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Abstract— We describeheuseof themobileagentparadigm
to designan improved infrastructurefor dataintegrationin

Distributed SensorNetwork (DSN). We use the acrorym

MADSN to denotethe proposedviobile-Agent-basedSN.

Insteadof moving datato processingelementdor datainte-

gration, asis typical of a client/serer paradigm,MADSN

moves the processingcode to the data locations. This

saves network bandwidthand provides an effective means
for overcomingnetwork lateng, since large datatransfers
are avoided. We study two important problemsrelatedto

MADSN design— the distributedintegration problem,and
the optimum performanceproblem. Comparedio DSNs, a
mobile-agentimplementationof multi-resolutiondata inte-

grationsavesup to 90%of thedatatransfertime. For agiven
setof network parameterswe analyzethe conditionsunder
which MADSN performsbetterthanDSN anddeterminethe
conditionunderwhich MADSN reachests optimumperfor

mancedevel.
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1 INTRODUCTION

Distributed SensomNetworks(DSNs)have recentlyemeged
asanimportantresearctareal6, 7, 9, 14, 18]. This develop-
menthasbeenspurredby advancesn sensottechnologyand
computernetworking. Even thoughit is economicallyfea-
sible today to implementDSNs, there are several technical
challengeghat mustbe overcomebeforeDSNscanbe used
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for todaysincreasinglycomple informationgatheringasks.
Thesetasks,suchasbattlefieldsureillance,remotesensing,
globalawarenessetc.,areusuallytime-critical,cover alarge

geographicabrea,and requirereliable delivery of accurate
informationfor their completion.

Wessoret al [18] wereamongthefirst to proposethe design
of DSNs.Sincethen,severalefficient DSN architecturetiave
beenpresentedh theliterature includingthehierarchicahnd
committeeorganization[18], the flat tree network [7, 14],
the deBruijn basednetwork [6], andthe multi-agentfusion
network[9]. While improving the performanceof DSNsin
differentaspectsall theseapproachesise a commonnet-
work computingmodel: the client/sener model, which sup-
ports mary distributed systems,such as remote procedure
calling (RPC)[2], commonobject requestbroker architec-
ture (CORBA) [1, 17], etc. In the client/sener model, the
client(individual sensorsendsdatato the sener (processing
element)wheredataprocessindasksarecarriedout.

Recentadwvancesin sensortechnologyallow better cheaper
and smallersensorgo be usedin both military and civilian

applicationsgspeciallywhenthe ervironmentis harsh,unre-
liable, or evenadwersarial. A largenumberof sensorareusu-
ally deployedn orderto achieve quality throughquantity On
the otherhand,sensordypically communicatehroughwire-

lessnetworkswherethe network bandwidthis much lower
thanfor wired communication.Theseissuesbring new chal-
lengesto the designof DSNs: First, datavolumesbeingin-

tegratedare muchlarger; Secondthe communicatiorband-
width for wirelessnetworkis much lower; Third, the ervi-

ronmentis moreunreliable,causingunreliablenetworkcon-
nectionand increasingthe likelihood of input datato bein

faulty.

In this paperwe designanimproved DSN architecturaising
mobileagents— we referto thisasmobile-agent-basddSN
(MADSN). In traditionalDSNs,dataarecollectedby individ-
ual sensorsandthentransmittedo a higherlevel processing
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elementwhich performssensorfusion. During this process,
large amountsof dataare moved aroundthe network, asis
the typical scenarioin the client/sener paradigm. MADSN
adoptsa new computationparadigm: datastay at the local
site,while theintegrationprocesgcode)is movedto thedata
sites.By transmittingthe computatiorengineinsteadof data,
MADSN offersthefollowing importantbenefits:

¢ Network bandwidth requirementis reduced. Instead
of passingarge amountsof raw dataover the network
throughseveral round trips, only the agentwith small
sizeis sent. This is especiallyimportantfor real-time
applicationsand where the communicationis through
low-bandwidthwirelessconnections.

¢ Betternetworkscalability The performanceof the net-
work is not affectedwhenthe numberof sensoris in-
creased.Agent architectureghat supportadaptie net-
work load balancingcould do muchof a redesigrauto-
matically[16].

e Extensibility Mobile agentscan be programmedto
carry task-adaptie fusion processesvhich extendsthe
capabilityof the system.

e Stability. Mobile agentscanbe sentwhenthe network
connectionis alive andreturnresultswhenthe connec-
tion is re-established. Therefore, the performanceof
MADSN is not much affectedby the reliability of the
network.

Figurel providesa comparisorbetweerDSN and MADSN
from architecturgpoint of view.

The organizationof this paperis as follows: Section dis-
cusseghe definition of mobile agentsandapplicationexam-
plesthat benefitfrom using mobile agents. It also defines
the two problemsstudiedin the designof MADSN. Section
first reviews the multi-resolutiondataintegration algorithm
implementedundertraditional DSN, then describests im-
plementatiorusingmobile agents.A casestudyis provided.
Sectiond.2 compareshe performancef DSNandMADSN.
For a given setof parametersit derivesthe conditionunder
which MADSN performsbetterthan DSN, also the condi-
tion underwhich MADSN reachests optimumperformance
level. Section4.2 summarizeghe paperanddrawns conclu-
sions.

2 BACKGROUND

This sectionreviews the basicDSN architectureandthe key
characteristicef mobileagents.Theproblemsstudiedin this
paperareformally definedat the endof the section.

A generaDSN (Fig. 2) consistof asetof sensomodesaset
of ProcessingelementgPEs),anda communicatiometwork
interconnectinghe variousPEs[6]. Oneor moresensorss
associateavith eachPE. Onesensorcanreportto morethan

Processing Element

(2)DSN

Processing Element

]
T

mobile agent

\

)
\
<& sensor

-

(b) MADSN

Figure 1: Architecture comparison between DSN and

MADSN.

onePE. A PE andits associatedensor(sprereferredto as
a cluster Dataare transferredrom sensordo their associ-
ated PE(s)wherethe dataintegration takesplace. PEscan
also coordinatewith eachotherto achiese a betterestima-
tion of the ervironmentand reportto higherlevel PEs. In

the context of this paper we assumehatthe sensoffield is a
two-dimensionaburface andthe sensonodesarefixed.

Generallyspeakingmobileagentis aspeciakind of software
which can executeautonomously Oncedispatchedjt can
migratefrom nodeto node performingdataprocessingau-
tonomouslywhile softwarecantypically only executewhen
beingcalleduponby otherroutines.

Langelisted seven good reasongo usemobile agents[11],
including reducing network load, overcoming network la-
teng, robust and fault-tolerantperformancegtc. Although
therole of mobile agentdn distributedcomputingis still be-
ing debatedmainly becauseof the securityconcern[4, 12],
several applicationshave shovn clearevidenceof benefiting
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Figure2: Thearchitectureof ageneraDSN.

from the useof mobile agentssuchasE-commercg3], dis-
tributedinformationretrieval andinformationdissemination
[5,8,13,19], etc.

In this paperwe usemobileagentin DSNsto performmulti-
resolutiondataintegrationandfusion. Problemsgo bestudied
aredefinedin thefollowing section.

3 PROBLEM STATEMENT

We define the mobile agentas an entity of five attributes:
identification, itinerary, data, method,and interface. These
attributesareexplainedasfollows:

¢ |dentification:is in theformatof 2-tuple(s, 7), where:
indicatestheidentificationnumberof its dispatcheand
j theserialnumberassignedy its dispatcherEachmo-
bile agentcanbe uniquelyidentified by this identifica-
tion. We useM 4; ; to indicatedifferentmobile agents.

¢ Itinerary: includesitinerary informationassignedy its
associated’Ewhendispatched.

¢ Data: agents privatedatabuffer which carriesintegra-
tion resultsanditinerary information.

¢ Method:theimplementatiorof algorithms.In MADSN,
the key methodis the multi-resolutiondataintegration
algorithmfor sensoffusion.

¢ Interface:providesinterfacefunctionsfor agentandpro-
cessingelemento communicatevith eachothet

Let PE; represenacertainprocessinglementwith aniden-
tification 7 thatis in chage of the surwillance of a certain
area.let{MA;;,---,MA,; ,} represenagroupof m mo-
bile agentsdispatchedby PE;. Without lossof generality
we assumehat eachM A; ; visits the samenumberof sen-
sornodesdenoteddy n. Theparametersn andn arerelated
in the sensahattheir productmn equalsthe numberof sen-
sornodesin thefield. The problemsstudiedin this paperare
formally definedasfollows:

Data integration problem: At eachsensorsite, whatkind
of dataprocessinghouldbe conductecandwhatintegration
resultsshouldbe carriedwith themobileagent?

Optimum performance problem: How to balancethevalue
of m andn, suchthattheperformancef MADSN is superior
to DSN.

4 MULTI-RESOLUTION
INTEGRATION ALGORITHM

As mentionedin Sec., MADSN mustrespondto the chal-
lengesof a large amountof sensomodesand higher prob-
ability of faulty sensors. More sensornodescan increase
the computationload, while more faulty sensorscan cause
theintegrationresultsto be unreliable.Algorithmsarethere-
fore soughtwhich shouldnot be significantlyaffectedby net-
work scaling,andyet provide betterperformanceandhigher
fault tolerance.This sectionfirst reviews the original Multi-
Resolutionintegration (MRI) algorithm proposedor DSNs
[15]. Enhancement® the basicMRI algorithmarethende-
scribedin orderto takeadvantageof mobileagentgo achiere
betternetworkscalability and fault tolerance.The enhance-
mentsinvolve amulti-resolutionanalysisof individual sensor
readoutto generatea simplefunction (the overlap function)
at the sensorsite, followed by an integration of the simple
functionsat the processingelement. Comparedo the MRI
algorithmin traditional DSNs,wherethe integrationof indi-
vidual sensoreadout(carriedout at the processingelement)
is followed by the multi-resolutionanalysisof the integrated
simplefunction,the mobileagentimplementatiorof MRI al-
gorithmreduceghedatatransfertime by asmuchas90%.

4.1 Original MRI Algorithmin DSNs

Theoriginal MRI algorithmwasproposedy Prasadlyengar
andRaoin 1994[15]. Theideaessentiallyconsistsof con-
structing a simple function (the overlap function) from the
outputsof the sensorsn a clusterandresolvingthis function
atvarioussuccesskely finer scalef resolutionto isolatethe
region over which the correctsensordie. Eachsensorin a
clustermeasurethesameparameterslt is possibleghatsome
of themarefaulty. Henceit is desirableto makeuseof this
redundang of the readingsin the clusterto obtaina correct
estimateof the parameterdeingobsered. We first review
severalrelevantdefinitions.

An abstract sensor is definedasasensothatreadsaphysical
parameteandgivesoutanabstracinterval estimatevhichis
a boundedand connectedsubsetof the real line. We clas-
sify abstracsensorsnto two cateyories:correct sensorsand
faulty sensors. A correct sensor is anabstracsensomwhose
interval estimatecontainsthe actualvalue of the parameter
beingmeasured.Otherwise,it is a faulty sensor. A faulty
sensoris tamely faulty if it overlapswith a correctsensor
andis wildly faulty if it doesnot overlapwith ary correct
sensor
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Let sensorsSy, - - -, S, feedinto a processot. Let the ab-
stractinterval estimateof S; beI; (1 < j < n), theclosed
interval [a;, b;] with endpointsa; andb;. Thecharacteristic
function x of the jth sensorS; is definedin Eq. (1).

Let Q(z) = Y7, x;(z) bethe overlap function of then

abstractsensors.For eachz € R, Q(z) givesthe number
of sensoiintervalsin which z lies; thatis, the numberof in-

tenvalsoverlappingatthez. Crest is aregionin the overlap
functionwith the highestpeakandthewidestspread.Figure
3 illustratesthe overlapfunction for a setof 7 sensors.The
notionof theoverlapfunctionallows usto makethefollowing

key obsenations:

e Tamelyfaulty sensorglusteraroundcorrectsensorand
createhigh andwide (maximal) peaksin the profile of

o Wildly faulty sensorson the otherhanddo not overlap
with correctsensorsandthereforecontributeto smaller
andnarrover peaks.

Therefore the actualvalue of the parametebeingmeasured
lies within regions over which the maximal peaksof €(z)
occur

Q(z)

S1 S2 S3

84 85

S6 S7

Figure3: Theoverlapfunctionfor asetof 7 sensors.

Multi-ResolutionAnalysisof the OverlapFunction— Multi-
resolutionanalysisprovidesa hierarchicalframework for in-
terpretingtheoverlapfunction. It is naturalandmoreefficient
to firstanalyzedetailsata coarseaesolutionandthenincrease
theresolutionfor only theregion of interest.

Given a sequence of increasing resolutions
(27e, 27+ ... 120) where ¢ is a positive integer, we
define the differenceof function f(z) at resolution2—*!

andresolution2 ¢ asthedetailsof f(z) atresolution2—°+1.

Thealgorithmis describedn Algorithm 1.

This procedureaesultsin theisolationof thoseregionsof the
real line over which the overlap function Q(z) hasa maxi-
mum value, correspondingo high degreeof overlappingof

individual sensorreadouts. The algorithmis optimal, since
the overall time requiredis O(nlog n), which is thetime re-
quiredto maintain{2(z). This algorithmis alsorobust, sat-
isfies a Lipschitz condition [10], which ensureghat minor
changesn the input intervals causeonly minor changesn

theintegratedresult. Figure4 illustratesthe multi-resolution
analysisprocedure.

Algorithm 1: Multi-resolution analysisof the overlap
function.

Data :Q(z), 2%, (—c¢ < k < 0), assuminghe coars-
estresolutionis 2 ¢, the highestresolutionis
20; theinitial integrationinterval [A, B]

Result :the final crest [v;,v;] under resolution 2%,
where v, and v;, are the lower and higher
boundsof the crestrespectiely

t=—c,

whilet <=k do

resohe Q(z) at resolution2t by samplingit over
theinterval [4, B] at pointsn2~%, (4/27" < n <
B/27%), to obtainQy(z);

selectthe highestpeaksfrom Q4(z);

choosefrom thesepeaksthe one with the widest
spread A4;, B;], whichis acrest;

Q(z) = Qu([As, Bi]);

A= A;,B = By;

t=1t+1;

end
vyi=A,v, =B

4.2 MRI Implementation Using Mobile Agents

In adistributedsensometwork(DSN), all readoutdrom the
sensomodesare sentto their correspondind®Es,wherethe
overlapfunctionatthefinestresolutionis first generatedand
themulti-resolutionanalysigorocedurés thenappliedto find
thecrestatthe desiedresolution.

In a Mobile-Agent-base@®SN (MADSN), the mobileagents
migrateamongthe sensomodesandcollectreadoutsThere-
fore, M A; ; always carriesa partially integrated overlap
function which is accumulatednto a final versionat PE;
after all the mobile agentsreturn. During this process,if
MADSN appliesthe multi-resolutionanalysismethodin the
sameway asDSN does thatis, letting M A; ; carrythe par
tially integratedoverlapfunctionin its finestresolutionand
thenusemulti-resolutionanalysis(MRA) to find the crestat
desiredresolutionat PE;, the advantagef mobile agents
will benullified becausef heary datamigration.

We enhancehe basicmulti-resolutionintegration (MRI) al-
gorithmfor MADSNs andpresenamoreefficientimplemen-
tation. Thekey concepunderlyingtheenhanceglgorithmis
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thatMRI is appliedbefole accumulatinghe overlapfunction.

A 1-D array w; j, cansene asanappropriatedatastructure
to representhe partially-integratedoverlap function carried
by MA; ;. If thesizeof w; ; is sy0 with 20 resolution then
with resolution2® (k timescoarsethan2?), thesizeof w; ; is

s90/k, thatis, k timeslessthans,o. Algorithms2-4 describe
the procedurén detail. A casestudyis provided aswell for

betterillustration.

Algorithm 2: Modified MRI algorithmfor MADSN - be-
fore M A; ; leavesPE;

Data :integrationinterval [4;, B;], highestresolution
20, desiredresolution2”
Result :arrayw; ; to hold partially-integratedoverlap
function
_ B;—A;+1.
§= T"5=%

initialize w; ; asazerovectorwith s elements;

Algorithm 3: Modified MRI algorithm for MADSN -
MA,; ; atsensomode

Data :w;j, 2¥, readoutfrom theabstracsensofa, b]
(aboundedconnectedetof realnumbers)

Result :w; ;

find the smallest multiple of 2%, d,,;,, such that
dmin > a,

find thelargestmultiple of 2=%, d,,.., suchthatd, ., <
b;
increaseelementso; ;[ L=ix : use] py 1;

Algorithm 4. Modified MRI algorithm for MADSN -
MA,J backto PE;
Data :w;j, 2%, m isthetotalnumberof agents
Result : thefinal crest];, v4] underresolution2”
createy; asazerovectorof size(B; — A; + 1);
i=2
whilej <=mdo
‘ accumulate; ; tow; 1;

J=J+1
end
7=0;
whilej < ZiSA+L do

il g +27F 1) = wiali/27M;

j=j+27%
end
selectthe highestpeakof ;. If therearemultiple peaks
with the sameheight, thenall the peaksshouldbe se-
lected;
choosdgrom thesepeaksthe onewith the widestspread
[y, 1], whichis acrest;

Case Study — We presenta case study to illustrate the
MADSN-basedMRI algorithm. SupposePE; has10 sen-
sor nodes(S1, - - -, S19), migratedby 2 mobile agentswith
MA;; covering S; to S5, and M A; » covering Sg to Sip.
Thereadoutof sensorsattimet arelistedin Fig. 5. Thein-
tegrationinterval [4;, B;] is [1, 64]. The overlapfunction at
its highestresolutionthenhas64 elements.



510[20, 35]

s6[14, 28]

s5[20, 27]

s3[10, 20] s8[21, 31

2[4, 15] s7[30, 40]

s1[2, 10] s4[15, 25] 945, 60]

Figure5: Readoutdrom 10 sensomodesattimet.

| ] Zow [ Zese ] partiallyintegratedw; ; |
S1 1 1 [0,1,0,0,0,0,0,0]
So 1 1 [0,2,0,0,0,0,0,0]
S, | 2 2 [0,2,1,0,0.0,0,0]
Si| 2 3 0,2.2,1,0.0,0,0]
S, 3 | 3 [0,2,2,2,0,0,0,0]

Tablel: Tracingthechangeof w; 1 generatedby M A; ;.

If the desiredresolutionis 23 (or eighttimes coarserthan
thefinestresolution)accordingio Algorithm 2, anarrayw; ;

with 8 = 64/8 elementswill be createdand initialized by
eachmobileagent.Tablesl and2 list the step-by-stegxecu-
tion for eachagentaccordingo Algorithm 3.

According to Algorithm 4, the final integrated+; will be
[0,2,3,5,2,1,1,1]. Comparedo the resultsfrom DSN, as
shawvn in Fig. 6, they areexactly the same.If we definethe
unit datatransfertime asthe time spentfor one M A; ; mi-

gratingfrom onenodeto anotheycarryinga one-elemenér-

ray, then MADSN spends8 x (5 + 2) = 56 units of time

(assumingM A4; ; and M A; » areexecutedin parallelwhen
migratingfrom nodeto nodeor from PE; to node,8 x 5, and
in serialwhenreturningto PE;, 8 x 2), while DSN spends
64 x 10 = 640 unitsof time. Hence,MADSN offersa save

of upto 91.25%of datatransfertime in this case.

dmac

s | partially integratedw; » |

din |

Se | 2 3 [0.0,1,1,0,0,0,0]
S, | 4 5 [0.0.1,1,1,1,0,0]
Sy | 3 3 [0,0,1,2,1,1,0,0]
Sy | 6 7 [0,0,1,2,1,1,1,1]
S0 | 3 4 [0.0.1,3,2,1,1,1]

Table2: Tracingthechangeof w; » generatedby M A; ».

Overlap function with the finest resolution

0 10 20 30 40 50 60

Resolution is 8 times coarser

Figure 6: The overlapfunction at its highestresolutionand
theversionwith 8 timescoarserresolution.

5 PERFORMANCE COMPARISON

The casestudyshaows thatwhile obtainingthe sameintegra-
tionresultsMADSN sares91.25% of datatransfertime com-
paredto DSN. However, this doesnot necessarilymeanthat
MADSN is alwaysbetterthan DSN sinceMADSN alsoin-
troducesoverhead,suchasthe agentcreationand dispatch
time. Onthe otherhand,DSN needso transferdatafiles to
PE; which alsocause®verheaddueto file accessedn this
section,we analyzethe relative performancef DSN and
MADSN, anddetermineconditionsunderwhichanMADSN
is moreefficientthanaDSN. Theseconditionsaredetermined
by the networktransferrate v.,, the dataprocessingate v,
thedatafile sizes ¢, the mobileagentdatasizes, (including
overlapfunction array size andthe itinerary list size), over-
headof agento,, overheadof file access ¢, the numberof
sensomodesp, andthusthe balancebetweenhe numberof
agentsn andthenumberof sensonodessachagentmigrates
n (Noticethatp = m x n). Equationq2) and(3) aretwo for-
mulas estimatingthe executiontime for MADSN (,,4d4sn)
and DSN (t4s5)- In both equations the three components
calculatethe datatransfertime, the overhead,and the data
processing/intgrationtime respectiely.

m 4+ n)s, m+n—1)s,
tmadsn = (,”7) + mo, + % (2)
n d
y n — 1)
bion = 3 4 o 4 (MR 187 3)
Up, Vg

We usem asthe variable. Assumek andj are positive
scalarsandsy = ksq, 0f = jog, vl, = 1/v,, v = 1/vg,in

orderto ensurehatt,,q qs» < tisn, EQ. (4) mustbesatisfied,
thatis, m mustbechosernwithin arange.
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Figure 7: Performance evaluation between DSN and
MADSN: m vs. j.

(840, + 04 + 8,0])m* —
(840 — ksav) + kpsavl, + kpsav, + jpos)m+
PSavy, + psavy <0 4)

Table 3 listed sometypical parametenvaluesandthe corre-
spondingperformance.We evaluatethe performancevaria-
tion of MADSN with respecto relationshipdetweenrn and
j,mandv/,, andm andp. m is thenumberof nodesmigrated
by eachmobile agent. j is the overheadratio betweenDSN
andMADSN. v/, is thereciprocalof networktransferrate. p
is the total numberof sensomodes.Theseparameterplay a
moreimportantrole thanothers.Figures7-9 demonstrat¢he
performancevariationwith respecto m andj.

Figure7 shaws a profile of the maximumvalueof m satisfy-
ing Eq.4 whenchangingheoverheadatiobetweerMADSN
andDSN, 7. Supposéghessizeof agentis 1KB, the overhead
of agentis 0.5s(including agentcreationtime), the network
transferateis 100Kbpsdataprocessingateis 100Mbps the
numberof sensonodess 1000,andthedatasizeis 10KB.

If we fix j at 0.25, that is, the overheadof file accessis
onefourth of the overheadof mobile agent,the correspond-
ing maximumm satisfyingEq. 4 is then441 accordingto
Fig. 7. By changingm from 1 to 441, we generatehe per
formancecurvesfor MADSN and DSN usingthe execution
time: t,nq4sn @andty,, asshavn in Figs.8 and9.

Figure8 shaws the variationof ¢, with respecto thenum-
berof mobileagentsn. It is astraightline sincet 4., isinde-
pendenbf thenumberof mobileagentsaandthetotal number
of sensomodesis a constant.Figure 9 illustratesthe varia-
tion of ¢,,,44s With respecto m. Theexecutiontimet,,4qsn

reachedts minimum whenm is 4. Note that even though
in the rangeof m € [1,441)], t;aasn 1S alwayslessthan
tqsn, aftera decreasingsggmentat the very beginning, and

reachinga minimumwhenm = 4, t,,,4s» Startsto increase.
Thisis becaus®f the overheadrom mobileagent:themore
agentsused,the heavier the overhead,the longer execution
time neededpntheotherhand thelesstheagentsthelighter

the overheadhut thelongerthe migrationtime.

226.5

226

2255

2251

2245

224 I I I I I
0

Figure8: Executiontime for DSN (¢45,) With respectto m
with p = 1000, v, = 100Kbps,andj = 0.25.

30

20

Figure9: Executiontime for MADSN (¢,,,44s) With respect
tom with p = 1000, v, = 100Kbps,andj = 0.25.

6 CONCLUSIONS

This paperdescribeghe use of the mobile agentparadigm
to designanimprovedinfrastructurefor sensoffusionin dis-
tributedsensonetwork(DSN). We usetheacrorym MADSN
to denotethe proposedmobile-agent-baseBSN. Compared
to the traditional client/serer paradigm, where data are
moved from the client to the processingcenter MADSN
movesthe processingodeto the datalocations. This saves



Parameters casel case2 case3

sizeof agent(s,) 1K 1K 1K

ratiok = .~ 10 10 10
dataprocessingate(vq) 100Mbps| 100Mbps| 100Mbps
overheadof agent(o,) 0.5s 0.5s 0.5s

ratioj = Z—f 0.25 0.25 0.25
networktransferate(v,,) 100Kbps | 500Kbps | 500Kbps
total numberof sensomodeg(p) 1000 1000 3000
optimalnumberof agentym) 4 3 4
executiontime in DSN (t4s») 225.1s 145.2s 435.3s
executiontime in MADSN (tmadsn) 4.5s 2s 3.5s
executiontime saved (*dea-tmadan x 100%) 98% 98.6% 99.2%

Table3: Summaryof performanceomparisorbetweerDSN andMADSN.

network bandwidth and provides and effective meansfor
overcomingnetwork lateng, since large datatransfersare
avoided. We studied two important problemsrelated to
MADSN design:thedistributedintegrationproblem,andthe
optimum performanceproblem. We shav that MADSN is
not alwaysbetterthan DSN, sincethe involvementof mo-
bile agentsaddsoverhead. We analyzethe conditionsun-
derwhich MADSN performsbetterthan DSN andthe con-
ditions underwhich MADSN achieves its optimum perfor
mance. From the performancecomparisorresultsin Table
3, we canseethat for all threecasesMADSN saves up to
98% of executiontime which is mainly contributedfrom the
time saved for transferringraw data. We concludethat mo-
bile agentparadigmis an effective approachfor distributed
computing,especiallywhenlarge amountof datatransferis
involved,whichis the casein distributedsensomnetworks.
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