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CHAPTER 1 
 

INTRODUCTION 

 Waves propagating through the nearshore environment present a unique 

set of problems.  As depth decreases, the waves interact with the bottom.  As a 

result, the wave speed decreases and the wave height increases. This process is 

called shoaling. In addition to changes in wave shape, shoaling also causes 

reflection and refraction.  As the waves propagate further shoreward, they 

become unstable due to the continued increase in wave height and decrease in 

wave speed, causing the waves to break. Nonlinear effects in general dominate 

waves that are shoaling or breaking.  Areas of strong nonlinearity usually 

coincide with regions of weak frequency dispersion. 

 The measure of nonlinearity is given by the relative waveheight, ha / , 

where a  is wave amplitude and h  is water depth.  For 1<</ ha , nonlinearity is 

weak.  An additional nondimensional parameter is relative depth, kh , where k  is 

wavenumber.  Relative depth is a measure of frequency dispersion with 1<<kh  

indicating weak dispersion. 

 

Nonlinear Waves 

 The nonlinearity of waves propagating in intermediate and shallow water 

ranges acts to exchange energy with other wave components (Madsen & 

Sørensen, 1993).  The transfer of energy from the fundamental (peak) frequency 

to harmonics of the fundamental frequency (Kirby, 1997; Kaihatu, 2003) is the 

most pronounced, though these interactions occur across all frequencies.

PARAMETERIZING THE HIGH FREQUENCY EVOLUTION OF
 NEARSHORE WAVES IN A NONLINEAR WAVE MODEL
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The effects of nonlinear interactions between waves are easily seen in 

frequency or wavenumber spectra.  Frequency spectra of shoaling waves are 

characterized by amplified harmonics of spectra’s peak frequencies (Bredmose, 

2002).  Therefore, these spectra have multiple peaks.  This phenomenon has 

been observed in data (Smith & Vincent, 2003) and model results, including 

Chen, Guza, and Elgar (1997), Herbers, Russnogle, and Elgar (2000), Eldeberky 

and Battjes (1996), and Herbers and Burton (1997). 

Furthermore, dissipation of energy at high frequency components caused 

by breaking encourages the transfer of energy from low frequencies to high 

frequencies.  The combined effects of dissipation and nonlinear interactions 

result in “broad” and “featureless” surf zone spectra with a single peak at the 

fundamental frequency (Herbers & Burton, 1997) but with more high frequency 

energy in general than was present in the offshore spectrum.  This shape is 

sustained in the surf zone where dissipation and nonlinear interactions 

equilibrate. 

For decades, it has been known that fully developed seas in the presence 

of wind also exhibit equilibrium between dissipation and input energy. Such 

equilibrium has allowed for parametric descriptions of wave spectra in deep 

water.  However, little effort has been put into developing a parameterization for 

the observed equilibrium range of surf zone wave spectra (Smith & Vincent, 

2003).  Following early work of Thornton (1977) and more recent work of 

Zakharov (1999), Smith and Vincent developed a parameterization for the 

equilibrium range of surf zone wave spectra “in terms of a power law in 

wavenumber” (p. 3374). 
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In transferring energy among different frequencies, nonlinear interactions 

not only cause an equilibrium range in wave spectra but also change the wave 

shape.  During the shoaling phase of wave evolution, wave crests become 

narrower and more peaked while wave troughs become broader and flat.  This 

vertical asymmetry is termed skewness.  An additional result of nonlinear 

interactions is the horizontal asymmetry (termed asymmetry) of the wave shape 

described as a pitched-forward sawtooth (Kirby, 1997). 

 

History of Nonlinear Wave Models 

Because of the nonlinear behavior of waves in the nearshore environment, 

linear theory is inadequate for describing shoaling waves and waves in the surf 

zone (Smith & Vincent, 2003; Kirby, 1999).  Various types of nonlinear wave 

models have been developed.   

 Airy began the study of nonlinear waves in 1845.  His work resulted in the 

Airy or Nonlinear Shallow Water Equations.  These equations govern the 

evolution of nondispersive, nonlinear waves.  Other early contributions were 

made by Boussinesq in1872 and Kortweg and de Vries in 1895 (Kirby, 1997).  

In 1967 Peregrine derived a model of depth averaged velocity and surface 

elevation.  Using his Boussinesq-type model, Peregrine (1967) performed the 

first calculation of wave shoaling and evolution (Kirby, 1997).   

Development of Boussinesq models continued through the 1970’s and 

1980’s.  However, classical Boussinesq models are confined to shallow water 

areas of weak nonlinearity and dispersion (Bredmose, 2002; Kirby, 2003). With 

the increased availability of computers (Kirby, 1997), efforts were made to 
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improve classical Boussinesq models enabling them to represent wider ranges of 

relative depth ( kh ) (Kirby, 2003) resulting in the development of “extended” 

Boussinesq models.  Extended Boussinesq models give valid results for deeper 

water by approximating the dispersion relation from fully-dispersive linear theory. 

Close to wave breaking, the waves are more nonlinear and developing fully 

nonlinear forms of Boussinesq models (Kirby, 2003) extends the validity of the 

Boussinesq model up to the breaking region.  Fully nonlinear versions of 

extended Boussinesq models are accurate but the improved dispersion only 

“mimics” the behavior of full dispersion (Kaihatu, 2001) often by “tuning” the 

dispersion relation with free parameters (Kaihatu, 2003).  Madsen and Sørensen 

(1993) emphasize that an accurate linear dispersion relation is essential in 

describing nonlinear interactions. 

An additional complication of Boussinesq models is that they evolve the 

free surface in the time domain.  Depending on the complexity of the time-

domain equation, a transformation of extended Boussinesq models to the 

frequency domain often results in a model that produces different wave 

properties than the corresponding time domain model (Kaihatu, 2003).   

An alternative to Boussinesq models is the mild slope equation.  The mild 

slope equation retains full linear dispersion while simulating refraction, shoaling, 

and diffraction over a mildly sloping bottom.  The derivation of a nonlinear mild 

slope equation results in a fully dispersive, weakly nonlinear model capable of 

operating in areas of wave shoaling and breaking (Kaihatu and Kirby, 1995).  

An additional advantage to modeling waves with the nonlinear mild slope 

equation is that it evolves amplitudes, rather than the free surface (Kaihatu, 
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2003).  Thus, these models are frequency domain models that directly provide 

information on nonlinearity (Kirby, 1997).  Kaihatu (2003, p. 67) reports that 

nonlinear mild slope equation models “appear to be more accurate than 

frequency domain transformed extended Boussinesq models explored [within his 

study].”  Furthermore, spatial resolution can be coarser than necessary with time 

domain equations. 

Unfortunately, results of nonlinear mild slope equation models come at a 

high price.  Like fully nonlinear extended Boussinesq models, nonlinear mild 

slope equation models are computationally expensive (Bredmose, 2002; Kaihatu, 

2003); this is because the individual nonlinear interactions result in )O(N 2  

operations, where N  is the number of frequency components.  Kaihatu (2001) 

shows that increasing the number of frequencies retained in a calculation 

improves the higher order moments, asymmetry and skewness, which result from 

nonlinear interactions.  However, increasing frequency components increases 

the computational requirements (Kaihatu, 2003). 

 

Significance of Study 

 This study focuses on utilizing the equilibrium range of surf zone wave 

spectra to reduce the computational expense of modeling with a nonlinear mild 

slope equation.  To accomplish this task, a hybrid model is formulated so that the 

equilibrated portion of a spectrum is determined by Smith and Vincent’s (2003) 

parameterization. Thus, the number of frequency components explicitly modeled 

by the nonlinear mild slope equation is reduced while retaining a significant 

number of frequency components in the spectra.  A full description of the model 
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is given in the next chapter.  The success of the hybrid model will be determined 

not only by its ability to replicate measured wave spectra but also by its ability to 

accurately give important wave properties like root-mean-squared waveheight 

(Hrms), skewness and asymmetry.  Hybrid model results and corresponding wave 

properties are given in Chapter 4 followed by a discussion of the conclusions and 

future work in Chapter 5.
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CHAPTER 2 

THE MODEL 

The hybrid wave model described in this chapter combines a nonlinear 

frequency domain model with a parameterization of the energy distribution of 

high frequency components. Kaihatu and Kirby (1995) derived and tested the 

nonlinear frequency domain model, and Smith and Vincent (2003) developed the 

parameterization.  Sections below describe each entity of the hybrid model. 

 

The Nonlinear Frequency Domain Model 

This section describes the nonlinear frequency domain model, which 

explicitly calculates the evolution of the spectra at frequencies below the 

parametric cutoff.  The model, first derived by Kaihatu and Kirby (1995) starts 

from the boundary value problem expressed in terms of the velocity potential ( Φ ) 

(e.g. Dean & Dalrymple, 1991).  The governing equation and boundary 

conditions are 

 02 =Φ+Φ zzh∇ ,   ηzh ≤≤−     (2.1) 

 Φh=Φ hhz ∇⋅−∇ ,   h=z −      (2.2) 

 0=Φη+Φη hhzt ∇⋅∇− ,  η=z      (2.3) 

 ( ) ( ) 0
2
1

2
1 22 =Φ+Φ+Φ+gη zht ∇ , η=z .     (2.4) 

η  denotes free surface elevation relative to the still water level where the vertical 

coordinate 0=z .  Upward from the still water level, z  is positive; h  denotes 

water depth.  The subscript h  denotes operation in the x  and y  directions, and 

the subscripts z  and t  represent differentiation in the respective dimensions.  
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Linear equations include the Laplace equation (equation 2.1) and the bottom 

boundary condition (equation 2.2).  However, the surface boundary conditions 

(equations 2.3 and 2.4) not only are nonlinear but also are applied at the free 

surface, which is unknown.  To retain nonlinearity, Kaihatu and Kirby expand the 

free surface boundary conditions about 0=z  and keep terms to ( )2εO , where 

ka=ε  is the non-dimensional parameter that scales the nonlinear terms.  

Combining the dynamic and kinematic free surface boundary conditions results in 

a free surface boundary condition (equation 2.5) with the free surface variable 

eliminated. 

 ( ) ( ) ( ) ( )







∇⋅∇−∇− ΦΦ+Φ

g
Φ+Φ+Φ

g
=Φ hthztttzthttz

222

2
1

2
1

2
11 , 0=z . (2.5) 

Formulation of the boundary value problem requires assumptions that 

place limitations on the model.  The Laplace equation (and existence of the 

velocity potential) requires that the fluid be inviscid and irrotational.  In turn, the 

assumption of an inviscid flow requires that equation 2.2 use the free slip 

condition at the bottom.  Therefore, with respect to the bottom, velocities are 

assumed to be tangential, realistically limiting frictional shear stress to an 

extremely thin layer.  Furthermore, equation 2.4 (and consequently equation 2.5) 

assumes that no difference between the fluid’s pressure and the atmospheric 

pressure exists, only gravity restores a displacement in the water surface.   

From the boundary value problem, Kaihatu and Kirby (1995) take steps 

toward a parabolic approximation of a weakly nonlinear mild slope equation in 

the frequency domain.  Although each transformation toward the desired model 

positively affects the modeling of waves in the surf zone, each imposes 
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restrictions.  For the derivation of the two dimensional mild slope equation, 

transformation to the frequency domain and the parabolic approximation, see 

Kaihatu and Kirby.  Here, only the discussion of the resulting effects and 

restrictions are provided.  

The linear mild slope equation given as a function of wavenumber ( k ), 

phase speed (C ), and group velocity ( gC ) is written 

0ˆˆ 2 =ΦCCk+)Φ(CC gg∇⋅∇ .        (2.6) 

It combines shoaling, refraction and diffraction, including reflection (Battjes, 1994; 

Dingemans, 1997).  In addition, it conserves energy of periodic gravity waves 

(Battjes).  Although weakly nonlinear, the two dimensional mild slope equation 

retains several linear wave properties, including the linear depth dependence and 

dispersion relation given by 

( )
hk
z+hk

=zhkf
n

n
nn cosh

cosh
),,(   and       (2.7) 

hkgk=ω nn tanh2 , respectively.      (2.8) 

 Because Kaihatu and Kirby (1995) seek a frequency domain model the 

time dependence is removed from the weakly nonlinear mild slope equation by 

two processes.  First, Kaihatu and Kirby assume that the waves are periodic in 

time. 

∑
−

−
N

n

niωnniωn te
Φ

+te
Φ

=Φ
1

*

22
       (2.9) 

where the asterisk denotes complex conjugate. 

Second, they utilize resonant triad interactions between frequency 

components (Phillips, 1980) to factor out the time dependence from the nonlinear 
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term.  The triad interactions result from the products of Fourier series applied to 

the nonlinear terms.  Because the mild slope equation retains full linear 

dispersion, the accurate computation of phase mismatch and resulting energy 

transfer follows (Madsen & Sørensen, 1993).  While the equation benefits from 

linear dispersion and remains free of time dependence, it remains elliptic.   

Elliptic equations require specification of all boundaries and simultaneous 

solution of all points everywhere in the domain.  To ease computational 

requirements and boundary specification, Kaihatu and Kirby (1995) employ a 

parabolic approximation (e.g. Radder, 1979).  The parabolic approximation 

transforms the boundary value problem into an initial value problem requiring 

input at only the offshore boundary, marching the solution forward in space.  The 

transformation requires that the wave field be primarily progressive in the positive 

x -direction; therefore, losing the ability to model backward-reflected waves 

(Battjes, 1994) or waves approaching at highly oblique angles to the x-direction 

(Kirby, 1986).  In addition, the parabolic approximation inherently assumes that 

amplitudes vary slowly in the y-direction while “retaining fast wave-like variations 

in (only) the x-direction” (Kaihatu & Kirby, 1995, p. 1906).  Kaihatu and Kirby fulfill 

these requirements by assuming 

( ) ( ) ( )∫−
dxyx,

eyx,A
ω
ig=yx,Φ nki

n
n

n
ˆ  and      (2.10) 

( ) ( ) ( )∫− dxyx,
eyx,A

ω
ig=yx,Φ nki

n
n

n
ˆ        (2.11) 



 

 

11

At this point, Kaihatu and Kirby (1995) scale the two dimensional equation 

and reduce it to a one dimensional, frequency domain mild slope equation.  The 

resulting equation is 

( )
( )

( )
( ) ( )

,
dxkk

eASA+
dxkk+

eARA
kCC
i

=A
kCC
kCC

+A

n

=l

nN

=l

nll+nki

l+nl

nnlki

lnl

ng

n
ng

nxg
nx











 −−−
⋅− ∑ ∑ ∫∫− −−

−

1

1 1

1 2
8

2
  (2.12) 

referred to as the “fully dispersive nonlinear shoaling model” (Kaihatu, 1994, p. 

19).  Refer to Kaihatu and Kirby for a definition of the coefficients, R  and S .  

Although equation 2.12 retains shoaling, refraction, and diffraction, the mild slope 

equation does not inherently account for energy losses resulting from friction or 

breaking (Berkhoff, 1972). 

In order for the model to accurately propagate waves through the surf 

zone, it needs a dissipation mechanism.  Kaihatu and Kirby (1995) employ the 

“’simple’ probabilistic dissipation model” (p.1909) of Thornton and Guza (1983) 

given by 

54

53

4
3

hγ
HfB

gh
π=β(x) rmspeak ,                (2.13) 

with the root-mean-square waveheight 

| |∑
N

=n
nrms A=H

1

22 .                (2.14) 

and free parameters 1=B  and 6.0=γ .  The dissipation model is based on 

probability because it describes the averaged dissipation of a population of 

waves, and as such no single breakpoint adequately describes the breaking 
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location of this random wavefield (Thornton & Guza).  Rather than describe the 

initiation of breaking as a point, a breaking zone describes this area of the 

domain (Horikawa, 1988).  At any one point in the breaking zone, some waves 

break while others remain unbroken, with waves of greater wave heights 

breaking offshore and smaller waves breaking closer to shore (Thornton & 

Guza). 

The formulation of Thornton and Guza (1983) depends on the lumped 

characteristics of the spectrum without accounting for its frequency dependence. 

Kaihatu and Kirby (1995) distribute the dissipation model (equation 2.13), 

constant for all waves at each depth, over the frequency range of the spectrum in 

order to implement it in the model (Kaihatu, 2003).  Following the approach of 

Mase and Kirby (1992), Kaihatu and Kirby split the distribution of the dissipation 

model between a frequency-squared function and a frequency-independent 

function.  The dissipation mechanism is described by 

n1
peak

n
n0n α

f
f+α=α

2











, where               (2.15) 

)(0 xFan β= and                 (2.16) 

( )[ ]
| |

| |∑

∑
− N

=n
nn

N

=n
npeak

n0n1

Af

Af
αxβ=α

1

22

1

22

.               (2.17) 

N is the total number of frequency components retained by the model, and F  is 

a free parameter that determines what percentage of the dissipation model 

(equation 2.13) is distributed to the frequency independent function (equation 

2.16) (Kaihatu and Kirby).  0=F  provides full frequency-squared dependence.  If 
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1=F , the mechanism weights the dissipation according to the energy level in 

each frequency bin with no regard to frequency.  According to Kaihatu and Kirby, 

giving the frequency-squared and frequency-independent functions the same 

weight produces the best results; therefore, 0.5=F . It is noted here that Kirby 

and Kaihatu (1996) provide physical reasoning for 0=F . The nonlinear frequency 

domain mild slope equation with dissipation is given by 
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  (2.18) 

Eldeberky and Madsen (1999) criticize Kaihatu and Kirby’s (1995) 

transformation between amplitudes of Φ  and amplitudes of η .  The 

transformations, equations 2.10 and 2.11, are derived from the first order 

dynamic free surface boundary condition, which does not include the nonlinearity 

of equation 2.4 (Kaihatu, 2003).  Kaihatu (2001) includes a second order 

correction to the transformation between amplitudes of Φ  and amplitudes of η  

and reports that the correction is essential in correctly determining the free 

surface, especially for the high frequencies. 

 

The Parameterization 

The models discussed in the previous section describe the nonlinear 

evolution of waves in great detail. An alternative way of describing the nonlinear 

evolution of waves is to look for trends in the spectral shape and express these 

trends in terms of several parameters. This parameterization approach has been 
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applied in deep and finite depth wave models (Booij, Ris, & Holthuijsen, 1999). 

Like the equilibrium range of deepwater and finite depth wave spectra, the 

equilibrium range of surf zone wave spectra develop because nonlinear 

interactions transfer energy predominantly from low to higher harmonics.  In 

addition, the parameterization of the surf zone equilibrium range follows a power 

law in wavenumber.  Resio,  Pihl, Tracy, and Vincent (2001) define this power 

law to be 

nβk=S(k) ,                  (2.19) 

where S(k) is the wavenumber spectrum.  For waves in deep and finite water 

depth, β  depends on wind speed, and 2/5−=n .  Resio et al. found the power 

law as applied to waves in deep and finite water depth to be valid for a range of 

wavenumbers from 1.5  to pf3 . 

Smith and Vincent (2003) developed the parameterization of the surf zone 

equilibrium range using data from several laboratory and field experiments.  The 

data used represented many combinations of several wave field and domain 

characteristics. 

In developing their parameterization of the equilibrium range of surf zone 

wave spectra, Smith and Vincent (2003) showed that the equilibrium range 

consists of two subranges, referred to as the Toba range and the Zakharov 

range.  While the parameterization of the Zakharov range describes the portion 

of the wavenumber spectra between pk2.5  and h=k /1 , the Toba 

parameterization describes the area between h=k /1  and pk6 .  pk  is the 

wavenumber of maximum energy. 
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Smith and Vincent (2003) based the parameterization of the Toba range 

on data from two laboratory experiments and one set of field data totaling 109 

spectra.  The resulting mathematical formulation of the parameterization for the 

Toba range was found to be 

5/2−kβ=S(k) Toba , for 1≥kh .               (2.20) 

where 0.5hα=β TobaToba  with 0.0103=αToba .  In addition to the data used for the 

Toba parameterization, Smith and Vincent based the Zakharov parameterization 

on a second data set collected in the field.  In total they used 227 spectra to find 

the parameterization.  It is described mathematically by 

4/3−kβ=S(k) Zak , for 1<<khk p .              (2.21) 

where 1.67hα=β ZakZak  with 0.0102=αZak . 

It is seen in equations 2.19 and 2.20 that the power transform of the Toba 

range and the power transform given by Resio et al. (2001) share the same 

slope.  The difference between deep and finite depth wave spectra and surf zone 

wave spectra lies in the coefficient of the power transform.  While the β  of deep 

and finite depth wave spectra parameterizations depends on wind speed, the β  

of surf zone parameterizations depends on a more important surf zone 

parameter, depth. 

Analysis of the parameterizations of the surf zone equilibrium subranges 

by Smith and Vincent (2003) confirm the parameterizations’ depth dependences.  

As the waves propagate into shallow water, the Zakharov parameterization 

describes a larger part of the spectrum.  In contrast if h>k p /1 , only the Toba 

range exists. 
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The Hybrid Model 

The hybrid model is a version of Kaihatu and Kirby’s (1995) one 

dimensional nonlinear mild slope equation with the second order correction of 

Kaihatu (2001).  In this model, complex amplitudes for the region of a spectrum 

where h<k /1  are determined in the manner of Kaihatu and Kirby.  For the 

hk /1≥  area of a spectrum, the hybrid model utilizes the Toba parameterization 

of Smith and Vincent (2003). 

The difference in the domains of Kaihatu and Kirby (1995) and the Toba 

parameterization (Smith & Vincent, 2003) complicates the combining of the two 

models.  Kaihatu and Kirby is a frequency domain model, and the 

parameterization is a function of wavenumber.  Because Kaihatu and Kirby retain 

the linear dispersion relation, it is easy to employ equation 2.8 to obtain a 

wavenumber for each frequency of the wavefield.  Since each frequency 

corresponds to a particular wavenumber and vice versa, only the component 

number determines the point in a spectrum where h=k /1 . 

As the hybrid model marches forward in space, amplitudes for frequencies 

in the region outside the Toba range are explicitly calculated using equation 2.18, 

and equation 2.20 gives energy for each wavenumber inside the Toba range.  

For instances where h>k p /1 , the Toba range defines the region of a spectrum 

where pk>k .  The relation 

f
kS(k)=S(f)

∆
∆                  (2.22) 

transforms a wavenumber spectrum to a frequency spectrum.  Since 
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| |
f
A

=S(f) n

∆

22
,                           (2.23) 

the amplitudes for each frequency in the Toba range are given by 

iΘ
n efS(f)=A

2
∆ , where                (2.24) 

Θ is a random phase.
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CHAPTER 3 

TESTING DOMAINS AND METHODS 

 This chapter describes two domains used in the development of the hybrid 

model and for testing the hybrid model’s performance; in addition, it covers the 

methods used for these tasks.  The two domains of choice are a long, mildly 

sloping domain and the domain of Mase and Kirby’s (1992) case two experiment.  

Observations exist only for the experiment of Mase and Kirby. 

 

A Long, Mildly Sloping Domain (long slope) 

This idealized testing domain replicates 1,292 m of a nearshore 

environment with a bottom slope of 0.01 (Figure 3.1).  The long slope 

configuration roughly resembles the bathymetric profile at Duck, North Carolina, 

home of the U.S. Army Engineering Field Research Facility.  At the offshore 

boundary the depth is 13 m.  The input spectrum was determined from a time 

series, which was in turn determined from a random-phase decomposition of a 

TMA spectrum (Bouws, Gunther, Rosenthal, & Vincent, 1985) using the method 

of Cox, Kobayashi, and Wurjanto (1991).  The TMA spectrum had a significant 

waveheight of 1 m with a peak frequency ( pf ) of 0.1 Hz.  The peakedness 

parameter for the TMA spectrum used was 20~=γ , representative of a narrow-

banded spectrum suited to swell.  The energy at the peak frequency lies in a 

region of intermediate water depth, and the deep water region (higher 

frequencies) contains significant energy.  The sampling interval of the time series 

is 0.5 s.  
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Figure 3.1  Long, mildly sloping (long slope) domain.  Red x’s denote the 
locations considered in comparisons. 

 

Although no experimental data exist for this domain, it encompasses the 

characteristics of an “ideal” domain for the model of Kaihatu and Kirby (1995), 

which has been shown to possess sufficient skill in determining spectra for such 

a domain.   Results of Kaihatu and Kirby provide spectra for the testing of the 

hybrid model. 

 

Mase and Kirby’s (1992) Domain (MK92) 

 Mase and Kirby (1992) set up a wavetank experiment that spanned 1,090 

cm with a bottom slope of 0.05 (Figure 3.2).  During their Case 2 experiment, 

they propagated random waves through the domain and collected time series 

data of free surface at depths of 47, 35, 30, 25, 20, 17.5, 15, 12.5, 10, 7.5, 5, and 

2.5 cm.  The Case 2 experiment of Mase and Kirby utilized a sampling interval of 

0.05 s resulting in a time series of 15,000 points at each observation location 

(Mase & Kirby, 1992; Kaihatu, 1994). 
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Figure 3.2  The domain of Mase and Kirby’s (1992) case two experiment (MK92).  
Red x’s denote locations considered in comparisons. 

 

Mase and Kirby (1992) created random waves for case two of their 

experiment with a Pierson-Moskowitz spectrum at the offshore boundary.  The 

energy at the input spectrum’s pf  of 1.0 Hz resides in intermediate water depth 

at the wavemaker.  Because the pf  is in intermediate water depth (Kaihatu, 

1994; Kaihatu & Kirby, 1995; Kaihatu, 2003) putting significant energy in deep 

water (Kaihatu, 1994) (Figure 3.3), Case 2 of the experiment provides a 

demanding test for nonlinear models which purport to span the range from deep 

to shallow water (Kaihatu, 2003). 

 

Model Input and Output 

 The model of Kaihatu and Kirby (1995) and the hybrid model propagate 

waves in one direction.  To simulate the transformation of waves coming from 

offshore, the models require input at the most offshore location in the domain.  In 
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addition, because both models are formulated in the frequency domain, the input 

takes the form of the amplitudes of the wave components in a wave train.  Given 

a time series, these amplitudes are derived using Fast Fourier Transforms (FFT).  

The FFT algorithm is more efficient if the number of points is a power of two.  

Additionally, for statistical certainty, we wish to average spectra from multiple 

realizations of the time series.  Therefore, the time series is divided into a 

number of segments (m), each containing a power of two number of points (n), 

and in this study, we choose n=2048.  The FFT then results in m-segments of 

1024 frequency components each.  However, because computational time 

depends on the number of frequency components, the length of each segment is 

usually truncated.  While this truncation affects skewness and asymmetry, it has 

little effect on the total energy (Kaihatu, 1994).  The full and hybrid models 

handle the segments individually.   

For the gently sloping domain, the time series that results from the TMA 

spectrum was divided into eight segments of 2,048 points apiece.  Given the 

sampling interval 0.5 s, the frequency interval is 1/1,024 Hz.  Only 500 frequency 

components were retained for each segment.    

For the Mase and Kirby (1992) domain, the time series of surface 

elevation measured at a depth of 47 cm was used as input for the models.  

Therefore, the time series is divided into seven segments of 2,048 points.  With 

2,048 points recorded at a sampling interval of 0.05 s, the frequency interval is 

1/102.4 Hz.  The segment length was truncated to include only the first 500 

Fourier coefficients, which retained roughly 99.9% of the total energy (Kaihatu & 

Kirby, 1996).. 
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Because the models work on each segment individually, the output is 

given as truncated segments, like the input.  Several steps were taken to obtain 

the frequency and wavenumber spectra from the model results. 

 Frequency spectra were determined by Bartlett averaging over the 

number of segments for each domain.  Furthermore, eight adjoining frequency 

bands were averaged in the spectra.  The total averaging process resulted in 128 

degrees of freedom for the long slope domain and 112 degrees of freedom for 

the MK92 domain. 

 Because model results represent half of two sided spectra, the one-sided 

frequency spectra are given by 

| |
f
A

=S(f) n

∆

22
,          (3.1) 

where S(f)  represents a frequency spectrum, nA  are the complex amplitudes, 

and f∆  is the frequency interval.  Furthermore, the wavenumber spectrum is 

related to the frequency spectrum by  

kS(k)=fS(f) ∆∆ ,         (3.2) 

where S(k)  represents a wavenumber spectrum and k∆  is the wavenumber 

interval.  Since wavenumber is related to the frequency via the dispersion relation 

(equation 2.8) and the time series is sampled at constant intervals, the frequency 

interval is constant, and the wavenumber interval varies. 

 

Evaluating individual parts of the hybrid model 

For the hybrid model to successfully replicate measurements, the 

parametric component and the explicitly modeled component of the model must 
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show the capability of reproducing the wave field evolution.  For the long slope 

domain, results of Kaihatu and Kirby (1995) provide a basis for testing in the 

domain; therefore, at this time only the parameterization of the Toba range is 

explored.  Kaihatu and Kirby (p. 1909) report, “…the nonlinear mild-slope model 

compares very well to the (MK92) data for much of the frequency range 

throughout most of the domain.”  Therefore, for the MK92 domain, the Toba 

range parameterization is compared to observations recorded by Mase and Kirby 

(1992) during the second case of their experiment. 

 Both graphical and numerical comparisons were used to determine the 

extent of the Toba range parameterization’s ability to describe the Kaihatu and 

Kirby (1995) results for the long slope domain and the observations for the MK92 

domain.  Graphical comparisons were conducted by simply superimposing the 

parameterization (equation 2.20) onto the full model results for the long slope 

domain and onto the observations collected in the MK92 domain.  To support the 

graphical comparisons, regression analysis was performed on the model results 

and observations.  Resulting estimates of the regression coefficients were 

numerically compared to the Toba range parameterization. 

 Lines of regression were “fit” to each spectrum by first taking a power 

transformation of the Toba range parameterization such that equation 2.20 

becomes 

)ln(
2
5)ln())(ln( kkS Toba −= β        (3.3) 

resembling the slope-intercept form of a line, where the intercept is )(βTobaln  and 
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the slope is 2/5− .  Next, the method of least squares was utilized given the 

independent variable 

(k)=x ln          (3.4) 

and the dependent variable 

(S(k))=y ln          (3.5) 

to obtain an estimate of the slope and intercept for each spectrum’s Toba range.  

Several methods were used to determine that the regressions adequately 

represent the observed and modeled spectra’s Toba ranges.  The methods and 

results are presented in the Appendix. 

Finally, confidence intervals were determined for the slope of each 

spectrum’s Toba range given by the regression model.  These ranges were 

compared to Smith and Vincent’s (2003) range of one standard deviation (0.15) 

around the slope in equation 2.20.  Based on a t-distribution, the confidence 

intervals were determined for a significance level of 5%.  Although an estimate of 

each spectrum’s intercept was determined, Tobaβ  was calculated by a different 

method, which is described below. 

 

Evaluating the Hybrid Model 

 Four implementations of the hybrid model were tested over the long slope 

and the MK92 domains.  These differ in the parameterization’s value of Tobaβ .  

For the first case, Smith and Vincent’s (2003) formulation of Tobaβ  , 

0.50.0103h=βToba , was used.  It is referred to as SNVβ .  Results of the second case 

were reached using a depth independent (constant) Tobaβ .  This value of Tobaβ  
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was determined from the energy of the input spectra’s Toba ranges, and it is 

referred to as conβ .  The method used to determine conβ  is referred to as energy 

matching and is described below.  Rather than determine Tobaβ  from the input 

spectrum’s Toba range, the third case uses the input spectrums Toba range to 

determine Tobaα  so that 0.5hα=β TobaToba  is depth dependent.  This case of Tobaβ  is 

referred to as ematβ , and the value of Tobaα  determined from the input spectrum is 

referred to as ematα .  Finally, the relation 0.5hα=β TobaToba  was used, where  

h
H

C=α rms
Toba .        (3.6) 

hHrms /  is a dimensionless parameter, and the constant C  was determined from 

the relation  

0

0

rms,
emat H

h
α=C ,        (3.7) 

where 0h  and 0rms,H  are values of depth and waveheight, respectively, at the 

offshore boundary.  rmsH  is given in equation 2.14.  The final case is referred to 

as alfβ . 

For the long slope domain, hybrid model results were compared to results 

of Kaihatu and Kirby (1995).  For the MK92 domain, hybrid model results were 

compared to the observations collected by Mase and Kirby (1992).  Comparisons 

were conducted graphically by superposition, and numerical comparisons utilized 

mean square error (MSE) to determine the degree of agreement between a 

hybrid model and either full model results or observations, depending on the 

domain.  MSE is defined as 
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∑−
2

2
1 ε
n

=MSE ,        (3.8) 

where n is the sample size and ε  is the residual of the comparison. 

 

 Energy Matching to Determine conβ  

 To determine conβ , it was assumed that there was no difference between 

the total energy of the Toba range parameterization and the total energy of the 

input spectra’s Toba range so that 

∫∫ −
Nk

h=k
in

Nk

h=k
Toba dkS(k)=dkkβ

1/1/

5/2 .       (3.9) 

The right hand side is the total energy of the Toba range parameterization 

(equation 2.20), and the left hand side is the total energy of the input spectra’s 

Toba range.  inS(k)  is the input wavenumber spectrum.  Tobaβ  is constant for a 

particular depth, so equation 3.9 becomes 

∫

∫

−
Nk

h=k

Nk

h=k
in

Toba

dkk

dkS(k)
=β

1/

5/2

1/ .        (3.10) 

 

Energy Matching to Determine ematα  

 Determining ematα  follows from the previous section.  Because 0.5αh=β , 

equation 3.10 is rewritten as 
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∫
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∫

∫
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emat

dkkh

dkS(k)
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1

2
5-

0.50

h
1

,       (3.12) 

where 0h  is water depth at the offshore boundary.  Now, 0.5hα=β ematemat , for 

every depth in a domain. 

 

Determining Wave Parameters 

 In addition to graphical and numerical comparisons of model results, wave 

parameters were calculated for all of the model results and available data.  rmsH  

(equation 2.14), skewness, and asymmetry provide additional quantitative 

measures for comparison.  Skewness and asymmetry, whose physical meanings 

are described in the introduction, are given by equations 3.13 and 3.14, 

respectively. 

| |
| | 2/32

3

η
η=Skewness                  (3.13) 

| |
| | 2/32

3))((
η
H=Asymmetry η                (3.14) 

)H(η  represents the Hilbert transform of the free surface.
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CHAPTER 4 

RESULTS 

This chapter addresses the results of our analysis.  We begin by 

demonstrating the need for nonlinear interactions in the modeling of shoaling and 

surf zone waves.  Because modeling with nonlinear interactions requires 

substantial computational time (as established in chapter 1), the parameterization 

of Smith and Vincent (2003) is explored as a means of reducing the 

computational expense of modeling waves through the surf zone.  The hybrid 

model results are presented following an examination of the Tobaβ  formulations 

used in the parametric component of the hybrid model.  Finally, wave parameters 

computed from model results are given. 

 

Modeling Shoaling and Surf Zone Waves without Nonlinear Interactions 

Removing nonlinear interactions from the full model (Kaihatu & Kirby, 

1995) results in a linear model and reduces computational time from over 2.5 hr 

to approximately 6 min in the MK92 domain and from approximately 23 hr to 

approximately 12 min in the long slope domain.  However, poor results negate 

any benefits gained by the reductions in computational expense. 

 In both domains, neglecting nonlinear interactions suffices until the point 

where secondary peaks begin to form (Figures 4.1-4.8).  In fact, in the MK92 

domain, where 15<h  cm, neglecting nonlinear interactions gives the same, if not 

better, results as the full model, which overestimates high frequency energy 

through the entire domain; this overestimation suggests that the model does not 

have a uniformly valid deep water asymptote.  The linear model performs well in 



 

 

29

 
Figure 4.1  Comparison of observations (gray line), full model (black solid), and 
linear model (black dash).  Comparisons are for the MK92 domain (top) 47cm, 
(middle) 35 cm, and (bottom) 30 cm. 
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Figure 4.2  Comparison of observations (gray line), full model (black solid) and 
linear model (black dash).  Comparisons are for the MK92 domain (top) 25 cm, 
(middle) 20 cm, and (bottom) 17.5 cm. 
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Figure 4.3  Comparison of observations (gray line), full model (black solid) and 
linear model (black dash).  Comparisons are for the MK92 domain (top) 15 cm, 
(middle) 12.5 cm, and (bottom) 10 cm.
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Figure 4.4  Comparison of observations (gray line), full model (black solid) and 
linear model (black dash).  Comparisons are for the MK92 domain (top)7.5 cm, 
(middle) 5 cm, and (bottom) 2.5 cm.
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Figure 4.5  Comparison of full model (gray solid) and linear model (black solid).  
Comparisons are for the long slope domain (top) 10 m, (middle) 5 m, and 
(bottom) 4.5 m. 
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Figure 4.6  Comparison of full model (gray solid) and linear model (black solid).  
Comparisons are for the long slope domain (top) 4 m, (middle) 3 m, and (bottom) 
2.75 m. 
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Figure 4.7  Comparison of full model (gray solid) and linear model (black solid).  
Comparisons are for the long slope domain (top) 2.5 m, (middle) 2.25 m, and 
(bottom) 2 m. 
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Figure 4.8  Comparison of full model (gray solid) and linear model (black solid).  
Comparisons are for the long slope domain (top)1.75 m, (middle) 1.5 m, and 
(bottom) 1.25 m.
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deep water where the effects of nonlinear interactions are small.  When waves  
 
shoal, however, nonlinear interactions intensify.  Furthermore, in the surf zone,  
 
breaking waves result in turbulence that dissipates energy at high frequencies  
 
and, in turn, promotes energy transfer from low to high frequencies via nonlinear  
 
interactions.  Once the nonlinear interactions and dissipation jointly serve to  
 
change the shape of the spectrum, linear theory is insufficient because it does  
 
not change the shape. 
 
 

Toba Parameterization Evaluation 

 Visual comparisons of the Toba parameterization to spectra’s Toba 

ranges in the MK92 (Figure 4.9) and long slope (Figure 4.10) domains show that 

in regions where valid, the parameterization appears to adequately represent the 

spectra. 

 As mentioned in chapter 3, the MK92 domain’s pk  is in intermediate water 

for most of the domain.  Furthermore, 1>hk p  for depths greater than 

approximately 25 cm.  If hk p /1> , then the Zakharov range ( hkk p /1<< ) is 

nonexistent.  In addition, at a depth of approximately 10 cm, pk  enters shallow 

water, thus allowing the two distinct subranges to coexist. 

 For the first half of the MK92 domain, where 1>hk p  or 1≈hk p , the slope 

of the Toba parameterization is flatter than the slopes of the spectra’s Toba 

ranges.  As mentioned previously in chapter 2, wind is an important factor 

outside the surf zone, and the Toba range slope of a wind wave spectrum is the 

same as the Toba range slope of a surf zone spectrum.  However, the laboratory 

wave spectra recorded by Mase and Kirby (1992) do not include the effects of  
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Figure 4.9  Comparison of Smith and Vincent’s (2003) Toba parameterization 
(black solid) and wavenumber spectra resulting from the full model (gray line) in 
addition to the lines “fit” to the spectra (black dash).  Comparisons are given at 
different depths (d) in the MK2 domain. 
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Figure 4.10  Comparison of Smith and Vincent’s (2003) Toba parameterization 
(black solid) and wavenumber spectra resulting from the full model (gray line) in 
addition to the lines “fit” to the spectra (black dash).  Comparisons are given at 
different depths (d) in the long slope domain. 
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wind, which works to increase energy of high wavenumbers and make the 

spectral slope less steep.  

Waves begin to shoal at a depth of approximately 15 cm placing emphasis 

on a depth dependence, rather than wind.  Shoaling increases spectral energy 

and thus promotes energy transfer primarily from the pk  causing the formation of 

a secondary energy peak.  Because energy is lost from the pk  and transferred to 

the secondary peak, the spectrum’s Toba slope comes more into agreement with 

the parameterization’s slope.  Finally, the waves break and turbulence dissipates 

energy at the high wavenumbers, enhancing energy transfer from the low 

wavenumbers and thus flattening the spectra’s Toba range slopes.  Therefore, in 

the surf zone (i.e. 0.4/ >hHrms per Smith and Vincent (2003)) where 15<h  cm, 

the spectral Toba range slopes agree with the slope of the Toba range 

parameterization. 

It appears that at depths where the slopes agree, the parameterization 

adequately represents the energy level of the spectra’s Toba range.  

Furthermore, it appears that a gentler spectral slope, as suggested by the 

parameterization, is capable of bringing the energy levels of spectra outside the 

shoaling and surf zones into closer agreement with the parameterization. 

 In the long slope domain, pk  enters the shallow water range at a depth of 

approximately 5 m.  With 1<<hpk , both subranges exist (Smith & Vincent, 

2003).  As depth decreases, however, hk p  and the number of wavenumbers that 

satisfy hk /1≥ decreases.  Eventually, the range 1≥hk p  (Toba) vanishes, and 

the Zakharov range ( h<k<k p /1 ) dominates. 
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 For most of the long slope domain, the slope of the parameterization is 

steeper than the slope of the spectra’s Toba ranges.  In contrast to spectra of the 

MK92 domain, spectra in the intermediate water range are relatively narrow with 

well defined peaks indicative of a lack of wind effects.  Again, a lack of wind 

effects in the intermediate water spectra appears to prohibit the parameterization 

from adequately representing the slope of these spectra.   

Once shoaling begins, depth effects dominate, and nonlinear interactions 

cause the formation of the secondary peak.  The parameterization now 

adequately represents the spectral slope.  However, as waves enter the shallow 

water range, the wavenumber satisfying 1=kh  moves toward the high 

wavenumber range, and thus spectra have fewer wavenumbers in the Toba 

range.  Because the boundary between the Toba and Zakharov range is more 

likely to be a range than a single point (Smith & Vincent, 2003), the flatter slope 

of the Zakharov range becomes more important.  Numerical comparisons show 

that the slopes of the Toba parameterization and range agree at approximately 4 

m depth. 

For depths less than approximately 3 m, the parameterization adequately 

represents the energy of the spectra.  At other depths, as with the slope, the 

narrow, sharp spectral peak prevents the parameterization from adequately 

representing the energy level.  Because the spectral peak is of much greater 

energy than surrounding wavenumbers, the resulting secondary peak is well 

defined, and relatively little energy is transferred to wavenumbers around the 

harmonic of the peak wavenumber.  Thus, the spectra fail to relax to the broad 
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featureless shape indicative of equilibrated spectra, and the energy levels do not 

agree. 

 

Evaluation of the Hybrid Model 

 In this section, results from the hybrid model are given in relation to each 

other, the full model, and in the case of the MK92 domain, observations.  

However, before the hybrid model results are given, values of Tobaβ  given by 

Smith and Vincent (2003) and determined from the input spectra’s Toba range 

energy are reported. 

 

Values of Tobaβ  

 As described in Chapter 3, the hybrid model was executed four times for 

each domain, with each execution using a different representation of Tobaβ  (Table 

4.1) in the parameterization.  The four values of Tobaβ  differ for both domains. 

 For the long slope domain, the four values of Tobaβ  used in the hybrid 

models differ from SNVβ by an order of magnitude (Table 4.2).  Despite the 

difference in value, SNVβ and ematβ tend to decrease with a decrease in water 

depth and overestimate the input spectrum’s Toba range energy (Figure 4.11).  

ematβ  represents the energy better than SNVβ .  alfβ  falls between the energy 

matched values ( conβ  and ematβ ) and SNVβ  at the offshore boundary.  It increases 

into shallow water until the depth is approximately 2.25 m (Table 4.2). 
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Table 4.1 
 
Formulations of Tobaβ  Used in the Hybrid Model 
 

Symbol Formula ( 0.5αh=β ) Description 

SNVβ  0.0103=αSNV  β  as determined by 
Smith and Vincent (2003)

conβ  =β constant β  determined by 
matching the energy of 

the input spectrum; 
constant 

ematβ  

∫

∫
Nk

h=k

Nk

=k
in

emat

dkkh

dkS(k)
=α

/1

5/2-5.0
0

1/h  

β  determined by 
matching the energy of 

the input spectrum; depth 
dependent 

alfβ  
h
H

C=α rms
alf ; 

0

0

rms,
emat H

hα=C  

β determined as a 
function of waveheight, 
depth, and ematα ; depth 

dependent 

 

Table 4.2 

Values of Tobaβ  Used in Determining Wave Evolution in the long slope domain 

with the Hybrid Model. 

Depth (m) SNVβ   conβ   ematβ   alfβ  
10.00 0.0326 0.0041 0.0036 0.0128 
5.00 0.0230 0.0041 0.0025 0.0194 
4.50 0.0218 0.0041 0.0024 0.0206 
3.50 0.0193 0.0041 0.0021 0.0234 
3.00 0.0178 0.0041 0.0020 0.0246 
2.74 0.0170 0.0041 0.0019 0.0251 
2.50 0.0163 0.0041 0.0018 0.0253 
2.24 0.0154 0.0041 0.0017 0.0254 
2.00 0.0146 0.0041 0.0016 0.0250 
1.74 0.0136 0.0041 0.0015 0.0243 
1.50 0.0126 0.0041 0.0014 0.0232 
1.24 0.0115 0.0041 0.0013 0.0219 
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Unlike the values of Tobaβ  used in propagating waves with the hybrid 

model through the long slope domain, values of Tobaβ  used in the MK92 domain 

are similar in value (Figure 4.12).  However, with the exception of alfβ , values 

used in the hybrid model differ greatly from values determined from observations, 

 

Figure 4.11  A comparison of the long slope domain’s input spectrum (gray line) 
to Toba range parameterizations used in the hybrid model.  The 
parameterizations differ in Tobaβ  values, where the three are (a) Smith and 
Vincent (2003) (black solid), (b) the constant value (black dash), (c) energy 
matched (black dotted), and (d) energy matched with the nonlinearity parameter 
(bold black solid).
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Figure 4.12  A comparison of the MK92 domain’s input spectrum (gray line) and 
the Toba range parameterizations used in the hybrid model.  The 
parameterizations differ in their value of Tobaβ .  The three values are (a) Smith 
and Vincent’s (2003) (black solid), (b) constant (black dash), (c) energy matched 
(black dotted), and energy matched with the nonlinearity parameter (bold black 
solid). 
 
Table 4.3 

Values of Tobaβ  Used in the Hybrid Model to Propagate Waves through the MK92 

Domain. 

Depth 
(cm)  βobs βSNV  βconst  βemat  βalf 

47.0 0.0804 0.0706 0.0804 0.0804 0.0680 
35.0 0.0772 0.0609 0.0804 0.0694 0.0759 
30.0 0.0775 0.0564 0.0804 0.0642 0.0805 
25.0 0.0765 0.0515 0.0804 0.0587 0.0865 
20.0 0.0851 0.0461 0.0804 0.0525 0.0956 
17.5 0.0909 0.0431 0.0804 0.0491 0.1023 
15.0 0.0955 0.0399 0.0804 0.0454 0.1105 
12.5 0.0940 0.0364 0.0804 0.0415 0.1189 
10.0 0.1108 0.0326 0.0804 0.0371 0.1306 
7.5 0.1441 0.0282 0.0804 0.0321 0.1358 
5.0 0.1224 0.0230 0.0804 0.0262 0.1325 
2.5 0.0725 0.0163 0.0804 0.0185 0.1233 
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obsβ , in the domain (Table 4.3).  obsβ remains fairly constant through the domain, 

with almost all changes consisting of an increase with decreased depth.  alfβ  

follows the same trend.  Because SNVβ  and ematβ  depend on depth, their values 

decrease with a decrease in water depth.  Although alfβ  overestimates the 

energy at the offshore boundary (Figure 4.12), it represents the energy the best. 

 

Qualitative Hybrid Model Results 

 This section reports hybrid model results relative to full model results and, 

in the case of the MK92 domain, observations.  Hybrid model results are 

referenced as follows:   

Case 1 is the hybrid model with SNVβ . 

Case 2 is the hybrid model with conβ . 

Case 3 is the hybrid model with ematβ . 

Case 4 is the hybrid model with alfβ . 

Qualitative and quantitative comparisons of model results are given for the two 

domains.  Beginning with qualitative comparisons, first are results for the long 

slope domain, where the hybrid model reduces computational time from 

approximately 23 hr to approximately 1 hr. 

Although case 1 replicates the Toba range well for spectra with energy 

transfer to higher harmonics, (Figure 4.13 (b) and (c) and Figure 4.14 (a)), it 

overestimates the range in deeper water (Figure 4.13 (a)) and underestimates it 

at depths shallower than 4 m (Figures 4.14, 4.15, and 4.16).  Outside of the Toba 

range, case one overestimates the spectra’s energy until a depth of  
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Figure 4.13  Comparison of full model (gray line) and hybrid model results (case 
1, black solid; case 2, black dashed; case 3, black dash dotted; case 4 bold black 
solic).  Results are given for the long slope domain (a) 10 m, (b) 5 m, and (c) 4.5 
m. 
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Figure 4.14  Comparison of full model (gray line) and hybrid model results (case 
1, black solid; case 2, black dashed; case 3, black dash dotted; case 4 bold black 
solid).  Results are given for the long slope domain (a) 4 m, (b) 3 m, and (c) 2.75 
m. 
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Figure 4.15  Comparison of full model (gray line) and hybrid model results (case 
1, black solid; case 2, black dashed; case 3, black dash dotted; case 4 bold black 
solid).  Results are given for the long slope domain (a) 2.5 m, (b) 2.25 m, and (c) 
2 m. 
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Figure 4.16  Comparison of full model (gray line) and hybrid model results (case 
1, black solid; case 2, black dashed; case 3, black dash dotted; case 4 bold black 
solid).  Results are given for the long slope domain (a) 1.75 m, (b) 1.5 m, and (c) 
1.25 m. 
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approximately 1.75 m (Figure 4.16 (a)), where the spectrum’s peak disappears, 

and energy is distributed more evenly across all frequencies.  The initial 

overestimation of energy outside the Toba range results because the Toba 

parameterization overestimates energy at the high frequencies forcing too much 

energy to the low frequencies of the spectra. 

Because they initially represent the Toba range well, cases 2 and 3 

perform exceptionally better than case 1 outside the Toba range (Figures 4.13—

4.16).  However, the spectra’s Toba ranges are underestimated at depths 

shallower than approximately 10 m.  Case 2 replicates the energy in the 

spectra’s Toba ranges slightly better than case 3, with the difference increasing 

as depth decreases. 

At locations of shallower depths SNVβ  and alfβ  are within the same order 

of magnitude; therefore, case 4 performs similar to case 1 predicting the Toba 

range better than cases 2 and 3 (Figures 4.14—4.16).  However, at offshore 

locations, case 4 performs similarly to cases 2 and 3 in the Toba range (Figure 

4.13 (a)).  Because case 4 refrains from overestimating the Toba range of 

offshore spectra, the final case replicates areas outside the Toba range where 

the energy is overestimated by case 1. 

For the MK92 domain, the hybrid model reduces computational time from 

over 2.5 hr to approximately 0.5 hr.  Results from the four cases of the hybrid 

model are similar in deeper water (Figure 4.17 (b) and (c)).  The energy is 

overestimated by all cases, and the slope is flatter than the slope of the spectra’s 

Toba ranges.   
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Figure 4.17  Comparison of observations (gray line) and hybrid model results 
(case 1, black solid; case 2, black dashed; case 3, black dash dotted; case 4 
bold black solid).  Results are given for the MK92 domain (a) 47 cm, (b) 35 cm, 
and (c) 30 cm. 
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Figure 4.18  Comparison of observations (gray line) and hybrid model results 
(case 1, black solid; case 2, black dashed; case 3, black dash dotted; case 4 
bold black solid).  Results are given for the MK92 domain (a) 25 cm, (b) 20 cm, 
and (c) 17.5 cm. 



 

 

54

 
Figure 4.19  Comparison of observations (gray line) and hybrid model results 
(case 1, black solid; case 2, black dashed; case 3, black dash dotted; case 4 
bold black solid).  Results are given for the MK92 domain (a) 15 cm, (b) 12.5 cm, 
and (c) 10 cm. 
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Figure 4.20  Comparison of observations (gray line) and hybrid model results 
(case 1, black solid; case 2, black dashed; case 3, black dash dotted; case 4 
bold black solid).  Results are given for the MK92 domain (a) 7.5 cm, (b) 5 cm, 
and (c) 2.5 cm. 
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As depth decreases, results of the hybrid model cases separate (Figures 

4.18 and 4.19).  Until a depth of approximately 15 cm where the effects of 

nonlinear interactions are evident in the observations, all cases of the hybrid 

model continue to overestimate the energy for most of a spectrum’s Toba range.   

In shallow water, cases 2 and 4 continue to replicate the observations well 

(Figure 4.20); however, cases 1 and 3 underestimate the energy of the Toba 

range.  All cases of the hybrid model give good results for the region of the 

spectra outside the Toba range. 

 

Quantitative Hybrid Model Results 

Error analysis (Figure 4.21) of spectral energy in the long slope domain 

confirms only parts of the story told by the graphical results.  Spectra resulting  

from the linear model never change shape, thus disagreeing with the full model 

shoreward of a depth of approximately 10 m where nonlinear interactions transfer 

energy primarily to high frequencies changing the shape of the spectra.  In 

addition, shoreward of this depth, cases 2, 3, and 4 of the hybrid model replicate 

the full model significantly better than the instance when nonlinear interactions 

were ignored.  Shoreward of approximately 3 m, error analysis suggests that all 

cases of the hybrid model possess equal ability to replicate the full model.   

Error analysis (Figure 4.22) of spectral energy in the MK92 domain 

confirms that shoreward of a depth of approximately 17.5 cm, the full model 

replicates the observed spectra better than the model neglecting nonlinear 

interactions.  In addition, cases 2 and 4 of the hybrid model perform better than 
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cases 1 and 3.  In fact, until a depth of approximately 12.5 cm, the model 

neglecting nonlinear interactions performs better than cases 1 and 3.  Shoreward  

of approximately 15 cm, cases 2 and 4 replicate the observations better than all 

other models.  Case 4 gives the best hybrid model results. 
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Figure 4.21  MSE for hybrid model comparisons to the full model in the long 
slope domain. 
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Figure 4.22  MSE for model comparisons to observations collected in the MK92 
domain. 
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Resulting Wave Parameters 

 In this final section of the results, wave parameters determined from 

modeled spectra and available observations are presented.  rmsH , skewness, 

and asymmetry are given for each domain. 

 For the long slope domain, case 1 of the hybrid model significantly 

overestimates rmsH  determined from full model results (Figure 4.23).  Although 

case 4 overpredicts rmsH  through the domain, the overprediction is not as 

significant as that of case 1.  Hybrid model cases 3 and 4 give the best results for 

rmsH .  However these cases slightly underestimate rmsH  in deeper water and 

overestimate rmsH  after breaking. 

 For the MK92 domain, cases 1, 2, and 3 of the hybrid model appear to 

replicate rmsH better than the full model, with case 2 performing the best (Figure 

4.24).  Case 4 closely follows rmsH determined from the full model beyond 

breaking. 

 For both domains, skewness determined from hybrid model results mirrors 

skewness determined from full model results and available observations.  In the 

long slope domain, skewness (Figure 4.25) determined from the full model 

increases until a depth of approximately 3 m.  Shoreward of 3 m it decreases.  

Skewness determined from the full model in the long slope domain tends to 

decrease up to a depth of approximately 5 m and decrease shoreward of 5 m.  

For the MK92 domain, skewness (Figure 4.26) determined from observations 

increases to a depth of approximately 5 cm; then, it decreases.  Skewness  
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Figure 4.23  Hrms of the long slope domain determined from the full model results 
(gray line) and case 1 (black solid), case 2 (black dashed), case 3 (black dash 
dotted), and case 4 (bold black solid) of the hybrid model results. 
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Figure 4.24  Hrms of the MK92 domain determined from observations ( bold gray 
line), the full model results (gray line), and case 1 (black line), case 2 (black 
dashed), case 3 (black dash dotted), and case 4 (bold black solid) of the hybrid 
model results. 
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Figure 4.25  Skewness of the long slope domain determined from the full model 
results (gray line) and case 1 (black line), case 2 (black dashed), case 3 (black 
dash dotted), and case 4 (bold black solid) of the hybrid model results. 
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Figure 4.26  Skewness of the MK92 domain determined from observations (bold 
gray line), the full model results (gray line), and case 1 (black line), case 2 (black 
dashed), case 3 (black dash dotted), and case 4 (bold black solid) of the hybrid 
model results. 
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Figure 4.27  Asymmetry of the long slope domain determined from the full model 
results (gray line) and case 1 (black line), case 2 (black dashed), case 3 (black 
dash dotted), and case 4 (bold black solid) of the hybrid model results.
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Figure 4.28  Asymmetry of the MK92 domain determined from observations (bold 
gray line), the full model results (gray line), and case 1 (black line), case 2 (black 
dashed), case 3 (black dash dotted), and case 4 (bold black solid) of the hybrid 
model results. 
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determined from full model results in the MK92 domain tends to follow the 

skewness determined from observations.  However, skewness determined from 

all cases of the hybrid model decrease to a depth of approximately 5 cm and 

increases shoreward of 5 cm.  All cases of the hybrid model results appear to 

determine skewness with the same skill. 

 For the long slope domain, asymmetry (Figure 4.27) determined from 

cases of the hybrid model shows no strong trends.  For the MK92 domain, 

however, the hybrid models replicate asymmetry determined from observed 

spectra as good, if not better, than the full model up to approximately 20 cm 

(Figure 4.28).  Shoreward of 20 cm, all cases of the hybrid model tend toward 

negative asymmetry but overestimate asymmetry determined from the full model 

results and observed spectra.  No single hybrid model case appears to out-

perform the others in determining asymmetry for the MK92 domain. 
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CHAPTER 5 

CONCLUSIONS 

 This study considered two ways to reduce the number of computations of 

Kaihatu and Kirby’s (1995) frequency domain model, thus reducing the 

computational expense.  The first method was to completely eliminate the 

nonlinear interactions in Kaihatu and Kirby’s model and the second method was 

to replace some of the direct computations in the equilibrium region of the 

spectra with a general parameterization.  Both methods decreased the 

computational times but with different degrees of success. We used two domains 

to study the results: one was an idealized domain and the other was the domain 

used in a laboratory experiment. 

 Removing the nonlinear interactions from Kaihatu and Kirby (1995) 

dramatically reduced the time required to propagate the wavefield through both 

domains considered.  However, nonlinear interactions play an important role in 

the evolution of shoaling and surf zone waves.  While linear theory is sufficient 

for intermediate water depths where the nonlinear interactions are relatively 

weak, it is incapable of replicating shoaling and breaking waves, for which 

nonlinearity is important.  As the waves begin to shoal and approach breaking, 

nonlinear interactions serve to change the wave shape from sinusoidal to one 

with peaked crests, shallow troughs and (during breaking) a steeper forward 

face.  Furthermore, the shapes of wave spectra change because nonlinear 

interactions transfer energy between frequencies.  Consequently, spectra 

become broader with more energy in the high frequency components.  These 

effects are impossible to achieve with linear models.
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 Although its effect on computational expense is not as dramatic as the 

linear model, the hybrid model reduces the number of computations resulting in a 

significant decrease in computational time.  Within the Toba range, a 

parameterization equivalent to an equilibrium spectra is used to replace the 

computations which accurately mimics the wave field evolution; these energies 

are then available for interaction with energies at frequencies outside this range.  

Therefore, the hybrid model more accurately replicates the evolution of waves 

from intermediate water depths through the shoaling and surf zones than the 

linear model but without the computational expense of the full nonlinear model.  

The extent of the hybrid model’s ability to replicate wave propagation depends on 

the formulation of Tobaβ  in the parameterization. 

 The first case of the hybrid model utilizes Tobaβ  given by Smith and Vincent 

(2003) as 0.5hα=β SNVSNV  with 0.0103=αSNV  for both testing domains.  It 

overestimates the energy in the input spectrum in both the long slope and MK92 

domains.  The overestimation results because Smith and Vincent determined the 

Toba range parameterization from only surf zone spectra, which as a result of 

nonlinear interactions, contain more energy at high frequencies than spectra in 

the intermediate water range.  Any misrepresentation of the wave energy 

offshore affects the solution throughout the domain.  The overestimation in the 

beginning resulted in excess energy transfer to low frequencies and, thus, an 

inadequate replication of wave evolution.  Keeping Smith and Vincent’s 

parameterization’s dependence on 2.5−k  and focusing on Tobaβ  results in 
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improving the parameterization’s representation of the Toba range for the two 

domains considered. 

 The second case of the hybrid model defines Tobaβ  as 0.0804=βcon  and 

0.0041=βcon  for the MK92 and long slope domains, respectively.  These values 

of Tobaβ  represent the Toba range energy of the input spectrum and remain 

constant with a change in depth; therefore, the energy in the parameterized 

region does not change in either domain.  This case of the hybrid model appears 

to do well in the MK92 domain because much of the domain has waves in the 

intermediate water range; thus, nonlinear interactions are relatively weak for 

most of the domain.  In the long slope domain, however, the nonlinear 

interactions are stronger.  Therefore, high frequency energy increases as the 

waves propagate toward shore, and the parameterized region increasingly 

deviates from the spectra.  As a result, the second case of the hybrid model fails 

to adequately replicate the long slope domain. 

 Case three of the hybrid model substitutes 0.5hα=β ematemat  for Tobaβ  in the 

parameterization.  Determined from the Toba range energy of the offshore 

spectrum, 0.0117=αemat and 0.0011=αemat  for the MK92 and long slope domains, 

respectively.  Therefore, β  is an explicit function of depth.  In addition, this 

method does not take into account the energy transfer to the higher harmonics 

that result from nonlinear interactions. Consequently, as depth decreases, the 

energy of the parameterized portion of the hybrid model decreases.  However, 

nonlinear interactions present in the full model and available observations feed 

energy into the high frequencies increasing the energy of the high frequency tail.  
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Therefore, regardless of the domain, the parameterized portion and the spectra’s 

Toba ranges increasingly disagree with decreased depth. 

 Similar to case three of the hybrid model, the formulation of Tobaβ  for case 

four alfβ  depends on ematα .  Furthermore, the nondimensional parameter 

hHrms / is used in determining alfβ  (equations 3.6 and 3.7).  Because hHrms /  is 

equivalent to the nonlinearity parameter used in the development of nonlinear 

wave theory, this case accounts for energy transferred by wave-wave 

interactions.  Including nonlinear interactions into the parameterization prevents 

case four of the hybrid model from dramatically underestimating the Toba range 

of shoaling and surf zone spectra as seen in the other depth dependent cases in 

the MK92 domain and the other long slope domain cases with energy matched 

variables.  In both domains, case 4 of the hybrid model performs best.  However, 

a drop in energy of the parameterization, although less dramatic, remains. 

 Determining Tobaβ  from the input spectra (cases 2, 3, and 4) prevents 

overestimation outside the surf zone and the resulting unwanted transfer of 

energy to low frequencies.  However, the hybrid cases that use energy matching 

tend to underestimate the Toba range of the spectra.  The underestimation is 

marked by a large drop in the Toba range parameterization with the formation of 

the secondary peak.   

 Determining the energy matched variable from only the Toba range at the 

offshore boundary causes the underestimation in energy when nonlinear 

interactions become important.  At the offshore boundary, most of the energy is 

contained in low frequency bins; therefore, the Toba range contains relatively 
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little energy.  As waves propagate shoreward and nonlinear interactions become 

important, the energy level of the high frequencies increases.  As a result, the 

energy level determined from the offshore spectrum underestimates the high 

frequency energy of spectra affected by nonlinear interactions causing a large 

drop in energy in the hybrid model results.  This drop is more pronounced in the 

long slope domain for two reasons.  First, the nonlinear interactions are stronger 

than in the MK92 case.  Second, the MK92 input spectrum is broader than the 

input spectrum of the long slope domain; therefore, a larger percent of the MK92 

input spectrum’s energy is present at high frequencies. 

 Determining Tobaβ  from total energy at every point in the domain, as 

opposed to only the Toba range energy of the input spectrum, creates an 

opportunity to alleviate the sudden drop in energy seen when nonlinear 

interactions intensify.  At every point in the domain, the hybrid model determines 

dissipation, which balances the flux of energy between the point under 

consideration and the previous point in the domain.  Knowing the calculated 

dissipation and the energy flux of the previous step makes the energy flux, thus 

total energy, of interest available for calculating Tobaβ . 

 The results of the hybrid model show satisfactory computations of rmsH , a 

measure of total spectral energy.  However, the wave parameters skewness and 

asymmetry, which result from nonlinear interactions, disagree with the full model 

and available observations.  The wave-wave interactions depend on the phase 

mismatch between bound and free wavenumbers (Madsen & Sørensen, 1993). 

By assuming a random phase in the parameterized portion of the hybrid model, 



 

 

71

the bound wavenumbers change, which in turn affects the phase mismatch and, 

thus, the nonlinear interactions that determine skewness and asymmetry. 

 In summary, a hybrid model is capable of reproducing shoaling and surf 

zone wave spectra.  Furthermore, the hybrid model significantly reduces the 

computational expense of the nonlinear model required to reproduce wave 

spectra in areas where complex energy transfers occur.  Further work will 

improve the hybrid model by determining Tobaβ  from total energy at each step in 

the domain, which will eliminate the energy drop seen in the Toba range of the 

hybrid model results. Also, a more consistent representation for the phase of the 

parameterization will be sought, which would improve the predictions of 

skewness and asymmetry in the shoaling region and the surf zone.
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APPENDIX 

 Several methods were used to determine if the regressions adequately 

represent the spectra’s Toba ranges of the observations in the MK92 domain and 

the full model results in the long slope domain.   

Analysis of residuals and analysis of variance (ANOVA) were used to 

determine the adequacy of the regressions.  Scatters of the residuals were used 

to determine if the regressions fulfilled the assumptions that the errors are 

independent and that the variance of the errors is constant.  A group of randomly 

scattered residuals ensures that the regressions meet these assumptions.  In 

addition, histograms of the residuals were considered.  Normally distributed 

residuals are required of a sufficient linear regression.  A final requirement is that 

the sum of the residuals be zero.   

The regression model is numerically tested by ANOVA.  ANOVA results in 

two important values, the mean square error (MSE) and the F ratio.   A small 

MSE implies an adequate regression, and the F ratio is used to test the null 

hypothesis that no relation between the dependent and independent variables 

exist.  Therefore, a large F ratio implies that the regression model represents the 

data.  From the F ratios, p-values were determined.  For values less than the 

significance level 5%, the regression adequately represents the observations. 

 For the MK92 domain, “fit” lines and corresponding observed spectra are 

well correlated (Figures A1—A4).  Random scatters (Figure A5) and histograms 

indicative of normal distributions (Figure A6) of residuals show that the linear 

regressions used to determine the coefficients of the spectra’s Toba ranges are 
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Figure A1  Comparisons of the observed wavenumber spectra (gray lines) and 
the “fit” lines (black dashed line) are shown in the left column.  The correlation of 
the comparison is given in the right column.  Comparisons are for depths of 47 
(top), 35 (middle), and 30 (bottom) cm in the MK92 domain.
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Figure A2  Comparisons of the observed wavenumber spectra (gray lines) and 
the “fit” lines (black dashed line) are shown in the left column.  The correlation of 
the comparison is given in the right column.  Comparisons are for depths of 25 
(top), 20 (middle), and 17.5 (bottom) cm in the MK92 domain.



 

 

75

 
Figure A3  Comparisons of the observed wavenumber spectra (gray lines) and 
the “fit” lines (black dashed line) are shown in the left column.  The correlation of 
the comparison is given in the right column.  Comparisons are for depths of 15 
(top), 12.5 (middle), and 10 (bottom) cm in the MK92 domain.
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Figure A4  Comparisons of the observed wavenumber spectra (gray lines) and 
the “fit” lines (black dashed line) are shown in the left column.  The correlation of 
the comparison is given in the right column.  Comparisons are for depths of 7.5 
(top), 5 (middle), and 2.5 (bottom) cm in the MK92 domain.
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Figure A5  Scatter plots of the residuals resulting from the regression lines and 
observed spectra of the MK92 domain.
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Figure A6  Distributions of residuals resulting from the regression lines and the 
observed spectra of the MK92 domain.
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Table A1 
 
ANOVA for the regressions of the MK92 domain. 
 

d=47cm 

Source DOF 
Sum of 
Squares 

Mean 
Squares F Ratio   p 

Error 48 1.734 0.036    
Regression 48 415.924 415.924 11513.067 0.007 

d=35cm 

Source DOF 
Sum of 
Squares 

Mean 
Squares F Ratio   p 

Error 48 1.789 0.037    
Regression 48 432.071 432.071 11591.824 0.007 

d=30cm 

Source DOF 
Sum of 
Squares 

Mean 
Squares F Ratio   p 

Error 48 1.355 0.028    
Regression 48 427.975 427.975 15163.927 0.006 

d=25cm 

Source DOF 
Sum of 
Squares 

Mean 
Squares F Ratio   p 

Error 48 1.212 0.025    
Regression 48 431.827 431.827 17104.616 0.006 

d=20cm 

Source DOF 
Sum of 
Squares 

Mean 
Squares F Ratio   p 

Error 46 1.075 0.023    
Regression 46 328.875 328.875 14071.618 0.007 

d=17.5cm 

Source DOF 
Sum of 
Squares 

Mean 
Squares F Ratio   p 

Error 45 0.968 0.022    
Regression 45 266.604 266.604 12396.782 0.007 

d=15cm 

Source DOF 
Sum of 
Squares 

Mean 
Squares F Ratio   p 

Error 44 2.352 0.053    
Regression 44 209.235 209.235 3914.263 0.013 

d=12.5cm 

Source DOF 
Sum of 
Squares 

Mean 
Squares F Ratio   p 

Error 42 1.875 0.045    
Regression 42 149.817 149.817 3355.540 0.014 

d=10cm 

Source DOF 
Sum of 
Squares 

Mean 
Squares F Ratio   p 

Error 40 1.313 0.033    
Regression 40 110.387 110.387 3362.395 0.014 

      
d=7.5cm 
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Source DOF 
Sum of 
Squares 

Mean 
Squares F Ratio   p 

Error 37 0.716 0.019    
Regression 37 76.050 76.050 3930.593 0.013 

d=5cm 

Source DOF 
Sum of 
Squares 

Mean 
Squares F Ratio   p 

Error 32 0.488 0.015    
Regression 32 32.457 32.457 2126.388 0.017 

d=2.5cm 

Source DOF 
Sum of 
Squares 

Mean 
Squares F Ratio   p 

Error 20 0.225 0.011    
Regression 20 7.819 7.819 693.615 0.030 

 

valid.  In addition, the residuals cancel.  ANOVA for the regressions results in 

small MSE values and large F ratios.  p-values determined from the F ratios 

ensure that the regression model and the observations are significantly 

correlated at a level of 5% (Table A1). 

 In the long slope domain, the regressions and spectra appear well 

correlated, except for the depth of 1.25 m (Figures A7-A10).  Furthermore, for 

comparisons that appear well correlated, the residuals randomly scatter (Figure 

A11).  However, distributions of the residuals, as well as ANOVA, disagree with 

the correlations and residual scatters.  Shoreward of a depth of approximately 

2.75 m, the degrees of freedom (DOF) is low.  The distribution of residuals 

(Figure A12) clearly deviates from a normal distribution.  In addition, ANOVA 

(Table A2) results in MSE values and F ratios that give p-values larger than the 

significance level.  Therefore, the null hypothesis is accepted making the 

regressions inadequate at depths shallower than approximately 2.75 m.
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Figure A7  Comparisons of the observed wavenumber spectra (gray lines) and 
the “fit” lines (black dashed line) are shown in the left column.  The correlation of 
the comparison is given in the right column.  Comparisons are for depths of 10 
(top), 5 (middle), and 4.5 (bottom) m in the long slope domain.
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Figure A8  Comparisons of the observed wavenumber spectra (gray lines) and 
the “fit” lines (black dashed line) are shown in the left column.  The correlation of 
the comparison is given in the right column.  Comparisons are for depths of 4 
(top), 3 (middle), and 2.75 (bottom) m in the long slope domain.
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Figure A9  Comparisons of the observed wavenumber spectra (gray lines) and 
the “fit” lines (black dashed line) are shown in the left column.  The correlation of 
the comparison is given in the right column.  Comparisons are for depths of 2.5 
(top), 2.25 (middle), and 2 (bottom) m in the long slope domain.
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Figure A10  Comparisons of the observed wavenumber spectra (gray lines) and 
the “fit” lines (black dashed line) are shown in the left column.  The correlation of 
the comparison is given in the right column.  Comparisons are for depths of 1.75 
(top), 1.5 (middle), and 1.25 (bottom) m in the long slope domain.
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Figure A11  Scatter plots of the residuals resulting from the regression lines and 
full model results in the long slope domain.
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Figure A12  Distributions of residuals resulting from the regression lines and the 
full model results of the long slope domain.
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Table A2 

ANOVA for the regressions of the long slope domain. 

d=10m 

Source DOF 
Sum of 
Squares 

Mean 
Squares F Ratio   p 

Error 43 0.616 0.014    
Regression 43 89.437 89.437 6246.505 0.010 

d=5m 

Source DOF 
Sum of 
Squares 

Mean 
Squares F Ratio   p 

Error 32 0.827 0.026    
Regression 32 35.879 35.879 1387.966 0.021 

d=4.5m 

Source DOF 
Sum of 
Squares 

Mean 
Squares F Ratio   p 

Error 31 0.822 0.027    
Regression 31 30.615 30.615 1154.023 0.023 

d=4m 

Source DOF 
Sum of 
Squares 

Mean 
Squares F Ratio   p 

Error 29 1.176 0.041    
Regression 29 25.170 25.170 620.530 0.032 

d=3m 

Source DOF 
Sum of 
Squares 

Mean 
Squares F Ratio   p 

Error 24 0.710 0.030    
Regression 24 11.194 11.194 378.261 0.041 

d=2.75m 

Source DOF 
Sum of 
Squares 

Mean 
Squares F Ratio   p 

Error 22 0.720 0.033    
Regression 22 8.423 8.423 257.315 0.049 

d=2.5m 

Source DOF 
Sum of 
Squares 

Mean 
Squares F Ratio   p 

Error 20 0.504 0.025    
Regression 20 5.579 5.579 221.282 0.053 

d=2.25m 

Source DOF 
Sum of 
Squares 

Mean 
Squares F Ratio   p 

Error 18 0.272 0.015    
Regression 18 2.871 2.871 189.918 0.057 

d=2m 

Source DOF 
Sum of 
Squares 

Mean 
Squares F Ratio   p 

Error 15 0.297 0.020    
Regression 15 1.928 1.928 97.246 0.079 

d=1.75m 
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Source DOF 
Sum of 
Squares 

Mean 
Squares F Ratio   p 

Error 12 0.289 0.024    
Regression 12 0.611 0.611 25.421 0.154 

d=1.5m 

Source DOF 
Sum of 
Squares 

Mean 
Squares F Ratio   p 

Error 8 0.048 0.006    
Regression 8 0.319 0.319 52.967 0.106 

d=1.25m 

Source DOF 
Sum of 
Squares 

Mean 
Squares F Ratio   p 

Error 3 0.020 0.007    
Regression 3 0.005 0.005 0.810 0.652 
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