time
period (1200 UTC 24 January), the system has closed off at 500 mb over the Canadian
Maritime Provinces and the surface has moved out to sea east of Maine.
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Figure 2: Left column shows 500 mb height (black lines, contour interval 60 m) and wind
speed (> 20 ms™, color image, contour interval 5 ms™). The right column shows 1000 mb
height (cyan lines, contour interval 30 m) and wind vectors at every model grid point for
0000 UTC 22 through 1200 UTC 24 January 2005.

3.2.2 Model configurations

3.2.2.1 WRF Configuration

A relatively large domain (Figure 3) was selected to cover the entire region affected by
this winter storm. To keep compute time within reason, a rather coarse, 30-km grid
spacing was employed with a horizontal grid size of 126x126 and 31 vertical levels. The
WREF Standard Initialization (WRF-SI) package was used to generate static fields, such as
topography, for the model domain. Initial condition and forecast lateral boundary
condition data were derived from the NCEP Global Forecast System (GFS) model
analysis data that were obtained from archives available at NCAR. The WRF-SI package
was used to interpolate the GFS data to the WRF model grid. '




Lo

Figure 3: Winter case stady model domain.

Two sets of model simulations were completed — control and 3DVAR. The control runs
were initialized with the GFS data grids as output by the WRF-SI package. Initialization
of the 3DVAR runs was accomplished using grids derived from the WRF-3DVAR
package. As discussed in the previous section, the package starts with an initial
background field and additional observational datasets are assimilated in to form a new
set of three-dimensional atmospheric analyses. The package was configured to use the

-~ WREF-SI GFS grids generated for the control runs as the background field. AFTAC

provided two observational datasets for January 2005 that were already formatted for
direct use by the WRF-3DVAR package. The first set included point observations that
contained METAR, ship, aircraft report, rawinsonde, and satellite cloud drift wind data.
The second set contained SSM/I data. These datasets were assimilated directly into the
GFS grids to form the 3DVAR initjal conditions. WRF uses tendencies from the initial
condition as its forecast lateral boundary condition, and these tendencies were adjusted
based on the new 3DV AR initial condition fields.
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Initially, two WREF simulations, control and 3DVAR, covering the entire event were
completed. Both simulations were initialized at 1200 UTC on 22 January and results
were generated at 1-hour increments out to 72 hours. Five additional sets (control and
3DVAR) of forecasts were generated to provide more comparison data. These
simulations were initialized at 6-hour increments (1200, 1800 UTC 22 January, 0000,
0600, and 1200 UTC 23 January) and results were output at 2-minute increments out to
24 hours for the 1200 UTC 22 January runs and out to 6 hours for the other simulations.

The WRF model has a variety of physics packages available. The comparison of physics
packages was not an objective of this study and hence, the physics selected were based
primarily on experiences with the MMS model that contains many physics packages
similar to WRF. Table 1 contains a summary of the model configuration. The WRF
single-moment 6-class microphysics scheme with ice, snow and graupel processes is
most suitable for working with a wintertime precipitation event. It should be noted that
using the NOAH land surface model is preferable based on results from previous
ATMET studies. The NOAH LSM, however, requires a skin temperature/SST
initialization and these fields are not available in the NCAR GFS dataset.

Table 1: WRF model physics options used for winter case study simulations.

Physics ' Option
Microphysics , WREF single-moment 6-class
Land Surface ‘ 5-layer thermal diffusion: Soil
| temperature only
Longwave Radiation RRTM
Shortwave Radiation Dudhia scheme
Surface Layer MMS similarity
Planetary Boundary Layer Yonsei University scheme (modified
MRF scheme)
Cumulus Parameterization Kain-Fritsch scheme

3.2.2.2 RAMS Configuration

RAMS version 6.0 was used for the simulations for this project. The model was
configured in a similar grid configuration as WRF, using 125x119x38 grid points with a
horizontal grid spacing of 30 km. The RAMS’ horizontal domain needed to be slightly
smaller than the WRF domain so that the 3DVAR fields could be interpolated to all grid
points due to the slight mismatch between the RAMS polar-stereographic projection and

the WRF Lambert-Conformal projection. The various physics options are listed in Table
2.

Table 2: RAMS model physics options used for winter case study simulations.
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Physics : Option
Microphysics Full 7 species, prognostic ICC
Land Surface _ LEAF 3 vegetation and soil; 8 soil layers;
2 land patches
Longwave Radiation Chen-Cotton
Shortwave Radiation Harrington
Surface Layer Louis
| Planetary Boundary Layer Mellor-Yamada TKE
Cumulus Parameterization Modified Kuo scheme

, Three RAMS runs were made for this case, varying the details of the definition of the
initial and boundary conditions:

1) RCTL (“Control”) run — straight interpolation of the GFS files
2) ISAN run — RAMS/ISAN used to blend observations with GFS first-guess fields
3) R3DV run — WRF 3DVAR files interpolated to RAMS grid

3.2.3 WRF simulétion analyses

There are obviously many figures we can show of the model fields for these runs, but the
main indications of model performance can be summarized in the statistical evaluation in
the following section. Here, we will present the initial surface temperature analysis
(Figure 4) from the WRF control and 3DVAR runs. Note there are some differences

) apparent in the amplitude of the features, especially the ridges near the southern

| Tennessee border and over Wisconsin.

Figure 4: Initial surface temperature from WRF control run (left) and 3DVAR run (right).
Contour interval is 2.5° C.




To provide an overall summary of the differences between the control and 3DVAR runs,
several methods were employed. These included: 1) traditional statistical evaluation of
point observations with model results interpolated to observation locations, 2) subjective
evaluation of simulated time series of pressure and vertical motion, and 3) discrete
Fourier transform analysis to objectively evaluate power spectrum and noise
characteristics of the simulations.

3.2.3.1 Statistical evaluation

The archived National Weather Service METAR surface data were obtained from NCAR.
These data were decoded into a format compatible for use in the RAMS statistical
analysis package. WRF gridded forecasts were then interpolated to all available METAR
locations within the model domain for direct comparison with the observations. This
required development of the RAMS Evaluation and Visualization Utilities (REVU)
package to process the WRF output files.

Figure S illustrates domain-wide average forecast temperature, dew point, and wind
speed from the control and 3DVAR simulations along with observations (approximately
1,800 surface stations were used). Mean absolute error statistics are also displayed. In
all cases, the 3DVAR run initial condition showed significant improvement over the
comparable control simulation initial condition. This is not surprising, since the control
run initial conditions were a straight interpolation from the coarse resolution GFS fields,
while the SDVAR assimilated the observations.

However, the improvement dropped off very rapidly with time. Overall quality was
virtually identical after 8 simulation hours for temperature and 12 hours for dew point.
And after 36 hours, the control runs showed slightly better forecasts than the 3DVAR
runs. It should be noted that both the control and 3DVAR runs showed a significant
warm temperature and dew point bias through the entire forecast period, most likely
partly due to the lack of snow cover in the model. The 3DVAR wind speed forecast did,
however, show small improvements over the control runs through the forecast cycle. But
again, the improvement was small when compared to the large high wind speed bias
compared to the observations.

19



(I

B3

Mean - tempc Mean absolute error - tempe

tempc

-12 LI L T s L i WALl bty A LU T Tl
e b3

2/12 23/00 23/12 24/Q0 24/12 23/00 23712 24700 24712

Mean ~ dewptc Medn dbsolute error ~ dewptc

-5 7
-6
-7 & F
-8 It
~9 Koy 5}
o-~1g ¥ Q
-1 o4
§-1 g
~-13 3
-14
-15 2
~-16 . i . . . .
Ay it e s Ly [EEEREIEN AR AN USRI NUE N RN NS NS NC RN |

4
22/12 2/00 2712 24/00 412 . 22712 23/00 23/12 24/Q0 2412

Mean absolute error - speed

epeed

speed
N NI N I PR A &
5 W o O N Ul D

Dbt S I e By

LAl a6 i1 bt T e e e
32/12 2/00 29/12 24/00 24/492 '52/12 23/00 312 24190 24712

Figure S: Domain-averaged statistics for temperature (C), dewpoint temperature (C), and
wind speed (m/s). The left column contains the domain-averaged quantities; the right
column is the mean absolute error. Red lines — average of the observations; blue lines —-
control run results; brown lines - 3DVAR results.

3.23.2 Time series analysis

Imbalances between mass and wind in the model initial condition can manifest into
spurious gravity wave features that propagate at high speeds compared to other
meteorological phenomena. These imbalances will affect the initial conditions of the
model run, but also, if the analysis fields are used in an “analysis” nudging 4DDA
scheme, the imbalances can affect the entire simulation. Since one of the main
advantages of 3DVAR schemes is to be able to include balance terms, we tested for the
degree of balance which was attained with the current WRF scheme. The imbalances will
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typically be exhibited as high frequency oscillations in simulated time series of pressure

and vertical velocity.

Time series of pressure and vertical velocity were examined from the simulations with
the 2-minute interval output to subjectively evaluate and compare noise characteristics
from the control and 3DV AR simulations during the early portions of the forecasts.
Individual grid-point locations were first reviewed. Figure 6 shows a representative
sample of pressure at the lowest model level and vertical velocity at model level 5
(approximately 500 m above ground level). The four points are located over different
terrain characteristics: 1) central Iowa, 2) mountainous terrain along the Virginia-West
Virginia border, 3) the North Carolina coast, and 4) the Atlantic Ocean.

A wide variety of oscillations are evident at different temporal scales. Careful
examination of each time section does suggest that the 3DV AR simulations exhibited
somewhat less of the highest frequency perturbations compared to the control runs during
the first several hours of simulation, however, the amplitude of the somewhat longer
frequencies are larger. It should be noted that high frequency oscillations are not
necessarily spurious, especially in areas of mountainous terrain and convection. For
example, the control simulation vertical velocity time series over the Appalachian
Mountains indicated a 6-hour period of high frequency oscillations which are likely
influenced by the terrain. The 3DVAR simulation also showed a period of high
frequency oscillations, but of shorter duration. Without detailed observational data,
which are not obtainable from the conventional observational network, it is difficult to
validate how much noise is real versus the spurious noise resulting from the initial
condition analyses. This type of analysis, however, does provide information as to how
well-balanced the initial fields produced by the 3DVAR scheme were.
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Figure 6: Surface pressure (mb) and 500m vertical motion (cm/s) time series from the WRF
control run (red) and 3DVAR run (green) at four representative grid points: 1) central
Iowa, 2) mountainous terrain along the Virginia-West Virginia border, 3) the North

Carolina coast, and 4) the Atlantic Ocean.

A broader subjective view is presented by averaging the forecast time series across all
domain grid points (Figure 7). Domain averaging will reduce the evidence of gravity
wave oscillations since nearby grid points will offset each other as some locations are in

22




N

n

the pressure trough while other points are in the pressure ridge. As expected, the averaged
results did indicate much smoother fields than the individual time series, although high
frequency oscillations were evident during the first 12 minutes of prediction, and the
magnitude was about equal for both control and 3DVAR simulations.
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Figure 7: Domain-averaged surface pressure (mb) for the control (red) and 3DVAR (green)
runs. Left panel is a close-up of the first 60 minutes of the simulations; the right panel is for
the first 24 hours. '

3.23.3  Fourier time series analysis

Discrete Fourier transform analysis is a method that can be used to objectively evaluate
and quantify periodicities in a data series and the relative amplitudes of the wavelengths.
By applying Fourier transform techniques to the simulated time series discussed in the
previous section, we analyzed the temporal frequency characteristics of the model
simulations and objectively evaluated whether WRF-3DVAR reduced the influence of
high frequency noise early in the model simulations. This technique will also remove the
influence of temporal offsets from point to point, as was the case of the domain-averaged
analysis in the previous section.

The implemented technique uses a Fast Fourier Transform (FFT) on the desired time
series. The result is a sequence of complex numbers with the same length as the original
time series. The complex series is symmetrical around the mid-point and represents the
positive and negative frequency components of each wavenumber. Finally, the power
spectrum is derived by taking the complex modulus, defined as the magnitude of the real
and complex components, of the transformed series and scaling the result so that the sum
of the components equals one. Amplitude versus wavenumber plots of the power
spectrum reveals the relative importance of each wavenumber that comprises the original
time series. Wavenumbers will range from 1 to (n/2)-1 where n is the number of points in
the time series.
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The FFT technique was applied to the five simulation sets (control and 3DVAR) with
different initialization times and 6-hours of output at 2-minute increments. Fourier
transforms were applied to each individual grid point time series using two time spans: 3
hours in length (91 time points) and 6 hours in length (181 time points), providing 3-hour
and 6-hour power spectrum results at every domain grid point for each simulation. A
comparison of 3-hour and 6-hour FFT applications showed similar findings, thus only the
6-hour results are presented.

Domain-averaged power spectrum results were then compiled for each simulation.
Further averaging was accomplished by averaging the results of all five runs together for
the control and 3dvar simulations respectively. Figure 8 shows these results that are
averaged over all five simulations for the 6-hour time span. It should be noted that these
averaged results had similar characteristics of results from the individual simulations.
The plots do not include wavenumbers 1 and 2 which removes the longer-term trends and
allows closer examination of the scaled results for the remainder of the wavelengths.

The power spectrum curves indicate consistent decreasing influence from low to high
wavenumbers in both the control and 3DVAR simulations. The 3DVAR results indicate a
greater influence of low wavenumbers when compared to the control runs, and a
crossover occurs at wavenumber 10 after which the higher wavenumbers show less
influence in the 3DV AR forecasts. This suggests that the 3DVAR initialization has acted
to remove some of the higher frequency variations and shift them to longer wavelengths.
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Figure 8: Average power spectrum over a combination of 5 runs of the control (red) and
3DVAR (green) runs (see text for details). Left panel shows wavenumbers 3-14, right panel
shows 15-90.

3.2.4 RAMS verifications

Figure 9 shows the same initial surface temperature analysis as presented above for the
WREF runs, comparing the RAMS/ISAN analysis with the WRF 3DVAR field
interpolated to the RAMS grid. Overall, they are very similar. However, there is a notable
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difference in a couple areas. In the RAMS/ISAN analysis, note the orientation of the
contours off the coast of the Carolinas and to the east of New Jersey north to
Massachusetts. The contour lines tend to be parallel to the coast. This feature is an
artifact of the Barnes objective analysis scheme, which manifests itself when moving
from a data rich region (over land) to a data poor region (over water). Values from the
land areas are wrongfully extended over the water. Although the simulated fields tend to
adjust rather quickly as the simulation progresses, the effects of the initial analysis over
the water can linger for several hours. The 3DV AR analysis, because of the use of the
observations and the first guess field in the cost function, can produce a smoother, more
consistent analysis. This is not implying that the 3DVAR field is “correct” (since there
are no observations to compare it to), only that it is more consistent with the first-guess
fields.

Figure 9: Initial surface temperature from RAMS ISAN run (left) and R3DV run (right).
Contour interval is 2.5° C.

The same three validation methods: statistical evaluation, subjective evaluation of
forecast time series, and Fourier analysis, were applied to the three RAMS simulations.

3.24.1 Statistical evaluation

RAMS gridded forecasts were interpolated to all available METAR observation locations
within the model domain for direct comparison. Domain-wide average observations and
simulations of temperature, dew point, and wind speed are shown in Flgure 10. Mean
absolute error statistics are also displayed.

As with the WRF runs, the ISAN and R3DV-initialized simulations showed improvement

over comparable control simulations at the initial time. The length of improvement varies
by field. For temperature, the ISAN simulation retained an small improvement over the

25




1
aw

L

[E—

- control run through the entire forecast period, while the R3DV improvement lasted for

about 24 hours and then showed a degradation of quality after 30 hours. ISAN and R3DV
dew point results were nearly identical and showed improvement through the first 12
forecast hours. The ISAN run showed a small improvement which continued through the
entire 48 hour forecast period, while the R3DV results faded and lost advantage over the
control run after about 22 hours. Similar to the WRF simulations, a large wind speed
improvement was initially noted in both the ISAN and R3DV simulations. The initial
improvement was, however, lost quickly as the control and ISAN simulations were nearly
identical and R3DV showed a small degradation after 28 hours.

Overall, the RAMS results were better than the WRF findings with much smaller overall
biases noted in all three fields. RAMS improvements by the 3DV AR initialization were
only found early in the simulation period and actually showed a degradation during the
later periods for all fields. Meanwhile, the ISAN initialization showed improvement
throughout for temperature and dew point, and about equal quality compared to the

- control run for wind speed. Note that the large error in initial wind speed in the control

run was mostly due to the vertical interpolation from the GFS fields. The same feature
can be seen in the WREF statistics. :
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Figure 10: Domain-averaged statistics for temperature (C), dewpoint temperature (C), and
wind speed (m/s) from the 3 RAMS runs. The left column contains the domain-averaged
quantities; the right column is the mean absolute error. Red line — average of the
observations; blue lines —- RCTL run results; brown lines — ISAN run results; green lines —
R3DV results.

3.24.2 Time series analysis

Time series analysis of RAMS pressure at individual locations were examined and
compared to results from the WRF simulations. Figure 11 shows forecast surface
pressure time series at the same representative locations examined in the WRF discussion
(Figure 6). Two-minute output increments were only produced out to six hours with
RAMS, which is less than the 24 hours completed with WRF. Nonetheless, the very high
frequency oscillations noted in the WRF simulations were conspicuously absent in the
RAMS runs. There was a suggestion of other middle frequency oscillations that were
apparent in the ISAN and R3DV-initialized runs, but not the control runs, indicating
imbalances caused by the inclusion of observations in the analysis. The R3DV time series
also showed a significant drop in pressure compared to the control and ISAN simulations.
Domain-averaged results (Figure 12) also show this pressure drop. The middle frequency
oscillations are, however, not apparent in the domain-averaged time series, in contrast to
results from WRF (Figure 7). '

These pressure differences could have been caused by a difference in the way RAMS and
WRF were run. RAMS used the WRF 3DV AR output to generate “varfiles” at 12 hour
intervals for the 72 hours of simulations. Therefore, the RAMS’ boundary conditions
included the effects of the observations and the 3DVAR analysis. However, the WRF
code has no capability to use the 3DV AR analysis for the lateral boundary conditions.
Only the first-guess fields (GFS in this case) are able to be used.
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Figure 11: Surface pressure (mb) time series from the RAMS control run (red), ISAN run
(green), and R3DYV run (blue) at four representative grid points: 1) central Iowa, 2)
mountainous terrain along the Virginia-West Virginia border, 3) the North Carolina coast,
and 4) the Atlantic Ocean.
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Figure 12: Domain-averaged surface pressure (mb) from the RAMS control run (red),
ISAN run (green), and R3DV run (blue). '

3.24.3 Fourier time series analysis

Domain-averaged, 6-hour power spectrum results were generated using the same
methodology as described for the WRF runs, with the exception that a smaller subset of
equally spaced grid points were used to calculate the domain average. Results (Figure 13)
were similar to the WRF findings with consistent decreasing influence from low to high
wavenumbers in both the control and R3DV simulations. Also similar to WRF, the
R3DV results indicated a greater influence of low wavenumbers when compared to the
control runs, and a crossover occurred at wavenumber 9 (compared to wavenumber 10 in
WREF) after which the higher wavenumbers show less influence in the R3DV forecasts.
As suggested previously, the 3DV AR initialization acted to remove some of the higher
frequency variations, which may be a desirable effect for this resolution of simulation.
The ISAN results indicate power spectrum characteristics that were nearly identical to
R3DV at higher frequencies above wavenumber 23. Some differences were, however,
observed at lower wavenumbers where ISAN shows lower, nearly identical to control,
power at and below wavenumber 4, then higher power through the middle wavenumbers,
and a higher wavenumber crossover point (wavenumber 17) to lower power at the high
wavenumbers. '
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Figure 13: Average power spectrum from the RAMS control run (red), ISAN run (green),
and R3DV run (blue) (see text for details). Left panel shows wavenumbers 3-14, nght panel
shows 15-90.

3.3 Sea breeze case

3.3.1 Meteorological summary

A second summer case study was selected to contrast with the first scenario. This was a
sea-breeze scenario over the Florida Peninsula where synoptic-scale forcing was

minimal. Figure 14 shows 500 and 1000 mb GFS analyses from 0000 UTC 18 June
through 0000 UTC 19 June 2004. A weak subtropical high was evident at 500 mb that
was centered over the Florida Panhandle through the period. Light easterly flow south of
the high covered the entire Peninsula. Near the surface, anticyclonic circulation was
evident over the Atlantic Basin with weak on-shore flow along the east coast of Florida.
The spatial resolution of the GFS analyses was insufficient to resolve any sea-breeze
features, but a well-defined sea—breeze circulation surely occurred during this weak
synoptic forcing period.
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Figure 14: Left column shows 500 mb height (black line, contour interval 30 m) and wind
- vectors and right column shows 1000 mb height (black line, contour interval 30 m) and
wind vectors at every model grid point for 0000 UTC 18 through 0000 UTC 19 June 2004.

3.3.2 Model configuration

3.3.2.1 WRF Configuration

A smaller domain with much higher resolution was selected to cover the entire Florida
Peninsula (Figure 15). Initially, a double-nested grid configuration was initially used with
a 2-km inner grid centered over Cape Canaveral. WRF-3DVAR simulations, however,
consistently failed with this configuration despite using a variety of model configurations.
The failure was determined to be in the radiation scheme, but a fix was not able to be
found in a reasonable time. Hence, a new single grid system was implemented with a 3
km horizontal grid spacing. The grid size is 201 x 201 with 40 vertical levels. The WRF-
SI package used 30 second datasets to generate static fields such as land use type for the
model domain. Since sea-surface temperature is very important to correctly simulating a
sea-breeze circulation, archived NCEP ETA model data was obtained from the NOAA
Forecast Systems Laboratory. This dataset includes sea surface temperature and soil
temperature and moisture, none of which is available in the NCAR GFS dataset. The
WRE-SI package was used to interpolate the ETA data to the WRF model grid.
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Figure 15: Summer case study model domain,

The experiment design was similar to the first case study with two sets of model
simulations — control and 3DVAR. The control runs were initialized with interpolated

"ETA data as output by the WRF-SI package. Initialization of the 3DVAR runs was

accomplished using grids derived from the WRF-3DVAR package. The package was
configured to use the WRF-SI ETA grids generated for the control runs as the
background field. AFTAC point observation data were not available for this time period,
hence archived METAR data was obtained from NCAR and code was developed to
convert this data into a format useable by the WRF-3DVAR package. This dataset was
then assimilated directly into the ETA background fields to form the 3DVAR initial
conditions. The WRF model forecast boundary conditions were adjusted accordingly. -

Two WREF simulations, control and 3DVAR, were initially completed that covered a full
diurnal cycle of 30 hours at one hour increments from 0000 UTC 18 June through 0600
UTC 19 June 2004. Four additional runs (control and 3DVAR) were generated to provide
further comparison data. These simulations were initialized at 6-hour increments (0000,
0600, 1200, and 1800 UTC 18 June) and output was generated at 2-minute increments -
out to 6 hours. WRF model physics remained the same as in the first case study (Table 1),
except the convective parameterization was not used.
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3.3.2.2 RAMS Configuration

RAMS version 6.0 was again configured very similarly to WRF for these runs. The
model was configured with 199x199x38 grid points with a horizontal grid spacing of 3
km. The various physics options used were the same as for the winter case (Table 2),
except the convective parameterization was not run.

Again, three RAMS runs were made for this case, varying the details of the definition of
the initial and boundary conditions:

4) RCTL (“Control”) run — straight interpolation of the ETA files

5) ISAN run — RAMS/ISAN used to blend observations with ETA first-guess fields
6) R3DV run — WRF 3DVAR files interpolated to RAMS grid

3.3.3 WRF verifications

Figure 16 shows the initial surface temperature analysis from the two WRF runs. Very
little difference can be seen between the two analyses, as the ETA first-guess fields also
would have assimilated the same observations, albeit at a coarser resolution.

Figure 16: Initial surface temperature from WRF control run (left) and 3DVAR run (right).
Contour interval is 0.25° C.

3.3.3.1 Stat_istical evaluation
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WREF gridded forecasts were interpolated to all available METAR observation locations
within the model domain (approximately 45 surface stations) for direct comparison.

Figure 17 illustrates domain-wide average forecast temperature, dew point, and wind
speed from the control and 3dvar simulations along with observations. Mean absolute
error statistics are also displayed.

For each variable, the 3DV AR-initialized simulation showed a small improvement over
the control run at the initial time. The small improvement lasted for about nine hours after
which time the quality of the control and 3dvar simulations were nearly identical. As with
the WRF winter case study results, both the control and 3DVAR runs showed a
significant warm temperature and dew point bias especially during the night-time hours.
WRF wind speed predictions also showed a high night-time bias, and then wind speed
values dropped during the daylight hours at a time when daytime mixing would suggest
higher wind speeds that were seen in the observations. Similar inverted wind speed
diurnal cycles have been noted in several MMS projects conducted by ATMET. Overall,
any slight improvements resulting from 3DVAR initializations were small.
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Figure 17: Domain-averaged statistics for temperature (C), dewpoint temperature (C), and
wind speed (m/s). The left column contains the domain-averaged quantities; the right
column is the mean absolute error. Red lines — average of the observations; blue lines —
control run results; brown lines — 3DVAR results.

3.33.2 Time series analysis

Time series of WRF surface pressure forecasts at individual locations were examined and

compared to results from the winter case study simulations. Simulation results were
similar for each of the four different model initialization times with 2-minute increment
forecast output; hence, results are only presented from the runs initialized at 0000 UTC
18 June. Figure 18 shows four representative surface pressure time series, positioned at
27N latitude and at 82, 81, 80, 79W longitude, superimposed on the same graph.
Significant differences were not easily discerned between the control and 3DVAR
simulations. Each time series indicated some small amplitude, high frequency
oscillations. Also, a consistent, larger amplitude oscillation with a time period of about 50
minutes was evident in all the simulations and the amplitude dampened with time.

Domain-averaged surface pressure time series using a subset of equally spaced grid
points are shown in Figure 19. Even in the domain-averaged time series, the 50-minute
frequency oscillation continued to be very obvious in both the control and 3dvar runs.
The period of these waves suggest that the oscillation results from a perturbation in the
vertical, perhaps a reflection off the model top. '
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Figure 18: Surface pressure (nb) time series from the WRF control run (red) and 3DVAR
run (green) at four representative grid points.
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Figure 19: Domain-averaged surface pressure (mb) for the control (red) and 3DVAR
(green) runs.

3333 Fourier time series analysis

Domain-averaged (using a subset of equally spaced grid points), 6-hour power spectrum
results (Figure 20) were generated using the same methodology as used in the winter case
study. In general, as in the winter case study, the influence of higher wavenumbers
decreased consistently in both the control and 3DV AR simulations with three notable
exceptions. Significant power spectrum spikes are observed at wavenumbers 8 and 50,
and to a lesser extent at wavenumber 12. Wavenumber 8 over a 6-hour time span relates
to about a 45 minute period, which corresponds closely to the 50 minute oscillation
period noted in the previous section. It is not entirely clear what the wavenumber 50
oscillation represents. This oscillation can be seen as the small, superimposed
perturbations in Figure 19, and may possibly due to the frequency of the radiation scheme
updates. When compared to the control simulation, 3DVAR results show a somewhat
smaller influence between wavenumbers 5 and 11, a somewhat greater influence below 5
and between 11 and 17, and very little difference above wavenumber 17.

The purpose of the time series analysis is to attempt to determine whether there are
imbalances in the initial data analysis that may cause perturbations at the initial time, and
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also throughout the simulation if the analysis fields are used in the 4DDA nudging
schemes. Unfortunately, because of the status of WRF development (i.e., nudging
schemes not implemented, generation of domain-wide perturbations), it is difficult to
arrive at a definitive conclusion based on the WRF results at this time.

Average Power Spectrum (4 runs) fiverage Pouer Spectrum (4 runs)
Pressure (level 1) - § hour Pressure (level 1) - § hour

1.8 pr—rr- T T - —rT

02 PR N . s . .
16 1620 22 24 26 20 30 32 34 36 30 40 42 44 46 48 50 52 54 56 58 60 62 64 66 6670 7274 76 78 60 6264 86 88 90
Waverumber

Figure 20: Average power spectrum over the control (red) and 3DVAR (green) runs (see
text for details). Left panel shows wavenumbers 3-14, right panel shows 15-90.

3.3.4 RAMS verifications

Figure 21 shows the initial surface temperature analysis from the three RAMS
simulations. Comparing the differences between the control and ISAN run, the effect of
the Barnes scheme can be clearly seen again. Values from the land observations are being
extended over the data poor region of the ocean. The distance that they extend is
dependent on the smoothing parameters specified in the RAMS’ configuration.
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Figure 21: Initial surface temperature from RAMS control run (upper left), ISAN run
(upper right), and R3DV run (bottom). Contour interval is 0.25° C.

3.34.1 Statistical evaluation

RAMS gridded forecasts were interpolated to all available METAR observation locations
within the model domain for direct comparison. Domain-wide average observations and
forecasts of temperature, dew point, and wind speed are shown in Figure 22. Mean
absolute error statistics are also displayed.

The results are qualitatively similar to the winter run. At the initial time, the ISAN run
tended to verify the best for all variables. The 3DVAR analysis pushed the first-guess
field closer to the observations as expected, but not as close as the ISAN run. Thereafter,
the differences among all runs reduced, especially with wind speed verifications. The
mean temperature was virtually the same for all runs, implying that the land surface
processes was mostly driving the surface temperatures. The dewpoint temperature
showed the most differences. The ISAN run was initialized closest to the observations
and maintained that advantage through the nighttime hours. The R3DV run started with a
smaller deviation from the first-guess field, and by the early morning hours, had almost
the same mean dewpoint as the control run. '
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Figure 22: Domain-averaged statistics for temperature (C), dewpoint temperature (C), and
wind speed (m/s) from the 3 RAMS runs. The left column contains the domain-averaged
quantities; the right column is the mean absolute error. Red line — average of the
observations; blue lines - RCTL run results; brown lines — ISAN results; green lines —
R3DYV results.

3.34.2 Time series analysis

Time series of RAMS surface pressures at individual locations were examined and results
suggest no significant periodic oscillations at any frequency (not shown). Domain-
surface pressure time series, averaged with the same subset of equally spaced grid points
used in the WRF'analysis, for the control, ISAN, and R3DV simulations are shown in
Figure 23. Again, no significant periodic oscillations at any frequency are observed, in
contrast to the oscillations noted in the comparable WRF simulations.
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Figure 23: Domain-averaged surface pressure (mb) from the RAMS control run (red),
ISAN run (green), and R3DV run (blue).

3343 Fourier time series analysis

Domain-averaged, 6-hour power spectrum results (with the same subset of equally spaced
grid points used in the WRF analysis) were generated using the same methodology as
previously described and are shown in Figure 24.

Results are similar to the RAMS findings from the winter case study with consistent
decreasing influence from low to high wavenumbers in both the ISAN and R3DV
simulations. The control run has a small increase from wavenumber 4 to 5, but by
wavenumber 6, all simulations are very similar. The R3DV results do indicate a greater
influence of low wavenumbers when compared to the control runs, and a crossover
occurs at wavenumber 8 (compared to wavenumber 9 in the RAMS winter case) after
which the higher wavenumbers show less influence in the R3DV results. As suggested
previously, the R3DV initialization has acted to remove some of the higher frequency
variations. Also, consistent with the RAMS time series analysis, there is no indication of
any significant power spectrum spikes that were observed in the WRF simulations. ISAN
results indicated power spectrum characteristics that are nearly identical to R3DV at
higher frequencies above wavenumber 5 while the ISAN influence is slightly greater than
the control at very small wave numbers.
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Figure 24: Average power spectrulh from the RAMS control run (red), ISAN run (green),
and R3DV run (blue) (see text for details). Left panel shows wavenumbers 3-14, right panel
shows 15-90.

3.4 Case study summary

Based on the limited number of cases investigated, we can make the following
observations about the WRF 3DV AR and its performance with the WRF and RAMS
models, along with the WRF model itself:

e WRF 3DVAR improved the statistics of the initial conditions compared to using
‘ the first-guess only fields, more so for the coarser grid resolution, winter case than

for the higher resolution summer case. This was probably due to the fact that the
summer case used the ETA first-guess field, which also uses a 3DVAR scheme
that is similar to the WRF scheme. We expected to see some additional
improvement due to using higher resolution, but this was not the case. .

¢ The standard RAMS/ISAN initial conditions also showed initial statistical
improvement compared to the first guess field, somewhat better than the 3DVAR
initial conditions. However, the 3DV AR results were more consistent over data-
poor regions than the Barnes objective analysis in RAMS/ISAN.

¢ Significant improvement in the simulation verifications, in general, only lasted a
few hours in both WRF and RAMS. This is consistent with the findings of others
using the WRF scheme (McAtee et al. 2005) and the predecessor MM35 3DVAR
scheme (Barker et al. 2004). Barker et al.-did show a potential improvement
throughout a 24-hour forecast period for the u-wind component (they did not
show the v-component) on higher resolution grids, but marginal improvements for
moisture and temperature at all scales. They also showed that the LITTLE_R
scheme (MM5’s Cressman analysis) generally had better verifications at the
initial time than the 3DVAR scheme.
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¢ It was desirable to make comparisons in WRF comparing the 3DVAR

‘; ' performance versus a “standard” analysis, such as the Cressman technique used in
MMS5 (as in Barker et al. 2004). However, no capability to use actual observations
in creating the initial conditions has been implemented in WRF, aside from the
3DVAR scheme. There is also no capability to use the 3DVAR fields for the
lateral nudging boundary conditions.

* Both the WRF summer and winter simulations showed domain-wide pressure

‘x oscillations at the start of the model run. The oscillations were of similar

magnitude with and without the 3DVAR. This implies that they are caused by

boundary conditions or by the WRF numerics and makes perturbation analysis to

separate out the effects of the 3DVAR scheme much more difficult.

* The imbalances in the initial fields, as measured by the “noise” in pressure time
series at grid points, were not reduced in RAMS by using the 3DVAR fields.

i Since the 3DVAR cost function does include some balance terms, it was hoped

that some noise could be reduced. However, since the terms are for geostrophic

(good for large-scale flows) and cyclostrophic (good for hurricanes) wind and

pressure balances, the utility of these terms for general mesoscale applications are

‘ somewhat limited.

¢ There is some evidence that the imbalances in RAMS for the 3DVAR
initialization may have been somewhat increased in some locations for the winter
runs (Figure 11), although there was no qualitative difference in the summer runs.
Based on this and the verification results, while more testing should be done, we

? feel that the interpolation of the WRF 3DVAR fields to the RAMS grid is

/ adequate, at least for this version. If additional balance terms are added, this will

need to be reconsidered. More details about this issue are in Section 4.1.

' It should be noted again that these observations are based on a limited set of simulations.
We did not attempt to vary the “default” set of parameters distributed with the WRF
3DVAR scheme, as there is virtually no documentation or guidance available at this time.
Neither did we attempt to change the error matrices, as no code was available to generate
other than the default set (the newer WRF version, 2.1, has a program to be used if a
history of simulations is available).

While we expect our simulations to be indicative of general performance, especially since
P they are consistent with other tests in the literature, more tests and cases should be run to
i verify any conclusions.
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4 WRF 3DVAR Scheme Issues

4.1  Use of WRF 3DVAR with RAMS

One of the desires of this research is to have a generalized 3DVAR scheme that can be
used for both the WRF and RAMS models. While the WRF scheme should, of course, be
compatible with the WRF model, it was less clear how to best utilize the WRF 3DVAR
scheme with RAMS. There are three possibilities for the implementation of 3DVAR for
WRF and RAMS: '

1) Modify the WRF 3DVAR scheme to execute on the RAMS grid structure,

2) Execute the WRF 3DVAR scheme in its current form, then interpolate the results
to the RAMS grid structure, or .

3) Develop and implement a separate 3DV AR scheme specifically for RAMS.

The first or third option should provide the best results from a technical standpoint. For
example, a term which minimizes three-dimensional divergence could be included in the
cost function. However, the computation of divergence depends on the actual specific
model grid structure. If divergence were minimized on the WRF 3DVAR Arakawa-A
grid, then the velocity components were interpolated to the RAMS grid, the divergence
may no longer be minimized correctly. '

From a practical view, however, the second option has some advantages in that
significant modifications to the WRF code will not need to be done. Also, as changes to
the WRF scheme might be made by NCAR and others, the interface to RAMS can
immediately take advantage of the potential improvements.

As noted in Section 3, for the runs that we have performed herein, we recommend the
second option, especially since the WRF 3DVAR implementation is not performed on the
native WRF grid anyway. As noted above, this interpolation introduces additional error
that is not subject to the minimization procedure of the variational cost function. -
Interpolation of the optimized initial state to the RAMS grid introduces the same type of
error, but this procedure is no less valid than it is for WRF itself.

While it would be possible to implement a separate scheme for RAMS, we feel at this
time, since the WRF scheme is under active funding and development, there would be a
significant amount of “re-inventing the wheel”. We feel it would be better to monitor and
use the current and near future developments of the WRF scheme.

Aside from the difficulties in applying 3DVAR in forensic applications, the question still
remains as to whether the current development of WRF 3DVAR will meet all of
AFTAC’s requirements. The current scheme does handle a number of observational
platforms, but there may be additional observed variables that are available to AFTAC
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(such as satellite radiances) that NCAR will not be implementing. Therefore, we have
reviewed the WRF 3DVAR code to assess the difficulties in implementing new observed
variables. The following section describes briefly the overall WRF structure and the
3DVAR code.

To summarize our recommendation concerning this question: while the WRF code
structure presents some challenges (as noted below) and requires a significant learning

.curve for many types of implementations, it will be possible to implement new variable

types if necessary.

4.2 WRF/3DVAR Code Structure

The WRF 3DVAR scheme has been implemented as one of the WRF “cores”. As of this
writing, there are three main WRF cores:

o  ARW (Advanced Research WRF) — (formerly, the “mass”-core and the “EM”-
Eulerian Mass core) — primarily developed by NCAR as the follow-on to MM5. A
floating sigma-p vertical coordinate is used again (as in MM4). Most of the
physics packages are from MMS.

e NMM (Non-hydrostatic Mesoscale Model) — began development by NCEP
(Janjic) as follow-on to the ETA model prior to the WRF concept. It uses a sigma-
z vertical coordinate, with most of the physics packages coming from the ETA
model.

e 3DVAR (3-Dimensional Variational Scheme) — data assimilation scheme
originally developed for MMS5 and converted to the WRF code structure.

Following is a short summary of the WREF software structure.

The WRE structure was primarily designed by John Michalakes (Michalakes et. al. 2001)
at NCAR. He was also primarily responsible for the two incarnations of the parallelism in
MMS5 while at Argonne in the 1990’s. Figure 25 shows two slides that were taken from
the now-standard WRF presentation that has been presented at numerous conferences
over the past many years. The slides summarize the de51gn considerations that the
developers considered.
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* Hierarchical software architecture
- Insulate scientists' code from parallelism and other archxtecturellmpleme
details

- Well-defined interfaces between layers, and external packages forbcomm i
and model coupling facilitates code reuse and exploiting of commumty mfr'
ESMF.

+ Multi-level parallelism
- Decomposition over distributed memory patches (per MPI- process . th
tiles (per OpenMP thread)

~ Same code adapatable for shared-memory, distributed-memory, and )
systems

— Control over size and shape of working subdomain for cachelvector efficiency
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Aspects of WRF Software Design.

« Multiple, run-time selectable dycore options - . -
~ Eulerian Mass (Skamarock, Klemp, Wicker)
- NH-Meso Eta (Janjic)
—  Semi-implicit semi-Lagrangian (J. Purser)

~ WRF 3DVAR is also implemented as a "core” within the WRF so
framework

- WRF software framework selected by China Met. Admm. fo

» Active data-dictionary: WRF-Registry"
- Compile time database of WRF state data and its aftnbut
~ 30-thousand lines of WRF auto-generated at compile time-
- Allows rapid development of WRF by automating repetitive,

+ |-K-J Order for Storage and Loop Nesting .
— Detailed studies (with Rich Loft and Pat Worley)
~ Provides best compromise for vector and microprocessor parf:

» Grid nesting
-~ Two-way interacting,coincident (non-rotated)
- Run-time instantiation

— Moving (Hurricane WRF; NOAA requirement for 2006)
~ Target performance: no more than 15 % overhead .

* Mode! coupling...
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Figure 25: From NCAR/MMM WREF presentation available from their web site.
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After examining the WRF code, there were a few of these design points that seemed to be
the most important to the developers. In our opinion, these were:

 “Insulate scientist’s code from parallelism...”
e “Multiple, run-time selectable dycore options”
¢ “WRF-Registry”

The WRF memory structure is built around the concept of the “Registry”. The concept is
rather similar to the RAMS’ VTABLE file that was used for a few versions, starting with
v4a in about 1992 and ending with v4.4. As with VTABLE, the WRF Registry is a data
file which contains a list of all variables that will be allocated for an execution, along
with several characteristics for each variable such as order of dimensions, inclusion in the
message-passing, etc. The Registry file is processed as the first step in the compilation,
which produces numerous “include” files. These include files are then inserted into the
remainder of the Fortran code in virtually hundreds of places using the C preprocessor.
Therefore, the code that the user actually sees and works with can be very different from
the code that is eventually compiled. An estimate from one of the WRF presentations had
over 40,000 lines of code being inserted from these include files. These include files
contain not only declaration statements for variables, but also argument lists for CALL
and SUBROUTINE statements.

The reliance on the C preprocessor to handle the include files can lead to significant
confusion during code development. For example, a developer can have a file in a text
editor entering new code. This of course is the file before the preprocessing is performed.
He compiles the new code and the compiler reports an error on line 5056. However, the
file he is editing may only have 2000 lines. He must then find the expanded file (after the
includes were performed) that the compiler actually used, find the appropriate line
number in the expanded file, then attempt to cross-reference the line to the actual file he
is working with.

WREF was designed with a “standard” computer science-type of hierarchical layer
structure. One other example of the use of a layer structure is the IP packet. In WRF, the
“Driver” layer sets up the memory, which is passed to the “Mediation” layer through

‘huge argument lists (from one of the include files). The Mediation layer configures the

I/O and parallelism, then again finally passes the memory, again through long arguments
lists, to the “Model” layer, where the actual model code resides.
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In the early stages of WRF development (circa 1997-8), it was assumed that there would
be a single model to be supported in the code. However, with the evolved requirement
that WRF support multiple models (or cores), this somewhat restrictive structure was
implemented. The stated design goal of insulating the scientist from many details was
certainly achieved. Through the use of the Registry and passing the memory through the
] long argument lists, arrays can be named as they are expected by the underlying model.

In some ways, the WRF design has significant flexibility in some parts, but to account for
this flexibility, there were sacrifices made in complexity and understandability of the
code. As with many codes that were written for flexibility (including some aspects of
RAMS), the vast majority of the time, many of these particular features are virtually
never or rarely used. An example in the WRF code that comes to mind is the ability to
change the array order (e.g., (i,k.j) versus (i,j,k)) through the Registry. And often in
practice, maintaining unused features in the code frequently leads to increased chances

; for errors and lengthens the time required for development.

As long as the model developer is able to follow the WRF structure, and work in the
i middle of the Model layer (e.g., implementing a convective parameterization), the
structure is not that different from, say, developing in MMS5. However, if more
substantial development is to be done, as evidenced by numerous remarks at the WRF
; - User’s Conference, the structure can lead to memory inefficiencies and roadblocks to
| ‘ being able to accomplish new implementations. There has also been concern expressed in
other meetings that there are not enough people who actually understand the full
| complexities of the WRF structure. '

A comment about WRF performance in general: we are assisting the USFS with the -
= development and installation of a fire weather forecast system. This system includes
- MMS5, with WREF running in as similar configuration as possible. Basically, WRF has

very similar errors and biases to MMS5, except it is taking longer to run than MM5.

,; Clifford Mass at the University of Washington reported at the 2005 WRF/MMS5 Users’
7' Workshop that they are doing a similar comparison, and finding similar results. This
obviously caused significant concern at the Workshop. These results should not be
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surprising, however, as WRF (ARW core) has a somewhat modified dynamical
framework from MMS5, but the physics packages are taken almost directly from MMS.

As mentioned, the WRF 3DVAR code was originally developed for MMS, then
converted to the WRF code structure. As of this writing, there is a technical manual
(Barker(3) available for the scheme, which also goes into some aspects of the usage and
code structure. There is also an online tutorial that covers the execution of the code.
However, there is not a specific usage document that describes the namelist inputs. In
fact, the online tutorial states: "Not all [namelist] values are provided with comments.
This is deliberate — we only support changing the values with comments! Feel free to
experiment with the others only if you can support yourself by checking the code to see
what these other options do!" Unfortunately, none of the namelist variables have any
comments in the supplied sample namelist and there are very few comments in the source
code itself.

Another difference in the WRF 3DVAR code structure as compared to other geophysical
models is the directory and subroutine structure. There is a “standard” structure in which
the source code is divided into numerous subdirectories. Each subdirectory contains a
Fortran MODULE “shell”, with the same name as the subdirectory, with a .F appended.
The actual subroutines then are located in numerous .inc files in the subdirectory. Before
compilation, all of the .inc files are included into the MODULE shell, again by the C
preprocessor. The advantages of this structure are that all subroutines are compiled as
members of a MODULE, which allows the compiler to do checking for argument
consistency. Also, the subroutines are located in manageable-sized files. The
disadvantages are that the line numbers reported by the compiler are not the same as the
code files, and the time required for compilation is very long, as with the WRF model
itself. '

As mentioned, one of the main advantages to variational schemes is the ability to have a
variety of observation types, even observations that are not of the state variables. The
primary tasks involved with adding a new observation type to the WRF 3DVAR scheme
are: _ :

1) read the observation data from input files

2) supply the observation operator H

3) supply the necessary error coefficients

The first task, following the WRF “standar: I sfructure, involves modifications to the
Registry and the I/O sublayer. Task 2 would be accomplished in the 3DV AR core, while
Task 3 could either be done externally or in the 3DVAR core.

While the WRF code structure does present certain challenges and requires a larger

learning curve than many other codes, it will be possible to implement new variable types
if necessary.
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4.3  Other 3DVAR Schemes

Several other meteorological models and analysis systems also use 3DVAR schemes.
Virtually all have been designed and implemented for operational applications. Following
is a list of those we found: '

4.3.1 UKMO (United Kingdom Met Office) Model

The UKMO was one of the first to implement 3DVAR in their operational cycle. Their
scheme (Lorenc et al. 2000) forms the basis for the WRF scheme and several others in
use around the world. ‘

4.3.2 ECMWF (European Centre for Medium-range
Weather Forecasting)

ECMWEF introduced a 3-dimensional variational analysis scheme to their operational
system in January 1996, replacing their existing OI scheme. They found that forecasts
from 3DVAR for the Northern Hemisphere were of similar quality to the OI forecasts,
but forecasts for the Southern Hemisphere tended to be better with 3DVAR. ECMWF
replaced the 3DV AR with a 4DVAR scheme in 1997.

(From: http://badc.nerc.ac.uk/data/ecnwf-op/model_changes.html)

4.3.3 HIRLAM (HIigh Resolution Limited Area Model)

HIRLAM is a hydrostatic mesoscale forecast model used by Denmark, Finland, Spain,
and others in Europe. The 3DVAR scheme (Gustafsson et al.1999) used is very similar to
the WRF scheme; both schemes were based from the UKMO (Lorenc et al. 2000)
scheme. The HIRLAM scheme also uses the NMC method for creating the error
matrices. Through a series of parallel data assimilation and forecast experiments
comparing OI and 3DVAR, they found that 3DVAR forecasts consistently outperformed
the OlI-based forecasts.

4.3.4 NCEP ETA and GFS Models

NCEP implemented a 3DVAR scheme for the Medium-Range Weather Forecasting
model (MRF) in 1991 (Parrish and Derber 1992). The scheme is also known as the SSI
(Spectral Statistical Interpolation). The ETA Data Assimilation System (EDAS), used for
the ETA model, switch from an OI analysis scheme to a 3DVAR schem¢ in the mid
1990’s.
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4.3.5 Japan Meteorological Agency (JMA)

The JMA introduced a three-dimensional variational assimilation method for the Global
Spectral Model (GSM) in September 2001 (Tada 2002) for the primary purposes of
assimilating satellite and precipitation data.

4.3.6 RUC (Rapid Update Cycle)

RUC (Benjamin, et.al. 2004) is a forecasting and data analysis system, developed by
NOAA/FSL and used operationally at NCEP. FSL replaced the OI scheme in 2002 with a
3DVAR scheme. It also follows closely the UKMO scheme and uses the NMC method
for creating the error matrices.

4.3.7 LAPS (Local Analysis and Prediction System)

LAPS (McGinley and Smart 2001) has been under development for over 10 years at
NOAA/FSL. The most important feature of LAPS is probably the ability to ingest a very
wide range of observation types. Unlike the other analysis schemes mentioned above, it
uses a combination of variational schemes and standard objective analysis schemes to
produce the full three-dimensional analysis. A 3DVAR scheme is used for the wind and
streamfunction, while the objective analysis schemes are applied to the temperature,
moisture, and cloud fields.

4.3.8 WRF/MM5 applicatiohs

Barker et al. (2004) described the original version of the MMS5 3DVAR scheme and
summarized the implementations at AFWA and the Taiwan Civil Aeronautics
Administration. The scheme is also being implemented in Korea for use with a global
spectral model. Barker et al. did show a potential improvement throughout a 24-hour
forecast period for the u-wind component (they did not show the v-component) on higher
resolution grids, but marginal improvements for moisture and temperature at all scales.
They also showed that the LITTLE_R scheme (MMS5’s Cressman analysis) generally had
better verifications at the initial time.

- McAtee et al. (2005) described an application of the MMS5 3DV AR scheme for a local

forecasting application (down to 5 km grid spacing) for the Los Angeles basin. By
running side-by-side forecasts with and without the use of the 3DVAR scheme, they were
able to quantify the impact of the data assimilation. They found, similar to our results in
Section 3, that there was some improvement to temperature forecasts in the first few
hours, but the differences quickly became small. Surprisingly, their wind forecasts were
slightly worse with the 3DVAR on average for the first few hours, and the differences
became small again for the remainder of the forecast period.
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5 4DVAR Review and Summary

5.1  Overview

3DVAR and similar objective analysis methods are designed to provide initial conditions
for a numerical forecast that are optimal according to a chosen mathematical definition.
In the specific case of 3DVAR, this means that the initial conditions are chosen to agree
as closely as possible with a set of observations and simultaneously with a previous
model forecast and/or a set of physical constraints such as hydrostatic and geostrophic
balance. Optimal agreement at the start of the forecast does not, however, guarantee that
subsequent forecast states- will agree more closely with observations than they would had
the forecast begun with different initial conditions. In fact, the initial conditions that give
rise to the best agreement between forecast and observations over a selected time period
(such as 24 hours) are in practice generally not those that would satisfy a 3DVAR
optimization at the initial time.

One reason for this is that only observations that apply at the time of the 3DVAR
procedure are used directly in the cost function. Although observations at earlier times
were previously assimilated to run the model forecast, and these contribute to the cost
function through the “first guess” terms, their contribution is less direct as they have been
subjected to model errors. A second reason that optimal agreement between model initial
conditions and current observations does not necessarily lead to the best agreement
between model forecast and future observations is due to the model’s own
approximations and errors.

These limitations can be reduced to some extent through the application of 4DVAR,
which can be described as application of 3DVAR at multiple time levels combined with
multiple forward and backward numerical integrations of the forecast model to couple the
3DVAR analyses in time. A 4DVAR forward model integration is not the same as a
forward integration with periodic 3DVAR-based corrections to the model state vector.
Rather, with 4DVAR, each forward integration proceeds from an initial state with no
further assimilation at all, and thus produces a solution whose evolution is subject only to
the model equations. Differences between the forward integration and observations over
the same time interval are evaluated and stored, but are not applied during the forward
integration step. These differences are used to determine a new initial condition for a
new forward integration to be made (over the same time interval). The procedure for this
consists of backward integration of the adjoint of the model, using a state vector to
which is applied the stored differences as the backward integration proceeds until
reaching the initial time of each forward integration. The result of the backward
integration is a state vector that differs from that used in the previous forward integration,
and from the difference between these, a new initial state vector is constructed for the

- next forward integration. The above procedure is carried out for a number of iterations
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until the initial state vector converges to a value that minimizes errors between forward
integration and observations over all observation times.

The solution attained at the end of the final forward integration then becomes the initial
state vector for a new model forecast. Because this state vector is generated directly from
a forward integration of the forecast model, it is well balanced for the model and does not -
generate the unrealistic oscillations that result from periodic assimilation of observations
that is a characteristic of 3DVAR. Thus, the 4DVAR solution is likely to be superior to
what could be obtained with either a single or a time series of 3DV AR assimilations.

5.2  Disadvantages of 4DVAR

While 4DV AR schemes can alleviate some of the limitations of 3DVAR, there are a
number of important disadvantages to 4DVAR:

e 4DVAR is subject to the same need as in 3DVAR to optimally define covariance
matrix coefficients for the minimization of the cost function. This procedure is
largely empirical and requires a large number of simulation experiments to be
performed, making it also more appropriate for operational applications.

* 4DVAR as compared to 3DVAR is much more complicated and computationally
expensive due to the multiple forward and backward integrations. Often these can
number in the many tens in order to obtain a solution that is considered
sufficiently converged. This means that computational resources expended in the
assimilation procedure can be one or nearly two orders of magnitude higher than
those used for carrying out the actual forecast. This raises the question as to
whether it would be better to spend less of the existing resources on the
assimilation procedure and allow more for improving the forecast model itself, for
example, by increasing model resolution, implementing more accurate
parameterizations, or performing more standard ensembling methods.

Kalnay et al. (2000) mentioned the example of the ECMWEF 4DVAR system:
“4D-Var has a large computational cost compared to 3D-Var (typically 10-100 or
more iterations are required for convergence, equivalent to about 30-300 model
integrations per day). ECMWF, for example, has a powerful supercomputer about
25 times faster than a Cray C90, and has been running a model at a horizontal
resolution of T213. Nevertheless, ECMWF had to make several simplifying
assumptions in their implementation of 4D-Var (such as using a lower horizontal
resolution model of T63 and a short assimilation window) in order to reduce the
computational cost.”

o The backward (adjoint) model required in 4DVAR is only an approximation to
the forward model. It is actually the adjoint to the tangent linear model, which is
a linearized form of the forward model. It has also been common practice to form
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the tangent linear model from a simplified version of the full nonlinear model
(Zhu and Navon 1999). The manner in which it propagates model-observation
differences backward in time is therefore not entirely consistent with the behavior
of the forward model. However, it would not be possible to run an actual forecast
model backwards in time. Such a procedure would be unstable owing to the
irreversibility of physical processes such as diffusion.

Because of the use of forward, tangent linear, and adjoint models, any
implementation of a 4DV AR scheme is tied to a specific model. Therefore, if both
RAMS and WREF are to be considered, two complete, separate schemes are
required. If the WRF NMM core is to be considered, a separate scheme (including
tangent linear and adjoint models) will be needed. Also, as the main model
versions change, so should the tangent linear and adjoint models. Although
software does exist that automatically generates the adjoint of even complicated
geophysical models, the resulting adjoint can be very inefficient, resulting in the

~ need for extensive human intervention to produce a practical code (T. Vukicevic,

personal communication).

Kalnay et al. (2000) pointed out that, because the cost functions are being
minimized over the entire time frame of a run, predictability issues come into play
for longer runs. For example, if a 5 day run tended to stray from observations in
day 3, 4DVAR adjustments for days 3-5 would affect how well the scheme
performed in days 1 and 2. Thus, 4DVAR may be limited in a practical sense to
the types of runs done at operational centers, those where 6-24 hours are run to
provide an initial field for the next forecast cycle.

With all the computational effort, only a single forecast result is obtained. Even
assuming that this forecast may be close to the best currently attainable, it does
not provide any uncertainty information in the forecast. In this regard, ensemble
forecasting is far more useful.

5.3  Implementations of 4DVAR Schemes

Following are some of the locations where 4DV AR schemes are being used or
developed:

- 5.3.1 ECMWF (European Centre for Medium- range
Weather Forecasting)

In January 1996, ECMWF introduced a 3-dimensional variational analysis scheme to
their operational system in January 1996, replacing it with the first version of a 4DVAR
scheme in November 1997. Numerous updates to the scheme were made over the next
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five years; most of them involved the inclusion of new observations or changing the way
that the observations were processed. The scheme continues to be used.
(From: http://badc.nerc.ac.uk/data/ecmwf-op/model changes.html)

5.3.2 HIRLAM (HIgh Resolution Limited Area Model)

'Developmenf work in 4DVAR started in 1995, with an operational test conducted in

1999. From this test, the forecast verification scores were corriparable to the
corresponding 3DVAR verification scores. It was unclear from the available literature
which of the forecast centers using HIRLAM are currently using the 4DVAR scheme.

5.3.3 WRF

A 4DVAR scheme for WRF is under development at NCAR, funded mostly by AFWA
(Air Force Weather Agency) (Huang et al. 2005). As with the 3DVAR scheme, it is based
mostly on the 4DVAR code that was originally developed for MMS5 (Zou et al. 1995), but
was never distributed with the standard MMS5 code. For WRF, modifications needed to be
done for the tangent linear and adjoint models. Huang et al. estimate that a prototype
version will be available in 2005, with a basic version in 2006.

5.3.4 Japan Meteorological Agency (JMA)

JMA implemented a 4DV AR scheme in their limited area Meso-Scale Model (MSM) in
March 2002 (Tada 2002).

5.3.5 RAMS (Regional Atmospheric Modeling System)

A 4DVAR scheme based on RAMS was started in the mid 1990°s at CSU/CIRA. The
original work was based on RAMS version 3b. The efforts have culminated in the
development of the RAMDAS system (Zupanski et al. 2005), which is depicted
schematically in Figure 26. This scheme uses some aspects of the WRF 3DVAR code,
such as the observation operators, and is patterned after the ETA model 4DVAR scheme
(Zupanski et al. 2002). The adjoint model is currently based on RAMS v4.2.9. RAMDAS
has been applied to assimilation of GOES satellite radiances (Vukicevic et al. 2004).
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Figure 26: A schematic depiction of the RAMDAS system (from Vukicevic et al. 2004)
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-6 Ensemble Kalman Filter Review and Summary

6.1 Overview

As noted, the Ensemble Kalman Filter scheme is an approximation to the generalized
Kalman Filter. It encompasses several types of procedures, which we will summarize in
the following sections.

6.1.1 Kalman Filter

It has been pointed out (Zupanski 2005; Kalnay et al. 2000) that both 3DVAR and
4DVAR, as well as the commonly used data assimilation method of Optimal
Interpolation (Daley 1991) are approximations to Kalman filtering theory. In its simplest
form, a Kalman filter is a data processing algorithm that combines multiple estimates of a
quantity, where each estimate consists of an expectation value and a variance, into a
single expectation value and variance. The final single expectation value is a weighted
mean of all estimated expectation values in which the relative weights are based on the
degree of uncertainty (i.e., the magnitude of the variance) of each original estimate. The
final variance is always less than the smallest variance of the original estimates, implying
less uncertainty in the final estimate than in any of the originals.

The Kalman filter has often been used in geophysical modeling applications (e.g., Snyder
and Zhang 2003, plus other references therein) to optimally blend observational data with
numerical forecasts or simulations. In this case, the added complication exists that all
model variables at all grid points are interrelated through governing physical constraints.
As a consequence, the Kalman filter requires not only variances of each model variable at
each grid point but also covariances between each pair. The full covariance matrix
containing all these values is of exceedingly large size. For example, a typical global

atmospheric or ocean model might contain around 107 or 10° total state variables (the
product of the number of grid cells and the number of prognostic variables), and

consequently the covariance matrix would contain 10" to 10" elements. Moreover, the
covariance matrix must be propagated forward in time from each data assimilation time
to the next. These facts render application of the full Kalman filter impractical, if not
impossible, even on today’s largest computers, and are the reason why other methods
such as 4DVAR have been pursued instead.

However, it is intuitively obvious that the vast majority of covariances would be
essentially zero because most pairs of elements are separated from each other by large
distances. Hence, many methods have been explored for reducing the size of the
covariance matrix to a manageable size without unduly compromising accuracy. Many
of these (e.g., Ott et al. 2004) have used the concept of a horizontal radius of influence:
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any two variables that are separated by more than a specified cutoff distance are assumed
uncorrelated. Such methods have allowed practical application of the Kalman filter.

6.1.2 Ensemble Forecasting

Ensemble forecasting, in simple terms, is the production of multiple, non-identical
numerical forecasts for the same geographic region and time period. Differences
between forecasts occur because each forecast is initialized with slightly different initial
conditions and/or carried out with different numerical model options and parameters.

The differences in initial conditions are chosen to represent expected uncertainties in data
observations and analysis, and differences in model parameters are chosen to represent
expected uncertainty due to model approximations. The primary goals of ensemble ‘
forecasting are (1) to obtain a “best” forecast, which is hoped to be close to the mean of
forecast results and (2) to obtain an estimate of uncertainty in the forecast, which it is
hoped to be indicated by the variation among ensemble members. The first goal is the
same as for conventional single forecasts (with any type of data assimilation method such
as 3DVAR or 4DVAR). However, the second goal is uniquely addressable in an elegant
way through ensemble forecasting, and this constitutes a major advantage of the method.

Within the procedure of ensemble forecasting, the tools for assimilating data into each
forecast are in principle the same as for a single forecast. For example, one may initialize
each forecast using a 3DVAR procedure, and one means of varying each initial state from
all others could be to alter the covariance matrix coefficients each time. Alternatively,
one could produce from 3DVAR or even 4DVAR a single “best” initial state vector for
one forecast in the ensemble, and then add unique perturbations to that state vector for
each additional member of the ensemble.

6.1.3 EnKF

Another method of obtaining covariance information is to estimate it from covariances
between members of an ensemble of numerical model forecasts or simulations. This
technique, known as the Ensemble Kalman Filter (EnKF) is an elegant means of
obtaining not only a practical and relatively inexpensive blending of modeled and
measured quantities, but also a direct estimate of forecast or analysis uncertainty that is
an inherent advantage of ensemble methods. ’

To illustrate how the EnKF obtains an improved analysis by combining model forecast
and covariance information with observations, we consider the following simple example
from Snyder and Zhang (2003) in which radial velocity measurements from a single
Doppler radar are blended with an ensemble of numerical model forecasts. We shall
focus on a single Doppler measurement of radial velocity, V., at a particular location and
time. This is represented in Figure 27a as a bold arrow (with a value of 14 m/s) along the
Y-axis. Expected measurement error is depicted as a Gaussian distribution with the
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arrow. A 50-member ensemble of numerical forecasts, initialized at some earlier time, is
integrated forward until reaching the time in which the V, measurement is made. At this
time, the individual forecasts of radial velocity at the same time and location of the
Doppler measurement are denoted by the 50 dots on the figure, and range from near 0 to
about 19 m/s. We also consider one additional quantity that is forecast by the model but
is not measured, say, a vertical velocity, W, at some different location. The distribution
of W, over the 50 ensemble members is illustrated on the horizontal axis in Figure 27a.
Ensemble-mean values of V, and W are shown on the Y and X axes, respectively, by
thin arrows.

The important thing to recognize here is that although predictions of V, and W vary

widely over the ensemble, a clear correlation (covariance) between them is indicated.
Possible reasons for this covariance are many and varied, but the details are unimportant.
The fact alone that the 50-member ensemble indicates a strong correlation implies, with a
high level of statistical confidence, that some physical constraint between them exists in
the model for the particular conditions of the present forecast. Thus, the covariance
matrix that is determined from the forecast ensemble contains a nonzero element

representing the (V,, W) pair of members of the model state vector.

Next, the Kalman filter is applied to combine the Doppler V. measurement with the

ensemble forecasts to obtain improved estimates for each ensemble member. This
procedure is represented in the following linear equation, applied to each ensemble
member:

Y

where x, is the model state vector resulting from the analysis, i.e., the set (V,, W) in our
simple example, x; is the model state vector prior to the analysis, P; is the model error

covariance matrix, y is the observation (of V, in our example), R is the observation
error covariance, and H is a transformation matrix that relates the model state vector to
the observation (i.e., it would include appropriate spatial interpolation coefficients when
the observation location is not exactly collocated with a grid cell). The above equation
applies to the Kalman filter in general, but in the specific case of the EnKF, P; is

estimated from the ensemble. Many successful algorithms have been developed for this
procedure (e.g., see the extensive review given by Evensen 2003).

The result is depicted by the black dots in Figure 27b. For comparison, the gray dots
illustrate the ensemble values prior to application of the filter. Thin arrows indicate
updated ensemble means of V. and W and gray arrows show the previous means for
comparison. The spread of corrected V. values is now much smaller than before. This is
because the expected error of the Doppler measurement is much smaller than the original
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spread over the ensemble, indicating that higher confidence is placed in the measurement
than the forecast ensemble.

Although W was not measured by Doppler, the ensemble distribution of W values is also
narrower following application of the EnKF. This results entirely from the positive
covariance indicated by the ensemble, and illustrates the important role that the
covariance matrix plays in the EnKF.

Schematic Radar Example
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Figure 27; Idealized schematic of an application of an Ensemblé Kalman Filter scheme
(from: Snyder and Zhang 2003). See text for details.

One of the main differences in the various EnKF schemes is how the ensemble members
are chosen. Szunyogh et al. (2004) divide the schemes into two groups. The first group
uses random perturbations of the observations, based on the observation error estimates,
to generate the ensembles. An example of this is the system developed at the Canadian
Meteorological Service (Mitchell and Houtekamer 2004). The second group of schemes
is described as the Kalman square-root filter schemes, where the analysis is only done
once to generate a mean analysis and the error covariance matrix. The ensemble
perturbations are used to then generate analysis perturbations that are limited to some
subset of the ensemble. Since there are virtually an infinite number of ways to define this
subset, many different types of EnKF schemes can be devised following this technique.

Further refinement of the EnKF is still an active research topic (e.g., Snyder and Zhang
2003; Ott et al. 2004, Evensen 2003; Zupanski 2005). For example, the technique
described above of applying a cutoff radius of influence to reduce the size of the
covariance matrix is used with the EnKF, but the distance chosen and how it may or may
not depend on the local environment are generally chosen arbitrarily. Anderson (2004)
has made progress toward developing a generic, self-adjusting method of determining
this distance through a Monte Carlo approach. Although considerable improvements are
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still to be gained through future development, the EnKF has already demonstrated
considerable success in many geophysical modeling applications in other fields along
with meteorology.

Another attractive aspect of the EnKF is that it does not require development and

maintenance of the numerical model adjoint as does 4DVAR. The EnKF employs only
the numerical model in forward integration, utilizing its full nonlinearity and complexity
of physical parameterizations, to generate the best possible numerical forecast or analysis
with ensemble-estimated uncertainty.

6.2 Development and application of EnKF Schemes

Following are some of the locations where EnKF schemes are being developed or
applied:

6.2.1 Colorado State University

M. Zupanski at CSU/CIRA has worked on EnKF theory for several years. His recent
work has focused on modification of the basic EnKF scheme, which he calls the
Maximum Likelihood Ensemble Filter (Zupanski 2005). The MLEF scheme combines
some ideas from 3DVAR, 4DVAR, and EnKF, using an iterative minimization algorithm
to reach the maximum likelihood state estimate. They have also investigated techniques
to allow non-Gaussian error distributions (Fletcher and Zupanski 2005).

6.2.2 University of Maryland

Researchers at the University of Maryland are developing EnKF schemes in conjunction
with the NCEP GFS model. Szunyogh et al. (2004) describe the development of a scheme
based on the Kalman square-root filters, where the assimilation of the observations is
local to every grid point.

6.2.3 NCAR

Snyder et al. (2005) presented recent work describing their prototype EnKF for WRF.
The prototype uses the square-root filter approach similar to the work at the University of
Maryland. They also compared EnKF with the WRF 3DVAR and found comparable or
better results with the EnKF schemes.

6.2.4 University of Washington (UW)
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A real-time EnKF system, focusing on the analysis over the Pacific Ocean has been
implemented at the University of Washington (Torn et al.; see

http://www.atmos.washington.edu/~enkf/enkfpy.cgi). The system was started in
December 2004.

6.2.5 Meteorological Service of Canada (MSC)

Mitchell and Houtekamer (2004) presented the EnKF that has been developed at the
Meteorological Service of Canada (MSC) to provide the initial conditions for their
operational medium-range ensemble prediction system. Their EnKF includes the input of
real observations from the standard observational network as well as microwave
radiances from the AMSU A and B instruments. The assimilation is being done with
their forecast model that includes the standard operational set of physical
parameterizations. The system was started in January 2005.
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7 Suggestions for Future ReSearch and Development

With the model testing, literature reviews, and investigations that were performed on this
project, we have a clearer understanding of the data assimilation field and are able to
provide the following suggestions for follow-on work.

‘7.1 3-D Variational Schemes

We arrived at the following conclusions concerning 3DVAR schemes and the WRF
scheme in particular:

¢ 3DVAR schemes are much more in a “research mode” than we anticipated at the
beginning of the project.

¢ Significant investigation still is required to determine the best ways to develop the
€ITor covariance matrices, wh1ch are€ very important to the accuracy of the
scheme.

¢ It is easiest to develop the error matrices for operational applications, where a
static domain and location are configured and can produce a history of
simulations. We did not find any literature specifically addressing using the
schemes for forensic re-creation of past events.

¢ For the WRF 3DVAR scheme and RAMS, it is probably adequate to run the
scheme on the WRF grid structure and interpolate the results to the RAMS grid,
although more testing is required. '

* The WRF 3DVAR scheme is under active development, being funded by AFWA,
Korea, and Taiwan. Since the WRF scheme is under active development,
attempting to coordinate any new development we perform for AFTAC’s
applications with the development that NCAR performs for their applications
would be problematic, at best.

Recommendations:

1) Continue to monitor the WRF 3DV AR development and test new versions.

2) Investigate methods for specifying error matrices for forensic simulations.

3) Perform additional comparisons of 3DVAR versus RAMS/ISAN
initialization/FDDA for use in forensic applications. It is possible the WRF
3DVAR scheme could serve as an adequate option for RAMS, as an alternative
for ISAN and the Barnes scheme, although other packages or simpler schemes
could suffice also.

4)- Do not pursue specific 3DVAR development at this time, unless there will be
specific observation types that AFTAC has access to that will not be considered
by NCAR, or if further testing shows improvements can be easily made.
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7.2 4-D Variational Schemes

We arrived at the folloWing conclusions concerning 4DV AR schemes:

¢ 4DVAR schemes have the important disadvantages of 3DVAR schemes (the
requirement of empirical tuning of error covariance matrices), especially for
forensic applications.

* In addition, they have the very significant added complexities of the need for
tangent linear and adjoint models.

¢ Significantly more computing resources are required than for 3DVAR.

Recommendations:
1) Continue to monitor the WRF and RAMS 4DVAR development.
2) Do not pursue 4DVAR development at this time.

7.3  Ensemble Kalman Filter Schemes
We arrived at the following conclusions concerning the EnKF schemes:

¢ EnKF schemes are relatively new to the meteorological field. They show a great
deal of promise, but still require research and testing.

* EnKF scheme eliminate two significant problems of 3DVAR and 4DVAR: 1) no
adjoint models are required, and 2) pre-specification of error covariance matrices

are not needed.
e Uncertainty information can be produced since an ensemble is run.

e More computing resources are needed than for SDVAR, but less than 4DVAR.

‘Recommendations: :

1) Continue to monitor the WRF and RAMS EnKF development
~ 2) Determine which EnKF algorithms in current existence are most suitable for
forensic analysis applications based on accuracy, flexibility, and efficiency.

3) Develop, test, and implement these algorithms for RAMS applications.

4) . As part of the algorithm investigation for the RAMS EnKF, take into
consideration the efforts at NCAR on the WRF EnKF scheme. Determine the
feasibility of coordinating development with NCAR researchers, and work with
them if advantageous.




7.4  Other Model Development

While data assimilation is one way to attempt to improve model accuracy, there are other
model developments and implementations that can also help. It is often unclear as to
which techniques will make the biggest improvements. Given the extra computational
time that many data assimilation schemes require, we can pose the question as to whether
it would be better to spend less of the computer resources on the assimilation procedure
and give more resources for improving the simulation results (e.g., by increasing model
resolution or implementing more accurate parameterizations).

Following is a partial list of improvements that could be implemented to improve general
simulation results, especially for AFTAC’s forensic-type of applications:

Use of simpler variational techniques — Rather than full 3-dimensional variational
schemes, the use of 2-D or partial 3-D (such as in LAPS) schemes could be
experimented with. Or even the full implementation of a package like LAPS or
RUC could be implemented to provide 3-dimensional analyses. These can serve
as a replacement for the current successive correction schemes (e.g., Barnes) and
not require large amounts of extra computer resources.

Observation quality control — A standard implementation of a quality control
package would help both the initial data analysis and the use of the observational-

- nudging scheme. We have developed a package in the past to handle surface and

upper air observations, but updating and improvements are needed.

More sophisticated observation-nudging scheme — With the implementation of the
observation-nudging data assimilation scheme in RAMS, observational data can
be inserted in a very flexible manner. However, various improvements can be
made to the scheme, such as the use of non-circular horizontal influence
functions.

Improved physics parameterizations:

o Treatment of urban areas — The characteristics of urban areas are rather
grossly approximated in virtually all mesoscale models. There have been
two partial implementations of a sophisticated urban canopy scheme, TEB
(Town Energy Balance), in RAMS at CSU and the University of Sao
Paulo in Brazil. TEB was developed by Dr. Valery Masson at Meteo-
France and we have received permission from Meteo-France to distribute
the scheme with RAMS if it were officially implemented. There are
portions of the scheme that may also be able to assist with other types of
sub-grid complexities, such as valleys, rock outcroppings, etc.

o Radiation schemes — Other radiative transfer schemes are available which

may be able to provide more accurate radiative fluxes than the existing
schemes. The RRTM (Rapid Radiative Transfer Model) has been
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developed by AER, Inc. and is one example. MMS5 and WREF include the
RRTM longwave scheme; a newer shortwave scheme has also been
developed. Other schemes from the climate modeling community are also
available.

o Generalized diffusion — As computer power becomes cheaper, model
resolutions will continue to increase. We will soon be routinely passing a
similar threshold as we passed in the 1970’s and 1980’s with regards to
convective parameterizations. Regarding diffusion schemes, RAMS has
schemes that work reasonably well at 1km grid spacing and larger, and
schemes that work well at less than 100m grid spacing. However, as with
convective parameterization, there is a zone where the current schemes
can have problems. In conjunction with colleagues in Italy, we have
designed the theoretical framework of a generalized scheme that would
provide a smooth transition from the mesoscale to the LES (and smaller)
scales.

o Direct RAMS building simulation — With the recent addition of the
shaved-ETA-type coordinate in RAMS v6.0, the dynamics of the model
can handle very small-scale simulations routinely. However, there are
various aspects of the model physics that still need modification, such as
surface fluxes from vertical walls, different types of surface materials, and
non-vertical radiative fluxes.

Integration of dispersion/chemistry modules — While RAMS has been interfaced
to various dispersion models (e.g., HYPACT, CALPUFF) and photochemical
models (e.g., CAMx, CMAQ), there are sometimes advantages to having an
integrated capability. Generally, there is a one-way interaction between the
meteorological simulation and the dispersion. With integration, there can be a
two-way interaction. Various physics, such as wet deposition and aqueous-phase
chemistry, can be much more accurate by including them at the regular timestep
resolution of the meteorological model. We have partially completed the
integration of HYPACT in RAMS, but more work is needed. We also have had
discussions with ENVIRON concerning the issues of an integration of CAMx
chemistry into RAMS.

Shared-memory parallelism — While RAMS uses MPI for distributed-memory
parallelism, which is efficient on many shared-memory machines, we expect
additional parallel efficiency would be gained by implementing shared memory
parallel constructs in the code to work in conjunction with MPI. New CPU
architectures, such as multi-core chips, may make this very beneficial for the
near-future PC cluster, along with shared-memory nodes in machines such as SGI
and IBM.

Unstructured grids — RAMS and almost all other models use a structured grid
system, meaning that at a given grid point, the neighboring grid points can be
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referenced by incrementing or decrementing an array index. With RAMS v6.0, we
have started to remove the global simulation capabilities, that were partially
implemented, to a companion global model called OLAM (Ocean Land
Atmosphere Model), under development at Duke University by R. Walko. OLAM
uses the same physics parameterizations as RAMS, but employs an unstructured
grid system. The unstructured grid in OLAM was primarily designed for the
model “equatorial” regions and the nesting scheme, but could be extended to
other uses, such as providing high-resolution following diagonal coastlines, rivers,
or regions of complex topography. It is a similar concept to the triangular mesh
implemented in the OMEGA model by SAIC, but using the more sophisticated
RAMS physics and numerics.
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