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Abstract
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tic Ordinary Differential Equations (SODE). With the proper amount of noise input,
the SODE model captures dynamic features that are lacking in the corresponding de-
terministic ODE model. Therefore, sensitivity to noise levels is investigated by con-
sidering four different regimes: essentially deterministic, noise-enriched, noise-enlarged,
and noise-dominated. Each regime is defined based on the behavior of solutions of the
SODE and geometry of the regimes are categorized with stochastic simulations.
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1 Introduction

Social networks are a metaphor and mathematical construct for representing relation-
ships among individuals.1 In a social network, nodes represent individuals, which we
term agents, who may have both observable characteristics (for instance, employer or lo-
cation) and unobservable characteristics (for instance, political or religious affiliation),
while edges represent associations between pairs of agents. These associations may
be uni-directional—leading to a directed graph, or bi-directional—leading to an undi-
rected graph. Edges may have associated numerical values, representing for example
the strength of the association.

The underlying assumption in most social networks is that pairwise relationships
are fundamental. Higher-order relationships are constructed from pairwise ones. Thus,
for example, a triad is a set of three agents in which each pair is joined by an edge
(i.e., these agents define a complete subgraph). The usual social network framework
does not seem to readily accommodate structures such as agents who are members of a
committee but have no pairwise relationships.

There is a significant body of research on social networks, within which are threads
addressing:

Modeling: often using probability models in which edges occur randomly as a function
of the values of observable and unobservable characteristics, which are themselves
often random.

Visualization: because some properties of nodes (for example, centrality—having an
extremely large number of edges), even though defined mathematically, are strik-
ingly apparent in good visualizations.2

Inference: for example, for parameters of network models.
Prediction: for example of characteristics of the entire network (e.g., average node

connectivity) from a sample of the nodes and edges.

Quantitative studies of social networks have been recognized as important for many
decades beginning with the work of Moreno [18] in 1934, Katz in 1947 and 1955 [15, 16],
and Festinger in 1949 and 1954 [7, 8]. Current research can be found in diverse areas
including sexual transmitted diseases such as HIV, movie co-starring, needle sharing
[12], and terrorist networks [3, 6], to name a few.

There are many types of models used to study social networks including the ex-
ponential family of social network models [9] or the p∗ class of models [26], stochastic
blockmodels [23], intelligent agent models [2, 5, 14, 22] and models with latent group
structure [1, 13, 19]. For an overview of modern topics and approaches, we refer the
reader to [4, 24, 25].

Most of the existing literature deals with static networks, in which neither the set
of nodes nor the set of edges varies over time. By contrast, in this paper we introduce a
(simple) evolution model of social networks which is motivated by the work of Hoff, et
al., [13]. We represent the dynamics of relationships between individuals by a coupled
system of nonlinear stochastic ordinary differential equations in which the pairwise
relationships are driven by both observable and unobservable (latent) characteristics.

In our model we assume that time, the observable characteristics and individual
relationships are continuous. In the spirit of [13] and other models based on concepts
of homophily, we assume that an individual’s characteristics become more like those of
other individuals to which it is linked. We also assume that links between nodes are
more likely the higher the similarity of their characteristics. The dynamics (see §2)

1Although the metaphor is the same, physical networks such as communication or transportation networks
have quite different properties, and are modeled quite differently.

2There is an extensive literature on graph visualization that is largely independent of the social network
literature.
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are modeled using stochastic ordinary differential equations, in which the randomness
represents unobservable factors not captured in the model. An alternative approach to
modeling evolution of social network dynamics has been pursued by Snijders [21] using
continuous time Markov chain models which are implemented in the software package
SIENA (Simulation Investigation for Empirical Network Analysis) [20].

Much of our attention focuses on qualitative behavior of the model as the noise
parameters associated with stochastic disturbances vary. Heuristically, as the variance
terms in the stochastic differential equations increase from 0, the model at first differs
little from the deterministic case (in which they are 0). For somewhat larger values, the
model enters a noise-enriched regime, in which its behavior is richer, but its ultimate
fate remains that in the deterministic case. For still larger values of the variances, there
may be noise-enlarged behavior: a larger set of long-term behaviors is possible. Finally,
for sufficiently large noise variances, the model is noise-dominated, with no structure.
Of course, the boundaries between these regimes are not sharp, and so we devote some
attention simply to defining them. Nor is it clear that all exist in any specific situation.

2 Mathematical Model

We denote by Ci(t) ∈ K ⊂ Rm the vector of characteristics of agent i, i ∈ N =
{1, . . . , N} at time t, where m is the number of characteristics and K is a (compact)
constraint set for the values of the characteristics.

Let e(i, i′, t) ∈ R be the degree of connectivity between agent i and agent i′ at
time t. Then a link or edge is present from agent i to agent i′ at time t if (and only
if) e(i, i′, t) > 0. By convention there are no “self links” so that e(i, i, t) = 0 for
all i and t. We do not require that connectivity be symmetric, so it is possible that
e(i, i′, t) 6= e(i′, i, t).

We let
Ai(t) = {i′ ∈ N : e(i, i′, t) > 0}

represent the set of all agents to which agent i has links at time t and let |Ai(t)| be
the number of elements in Ai(t). Then the basic stochastic differential equations in our
model are

dCi(t) =
βi

|Ai(t)|
∑

i′∈Ai(t)

[Ci′(t)−Ci(t)] dt + σ dWC
i (t) (2.1)

de(i, i′, t) = f
(‖Ci −Ci′‖2

)
dt + γdW e

i, i′(t). (2.2)

The coupling between (2.1) and (2.2) is via Ai(t) since Ai(t) depends on the vector
ei(t) = (e(i, 1, t), . . . , e(i, i′ − 1, t), e(i, i′ + 1, t), . . . , e(i,N, t)). In (2.1), βi > 0 is an
agent-specific factor that can be interpreted as the degree to which agent i seeks to
become more like other agents to which it is linked, and σWC

i (·) is a (vector-valued)
Wiener process with variance σ2. In (2.2), f(ξ) = 2e−bξ − 1, where b > 0, ‖ · ‖ denotes
the norm in Rm and γW e

i, i′(·) is a Wiener process with variance γ2.
Note that (2.1) actually consists of Nm equations, while (2.2) consists of N(N − 1)

equations. These are to be solved subject to the state constraint Ci(t) ∈ K, with given
initial conditions Ci(0) and ei(0). All Nm + N(N − 1) Wiener processes are assumed
independent.

The interpretation of these equations is as described informally in §1. First, (2.1)
stipulates that the characteristics of agent i move at rate βi toward the centroid of the
characteristics of the agents to which i has links, subject to random perturbation from
σWC

i (·). Then (2.1) states that the degree of connectivity between i and i′ increases
or decreases at rate f

(‖Ci −Ci′‖2
)
, again with a Wiener-driven perturbation.

The particular function f in (2.2) is somewhat arbitrary. The important properties
are that f = 1 when characteristics are identical, causing connectivity to increase at
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rate 1, and f < 0 when two agent’s characteristics are sufficiently unlike, causing their
connectivity to decrease. The value for which f = 0, and hence characteristics have no
effect on connectivity, depends on b. The impact of b on formation of links is discussed
in §4.1.

We note that (2.1) does not satisfy typical assumptions regarding smoothness of
coefficients; an alternative, smoother model is described in §5.

3 Numerical Method

In solving the above SODEs (2.1) and (2.2) subject to the constraints Ci(t) ∈ K, we
use the stochastic analogue of the classical fourth-order Runge-Kutta method [10]. Al-
though an implicit numerical scheme [17] would have more stability, we successfully used
a familiar and simpler scheme to demonstrate model properties in our initial calcula-
tions. Before we write down the algorithms of the fourth-order Runge-Kutta method,
we rewrite equation (2.1) as follow

dCi(t) = g(t,Ci(t))dt + σdWC
i (t), (3.1)

where g(t,Ci(t)) = βi

|Ai(t)|
∑

i′∈Ai(t)
[Ci′(t)−Ci(t)]. We partition the interval [t0, T ]

uniformly by the step size h = ∆tn = tn − tn−1. Then we can approximate Ci(tn) by
the following

Ci(tn) = Ci(tn−1) + p0F0h + p1F1h + p2F2h + p3F3h + σ∆WC
in, (3.2)

where

F0 = g(tn−1,Ci(tn−1))

C(1)
i (tn−1) = Ci(tn−1) +

1
2
F0h +

1
2
∆WC

in

F1 = g(tn−1 +
1
2
h,C(1)

i (tn−1))

C(2)
i (tn−1) = Ci(tn−1) +

1
2
F1h +

1
2
∆WC

in

F2 = g(tn−1 +
1
2
h,C(2)

i (tn−1))

C(3)
i (tn−1) = Ci(tn−1) + F2h + ∆WC

in

F3 = g(tn−1h,C(3)
i (tn−1)),

p0 = p3 =
1
6

and p1 = p2 =
1
3
.

Here ∆WC
in = WC

i (tn) − WC
i (tn−1) are standard Wiener increments ([11], p. 489),

which are obtained as sample values of normal random variables with the mean of zero
and variance ∆tn. Equation (2.2) can be approximated in a similar manner except it is
simpler than equation (2.1) since the right-hand side of equation (2.2) is independent
of the degree of connectivity e(i, i′, t).

The discretized system is solved subject to the constraint Ci(tn) ∈ K. For any step
resulting in a value violating this constraint, the value is replaced by the nearest value
on the boundary of K.

4 Numerical Simulations

To illustrate the concepts introduced in §1, we employ an example with ten agents
(N = 10) and two characteristics (m = 2) for each agent, each constrained to lie
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in [−10, 10]. Thus K = [−10, 10] × [−10, 10]. For concreteness, we term the first
characteristic Csq

i a “sociability quotient” (positive values represent higher sociability)
and the second an “outlook on life” denoted by Cout

i . For the latter, -10 is construed
as a ’‘negative outlook” and 10 a “positive outlook.” For simplicity, we set βi = 1 for
all i, which in effect simply calibrates the time scale.

The initial values of the characteristics are set as C2(0) = (−10,−10), C7(0) =
(−5,−5), and Ci(0) = (10, 10) for i 6= 2, 7. We define the initial conditions for the
connectivities e by ei(0) = 0.

4.1 Deterministic Case

In the deterministic case that γ = σ = 0, the behavior of the model depends (only) on
the value of b ∈ (0,∞). For b ∈ (0.105,∞), neither agent A2, the “extreme outlier,”
and agent A7, the “moderate outlier,” forms edges with any other agents. The remain-
ing agents, of course, form edges and their connectivity continues to increase. This
behavior can be seen by examining the degrees of connectivity e(2, i′, T ), e(7, i′, T ), and
e(10, i′, T ) (throughout, we use A10 as an exemplar of all agents other than A2 and A7)
at T = 10. We illustrate in Figures 1, 2 and 3 this three-cluster scenario. The plots
satisfy e(2, i′, T ) < 0, e(7, i′, T ) < 0 for all i′, and e(10, i′, T ) < 0 for i′ = 2, 7, while
e(10, i′, T ) > 0 for i′ 6= 2, 7.

Specifically, in Figure 1 the connectivity between A2 and the other nine agents is
negative at T = 10. In other words, A2 does not have links to any other agent at the
final time. We see the same result for A7 in Figure 2. Finally, Figure 3 shows that A10
has no links (negative connectivity) with A2 and A7, but links (positive connectivity)
to all other agents.

A two-cluster regime arises for b ∈ [0.033, 0.105]. One cluster contains A2 and A7,
and the other cluster consists of the remaining agents. As we illustrate in Figure 4, A2
becomes linked to A7 by T = 10, but not to any other agents. Figure 5 shows that A7
is linked to A2 but not to any of the remaining agents. Figure 6 shows that A10 has
links to all agents except A2 and A7.

Finally, for b ∈ (0, 0.033), we have a one-cluster case: all ten agents become linked
to one another. By observing the connectivity of A2 in Figure 7, A7 in Figure 8, and
A10 in Figure 9, we note that A7 is more strongly connected to the group than A2
(as expected since A7 is the “moderate outlier”) . Moreover, A7 and A2 have higher
connectivity to one another than with the remaining agents.
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Figure 1: Degree of connectivity e(2, i′, t) of agent 2 (the
“extreme outlier”) with other agents for b = 0.15. Note that
the curves for i′ = 1, 3− 6, 8− 10 all lie on the same line in
this 3 cluster scenario.
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Figure 2: Degree of connectivity e(7, i′, t) of agent 7 (the
“moderate outlier”) with other agents for b = 0.15 (again
the 3 cluster scenario).
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Figure 3: Degree of connectivity e(10, i′, t) of agent 10 with
other agents (except for 2 and 7) for b = 0.15 (again a 3
cluster scenario).
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Figure 4: Degree of connectivity e(2, i′, t) of agent 2 with
other agents for b = 0.06 illustrating the two cluster scenario.
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Figure 5: Degree of connectivity e(7, i′, t) of agent 7 with
other agents for b = 0.06 (again the 2 cluster scenario).
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Figure 6: Degree of connectivity e(10, i′, t) of agent 10 with
other agents for b = 0.06 (2 cluster scenario).
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Figure 7: Degree of connectivity e(2, i′, t) of agent 2 with
other agents for b = 0.0165 illustrating the single cluster
scenario.
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Figure 8: Degree of connectivity e(7, i′, t) of agent 7 with
other agents for b = 0.0165 (single cluster scenario).
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Figure 9: Degree of connectivity e(10, i′, t) of agent 10 with
other agents for b = 0.0165 (single cluster scenario).

4.2 Stochastic Case: Regime Definition

We categorize pairs (σ, γ) based on the behavior of solutions of the SODEs (2.1) and
(2.2) with fixed b = 0.0165. Recall from §4.1 that in this case the deterministic system
leads to a single cluster, where A7 has a higher connectivity with other agents than A2,
and A7 and A2 are more connected to one another than to other agents for all time t.

With the stochastic terms included (that is, γ > 0 and σ > 0), we expect a broader
range of behavior for the solutions to (2.1) and (2.2). In §1, we defined four regimes
heuristically. For the example, we formalize those definitions as follows. The final time
is T = 30.

Essentially deterministic consists of (σ, γ) pairs for which all of the following are
satisfied:

• ED1: For all t ≤ T , all connectivities between all agents are nonnegative:
e(i, i′, t) ≥ 0, 0 ≤ t ≤ T, i 6= i′.

• ED2: For all t ≤ T , A7 and A2 have higher connectivity with each other than
the rest of the group: e(2, 7, t) > e(2, i′, t) for i′ 6= 7 and e(7, 2, t) > e(7, i′, t)
for i′ 6= 2.

• ED3: For all t ≤ T , A7 has higher connectivity with others than does A2:
e(i, 7, t) > e(i, 2, t) for i 6= 2, 7.

• ED4: At t = T , all agents have links to one another: e(i, i′, T ) > 0 for i 6= i′.

That is, in the essentially deterministic regime, all qualitative aspects of the de-
terministic case are preserved.

Noise-enriched consists of (σ, γ) pairs for which any of ED1–ED3 fails, but ED4
holds. That is, the agents take different paths to reach the final destination of
being linked to one another at T , so that that the social network evolves to a
single cluster.
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Noise-enlarged consists of (σ, γ) pairs for which ED4 also fails, but either the three-
cluster or two-cluster “equilibrium” in §4.1 arises. Put differently, (σ, γ) is in the
noise-enlarged regime if either of the following holds:

• NE1: At time T , A7 and A2 are linked in one group and the remaining agents
are linked in another group (two clusters).

• NE2: At time T , A7 and A2 are not linked to any other agents, but all agents
other than A2 and A7 are linked to one another (three clusters).

Noise dominated consists of (σ, γ) pairs for which none of the three structured out-
comes described above obtains.

To investigate whether these regimes exist and, if so, characterize their properties,
we ran simulations, with time step h = ∆tn = 0.05, for selected values of σ ∈ [0, 2.7]
and γ ∈ [0, .8]. We carried out 100 simulations for each pair (σk, γl) in a partition with
values σk = .1k, k = 1, . . . , 27, γl = .01l, l = 1, . . . , 80.

We depict the surfaces representing the noise-enriched and noise-dominated regimes
in Figures 10 and 11, respectively. The noise-dominated surface is almost the comple-
ment of the noise-enriched surface. A few cases of essentially deterministic behavior are
seen at small values of σ and γ.

Therefore, we used the refined partition σk = .01k, k = 1, . . . , 70, γl = .001l, l =
1, . . . , 50 to attempt to delineate the essentially deterministic regime. The corresponding
essentially deterministic and noise-enriched surfaces are plotted in Figures 12 and 13,
respectively. These two plots are almost complements of one another because there are
few cases of noise domination.
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Figure 10: The (σ, γ) noise-enriched surface plotted as a
percentage or number out of 100 simulations.
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Figure 11: The (σ, γ) noise-dominated surface.
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Figure 12: The (σ, γ) essentially deterministic surface.

12



0
0.01

0.02
0.03

0.04
0.05

0

0.2

0.4

0.6

0.8
0

20

40

60

80

100

Gamma

Noise Enriched

Sigma

N
um

be
r

Figure 13: The (σ, γ) noise enriched surface.

5 Concluding Remarks

We observe from the simulations reported in §4.2 that regimes appear to be more
sensitive to γ than to σ. This may be because γ directly effects edge formation, which
is critical in regime definition, whereas σ does not. We suspect that if the regime
definitions were based upon the observed characteristics, which are directly influenced
by σ, then the sensitivities observed might be reversed.

There is no evidence in our simulations for existence of a noise-enlarged regime.
We believe this is because the criteria that define the noise-enlarged state depend on a
nonlinear term involving b, whereas the randomness σ and γ enter the dynamics linearly.
In order to verify this claim, we would need to pursue a rigorous sensitivity analysis for
the SODEs (2.1) and (2.2).

Although we have a simple model, the richness and flexibility of the model are
substantial due to the model parameters. For example, we can significantly enrich
the model by allowing the parameter b in the connectivity formation function f to
be agent-dependent. Moreover, we might have βi ∈ R instead of βi > 0 to describe
situations where agent i is either repelled by or attracted to the characteristics of his
acquaintances. We would then expect the model to exhibit more than just the three
regime cases described above. Since exhaustive simulation studies are not particularly
desirable (nor feasible as the model complexity increases), development of a theoretical
and computational framework for sensitivity analysis of such models should prove most
useful. Our preliminary efforts and results reported on here provide a sound foundation
for further investigations in this direction.

As noted in §2, (2.1) fails to have smooth coefficients because |Ai(·)| changes dis-
continuously. Therefore, the solution is not a diffusion process in the usual sense. A
smooth alternative to (2.1) is

dCi(t) =
βi∑

i′ 6=i e(i, i′, t)

∑

i′ 6=i

e(i, i′, t) [Ci′(t)−Ci(t)] dt + σ dWC
i (t). (5.1)
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In (5.1) the connectivities serve as weights. When combined with (2.2), (5.1) pro-
duces a smooth system, in which—interestingly—edges or links have been replaced by
smooth connectivities. More complete investigation of this system is a topic for future
research.
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