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Abstract— Wedescribetheuseof themobileagentparadigm
to designan improved infrastructurefor dataintegration in
Distributed SensorNetwork (DSN). We use the acronym
MADSN to denotethe proposedMobile-Agent-basedDSN.
Insteadof moving datato processingelementsfor datainte-
gration, as is typical of a client/server paradigm,MADSN
moves the processingcode to the data locations. This
saves network bandwidthand provides an effective means
for overcomingnetwork latency, since large data transfers
are avoided. We study two important problemsrelatedto
MADSN design— the distributedintegrationproblem,and
the optimum performanceproblem. Comparedto DSNs, a
mobile-agentimplementationof multi-resolutiondata inte-
grationsavesup to 90%of thedatatransfertime. For agiven
setof networkparameters,we analyzethe conditionsunder
which MADSN performsbetterthanDSNanddeterminethe
conditionunderwhich MADSN reachesits optimumperfor-
mancelevel.

TABLE OF CONTENTS

1. INTRODUCTION

2. BACKGROUND

3. PROBLEM STATEMENT

4. MULTI-RESOLUTION INTEGRATION ALGORITHM

5. PERFORMANCE EVALUATION

6. CONCLUSIONS

1 INTRODUCTION

DistributedSensorNetworks(DSNs)have recentlyemerged
asanimportantresearcharea[6, 7, 9, 14, 18]. This develop-
menthasbeenspurredby advancesin sensortechnologyand
computernetworking. Even thoughit is economicallyfea-
sible today to implementDSNs, thereare several technical
challengesthatmustbeovercomebeforeDSNscanbe used�
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for today’sincreasinglycomplex informationgatheringtasks.
Thesetasks,suchasbattlefieldsurveillance,remotesensing,
globalawareness,etc.,areusuallytime-critical,cover a large
geographicalarea,and requirereliable delivery of accurate
informationfor their completion.

Wessonet al [18] wereamongthefirst to proposethedesign
of DSNs.Sincethen,severalefficientDSNarchitectureshave
beenpresentedin theliterature,includingthehierarchicaland
committeeorganization[18], the flat tree network [7, 14],
the deBruijn basednetwork [6], and the multi-agentfusion
network[9]. While improving the performanceof DSNsin
different aspects,all theseapproachesuse a commonnet-
work computingmodel: theclient/server model,which sup-
ports many distributed systems,such as remoteprocedure
calling (RPC) [2], commonobject requestbroker architec-
ture (CORBA) [1, 17], etc. In the client/server model, the
client (individualsensor)sendsdatato theserver (processing
element)wheredataprocessingtasksarecarriedout.

Recentadvancesin sensortechnologyallow better, cheaper,
andsmallersensorsto be usedin both military andcivilian
applications,especiallywhentheenvironmentis harsh,unre-
liable,orevenadversarial.A largenumberof sensorsareusu-
ally deployedin orderto achievequalitythroughquantity. On
theotherhand,sensorstypically communicatethroughwire-
lessnetworkswherethe networkbandwidthis much lower
thanfor wired communication.Theseissuesbring new chal-
lengesto the designof DSNs: First, datavolumesbeingin-
tegratedaremuchlarger; Second,thecommunicationband-
width for wirelessnetwork is much lower; Third, the envi-
ronmentis moreunreliable,causingunreliablenetworkcon-
nectionand increasingthe likelihood of input datato be in
faulty.

In this paper, we designanimprovedDSNarchitectureusing
mobileagents— wereferto thisasmobile-agent-basedDSN
(MADSN). In traditionalDSNs,dataarecollectedby individ-
ual sensors,andthentransmittedto a higher-level processing
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elementwhich performssensorfusion. During this process,
large� amountsof dataare moved aroundthe network,as is
the typical scenarioin the client/server paradigm.MADSN
adoptsa new computationparadigm: datastay at the local
site,while theintegrationprocess(code)is movedto thedata
sites.By transmittingthecomputationengineinsteadof data,
MADSN offersthefollowing importantbenefits:� Network bandwidth requirementis reduced. Instead

of passinglarge amountsof raw dataover the network
throughseveral round trips, only the agentwith small
size is sent. This is especiallyimportantfor real-time
applicationsand where the communicationis through
low-bandwidthwirelessconnections.� Betternetworkscalability. Theperformanceof thenet-
work is not affectedwhen the numberof sensoris in-
creased.Agent architecturesthat supportadaptive net-
work loadbalancingcoulddo muchof a redesignauto-
matically[16].� Extensibility. Mobile agentscan be programmedto
carry task-adaptive fusion processeswhich extendsthe
capabilityof thesystem.� Stability. Mobile agentscanbe sentwhenthe network
connectionis alive andreturnresultswhentheconnec-
tion is re-established.Therefore,the performanceof
MADSN is not much affectedby the reliability of the
network.

Figure1 providesa comparisonbetweenDSN andMADSN
from architecturepoint of view.

The organizationof this paperis as follows: Section dis-
cussesthedefinitionof mobileagentsandapplicationexam-
ples that benefit from using mobile agents. It also defines
thetwo problemsstudiedin thedesignof MADSN. Section
first reviews the multi-resolutiondataintegrationalgorithm
implementedunder traditional DSN, then describesits im-
plementationusingmobileagents.A casestudyis provided.
Section4.2comparestheperformanceof DSNandMADSN.
For a givensetof parameters,it derivesthe conditionunder
which MADSN performsbetter than DSN, also the condi-
tion underwhich MADSN reachesits optimumperformance
level. Section4.2 summarizesthe paperanddraws conclu-
sions.

2 BACKGROUND

This sectionreviews thebasicDSN architectureandthekey
characteristicsof mobileagents.Theproblemsstudiedin this
paperareformally definedat theendof thesection.

A generalDSN(Fig.2) consistsof asetof sensornodes, aset
of ProcessingElements(PEs),anda communicationnetwork
interconnectingthevariousPEs[6]. Oneor moresensorsis
associatedwith eachPE.Onesensorcanreportto morethan

sensor

Processing Element

(a)DSN

mobile agent
A

mobile agent 
B

sensor

Processing Element

(b) MADSN

Figure 1: Architecture comparison between DSN and
MADSN.

onePE.A PE andits associatedsensor(s)arereferredto as
a cluster. Dataare transferredfrom sensorsto their associ-
atedPE(s)wherethe dataintegration takesplace. PEscan
also coordinatewith eachother to achieve a betterestima-
tion of the environmentand report to higher level PEs. In
thecontext of this paper, we assumethatthesensorfield is a
two-dimensionalsurface,andthesensornodesarefixed.

Generallyspeaking,mobileagentis aspecialkind of software
which can executeautonomously. Oncedispatched,it can
migratefrom nodeto nodeperformingdataprocessingau-
tonomously, while softwarecantypically only executewhen
beingcalleduponby otherroutines.

Langelisted seven goodreasonsto usemobile agents[11],
including reducingnetwork load, overcomingnetwork la-
tency, robust and fault-tolerantperformance,etc. Although
therole of mobileagentsin distributedcomputingis still be-
ing debatedmainly becauseof the securityconcern[4, 12],
severalapplicationshave shown clearevidenceof benefiting
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Figure2: Thearchitectureof ageneralDSN.

from theuseof mobileagents,suchasE-commerce[3], dis-
tributedinformationretrieval andinformationdissemination
[5, 8, 13,19], etc.

In thispaper, weusemobileagentin DSNsto performmulti-
resolutiondataintegrationandfusion.Problemsto bestudied
aredefinedin thefollowing section.

3 PROBLEM STATEMENT

We define the mobile agentas an entity of five attributes:
identification,itinerary, data,method,and interface. These
attributesareexplainedasfollows:� Identification:is in theformatof 2-tuple �
	���
�� , where 	

indicatestheidentificationnumberof its dispatcherand
 theserialnumberassignedby its dispatcher. Eachmo-
bile agentcanbe uniquelyidentifiedby this identifica-
tion. We use�����
� � to indicatedifferentmobileagents.� Itinerary: includesitinerary informationassignedby its
associatedPEwhendispatched.� Data: agent’s privatedatabuffer which carriesintegra-
tion resultsanditineraryinformation.� Method:theimplementationof algorithms.In MADSN,
the key methodis the multi-resolutiondataintegration
algorithmfor sensorfusion.� Interface:providesinterfacefunctionsfor agentandpro-
cessingelementto communicatewith eachother.

Let ����� representacertainprocessingelementwith aniden-
tification 	 that is in charge of the surveillanceof a certain
area.Let �������
� ��� � � � �������
� !#" representa groupof $ mo-
bile agentsdispatchedby ����� . Without lossof generality,
we assumethat each �����
� � visits the samenumberof sen-
sornodes,denotedby % . Theparameters$ and % arerelated
in thesensethattheir product $&% equalsthenumberof sen-
sornodesin thefield. Theproblemsstudiedin this paperare
formally definedasfollows:

Data integration problem: At eachsensorsite, what kind
of dataprocessingshouldbeconductedandwhat integration
resultsshouldbecarriedwith themobileagent?

Optimum performance problem: How to balancethevalue
of $ and % , suchthattheperformanceof MADSN is superior
to DSN.

4 MULTI-RESOLUTION

INTEGRATION ALGORITHM

As mentionedin Sec., MADSN must respondto the chal-
lengesof a large amountof sensornodesandhigher prob-
ability of faulty sensors. More sensornodescan increase
the computationload, while more faulty sensorscan cause
theintegrationresultsto beunreliable.Algorithmsarethere-
foresoughtwhichshouldnotbesignificantlyaffectedby net-
work scaling,andyet provide betterperformanceandhigher
fault tolerance.This sectionfirst reviews theoriginal Multi-
ResolutionIntegration(MRI) algorithmproposedfor DSNs
[15]. Enhancementsto thebasicMRI algorithmarethende-
scribedin orderto takeadvantageof mobileagentsto achieve
betternetworkscalabilityandfault tolerance.The enhance-
mentsinvolveamulti-resolutionanalysisof individualsensor
readoutto generatea simplefunction (the overlapfunction)
at the sensorsite, followed by an integration of the simple
functionsat the processingelement. Comparedto the MRI
algorithmin traditionalDSNs,wherethe integrationof indi-
vidual sensorreadout(carriedout at theprocessingelement)
is followedby themulti-resolutionanalysisof the integrated
simplefunction,themobileagentimplementationof MRI al-
gorithmreducesthedatatransfertimeby asmuchas90%.

4.1 Original MRI Algorithm in DSNs

TheoriginalMRI algorithmwasproposedby Prasad,Iyengar
andRaoin 1994[15]. The ideaessentiallyconsistsof con-
structinga simple function (the overlap function) from the
outputsof thesensorsin a clusterandresolvingthis function
atvarioussuccessively finerscalesof resolutionto isolatethe
region over which the correctsensorslie. Eachsensorin a
clustermeasuresthesameparameters.It is possiblethatsome
of themarefaulty. Henceit is desirableto makeuseof this
redundancy of the readingsin theclusterto obtaina correct
estimateof the parametersbeingobserved. We first review
severalrelevantdefinitions.

An abstract sensor isdefinedasasensorthatreadsaphysical
parameterandgivesoutanabstractinterval estimatewhich is
a boundedandconnectedsubsetof the real line. We clas-
sify abstractsensorsinto two categories:correct sensors and
faulty sensors. A correct sensor is anabstractsensorwhose
interval estimatecontainsthe actualvalueof the parameter
beingmeasured.Otherwise,it is a faulty sensor. A faulty
sensoris tamely faulty if it overlapswith a correctsensor,
and is wildly faulty if it doesnot overlapwith any correct
sensor.
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Let sensors34�5� � � � �6387 feedinto a processor� . Let theab-
stractinterval estimateof 3)� be 0 ��� .&1 
 1 %9� , theclosed
interval :<;�����=��6> with endpoints ;�� and =�� . Thecharacteristic
function ' of the 
 th sensor3)� is definedin Eq.(1).

Let ?���()�@*BA 7�DC9� ' ����()� be the overlap function of the %
abstractsensors.For each (FE-G , ?���()� gives the number
of sensorintervals in which ( lies; that is, thenumberof in-
tervalsoverlappingat the ( . Crest is a region in theoverlap
functionwith thehighestpeakandthewidestspread.Figure
3 illustratesthe overlapfunction for a setof 7 sensors.The
notionof theoverlapfunctionallowsustomakethefollowing
key observations:

� Tamelyfaulty sensorsclusteraroundcorrectsensorsand
createhigh andwide (maximal)peaksin the profile of?���()� .� Wildly faulty sensorson the otherhanddo not overlap
with correctsensors,andthereforecontributeto smaller
andnarrowerpeaks.

Therefore,theactualvalueof theparameterbeingmeasured
lies within regions over which the maximal peaksof ?���()�
occur.
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Figure3: Theoverlapfunctionfor a setof 7 sensors.

Multi-ResolutionAnalysisof theOverlapFunction— Multi-
resolutionanalysisprovidesa hierarchicalframework for in-
terpretingtheoverlapfunction.It is naturalandmoreefficient
to first analyzedetailsatacoarseresolutionandthenincrease
theresolutionfor only theregionof interest.

Given a sequence of increasing resolutions��Y[Z8\ ��Y[Z8\�] � � � � � ��Y�^�� , where _ is a positive integer, we
define the differenceof function `4��()� at resolution Y[Z8\�] �
andresolutionY[Z8\ asthedetailsof `4��()� at resolutionY[Z8\�] � .
Thealgorithmis describedin Algorithm 1.

This procedureresultsin theisolationof thoseregionsof the
real line over which the overlap function ?���()� hasa maxi-
mum value,correspondingto high degreeof overlappingof
individual sensorreadouts.The algorithmis optimal, since
theoverall time requiredis a#�
%�bdc�ef%9� , which is thetime re-
quiredto maintain ?���()� . This algorithmis alsorobust, sat-
isfies a Lipschitz condition [10], which ensuresthat minor
changesin the input intervals causeonly minor changesin
the integratedresult.Figure4 illustratesthemulti-resolution
analysisprocedure.

Algorithm 1: Multi-resolution analysisof the overlap
function.

Data : ?���()� , Yhg , �Di�_ 1�jk1 2 � , assumingthecoars-
estresolutionis Y[Z8\ , the highestresolutionisY ^ ; theinitial integrationinterval :<���Dl#>

Result : the final crest : m)n
�Rm)o�> under resolution Yhg ,
where m)n and m)o are the lower and higher
boundsof thecrestrespectivelyp *�i�_ ;

while
pfq * j do

resolve ?���()� at resolution Y�r by samplingit over
the interval :<���Dl#> at points %4Y[Z�r , ( ��s�Y[Z�r 1 % 1l@s�Y[Z�r ), to obtain ? r ��()� ;
selectthehighestpeaksfrom ? r ��()� ;
choosefrom thesepeaksthe one with the widest
spread:<� r �Dl r > , which is acrest;?���()�+*t? r �D:<� r �Dl r >
� ;�u*t� r �Dl-*tl r ;p * p4v . ;

endm)n)*t���Rm)o#*tl
4.2 MRI Implementation Using Mobile Agents

In a distributedsensornetwork(DSN),all readoutsfrom the
sensornodesaresentto their correspondingPEs,wherethe
overlapfunctionat thefinestresolutionis first generated,and
themulti-resolutionanalysisprocedureis thenappliedto find
thecrestat thedesired resolution.

In a Mobile-Agent-basedDSN(MADSN), themobileagents
migrateamongthesensornodesandcollectreadouts.There-
fore, �����
� � always carries a partially integrated overlap
function which is accumulatedinto a final versionat �����
after all the mobile agentsreturn. During this process,if
MADSN appliesthemulti-resolutionanalysismethodin the
sameway asDSN does,that is, letting �����
� � carry thepar-
tially integratedoverlapfunction in its finest resolutionand
thenusemulti-resolutionanalysis(MRA) to find thecrestat
desiredresolutionat ����� , the advantagesof mobile agents
will benullified becauseof heavy datamigration.

We enhancethebasicmulti-resolutionintegration(MRI) al-
gorithmfor MADSNsandpresentamoreefficientimplemen-
tation.Thekey conceptunderlyingtheenhancedalgorithmis
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thatMRI is appliedbeforeaccumulatingtheoverlapfunction.
A 1-D array, wx�
� � , canserve asanappropriatedatastructure
to representthe partially-integratedoverlapfunction carried
by �����
� � . If thesizeof wx�
� � is y5z�{ with Y�^ resolution,then
with resolutionYhg ( j timescoarserthan Y�^ ), thesizeof wx�
� � isy5z�{5s j , thatis, j timeslessthan y5z�{ . Algorithms2-4 describe
theprocedurein detail. A casestudyis providedaswell for
betterillustration.

Algorithm 2: Modified MRI algorithmfor MADSN - be-
fore �����
� � leaves �����

Data : integrationinterval :<���R�Dl��
> , highestresolutionY�^ , desiredresolutionYhg
Result : array wx�
� � to hold partially-integratedoverlap

functiony�*}|4~ Z)� ~ ] �z6�h� ;
initialize wx�
� � asazerovectorwith y elements;

Algorithm 3: Modified MRI algorithm for MADSN -�����
� � at sensornode

Data : wx�
� � , Yhg , readoutfrom theabstractsensor:<;���=�>
(aboundedconnectedsetof realnumbers)

Result : wx�
� �
find the smallest multiple of Y[Z8g , �h!f�d7 , such that�h!f�d7��t; ;
find thelargestmultipleof Y[Z8g , �h!��6� , suchthat �h!��6� 1= ;
increaseelementswx�
� ��:D�6�4~��z6�h�F� �6�8�D�z6�h� > by 1;

Algorithm 4: Modified MRI algorithm for MADSN -�����
� � backto �����
Data : wx�
� � , Y g , $ is thetotal numberof agents

Result : thefinal crest : m)n
�Rm)o�> underresolutionY g
create�x� asazerovectorof size( l��)i���� v . );
�*uY ;
while 
 q *�$ do

accumulatewx�
� � to wx�
� � ;
�*�
 v . ;
end
�* 2

;
while 
 q |4~ Z)� ~ ] �z6�h� do�x�D: 
 � 
 v Y[Z8g�i . >8*�wx�
� �5: 
�s�Y[Z8g > ;
�*�
 v Y[Z8g ;
end
selectthehighestpeakof �x� . If therearemultiple peaks
with the sameheight, thenall the peaksshouldbe se-
lected;
choosefrom thesepeakstheonewith thewidestspread: m)n
�Rm)o5> , which is a crest;

Case Study — We presenta casestudy to illustrate the
MADSN-basedMRI algorithm. Suppose����� has10 sen-
sor nodes( 34�5� � � � �634� ^ ), migratedby 2 mobile agentswith�����
� � covering 34� to 38� , and �����
� z covering 38� to 34� ^ .
Thereadoutsof sensorsat time

p
arelisted in Fig. 5. Thein-

tegrationinterval :<���D�Dl���> is : . ������> . The overlapfunctionat
its highestresolutionthenhas64elements.
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�6�4~��z6�h� �6�8�D�z6�h� partially integratedwx�
� �34� 1 1 : 2 � . � 2 � 2 � 2 � 2 � 2 � 2 >3 z 1 1 : 2 ��Y[� 2 � 2 � 2 � 2 � 2 � 2 >38� 2 2 : 2 ��Y[� . � 2 � 2 � 2 � 2 � 2 >3)� 2 3 : 2 ��Y[��Y[� . � 2 � 2 � 2 � 2 >38� 3 3 : 2 ��Y[��Y[��Y[� 2 � 2 � 2 � 2 >
Table1: Tracingthechangeof wx�
� � generatedby �����
� � .

If the desiredresolutionis Y[Z � (or eight timescoarserthan
thefinestresolution),accordingto Algorithm 2, anarray wx�
� �
with �t*����[s�� elementswill be createdand initialized by
eachmobileagent.Tables1 and2 list thestep-by-stepexecu-
tion for eachagentaccordingto Algorithm 3.

According to Algorithm 4, the final integrated �x� will be: 2 ��Y[���[���[��Y[� . � . � . > . Comparedto the resultsfrom DSN, as
shown in Fig. 6, they areexactly the same.If we definethe
unit datatransfertime asthe time spentfor one �����
� � mi-
gratingfrom onenodeto another, carryinga one-elementar-
ray, then MADSN spends� �t��� v Yh��*���� units of time
(assuming�����
� � and �����
� z areexecutedin parallelwhen
migratingfrom nodeto nodeor from ����� to node,����� , and
in serialwhenreturningto ����� , �&�¡Y ), while DSN spends����� . 2 *¢��� 2 unitsof time. Hence,MADSN offersa save
of up to 91.25%of datatransfertime in thiscase.

�6�4~��z6�h� �6�8�D�z6�h� partially integratedwx�
� z38� 2 3 : 2 � 2 � . � . � 2 � 2 � 2 � 2 >38£ 4 5 : 2 � 2 � . � . � . � . � 2 � 2 >38¤ 3 3 : 2 � 2 � . ��Y[� . � . � 2 � 2 >38¥ 6 7 : 2 � 2 � . ��Y[� . � . � . � . >34� ^ 3 4 : 2 � 2 � . ���[��Y[� . � . � . >
Table2: Tracingthechangeof wx�
� z generatedby �����
� z .
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5 PERFORMANCE COMPARISON

Thecasestudyshows thatwhile obtainingthesameintegra-
tion results,MADSN saves ¦ .�§ Y��h¨ of datatransfertimecom-
paredto DSN. However, this doesnot necessarilymeanthat
MADSN is alwaysbetterthanDSN sinceMADSN also in-
troducesoverhead,suchas the agentcreationand dispatch
time. On theotherhand,DSN needsto transferdatafiles to����� which alsocausesoverheaddueto file accesses.In this
section,we analyzethe relative performancesof DSN and
MADSN, anddetermineconditionsunderwhichanMADSN
is moreefficientthanaDSN.Theseconditionsaredetermined
by thenetworktransferrate ©�7 , the dataprocessingrate © � ,
thedatafile size y�ª , themobileagentdatasize y�� (including
overlapfunction arraysizeandthe itinerary list size),over-
headof agent «�� , overheadof file access«�ª , the numberof
sensornodes¬ , andthusthebalancebetweenthenumberof
agents$ andthenumberof sensornodeseachagentmigrates% (Noticethat ¬�*t$­�#% ). Equations(2) and(3) aretwo for-
mulasestimatingthe executiontime for MADSN (

p !�� �6® 7 )
and DSN (

p �6® 7 ). In both equations,the threecomponents
calculatethe datatransfertime, the overhead,and the data
processing/integrationtime respectively.

p !�� �6® 7�* �
$ v %9�Ry��©�7 v $ «�� v �
$ v %&i . �Ry��© � (2)

p �6® 7@* $&%4y�ª©�7 v $&%4«�ª v �
$&% i . �Ry�ª© � (3)

We use $ as the variable. Assume j and 
 are positive
scalars,and y�ª@* j y�� , «�ª@*�
[«�� , ©[¯7 * . s5©�7 , ©[¯� * . s5© � , in
orderto ensurethat

p !�� �6® 7 1 p �6® 7 , Eq.(4) mustbesatisfied,
thatis, $ mustbechosenwithin a range.
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Table3 listed sometypical parametervaluesandthe corre-
spondingperformance.We evaluatethe performancevaria-
tion of MADSN with respectto relationshipsbetween$ and
 , $ and©[¯7 , and $ and¬ . $ is thenumberof nodesmigrated
by eachmobile agent. 
 is theoverheadratio betweenDSN
andMADSN. ©[¯7 is thereciprocalof networktransferrate. ¬
is thetotal numberof sensornodes.Theseparametersplay a
moreimportantrole thanothers.Figures7-9demonstratethe
performancevariationwith respectto $ and 
 .

Figure7 shows a profile of themaximumvalueof $ satisfy-
ing Eq.4 whenchangingtheoverheadratiobetweenMADSN
andDSN, 
 . Supposethesizeof agentis 1KB, theoverhead
of agentis 0.5s(includingagentcreationtime), thenetwork
transferrateis 100Kbps,dataprocessingrateis 100Mbps,the
numberof sensornodesis 1000,andthedatasizeis 10KB.

If we fix 
 at 0.25, that is, the overheadof file accessis
onefourth of theoverheadof mobileagent,thecorrespond-
ing maximum $ satisfyingEq. 4 is then ��� . accordingto
Fig. 7. By changing$ from 1 to 441, we generatethe per-
formancecurvesfor MADSN andDSN usingthe execution
time:

p !�� �6® 7 and
p �6® 7 asshown in Figs.8 and9.

Figure8 shows thevariationof
p �6® 7 with respectto thenum-

berof mobileagents$ . It is astraightline since
p �6® 7 is inde-

pendentof thenumberof mobileagentsandthetotal number
of sensornodesis a constant.Figure9 illustratesthe varia-
tion of

p !�� �6® 7 with respectto $ . Theexecutiontime
p !�� �6® 7

reachesits minimum when $ is 4. Note that even though
in the rangeof $ E°: . �D��� . > , p !�� �6® 7 is always less thanp �6® 7 , after a decreasingsegmentat the very beginning, and

reachinga minimumwhen $B*�� ,
p !�� �6® 7 startsto increase.

This is becauseof theoverheadfrom mobileagent:themore
agentsused,the heavier the overhead,the longerexecution
timeneeded;ontheotherhand,thelesstheagents,thelighter
theoverhead,but thelongerthemigrationtime.
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Figure8: Executiontime for DSN (
p �6® 7 ) with respectto $

with ¬�* . 2�2�2 , © r = 100Kbps,and 
�* 2 § Y�� .
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Figure9: Executiontime for MADSN (
p !�� �6® 7 ) with respect

to $ with ¬�* . 2�2�2 , © r = 100Kbps,and
�* 2 § Y�� .

6 CONCLUSIONS

This paperdescribesthe useof the mobile agentparadigm
to designanimprovedinfrastructurefor sensorfusionin dis-
tributedsensornetwork(DSN).WeusetheacronymMADSN
to denotetheproposedmobile-agent-basedDSN. Compared
to the traditional client/server paradigm, where data are
moved from the client to the processingcenter, MADSN
movestheprocessingcodeto thedatalocations.This saves



Parameters case1 case2 case3

sizeof agent( ±�² ) 1K 1K 1K
ratio ³�´¢µ�¶µ � 10 10 10

dataprocessingrate( · ¸ ) 100Mbps 100Mbps 100Mbps
overheadof agent( ¹6² ) 0.5s 0.5s 0.5s

ratio º�´u»�¶» � 0.25 0.25 0.25

networktransferrate( ·5¼ ) 100Kbps 500Kbps 500Kbps
total numberof sensornodes(½ ) 1000 1000 3000

optimalnumberof agents( ¾ ) 4 3 4
executiontime in DSN ( ¿R¸ µ ¼ ) 225.1s 145.2s 435.3s

executiontime in MADSN ( ¿DÀ9²�¸ µ ¼ ) 4.5s 2s 3.5s
executiontime saved( ÁdÂDÃ �hÄ Á �8� ÂDÃ �ÁdÂDÃ � Å�Æ6Ç5Ç5È ) 98% 98.6% 99.2%

Table3: Summaryof performancecomparisonbetweenDSN andMADSN.

network bandwidth and provides and effective meansfor
overcomingnetwork latency, since large data transfersare
avoided. We studied two important problemsrelated to
MADSN design:thedistributedintegrationproblem,andthe
optimum performanceproblem. We show that MADSN is
not alwaysbetter than DSN, sincethe involvementof mo-
bile agentsaddsoverhead. We analyzethe conditionsun-
der which MADSN performsbetterthanDSN andthe con-
ditions underwhich MADSN achieves its optimum perfor-
mance. From the performancecomparisonresultsin Table
3, we canseethat for all threecases,MADSN saves up to
98%of executiontime which is mainly contributedfrom the
time saved for transferringraw data. We concludethat mo-
bile agentparadigmis an effective approachfor distributed
computing,especiallywhenlargeamountof datatransferis
involved,which is thecasein distributedsensornetworks.
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