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I. Program Overview

A memory is any physical system with a large number of distinguishable states. Through the work
undertaken in this program we have shown that an optical field can be used to distinguish among N
different physical configurations of a nanostructure whose volume is comparable to a cubic wavelength,
thus achieving log,(N) bits of capacity within a single resolution element. We have studied the use of near-
field optical measurement together with spatially- and spectrally-selective defects to define and readout
sub-resolution nanostructure storage configurations. We have successfully identified, studied, and
characterized nanostructure configurations that provide optically distinguishable states with large interstate
distances. During year 1 we focused on sub-resolution surface-relief structures combined with near-field
detector arrays to demonstrate approximate storage densities of 25 bits/um’, During year 2 we extended
this work to so-called nano-structured voxels in which we employ sub-resolution volumetric degrees of
freedom and near-field detector arrays. We design the data carrying volumetric defects so as to exploit a
plasmon resonance in their metallic nanoshells and we predict significantly improved storage densities of
nearly 300 bits/um®. This work has resulted in an improved understanding of the interaction between space-
time electromagnetic fields and various (imperfect) nanostructure volumes, new near-field optical
characterization methods to determine the sub-resolution 3D configuration of artificial nanostructures, and
new bounds on the abilities of optical fields to probe physical processes on length scales below the optical
wavelength.

One unanticipated outcome of the work outlined above was the creation of a novel method of designing
nonlinear codes. These codes were necessary in order to tolerate the crosstalk thaf characterizes nano-
structured optical memories. We invented these codes for use in the memory application and later found
them to be valuable for use in fiber communications.

Our research activities within this program have progressed along two distinct lines of inquiry. The original
program vision was exclusively concerned with static optical memory structures. Within this component of
the program we have analyzed and demonstrated the utilization of sub-resolution degrees of freedom to
achieve room-temperature high-density optical storage as outlined above. A complementary component of
our activity grew out of some early success and gave rise to a parallel research path. This parallel path has
been concerned with the use of sub-resolution volumetric degrees of freedom to control light in the time
domain. This form of control facilitates simple delay-based storage and can be important in pulse shaping
and optical buffering applications. During year 2 we pursued a theoretical understanding of information
propagation in such systems. We also experimentally demonstrated that the information velocity in so-
called fast-light media remains below the limit defined by relativistic causality. Our year 3 activities
continued along these lines. We extended our theoretical understanding of information velocity into the
domain of slow-light media and we have experimentally demonstrated the surprising result that even for
systems in which the group velocity 1s much less than the speed of light in vacuum the information velocity
remains close to c. The no-cost-extension of this work has concluded with a novel method of compensating
distortion in slow-light optical delay lines.

This report is organized as follows. Our research is conveniently described in terms of 8 different projects.
A brief summary of each project and its outcomes is provided below. For work that has already resulted in
one or more peer-reviewed journal articles these are included as a detailed description of the relevant
technical details.




II. Surface-Relief Nano-Structures

Our main project component has dealt with the study of surface relief structures. Within this component
we have made contributions in three areas: analysis and simulation, planar memory concepts, and detector
designs and realizations. We continued and extended the development of our FDTD simulators to study the
memory density of nanoscale surface-relief structures. We have advanced several approaches to calculate
the clique-based capacity of these structures. We have considered and bounded statistical cross-talk
between different relief configurations. We have also considered a number of new planar memory
concepts. These have included the study of relief layers consisting of polymer, a low (n=1.8) contrast
medium, versus semiconductor, a high (n=3.5) contrast medium; structures that represent binary versus
non-binary states; and relief structures that emphasize hole versus backfill configurations. Parameterization
of a variety of the relief parameters including the gap size between the cells of interest, the base height, and
the relief heights has been accomplished to determine their influence on the number of distinguishable
states and, hence, the capacity. More details about this work can be found in Appendix 1.

I11. Nano-Structured Voxels

Our second main project component has dealt with the study of volumetric memory structures. Within this
component we have made contributions in two main areas: analysis and simulation of nano-structured
voxels (NSVs) defined with dielectric, metallic, and/or plasmonic elements and the use of optical tweezers
for novel fabrication methods to realize these volumetric structures. We have used our FDTD simulator to
find which nano-structured configurations can be used to realize high-density memory storage devices.
Detector arrays were placed appropriately under the scattering elements. Very distinctive states have been
realized with the metallic and plasmonic scattering elements. We have found that the dielectric, metallic,
and/or plasmonic elements could be positioned in the requisite matrix using optical tweezer technologies.
This fabrication approach is being analyzed further to understand its limitations and practicality.

IV. Nonlinear Coding for Fiber Communications

The nonlinear codes developed for use in nano-structured storage application proved to be valuable for
mitigating the distortion associated with nonlinear fiber propagation. We have considered a single
wavelength channel in a nonlinear dispersive single-mode fiber in the normal dispersion regime. We study
the propagation of binary sequences using OOK RZ modulation at a bit rate of 10 Gb/s, under different
dispersion and input power conditions. We determine the impact that dispersion and nonlinearity have on
the pulse sequences by measuring the Euclidian distances among all pairs of received sequences. We then
model the set of Euclidian distances as a fully connected graph and by means of a clique-finding algorithm
we search for subsets of sequences that form codes matched to this nonlinear channel, resulting in
significant bit error rate improvement.We present a numerical analysis of the effects that GVD and SPM
have on the Euclidian distances among pulse sequences at the receiver in a single channel of a WDM
system. We observe that nonlinearity induces a decrease in the minimum Euclidian distance within the
normal dispersion regime and that this decrease is stronger at high power levels. We model the set of
Euclidian distances as a fully connected graph, where each sequence is a node and the Euclidian distance
between each pair of sequences labels the corresponding edge. We then remove all edges with a Euclidian
distance smaller than an arbitrarily chosen value. Using a Clique finding algorithm, we search for subsets
of nodes that form fully connected subgraphs of this pruned graph. From these subsets we obtain nonlinear
codes that are well matched to this nonlinear fiber channel, giving a significant reduction in bit error rate
compared to linear codes of the same length. More details about this work can be found in Appendix 2.

V. Information Propagation in a Fast-Light Medium

Projects I1 and I1I are concemed with the use of nanostructures to control light in the space-domain. It is
also possible to employ nanostructures to control light in the time-domain. One manifestation of this
control is the engineering of materials with large anomalous dispersion. The special theory of relativity
states that the velocity of information propagation is limited to the speed of light in vacuum (¢). It is known



however, that optical pulses traveling in a medium with large anomalous dispersion have faster-than-c¢
group velocities. The key to resolving this controversy is to quantify how information is (a) encoded on an
optical pulse and (b) affected by the propagation medium. We have transmitted two distinct symbols
through a 'fast light' medium and quantify both the propagation time and the detection latency. The former
allows us to bound the information velocity; while, the latter reconciles the apparent discrepancy with
group velocity. In our experiment we find that although the group velocity vastly exceeds ¢, the time
required to detect information propagating through the medium is slightly longer than the time required to
detect the same information travelling through vacuum. Our work highlights the issues that must be
addressed in designing devices that operate at the ultimate limit imposed by the special theory of relativity.
More details about this work can be found in Appendix 3 and related work on causality in metamaterials in
Appendix 6.

VI. Information Propagation in a Slow-Light Medium

Through manipulation/engineering of materials at the nano-scale it is possible to create an optical medium
in which the group velocity (v,) is a small fraction of ¢. These systems represent a type of short-term
memory that can be valuable in optical communication, computing, and processing applications. In our
experiments we have v, = ¢/100. It is often assumed that the velocity of information propagation in such a
medium is given by the group velocity whenever v,<c. During this part of our year 3 activities we sought to
experimentally measure the velocity of information propagation in such a medium. By imposing a point of
non-analyticity on the propagating waveform, we create a well-defined time at which information is
launched. By estimating the time at which this information can first be measured we are able to obtain an
estimate of the information velocity (v;). Figure 1 shows some experimental results. Visually we can see
that the time at which information (i.e.. the discontinuity) appears at the detector is nearly the same for the
signal propagating through vacuum and the slow-light medium. A bit error rate analysis of this data reveals
that v; is approximately 0.6¢. This surprising result reveals that (a) the group velocity is not always a good
measure of information velocity, (b) information can be carried in the pre-cursor fields and propagates at
nearly ¢, and (c) these pre-cursor fields can be large enough to provide reliable measurements of the
associated information. We are still working to understand the implications of these results; however, it is
already clear that the design of optical pulse shapes should be conducted with awareness of the nature of
information propagation in the system under study. More details about this work can be found in Appendix
4.

VII. Distortion Compensation in a Slow-Light Delay Line

A significant limitation to current methods of achieving slow-light pulse delay arises from the distortion
that accompanies this delay. We have developed a new method through which large pulse delay may be
achieved under the constraint that the distortion does not exceed a particular limit. Our technique is based
on combining multiple dispersive devices in order to engineer the dispersion of the overall system. We
have analyzed and experimentally demonstrated the case of a gain-doublet in which a pair of Lorentzian
gain lines are used to achieve significant pulse delay relative to a single-line system. A factor of 6.25
improvement in delay and a factor of 2 improvement in pulse bandwidth can be achieved by use of our new
method of jointly optimizing the overall system parameters. The optimization of more complex distortion-
compensated systems based on resonators, interferometers, and PBGs is currently underway. More details
about this work can be found in Appendix 5.

VIII. Pulse Shaping from a Spatially Varying Group Index

The new technique that we’ve developed is a spatio-temporal technique. It involves the spatial modulation
of the pulse delay created by an optical medium, as shown in Figure |. As the pulse propagates through the
medium, some spatial components of the pulse are delayed more than others. This pulse “shear” can be
used to control the temporal pulse shape. As the pulse is recombined, for example by refocusing or
injecting the pulse into a fiber, the temporal intensity profile is determined by the spatial pulse delay profile
of the medium. As in other spatio-temporal techniques, the pulse delay profile need only be controlled on
the timescale that a single shape is used. This control can either be optical or electronic depending on the



pulse delay mechanism employed. Advantages of this technique over other spatio-temporal techniques are
that it may be more easily extended to a wide range of pulse lengths (using media with different pulse
delays) and it can be very compact. Figure 2 shows preliminary results demonstrating simple pulse-shaping
of a pulse propagating through a BaTiO3 crystal with two regions of different pulse delays. These regions
were created by controlling the intensity of a pump beam used to generate the pulse delay in each region.
Because the response time of BaTiO3 is very slow, this material is best suited for shaping long pulses,
whereas short pulses can be shaped using the same technique with faster-response-time materials such as
nonlinear crystals, atomic systems, or “dispersion engineered” materials, possibly allowing electronic
control with the use of EO inclusions.

The use of a medium with spatially varying optical properties also raises the possibility of diffraction. To
our knowledge, the effect of diffraction from spatial varying group delay has not been previously studied.
We are continuing both theoretical and experimental activities on this topic.
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Figure 2: Initial results demonstrating the operation of our pulse shaper.



IX. Gaussian Beam Scattering from Nanostructures

We have continued to examine the scattering from nanostructures in the presence of complex material
environments. Particular emphasis has been given to nanorods and nanospheres with plasmonic coatings.
The enhanced scattering from these plasmonic nanostructures provides enhanced discrimination between
scattering states for our optical data storage application. This effect has been used effectively for our nano-
voxel studies. Additionally, it also allows one to guide light along subwavelength dimensions to produce
subwavelength field localization. An example is shown below. A transmission line of nano-rods provides
a means of capturing light and guiding it. The output spot is significantly subwavelength. More details
about this work can be found in Appendix 7. This was a paper presented at a Special Session on Advances
in Plasmonic and Other Electromagnetic Phenomena Co-Organized by R. W. Ziolkowski and N. Engheta
and that appears in the Proceedings of the IEEE International Symposium on Antennas and Propagation,
Washington DC, July 2005
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Figure 3: A nano-rod array transmission line is used to guide and to localize 500nm light acquired from an
mncident Gaussian beam to sub-wavelength resolutions.
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Abstract

A new optical data storage structure is proposed that utilizes surface reliel profiles at sub-wavelength scales to dis-
tinguish memory states in a read-only memory system. Groupings of power sensors directly bencath the features read
light transmitted through the structure [rom above. These are used to distinguish states [rom one another, where dif-
[erent surface proliles lead to different states. Two-dimensional simulations are performed using the finite-dilference
time-domain (FDTD) method to oplimize parameters of the system, and to determine the data capacily and density
ol optimal systems. Two optimal systems are studied in detail: one intended as a polymer construction, the other as
silicon. Techniques are developed to estimate capacity and density from subsets of simulations. Simulations estimate
that densities of 3.17 GBits/em” are possible with this type of system.

© 2005 Elsevier B.V. All rights reserved.
PACS: 42.79.Vb

Keywords: Optical storage; Memory systems

1. Motivation

Any system with a large number of distinguish-
able states can act as a memory (storage) device.
Current generation high-capacity memory devices

" Corresponding author. Tel.: +1 403 220 4129; fax: +1 403
282 6855.
E-mail address: mpotter@ucalgary.ca (M.E. Potter).

(archival rather than e.g. flash) generally rely on
one of two technologies: optical or magnetic. Opti-
cal systems include CD-ROMs, DVDs, and the
next generation of Blu-Ray discs. For all three,
states are created and distinguished from each
other by surface features (pits and ridges); each
feature represents a single binary state. CDs are
limited by classical resolution limits of approxi-
mately one bit per square wavelength. DVDs and

0030-4018/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
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Blu-Ray discs use multiple layers and can achieve
four to eight bits per square wavelength. In the
case of magnetic storage media, data is encoded
in the magnetic polarity of small sub-domains of
the medium. Scanning a probe over the structure
reads the polarity in given regions. Demonstra-
tions by Kong et al. [1] have shown magnetic stor-
age densities on the order of 10 Gbits/in?
(1.55 Gbits/cm?®). Sub-wavelength topographical
features created with lithography can also be used
to imprint data [2]. Features are then probed using
atomic force microscopy techniques, since lasers
cannot be effectively used to probe each individual
feature. Impressive storage densities on the order
of 400 Gbits/in* (62 GBits/cm?) have been demon-
strated [3]. One major limitation with disc-based
systems is that each feature is read serially, and
the time-scale of the reading process introduces la-
tency effects.

An alternate optical storage methodology that
shows promisc is holography. The advantage of
holography is that multiple data “‘pages’™ can be
stored in the same medium simply by altering the
angle at which the hologram is recorded in the
medium. This is a form of parallel data addressing
since an entire page can be recovered at once.
Impressive storage densities of 10-40 Gbits/cm®
have been predicted for such systems, and demon-
strations with holographic RAM have indicated
faster access times than hard discs for computers
[4-6].

The focus of our research is to examine systems
that will capitalize on parallel, near-field readout.
Our intended application for this system would
be analogous with CD-ROM or DVD uses, or
any usage that requires multiple replicas of the
same data. A target application would be for sys-
tems requiring low latency, such as video games.
Other applications would be for mass distribution
of high content media such as movies, games, and
reference materials. Specifically, we postulate a
read-only memory system that rivals magnetic
storage technologies for capacity/density, but uti-
lizing optical readout at a wavelength of
4 =1500 nm. States will be defined by groupings
of sub-wavelength surface features, which are
identified by reading the signal (in the near-field)
transmitted through the structure. The aim is to

achieve a density of 16 Gbits/em® in order to ap-
proach the same densities as magnetic, while sur-
passing DVD and Blu-Ray densities. This paper
outlines the details of the system in Section 2,
and the modeling technique used is introduced in
Section 3. Results from initial simulations, discus-
sion, and conclusions are then presented in Sec-
tions 4-6.

2. System description
2.1. Intended implementation

The proposed system consists of a series of
wavelength-scale nanostructures (cells), with de-
signed sub-wavelength features which will be dis-
tinguished using near-field optical measurements.
The features are formed by introducing dielectric
inhomogeneity. For the purposes of this study,
the system is considered in two dimensions. The
entire system consists of a row of cells on a flat sur-
face, of which three cells are shown in Fig. 1 (in the
third dimension, multiple rows would be added).
The entire system is illuminated from above by
an optical source at a wavelength of 1= 500 nm.
Sensors directly underneath each cell record opti-
cal power measurements in parallel. These mea-
surements are used to identify the profile of the
sub-wavelength features, which 1s then mapped
to the stream of bits it is meant to represent. Since
the entire system 1s illuminated at once, the system
does not require moving components and the data
stored in the system is read in parallel at the phys-
ical level.

Each cell is one wavelength wide, although the
entire system will consist of many such cells on
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Fig. 1. System layout.
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something similar to a compact disc. For the pur-
poses of analysis, we focus on one cell of interest
(COI) and two neighbouring cells. This allows us
to analyze the uncertainty of the measurements
introduced by the proximity of neighbouring cells
via crosstalk phenomena. All the cells in a system
have the same dimensions as described by the set
of parameters indicated in Fig. 2. Three horizontal
layers, namely the fill, feature, and base layers,
make up a cell. The fill and base layers are homo-
geneous materials. The feature layer is divided into
different sections allowing for either the fill or base
material to be present, creating a non-homoge-
neous layer and therefore the desired sub-wave-
length features.

The system 1s intended to be used as a ROM de-
vice, whose low latency and high density may jus-
tify the cost premium associated with silicon
fabrication processes. In fact, we anticipate that
the surface relief structures can be stamped, and
thus may benefit from the economies of scale pos-
sible from mass production technologies such as
for CD-ROMSs and DVDs.

We consider that the fabrication of the detector
layer will be asynchronous with that of the feature
layers, and as such there will have to be a calibra-
tion procedure to tune for alignment tolerance.
For instance, a set of calibration elements would
be fabricated at higher tolerances and analyzed.
Each storage ““disc” would contain a few fiducial
elements, and the readings from these compared
to the calibrated standards would allow us to select
the correct decoder to extract the stored data on
the rest of the “*disc.”” The detectors themselves will
not require individual sense amps, but rather we
anticipate a design that would be a matrix-
addressed photo-conductor array requiring signal
conditioning only for each row and column.

gap size
A

2.2, Distinguishing memory states and capacity

The current research focuses on determining the
capacity for a two-dimensional nanostructured
system with the aim to map as many features per
COI as possible (ny). Thus, for example, with
ne =5 features per cell there are 2° = 32 different
possible COI configurations (states). Parameteri-
zation was performed to find systems that allow
maximal distinguishability amongst the states.
Parameters that were varied include: the feature
height, the base height, the gap size. and the index
of refraction of the base and feature layers.

Different states are distinguished using near-field
optical power measurements from sensors located
directly undermeath each COI. Each sensor pro-
duces a power measurement, P, and each cell has
an array of n power sensors resulting in a power vec-
tor, P = (P, Pa, ..., P, ). By altering the configura-
tion of features for a given COI, there are 2
possible power vectors that may be used to represent
different states. Note that we do not seek a one-to-
one mapping between features and representative
bits: any state vector may be used to represent any
bit stream we wish. In spite of the desired scatter
from features within a cell, there will also be undesir-
able scattering from adjacent cell structures (neigh-
bours) which will introduce crosstalk. This crosstalk
will manifest itself in uncertainty in the measure-
ment of the state vector for a given cell. This uncer-
tainty may mean that some state vectors could
become indistinguishable and, hence, they may
not be used. Thus, the loss of distinguishability re-
duces the capacity of that system parametenzation.
Obviously the goal is to find the system parameter-
ization that provides the maximum capacity. This is
accomplished by finding all the state vectors that are
distinguishable from all other state vectors.

fill layer

fill depth

feature depth

base depth

Fig. 2. Geometric parameters of the system.
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[t should be repeated that the capacity is limited
only by the number of distinguishable patterns
that can exist in the multi-dimensional space of
the power vector. This allows us to take advantage
of many other degrees of freedom such as source
wavelength, feature heights, etc. For example, the
height of the feature above each detector may be
four-tiered instead of two-tiered, giving the possi-
bility of 4% = 1024 possible states, and hence the
potential for more than one bit per detector.

3. Modeling methodology
3.1. Methodology

To investigate different parameterizations of our
proposed system, it was necessary to simulate differ-
ent systems with changing physical dimensions and
dielectric properties. To meet our goal of 16 Gbits/
cm?, a system with 5-7 features/cell is required.
Even at the lower limit of 5 features/cell, to obtain
an exhaustive characterization (to examine Cross-
talk for a single system) would require us to simulate
each possible COI configuration (2° = 32), and for
every possible neighbour configuration (2'°=
1024) requires approximately 32,000 simulations.
Fully investigating several different systems quickly
becomes prohibitively time-consuming.

In the first stage of our methodology, COIls are
analyzed and parameterized i isolation. Then full
sets of simulation for systems with 3 features/cell
(512 simulations/system) were performed to see if
we could extrapolate what fraction of the five-
feature simulations would be necessary for reason-
able estimates of capacity. This analysis method is
described in further detail in Section 4. A further
benefit of this three-feature analysis is that it al-
lows us to visualize the clustering of power mea-
surements in three-dimensional visual mappings.

3.2. Modeling tool

The modeling tool must be well-developed and
able to handle complex geometries, generating
reliable results so that we can concentrate on the
analysis and statistics. For these reasons a two-
dimensional (TM polarization) finite-difference

time-domain (FDTD) method was chosen due to
its flexibility in materials and geometries. It is a
reliable and time-proven method, and is particu-
larly well suited for heterogeneous structures.
Maxwell’'s equations in differential form are dis-
cretized in time and space, and explicit expressions
determine the electric and magnetic fields at future
time steps based solely on their values at previous
time steps and on the local electromagnetic proper-
ties of materials. More details can be found in [7].

The simulation space was discretized at a reso-
lution of Ax = Az =5 nm (100 cells per free space
wavelength) which — because of stability condi-
tions - results in a time discretization of
At =11.55 as. The absorbing boundary condition
at the edge of the simulation space was a
L2TDLM (see [8]) of 11 layers. and the simula-
tions were allowed to progress for 3000 timesteps
— approximately 20 cycles of the source.

The optical source was a continuous wave
Gaussian beam with TM polarization and a wave-
length of 4 = 500 nm. For simulation purposes, the
beam is generated by invoking the equivalence
principle at a line lying along the waist of the beam
(see, for example, the total/scattered field formula-
tion in [7]). The waist of the beam was three wave-
lengths in width in our simulations, and was
approximately two wavelengths above the struc-
ture. Observation tasks consisted of producing
time histories of the electric and magnetic fields
at each of the sensor locations, from which the
Poynting vector and the associated power mea-
surements were obtained In a post-processing
phase. Note that reported power measures are in
arbitrary units, which will scale accordingly as
the fields are scaled. The source used is identical
for all simulations reported, so that comparisons
can be made. In this sense, we are simulating that
one detector lies directly beneath each feature in
the COI (i.e. one detector per feature), and that
the fill-factor of the detector 1s 100% - that is,
we assume that each detector completely covers
the plane beneath each feature.

3.3. Structures modeled

Two possibilities for systems were envisaged: one
based on polymers that can be easily stamped to
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create the features, and one based on silicon for
which lithographic processes will probably be neces-
sary to create the features. To account for these two
cases in the FDTD simulations, only two refractive
index profiles were used. For the former, the base
and feature layers had an index of refraction of
Rpolymer = 1.8; and for the latter the base and feature
layers had an index of refraction of ngjicon = 3.5. In
both cases a fill layer with an index of refraction of
ney = 1.2 was used, as well as a substrate with an in-

dex of refraction of nensrate = 3.5.

4. Analysis and results

To analyze capacity, it is necessary to determine
the number of distinguishable states in a given sys-
tem. For a given COI, reflecting and diffracting
fields from neighbouring cells interact to produce
interference in the COI power measurement. If
neighbouring cells were infinitely far away, then
there would be no interference and no ambiguity
in the assignment of a particular state to a partic-
ular power measure (Fig. 3(a)). When neighbour-
ing cells are close, the effect of the interference is
to cause a slight shift in the measured power vector
(Fig. 3(b)), and uncertainty is introduced in assign-
ment of the state since different neighbour config-
urations will affect it to differing degrees. When
the regions of uncertainties for two different states
are close, there is a greater chance for mis-assign-
ment of a state. The goal of our analysis was to
establish how many states for a given system are

State 1

distinguishable, and hence determine the system
capacity.

Analysis consisted of an initial analysis to deter-
mine systems that provide maximum separation of
state vectors in isolation (i.e. no crosstalk). Good
candidates were then rigorously analyzed with
neighbouring cells, to determine measures of
uncertainty and thus capacity.

4.1 Initial analysis

In the first stage, COls were analyzed in isolation
to get a initial estimation of which parameters pro-
vide the greatest distinguishability in state vectors.
Because there are no neighbours, all state vectors
are unique. Consequently, the aim was to identify
parameferizations that provide maximum separa-
tion (Euclidean) distance between state vectors.
Intuitively we should expect that systems with more
separation will provide better distinguishability.

To understand the metrics we define for evaluat-
ing systems, first consider a set of » power vectors,

with an individual power vector being described by
P = (P, Pay- -, P,

| i<

Then we define the vector describing the cen-
troid of the distribution

P, :% iPiI‘IZIP,j‘...,’Z’P‘:.
=1 il =l

The distance from one vector to another vector is
(in the Euclidean sense) dj; = |P; — P)|, and the dis-
tance from a vector to the centroid is d;. = |P; — P|.

AP2

-\\
s
t/"
™

(a) no interference

(b) with Interference

Fig. 3. The eflect of interference (rom neighbouring COIs for a simplified system (two features). In (a), for COls in isolation (i.e.

neighbouring cells at infinity) would exhibit no uncertainty in identifying two different states

power measure would be exact. In (b),

neighbouring cells are close, and for a given COI state, changes in the neighbouring cells will cause interference and hence uncertainly

in the state power measurement.
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The average distance from the centre is then given
by d. =157 .d... We define several variables to be
able to assess the merit of a system:

| Awdl

diststd = —=\/ ) . (dic — g,c)z the standard
deviation in distance of vectors from the aver-
age vector location,

avgpdist = (dy) = (|P; — P|) the average in dis-
tance between vectors,

—_—

pdiststd \/(df(> (| P — lel) the standard
deviation in distance between vectors.

The average and standard dewiation in power
for each detector were also identified and compared
graphically. Again, if the power measurements
were distributed more widely throughout five-
space, we would expect better distinguishability.

For the geometry of the structures in the simu-
lations, the fill depth was kept constant at
din = 100 nm, and the width of each feature was
always wiaee = 100 nm. For parameterization,
the height of the teatures is varied between
h =50 and A =250 nm, and the depth of the base
layer is varied between d = 10 and & = 500 nm.

Results are found in Table 1. In general, the
higher refractive index contrast provides better
separation between state vectors. This can be seen
better by observing Fig. 4. The power at cach
detector for all 32 configurations is plotted as
points, the mean power at each detector is plotted
as the solid line, and error bars indicate two stan-
dard deviations in the measured power from the
mean at each detector. Examples of poor systems
and good systems are shown for both cases of
refractive index profiles. Though there are
probably several choices of systems that could be
made for more detailed studies, we will focus on
two — one n= 1.8 (polymer) and one n = 3.5 (sili-
con) — that show the best promise. Systems are des-
ignated with the refractive index s, base depth d,
and feature height 4, as nXXdYYhZZ. Using this
naming convention, the chosen best polymer sys-
tem 1s n1.845004250 since it excels in all three mea-
sures compared to the others. The chosen best
silicon system is #3.5d104150; although the n3.

S5d500/150 is similar in measures, we have opted

to look at the former because it would require less

material for fabrication. The chosen systems are
indicated in Fig. S, and are the basis for all re-
ported results from this point on.

4.2 Distinguishable states and capacity measures

To determine how well candidate systems per-
form in the presence of crosstalk (i.e. with neigh-
bouring cells), we first had to define metrics for
this crosstalk. With a full set of simulations for
every possible COI and neighbour configuration,
this allows us to identity distinguishable states,
and therefore capacity.

For the purposes of this study, we designate a
region of uncertainty for a given COI by a power
vector cloud, where all of the possible interference
conditions lie. This region 1s then designated by a
centre C and radius R, as demonstrated in Fig. 6
for an example two-feature system. The centre is
defined by the arithmetic mean of all the possible
vectors in the region, and the radius 15 defined as
the scalar distance between this centre and the fur-
thest outlying measurement. For the three-feature
system, regions are described by spheres, and be-
yond three features by hyperspheres of the appro-
priate dimension.

For a COl to be distinguishable, it is necessary
that its region of uncertainty be distinct from all
other regions for all other COls, otherwise those
states can not be used. This allows us to determine
the capacity of the system. As an example, in Fig. 7
a two-feature system is shown with the regions of
uncertainty for each of the four possible COI con-
figurations. [n this case, two of the states are indis-
tinguishable from each other in the presence of
crosstalk and therefore can not be used. Thus this
system has a storage capacity of 2 states/COIl
(1 bit/COI).

In point of fact, this method of determining
capacity assumes that if two states are overlap-
ping, then they are both discarded. In reality, we
only need discard one of the two. The choice of
which state to discard is complicated however, be-
cause this depends on its relationship with all of
the other states. The choice of which states to keep
and which to discard is actually an NP-hard prob-
lem. For instance, even with 32 possible states for
our COI, there are 2% possible subsets of states
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Table 1
Initial analysis of several systems in isolation

M.E. Potter et al | Optics Communications 253 {2005) 5669

Refractive index ol base layer Depth of base d (nm) Height of feature / (nm) diststd avgpdist pdiststd
1.8 50 10.85 120.18 30.55
10 150 46.16 286.96 86.70
250 150.54 577.22 223.86
50 1147 80.55 22.71
100 150 120.28 397.07 171.30
250 186.69 598.97 264.03
50 4.80 139.74 70.47
500 150 137.94 426.24 210.88
250 198.38 777.97 352.26
35 50 58.71 211.09 85.31
10 150 155.07 848.95 275.54
250 247.19 583.26 310.94
50 156.19 469.51 230.78
100 150 230.63 753.23 330.48
250 153.69 627.51 228.06
50 133.01 560.83 233.23
500 150 206.51 R36.29 285.81
250 253.70 782.23 342.44

that would need investigating. We are currently
investigating optimization and clique-finding
methods for this NP-hard problem, to be reported
at a future date.

For our system to rival current magnetic stor-
age densities, we require at least 5 features per
wavelength. As mentioned before, an exhaustive
set of simulations for one such system would re-
quire over 30,000 simulations, which with the gi-
ven choice of simulation parameters and the
available computer resources would take several
months to complete. In order to reduce this
requirement, we assume that a random subset of
neighbour configurations will allow us to quantify
the system — the centres, radii, and hence capacity
— within a certain measure of error. In order to
determine what fraction of the full set is necessary,
we performed simulations on the candidate sys-
tems with three features instead of five (512 instead
of over 30,000 simulations). This then gives us a
full set to compare measures against as we increase
the fraction of neighbours used. Our intention is
then to use this knowledge to estimate the fraction
necessary for five-feature simulations.

The capacity (and density) will be affected by
the spacing between cells (the gap size); as the
spacing gets larger and larger, we should expect
better and better distinguishability, and hence bet-
ter capacity. However, the density (capacity per
linear measure) should peak at some optimal spac-
mng. We wished to make this spacing a constant in
all future simulations, and so before proceeding
with full simulations for capacity, we did some
nominal simulations with a very small subsct of
neighbours, but increasing gap size to get the den-
sity trend. Fig. 8 shows the results of these initial
simulations as the gap size increases from 50 to
500 nm. We see that the turnover point for capac-
ity vs. density lies in approximately the 250-
400 nm, depending on whether we are using the
silicon or polymer system. In order to aim for
maximum density, we thus choose the 250 nm
measure as our gap size for all future simulations.

4.3. Three-feature measures

Full sets of simulations were performed for the
two candidate systems indicated in Fig. 5, which
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Good Polymer System (n1.8d500h250)
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Fig. 4. Example candidate systems in polymer ((2) and (b)) and silicon ((c) and (d)). The power at each detector for all 32

conligurations is plotted as points; mean power at each detector

is plotted as a solid line; error bars indicate two standard deviations in

the measured power {rom the mean. Clearly there is a marked difference in the separation ol power measures [or poor and good

candidates.
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Fig. 5. Candidate system parameters in both silicon (lefl) and polymer (right) that show promise (or good capacity.

included the COI along with two neighbouring
cells. The cells were separated from each other
by 250 nm. Other modeling parameters were as
discussed in Section 3. The main output of these
full sets was a complete set of power vectors for
each and every possible configuration of COI
and neighbour.

The full set of power vectors determined our
comparison benchmark for the actual centres and
radii of the power vector clouds. We then per-
formed statistical sub-samplings at certain frac-
tions of the full set of neighbours (in this case, 64
is a full set), and determined the centre and radii
with these random sub-samples. This was
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Fig. 6. For a given COIl, as the neighbour confliguration
changes, the measured power vector P will vary slightly. The
variance is represented by an uncertainty cloud with a centre C
and a radius R.
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.R @

3 e ® ®
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\

Fig. 7. A two-element system, indicating a graph of the power
vectors. In this case, COls #2 and #4 overlap, and so are
mdistinguishable from each other.

performed 100 times at each fraction ranging from
3-0f-64 to 64-of-64, and at each fraction the RMS
error of the 100 random sub-samples (relative to
the actual radius from the full set) was found for
the centre and radius. The results of this fractional
randomization are displayed in Figs. 9 and 10.
Note that, as expected, as the fraction taken in-
creases, the RMS error decreases from around
50% to zero at the full fraction. The error in both
measures show a similar trend in this regard,
although there 1s less error in the estimate of the
centre. The utility in such a graph comes from
attempting to infer what a necessary fraction is
for a tolerable level of error. For instance, if an er-
ror of 10% 1s allowable in this measure, then these

%10 Density vs Gap Size
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Fig. 8. Graph showing the trend in density as the spacing
between cells increases, for both polymer and silicon systems.

graphs would indicate that a fraction of approxi-
mately 40-60% of the full set 1s required. This
inference means that, in the five-feature case, that
we should expect to have to perform simulations
for every COI and a random subset of around
400-600 of the 1024 possible neighbour configura-
tions. Unfortunately this is not the substantial
reduction in the simulation time that we were hop-
ing for.

RMS Error for Polymer 3 Feature System
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Fig. 9. The RMS error in Lhe centre and radius for the three-
feature polymer system.
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RMS Error for Silicon 3 Feature System
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Fig. 10. The RMS error in the centre and radius for the three-
feature silicon system.

4.4. Five-feature measures

In order to verify our hypothesis about whether
the inference of the necessary fraction from the
three-feature studies can be carried over to the
five-feature case (and perhaps to the n-feature
case), we completed one exhaustive full set of sim-
ulations for the five-feature silicon case. Simulation
parameters were identical to the three-feature case,
except that the cell of one wavelength in size was
divided 1n five instead of three.

Using this full set of power vectors, we then per-
formed the same statistical sub-sampling as previ-
ously mentioned, over the range of fractions
spanning from 0 to 1. The results of this are shown
in Fig. 11, overlaid on the previous results for the
three-feature in silicon. It is interesting to note that
in this case the error starts at the same levels, but
decreases much more rapidly than in the three-
feature case. In this case, if an error of 10% is
allowable we only need to take a fraction of
approximately 0.1, corresponding to a substantial
reduction in simulation time.

Since we had a full set of data, we were then
able to find our estimate of the number of distin-
guishable states, and hence the capacity. For this
particular system, the capacity was determined to
be 13 of 32 states, using the algorithm described
at the beginning of this section. The final check

RMS Error for Silicon 5 Feature System
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Fig. 11. The RMS error in the centre and radius for the five-
feature silicon system, overlaid on the silicon three-feature
system previously shown in Fig. 10.

in the methodology was to see at what fraction
the capacity i1s well predicted. Fig. 12 shows the
estimated capacity as the fraction of neighbours
taken is increased. From this graph, it appears that
the capacity can be estimated well at a fraction of
around 0.2. From the previous graph, this indi-
cates that an error of around 7% is tolerable for
our estimates of capacity.

4.5. Ellipsoid algorithm

One of the benefits of performing the three-
feature simulations is that we are able to visualize
the distribution of the state vectors in three-dimen-
sional space (a luxury not afforded to us for great-
er levels of features). For instance, the distribution
of the states (the end-point of their vectors) for one
particular system are indicated in Fig. 13. From
this figure, one can see that the distributions for
particular COIs tend to be quite elongated in par-
ticular directions. This indicates that spheres are
not necessarily the best way of representing the
distributions, as they tend to over-predict the vol-
ume occupied by the distribution. It would seem
that ellipsoids could be better predictors of the
occupied volume of states, and using these ellip-
soids would provide better estimations of the
capacities of systems.
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- Mean Capacity for 5 Feature Silicon System
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Fig. 12. The estimated capacity as a function of the fraction of
the neighbours taken. At each fraction, 100 random neighbours
were chosen and the capacity calculated. The error bars indicate
one standard deviation on either side of the mean.

To test this methodology, we developed an
algorithm which defines the enclosing ellipsoid
for a given COD'’s distribution as follows. First,
the centre of the distribution is found. We then
find the furthest outlying state point, and define
the vector between the centre and this point as
the major axis of the ellipsoid. All state points
are then projected onto the plane perpendicular
to this axis. The next largest axis of the ellipse is
then defined in a similar manner, by finding the
furthest outlier on this plane. The process is re-
peated until all axes are found — three for the
three-feature case, or five for the five-feature case
(thus defining a hyperellipsoid).

From these defining ellipsoids, we can then
determine the overlap between two different states.
Because the ellipsoids provide a better indication
of the states’ defining volumes, we expect the
capacity estimates for systems to increase from
previous estimates done with defining spheres.
For example, in Figs. 14 and 15 the same state dis-
tributions are shown with defining spheres and
defining ellipsoids. Clearly there is interference in
the former case, but no interference in the latter.
Using the ellipsoids to define the state volumes,
we performed capacity analyses on the previous
three systems. The results of these measures arc

tabulated in Table 2, where we can see that the
estimated capacity of the five-feature silicon sys-
tem has nearly doubled to having 27 of 32 states
distinguishable.

5. Discussion

Using the analyses in the previous sections, we
were able to use the knowledge from the three-
feature systems to establish the number of simula-
tions needed for higher orders of features. This has
allowed us to reduce the simulation times neces-
sary for investigating other systems. Using one full
set of simulations for a five-feature system, we
were able to show how the necessary fraction of
neighbour simulations decreases rapidly as the
number of features increases. More importantly,
the use of ellipsoids rather than spheres enables a
more accurate method of distinguishing states,
and can dramatically improve the predictions on
capacity.

To compare the performance of this alternative
system with existing technologies, it was necessary
to estimate the achievable system density. From
the simulations, it is possible to calculate a linear
density, where we have to take into account the
spacing of 250 nm between cells. Assuming that
the same linear density can be achieved in the
other planar dimension, an areal density can be
determined. With this assumption, the maximum
achieved density is predicted to be 3.17 GBits/
em? for the silicon five-feature system. Although
this 1s much less than our system goal, it is still five
times better than current DVD densities.

[nitial simulations with other degrees of free-
dom provide some evidence indicating even higher
densities are achievable. By allowing each feature
to take on more than two possible levels, we can
create even more possible states. For instance, a
five-feature, four-level system would have 1024
possible configurations of the COI (rather than
the 32 for the two-level system). A larger percent-
age of states will be indistinguishable, but it could
still be that, for instance, 128 are distinguishable -
a capacity of 7 bits/A. We have performed a very
preliminary analysis of such a system - using the
silicon template that has been used throughout
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Fig. 13. The figure on the left shows the plot of the state vector distributions, for every COI, for the silicon three-feature system, along
with the vector indicating the centre of the distribution. The figure on the right is an expanded view. without the centre vectors,
demonstrating how the distributions are, in general, elongaled in shape.
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Fig. 14. The distribution for two COIls of a system, and the
spheres that have been calculated to indicate the extent of the
distribution. Note that in this case, to determine capacity, both
of these states would be discarded because of the overlap in
their spheres.

the last section — with a very small number of
neighbour COIs. Using methods that over-estimate
the uncertainty sphere radii, and hence provide a
conservative estimate of the capacity, we find that
at least 54 of the 1024 states are distinguishable.
This would provide roughly double the linear
density of the best system discussed so far in this
paper.

Although larger densities will be required to
surpass current magnetic storage technology, there
are still a many possibilities to explore to increase
the capacity of the proposed nanostructure optical
data storage method. For instance, other parame-
ters can be exploited in order to distinguish states,
such as the wavelength and polanzation of the
source. These other degrees of freedom could fea-
sibly dramatically increase the capacity of the sys-
tem, but are left for future research.

Besides utilizing methods to increase the de-
grees of freedom, there are many avenues to be
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Fig. 15. The same two distributions as in Fig. 14, except with
calculated ellipsoids rather than spheres to represent their
distributions. In the capacity measure [or this system, these two
states would now be valid (distinguishable) because there is no
overlap.

Table 2
A companson of the capacity of the three different systems,
using spheres or ellipsoids to defline the state distributions

Capacily (# states/) Three-teature Five-feature
Polymer Silicon Silicon

Using spheres Jof8 408 13 of 32

Using ellipsoids 60f8 8 of § 27 ol 32

explored for improving the implementation of
the system. For instance, the spatially distributed
near-field power data could be converted to
spectral data for measurement in the far-field.
One could imagine utilizing a set of patterned
array of organic fluorophores as the detector le-
vel for just such a thing. The relative spectral
intensities of the fluorophores measured in the
far-field would then provide the data measure
for a COL.

6. Conclusion

A read-only memory system was proposed
that uses near-field optical power measurements

to distinguish between designed deformities in
nanoscale structured cells. Differing deformities
or features affect the power measurements
allowing for different states to be stored and
rcad. The capacity (and hence the density) of a
given system is governed by the crosstalk be-
tween cells, causing some states to be
indistinguishable.

Measurements and methods of analysis were
developed using simple simulations of three-
feature systems, from which inferences were made
on the fraction of simulations necessary at higher
orders of features. Trends showed that as the num-
ber of features increases, the fraction of simula-
tions necessary to get an accurate estimate of
capacity decreases. In the example of a five-feature
systemn that was presented, approximately 20% of
the full set of simulations was enough to provide
an accurate estimate of the capacity. Simulations
for three-feature systems also provided insight on
the shape of the power distributions, which al-
lowed better estimates of capacity and hence den-
sity. Densities of 3.17 GBits/lem® have been
estimated that greatly surpass current optical stor-
age techniques.

Although the densities of magnetic storage have
not yet been achieved, the optical system shows
great potential. The third dimension is the main
factor that provides hopes for larger capacity with
an increased number of degrees of freedom, such
as diflerent modes of polarization. Another possi-
bility is investigating the effects of the wavelength
of the source to provide additional data to distin-
guish the different states. Future work will simu-
late the system in three dimensions to investigate
these additional avenues available to increase
capacity.
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Nonlinear Codes for Dispersive Nonlinear Fibers
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Abstract—We consider a single wavelength channel in a non-
linear dispersive single-mode fiber. We simulate the propagation
of binary sequences using ON-OFF keying return-to-zero modula-
tion at a bit rate of 10 Gb/s, under different dispersion and input
power conditions. We determine the impact that dispersion and
nonlinearity have on the pulse sequences by measuring the Eu-
clidian distances (EDs) among all pairs of received sequences. We
then model the set of EDs as a fully connected graph and by means
of a clique-finding algorithm we search for subsets of sequences
that form codes matched to this nonlinear channel, resulting in sig-
nificant bit-error-rate improvement.

Index Terms—Dispersive nonlinear fiber, fiber-optic communi-
cations, forward error correction, nonlinear codes.

[. INTRODUCTION

ROUP-VELOCITY dispersion (GVD) is known to limit

the performance of fiber-optic communication systems
by causing intersymbol interference (IST) that increases with
propagation distance [1]. Moreover, in single-mode fibers, the
pulse propagation is power-dependent duc to Kerr nonlinearity.
This nonlinearity interacts with dispersion, further increasing
the pulsewidth under normal dispersion and also producing
spectral broadening [2]. In dispersion-compensated systems,
intrachannel pulse interaction causes distortion and jitter that
increases with power and propagation length [3].

In this letter, we present a numerical analysis of the effects
that GVD and nonlinearity have on the Euclidian distances
(EDs) among pulse sequences at the receiver in a single channel
of a wavelength-division-multiplexing (WDM) system. We ob-
serve that nonlinearity and dispersion induce a significant
decrease in the minimum ED while the overall ED distributions
are not considerably changed. We describe a graph theory-based
methodology with which we obtain codes that are well matched
to this nonlinear fiber channel, giving a significant reduction
in bit-error rate (BER) compared to linear codes of the same
length.

II. DUESCRIPTION OF THE: SIMULATIONS
The propagation of optical pulses is governed by the well-
known nonlinear Schrodinger (NLS) equation [4]
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where A is the slowly varying amplitude of the pulse, z is the
propagation distance, and 7 is the time in a reference frame
that travels at the pulse group velocity. GVD, third-order dis-
persion, nonlinearity, and losses are represented by the parame-
ters (12, 43,7y, and «, respectively. In (1), we have not included
higher order nonlinear terms like those that account for stim-
ulated Raman and Brillouin scattering, as they are negligible
within the range of power and pulsewidth we consider in this
letter. To solve the NLS equation given in (1), we use the sym-
metrized split-step Fourier method [5], [6] with constant step
size.

We simulate the propagation of 10-bit sequences using
Gaussian pulses and ON-OFI' keying return-to-zero modula-
tion at a bit rate of 10 Gbh/s, along a fiber of length 50 km.
The sequences comprise equally spaced bit slots, with each
pulse centered in its bit slot. Also, sequences are padded with
2.5 bit slots of zeros at the beginning and at the end to avoid
energy spilling at the boundaries. Sequences are necessary to
account for the memory in the channel, manifested through the
broadening and distortion of the pulses, which can extend to
several adjacent bit slots. We find that using 10 bits is enough
to accurately account for the spreading of the pulses, while
maintaining a reasonable processing time, as the complexity
of our procedure grows exponentially with the number of bits.
The power I applied to the pulses ranges from 1 to 100 mW.

The GVD parameter /3, is varied from 2 to 30 ps®/km, in the
normal dispersion regime and we fix the third-order dispersion
at 33 = 0.1 ps3/km. The nonlinear parameter + is set to a fixed
value of 1.3 W lkm™!. We assume no fiber losses in order to
clearly show the effects of nonlinearity in the ED measurements,
although we do consider losses when evaluating the codes as we
want to use them in a realistic environment.

In order to analyze the impact of the pulsewidth for a given
data rate, four different duty cycles are studied, namely. 25%,
33%, 40%, and 50%. We define duty cycle as the full-width at
half-maximum (FWHM) of the pulse intensity over the bit slot
width. For a given peak power Iy, the average power applied to
a pulse clearly depends on the duty cycle. Therefore, to make
a fair comparison of performance among different duty cycles,
we apply a power penalty by scaling the measured ED by the
average intensity of each pulse. This scaling produces a nor-
malized ED (NED) that also allows us to compare the effect of
nonlinearity at different input power levels, namely 1, 10, and
100 mW. For our system, we assume incoherent and direct de-
tection. Hence, ED is computed in the intensity domain

EDP‘(I = \/Z ([11:-‘ - Ir[.f)ll (2)

where I, ; and I, ; are the measured intensities for sequences p
and g, respectively, at the discrete time step ¢. The summation
is over all samples in the sequence.
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Fig. [ (a) Minimum NED versus dispersion at F, = 1, 10, and 100 mW for
50% duty cycle. (b)) Minimum NED versus 3. at Py = 100 mW for several
nonlinear codes using a 50% duty cycle. Hamming (7, 4) is also included for
comparison.

Fig. 1(a) shows the minimum NED among pairs of sequences,
versus J7. at an input peak power Py of |, 10, and 100 mW,
and a duty cycle of 50%. Within all the duty cycles considered
in our simulations, the performance at 50% duty cycle consis-
tently showed to have the largest minimum NED. We observe
in Fig. 1(a) that the minimum NED decreases monotonically as
dispersion increases. As the power is increased, the minimum
NED decreases more rapidly with dispersion, as an effect of
nonlinearity. At 100 mW and 30 ps?/km, the minimum NED
has decreased to almost a half of the normalized value found at
I mW.

111. NONLINEAR CODES

For a given set of fiber parameters we obtain an ED map, the
set of EDs among all pairs of 10-bit sequences. Within the ED
map, we search for subsets of sequences with large minimum
distance. This map can be thought of as an interconnected graph
where each binary sequence is a node and every ED is an edge.
This graph is fully connected, because there is a nonzero dis-
tance between every pair of nodes. We would like to remove
those edges with an ED smaller than some minimum preferred
value. This value will be chosen according to the code rate we
want. Since our modulation scheme is binary, we are interested
in finding codes with a number of codewords that is a power
of two. Since it is not possible to predict the minimum ED re-
quired to produce a code with a previously chosen number of
codewords, we have to do an iterative search. After removing
all edges with ED smaller than the preferred value, we seek the
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TABLE 1
Fure SET oF COnEWORDS OF THE CODE NL (10, 6)

0000000000 OTTTI00101 IOTTII6TI0 1Tregroton
000000111 1010101061 1011L11010 1110100111L
0000011001 1010101111 Lo LE10101110
0000011111 1010110111 1100000011 1110111001
00010L110] 1010111000 1100011010 LUiotIrnnt
0001101101 1010111011 1100101100 LEI1O0001!
0001110000 rotortriel 1100110011 LHLor1oot

HI0OLTLLID
1101011111
1101100001

goo1trionto
Q001111010
Qoo1tL1IL1

1011000000
1011000111
1011001101

INRREUARRRR
LIT1100060
rrreeoontd

0010110101 1011011000 1101100111 1111101100
Qo1ip1g0L1 [o1riortorl 1erionioln Lrrrronrnt
0101001011 1011011110 1101110110 [TE1110100
0101110011 1011101011 1101111010 FErrrton

0101111101 1011101110 1LIO1LILLEL [I1I11011t
0111010110 (1011010000 1L10001101 1111111101

largest subset of nodes that are fully connected, i.¢., where there
exits an edge between every pair of nodes in the subset. This
subset of nodes forms a code. This is known as the clique finding
problem [7], [8], and only an exhaustive search can guarantee
the optimal result. There is certain symmetry in the ED map
that facilitates the search for a good (nonoptimal) solution. This
solution will have the best performance under the fiber parame-
ters in which it was found. but, as we will show. it can perform
well under other conditions.

A property of linear codes is that the addition of any two
codewords of the code produces a codeword that is part of the
code. A nonlinear code is a more general set of codewords that
does not have this property. As a consequence, nonlinear codes
cannot be generated by a matrix. bul instead by a lookup table. In
practice, codes with the best distance properties will likely to be
of the nonlinear kind due to the nature of this method, and also
because, under 1S1, ED does not necessarily grow monotonically
with binary (Hamming) distance.

Fig. 1(b) shows the minimum NED versus (7, using a few
of these nonlinear codes, for Iy = 100 mW and 50% duty
cycle. These codes are 10 bit long and have various numbers
of codewords according to their code rates (the rate of a code
is R = log, (#codewords/10). They are all optimized for /7,
30 ps®/km. We observe that there is a significant increase of the
minimum NED for the entire range of dispersion compared to
the minimum NED of the uncoded sequences, also shown in the
plot. It is also worthwhile to include the minimum NED per-
formance of a Hamming (7. 4) code, shown by the curve with
an 2 marker in Fig. [(b), as this shows that the minimum NED
of the set of sequences defined by this code decreases signifi-
cantly as dispersion increases. This implies that the code does
not have good performance under ISI. Table I shows the binary
codewords of a rate 0.6 nonlinear code [which we label NL1(10,
6)], optimized for Py = 100 mW, 3y = 30 ps®/km, L = 50 km,
and 16.7 Gb/s (such that the information rate is 10 Gb/s). Under
these fiber conditions, the overall minimum NED, the maximum
NED, and the chosen minimum NED to get the code NLI(10,
6) are 0.0526, 1, and 0.3409, respectively (all values normalized
to the maximum NED). We measure the BER performance of
code NLI(10,6) in Section IV.

1V. BER PiiRIFORMANCI
Fig. 2 shows the BER performance of the code NLI(10, 6) at
a bit rate of 10 Gb/s, with parameters (3, = 30 ps>/km, 33 = 0.1
ps?/km, Py = 100 mW, o = 0.2 dB/km, v = 1.3 W tkm™!,
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using Ciavssian pulses. % = 20 mW, L = 100 km, 4, = 15,30, and

—30 ps*/km.

and L = 50 km, using Gaussian (hollow markers) and hyper-
bolic secant pulses (filled markers). We assume additive white
Gaussian noise and a maximum-likelihood (ML) receiver with
a bandwidth of 20 GHz. The performances of a Hamming (7,
4) code and that of the uncoded set are also included. A power
penalty has been applied to each curve to account for the dif-
ferent code rates, and the coded sequences were simulated at
16.7 Gb/s so that the information bit rate was maintained at
10 Gb/s. We see in Fig. 2 that at a BER = 1077, the coding
gain of this code is about 5.1 dB over the uncoded set and about
3.2 dB over the Hamming (7, 4) code, which has a comparable
rate of 0.57.

Fig. 3 shows the BER performance of the code NL1(10, 6)
under various other settings. For Py = 20 mW, 3> = 15 ps%/km,
and L, = 100 km (bit rate and other parameters kept the same
as in previous case), the coding gain is 1.5 dB over the uncoded
set and about 3.8 dB over the Hamming code. at a BER = 107
(dashed lines with hollow markers). Note that the Hamming
code performance is worse than that of the uncoded sequences.
This occurs because the Hamming code cannot overcome the in-
creased IST that the pulses suffer as they propagate at a higher bit

[EEE PHOTONICS TECHNOLOGY LETTERS, VOL, 16, NO. 12, DECEMBER 2004

rate (16.7 GB/s) in order to maintain the information bit rate at
10 Gb/s. Under the same fiber parameters but with a dispersion
of 30 ps?/km (continuous lines with black markers), the results
of the code NL1(10, 6) are excellent too: Ata BER = 1077, the
coding gain is 5.8 dB over the uncoded bits, and 3.8 dB over the
Hamming code.

This code shows to give good results in the anomalous disper-
sion regime as well. For Py = 20 mW and » = —30 ps*/km
(maintaining all other parameters as in the previous case), the
coding gains are 3.4 and 3.6 dB over the Hamming code and
the uncoded sequences, respectively (dotted lines with gray
markers).

V. DISCUSSION AND CONCLUSION

Using an approach from graph theory, we have found non-
linear codes from the ED maps that outperform linear codes
of similar length in both the normal and anomalous dispersion
regime, as these nonlinear codes account for the nonlinearity
and dispersion present in the optical fiber.

‘We have determined as a rule of thumb that good performance
can be achieved with code NLI(10, 6) if the ratio of disper-
sion length Lp = 1Zwyni/|P2| over propagation length L is
Lp/L < 2.0 approximately. Also, an ML receiver is required.
Other codes can be found to provide good performance under
lower dispersion and/or bit rates.

These codes can be used as an alternative to dispersion com-
pensation and can be used in WM systems. This methodology
could still be used on systems that already incorporate disper-
sion compensation, and this is under study.

By operating at high power, like 100 mW, spectral efficiency
is reduced by the effects of nonlinearity, as it causes the spec-
trum to broaden. In practice, spectral broadening is not con-
spicuous below 40 mW in the presence of typical fiber losses
and within the dispersion range in which this code is design
to give good performance. Nevertheless, code NLI1(10, 6) per-
forms very well at lower power, so it is not essential to incur in
a spectral efficiency penalty to obtain good results.

We are working on increasing the code length by extracting
the salient features of the nonlinear codes and forming lincar
codes that contain these features.

REFERENCES

R. J. Nuyts, Y. K. Park, and P. Gallion, “Performance improvement of
10 Gb/s standard fiber transmission systems by using the SPM eftect in
the dispersion compensating fiber,” IEEE Photon. Technol. Letr., vol. 8,
pp. 14061408, Oct. 1996.

[2] M. Potasek, G. Agrawal, and S. Pinault, “Analytic and numerical study
of pulse broadening in nonlinear dispersive fibers,” J. Opr. Soc. Amer: B,
vol. 3, pp. 205-211, 1986.

[3] A. Mecozzi, C. Clausen, and M. Shil, “Analysis ol intruchannel
nonlinear effects in highly dispersed optical pulse ransmission,” JEEE
Photon. Technol. Lett., vol, 12, pp. 392-394, Apr. 2000.

141 G. P. Agrawal, Nonlinear Fiber Optics.  San Dicgo, CA: Academie,
2001.

|S] ——, Fiber-Optic Communication Systems. New York: Wiley, 1997,

[6] T. R. Taha and M. J. Ablowitz, “Analytical and numerical aspects of
certain nonlinear evolution equations,” J. Comput. Phys., vol. 55, pp.
203-230, 1984,

|7] M.R. Garey and D. S. Johnson, “Complexity of near-optimal graph col

oring.” J. ACM. vol. 23, no. 1, pp. 43-49, 1976,

C. Bron and . Kerbosh, “Algorithm 457. Finding all cliques of an undi-

rected graph.” Commun. ACM, vol. 16, no. 9, pp. 575-577, 1973,

[

(8



Appendix 3

Information Propagation in a Fast-Light Medium



m

NATURE 2016—11/9/2003—VBICKNELL-—82343

The speed of information in a
‘fast-light’ optical medium

Michael D. Stenner’, Daniel J. Gauthier' & Mark A. Neifeld®

'Duke University, Department of Physics, and The Fitzpatrick Center for
Photonics and Communication Systems, Durham, North Carolina 27708, USA
‘Department of Flectrical and Computer Engineering, The Optical Sciences
Center, Umiversity of Arizona, Tucson, Arizona 85721, USA

signal can cause an effect outside the source light cone, the space-
time surface on which light rays emanate from the source'.
Violation of this principle of relativistic causality leads to para-
doxes, such as that of an effect preceding its cause’. Recent
experiments on optical pulse propagation in so-called ‘fast-
light’ media—which are characterized by a wave group velocity
v, exceeding the vacuum speed of light ¢ or taking on negative
values*—have led to renewed debate about the definition of the
information velocity v;. One view is that v; = v, (ref. 4}, which
would violate causality, while another is that v; = ¢ in all
situations®, which would preserve causality. Here we find that
the time to detect information propagating through a fast-light
medium is slightly longer than the time required to detect
the same information travelling through a vacuum, even
though vy in the medium vastly exceeds c. Our observations
arc therefore consistent with relativistic causality and help to
resolve the controversies surrounding superluminal pulse
propagation.

The speed of a light pulse travelling through an optical material is
not precisely defined, because any pulse comprises a collection of
elementary sinusoidal waveforms, each with a distinct frequency w.
Each constituent sinusoid travels at a well-defined velocity known as
the phase velocity v, = ¢/n(w), where n(w) is the refractive index of
the optical material. Approximate theories of optical pulse propa-
gation predict that the peak travels at the group velocity
vg=cf(n+ wdn/dwl, wo) = ¢/ng, where n, is the group index
and w, is the central frequency of the wavepacket®.

We refer to the quantity dn/dw as the dispersion of an optical
material. For typical optical materials, there exist narrow spectral
regions where n{w) is a decreasing function of frequency (that is,
dn/dw << 0), resulting in a condition known as anomalous dis-
persion’. When w,, is within such a region, n, can be less than one
and can even become negative when the anomalous dispersion is
large. This results in “fast light) for which it is possible that the peak
of a light pulse may exit the optical material before it passes through
the entrance face®. The amount of fast-light pulse advancement is
largest when v, is negative and near zero (1, large and negative).

The possibility of superluminal group velocities (v, > ¢ or
v, < 0) was such a concern to researchers around 1910 that several
conference sessions were devoted to the topic®. Based on these
discussions, Sommerfeld demonstrated theoretically that the
velocity of the front of a square-shaped pulse propagating through
any medium is identically equal to ¢ and hence relativistic causality
is preserved'. In a follow-up study, Brillouin suggested that the
group velocity is not physically meaningful when the dispersion is
anomalous because the pulse becomes severely distorted''. More
recent research investigating the propagation of smooth-shaped
pulses has shown that this conclusion is not justified, leading to
renewed controversy™'* "

Another outcome of the discussions in the early 1900s, as
recounted in the preface and first chapter of the book by Brillouin®,
was a reformulation of the fundamental postulate of the special
theory of relativity. This reformulation states that, rather than limit-
ing the speed of an ‘object] it is the information velocity v; that is
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limited by ¢. Unfortunately, there is no agreed-upon definition of
the information velocity®.

In our experiment, we use a fast-light medium that exploits the
spectral region of anomalous dispersion between two closely spaced
amplifying resonances'**" realized by creating large atomic coher-
ence’ in a laser-driven potassium vapour™, as shown in Fig. 1la. We
obtain larger pulse advancement for a smooth gaussian-shaped
pulse, as shown in Fig. 1b, in comparison to the experiment of
ref. 15, by increasing the gain and hence the size of the anomalous
dispersion. The larger advancement relative to the pulse width
obtained in our experiment makes it easier to distinguish the
different velocities describing pulse propagation. From this data,
we infer that n, = —19.6 * 0.8, indicating that we are operating in
the highly superluminal regime.

Measuring v, requires an understanding of the fundamental
mechanism for information encoding and detection. Garrison
et al’ propose that new information is encoded on an optical
pulse by creating a point that is non-analytic (for example, a
discontinuity in the pulse amplitude or its derivatives) and that
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Figure 1 Fast-light pulse propagation. a, Experimental set-up. The potassium vapours
are contained in two uncoated Pyrex cells of length L/2 = 20.cm (to suppress unwanted
parametric instabilities™) and heated to obtain an atomic number density of

45 x 10" atomscm 7, Linearly polarized coherence-preparation laser beams
(frequencies wqand w,, ) are combined with the linear and orthogonally polarized pulses
using pelarizing beam splitters. The pulses are detected by an avalanche photodiode with
a 25kHz—125 MHz bandwidth. The coherence preparation beams are adjusted with w,
set at 1.36 GHz to the high-frequency side of the centre of the potassium 4P, 5 — 4P,
transition and wq, — wy- = 23 MHz, chosen to optimize the pulse advancement using
procedures similar to those discussed in refs 15, 18 and 22. The pulses are generated by
passing a continuous-wave laser beam through an acousto-optic modulator (AOM) driven
by a computer-controled arbitrary waveform generator. The time origin has been set
arbitrarily to coincide with the peak of this pulse. b, The solid line shows the temporal
evolution of a 263.4-ns-long (full-width at half-maximum) pulse propagating through the
cells when the lasers are tuned far from the atomic resonance and hence the vapour-cell
portion of the path is equivalent to vacuum. The dashed line shows the observed fast-light
pulse advancement for a smooth pulse shape when the coherence-preparation laser
is tuned near the atomic resonance and w ,, is set between the gain resonances. The
peak of the pulse is advanced by ¢4, = 27.4ns = 1.1 ns, corresponding to a relative
pulse advancement of 10.4%. Using f . = L/c — L/w, with L/c = 1.3ns, we find
w/c = —0.051 = 0.002. Careful inspection of the fast-light pulse reveals that it has
been compressed by 1.9%, which is due primarily to the frequency dependence of the
gain'™'",
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this point always travels at ¢ regardless of the value of the
other velocities associated with the pulse’”. Essentially, they have
generalized Sommerfeld’s concept of the front velocity to a non-
analytic point of the pulse amplitude, where the front of a square-
shaped pulse is an example of a point of non-analyticity. These
workers™ suggest that the point of non-analyticity is the only part
of the pulse representing new information because measurements of
the early part of the pulse cannot be used to predict anything about
the part of the pulse arriving after the point of non-analyticity, and
hence v, equals the speed of a point of non-analyticity. For counter-
views, see refs 2, 4, 23 and 24. We note that some aspects of their
proposal have been verified using electronic circuits where no
propagating waves are involved, and hence only issues of causality,
but not relativistic causality, can be tested* .

To enhance our ability to estimate the location of this non-
analytic point in the presence of noise, we use two optical pulses that
are initially identically gaussian-shaped, which allows us smoothly
to turn on the pulse amplitude to a level above the noise floor of our
detection electronics and to monitor the fast-light pulse advance-
ment. Near the peak of the gaussian function and at the same
moment for both symbols, we switch the amplitude of the gaussian
function to a high (1) or low (0) value for the remainder of the
pulse. The moment when a decision is made to switch between the
symbols corresponds to the point of non-analyticity. Note that this
transition is smoothed out by the finite response time of the optical
switch.

The location of the point of non-analyticity is determined by
detecting the arrival of new information using a receiver that can
distinguish between symbols to a desired level of certainty, charac-
terized by the bit error rate (BER). Before the arrival of the point of
non-analyticity at the detector, we expect no detected information,
corresponding to a BER of 1/2. Once the point of non-analyticity
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Figure 2 Transmitting information-encoded opfical pulses through a fast-light medium.
a, Transmitting ‘0" and 1" through the fast-light medium (dashed line) and vacuum (solid
line). Each symbaol is transmitted separately through the medium and vacuum, where each
curve is an average of 50 pulses. b, High-resolution plot of part of a with an offset for
clarity. The amplitude of the advanced and vacuum pulses have baen scaled so that their
heights would be the same if a gaussian pulse propagated through the system, as in
Fig. 1b. The error bar indicates the typical standard deviation of the pulse amplitudes.
Fram Fg. 2a, itis seen that the fast-light medium advances the early part of the pulses
during the smooth turn on, identically to that observed for the full gaussian-shaped pulses
shown in Fig. 1b. Most important is the observation that both symbols are the same for
early times so that it is not possible to distinguish between them, Hence, no information
can yet be conveyed to a receiving party at the end of the communication channel.

2

propagates past the detector, the received information will grow
smoothly from zero and the BER drops. A symbol is considered to
be detected when the BER falls below some threshold. Hence, the
detection time of information is later than the time when infor-
mation is first available at the detector, even for pulses propagating
through vacuum. This detection latency At depends on the charac
teristics of the medium through which the pulses propagate, the
shape of the symbols, the detection algorithm, noise’ in the
detection process (including quantum noise™”’), and the BER
threshold. It increases as the signal-to-noise ratio decreases because
it takes longer for the receiver to achieve the same BER. Achieving
the limit At — 0 requires the use of optirnal symbol shapes and
detection algorithms, and infinite energy in the optical pulse so that
the signal-to-noise ratio of the detected waveform approaches
infinity. Although it is possible to estimate Ar for a specific
experimental apparatus, it cannot be measured directly because it
requires measuring the point of non-analyticity. A crucial aspect of
our experiment is to make At as small as possible and to make it as
similar as possible for both vacuum and advanced pulses.

Figure 2 shows the propagation of both symbols through the fast-
light medium and vacuum. From a simple visual inspection of the
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Figure 3 Detecting the arrival of new information. Shown is the BER as a function of the
upper limit of the integration time 7 for the vacuum (solid line) and advanced (dashed fing)
pulses. The horizontal line indicates the detection threshald. a, Experimental
observations. The time origin has been selected arbitrarily. b, Theoretical predictions
based on Maxwell's equations. The time arigin corresponds to the moment when the point
of non-analyticity first arrives at the detector, The BER is determined using the following
matched-filter procedure. For each symbol (0 and 1), there are 50 pulse waveforms.
Reference waveforms for each symbol, denoted by Ro{t) and A 4(f), are generated ty
averaging 49 pulse waveforms for each symbol and the integral D(z) = ly(r) — li()is
determined for each pulse, where the waveform being detected is not included in the
respective reference waveform. Here: /,(r) = .I'," TxOR O e (r N7 (for ) = 0,
1), where x{f) is an individual pulse waveform, ¢, is an integration start ime chosen
arbitrarily at & time in the early beginning of the pulse, N(r) = ‘]',' i H‘J’,'(railf,

ayre) = l, T X3 (0dt /N(7.), and 7, is a normalization integration time chosen
arbitrarily on the leading edge of the gaussian pulse before the point where the symbols
separate. For each symbol type, the probability density of [ is fitted to a gaussian
distribution normalized ta an area of 1/2 and the overlapping area of these two gaussian
distributions is the BER.
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data, we see that the time where it is possible to first distinguish
between the two symbols for the advanced pulses is slightly later
than the time where it is possible to first distinguish between the
same two symbols propagating through vacuum. In addition, it is
seen that the manner in which the average symbol waveforms
separate for the vacuum and advanced case are only slightly
different, so that the detection latency times (denoted by Af,,.
and At g, respectively) should be similar.

To quantify our results, we determine the BER for the vacuum
(Fig. 3a, solid line) and advanced (dashed line) pulse pairs using an
integrate-and-dump matched filter technique. The BER is high for
final observation times in the range between —40 and —25ns,
during which the pulse amplitudes are large (see Fig. 2a). Hence,
even though the signal-to-noise ratio for a single pulse is high at
these times, the pulses are not yet distinguishable and no infor-
mation is detected. Placing the detection threshold at BER = 0.1,
chosen to keep At and At g, small, we determine the detection
time for vacuum (advanced) pulse pairs T,,c (T,ay) and the
difference in detection times T; = T,4, — T.... The time difference
is approximately constant for BER values around 0.1; its average
value in the range of BERs between 0.08 and 0.2 is equal to
3.2 = L.5ns. Our observations demonstrate that the information
detection time for pulses propagating through the fast-light med-
ium is longer than the detection time for the same information
propagating through vacuum, even though the group velocity is in
the highly superluminal regime for the fast-light medium.

From our direct measurement of T;, we do not know whether an
observed difference between the detection times is due to changes in
the detection latencies or differences in the information velocities
for vacuum (v ...) and the fast-light medium (v, ,q4,). The relation
among these quantities is given by:

T, = (Lfll’i,ddv = L;‘/Ui,v.lc) F (Anadvy — Arvac) (D

To gain some insight about the importance of detection latency,
we analyse a mathematical model, based on Maxwell’s equations,
that describes approximately the generation, propagation, and
detection of our symbols. Consistent with previous research®?,
this model predicts that v; .4, = Vi = ¢, and hence T; is com-
pletely determined by (At,4, — At.,.). Using the same matched-
filtering approach, we determine the predicted BER as shown in
Fig. 3b. We see that information is detected later for the advanced
pulses than for the vacuum pulses, qualitatively similar to the
experimental observations. We find that T; = 1.5 * 0.5 ns, where
the error only accounts for statistical uncertainty in the BER
determination. The fact that T, # 0 demonstrates that subtle
changes in the shape of the symbols after information has been
encoded give rise to substantial changes in the detection latency. The
predicted value of T; might be smaller than the observed time owing
to our assumption that the fast-light medium does not change the
noise properties of the optical pulses™.

Using the model prediction for (At,y, — At,..) In equation (1)
and taking v; ... = ¢, we find that v; .4, = (0.4 = 0.5)c. Thus, our
observations are consistent with the special theory of relativity even
for a medium where v, is highly superluminal, demonstrating that
the peak of the advanced pulse at the exit face of the medium (see
Fig. 1b) is not causally connected to the peak at the entrance face’.
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Because our analysis makes no assumptions about the sources of
noise in the encoding, transmission and decoding process, our
general experimental approach and conclusions should hold even in
the limit where quantum fluctuations are dominant™***, [E
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Appendix 4

Information Propagation in a Slow-Light Medium



Fast (but causal) information trasmission in an optical
material with a slow group velocity
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We demonstrate transmission of information encoded on optical
pulses at a velocity 60 times faster than the group velocity v,, which
describes the speed of the peak of the pulses. QOur experiments
are conducted using a laser-driven potassium vapor with v, ~ 0.0lc,
where ¢ is the speed of light in vacuum. We measure the veloc-
ity of information v; by transmitting different pulse shapes through
the vapor and measuring the time required to distinguish the dif-
ferent shapes. Our observation that v; > v, directly contradicts the

conventional wisdom that v; = v, when 0 < v, < c.
One of the most fundamental characteristies of a pulse of electromaguetic radiation
is the speed at which it propagates. In vacun, the pulse travels at speed ¢ and does
not change its shape. On the other hand, a pulse traveling through a dispersive material
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(such as an optical fiber or a gas of atoms) experiences some degree of pulse reshaping
due to the frequency dependence of the refractive index n(w). The reshaping arises frow
the fact that a pulse is a coherent superposition of component sinusoidal waves (1), each
of which travels through the medium at a different speed known as the phase velocity
tty = Gf{u).

In general, there is no simple way to completely characterize the speed of a pulse due
to the reshaping effect. To address this problem, it is customary to introduce several
characteristic velocities that describe different aspects of the reshaping process. For ex-
ample, it is well-knowu that the peak of the pulse travels approximately at the group
velocity vy = ¢/ (n + wdn/dwl,—., ), where wg is the central frequency of the pulse (1, 2).
This velocity deseribes the lowest-order effect of the reshaping process: a translation in
space-time of the pulse in comparison to the same pulse traveling in vacuum.

Recent research has shown that it is possible to make dramatic changes in the group
velocity of a gas of atoms by driving it with an intense laser beam, therchy creating
large atomic cohercnce, which in turn induces large changes in dn/dw (7). For example,
by inducing large normal dispersion (positive dn/dw) or anomalous dispersion (negative
dn/dw), it is possible to slow light to less than 20 m/s (4), stop or freeze light (5 7), or
even make superluminal pulses (8, 9).

Superlnminal pulses, with v, > ¢ or v, < 0, have created considerable controversy
because their existence might suggest that information can travel faster than ¢, which
would violate relativistic causality (10). This controversy has been addressed in a recent
experiment where it was found that the information velocity in fast-light media is indeed
less thau ¢ (11).

In contrast, there has heen little research to directly measure the information veloc-

ity in a normally-dispersive. slow-light medium.  This situation is perhaps understand-



able: many texthooks on electromagnetism demonstrate theoretically that, in a normally-
dispersive material, v, is approximately equal to the signal velocity vy as defined by Sow-
merfeld and Brillouin nearly a century ago (1, 2). The name “signal velocity” implies that
it is related to the transmission of information, a concept that is cchoed in many texts
and research articles (12, 13). As a result, it is commonly believed that v, = vy = v, for
norally-dispersive media.

Chiao and collaborators offer a different view. They show that v, can exceed ¢,
suggesting that v, cannot be the true velocity of information (10). Also, the intensity
threshold used to determine v, is arbitrary (2), allowing for different values of v, for the
same pulse. As an alternative, they propose that information is contained only in points
of non-analyticity on clectromagnetic waveforms, and therefore that v; is equal to the
speed with which these poiuts propagate (10, 14). An example of such a non-analytic
point is a discontinuity in the waveform or one of its derivatives. Their proposal is based
on the notion that measurements of a waveform on one side of a non-analytic point cannot,
be used to infer anything about the waveform on the other side of the point. Hence, the
arrival of a non-analytic point brings new information. Perhaps the most elegant aspect
of their proposal is that it can be viewed as an extension of Sommerteld and Brillouin's
carlier research where they showed that the front velocity vy (the velocity at which the
leading edge of a wavetorin propagates) is always equal to ¢ regardless of the properties of
the mediun (2). In linear media, one can always view a waveform with multiple points of
non-analyticity as a superposition of multiple waveforms that are each analytic after an
initial front. Therefore, according to the theory of Chiao and collaborators, v; = vy = ¢

In order to help resolve the conflict between Chiao’s new theory and the common belief
that v5 = 2. we observe the propagation of information in a medium where v, = v, < c.

We prepare this “slow-light” medinn by creating a single amplifying resonance, realized




hy creating large atomic coherence in a laser driven potassium vapor (Fig. la). In the
spectral region of the amplifying resonance, the group velocity is very slow, and pulses
imjected with center frequencies in this region experience large delays in comparison to
identical pulses traveling through vacuum. Figure 1b shows pulses propagating through
vacuum (solid line) and through the slow-light mediiun (dashed Jine). We find that the
peak of the pulse is delayed by t4; = 67.5 £ 2 ns, corresponding to a relative pulse delay
of 26%. Using t4 = L/vy — L/c with L/c = 0.66 ns. we inler that ¢, /¢ = 0.01 £ 0.0003.

To enhance our ability to estimate the location of a point of non-analyticity in the
presence of noise, we use two optical pulse shapes (our “symbols”) that have identically
Gaussian-shaped leading edges. This allows us to smoothly turn on the pulse amplitide
to a level above the noise floor of our detection electronics and to monitor the pulse delay.
Near the peak of the Gaussian function and at the same moment for both symbaols, we

switch the amplitude of the Gaussian function to a high (“17) or low (“0™) value for the
remainder of the pulse. The moment when a decision is made to switch between the
symbols corresponds to the point of non-analyticity. Note that this point is smoothed out
by the finite rise time of the optical switch.

Figure 2 shows the propagation of both symbols through the slow-light medinm and
vacuum (2a) along with an enlargement (2b) of the diagram in the vicinity of the transition
between the synmibols. From Fig. 2a. it is scen that the slow-light medinm delays the early
part of the pulses during the smooth turm on, identically to that observed for the full
Gaussian-shaped pulses shown in Fig. 1b. Most important is the observation that both
symbols are the same for carly times so that it is not possible to distinguish between
them. Hence, no information can yet be conveyed to a receiving party at the end of the
communication channel. From a siinple visual inspection of the data, we see that the thme

when it is possible to first distinguish between the two symbols for the delayed pulses is




nearly the same as the tiime when it is possible to first distinguish between the same two
symbols propagating through vacuuu.

The arrival time of the information is determined by observing the pulses with a
receiver that can distinguish between the two symbols 1o a particular level of certainty,
characterized by the bit-error-rate (BER). Before the arrival of the point of non-analyticity
at the detector, we expect no detected information, corresponding to a BER of 1/2. Once
the point of non-analyticity propagates past the detector, the BER drops as the received
information grows smoothly from zero. A symibol is considered to be detected when the
BER falls below some threshold. Hence, the detection time of information is later than
the time when information is first available at the detector, even for pulses propagating
through vacuum. This detection latency At depends on the characteristics of the medimn
through which the pulses propagate, the shape of the symbols, the detection algoritin,
noise in the detection process (ineluding quantum noise (15, 16)), and the BER threshold.
It increases as the signal-to-noise ratio decreases becanse it takes longer for the receiver
to achieve the same BER. Achieving the limit At — 0 requires the use of optimal symbol
shapes and detection algorithms, and infinite energy in the optical pulse so that the
signal-to-noise ratio of the detected waveform approaches infinity. Although it is possible
to estimate At for a specific experimental apparatus, it cannot be measured directly
because it requires measuring the point of non-analyticity. Making At very small and
very similar for both vacumn and delayed pulses is a primary consideration in onr choice
of symbol shapes. In Fig. 3b, we sce that the manner in which the average symbol
waveforms separate for the vacuum and delayed case are only slightly different so that
the detection latency times (denoted by At,,. and At g, respectively) shonld be similar.

To quantify our results, we determine the BER for the vacummn (Fig. 2a. solid line) and

delayed (dashed line) pulse pairs nsing an integrate-and-dump matched filter technigne



(17). 1t is seen that the BER is high for final observation times in the range between
—40 and —20 ns during which the pulse amplitudes are large but not yet distinet within
the noise limit (see Fig. 2a). Even though the signal-to-noise ratio for a single pulse is
high at these times, the pulses are not yet distinguishable and therefore no information is
detected. Placing the detection threshold at BER = 0.1, chosen to keep At and Aty
small, we determine the detection time for vacuum (delayed) pulse pairs Thae (Lger) and
the difference in detection times 7; = Tyt — Toge- The time difference is approximately
constant for BER values around 0.1; its average value in the range of BERs between (.08
aud 0.2 is 8.5+ 0.5 ns.

Based only on a direct measurement of 73, one cannot deteriine whether an observed
difference between the detection times is due to changes in the detection latencies or
differences in the information velocities for vacuum (v, ,..) and the slow-light medinm

(v; ger). The relation among these quantities is given by
Tz, = (L/’Uzdel = L/(‘i,‘l'tu) 7|' (Atr]ﬂl A Atl'u('>~ (])

To gain some insight about the importance of detection latency, we analyze a mathemat-
ical model, based on Maxwell’s equations, that deseribes approximately the generation,
propagation, and detection of our symbols. Consistent with previous research, this imodel
prediets that v; ger = Vigae = ¢ (2, 10, 12), and hence T; is completely determined by
(Atgey — Atyae). Using the same matched filtering approach, we determine the predicted
BER as shown in Fig. 3b. We see that information is detected later for the delayed
pulses than for the vacuum pulses, qualitatively similar to the experimental observations.
We find that T, = 8 & 2 ns, where the error arises from uncertainty in the similarity
between the model and physical experiment. The fact that T, # 0 demonstrates that

subtle changes in the shape of the symbols after information has been encoded give rise



to substantial changes in the detection latency.

Using the model prediction for (Atgey — Atyee) in Eq. 1 and taking v; . = ¢, our
best estimate (18) is that v, 4 = 0.6¢, which is 60 times faster than v,. Thus, even
in normally-dispersive slow-light media, information does not propagate at the group
veloeity.  This result is in direct contradiction to the conventional wisdom regarding
propagation of information on optical pulses and hopefully helps resolve a century-old
confusion. Additionally, this result serves as a demonstration of a new technigne for
measuring v;.  Future refinements of this techuique will allow precise examination of

Chiao’s proposal that the information veloeity is always equal to c.
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Fig. 1. Slow light pulse propagation. (a) Experimental setup (17). (b) Temporal
evolution of 265-ns-long (full width at half maximum) Gaussian-shaped pulses propagating
through the slow light medium (dashed line) and vacuum (solid line), demonstrating slow-
light pulse delay. The time origin has been set arbitrarily to coincide with the peak of the
vacuum pulse. Careful inspection of the delayed pulse reveals that it has been expanded
to a pulse width of 311 ns (17% expansion), which is due primarily to the frequency
dependence of the gain.

Fig. 2. (a) Transmitting “0” and “1” through the slow light medium (dashed line)
and vacuum (solid line). Each symbol is transmitted separately through the medium
and vacuuin, aud each curve is an average of 50 pulses. (b) High-resolution plot of (a).
The amplitude of the advanced and vacuum pulses have been scaled so that their heights
would be the same if a Gaussian pulse propagated through the system, as in Fig. 1. The
error bar indicates the typical standard deviation of the pulse amplitudes.

I'ig. 3. Detecting the arrival of new information: the BER as a function of the upper limit.
of the integration time for the vacumn (solid line) and advanced (dashed line) pulses. The
horizontal line indicates the detection threshold. (a) Experimental observations. The time
origin is the same as in Fig. 1b. (b) Theoretical predictions based on Maxwell's equations.
The time origin corresponds to the moment when the point of non-analyticity first arvives

at the detector.

10



Supporting Online Material

Preparation of the slow-light medium

The potassium vapor is contained in an uncoated pyrex cell of length L = 20 «an
and heated to obtain an atomic number density of 3.5 x 10'? atoms/cm3. A linearly-
polarized coherence-preparation laser beam (frequency wy) is combined with the linear
and orthogonally-polarized pulses (center frequency wy &~ wy + 462 MHz) using a polar-
izing beawm splitter. The pulses are generated by passing a continuous-wave laser beam
through an acousto-optic modulator (AOM) driven by a computer-controlled arbitrarvy
waveform generator. The pulses are detected by a photoreceiver with a 25 kHy - 125 MHz
bandwidth.

The vacuuwm pulses are observed hy tuning the laser very far from the atomic resonance
so that neither the coherence-preparation laser beam uor the pulses interact with the
atows. In this configuration, the potassium vapor is equivalent to vacunun.

To observe slow light pulse propagation, the ecoherence preparation bheam is adjusted
with wy set at 2.61 GHz to the high-frequency side of the center of the potassium 4.5, 5, —
4P, transition. This creates an amplifying resonance at frequency wq + 462 MHz, the
ground-state splitting of ¥ KS. We then set the pulse requency to the center frequency
of the generated amplifying resonance, where the group velocity is minnnized. Figure S1

shows the gain expouent and group index as functions of frequency.

BER Calculation
The bit-error-rate (BER) is determined using the following integrate-and-dump matehed-
filter procedure. For each symbol (0 and 1), there are 50 test pulse wavefors. For each

test wavefor, two reference waveforms Ro(t) and Ri(t) arce gencrated. Each reference
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waveform R;(¢) is an average of 49 pulse waveforms of symbol type j and does not include
the test waveform.

For cach R;(t), the normalization integral
7 R
N(r) = [ Rt (1)
to

is calculated, where ¢, 1s a time chiosen arbitrarily on the leading edge of the pulse. Next,
the nonnalization constants

fap

1 tetTu %
a;(1,) = m/r 2% (t)dt (2)

are determined, where x(t) is the test pulse waveform and 7, is a normalization integration
time chosen arbitrarily on the leading edge of the Gaussian pulse before the point where
the svimbols separate. The integral D(1) = Io(7) — I;(7) is determined for each test

waveforin, where

o
e

L(r) = ; ~—/:h:c(t)RJ(t)dt (i =0,1). &

| 1
(l’_}' (7'(,)—\',( T)
Each integral I;(7) is a measure of of the similarity between the test waveform a(t) and
the reference waveform R,;(t) over the time interval from ¢, to (¢, + 7).
For each symbol type, the 50 test pulse waveforms are used to generate a probability
density of D(7), which is then fit to a Gaussian distribution normalized to an arca of 1/2.

The overlapping arca of these two Gaussian distributions is the BER.
Fig. S1. Gain and group index. (a) The dotted line shows the measured gain exponent

(gL) and the solid line shows the Lorentzian least-squares fit. (b) The theoretically

redicted group index n, corresponding to the Lorentzian gain resonance shown in (a).
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Appendix 5

Distortion Compensation in a Slow-Light Delay Line



Distortion management in slow-light
pulse delay
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Abstract: We describe a methodology to maximize slow-light pulse
delay subject to a constraint on the allowable pulse distortion. We show
thal optimizing over a larger number of physical variables can increase the
distortion-constrained delay. We demonstrate these concepts by compiring
the optimum slow-light pulse delay achievable using a single Lorentzian
gain line with that achievable using a pair of closely-spaced gain lines. We
predict that distortion management using a gain doublet can provide aver a
factor of 6 increase in slow-light pulse delay as compared with the optimum
single-line delay. Experimental results employing Brillouin gain in optical
fiber confirm our theoretical predictions.
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Over the last decade, there has been great progress in devising new methods for tailoring the
dispersion of optical materials, such as clectromagnetically induced transparency [ 1], photonic
crystals [2], and nano-optic resonators [3-5]. This work has been motivated by the need for
electronically or optically controllable pulse delays for applications such as optical buffers,
optical memories, and signal processing. In these applications, the primary requirements for
slow-light pulse delay are that the temporal pulse delay 7, be large relative to the pulse width T
and that the pulse not be substantially distorted (defined below). These two requirements largely
oppose each other, with large delay coming at the cost of greater distortion. These tradeoffs
have been studied in simple Lorentzian systems [6—8] and in Doppler-broadened media [9)
with encouraging results, but distortion remains a major limitation to the usefulness of slow-
light pulse delay.

In this paper, we present a method for achieving large slow-light pulse delay under the con-
straint that the distortion does not exceed a particular limit. We also present a simple distortion-
managed medium based on dual Lorentzian gain lines. The dispersive properties of this medium
are tailored by adjusting the spacing between two adjacent gain lines. We predict a factor of 6.25
improvement in the relative slow-light pulse delay for the two-gain-line case in comparison to
the standard single-gain-line case for the same distortion constraint in both cases. We demon-
strate dispersion-managed pulse delay in an experiment where the slow-light effect arises from
the dispersion associated with stimulated Brillouin scattering (SBS) resonances in a pumped
optical fiber [10-13].

For pulses propagating through linear optical systems, the output pulse amplitude A(@, ) in
the frequency domain can be related to the input pulse amplitude A(®,0) by

Al®,2) = A(0,0)e*19)=, (0

where z is the length of the medium and k(@) is the complex wavenumber as a function of
frequency @. A pulse propagates undistorted through a dispersive material when k(@) takes
the form

k(o) =ko+k (00— o), (2)

where @, is the carrier frequency of the pulse and k, is real. That is, the pulse shape remains
unchanged and the only effects of propagation are delay, an overall phase shift. and gain or
attenuation. In this ideal case, the pulse delay 7, is equal to the group delay ¢, = z(k; — 1/¢).
where ¢ is the speed of light in vacuum. In practice, dispersive media do not satisfy Eq. (2)
precisely, but have higher-order terms in the Taylor expansion k(@) = X7 k(0 — @.)!/j!.
where k; = d/k(®w)/d®’. These higher-order terms can lead to pulse distortion, or a change in
the pulse shape. One can always use pulses with narrower bandwidth, and thereby improve the
linearity of k(@) over the pulse bandwidth, but this results in longer pulses without increasing
the delay. It is sometimes possible to simultaneously increase k; and decrease the pulse band-
width, which can result in larger relative delays, but may result in unacceptably large gain or
absorption [6].




One method for creating delayed pulses with minimal distortion is to reduce the effects of the
higher-order terms in the Taylor series expansion of k(@). The effects of these terms have been
studied in simple systems [6-9, 13], but additional degrees of freedom can be used to eliminate
or balance them. We propose using custom slow-light media designed to minimize the effects
of distortion. Creating a custom dispersion profile k(@) is in general quite difficult. However,
one can instead create a custom system by combining multiple simple systems. We consider
here a system composed of two Lorentzian gain lines: a gain doublet, as shown in Fig. 1. The
wavenumber of such a system is given by

‘U 80 Y 7
k — e i - — -+ = = }
) c"“+ z (a)«)(wgwb) iy @—(my+0) liy)‘ 3)

where ng is the background refractive index, go/z is the line-center amplitude gain coefficient
for each line, y is the linewidth, and 290 is the separation between the lines. In many slow-light
media, the dominant source of distortion is the second-order term in the expansion of k(@),
kq {6]. For the gain doublet, we have

diggy: 38° — ¢

T 4
(6247

As can be seen from Eq. (4), k2 = 0 for a separation of § = ¥//3, thereby eliminating the
lowest-order distortion-causing term. For a doublet in this configuration, the group delay is

given by

< 3 g0 =
c=zlk1—1/c - b—= 5
ty (k1 —1/c) 2 (no—1) e (5
which should be compared to the delay for a single line
b = g(no - 1)+ =4 (6)

By comparing Eqs. 5 and 6, it is seen that the group delays for these two systems are very simi-
lar. While this result is interesting and illuminating, it is of limited practical value; it eliminates
only second-order distortion, ignoring all higher-order terms.

A more practical approach to distortion management is to measure distortion as the deviation
of the medium from the ideal one described in Eq. (2). At this point, it becomes convenient to
describe the medium in terms of its transfer function H(®), which is easily related to k(®)
by H(®) = exp(ik(®)z). An ideal medium has a transfer function with constant amplitude
|H(®)| = Hy and a phase that varies linearly with frequency /H(®) = 1,0, where 1, is the
total propagation time of the pulse. Relating these to Eq. (2) yields Hy = expli(ko —kjyp)z] and
t, = kyz. Any deviation from this behavior leads to pulse distortion [14].

There are many ways to quantify the deviation of the transfer function from ideal. One very
simple way is to calculate the infinity-norm—the maximum magnitude—of the amplitude and
phase deviation from ideal. This leads to two distortion metrics, one for the amplitude variation
(Ds) and one for the phase variation (D). The amplitude distortion is given by

Hnux Hmin_

Dy = .
Hﬂhl‘l —+ HI'H)H

Q)

where Hpyin and Hpgx are the minimum and maximum values of |H(®)| over the frequency
range (ayn — Ap, @y + Ap). Similarly, we define the phase distortion as

Dy = 5-max(| LH(@) ~ (tpo+ ¢o)] e (8)

H 0y



15 N ]

gain exponent g(w)

phase shift (n-1)z

frequency (o - mo)/y

Fig. 1. Gain and dispersion for a single Lorentzian line (solid) and a doublet with separation
/\/3 (dashed). Also shown are the two constituent lines (dotted) that make up the
doublet. (a) The gain exponent has a broad flat top (a result of setting k; = 0), although it
is larger for the same value of the individual gain coefficients. (b) The dispersion is very
similar for both situations near the center of the lines, but extends farther for the gain-
doublet case.

where 1, and o are chosen to minimize Dj,. This provides a very conservative distortion mea-
sure for pulses whose power falls entirely within the frequency range (@Wy — Ap, o + Ap). The
calculation of D, also serves to define an effective propagation time #, as the propagation time
of a pulse through the ideal medium most closely approximated by the real medium. A delay
defined in terms of this propagation time f; = r, —nyz/c is similar in concept to the group delay,
except that it is based on the material dispersion over the entire bandwidth of interest rather than
just at the carrier frequency. In fact, the pulse delay ¢, is exactly equal to the group delay of the
best-fit ideal medium. Because this delay includes dispersive effects over the entire bandwidth
of interest, it provides a better prediction of actual pulse delay (peak delay. for example) than
the group delay. As is common in communication systems [14], pulses with power extending
outside this range can still be used, but the result is then approximate. These distortion met-
rics are reasonable in the case where the signal spectrum is approximately limited o the given
bandwidth window but is otherwise unknown. If more is known about the signal spectrum, then
more complicated distortion measures can be used that consider a fixed spectrum and the form
of the material deviation from ideal.

Having defined these distortion metrics, we can use them to explore the gain-doublet slow-
light media discussed above. Let us fitst consider the simple Lorentzian gain line, whose trans-




fer function can be written as

) ¥ w
Hi() exp (l:rm?) x exp(g1(@))
, - . A
= (’“"” c 8o —m) i"/.)' i

Holding y fixed, we find that for each A, there is an optimum value of gg) that provides max-
imum delay ¢, subject to gain and distortion constraints. We have chosen to use an amplitude
gain constraint of go; < 2.5 so that the system can be reasonably implemented experimentally.
Larger gain is often accompanied by nonlinear optical effects.

The communication system of interest will define both the appropriate form of the relevant
distortion and its maximum allowed value. In conjunction with the infinity norm, we select a
conservative value of maximum allowed distortion D, < 0.05 and D), < 0.05. This value is
somewhat arbitrary and results in pulse distortion that is just noticeable upon visual inspection.

Figure 2(a) shows the maximum relative delay 44, as a function of the relative bandwidth
Ay/y. Figure 2(b) shows the Lorentzian gain exponent go;. At each value of A, the gain is
chosen to maximize the delay subject to the gain and distortion constraints described above.
By comparing the solid lines in Figs. 2(a) and 2(b), we find that the delay is limited by the
distortion constraint for large relative bandwidths—A /v > 0.2; driving the gain higher will
produce too much distortion. For small bandwidths, the delay is limited by the gain constraint.
The maximum relative delay is achieved at some intermediate bandwidth—A /v ~ 0.2—for
which both distortion and gain limits are met simultaneously. At this value, we find a maximum
relative delay of #4A,, = 0.5 under the constraint that neither D, nor D), exceed 0.05.

We now consider a distortion-managed system constructed using two nearby Lorentzian gain
lines. The transfer function of this system is

. (O}
Hy(®w) = exp (:znwc-) % exp(g2(®))
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As above, we can optimize over the free parameters—now gg» and §—to maximize the delay
at each A, subject to the same constraints. D, < 0.05, D, < 0.05. and max oa(w)] < 2.5.
The dashed line in Fig. 2(a) shows distortion- and gain-limited relative delay as a function of
bandwidth for this doublet system.

As described above, the second order distortion—dominant in many low-distortion cases-
can be eliminated entirely (ka = 0) by setting 8 = y/v/3 — 8/y = 0.58. One might expect
this result to provide the optimal line separation. However, as shown in Fig. 2(c), delay can
be increased at large bandwidths by using a larger separation because, although there is a gain
dip at the carrier frequency, the gain excursion over the full bandwidth can be minimized. For
small bandwidths, a smaller separation is desirable because the delay is limited by gain, not
distortion, and so it is more useful to make the separation small, creating larger dispersion for
the same maximum gain.

There are three distinct frequency regions on these plots. The left-most region (Ag/ 7 < 0.25)
corresponds to gain-limited configurations where the second line provides no additional benefit.
The right-most region (A, /y > 0.8) corresponds to the distortion-limited regime. In the central
region, both constraints are hit simultaneously. In this gain-doublet medium, we observe a max-
imum relative delay of 0.9 at a bandwidth of A,/7 = 0.8, an improvement by a factor of 6.25
over the single line at that bandwidth and nearly twice the best single-line relative delay.

To test our distortion-management concept, we propagate optical pulses through a SBS slow-
light medium [10-13]. A gain-doublet with an adjustable frequency separation 28 is realized
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Fig. 3. Experiment setup based on a fiber Brillouin amplifier. TL.1. TL2: tunable lasers; ISI,
[82: isolators: FPCI1, FPC2, FPC3: fiber polarization controllers; MZM1, MZM?2: Mach-
Zehnder modulators; FG 1, FG2: function generators; EDFA: Erbium-doped fiber amplifier:
C1l, C2: circulators: SMF-28e: 500-m-long SMF-28e fiber (the SBS amplifier); PM: power
meter.

by pumping a standard room-temperature telecommunications optical fiber with a bichromatic
laser field, which is obtained via carrier-frequency-suppression modulation of a continuous-
wave (CW) single-frequency laser field [15]). The doublet spacing 268 is adjusted by changing
the frequency of the voltage driving the modulator and the gain coefficient (and hence the slow-
light delay) is adjusted by changing the pump power. Either of these adjustments can be made
very quickly, limited by the transit time of the pump field through the optical fiber,

The transfer function Ha(®) (Eq. 10) can be realized by setting the carrier frequency of the
pulses close to the SBS amplifying resonances (the so-called Stokes resonances) and keeping
the pulse intensity low enough so that the response is linear. For comparison, we also propagate
pulses through a standard slow-light medium with a single gain resonance, corresponding to
H,(w) (Eq. 9) and realized using a single-frequency pump field [10-13].

The experimental setup is shown schematically in Fig. 3. Two 1550-nm narrow-linewidth
tunable lasers (TLI and TIL.2) are used to produce Stokes signal pulses and the pump beams,
respectively. A bichromatic pump beam is produced by passing the single-frequency CW laser
beam generated by TL2 (angular frequency @) through modulator MZM2, which is driven by
a sinusoidal voltage of angular frequency 6. The bias voltage applied to MZM?2 is chosen to
suppress the carrier frequency, resulting in a beam with frequencies (@), -+ 8). This beam is am-
plified by an erbium-doped fiber amplifier (EDFA) and routed via circulator C2 to pump a 500-
m-long SMF-28e fiber (the slow-light medium). For this fiber, we measure an SBS linewidth
(full-width at half-maximum) of y/m =~ 35 MHz. After passing through the slow-light medium,
the beam is routed out of the system via circulator C1 and monitored by a power meter.

The signal pulses are produced from a laser beam generated by TL1. The beam passes
through an isolator, a fiber polarization controller, and modulator MZM 1, producing pulses with
carrier frequency @.. They are approximately Gaussian-shaped with an intensity envelope of
the form /(t) = lyexp|—(t/T)?]. where the spectrum S(@) = exp|—t*(® — @,)*] has a 1 /e half
width of Ay = 1 /7. The pulses enter the 500-m-long SMF-28e fiber via circulator C1 and coun-
terpropagate with respect to the bichromatic pump beam in the fiber. The slow-light-delayed
and amplified pulses are routed out of the system via C2, sensed by a fast photodetector, and
displayed on a digital oscilloscope. The frequency difference between TL1 and TL2 is tuned
so that the pulse carrier frequency is set precisely to the center of the SBS amplifying reso-
nances, @, = @y where @y = @, — Qp, and Qp/27 = 12.5GHz is the Brillouin frequency shift



for the SMF-28e fiber. Fiber polarization controllers FPCI and FPC?2 are used to maximize the
transmissions through the Mach-Zehnder modulators, and FPC3 is used to maximize the SBS
slow-light delay experienced by the Stokes pulses.

[n the experiments with the distortion-managed slow-light medium, we select a pulse band-
width A, (using the assumption that A, = Ag), set the resonance half-separation § according
to Fig. 2(c), set the central gain g>(wn) according to Fig. 2(b) by adjusting the pump power,
and measure the delay of the peak of the pulses induced by the slow-light medium (which is
approximately equal to #y). From Fig. 2(a), it is seen that the agreement with the theoretical
predictions is very good. Also shown in Fig. 2(a) are our observations for a single-gain line (the
non-distortion-managed slow-light medium), where the agreement between the observations
and the predictions is excellent.

The data shown in Fig. 2(a) demonstrate that the distortion-managed slow-light medium
vastly outperforms the standard slow-light medium under conditions of constant distortion.
Around the optimum normalized bandwidth of ~ 0.84 (T ~ 11 ns), we measure an improve-
ment in relative pulse delay of a factor of 8.1 &+ 2.6. Thus, the distortion-managed approach
substantially increases the usable bandwidth of a slow-light medium that is much easier to
implement in comparison to previously suggested methods [16,17].

In conclusion. we have shown that, although distortion limits the slow-light delay achievable
in simple systems [6-8], it is possible to achieve better distortion- and gain-limited delay using
custom composite media. Dramatic improvement can be achieved over a single Lorentzian line
with a system as simple as a Lorentzian doublet, suggesting that even greater improvement may
be achievable using more flexible media.

We gratefully acknowledge the financial support of the DARPA DSO Slow-Light Program.
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Causality and double-negative metamaterials
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The causality of waves propagating in a double-negative (DNG) metamaterial (e,<0 and w1, <0) has been
investigated both analytically and numerically. By considering the one-dimensional clectromagnetic problem
of a pulsed current sheet radiating into a DNG medium, it is shown that causality is maintained in the presence
of a negative index of refraction only if the DNG medium is dispersive. A Drude model DNG medium is used
in this study. Spectrograms of the wave phenomena in the dispersive DNG medium show that the higher
frequency components, which create the leading edge of the electromagnetic signals and see a double positive
(DPS) medium (g,>0 and u,>0), arrive causally before the negative index effects germinate completely.
Comparisons with approximate analytical results demonstrate the presence of the negative index of refraction
properties in the continuous wave portion of the signals. This dynamic pulse reshaping between the positive
and negative index of refraction wave components causes an apparent delay in the realization of the negative
index of refraction propertics. Pulse broadening of the signal tails is associated with both dispersion and a

larger negative index of refraction seen by the associated wave components.

DOI: 10.1103/PhysRevE.68.026615

I. INTRODUCTION

The index of refraction of a double-negative (DNG)
metamaterial, i.e., a material with both negative permittivity
and negative permeability (see, for instance, [ 1-4]), has been
shown to be negative (see, for instance, [5—7]). There are
now several theoretical and experimental studies that have
been reported confirming this negative index of refraction
(NIR) property and applications derived from it, such as
phase compensation and electrically small resonators [8],
negative angles of refraction [8-13], enhanced focusing
[14-17], backward wave antennas [ 18], Cerenkov radiation
[19], photon tunneling [20,21], and enhanced electrically
small antennas [22]. These studies rely heavily on the con-
cept that a continuous wave (CW) excitation of a DNG me-
dium will lead to a NIR and, hence, to negative phase terms.

If one considers carefully the ramifications of a homoge-
neous, nondispersive DNG medium and the resulting NIR,
one immediately encounters a paradox in the time domain. A
source in such a DNG medium will generate a signal that
propagates noncausally. On the other hand, many of the NIR
studies have been based on numerical simulations in the time
domain of dispersive DNG metamaterials. In fact, as shown
in [5], realistic DNG metamaterials must be dispersive. How
then does one reconcile the CW NIR properties associated
with a nondispersive DNG medium with causal pulse propa-
gation in a dispersive DNG medium? Can one rely on de-
signs of NIR applications that rely on the CW behavior of
the corresponding nondispersive DNG medium?

In this paper, the issue of causality in DNG metamaterials
is considered by studying the one-dimensional electromag-
netic problem of a pulsed source in a DNG medium. A lossy,
dispersive Drude model is used to create the DNG medium.
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A finite difference time domain (FDTD) numerical solution
of the problem is obtained. The source is driven by an exci-
tation pulse that is based on a sinusoid and a smooth enve-
lope. It is demonstrated that both the expected causal propa-
gation and the NIR effects are obtained. Other recent
considerations of causality (e.g., [13,23]) have, in effect,
been limited to narrow bandwidth considerations. The corre-
sponding nondispersive DNG medium problem is then con-
sidered. It is demonstrated analytically that only a noncausal
exact solution exists. The noncausal analytical DNG solution
and the causal FDTD DNG results are then reconciled by the
presence of dispersion. It is shown that the leading edge of
the pulse, which is associated with high frequencies, propa-
gates causally in a double-positive (DPS) medium (i.e., a
normal medium that has both positive permittivity and posi-
tive permeability), while the CW portion of the pulse senses
the DNG medium and exhibits the NIR effects. The slower
speed components appear to accumulate in the trailing edge.
Both the leading and trailing edges of the pulse are shown to
be strongly affected by the presence of dispersion. Using the
nondispersive results to guide the construction of approxi-
mate solutions to the dispersive DNG medium problem, it is
shown that the NIR effects obtained for the dispersive case
coincide with those predicted by the nondispersive case. It is
also shown that observed time delays in the realization of the
NIR properties are directly associated with the transition
from the causal DPS response to the DNG one. These obser-
vations reinforce the fact that DNG metamaterials and the
associated NIR results are physical and that their experimen-
tal confirmation is consistent with the underlying wave
propagation physics,

IL ID-FDTD SIMULATOR

A one-dimensional FDTD simulation environment was
utilized to study the characteristics of signals produced by a
pulsed source in a DNG medium. This one-dimensional en-

©2003 The American Physical Society
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vironment was convenient and incorporated all of the neces-
sary physics. The field components were assumed to be E
and H, with the direction of propagation taken along the z
axis. An electric current plane-wave source was located in
the plane z=0, at the center of a very large DNG slab. The
DNG slab was surrounded by free space and was centered in
the FDTD domain. This slab geometry was used in order that
standard, exact absorbing boundary conditions could be ap-
plied at the edges of the FDTD simulation space. The prob-
lem geometry is shown in Fig. 1.

As in [6], lossy Drude polarization and magnetization
models were used to simulate the DNG medium. In the fre-
quency domain, assuming an exp(—iwr) time dependence,
this means the permittivity and permeability were described
as

_ ( Wy,
e(w)=&o] 1_m ;

2 \
w[mr ]
w(w+il,)]’

)= m| 1~ n

The corresponding time-domain equations for the polariza-
tion, P, and the normalized magnetization, M, ,=M , /1y,
fields were

P P+T,0,P =y’ E,,

e
2 2
(9, IM,U + r,”f:),M” o /J'prnzHL\' 3 (2)
The normalized magnetization was introduced to make the
electric and magnetic field equations completely symmetric,
By introducing the induced electric and magnetic currents
J.=4P,,
K‘{: (911'\/1,” 3 (3)
and the source current, J;, the field and current equations

used to model the waves generated by a pulsed source in a
DNG medium became

L
O E =~ —(0.H,+ 1 .+J,),
€0
A AT J = eqw) Er,

I
O,H,= ~M—O(02E(+KV),

"

K+ T ,K= pow,, H 4

pm-iy

A lossless, nondispersive DPS medium was used as a com-
parison case. In such a DPS medium. the corresponding field
and current equation sct was simply
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F1G. 1. (Color onling) Configuration of the ong-dimensional
clectromagnetic current sheet problem.

|
dE=——(dH,+J,),
gy

1
= — ‘—1'7‘[’;\ Z (5)
) Ho

Equation sets (4) and (5) were solved self-consistently
and numerically with the FDTD approach [24,25], i.e., these
equations were discretized with a standard leap-frog in time,
staggered grid approach. The electric field component was
taken at the cell edges for integer time steps; the magnetic
field components were taken at the cell centers for half-
integer time steps. The electric and magnetic currents were
located in space at the cell centers, and their time assign-
ments were opposite to the corresponding electric and mag-
netic field components, i.e., the magnetic current components
were sampled at integer time steps and the electric current
component was sampled at half-integer time steps. This al-
lowed a FDTD stencil that properly simulated matched me-
dium conditions. The time step was set at 0.95 of the Courant
value, i.e., Ar=0.95Az/c.

In all cases, the center frequency of interest was chosen to
be fo=wy/2m=30 GHz, corresponding to a free-space
wavelength A;=1.0 cm. Only matched media at f, were
considered, i.e.,

o #(("0’_. Mo
Z(wy) \/ e(wg) V £ Z. (6)

Matching was obtained by setting the parameters for the
electric and magnetic Drude models to be identical, te.,

0, =@, = o, and I',=0,=T. In all cases, only low loss
values were considered by setting ['=10"%=53]

% 10" *w,. This value was selected to connect these results
to those presented in [6] and [12]. A DNG medium matched
to free space at fo= 30 GHz was considered, i.e.,

e(wg) [ulewy) —m o —
n(we) =/ 80” \/ MO"-"v'a,-(wo)\/#,(wm il

(7)

This required @,=27v2 f;=2.66573% 10'" and, hence, T
=375X10"4w,.
The source was given by the expression
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« >

J(z)=J,(z)%=— 8(z)S(1)%. (8)

It was modeled in the FDTD simulation space by introducing
the equivalent source J X=7XH.¥, 1.e., H, quee=3(1) at
the source plane. The input time signal was causal and was
defined by

S(1)=g(t)sin(wyr), 9

where the multiple cycle m-n-m envelope is given by the
expression

0 for +<0
galt) for O=r<mT,
g(ny=¢ 1 for mT,<t<(m+n)T,
\k’“\”{f) for (H’l‘f‘l).)T’J‘\:[(()n-f—”+'”)Tp
0 for (m+n+m)T,=t,
(10)
where the period 7,=1/f;. With the terms ., (r)

=t/(mT,) and .\',“-l(t)=[1~(m+r1.)T[,]/(mTp), the continu-
ous, two derivative smooth functions g, and g,z can be
written as

Goal 1) =101 = 15x5,(1) +6x3,(1),

gonln)=1—=[10x) ()~ 152} () +6x5(D].  (11)

The function g (1) goes smoothly from O to | in m periods;
the function g,,(7) goes smoothly from 1 to 0 in m periods.
The function f() thus turns on smoothly in m periods, main-
tains a constant amplitude for n periods, and turns off
smoothly in m periods. The more cycles in the center por-
tion, i.e., the larger n is, the narrower the bandwidth and the
closer the input pulse is to a CW signal. The shorter the
turn-on and turn-off sections are, i.e., the smaller m s, the
broader the bandwidth is and, in particular, the more high
frequency content there is in the pulse.

The simulation space was discretized into cells with a
length Az=X4/100= 100 pm. The FDTD predicted electric
field values at z=100Az and z=120Az for a 5-10-5 input
pulse in the dispersive DNG medium are shown in Fig. 2(a).
An expanded view of the leading edge of these pulses is
shown in Fig. 2(b). The corresponding FDTD predicted elec-
tric field values for a lossless nondispersive DPS medium
with n=+1 are shown in Figs. 3(a) and 3(b). Comparing
these sets of figures, one can clearly see that, as in the DPS
case, the fronts of the signals in the DNG medium arrive
causally at the observation points. In the DPS case, the peaks
of the central, CW portion of the pulse observed at the more
distant point 2 occur later in time than they do at point 1. In
contrast, one can see that in the DNG case the NIR effects
(c.g., negative phase and phase velocity) evolve as the CW
portion of the signal is realized, e.g., the peaks of the CW
portion of the pulse observed at the more distant point 2
occur earlier in time than they do at poinr 1. Dispersive
effects are also apparent in the DNG results as the observa-
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FIG. 2. (Color online) FDTD predicted clectric ficld values in
the DNG medium for the 5-10-5 input pulse (a) measured at the
points z=100Az and :=120Az and (b) zoomed to the front of
those pulses, where Az= 100 gm.

tion points move farther away from the source. These results
are consistent with those reported in [6] for a DNG slab.

HI1. ANALYTICAL CONSIDERATIONS

Consider now the plane-wave source in a hypothetical
lossless, nondispersive DNG medium with &,= u,= — 1. The
Maxwell equations become

1 .
3,E"='|?|((7:H_‘,+JX),

|
ﬁ,H‘.:mﬂ:Er. (12)

First, let the excitation signal be given by the expression

S(,);[H({)~H(!°']')Jsin(m””, (13)
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FI1G. 3. (Color online) FDTD predicted electric ficld values in
the DPS medium for the 5-10-5 input pulse (a) measured at the
points z=100Az and z=120Az and (b) zoomed to the front of
those pulses, where Az=100 pm.

where T=(n+n+m)T, and the Heaviside function

|0 for r<0 (14
H(t)= 14
@=11 for r=0. .
Introducing the variable
to=|ellullzl, (15)

it is readily shown that the solution to Eqs. (12) and (13) is

0 :
Ez,n)= 5 lmw;r[H(l+fo)—H(l+fo—T)]Slﬂ[wo('+’u)J,

1
Hy(z.0)= sen()[H(t+ 1)~ H(t + 1= T)]
2 sinf wo(t+£o) 1 (16)

where
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L] > i
[—1 for <D
sgn(‘.)—‘t 1 for z=0. ok

We note for completeness that 4.]z|=sgn(z) and 4. sgn(z)=
+242).

The comresponding DPS medium results with g,= u,=
+ 1 are described by the Maxwell equations

|
o E,=— m((?,H\ )k

1
A== d.Ey, (18)
[l

and their solutions

1| _
E.x(:J):ELTF{H(’”fn) H[t—(1,+ 1) ]}

Xsin[ @p(f—1¢)],

|
H(z.0)= Eh‘gn(l){H("‘fo)’H["(lU"' nhy
X sin[ wo(r—14)]. (19)

Comparing the two results, Egs. (16) and (19), one can
clearly see that the lossless. nondispersive DNG medium so-
lution is noncausal. This observation is in complete agree-
ment with those made in [5].

Similarly, with the m-n-m excitation pulse given by Eq.
(9), the DNG medium solution is

12

> ; M ; i
Elz.t)= 5 —W_ gle+rg)sinf wol(r+1)],
2 |lel

1
H(z,0)= 5sgn(z) g (1 +1g)sinf wolr+1y) | (20)

and the DPS medium solution 1s

] 12

E_‘(:‘t)= 5 ng(l“[(,)Sin[a)o(l—!”)],

1
H(z,0)= Esgn(:)g(t—to)sin[cuo(l--- o). (21)

The DNG medium result is again noncausal while the DPS
medium result is causal. The FDTD results shown in Fig. 3
recover the DPS solution (21) to within 0.1%.

Led by the observed combination of causal envelopes and
NIR effects of the central portions of the DNG FDTD re-
sults, we consider the following approximate analytical solu-
tions to the fields produced by the abrupt and smoothed win-
dowed sine waveforms, respectively:
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FIG. 4. (Color onlinc) Approximate clectric ficld values in the
DNG medium for the 5-10-5 input pulsc and Az= 100 gm mea-
surcd at the point = 100Az.

ol
E‘l’(:’t): 5 |S|U3 {H(f_f(,))_H[{'.(’U%_T)]}
Xsin[ wy(1+1g)],

1
H(z,0)= z—sgn(:){H(r—ro)—H[r—(rU-f- nh

X sinf wo(r+14) ], (22)
and

' | 12 .
E(z,0)= ey —la—,gg(t~t(,)sm[w0(r+ to) ],

|
Hy(z,t)= >sgn(z)g(r— fo)sinf wylr+14)]. (23)

These solutions would allow for forward propagation in time
while maintaining the solution’s negative CW phase charac-
teristics. Inserting the proposed solution (22) into Egs. (12),
one finds that it does not exactly solve them. The defects in
this proposed solution occur as &function contributions at ¢
=1, and r=r,+ 7. Similarly, inserting the proposed solution
(23) into Egs. (12), one finds that it also is not an exact
solution and its failings as an exact solution occur as defects
proportional to the derivatives of the turn-on and turn-off
portions of the envelope function g. Note, however, that the
CW portions of both of these proposed solutions do satisfy
the Maxwell equations. Consequently, since the defects are
highly localized, we will take Eqs. (22) and (23) as approxi-
mate solutions for the DNG case.

The electric field components of the approximate analyti-
cal solutions (22) and (23) for the 5-10-5 excitation pulse are
compared at the point z=100Az in Fig. 4. Approximation |
denotes the electric field component given in Egs. (22); ap-
proximation 2 denotes the electric field component given in
Eqs. (23). Complete agreement of the CW portions of these
results is observed, as expected. Their differences oc-
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FIG. 5. (Color online) Comparison of the FDTD predicted and
approximate analytical electric field vatues in the DNG medium for
the 5-10-3 input pulse measured at the points (2) z=30Az and (b)
z=100Az, where Az=100 pm.

cur simply in how each of them is turmed on and off. We note
that the approximate solution (22) contains extremely high
frequency content because of its abrupt tum-on and turn-off.
The n-m-n form is more realistic and, as Fig. 4 shows, it
contains the essential characteristics of this limiting case.

The electric field component of the approximate solution
given by Eqs. (23) for the 5-10-5 excitation pulse is com-
pared to the corresponding FDTD results for the dispersive
DNG medium at the points z=30Az and at z=100Az in
Figs. 5(a) and 5(b), respectively. The corresponding results
for a 2-16-2 excitation pulse were also obtained. Because the
turn-on and turn-off portions of the 2-16-2 pulse are shorter,
the time discretization was halved by decreasing the spatial
discretization by a factor of 2 to Az’=5.0%10"" m. The
electric field component of the approximate solution given
by Egs. (23) for the 2-16-2 excitation pulse is compared to
the FDTD result for the DNG medium at the points, z
=60Az' and z=200Az’, in Figs. 6(a) and 6(b), respectively.
These observation points are located at the same distances
away from the source, z=0.003 m and :=0.01 m, as they
are for the 5-10-5 excitation pulse case.

From both sets of results, one can clearly discern the
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FIG. 6. (Color online) Comparison of the FDTD predicted and
approximate analytical electric field values in the DNG medium for
the 2-16-2 input pulse measured at the points (a) z=60Az" and (b)
2=200Az', where Az'=50 um.

causal nature of the entire FDTD solution. One can also see
that the NIR effects in the CW portions of the FDTD and the
approximate results agree quite well. Thus, the NIR effects
associated with a CW analysis are indeed recovered by the
lossy, dispersive FDTD results. Clearly, if the loss were
larger. the clarity of these CW components will be lost
among the dispersive effects. This occurs even for the
present cases as the observation points move much farther
away from the source plane.

One can also immediately see from Figs. 5 and 6 that the
main differences between the FDTD and the approximate
results occur principally in the turn-on and tum-off portions
of the envelope, as expected from the approximate solution
analysis. The presence of dispersion is clearly seen in these
regions. The faster turn-on envelope of the 2-16-2 pulse
shows less dispersive effects than does the 5-10-5 excitation
pulse. This might be expected since the turn-on portion of
the envelope of the 2-16-2 pulse has higher frequency con-
tent than does the corresponding portions of the 5-10-5 en-
velope. Consequently, according to the Drude model, it sees
a medium more like free space and less dispersion. On the

PHYSICAL REVIEW E 68, 026615 (2003)
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other hand, there are larger differences in the turn-off por-
tions of the 2-16-2 excitation pulse results than there are in
those produced by the 5-10-5 excitation pulse. This trailing
edge has more of its own higher and lower frequency com-
ponents that are subject to dispersion; and it accumulates
more of the slower moving, lower frequency components
generated in the earlier portions of the pulse. Moreover, com-
paring the set of results at the point closer to the source with
the one farther away from it, one observes that there are time
delays between when the CW NIR effects are completely
present and when they lose their dominance to the dispersive
effects and that these delays increase as the observation point
moves farther away from the source.

1V. SPECTROGRAM CONSIDERATIONS

How is it then that the dispersive effects reconcile the
NIR and causal behaviors? To address this issue, we have
studied spectrograms [26,27] of the source-generated pulse
as it arrives at various observation points in the DNG me-
dium. We recall that the magnitude of the phase and group
speeds of the wave in the Jow loss limit are given, respec-
tively, by the expressions

C ¢ W 2

le ™™ [1+Re(x)] |o*—w

lu,(w)|= T
o
(24)

& w"

o ~— s, (25)
I+Re(x)+wd,[Re(x)] o+ w;

v (w)= )
]

where the real part of the susceptibility Re(y)=Re
[—w;;/m((u-+ iTy]=- u)']:,/wz. We also recall that the point in
the frequency spectrum of the Drude model that isolates the
DNG and the DPS regions occurs when e,= u,=0, i.e.,
when w=w,, hence when f=v2f,=42.42 GHz. Well
above this frequency. the permittivity and permeability are
those of free space. Thus, the highest frequency components
propagate causally in a medium that looks like free space. In
particular, these components are the ones mainly responsible
for the turn-on and turn-off portions of the envelope. The
lower frequencies propagate with speeds slower than their
value at the CW portion of the pulse. @, ie., |v,(@g)]
i,

To illustrate these effects, the spectrograms of the 1-1-1,
2-16-2, and 5-10-5 generated electric field pulses at z
=0.01 m in the dispersive DNG medium were obtained.
They are plotted in Figs. 7-9, respectively. The spectrograms
were generated by taking Blackman-windowed Fourier
transforms at every fourth sample in the signal data [26,27].
The number of signal samples analyzed by each transform
was determined such that, after the data selection was win-
dowed, the selection would represent at least a few and at
most several wavelengths, depending on its frequency com-
ponents. As a result, 512 signal samples were used in the
transforms of the 5-10-5 pulse results, and 1024 signal
samples were used in transforms of the 1-1-1 and 2-16-2
pulse results. Note that the spectrograms produced using a
smaller signal slice in the Fourer transform became (00
noisy for interpretation, and larger signal slices resulted in

026615-6



CAUSALITY AND DOUBLE-NEGATIVE METAMATERIALS

Frequency (GHz)
-] =) =

=)

02

03 04

Time {na)

05 0B 07

FIG. 7. (Color onling) Spectrogram of the FDTD predicted ficld
values in the DNG medium measured at the point z=200Az" for
the 1-1-1 input pulse, where Az' =50 pm,

broad areas in the spectrogram where the entire signal spec-
trum was displayed. The use of larger signal slices also
shifted the estimates for the arrival times of various frequen-
cies. The Fourier transforms were zero-padded to a size of
4096 to obtain sufficient resolution (<21 GHz sample spac-
ing) near the center frequency (30 GHz) of the signals.

The resulting spectrograms shown in Figs. 7-9 then indi-
cate, respectively, a good approximation of the frequency
components present at the location z=0.01 m at various
points in time for the 1-1-1, 2-16-2, and 5-10-5 cases. The
three-cycle, 1-1-1 pulse spectrogram in Fig. 7 shows a nega-
tive slope. The higher frequencies propagate faster, hence
they arrive sooner than the lower frequency components.
While this behavior is present in the turn-on and turn-off
portions of the results shown in Figs. 8 and 9, it is clearer in

Frequency (GHz)
=] 5 =] g

N

T (R T R T
Tima (nvs)

a6 07

FIG. 8. (Color online) Spectrogram of the FDTD predicted ficld

vilues in the DNG medium measured at the point z=200Az" for
the 2-16-2 input pulse. where Az’ =50 pm.
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FIG. 9. (Color online) Spectrogram of the FDTD predicted field

values in the DNG medium measured at the point z = 100A z for the
5-10-5 input pulse, where Az

100 pem.

Fig. 8 since the 2-16-2 pulse has faster rates of change that
are more closely related to the 1-1-1 case.

A plot of the Fourier transform output for data sections
near the leading edge, central portion, and trailing edge of
the FDTD DNG results for the 2-16-2 input pulse is shown
in Fig. 10. All of the spectra are normalized to unity for
companison purposes. This figure clearly demonstrates that
the leading edge of the pulse has significantly higher fre-
quency content, the central portion of the pulse is dominated
by the CW frequency, and the trailing edge of the pulse has

significantly lower frequency content. Correlating this with
Fig. 8, one then sees that those frequencies, hence the lead-
ing front of the pulse, arrive first to preserve causality.

To further investigate this dynamic pulse reshaping be-
tween the positive index of refraction (PIR) high frequency

-
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FIG. 10. (Color onlinc) Normalized frequency composition of

the (1) leading edge, (2) central portion, and (3) trailing edge of the
DNG FDTD result measured at the point z=200Az" for the 2-16-2

input pulse, where Az =50 gem.
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FIG. 11. {Color onlin¢) Spectrogram of the difference between

the dispersive DNG 2-16-2 FDTD result shown in Fig. 8 and the
corresponding approximate analytical solution. Red/dark region on
the right (blue/dark region on the left) represents larger FDTD (ap-
proximate solution) values.

components and the NIR center frequency and low fre-
quency components, the differences between the spectro-
grams of the FDTD dispersive DNG resulis and the approxi-
mate solutions (23) were obtained. These spectrograms were
also zero-padded at negative times to clarify the frequency
components in the earliest portions of the signals. The 2-16-2
results measured at z=0.01 m are shown in Fig. 11. Al-
though the FDTD DNG and the approximate solution signal
fronts arrive at the same time and their CW portions are in
very good agreement, the difference spectrograms filter out
most of the CW behavior and reveal the importance of the
apparent time delay and dispersive properties of the leading
and trailing edges of the FDTD results. One finds that the
CW portions of the FDTD results are not fully germinated
until a time later than with the approximate solution. Simi-
larly, the trailing edge of the FDTD result contains informa-
tion that is delayed relative to the approximate solution.
These delays reinforce similar observations made with re-
gard to Figs. 5 and 6.

By aligning the CW portions of the FDTD and the ap-
proximate solution results and then generating the difference
spectrogram, one can filter out all of the CW behavior and
highlight the remaining Jow and high frequency behavior.
The spectrogram for the 2-16-2 input pulse results measured
at z=0.01 m is shown in Fig. [2. The transition from the off
state to the CW state in the FDTD DNG data shows the
necessary presence of higher frequency components very
early in time to reconstruct the pulse front. The lower fre-
quencies of the leading edge needed to complete the re-
sponse in the DNG medium arove later. This explains the
slower tum-on of the FDTD results in comparison to the
approximate solution. The trailing edge of the DNG FDTD
resuit does contain significantly more of the lower frequency
components while the presence of higher frequency compo-
nents earlier in time aids the transition from the CW portion
to the off state. This behavior adds delay to that already
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FIG. 12. (Color onling) Spectrogram of the difference between
the dispersive DNG 2-16-2 FDTD result shown in Fig. 8 and the
corresponding approximate analytical solution when their CW por-
tions are aligned. Red/dark region in the left-upper and right-lower
portions of the left side and in the left-upper and right-lower por-
tions of the right side of the figure represents larger FDTD values.
Blue/dark region in the left-lower and right-upper portions of the
left side and in the left-lower and right-upper portions of the right
side of the figure represents larger approximate solution values.

incurred with the turn-on portion of the pulse and explains
the apparent lag in the turn-off of the FDTD results.

V. CONCLUSIONS

The one-dimensional electromagnetic problem of a cur-
rent sheet source in a dispersive DNG medium was consid-
ered. A lossy Drude model of the DNG medium was used.
The solution was generated numerically with the FDTD
method. The analogous problem in a nondispersive DNG
medium was also considered. It was shown that the solution
to this problem is not causal in agreement with similar ob-
servations given in [5]. Approximate solutions that combined
causal envelopes and the NIR properties of the nondispersive
DNG medium were constructed: they were shown to com-
pare well to the FDTD results for the dispersive DNG me-
dium. It was thus demonstrated that causal results do indeed
require the presence of dispersion in DNG media. Spectro-
grams of the FDTD results for the dispersive DNG medium
and of the differences between those FDTD results and the
approximate analytical solution revealed that the highest fre-
quency components, which experience a DPS (PIR) medium,
arnive first and are responsible for generating the front edge
of the dispersive DNG pulse results. They also revealed that
the trailing edge contained significant lower frequency com-
ponents that see a DNG medium and have much slower
wave speeds. The apparent delays in the germination of the
CW portion of the pulse and in its termination were corre-
lated with these dispersive effects. Thus, the dynamic reshap-
ing of the DNG pulses occurs because of the different arrival
times for the higher and lower frequency components.

It was also demonstrated that the CW portions of the
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pulses do obey all of the NIR effects expected from a time-
harmonic analysis in a nondispersive DNG medium. Thus,
CW analyses of DNG media are credible as long as very
narrow bandwidth pulse trains are considered for any practi-
cal realizations. This has been the case in all of the experi-
mental results reported to date. Moreover, time delays for the
realization of the NIR effects are inherent in the processes
dictated by the dispersive nature of the physics governing
them.

Even though the results presented here were derived for
the broad bandwidth DNG Drude model, it is anticipated that
the dynamic reshaping due to dispersive effects will also
play a similar role in current metamaterial realizations of
DNG media. This is particularly true of the planar implemen-
tations [15-18] that realize the Drude behavior. It should
also be true for the nonplanar metamaterial constructs that
involve highly resonant elements that achieve DNG proper-
ties in narrow frequency bands. In fact, this dynamic reshap-
ing will occur at a faster rate since changes in the medium
parameters from the DPS to the DNG states will be much
more rapid. Furthermore, the dynamic reshaping must also
occur at the interfaces between DPS and DNG media. The
delays in the reflected pulse formation observed in [12] and
[13] occur as the dispersive effects sort out the frequency

PHYSICAL REVIEW E 68. 026615 (2003)

components for the wavefronts and the appropriate propaga-
tion directions for the reflected and transmitted waves. Since
most of the current nonplanar DNG metamaterial experi-
ments are of the slab variety, these dynamic reshaping effects
would be measurable if the experimental results were re-
solved in time.

It 1s interesting to note that the DNG results presented
here can be related to Feynman’s description of the interac-
tions of electrons and positrons [28]. In particular, if one
views the causal envelope propagating forward in time as an
electron and the NIR CW wave propagating backward in
time as a positron, then the positronlike CW wave is annihi-
lated by the electronlike envelope at the pulse front. The
scattered particle is the resulting wave that contains the NIR
properties but is causal and propagating forward in time. The
vertex interaction is smeared in time by the dispersive ef-
fects; it funnels the highest frequencies into the pulse front
and properly distributes the higher and lower frequencies (o
provide the transition from the off-state to the CW on-state.
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The nanotechnology area holds much promise for the realization of ultra-small and ultra-fast
devices with a variety of interesting applications. The optical sector is an immediate beneficiary
of nanotechnologies. Consider, for instance, a coated nano-cylinder or nano-sphere whose outer
radius is @ =50nm . Atan excitation wavelength of Ay =500#m  its radius isonly a = 4,/10.

One could use arrays of such nano-cylinders or nano-spheres as inclusions in a substrate to realize
optical metamaterials. On the other hand, becausc of their subwavelength sizes, such arrays
could be used for several nano-photonic circuit concepts.

We have been studying analytically and with the finite difference time domain (FDTD) approach,
the scattering of Gaussian beams from sets of nano-cylinders and nano-spheres. We selected the
FDTD approach because of its versatility in the choices and configurations of materials and
structures that can modeled. This versatility makes it an excellent candidate for studying the
behavior of these ultra-small systems. One strong design goal has been to determine whether or
not an array of plasmonic nano-cylinders could be used as an effective waveguide to localize
efficiently an electromagnetic field to subwavelength dimensions.

It has been found theoretically and experimentally that by properly taking into account the actual
material characteristics at optical frequencies and by properly designing the nano-structures, one
can achieve enhanced scattering. In particular, the permittivity of metals such as gold and silver
at visible (optical) frequencies can be described effectively by a lossy Drude (cold plasma)
model. One finds that the real part of the permittivity of metals is in fact generally negative at
those frequencies. On the other hand, it is readily shown from canonical plane wave scattering
problems that the total scattering cross-section of an electrically small dielectric cylinder (sphere)
(i.e., Rayleigh scatterers that are much smaller than the wavelength) is resonant for £ =—1.0&,

(£ =-2.0¢,). One typically realizes these plasmon resonance effects at optical frequencies and
at nano-meter length scales with cylindrical (spherical) dielectric scatterers that are coated with
metals whose permittivity is £, =—1.0 (&, =—2.0) at the wavelength of interest,

We have used a finite difference time domain (FDTD) simulator to study the enhanced scattering
from plasmonic cylinders [1]. Here, each cylinder is defined by an interior free space (and other)
dielectric cylinder whose radius # = 40nm that is coated with a Drude metal shell whose outer

radius 7, = 50nm . The Drude metal coating has £, =—1.0 at A, = 500nm , the wavelength of

the optical field under consideration. We have combined together an array of these cylinders to
form a nanometer waveguide environment that can capture a significant amount of power from an
incident optical beam and can then transform it into a localized field with a highly subwavelength
spot at the output of the waveguide. This geometry is shown in Fig. la. A parallel polarized
Gaussian beain (electric field in the plane of the figure, magnetic field orthogonal to it), whose




waist is 24y =1000#m, is incident normally on the end of an 18 element. two column array of

these plasmonic nano-cylinders. The longitudinal distance between the centers of the cylinders is
110nm giving a 10nm separation between them along the beam axis. The entire waveguide is

thus slightly longer than 24,. The transverse distancc between the centers of the cylinders is
120nm so that the channel formed between the edges of the cylinders is 20 nm . The distance
between the outer edges of the cylinders is thus 220nm . To isolate the input end of the

waveguide and the incident beam from its output end, the cylinders are fed through a slot in a
10 nm -thick perfect electric conductor (PEC) ground plane. The slot width is 170 7m . Detector

arrays (1/ elements, each element being 6 nm wide) are located 2r, =100am away from the

ends of the waveguide. To further localize the field at the output end, the last two nano-cylinders
have 10nm slots in their metallic shells [2, 3].

The incident beam is launched from a total-field/scattered field boundary into the FDTD
simulation region. The beam scatters from and excites the input end of the waveguide. We are
investigating the waveguide output fields as functions of all of the geometry and material factors.
Snapshots in time of the magnetic field intensity distribution for the indicated plasmontc nano-
cylinder waveguide configuration are shown in Fig. 1. The incident field is clearly coupled to the
waveguide and the transmitted field is basically confined to the regions between the nano-
cylinders. Each nano-cylinder is also seen to be strongly coupled to its nearest neighbors.
Transverse cross-sections of the magnetic field intensity at various locations along the beam axis
are shown in Fig. 2. The cross-sections before and just into the waveguide are given in Fig. 2a;
those just after the output of the waveguide are given in Fig. 2b. The full width at half’ maximum
of the intensity of the input beam is 235nm . Tt is found that the intensity distribution across the

front detector array has a 145nm full width al half maximum while it has a 120nm full width at

half maximum across the back detector array. The output beam is seen to be highly localized
near the waveguide. Tt has a 80nm full width at hall maximum across the ouput face of the

waveguide. This spot size is 6.25 time smaller than the wavelength. From the time histories
obtained at the center of the front and back detectors it is found that the amplitude of the magnetic
field at the back detector array is about 20% of its value at the front detector array and that it
takes only about 15 cycles for this level to be reached. The plasmonic nano-cylinder waveguide
array has thus localized the incident field with a reasonable efficiency to subwavelength spot
sizes. These localized fields could be used for many nanoscale optical probe and photonic circuit
applications.
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Fig. 1. Snapshots in time of the magnetic field intensity: a)t=0At, b)t= 150 At, c) t =
1200 At, and d) t = 3200 At. The field translated along the plasmonic nano-cylinder
waveguide produces a localized distribution at the output face.
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Fig. 2. Transverse cross-sections of the magnetic field intensity distribution at the (a)
input and (b) output ends of the plasmonic nano-cylinder waveguide.



