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Chapter 1

Introduction and Summary

1.1 Motivating Problems

As every individual... intends only his own gain, and he is in this, as in many other cases, led by an
invisible hand to promote an end which was no part of his intention. Nor is it always the worse for
the society that it was no part of it. By pursuing his own interest he frequently promotes that of the
society more effectually than when he really intends to promote it.

—Adam Smith, An Inquiry into the Nature and Causes of the Wealth of Nations IV.2:9, 1776.

We study a classical question in a modern context. There are a number of buyers and sellers of
a number of distinct goods. Each participant is selfish. It cares more for its own benefit than of the
social welfare. Each good is indivisible. It must go completely to one of the participants. Moreover,
the participants are not ‘passive’ as Smith [156] and Walras [166] believed, but ‘actively’ take actions
to further their interest in the spirit of Cournot [27] and Edgeworth [37], and later, von Neumann and
Morgenstern [117] and Nash [116].

We are thus interested in the following questions. When does an equilibrium exist in a market with
several indivisible goods? And what economic mechanisms yield an allocation that promotes the welfare
of the society as a whole? To put it more concretely, we want to examine the existence of competitive
equilibrium in a combinatorial market , i.e., an exchange economy with several indivisible goods such
that consumers have interdependent valuations: A consumer’s utility is for a bundle of indivisible goods.
Further, we seek auction or market mechanisms that yield social welfare maximizing allocations when
participants or agents exercise strategic behavior.

Despite this being a long standing question, it has only been incompletely resolved for the setting
of interest. The following problems from communication networks and operations research motivated
this work.

Wireless Networks. Consider a cellular network. An agency such as the FCC [39] wants to auc-
tion spectrum to wireless service providers such as AT&T, Cingular, Sprint and Verizon. The wireless
service providers on their part, bid for spectrum in various cells. They aim for widespread coverage
for their customers and derive maximum benefit if they can provide service in contiguous cells. Thus,
wireless service providers need spectrum in bundles of cells. Moreover, the FCC auctions spectrum in
some indivisible chunks such as 10 MHz. Thus, spectrum is an indivisible good. These two features of
spectrum make the allocation problem combinatorial. The FCC wants to find allocation mechanisms
that determine uniform (every unit sells for same price) and anonymous (users are not discriminated
depending on their identity or ability to pay) prices. Moreover, the mechanisms are required to yield
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efficient allocation, i.e., those that maximize the social welfare. We will be more specific later.
Communication Networks. Now, consider a communication network with links {1, · · · , L}.

There are owners of capacity on links such as AT&T, MCI and Sprint. And there are service-providers
such as AOL, Earthlink and Comcast. An owner i owns a certain amount Ci,l Mbps of capacity on a
particular link and has a reservation cost ci(b, l) if it were to sell b units on link l. A service-provider
j has a reservation utility vj(b, Rj) for b units of capacity on route Rj , which is a bundle of links.
As before, the capacity is exchanged in some indivisible unit say 10 Mbps. This makes the exchange
problem combinatorial. We need a market mechanism whose outcome is efficient, i.e., maximizes the
trading surplus.

Electricity Markets. A similar problem arises in power networks. In fact, there is a well established
system for trading power on a daily basis. This has “commoditized” power thus making the market more
efficient, and ultimately benefiting the consumers. Though the question of mechanisms that achieve
full efficiency remains open [127].

Air-slot Allocation. Air-landing and take-off slots are currently allocated to airlines depending
on their bids. However, air traffic changes dramatically and this necessitates the need for re-allocation.
Currently, this re-allocation is left to the air-traffic controllers with penalties for the errant airlines.
However, this reallocation could be determined efficiently through a combinatorial auction [129].

Supply-Chain Management. Similar problems arise in several manufacturing contexts. For
example, a car manufacturing unit may bid for x units of an item A and item B. It needs both, say, to
produce a car. Other car manufacturing units may have similar demands. There could be sellers offering
each of items A and B. The exchange could then be determined by a combinatorial auction. Such
exchanges are currently determined by bilateral contracts which lead to inefficiencies in the market.

Thus, at an abstract level, the problems that we study are of considerable interest to various areas
of engineering, computer science, operations research and management. The solution that we offer is
practical. However, in each case, additional technological infrastructure may be necessary. For example,
in the context of communication networks, we would need a technology that can establish the routes
bought in an automated fashion. This becomes particularly crucial with large numbers of buyers and
sellers as in bandwidth exchanges. This study is limited to solving the abstract problem, although it has
immediate relevance for these real-world problems.

Thus, the following questions from the above problems motivated our work.

Q.1. When does competitive equilibrium exist in a combinatorial market?

Q.2. What mechanisms achieve outcomes close to competitive equilibrium?

Q.3. Do there exist optimal mechanisms that minimize efficiency loss of any Nash equilibrium when the
players act strategically? Does the incomplete information case result in sub-optimal outcomes?

Q.4. How do the theoretical results compare to real world settings when human agents are involved?

In the rest of this summary, we give a high-level description of how we answer these questions.
We also discuss how it relates to various research areas, and how it contributes to each of them. In
section 1.2, we describe our work on existence of competitive equilibrium in a particular model of large
combinatorial markets. In section 1.3, we describe the set-up for combinatorial markets and extant
auction mechanism design theory for such markets. Section 1.4 discusses the strategic behavior of
agents in an auction and how it may result in Nash equilibrium allocations which are inefficient. In the
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congestion games literature, this has been called the price of anarchy. Section 1.5 presents human-
subject experimental results used to verify the game theoretic results that we obtained. Section 1.6
summarizes the contributions.

1.2 Models of Large Markets and Economic Efficiency

First, we investigate whether economically efficient resource allocations are attainable in a large market
with independent participants.

Suppose there are N agents and L commodities. All commodities are indivisible. They are often
treated as perfectly divisible. This is more for mathematical convenience and may be acceptable when
the quantities involved are large but not otherwise. (Even oil which is divisible is actually sold in units of
barrels.) Thus, throughout, we regard all goods as indivisible. Moreover, we will consider all agents to
be consumers. That is, it is a pure exchange economic system and does not involve firms or production.
A consumer i has a consumption set Xi with a preference order �i on any pair of consumptions in Xi.
It is known that for continuous preferences on connected consumption sets, there exists a continuous
utility function [30]. With indivisible commodities, preferences are not continuous and the consumption
sets are not connected. However, when �i is a complete order on Xi, it is easy to see that there exists
a utility function on Xi. At times, it is more convenient to work directly with utility functions. We
will assume that there is a divisible good or currency that circulates as numeraire or money. We will
assign a price p0 to it as well. The price of all other goods is then obtained in terms of this currency by
dividing the price of each good by the price of money.

Given the utility functions of the consumers, the first pertinent question is what allocations are
more desirable than others. This has received the attention of economists for a long time. Following
Marshall [104], we shall assume that allocations that maximize the social welfare, the sum of utility
functions of the consumers is more desirable. One reason for choosing such allocations is that they are
Pareto-efficient [121]: the allocation cannot be changed to make one agent strictly better off and no
other agent worse off.

We will assume that each consumer has a utility function quasi-linear in money. There are no income
effects. Moreover, all the goods and the total money available is allocated to the consumers as their
initial endowment. We seek a market equilibrium wherein a price is assigned to each commodity. And
at that price, the demands of all the consumers is such that the market clears, i.e., every unit of each
commodity gets allocated to some consumer. We will assume that each participant does not anticipate
the effect of his actions on price. Such market equilibria are referred to as general or competitive or
Walrasian equilibria.

The notion of competitive equilibrium (C.E.) dates back to Walras [166], but it was Wald [165]
who laid its modern mathematical foundations and first rigorously proved its existence in competitive
markets. This program was carried forward by Arrow and Debreu [4], Gale [47] and McKenzie [110], who
proved existence for economies with divisible commodities under the assumption of convex preferences
and connected consumption sets. Over the years, this has been improved to the following statement.

Theorem (Arrow-Debreu). Suppose consumer preferences are continuous, strictly convex and
strongly monotone. Suppose there is positive endowment of every commodity and that the excess
demand correspondence Φ(·) satisfies the following properties.
(i) It is continuous.
(ii) It is homogeneous of degree zero.
(iii) p · Φ(p) = 0 for all p (Walras’s law).
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(iv) There is an s > 0 such that Φl(p) > −s for every commodity l and all p.
(v) If pn → p, where p 6= 0 and pl = 0 for some l, then

max
l

Φl(pn) →∞.

Then, a competitive equilibrium exists.

A competitive equilibrium is regarded as a desirable outcome because of the First Theorem of Welfare
Economics: A competitive equilibrium allocation is Pareto-efficient [3]. There are converse theorems.
But they require additional conditions on the preferences. For example, the Second Theorem of Welfare
Economics states: If each consumer holds strictly positive initial endowment of each commodity, the
preferences are convex, continuous and strongly monotonic, then there exist prices such that a Pareto-
efficient allocation is also a competitive allocation at those prices [30].

Of course, a competitive equilibrium need not always exist and not all Pareto-efficient allocations
need be feasible. An allocation should be attainable by actions of a consumer or of a coalition of
consumers. Thus, the concept of the core of an economy C is introduced: The set of feasible allocations
of the economy such that it cannot be improved upon by any coalition. Clearly, every allocation in the
core is Pareto-efficient. Furthermore, the set of all competitive equilibrium allocations CE , is contained
in the core. The interesting question then is the equivalence of C and CE .

A competitive equilibrium need not exist in an economy with indivisible goods. The difficulties
primarily lie in the fact that the utility functions are non-concave and discontinuous, and that the
consumption sets are totally disconnected. This makes use of any of the standard fixed point theorems
such as the Brouwer or the Kakutani fixed point theorems impossible.

Early attempts to deal with indivisible commodities considered “matching models”, inspired by the
“stable marriage” assignment problem of Gale and Shapley [49]. Shapley and Shubik [152] studied the
competitive equilibrium problem in asymmetric markets with buyers and sellers, each participant being
one or the other. Shapley and Scarf [151] considered the more general exchange model in which a
participant could be both buyer and seller. They focussed on the core and showed that an exchange
economy with indivisible goods has a nonempty core. In all this work, it is assumed that each participant
buys or sells only one commodity. Thus, the market was non-combinatorial.

The problem remains of interest in recent literature as well [95, 100, 17]. However, each of these
approaches makes some assumption which restricts general application of the work. For example, [95]
assumes that each participant owns at least one indivisible commodity initially. Moreover, utility is also
derived from at most one indivisible commodity. A combinatorial market is considered in [17] but the
agent preferences considered are rather special. Each agent is assumed to have a reservation value
for each bundle. Ma [100] considers a general setting but without money, and obtains necessary and
sufficient conditions for existence of competitive equilibrium.

Efforts have been made to characterize the limit points of market equilibria of economies with non-
convex preferences and indivisibilities as the market grows in size. Debreu and Scarf [31] proposed one
model of large economies as a finite economy replicated countably many times. More general models
of countable economies were considered in [59, 35]. However, C.E. may not exist even in countable
economies with non-convex preferences. Thus, there have been attempts to deal with non-convex
preferences in a finite setting by characterizing approximate equilibria. Starr [158] characterized certain
approximate competitive equilibrium based on results which state that non-convexities in an aggregate of
non-convex sets do not grow in size with the number of sets making up the aggregate. This “averaging”
results in non-convexities becoming less important in a large economy.
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Aumann introduced a continuum set of participants [9] to model large economies with perfect
competition wherein each participant is negligible compared to the overall size of the economy. Unlike
[4], he did not assume anything about the valuation of the participants. But the goods are divisible and
in such a setting, he showed that competitive equilibrium exists [11]. It was shown by Mas-Colell [105]
that Aumann’s results do not extend to a continuum economy with indivisible goods without money, i.e.,
competitive equilibrium need not exist in continuum exchange economies with indivisible commodities.
However, Khan and Yamakazi [85] showed that the core of a continuum economy with indivisible goods
is non-empty. This raised the hope that some allocations in the core may be decentralized through
competitive prices.

In chapter 2, we provide exactly such a result.
We consider an exchange economy with multiple commodities and money. Unlike [17, 95, 100], we

consider very general preferences and do not make any assumption on initial endowments. Moreover,
we consider a combinatorial market. Our only assumption is that the preferences are continuous and
monotonic in money. Our interest is in the perfect competition case, in which each participant is
negligible enough that it cannot affect the prices and the allocation. We adopt Aumann’s continuum
model as our model of perfect competition and obtain the following result.

Theorem 3.2 (C.E. Existence). Suppose agent preferences are continuous and monotonic in money.
There is a positive endowment of every commodity and each consumer has positive endowment of some
commodity. Assume that the excess demand correspondence satisfies the following properties.
(i) Φ(p) is homogeneous in p.
(ii) Boundary condition: Suppose pν → p∗, and p∗l = 0 for some l. Then, zν

l →∞, ∀zν ∈ Φ(pν).
(iii) Walras’ Law holds: p · z = 0,∀z ∈ Φ(p),∀p ∈ ∆0, the relative interior of ∆.
Then, a competitive equilibrium exists in the continuum exchange economy with indivisible commodities
and money.

The result is important from a finite economy setting since using the Shapley-Folkman and the Starr
theorem [158], one can now show the existence of various approximate competitive equilibrium.

1.3 Auction Mechanism Design for Combinatorial Markets

As noted above a competitive equilibrium is a desirable outcome. Having proved the existence of
competitive equilibrium in the continuum economy and various approximate competitive equilibria in
the finite economy, the question now is whether there exist mechanisms for combinatorial markets such
that it results in a competitive equilibrium with a price assigned to each good.

A simple market mechanism that achieves competitive equilibrium for one divisible commodity is the
following. Each buyer and each seller reveals his demand as a function of price. The trading price p∗ is
then determined as the one at which aggregate demand equals aggregate supply. Each buyer receives a
quantity of the commodity that he said he demands at the price p∗. Similarly, each seller sells a quantity
of the commodity that he said he can supply at the price p∗.

This can be generalized to the case of a combinatorial market with many indivisible goods. While
the auction mechanism that we present is for a general combinatorial market, the design is motivated
by the communication network resource allocation problem we discussed in section 1.1.

We consider multi-item combinatorial double auctions for resource allocation. Assume that sellers
offer “loose” bundles, each with just one type of item (such as a link). For example, if a seller has 5
units of item A and 5 units of item B, he makes two OR offers; one with 5 units of item A and another
with 5 units of item B. But then, within each bundle, only a fraction of the units may get sold; say 3
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out of 5 units. The buyer’s bundles on the other hand are of “all-or-none” kind. If a buyer bids for 5
units of both item A and item B, and if this bid is accepted, the buyer must receive all 5 units of each
of the two items. As mentioned earlier, this requirement is motivated by situations wherein buyers want
to acquire routes on communication networks. The assumption of non-combinatorial “loose” bundles
for sellers allows us to set uniform prices on items.

We now describe the mechanism that specifies the ‘rules of a game’ among buyers and sellers.
Suppose there are L items (l1, · · · , lL), m buyers and n sellers. Buyer i has (true) reservation

value vi per unit for a bundle of items Ri ⊆ {l1, · · · , lL}, and submits a buy bid of bi per unit and
demands up to δi units of the bundle Ri. Thus, the buyers have quasi-linear utility functions of the
form ub

i(x;ω,Ri) = v̄i(x) + ω wherein ω is money and

v̄i(x) =

{
x · vi, for x ≤ δi,

δi · vi, for x > δi.

Seller j has (true) per unit cost cj and offers to sell up to σj units of lj at a unit price of aj . Denote
Lj = {lj}. Sellers, too, have quasi-linear utility functions of the form us

j(x;ω,Lj) = −c̄j(x)+ω wherein
ω is money and

c̄j(x) =

{
x · cj , for x ≤ σj ,

∞, for x > σj .

The mechanism receives all these bids, and matches some buy and sell bids. The possible matches
are described by integers xi, yj : 0 ≤ xi ≤ δi is the number of units of bundle Ri allocated to buyer i
and 0 ≤ yj ≤ σj is the number of units of item lj sold by seller j.

The mechanism determines the allocation (x∗, y∗) as the solution of the surplus maximization prob-
lem MIP:

max
x,y

∑
i bixi −

∑
j ajyj (1.1)

s.t.
∑

j yjI1(l ∈ Lj)−
∑

i xiI1(l ∈ Ri) ≥ 0,∀l ∈ [1 : L],
xi ∈ [0 : δi],∀i, yj ∈ [0, σj ],∀j.

MIP is a mixed integer program: Buyer i’s bid is matched up to his maximum demand δi; Seller j’s bid
will also be matched up to his maximum supply σj . x

∗
i is constrained to be integral; y∗j will be integral

due to the demand less than equal to supply constraint.
The settlement price is the highest ask-price among matched sellers,

p̂l = max{aj : y∗j > 0, l ∈ Lj}. (1.2)

The payments are determined by these prices. Matched buyers pay the sum of the prices of items in
their bundle; matched sellers receive a payment equal to the number of units sold times the price for
the item. Unmatched buyers and sellers do not participate. This completes the mechanism description.

Our proposed mechanism called c-SeBiDA (combinatorial Sellers’ Bid Double Auction) is combinato-
rial and in a framework that allows us to define uniform and anonymous prices on the links. Such prices
are highly desirable from an economic perspective as they yield socially efficient and Pareto-optimal
outcomes, but they are achieved by few auction mechanisms.

The analysis of combinatorial auctions is usually very difficult, and even more so for combinatorial
double auctions. We thus consider the continuum model and show that the auction outcome is a
competitive equilibrium in chapter 3.
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Theorem 4.1 (c-SeBiDA outcome is C.E.). If bid functions of sellers are continuous and non-
decreasing, the c-SeBiDA outcome ((x∗, y∗), p∗) is a competitive equilibrium in the continuum model.

While the continuum model is an idealization of the scenario where there are a large number of
agents such that no single agent can affect the auction outcome by himself, it suggests that the auction
outcome is likely an approximate competitive equilibrium, and hence close to efficient. The methodology
used in the proof is novel in that it casts the mechanism in an optimal control framework and appeals
to Pontryagin’s maximum principle to conclude that the outcome is indeed a competitive equilibrium.

The c-SeBiDA mechanism is similar in spirit to the k-DA mechanism proposed in [145]. However,
the two mechanisms are different. In particular, k-DA is non-combinatorial and only for one type of
good. It cannot be generalized to the combinatorial case.

In the next section, we discuss other proposals for combinatorial auctions and the properties of
c-SeBiDA when the participants are strategic.

1.4 Strategic Behavior in Auctions and The Price of Anarchy

In the discussion so far, we have assumed that the participants do not anticipate that their actions
affect the outcome, i.e., they are price-taking. However, in a realistic economic scenario involving a
finite number of participants, agents do anticipate how they may affect the outcome and hence act
strategically.

Thus, we now focus on how strategic behavior of players affects price when they have complete
information. We will assume that players don’t strategize over the quantities (namely, δi, σj), which
will be considered fixed in the players’ bids. A strategy for buyer i is a buy bid bi. A strategy for
seller j is an ask bid aj . Let θ = ((a1, · · · , an), (b1, · · · , bn)) denote a collective strategy. Given θ, the
mechanism determines the allocation (x∗, y∗) and the prices {p̂l}. So the payoff to buyer i and seller j
is, respectively,

ub
i(θ) = v̄i(x∗i )− x∗i ·

∑
l∈Ri

p̂l, (1.3)

us
j(θ) = y∗j ·

∑
l∈Lj

p̂l − c̄j(y∗j ). (1.4)

The bids bi, aj may be different from the true valuations vi, cj , which however figure in the payoffs.
Observe that θ really is a function of all the vi and cj . Thus, in shorthand, we will also write θ(v, c) to
emphasize this dependence.

When players have complete information about true valuations and costs of the other players, they
choose the strategies to maximize their own payoffs given the strategies of others. When they have
incomplete information, they maximize E[ub

i(θ)|bi] (or E[us
j(θ)|aj ]), the expected value of their payoff

conditioned on their strategy.
A collective strategy θ∗ is a Nash equilibrium if no player can increase his payoff by unilaterally

changing his strategy. In the case of incomplete information, it is called a Bayesian-Nash equilibrium.
We now describe some criteria to evaluate auction mechanisms. In the discussion below, we will

drop the superscripts on u.
Individual Rational (IR). A mechanism is ex post IR if ui(θ(v, c)) ≥ 0 for all v, c, i.e., the utility

derived from any outcome is non-negative. It is interim IR if E[ui(θ(v, c)|vi] ≥ 0 for all vi (similarly
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for ci), i.e., the expected utility given that it knows its own valuation (or cost) and the distribution of
others is non-zero. It is ex ante IR if E[ui(θ(v, c))] ≥ 0, i.e., the expected utility when it only knows
the distribution of its own and others valuations (or costs). We assume that the utility derived from
non-participation is zero. In this study, we take ex post IR as the desired property.

Incentive Compatible (IC). A mechanism is IC if truth-telling is a dominant-strategy Nash equilib-
rium, i.e., θ∗ = ((c1, · · · , cn), (v1, · · · , vn)) is a Nash equilibrium of the auction game. In the incomplete
information case, a mechanism with truth-telling as a Bayesian-Nash equilibrium is said to be Bayesian
Incentive Compatible (IC). It is pertinent to mention here that when the mechanism is IC or Bayesian
IC, truth-telling need not be the only equilibrium.

Efficiency. A mechanism is (allocatively) efficient if it maximizes
∑

i ui(θ(v, c)) for all v and c.
Budget-balancing. A mechanism is strong budget-balanced if the aggregate payments of the buyers

equals the aggregate payment of the sellers. It is weakly budget-balanced if the aggregate payments of
the buyers is greater than or equal to the aggregate payment of the sellers.

Vickrey [162] was the first to realize that despite strategic behavior, there are mechanisms that are
IR, IC and efficient. His work was expanded upon by Clark [25] and Groves [51]. It is now well known
that the only known positive result in the mechanism design theory is the VCG class of mechanisms
[108, 91]. The generalized Vickrey (combinatorial) auction (GVA) (with complete information) is ex
post individual rational, dominant strategy incentive compatible and efficient [164]. It is however not
budget-balanced. The incomplete information version of GVA (dAGVA) is Bayesian IC, efficient and
budget-balanced. It is, however, not ex post IR. Indeed, there exists no mechanism which is efficient,
budget-balanced, ex post IR and dominant strategy IC (Hurwicz impossibility theorem) [60]. Moreover,
there exists no mechanism which is efficient, budget-balanced, ex post IR and Bayesian IC (Myerson-
Satterthwaite impossibility theorem) [115].

The mechanism we provide is a non-VCG combinatorial (market) mechanism which in the complete
information case is always efficient, budget-balanced, ex post IR and “almost” dominant strategy IC.
In the incomplete information case, it is budget-balanced, ex post IR and asymptotically efficient and
Bayesian IC.

Moreover, we show in chapter 3 that any Nash equilibrium allocation (say of a network resource
allocation game) is always efficient (zero efficiency loss). Specifically,

Theorem 4.2 (Nash equilibria of c-SeBiDA). (i) A Nash equilibrium exists in the c-SeBiDA game.
(ii) Except for the matched seller with the highest bid on each item, it is a dominant strategy for each
player to bid truthfully. (iii) Any Nash equilibrium allocation is always efficient.

In the case of incomplete information, we will show that any Bayesian-Nash equilibrium allocation
is asymptotically efficient.

Theorem 4.3 (Bayesian-Nash equilibria of c-SeBiDA). Consider the SeBiDA auction game when
both buyers and sellers have ex post individual rationality constraint. Let (αn, βn) be a symmetric
Bayesian-Nash equilibrium with n buyers and n sellers. Then, (i) βn(v) = β̃(v) = v ∀n ≥ 2, and (ii)
(αn, βn) → (α̃, β̃) in the uniform topology as n→∞, i.e., SeBiDA is asymptotically Bayesian incentive
compatible.

Ours is one of few proposals for a combinatorial double auction mechanism. It appears to be the
only combinatorial market mechanism for strategic agents with unrestricted strategy spaces. We are
able to achieve efficient allocations. Furthermore, the mechanism’s linear integer program structure
makes the computation manageable for many practical applications [77].

This seems to be the only known combinatorial double-auction mechanism with these properties.
We now describe relevant literature.
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In the classical auction theory literature, most of the attention is focused on one-sided, single-item
auctions [86]. There is now a growing body of research devoted to combinatorial auctions [164]. The
interplay between economic, game-theoretic and computational issues has sparked interest in algorithmic
mechanism design [137]. Some iterative, ascending price combinatorial auctions achieve efficiencies close
to the Vickrey auction [12, 33, 112, 141]. But generalized Vickrey auction mechanisms for multiple
heterogeneous items may not be computationally tractable [137, 122]. Thus, mechanisms which rely
on approximation of the integer program (though with restricted strategy spaces such as “bounded” or
“myopic rationality”) [122] or linear programming (when there is a particular structure such as “gross”
or “agent substitutability”) [18] have been proposed.

In [32], one of the first multi-item auction mechanisms is introduced. However, it is not combinatorial
and consideration is only given to computation of equilibria among truth-telling agents. An auction for
single items is presented in [144]. It is similar in spirit to what we present, but cannot be generalized to
multiple items. In [176], a modified Vickrey double auction with participation fees is presented, while
[34] considers truthful double auction mechanisms and obtains upper bounds on the profit of any such
auction. But the setting in both [34, 144] is non-combinatorial since each bid is for an individual item
only.

Our results also relate to recent efforts in the network pricing [40, 78, 94, 153] and congestion games
literature [89, 136]. There is an ongoing effort to propose mechanisms for network resource allocation
through auctions [79] and to bound the worst case Nash equilibrium efficiency loss (the so-called “price
of anarchy” [89]) of such mechanisms when users act strategically [71, 102]. An optimal mechanism
that minimizes this efficiency loss has also been proposed in [143], though not extended to the case
of multiple items. Most of this literature regards the good (in this case, bandwidth) as divisible, with
complete information for all players. The case of indivisible goods or incomplete information case is
regarded in the literature as harder.

We considered indivisible goods, combinatorial buy-bids and incomplete information, and showed
that the price of anarchy of c-SeBiDA zero.

It is worth noting that a one-sided auction is a special case of a double auction when there is only
one seller with zero costs. The network and congestion games [78, 89] are all one-sided auctions.

1.5 Validating Economic Theory through Experiments

It is reasonable to question whether the predictions made by the theory discussed above are accurate
predictors of human economic behavior in the real world. The first issue is the assumptions made in
developing the theory. The second, even more basic issue, is whether humans make completely rational
choices. To incorporate irrational behavior within mathematical models, various bounded rationality
models have been proposed. However, the ultimate test for any economic theory is still its success in
making good predictions in the marketplace. Thus, pioneered by Vernon L. Smith [155], a methodology
of testing economic theory through human subject experiments has been developed. Econometric
methods have already revolutionized economics. Roth [137] argues that experimental economics will
play the same role in game theory.

Thus, to validate the auction theory that we have developed, we implemented the c-SeBiDA mech-
anism in a web-based software test-bed [8]. It was then used to conduct human subject experiments to
validate the mechanism.

It was observed that as the number of participants was increased, the auction outcome seemed to
converge to the efficient allocation. The participants’ bids seemed to converge to their true values.
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However, considering limitations on the number of participants in a laboratory setting, such a formal
conclusion cannot be drawn.

A surprising result was that most participants (except for economic graduate student participants!)
seemed to be rather risk-averse. The analysis predicts buyers would bid more than true value. However,
this was rarely observed.

Considering that conducting economic experiments is a rather delicate operation, the results re-
ported in chapter 4 should be considered preliminary. However, they do point out the efficacy of such
experiments.

1.6 Contributions

We have essentially answered the four questions that we posed in section 1.1.
We showed that a competitive equilibrium exists in a continuum exchange economy with indivisible

commodities and money. Surprisingly, this result appears to be apparently unknown in the literature.
Our proof involved use of the Lyapunov-Richter theorem for integrals of correspondences. We used the
Debreu-Gale-Nikaido lemma instead of the Kakutani fixed point theorem. This implies the existence of
some approximate competitive equilibria in finite economies.

We have introduced a combinatorial, sellers’ bid, double auction (c-SeBiDA)—a combinatorial mar-
ket mechanism. We considered the continuum model and showed that within that model, c-SeBiDA
outcome is a competitive equilibrium. This suggests that in the finite setting, the auction outcome is
close to efficient.

We then considered strategic behavior of players and showed the existence of a Nash equilibrium
in the c-SeBiDA auction game with full information. In c-SeBiDA, settlement prices are determined
by sellers’ bids. We showed that the allocation of c-SeBiDA is efficient. Moreover, truth-telling is a
dominant strategy for all players except the highest matched seller for each item. We then considered
the Bayesian-Nash equilibrium of the mechanism under incomplete information. We showed that under
the ex post individual rationality constraint, symmetric Bayesian-Nash equilibrium strategies converge
to truth-telling for the single item auction. Thus, the mechanism is asymptotically Bayesian incentive
compatible, and hence asymptotically efficient.

We have shown that, surprisingly, c-SeBiDA has zero “price of anarchy” in the complete information
case, and asymptotically zero “price of anarchy” in the incomplete information case.

We have tested the proposed mechanism c-SeBiDA through human-subject experiments.
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Chapter 2

Existence of Competitive Equilibrium in
Combinatorial Markets

We investigated the existence of competitive equilibrium in combinatorial markets, i.e., markets with
several indivisible goods wherein agents have valuations for combinations of various goods. The work
was motivated by a resource allocation problem in communication networks with independent and selfish
buyers and sellers of bandwidth. We assumed that participants do not anticipate that their demand
or supply can affect the allocation. In particular, we adopted Aumann’s continuum exchange economy
as a model of perfect competition. We first showed how network topology affects the existence of
competitive equilibrium. We then showed the existence of competitive equilibrium in a continuum
combinatorial market with money. We made minimal assumptions on preferences; only that they are
continuous and monotonic in money. We assume that the excess demand correspondence satisfies
standard assumptions such as Walras’ law. The existence of competitive equilibrium in the continuum
combinatorial market was then used to show the existence of various enforceable and non-enforceable
approximate competitive equilibria.

2.1 Introduction

We studied the existence of competitive equilibrium in a combinatorial market , i.e., a pure exchange
economy with several indivisible goods and one divisible good numeraire or money. Each participant
may have interdependent valuations over various goods. This was motivated by the following problem
in communication networks.

Consider a network G = (N,L) with a finite set of nodes N , and links L. The transmission capacity
(or bandwidth) comes in some integral number of trunks (each trunk being say, 10 Mbps). There are
M agents, each with an initial endowment of money and link bandwidth. The allocation of the network
resources is determined through a double auction between buyers and sellers. Each buyer specifies the
bundle of links (comprising a route), the bandwidth (number of trunks) on each link, and the maximum
price it is willing to pay for the bundle; each seller specifies a similar bundle and the minimum price it is
willing to accept. We assume that each agent’s preferences are monotonic over the bundle (they prefer
larger bundles to strictly smaller ones) and continuous in money. Moreover, we assume that buyers
insist on getting the same bandwidth on all links in their bundles.

The framework is quite general and can be extended to the case where the network consists of
several autonomous systems and their owners are trying to negotiate Service Level Agreements (SLAs)
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about capacity, access and QoS issues.
We are interested in the following questions: When are Pareto-efficient allocations achievable in a

network through a (decentralized) market mechanism? How does efficiency depend on network topology?
How does economic efficiency scale with the size of the market? What market mechanisms are available
to achieve economic efficiency?

It is well known that competitive equilibrium need not exist in an exchange economy with indivisible
goods. The difficulties primarily lie in the fact that the utility functions are non-concave and discontin-
uous, and that the consumption sets are totally disconnected. This makes use of any of the standard
fixed point theorems such as the Brouwer or the Kakutani fixed point theorems to prove existence of
competitive equilibrium impossible.

Early attempts to deal with indivisible commodities considered “matching models” inspired by the
“stable marriage” assignment problem of Gale and Shapley [49]. Shapley and Shubik [152] studied
the competitive equilibrium problem in asymmetric markets when there are buyers and sellers. The
commodities are indivisible such as houses [76], but it is assumed that each participant buys or sells
only one commodity.

Shapley and Scarf [151] considered the more general exchange model where a participant could
be both a buyer and a seller. They focussed on the problem of core and showed that an exchange
economy with indivisible goods has a nonempty core. Quinzii [128] studied a similar problem, but
considered money as another good, and showed that competitive equilibrium exists and it has a non-
empty core. Gale [48] started with slightly different assumptions and also showed that competitive
equilibrium exists. In all of the above, it was assumed that utility functions satisfied a “non-transferable”
assumption. Yamamoto [175] further generalized this by removing some of these assumptions. All of
the above assumed that each participant buys or sells only one commodity. Thus, the market was
non-combinatorial.

The problem remains of interest in recent literature as well. In [95], van der Laan et al. considered
Walrasian equilibrium, but they assumed that each participant owns at least one indivisible commodity
initially. Moreover, utility is also derived from at most one indivisible commodity. While Ma [100]
considers a more general setup and has a different approach. Necessary and sufficient conditions for
existence of competitive equilibrium in an exchange economy with indivisible goods and no money were
obtained by considering a coalitional form game and obtaining conditions for it being balanced following
[81].

A model incorporating combinatorial markets was considered by Bikhchandani and Mamer [17].
They provide necessary and sufficient conditions for existence of competitive equilibrium in an exchange
economy with many indivisible goods and money. The market they consider is combinatorial since a
consumer wants bundles of commodities. But the agent preferences considered are rather special. Each
agent is assumed to have a reservation value for each bundle.

Since a competitive equilibrium may not exist with non-convex preferences and indivisibilities, there
have been efforts to characterize the limit points of market equilibria of economies as the market grows
in size. Several models of large economies have been proposed. Debreu and Scarf [31] investigated the
core of a finite economy replicated countably many times. More general models of countable economies
were considered in [35, 59]. However, it is known that C.E. may not exist even in countable economies
with non-convex preferences.

Thus, there have been attempts to characterize approximate equilibria with non-convex preferences
in a finite setting. Starr [158] characterized certain approximate competitive equilibrium based on results
which state that non-convexities in an aggregate of non-convex sets do not grow in size with the number
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of sets making up the aggregate. This “averaging” results in non-convexities becoming less important
in a large economy. Henry [58], Emmerson [38] and Broome [22] extended this work to the case of
indivisible goods. As Emmerson noted, indivisibilities do not merely result in non-convex preferences.
The consumption sets become totally disconnected as well. This results in the competitive mechanism
leading to non Pareto-efficient allocations.

Aumann introduced the continuum model of an economy [9] to model large economies with perfect
competition where each participant is negligible compared to the overall size of the economy. Unlike [4,
47], he did not assume anything about the valuation of the participants. But the goods are divisible and
in such a setting, he showed that competitive equilibrium exists [11]. It was shown by Mas-Colell [105]
that Aumann’s results do not extend to a continuum economy with indivisible goods without money, i.e.,
competitive equilibrium need not exist in continuum exchange economies with indivisible commodities.
However, Khan and Yamakazi [85] showed that the core of a continuum economy with indivisible goods
is non-empty. This raised the hope that some allocations in the core may be decentralized through
competitive prices.

We provide exactly such a result.
We considered an exchange economy with multiple commodities and money. Unlike [17, 95, 100],

we considered very general preferences and made no assumption on initial endowments. Moreover, we
considered a combinatorial market. Our only assumption was that the preferences are continuous and
monotonic in money; a reasonable assumption by any means. Our interest was in the perfect competition
case, when each participant is negligible enough that it cannot affect the prices and the allocation.

We first showed that when agents have quasi-linear utility functions, existence of competitive equilib-
rium, and hence of economically efficient market mechanisms depends on network topology. We showed
an example of a finite network with a finite number of agents, for which no competitive equilibrium
exists.

We then modeled a perfect competition economy as one with a continuum of agents, each with
negligible influence on the final allocation and prices [9]. Such idealized models are used frequently
and are helpful in characterizing and finding approximate equilibria that are nearly efficient for finite
settings. We showed that a competitive equilibrium exists in a continuum model of a network. This
was accomplished using the Debreu-Gale-Nikaido lemma, a useful corollary of Kakutani’s fixed point
theorem.

The chapter is organized as follows: In section 2.2, we present some examples of finite networks,
and show that if bandwidth is indivisible, competitive equilibrium may not exist. Section 2.3 presents
existence results for the continuum model of a network. Section 2.4 presents some enforceable and
non-enforceable equilibria. Section 3.6 presents conclusions. The proofs of the theorems are technical
and presented in the appendices.

2.2 Network Topology and Economic Efficiency

We first prove that a competitive equilibrium exists if the routes that buyers want form a tree and all
agents (buyers and sellers) have utilities that are linear in bandwidth and money. Examples are given
to show that a competitive equilibrium may not exist if the routes do not form a tree or if utilities are
nonlinear.

Links are indexed j = 1, 2, · · · ; link j provides Cj trunks of bandwidth (Cj an integer). Its owner,
j, can lease yj ≤ Cj trunks and has a per trunk reservation price or cost aj . Buyer i, i = 1, 2, · · · ,
wishes to lease xi trunks on each link j in route Ri. The value to buyer j of one trunk along route Ri
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is bi. Let A = {Aij} be the edge-route incidence matrix, i.e. Aij = 1(0), if link j ∈ (6∈)Ri.
With this notation, the allocation (x∗, y∗) with the maximum surplus solves the following integer

program:

max
x,y

∑
i bixi −

∑
j ajyj (2.1)

s.t.
∑

iAijxi ≤ yj ≤ Cj , ∀j (2.2)

xi, yj ∈ {0, 1, 2, · · · }, ∀i, j (2.3)

The allocation (x∗, y∗) together with a link price vector p∗ = {p∗j} is a competitive equilibrium if
every buyer i maximizes his surplus at x∗i ,

max
xi=0,1,···

(bi −
∑
j∈Ri

p∗j )xi,

and every seller j maximizes his profit at y∗j ,

max
yj=0,1,··· ,Cj

(p∗j − aj)yj .

A matrix is Totally Unimodular (TU) if the determinant of every square submatrix is 0, 1 or -1 [149].
If the routes that buyers want in a network form a tree, its edge-route incidence matrix is TU.

Theorem 2.1. If A is TU, in particular if the routes form a tree, there is a competitive equilibrium.

Proof. Consider the relaxed LP version of problem (2.1) in which the integer constraint (2.3) is dropped.
Because A is TU, the convex set of allocations (x, y) that satisfy constraint (2.2) has integer-valued
vertices. Hence there is an optimal solution (x∗, y∗) to the LP problem which is integer-valued. The
Lagrange multipliers {p∗j} associated with the constraint (2.2), together with (x∗, y∗), form a competitive
equilibrium, as can be verified from the Duality Theorem of LP.

The proposition has a partial converse: If (p∗, (x∗, y∗)) is a competitive equilibrium, (x∗, y∗) is a
solution to the relaxed LP problem.

It is well known that a competitive equilibrium exists if every buyer i (seller j) has a utility (cost)
function ui(xi)(vj(yj)) that is concave (convex), monotone and continuous (along with some boundary
conditions) [5] and fractional trunks can be traded. This fact is exploited in [78, 79] to infer existence
of competitive equilibrium prices for bandwidth on each link.

Examples 1,2 are non-TU networks that do not have a competitive equilibrium.

e3

e1 e2

Figure 2.1: A cyclic network that is not TU.
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e3e1 e2

e4

Figure 2.2: An acyclic network that is not TU.

Example 2.1. Consider the cyclic network in figure 2.1 with buyers 1, · · · , 4, who want routes {e1, e2},
{e2, e3}, {e3, e1}, and {e3}, respectively. Buyers 1, 2, 3 receive benefit bi = 1 per trunk; buyer 4
receives b4 = α(< 0.5). Sellers own one trunk on each link, and their reservation price aj = 0 for all
links. The network is not TU, as can be easily checked. Surplus maximization allocates route {e1, e2}
to user 1 and {e3} to user 4. If prices p1, p2, p3 were to support this allocation, they must satisfy the
conditions, 1 = p1 + p2 ≤ min(p2 + p3, p1 + p3) and 0.5 > α ≥ p3, which is impossible. So there is no
competitive equilibrium.

Example 2.2. Consider the acyclic network of figure 2.2 again with buyers 1, · · · , 4, desired routes
{e1, e2}, {e2, e3}, {e1, e4, e3}, and {e3} and benefits bi as before. Each link supports one trunk, and
the sellers are as before. Surplus maximization again allocates route {e1, e2} to user 1 and {e3} to user
4. Competitive prices supporting this allocation must satisfy 1 = p1 + p2 ≤ min(p2 + p3, p1 + p4 + p3),
0.5 > α ≥ p3, and p4 = 0, which is impossible.

Next we see a TU network with nonlinear concave utilities for which there is no competitive equi-
librium.

Example 2.3. Consider a network with two links, each with two trunks of capacity. There are two
buyers. Buyer 1 wants a route through both links with bandwidth x1 and has a concave utility function:
u1(x1; {l1, l2}) = 1.1x1, 0 ≤ x1 ≤ 1;= x+ 0.1, 1 ≤ x1 ≤ 2.
Buyer 2 demands bandwidth x2 only on link 2 and has concave utility function:
u2(x; l2) = 1.5x, 0 ≤ x ≤ 1; 1.1(x− 1)+1.5, 1 < x ≤ 1+ ε; (x− 1− ε)+1.6, 1+ ε < x ≤ 2, where ε =
0.1/1.1.
The sellers have reservation price of 0 on each link. It is easy to check that if fractional trunks can
be traded, there is a competitive equilibrium with allocation x∗ = (0.4, 1.6) and prices p∗ = (0, 1.1).
However, if trades must be in integral trunks, there is no competitive equilibrium.

A competitive equilibrium is efficient, because it maximizes total surplus
∑

i bixi−
∑

j ajyj . To find
an equilibrium, one normally proposes an iterative mechanism (often called ‘Walrasian’) involving an
‘auctioneer’, who in the nth round proposes link prices {pn

j }, to which agents respond: buyer i places
demand xn

i , seller j offers to supply yj ≤ Cj trunks. The auctioneer calculates the ‘excess demand’ on
link j, ξn

j =
∑
Aijx

n
i −yn

j , and begins round n+1 with price pn+1
j higher or lower than pn

j , accordingly
as ξn

j is positive or negative. The equilibrium is reached when ξj ≤ 0 for all j.
Two questions arise: Will the iterations converge? And are such mechanisms practically imple-

mentable? Of course, if there is no competitive equilibrium, caused perhaps by indivisibilities, the
price-adjustment algorithms will not converge and no practical mechanisms can exist. Thus, in the next
section, we study the existence of competitive equilibrium in an ideal model.
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2.3 Competitive Equilibrium in the Continuum Model

Consider a combinatorial market with indivisible goods and money. We assume that there is perfect
competition in which no single agent can influence the outcome, by considering a continuum of agents
(buyers and sellers). The continuum exchange economy, first introduced by Aumann [9], is an idealized
model of perfect competition in which no agent has significant ‘market power’ to be able to alter the
outcome. From a practical perspective, the existence of a competitive model in the ideal model can be
used to establish the existence of approximate competitive equilibria (which are approximately efficient)
in finite economies.

With money

Consider a combinatorial market G with L indivisible goods 1, · · · , L). Let there be Cl units of good
l for each l. There is one divisible good 0, called money. There is a continuum of agents indexed
t ∈ X = [0,M ], with a given non-atomic measure space (X,B(X), µ). Suppose there are M possible
bundles of indivisible goods and each agent t demands some bundle Ri. For example, all agents
t ∈ (m,m + 1] demand bundle Rm+1, for m + 1 ≤ M . Agents’ preferences �t are monotonic and
continuous in money. (Monotonicity simply means that if A ⊆ B, then B �t A. Continuity means
that if An → A and B �t An, then B �t A.) As a result, preferences are continuous. A particular
example of such preferences is when utility functions are quasi-linear in money, i.e., linear in money.
Agent t has an initial endowment ωt, which is a L + 1-tuple. Though the following discussion and
the results are for any general initial endowment, a particular example is of an auction setting when
agent 0 is an auctioneer, endowed with ω0 = (0, C1, · · · , CL) (e.g., the whole network) and any other
agent t(> 0) has ωt = (mt, 0, · · · , 0), in which mt is t’s money endowment. Similarly, the price vector
p = (p0, p1, · · · , pL) is a L+ 1-tuple; p0 is the price of money and pl is the price of one unit of good l.
We will call a system as described above a continuum combinatorial (exchange) economy E .

We begin with a few definitions: Let p ∈ Θ = RL+1
+ be a price vector. By p > 0, we shall mean

that all components are non-negative with p 6= 0, and by p� 0, we shall mean that all components are
strictly positive.
Commodity space: Ω = R+ × ZL

+. Thus, ω = (ω0, · · · , ωL) ∈ Ω denotes ω0 units of money and ωl

units of good l, for l = 1, · · · , L. Note that ωl for l > 0, must be an integer, indicating indivisibility.
Unit price simplex: ∆ = {p ∈ Θ : ΣL

0 pl = 1}. Prices lie in the unit simplex. Later, we can normalize
prices so that the price of money, p0 = 1, and we get the prices of other goods in terms of money.
Budget set: Bt(p) = {z ∈ Ω : p.z ≤ p.ωt}, which gives the allocations that agent t can afford based
on its initial endowment at given prices p.
Preference level sets: Pt(z) = {z′ ∈ Ω : z′ �t z}, is the set of allocations preferred by agent t to the
allocation z.
Individual demand correspondence: ψt(p) = {z ∈ Bt(p) : z �t z

′,∀z′ ∈ Bt(p)}. At given prices p,
ψt(p) is the set of t’s most-preferred allocations. There may be more than one most preferred allocation,
so ψt is a demand correspondence rather than a demand function.
Aggregate excess demand correspondence:

Φ(p) =
∫

X
ψt(p)dµ−

∫
X
ωtdµ.

We denote the first integral by Ψ(p)—the aggregate demand correspondence, and the second integral
by ω̄, the total endowment of all agents, or the aggregate supply.
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Definition 2.1 (Competitive Equilibrium). A pair (x∗, p∗) with p∗ ∈ ∆ and x∗ ∈ Ω is a competitive
equilibrium if x∗t ∈ ψt(p∗) and 0 ∈ Φ(p∗).

A competitive equilibrium comprises an allocation and a set of prices such that the prices support an
allocation for which aggregate demand equals aggregate supply, or in other words, the aggregate excess
demand is zero. Moreover, the allocation to each agent is what it demands at those prices.

We make the following assumptions:

Assumptions

1. ω̄ � 0 (component-wise positive), and ωt > 0,∀t (component-wise non-negative with some
component positive).

2. Φ(p) is homogeneous in p.

3. Boundary condition: Suppose pν → p∗, and p∗l = 0 for some l. Then, zν
l →∞, ∀zν ∈ Φ(pν).

4. Walras’ Law holds: p.z = 0,∀z ∈ Φ(p),∀p ∈ ∆0, the relative interior of ∆.

The first assumption simply states that there is a strictly positive endowment of each good and
moreover each agent has a strictly positive endowment of some good. The second assumption ensures
that scaling of prices does not alter the competitive allocation if it exists. The third assumption is a
boundary condition that holds in the absence of undesirable goods. The fourth assumption, Walras’
law, can be shown to hold for the economy under consideration. But we shall assume it without proof.
Essentially, it means that if there is positive excess demand for a good at given prices, its price can be
reduced still further towards zero.

Now we can show the following:

Theorem 2.2 (Existence). Under assumptions (1)-(4), a competitive equilibrium exists in the contin-
uum combinatorial economy E .

The proof relies on Lemma 2.1, which is a corollary of the Kakutani fixed point theorem and the
Lyapunov-Richter theorem. It states that the integral of a correspondence with respect to a non-atomic
measure is closed and convex-valued [10]. We can set the price of money p0 = 1, and we get the other
prices in units of money.

Proof. Consider any non-empty, closed convex subset S of ∆. We will first make some claims about
the properties of the aggregate excess demand correspondence [15].

Claim 2.1. Φ is non-empty and convex-valued on S.

From assumption 1, Φ is non-empty. Fix p ∈ S. By the Lyapunov-Richter theorem [10] with µ a
non-atomic measure on X, and ψt(p) a correspondence for each p,

∫
X ψt(p)dµ(t) is convex. Hence, Φ

is convex.

Claim 2.2. Φ is compact-valued, hence bounded on S.

Note that S is compact and for each p ∈ S, p� 0. Write

ψt(p) =
⋂

z∈Bt(p)

[Bt(p) ∩ Pt(z)].
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Then, Pt(z) is closed by continuity of preferences. Bt(p) is closed and bounded for p� 0. Thus, their
intersection is closed. And so is the outer intersection. It is bounded as well. Thus, ψt(p) is compact
for each p� 0.

Claim 2.3. p · z ≤ 0, ∀p ∈ ∆0, z ∈ Φ(p).

Fix p ∈ ∆0. By definition,

p · z ≤ p · ωt,∀z ∈ ψt(p),∀t ∈ X.

Or, with an abuse of notation: ∫
X
p · ψt(p)dµ ≤

∫
X
p · ωtdµ,

p ·Ψ(p) ≤ p · ω̄,

p · Φ(p) ≤ 0,

Claim 2.4. ψt is closed and upper semi-continuous (u.s.c.) in S ∀t ∈ X. Hence, Φ is closed and u.s.c.
in S.

Fix t ∈ X. To show ψt is closed, we have to show that for any sequences, {pν}, {zν}, [pν →
p0, zν → z0, zν ∈ ψt(pν)] =⇒ z0 ∈ ψt(p0). From the definition of demand correspondence, pν · zν ≤
pν · ωt. Taking limit as ν → ∞, we get p0 · z0 ≤ p0 · ωt, i.e. z0 ∈ Bt(p0). It remains to show:
z0 �t z,∀z ∈ Bt(p0).

Consider any z ∈ Bt(p0). Then
Case 1: p0 · z < p0 · ωt.
Then, for large enough ν, pν · z < pν · ωt. This implies that z ∈ Bt(pν). Now, zν ∈ ψt(pν). Hence,
zν �t z. And by continuity of preferences, we get z0 �t z.
Case 2: p0 · z = p0 · ωt.
Define z′ν := ((1 − 1/ν)z0, z1, · · · , zL) ∈ Ω, by divisibility of money. So, p0 · z′ν < p0 · ωt. Then, by
the same argument as above: z0 �t z

′ν . And by continuity of preferences, we get z0 �t z.
This implies z0 ∈ ψt(p), i.e. it is closed. Now, to show it is u.s.c., we have to show by proposition

11.11 in [20], that for any sequence pν → p0, and any zν ∈ ψt(pν), there exists a convergent subsequence
{zνk} whose limit belongs to ψt(p0).

Now, pν → p0 � 0. Hence, ∃ν0 s.t. pν � 0,∀ν > ν0. Define

π := inf{pν
l : ν > ν0, l = 0, · · · , L}.

Then, pν · zν ≤ pν · ωt implies for all ν > ν0,

0 < zν ≤ pν · ωt

π
,

i.e. the sequence {zν} is bounded. By the Bolzano-Weierstrass theorem, there exists a convergent
subsequence {zνk} converging to say, z0. Since ψt is closed in S, z0 ∈ ψt(p0). Thus, it is upper
semi-continuous in S.

We now show that Φ is u.s.c (hence closed) as well. Let pν → p0 in S. Consider ξν ∈ Ψ(pν) =∫
X ψt(pν)dµ. Then, ∃zν

t s.t. ξν =
∫
X zν

t dµ. Now, ψt is compact-valued and u.s.c. in S. Thus, by
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proposition 11.11 in [20], the sequence {zν
t } has a convergent subsequence {zνk

t } s.t. zνk
t → z0

t ∈ ψt(p0).
Define ξ0 :=

∫
X z0

t dµ. Thus,

ξ0 ∈
∫

I
ψt(p0)dµ = Ψ(p0).

As argued before, Ψ is compact-valued. Hence, by reapplication of the same theorem, it is u.s.c. in S.
And so is Φ.

We need the following lemma.

Lemma 2.1 (Debreu-Gale-Nikaido [5, 20]). Let S be a non-empty closed convex subset in the unit
simplex ∆ ⊂ Rn. Suppose the correspondence Φ : ∆ → P(Rn) satisfies the following:
(i) Φ is non-empty, convex-valued ∀p ∈ S,
(ii) Φ is closed,
(iii) p · z ≤ 0,∀p ∈ S, z ∈ Φ(p),
(iv) Φ(p) is bounded ∀p ∈ S.
Then, ∃ p∗ ∈ S and z∗ ∈ Φ(p) s.t. p · z∗ ≤ 0, ∀p ∈ S.

Using this lemma, we get the following proposition.

Proposition 2.1. For any non-empty, closed convex subset S of ∆0, ∃p0 ∈ S, z0 ∈ Φ(p0) s.t. p · z0 ≤
0,∀p ∈ S.

Consider an increasing sequence of sets Sν ↑ ∆. Let pν , zν be those given by the above proposition.
Then, pν ∈ Sν ⊂ ∆, which is compact. Thus, ∃ a convergent subsequence pνk → p∗ ∈ ∆.

Without loss of generality, consider this subsequence as the sequence. Consider any zν ∈ Φ(pν).
We have the following lower bound on the sequence

zν ≥ −ω̄, ∀ν. (2.4)

To get an upper bound, take any p̃� 0 ∈ Sν . It exists because Sν ↑ ∆. Using the proposition above,
we get

p̃ · zν ≤ 0, (2.5)

for large enough ν. Equations (2.4) and (2.5) imply {zν}(⊂ Ω) is bounded. Thus, there exists a
convergent subsequence with limit say, z∗.

By assumption 1, ω̄ � 0. Also, p∗ ∈ ∆. Hence, p∗ · ω̄ > 0. Further, p∗ � 0 since if p∗l = 0 for some
l, zνk

l → ∞, by the boundary condition, which then contradicts the boundedness of the subsequence
above. Further, since Φ is closed, z∗ ∈ Φ(p∗).

This establishes the following lemma.

Lemma 2.2. ∃p∗ � 0 ∈ ∆, z∗ ∈ Φ(p∗) s.t. pν → p∗, zν → z∗, and p · z∗ ≤ 0,∀p ∈ ∆.

We are now ready to prove the theorem: Walras’ law implies p · z = 0, ∀z ∈ Φ(p), and ∀p ∈ ∆0.
This implies p∗ · z∗ = 0. From lemma above, p∗ · z∗ ≤ 0, and p∗ � 0. This yields z∗ = 0.

Remarks. In the network resource allocation problems, agents may be indifferent between various
bundles of links if they form a route between the same source-destination pair, then theorem 2.2 still
holds. And in that case, prices for various alternative routes (given by the sum of link prices along the
routes) for a given source-destination pair are the same.
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Without money

The role of money is crucial in the above result. The following network example shows that in the
absence of money, a competitive equilibrium may not exist, even in a continuum exchange economy.

Example 2.4. Consider the networks of figure 1, with demands as discussed before in example 3. Now
instead of one user of each type demanding a particular route, we have a continuum of users. Let
X = [0,M ] and let all users in [0, 1], where M is the total number of routes, demand the same route
and have identical preferences. We make the same assumption for the other M disjoint intervals of unit
length. This reduces the continuum case to the same as example 3, for which a competitive equilibrium
does not exist.

2.4 Approximate Competitive Equilibrium

The continuum economy is a convenient model but still a mathematical fiction. We show that it can
be approximated by a large (but finite) economy. Note that in the proof of Theorem 2.2, we have used
convexity of the aggregate excess demand correspondence to apply the DGN Theorem. Thus, if we
replace Φ(p) by conv Φ(p), the following result holds.

Theorem 2.3. There exists a p∗ � 0, in ∆0 s.t. 0 ∈ conv Φ(p∗).

We can obtain several approximation results using the Shapley-Folkman [5] and Starr theorems [158].

Theorem 2.4 (Non-enforceable approximate equilibria). (i) If the number of agents m is greater
than the number of goods n, then at prices p∗, for which 0 ∈ conv (Φ(p∗)), ∃xi ∈ conv φi(p∗) s.t.

Σix
i = 0 and #{i|xi /∈ φi(p)}/m ≤ n/m→ 0.

(ii) At prices p∗ for which 0 ∈ conv (Σiφi(p∗)), then ∃xi ∈ φi(p∗) s.t.

‖Σix
i‖2/m ≤ R/m→ 0,

where R = min{m,n} · greatest rad2φi(p∗).

The first result is a straight forward application of the Shapley-Folkman theorem, noting the com-
pactness of the individual demand correspondences from Claim 2. It says that there exists an allocation
and prices such that the number of agents who are not happy with their allocation at those prices is
bounded by the number of goods. Thus, as the number of agents increases (as in replication), the
proportion of unhappy agents becomes arbitrarily small.

The second is an application of the Starr theorem: It says that at prices p∗, the aggregate excess
demand per agent becomes arbitrarily small as the number of agents becomes arbitrarily large.

When a set of market-clearing prices do not exist with indivisible goods, it is useful to know whether
there exist prices under which demand can be made arbitrarily less than supply as the “size of indivisi-
bility” vanishes while affecting agents’ utility only by a small amount.

We show that this is indeed the case. We show this in particular for the market model for networks
in [78]. We follow the notation in that paper. We will assume that a unit of bandwidth is small in size
compared to demands, or equivalently, the demands are large enough in terms of units of bandwidth.

Consider a network with a set J of links. For each link j ∈ J , let Cj ∈ Z+ denote the number of
available units of bandwidth (i.e., trunks) for this link. Let R denote the set of possible routes, i.e., a set
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of subsets of J . A collection of routes s ⊂ R connecting a source with a destination is associated with a
user who wishes to send traffic through the routes in that collection. His utility Us(xs) is assumed to be
an increasing, strictly concave function over R+, the nonnegative reals. The set of all users is denoted
by S. The relation of R in terms of the link set J is expressed by a 0-1 matrix A = (Ajr; j ∈ J , r ∈ R),
where Ajr is 1(0) if j ∈ r (j /∈ r). Likewise we define H = (Hsr; s ∈ S, r ∈ R), where Hsr is 1(0) if
r ∈ s (r /∈ s).

In order to study the loss in efficiency as a function of the amount of bandwidth per trunk, we
consider a sequence of “discrete” networks indexed by N . For the N -th network, the capacity of link
j ∈ J in terms of trunks is CN

j = NCj . Each user is allowed to pick only integral multiples of trunks

along his route, thus his utility is a function UN
s : Z+ → R, with UN

s (n) = Us(n/N) for each s ∈ S.
Say that each trunk at link j, costs pj for each j ∈ J , then the cost per trunk over the path r is
Cost(r; p) =

∑
j∈r pj . Similarly, for s ∈ S the lowest cost route costs Cost(s; p) = minr∈s Cost(r; p).

We now have the following result.

Theorem 2.5. For each ε > 0, there exists an integer N0 > 0 such that ∀N > N0, there exists
(nN ,mN , pN ) = ((nN

s )s∈S , (mN
r )r∈R, (pN

j )j∈J ) where

1. nN
s maximizes UN

s (ns)− nsCost(s; pN ) over Z+ for every s ∈ S,

2. HmN = nN , AmN ≤ CN , mN
r ∈ Z+ and

3. UN
s (nN

s ) + ε ≥ Us(x∗s), for every s ∈ S, where x∗ = (x∗s; s ∈ S), y∗ = (y∗r ; r ∈ R) maximizes∑
s∈S Us(xs) over x ∈ R|S|

+ , y ∈ R|R|
+ under the constraints Hy = x, Ay ≤ C.

Proof. Fix ε > 0. Without loss of generality, assume x∗s > 0 for every s ∈ S, and let p0 = (p0
j ; j ∈ J )

be the equilibrium prices as they are guaranteed to exist for the divisible case by [78]. Now if the
users were presented the inflated prices p = αp0 instead, where α > 1, each user s will choose xs so
that he maximizes his surplus Us(xs)−xsCost(s; p) =Us(xs)−xsαCost(s; p0) over xs ≥ 0. So by strict
concavity and monotonicity of utilities, he will choose xα

s < x∗s. Now if we define yα
r = y∗rx

α
s /x

∗
s for

each r ∈ s, then we get
∑

r∈RHsry
α
r = xα

s for every s. Also, since all entries of A are nonnegative
and there are no all-zero rows,

∑
r∈RAjry

α
j < Cj for every j. By continuity and strict monotonicity of

utilities, we can choose α > 1 so that
∑

s∈S Us(xα
s ) + 2ε ≥

∑
s∈S Us(x∗s), and xα

s > 0 for all s.
Now for every N > 0, define pN

j = p/N for each j ∈ J , and

nN
s = max

{
arg max

n∈Z+

UN
s (n)− nCost(s; p)

}
for each s ∈ S. By strict concavity we have |xα

s − nN
s /N | ≤ 1/N . Thus it is clear that as N → ∞,

part (3) holds, and part (1) holds for every N .
It only remains to show part (2). Since xα

s > 0 for all s, there exists r ∈ s for which yα
s > 0 and

denote it by r(s). Now define mN
r(s) = nN

s −
∑

r∈s\{r(s)}bNyα
r c and for each r 6= r(s), mN

r = bNyα
r c.

Note thatmN
r(s)/N → yα

r (s) asN →∞, so for large enoughN ,mN
r(s) > 0. Also, we havemN

r → yα
s ≥ 0

as N → ∞ for r 6= r(s). Thus, HmN = nN , and mN ≥ 0 for large enough N . Furthermore,
Amn ≤ CN for large enough N , since Ayα

s < C.
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2.5 Chapter Summary

We studied competitive equilibrium in combinatorial markets. We showed that for finite networks, prices
that yield a socially efficient allocation may not exist. We then used a model of perfect competition
with a continuum of agents, and showed that with money, it is possible to support the socially efficient
allocation with a certain price vector. The key here is the Lyapunov-Richter theorem that enables a
convexification of the economy. However, such a result does not hold for countable economies. The
main reason is that defining the average of a sequence of correspondences is trickier as the limit may
not exist.

The continuum model is useful in showing the existence of enforceable approximate equilibria (when
we require that supply exceeds demand) in finite networks. Such approximate equilibria were presented
in [66]. It is well-known that the set of the competitive allocations is contained in the core (the set of
Pareto-optimal allocations). However, it is unknown if the two sets are equal. This is an interesting
question and part of future work.
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Chapter 3

c-SeBiDA: An Efficient Market
Mechanism for Combinatorial Markets

We studied the interaction between buyers and sellers of several indivisible goods (or items). A buyer
wants a combination of items, while each seller offers only one type of item. The setting is motivated
by communication networks in which buyers want to construct routes using several links and sellers offer
transmission capacity on individual links. Agents are strategic and may not be truthful, so a competitive
equilibrium may not be realized. To ensure a good outcome among strategic agents, we proposed a
combinatorial double auction. We showed that a Nash equilibrium existed for the associated game with
complete information, and more surprisingly, the resulting allocation was efficient. In reality, the players
may have incomplete information. So, we considered the Bayesian-Nash equilibrium. When there was
only one type of item, we showed that the mechanism was asymptotically Bayesian incentive-compatible
under the ex post individual rationality constraint and hence asymptotically efficient. Surprisingly,
without the ex post individual rationality constraint, the Bayesian-Nash equilibrium strategy for the
buyers was to bid more than their true value. We finally considered competitive analysis in the continuum
model of the auction setting and showed that the auction outcome was a competitive equilibrium.

3.1 Introduction

We studied the interaction among buyers and sellers of several indivisible goods (or items). The motiva-
tion was to investigate the strategic interaction between internet service providers who lease transmission
capacity (or bandwidth) from owners of individual links to form desired routes. Bandwidth is traded in
indivisible amounts, say multiples of 100 Mbps. Thus, the buyers want bandwidth on combinations of
several links available in multiples of some indivisible unit. This makes the problem combinatorial. We
considered the interaction in several settings.

The setting of a conventional market economy, in which there is perfect competition, was considered
in [66]. It was shown that the interaction among agents results in a competitive equilibrium if their
utilities are linear in bandwidth (and money) and they truthfully reveal them, and the desired routes
form a tree. The latter requirement is needed for the existence of an equilibrium in the presence of
indivisibility.

Strategic agents, however, have an incentive not to be truthful. We proposed a ‘combinatorial
sellers’ bid double auction’ (c-SeBiDA) mechanism that achieves a socially desirable interaction among
strategic agents. The mechanism requires both buyers and sellers to make bids. It is combinatorial
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because buyers make bids on combinations of items, such as several links that form a route. Each seller,
however, offers to sell only a single type of item, e.g., bandwidth on a single link. The mechanism takes
all buy and sell bids, solves a mixed-integer program that matches bids to maximize the social surplus,
and announces prices at which the matched (i.e., accepted) bids are settled. The settlement price for a
link is the highest price asked by a matched seller (hence ‘sellers’ bid’ auction). As a result there is a
uniform price for each item.

The outcome of strategic behavior in the auction was modelled as a Nash equilibrium. It was shown
that under complete information a Nash equilibrium exists. It is not generally a competitive equilibrium.
Nevertheless, the Nash equilibrium was efficient. Moreover, it was a dominant strategy for all buyers
and for all sellers except the matched seller with the highest-ask price to be truthful.

In an auction setting, players may have incomplete information. Following Harsanyi [57], we con-
sidered the Bayesian-Nash equilibrium as the solution concept for the auction game. When there is
only one type of item, we showed that if the players use only ex post Individual Rational (IR) strate-
gies [108], symmetric Bayesian-Nash equilibrium strategies converge to truth-telling, as the number of
players becomes very large.

Following Aumann [9], we then considered the continuum model. It was shown in [66] that a
competitive equilibrium exists in a continuum exchange economy with indivisible goods and money (a
divisible good). Here we showed that the c-SeBiDA auction outcome is a competitive equilibrium [108]
in the continuum model even without money. This was accomplished by casting the mechanism in an
optimal control framework and appealing to Pontryagin’s maximum principle to conclude existence of
competitive prices. This suggests that the auction outcome in a finite setting approximates a competitive
equilibrium in the continuum model (see [5] for approximate competitive equilibrium). The proposed
mechanism has been implemented in a web-based software testbed and available for use (see http:
//auctions.eecs.berkeley.edu).

Previous Work and Our Contribution

When items are indivisible, a competitive equilibrium may not exist. However, when the utility functions
are linear and the demand-supply constraint matrix has a special structure (such as the totally unimodular
property [149]), a competitive equilibrium does exist [164]. However, the realization of the competitive
equilibrium still requires agents to truthfully report their utilities. But strategic agents (aware of their
‘market power’) may not be truthful. Thus, many auction mechanisms are designed to elicit truthful
reporting following Vickrey’s fundamental result [162].

Attention in the auction theory literature has focused on one-sided, single-item auctions [86], but
combinatorial bids arise in many contexts, and a growing body of research is devoted to combinatorial
auctions [164]. The interplay between economic, game-theoretic and computational issues has sparked
interest in algorithmic mechanism design [137]. Some iterative, ascending price combinatorial auctions
achieve efficiencies close to the Vickrey auction [12, 33, 112, 141]. It is however, well-known that
generalized Vickrey auction mechanisms for multiple heterogeneous items may not be computationally
tractable [137, 122]. Thus, mechanisms which rely on approximation of the integer program (though
with restricted strategy spaces such as “bounded” or “myopic rationality”) [122] or linear programming
(when there is a particular structure such as “gross” or “agent substitutability”) [18] have been proposed.

In [32], one of the first multi-item auction mechanisms is introduced. However, it is not combinatorial
and consideration is only given to computation of equilibria among truth-telling agents. An auction for
single items is presented in [144]. It is similar in spirit to what we present, but cannot be generalized to
multiple items. In [176], a modified Vickrey double auction with participation fees is presented, while
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[34] considers truthful double auction mechanisms and obtains upper bounds on the profit of any such
auction. But the setting in both [34, 144] is non-combinatorial since each bid is for an individual item
only.

Ours is one of few proposals for a combinatorial double auction mechanism. It appears to be the
only combinatorial market mechanism for strategic agents with unrestricted strategy spaces. We are
able to achieve efficient allocations. Furthermore, the mechanism’s linear integer program structure
makes the computation manageable for many practical applications [77].

The results here also relate to recent efforts in the network pricing [78, 82, 94, 153] and congestion
games literature [89, 136]. There is an on-going effort to propose mechanisms for network resource
allocation through auctions [79] and to understand the worst case Nash equilibrium efficiency loss of
such mechanisms when users act strategically [71, 102]. An optimal mechanism that minimizes this
efficiency loss has also been proposed [143], though not extended to the case of multiple items. Most
of this literature regards the good (in this case, bandwidth) as divisible, with complete information for
all players. The case of indivisible goods or incomplete information is harder. This chapter considers
indivisible goods, combinatorial buy-bids and incomplete information.

The results are significant from several perspectives. It is well known that the only known positive
result in the mechanism design theory is the VCG class of mechanisms [108]. The Generalized Vickrey
Auction (GVA) (with complete information) is ex post individual rational, dominant strategy incentive
compatible and efficient. It is however, not budget-balanced. The incomplete information version of
GVA (dAGVA) is Bayesian incentive compatible, efficient and budget-balanced. It is, however, not ex
post individual rational. Indeed, there exists no mechanism which is efficient, budget-balanced, ex post
individual rational and dominant strategy incentive compatible (Hurwicz impossibility theorem) [60].
Moreover, there exists no mechanism which is efficient, budget-balanced, ex post individual rational and
Bayesian incentive compatible (Myerson-Satterthwaite impossibility theorem) [115].

We provide a non-VCG combinatorial (market) mechanism, which in the complete information case,
is always efficient, budget-balanced, ex post individual rational and “almost” dominant strategy incentive
compatible. In the incomplete information case, it is budget-balanced, ex post individual rational and
asymptotically efficient and Bayesian incentive compatible.

Moreover, we showed that any Nash equilibrium allocation (say of a network resource allocation
game) is always efficient (zero efficiency loss) and any Bayesian-Nash equilibrium allocation is asymp-
totically efficient. This seems to be the only known combinatorial double-auction mechanism with these
properties.

It is worth noting that a one-sided auction is a special case of a double auction, when there is only
one seller with zero costs. The network and congestion games [78, 89] are all one-sided auctions.

The rest of the chapter is organized as follows. In Section 3.2, we present the combinatorial seller’s
bid double auction (c-SeBiDA) mechanism. In Section 3.3, we prove that under full information, the
auction has a Nash equilibrium that is efficient, although it may not be a competitive equilibrium. In
Section 3.4, we show that when the players have incomplete information, the Bayesian-Nash equilibrium
strategies for the mechanism with a single item under the ex post individual rationality constraint
converge to truth-telling, as the number of players becomes large. Section 3.5 presents a competitive
analysis of the c-SeBiDA mechanism in the continuum model. We situate our contribution in relation
to existing literature in the conclusion.
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3.2 The Combinatorial Sellers’ Bid Double Auction

A buyer places buy bids for a bundle of items. A buyer’s bid is combinatorial: he must receive all
items in his bundle or nothing. A buy-bid consists of a buy-price per unit of the bundle and maximum
demand; the maximum units of the bundle that the buyer needs. On the other hand, each seller makes
non-combinatorial bids. A sell-bid consists of an ask-price and maximum supply; the maximum units
the seller offers for sale.

The mechanism collects all announced bids, matches a subset of these to maximize the ‘surplus’
(equation (3.1), below) and declares a settlement price for each item at which the matched buy and
ask bids—which we call the winning bids—are transacted. This constitutes the payment rule. As will
be seen, each matched buyer’s buy bid is larger, and each matched seller’s ask bid is smaller than the
settlement price, so the outcome respects individual rationality.

There is an asymmetry: buyers make multi-item combinatorial bids, but sellers only offer one type
of item. This yields uniform settlement prices for each item.

Players’ bids may not be truthful. Players know how the mechanism works and formulate their bids
to maximize their individual returns.

A player can make multiple bids. The mechanism treats these as XOR bids. So at most, one bid
per player is a winning bid. Therefore, the outcome is the same as if a matched player only makes
(one) winning bid. Thus, in the formal description of the combinatorial Sellers’ Bid Double Auction
(c-SeBiDA), each player places only one bid. c-SeBiDA is a ‘double’ auction because both buyers and
sellers bid. It is a ‘sellers’ bid’ auction because the settlement price depends only on the matched sellers’
bids, as we will see.

Formal mechanism.

There are L items l1, · · · , lL, m buyers and n sellers. Buyer i has (true) reservation value vi per unit for
a bundle of items Ri ⊆ {l1, · · · , lL}, and submits a buy bid of bi per unit and demands up to δi units of
the bundle Ri. Thus, the buyers have quasi-linear utility functions of the form ub

i(x;ω,Ri) = v̄i(x)+ω,
where ω is money and

v̄i(x) =

{
x · vi, for x ≤ δi,

δi · vi, for x > δi.

Seller j has (true) per unit cost cj and offers to sell up to σj units of lj at a unit price of aj . Denote
Lj = {lj}. Again, the sellers have quasi-linear utility functions of the form us

j(x;ω,Lj) = −c̄j(x) + ω,
where ω is money and

c̄j(x) =

{
x · cj , for x ≤ σj ,

∞, for x > σj .

The mechanism collects all these bids, and matches some buy and sell bids. The possible matches
are described by integers xi, yj : 0 ≤ xi ≤ δi is the number of units of bundle Ri allocated to buyer i
and 0 ≤ yj ≤ σj is the number of units of item lj sold by seller j.

The mechanism determines the allocation (x∗, y∗) as the solution of the surplus maximization prob-
lem MIP:

max
x,y

∑
i bixi −

∑
j ajyj (3.1)

s.t.
∑

j yjI1(l ∈ Lj)−
∑

i xiI1(l ∈ Ri) ≥ 0,∀l ∈ [1 : L],
xi ∈ [0 : δi],∀i, yj ∈ [0, σj ],∀j.
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MIP is a Mixed Integer Program: Buyer i’s bid is matched up to his maximum demand δi; Seller j’s bid
will also be matched up to his maximum supply σj . x

∗
i is constrained to be integral; y∗j will be integral

due to the demand less than equal to supply constraint.
The settlement price is the highest ask-price among matched sellers,

p̂l = max{aj : y∗j > 0, l ∈ Lj}. (3.2)

The payments are determined by these prices. Matched buyers pay the sum of the prices of items in
their bundle. Matched sellers receive a payment equal to the number of units sold times the price for
the item. Unmatched buyers and sellers do not participate. This completes the mechanism description.

If i is a matched buyer (x∗i > 0), it must be that his bid bi ≥
∑

l∈Ri
p̂l; for otherwise, the surplus

(3.1) can be increased by eliminating the corresponding matched bid. Similarly, if j is a matched seller
(y∗j > 0), and l ∈ Lj , his bid aj ≤ p̂l; for otherwise the surplus can be increased by eliminating his bid.
Thus, the outcome of the auction respects individual rationality.

It is easy to understand how the mechanism picks matched sellers. For each item j, a seller with
lower ask bid will be matched before one with a higher bid. So, sellers with bid aj < p̂l sell all their
supply (y∗j = σj). At most, one seller with ask bid aj = p̂l sells only a part of his total supply (y∗j < σj).
On the other hand, because their bids are combinatorial, the matched buyers are selected only after
solving the MIP.

The proposed mechanism resembles the k-double auction mechanism [144]. We designed c-SeBiDA
so that its outcome mimics a competitive equilibrium, with a particular interest in the combinatorial
case. It was later discovered that the single item version SeBiDA resembles the k-double auction (a
special case being called the buyer’s bid double auction [145, 167]). But the two mechanisms differ in
how the prices are determined. It is not clear what a generalization of the k-double auction would be to
the combinatorial case. Moreover, as we will see, SeBiDA has certain incentive-compatibility properties
lacking in the k-double auction. This makes the Bayesian-Nash equilibrium analysis simpler.

3.3 Nash Equilibrium Analysis: c-SeBiDA is Efficient

We first focus on how strategic behavior of players affects price when they have complete information.
We will assume that players don’t strategize over the quantities (namely, δi, σj), which will be considered
fixed in the players’ bids. A strategy for buyer i is a buy bid bi, a strategy for seller j is an ask bid aj .
Let θ denote a collective strategy. Given θ, the mechanism determines the allocation (x∗, y∗) and the
prices {p̂l}. So the payoff to buyer i and seller j is, respectively,

ub
i(θ) = v̄i(x∗i )− x∗i ·

∑
l∈Ri

p̂l, (3.3)

us
j(θ) = y∗j ·

∑
l∈Lj

p̂l − c̄j(y∗j ). (3.4)

The bids bi, aj may be different from the true valuations vi, cj , which however, figure in the payoffs.
A collective strategy θ∗ is a Nash equilibrium, if no player can increase his payoff by unilaterally

changing his strategy.
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Single item, SeBiDA.

We studied the single-item version SeBiDA, of c-SeBiDA. We constructed a Nash equilibrium, and
showed it yields a unique and efficient allocation (Theorem 3.1). The proof clarifies the more complex
construction in the combinatorial case (Theorem 3.2).

To keep things simple, we will assume that each buyer bids for at most one unit, and each seller
sells at most one unit of the item (so δi, σj equal 1 in (3.3), (3.4)). We will argue later that the results
extend to multiple unit bids. There are m buyers and n sellers, whose true valuations and costs lie in
[0, 1]. To avoid trivial cases of non-uniqueness, assume all buyers have different valuations and all sellers
have different costs.

The mechanism finds the allocation (x∗, y∗) that is a solution of the following Integer Program IP:

max
x,y

∑
i bixi −

∑
j ajyj

s.t.
∑

i xi ≤
∑

j yj ,

xi, yj ∈ {0, 1}.

As in (3.2) the settlement price is

p̂(b, a) = max{aj : y∗j > 0}.

It is easy to find (x∗, y∗): We repeatedly match the highest unmatched buy bid with the lowest
unmatched sell bid if the buy bid is greater than the sell bid.

Theorem 3.1. (i) A Nash equilibrium (b∗, a∗) exists for the SeBiDA game. (ii) Except for the matched
seller with the highest bid on each item, it is a dominant strategy for each player to bid truthfully. The
highest matched seller bids min{v, c}, in which c is the true reservation cost of the unmatched seller
with lowest bid and v is the reservation value of the matched buyer with the lowest bid. (iii) The Nash
equilibrium is unique. (iv) The equilibrium allocation is efficient.

Proof. Set a0 = c0 = 0, b0 = v0 = 1. Order the players so v1 ≥ · · · ≥ vM and c1 ≤ · · · ≤ cN . Let
k = max{i : ci ≤ vi}. We will show that the set of strategies,

∀i, bi = vi;∀j 6= k, aj = cj ; ak = min{ck+1, vk},

is a Nash equilibrium.
The first k buyers and sellers are matched and the settlement price is p̂ = ak. Consider a matched

buyer i ≤ k. This buyer has no incentive to bid lower, since by doing so he may be able to lower the
price, but then he will also become unmatched. Since he is already matched, he certainly will not bid
higher.

Consider an unmatched buyer i > k. He has no incentive to bid lower, as he will remain unmatched.
He can become matched by bidding above ak, but then, if he does get matched, his payoff will be
negative.

Consider an unmatched seller j > k. He has no incentive to bid higher, as he will remain unmatched.
He can get matched by bidding lower than ak, but since his cost is aj > ak, his payoff will be negative.

Consider a matched seller j < k. By bidding lower, this seller will not change his payoff. If he
bids higher to increase the settlement price, this will happen only if he bids above ak. But then he will
become unmatched.
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Lastly, consider the ‘marginal’ matched seller k. He will not bid lower, as that will decrease his
payoff. If he bids more than ak, his bid will exceed either bk or ak+1, and in either case he will become
unmatched. This proves (i), (ii).

This Nash equilibrium yields the allocation (x∗, y∗) which matches buyers with the highest valuation
and sellers with least cost. Hence it is efficient.

We now prove uniqueness.
Suppose (x̃, ỹ) is another Nash equilibrium. Since the two allocations are assumed different, either

a buyer or a seller goes from being matched in the first allocation (x∗, y∗), to being unmatched in
the second allocation (x̃, ỹ), or vice-versa. Suppose the two Nash equilibria differ in allocation to a
buyer who goes from being matched in the first allocation (x∗, y∗), to being unmatched in the second
allocation (x̃, ỹ). Then, either there is another buyer who goes from being unmatched to matched, or
there is a seller who also goes from being matched to unmatched. Thus, we can see that as we go from
(x∗, y∗) to (x̃, ỹ), one of the four cases must occur:

(i) An unmatched buyer i1 is made matched and a matched buyer i2 is made unmatched;

(ii) An unmatched seller j1 is made matched and a matched seller j2 is made unmatched;

(iii) An unmatched buyer i and unmatched seller j are made matched;

(iv) A matched buyer i and seller j are made unmatched.

Case (i) We must have vi1 < vi2 and the new bids must satisfy b̃i2 < b̃i1 . But then, either i1’s payoff
is negative or i2 can also bid just above i1’s bid. In either case, (x̃, ỹ) cannot be a Nash equilibrium.

Case (ii) An argument similar to that for case (i) shows that (x̃, ỹ) cannot be a Nash equilibrium.
Case (iii) Since both are unmatched in the first allocation, it must be that vi < cj . Since both are

matched in the second allocation, it must be that bi > aj , so that one of them must have a negative
payoff. Again, (x̃, ỹ) cannot be a Nash equilibrium.

Case (iv) An argument similar to that for case (iii) shows that (x̃, ỹ) cannot be a Nash equilibrium.
The Nash equilibrium is unique and the allocation is efficient. This proves (iv).

Combinatorial case, c-SeBiDA

Above, we constructed a Nash equilibrium for the game described by (3.1)-(3.4), in the case of a single
item. The result can be extended to multiple items with single unit bids.

Theorem 3.2. (i) A Nash equilibrium (b∗, a∗) exists in the c-SeBiDA game. (ii) Except for the matched
seller with the highest bid on each item, it is a dominant strategy for each player to bid truthfully. (iii)
Any Nash equilibrium allocation is always efficient.

Proof. For the sake of clarity, we change some of the notation. As before, buyer i demands the bundle
Ri with reservation value vi. Let seller (l, j) be the j-th seller offering item l (l ∈ Lj in the previous
notation) with reservation cost cl,j , and assume cl,1 ≤ · · · ≤ cl,nl

, in which nl is the number of sellers
offering item l.
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We will iteratively construct a set of strategies to consider as a Nash equilibrium.
Set al,0 = cl,0 = 0, b0 = v0 = 1. Consider the surplus maximization problem (3.1) with true

valuations and costs. Let I be the set of matched buyers and kl the number of matched sellers offering
item l determined by the MIP. Set b∗i = vi for all i; a0

l,j = cl,j ; γ
t
i = b∗i −

∑
l∈Ri

at
l,kl

, the surplus of a
matched buyer i at stage t ≥ 0, and

l̂ ∈ arg min
l
{ min

i∈I:l∈Ri

γt
i}, (3.5)

the item with the smallest surplus among the matched buyers at stage t. Denote the corresponding
surplus by γt

l̂
. Now, define

at+1

l̂,kl̂

:= min{at
l̂,kl̂+1

, at
l̂,kl̂

+ γt
l̂
}, (3.6)

which is the strategy of seller (l̂, kl̂) at the t-th stage. His ask bid is increased to decrease the surplus of
the matched buyer with the smallest surplus up to the ask bid of the unmatched seller with the lowest
bid. For all other (l, j) 6= (l̂, kl̂), the ask bid remains the same, at+1

l,j = at
l,j . This procedure is repeated

until the strategies converge. In fact, it is repeated at most, L times. Observe that at each stage, the
matches and the allocations from the MIP using the current bids (b∗, at) do not change. Let a∗ denote
the seller ask bids when the procedure converges.

We prove that (b∗, a∗) is a Nash equilibrium, by showing that no player has an incentive to deviate.
First, an unmatched seller offering item l has no incentive to bid lower than a∗l,kl

: Because his
reservation cost is higher than that, by bidding lower than his reservation cost, it may get matched, but
his payoff will be negative. Next, consider a matched seller (l, j) 6= (l, kl) offering item l. By bidding
higher or lower he cannot change the price of the item, but may end up getting unmatched. Thus, it is
the dominant strategy of all sellers, except the ‘marginal’ seller (l, kl), to bid truthfully.

Now, consider this marginal matched seller (l, kl). If he bids lower then a∗l,kl
, his payoff will decrease.

He could bid higher, but because of (3.6), either there is an unmatched seller of the item with the same
ask bid, or there is a marginal buyer whose surplus has been made zero by (3.6). So, if he bids higher
than a∗l,kl

, either he will become unmatched and the first unmatched seller of the item will become
matched, or the ‘marginal’ buyer with zero surplus will become unmatched causing this marginal seller
to be unmatched as well. Thus, a∗l,kl

is a Nash strategy of the marginal seller given that all other players
(except the marginal sellers of the other items) bid truthfully.

Now, consider the buyers. First, an unmatched buyer i has no incentive to bid lower than b∗i since
he wouldn’t match anyway. And if he bids higher, he may become matched, but his payoff will become
negative. Next, a matched buyer with a positive payoff has no incentive to bid lower, since by bidding
lower he can lower the prices, but only when he becomes unmatched. Also, he certainly has no incentive
to bid higher, since by so doing, he will not be able to lower the price. Lastly, consider the ‘marginal’
matched buyers with zero payoff: Clearly, if they bid higher, their payoff will become negative; and if
they bid lower, they will become unmatched. Thus, it is the dominant strategy of all buyers to bid
truthfully.

The Nash equilibrium allocation (x∗, y∗) as determined above is efficient since it maximizes (3.1).
We now show that any Nash equilibrium allocation is efficient by extending the arguments in the

proof of Theorem 3.1.
Suppose (x̃, ỹ) is another Nash equilibrium which is not efficient. Either there is a buyer or a seller

which goes from being matched in (x∗, y∗) to being unmatched in (x̃, ỹ), or vice-versa. If there is a seller
that goes from being matched to unmatched then either there is a matched seller in (x∗, y∗) replaced
by another seller in (x̃, ỹ) selling the same item (case (i)), or some unmatched sellers in (x∗, y∗) are
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matched in (x̃, ỹ) with the set of matched sellers in (x∗, y∗) remaining matched. In this case, some
unmatched buyer must also become matched (case (ii)). The rest of the cases can be argued similarly.
Thus, the two Nash equilibrium allocations would differ in one of the five cases as we go from (x∗, y∗)
to (x̃, ỹ).

(i) A matched seller (l, j1) is made unmatched and a unmatched seller (l, j2) is made matched;

(ii) An unmatched buyer i demanding Ri is made matched and a set of unmatched sellers J such
that {l : (l, jl) ∈ J} = Ri are made matched;

(iii) A matched buyer i demanding Ri is made unmatched and a set of matched sellers J such that
{lj : j ∈ J} = Ri are made unmatched;

(iv) An unmatched buyer i demanding Ri is made matched and a set of matched buyers J with j ∈ J
demanding Rj such that ∪j∈JRj = Ri are made unmatched;

(v) A matched buyer i demanding Ri is made unmatched and a set of unmatched buyers J with
j ∈ J demanding Rj such that ∪j∈JRj = Ri are made matched;

Case (i) We must have cl,j1 < cl,j2 and the new bids must satisfy ãl,j2 < ãl,j1 . But then either
(l, j2)’s payoff is negative or (l, j1) can also bid just above (l, j2)’s bid. In either case, (x̃, ỹ) cannot be
a Nash equilibrium.

Case (ii) We must have vi <
∑

(l,jl)∈Ri
cl,jl

and the new bids must satisfy b̃i >
∑

(l,jl)∈Ri
ãl,kl

with
ãl,jl

< ãl,kl
. This means that either the buyer or at least one seller has a negative payoff. Thus, (x̃, ỹ)

cannot be a Nash equilibrium.
Case (iii) The argument for this case is similar to case (ii).
Case (iv) We must have vi <

∑
j∈J vj and the new bids must satisfy b̃i >

∑
j∈J b̃j . But then either

i’s payoff is negative or any j ∈ J can bid high enough to outbid i. In either case (x̃, ỹ) cannot be a
Nash equilibrium.

Case (v) The argument for this case is similar to case (iv).
Thus, the Nash equilibrium allocation is always efficient. This proves (iii).

It is obvious that if the minimum in step (3.5) is not unique, the Nash equilibrium will not be unique.
However, any Nash equilibrium allocation will still be efficient. Furthermore, if there is a unique efficient
allocation, the Nash equilibrium is also unique.

A computationally efficient algorithm for the matching problem MIP and for computing the Nash
equilibrium is very desirable. However, for most games, it is known to be a computationally hard
problem. There is a computationally efficient algorithm for extensive two-person games.

It is interesting to note that:

Theorem 3.3. With multiple unit buy-bids and single unit sell-bids, i.e., σj = 1,∀j, the Nash equilibrium
allocation and prices ((x∗, y∗), p̂) are a competitive equilibrium.
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Proof. Consider a matched seller. He supplies exactly one unit at prices p̂, while an unmatched, non-
marginal seller (l, j) for j > kl +1, supplies zero units. The unmatched marginal seller (l, kl) will supply
zero units, since p̂l ≥ al,kl+1. Now, consider a matched buyer i. At prices p̂, he demands up to δi units
of its bundle. If it is the “marginal” matched buyer, its surplus is zero and it may receive anything up
to δi. If it is a “non-marginal” matched buyer, it receives δi units. An unmatched buyer, on the other
hand, has zero demand at prices p̂. Thus, total demand equals total supply, and the market clears.

The Nash equilibrium need not be a competitive equilibrium if sellers also make multi-unit bids as
the following example shows.

Example 3.1. (1) Consider two buyers, both with v = 1, who demand one unit of a good. Suppose
there are three sellers owning one unit, each with c = 0. Then, the Nash equilibrium price is p̂ = 0 and
it is easy to check it is a competitive price as well.
(2) Now, consider two buyers, both with v = 1, who demand one unit of a good as before, but with
one seller owning all three units with c = 0. The Nash equilibrium price in this case is p̂ = 1 which is
different from the competitive price of zero.

Thus, the Nash equilibrium may not be a competitive equilibrium, when sellers make multi-unit bids.

Remarks.

1. While we considered single unit bids only, the results extend for multiple unit bids in a straightforward
way. In this case, the number of buyers who match and the number of sellers who match will be different,
since players ask for and offer multiple units. Still, as in the single unit bid case, there will be a “marginal
matched” buyer kb

l and a “marginal matched” seller ks
l for each item l. The candidate Nash equilibrium

strategies are that all buyers bid truthfully and all sellers bid truthfully, except for the “marginal matched”
sellers ks

l for each l. As before, they bid al,ks
l

= min{al,ks
l +1, bkb

l
}. Now, one can check that all the

arguments in the proofs of Theorems 3.1 and 3.2 still hold. We only have to consider those “marginal
matched” buyers and “marginal matched” sellers whose bids are only partially matched. But it can be
argued easily that they too have no incentive to deviate from the said strategies.
2. In our analysis, we have ignored the fact that the players can strategically choose quantities (δi, σj)
that they bid. We have also restricted the players to making one bid each, as opposed to multiple
bids, only one of which is accepted. In these cases, the proposed mechanism may yield inefficient Nash
equilibria.

3.4 SeBiDA is Asymptotically Bayesian Incentive Compatible

We now consider the incomplete information case. We analyze the SeBiDA market mechanism in the
limit of a large number of players. We assume that the number of buyers and the number of sellers is
the same, n ≥ 2. The results can be extended to the case when the number of buyers and sellers are
different.

We will consider a Bayesian game to model incomplete information. Suppose nature draws c1, · · · , cn
from probability distribution U1 and draws v1, · · · , vn from probability distribution U2, which are such
that the corresponding pdfs u1 and u2 have full support on [0, 1]. Each player is then told his own
valuation or cost. It is common information that the seller costs are drawn from U1 and buyer valuations
are drawn from U2. Let αj : [0, 1] → [0, 1] denote the strategy of the seller j and βi : [0, 1] → [0, 1]
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denote the strategy of the buyer i. Then, the payoff received by the buyers and sellers is as defined by
equations (3) and (4). Let θ = (α1, · · · , αn, β1, · · · , βn) denote the collective strategy of the buyers and
the sellers. A buyer i chooses strategy βi to maximize E[ub

i(θ);βi], the conditional expectation of the
payoff given its strategy βi. The seller j chooses strategy αj to maximize E[us

j(θ);αj ], the conditional
expectation of the payoff given its strategy αj . The Bayesian-Nash equilibrium of the game is then the
Nash equilibrium of the Bayesian game defined above.

We consider symmetric Bayesian-Nash equilibria, i.e., equilibria where all buyers use the same strat-
egy β and all sellers use the same strategy α. Let α̃(c) := c and β̃(v) := v denote the truth-telling
strategies. Under strategies α and β, we denote the distribution of ask-bids a and buy-bids b as F and
G respectively. We denote [1 − F (x)] by F̄ (x). Under α̃ and β̃, F = U1 and G = U2. We consider
only those bid strategies which satisfy the ex post individual rationality constraint, i.e., α(c) ≥ c and
β(v) ≤ v. Denote X = {α : α(c) ≥ c} and Y = {β : β(v) ≤ v}.

We consider single unit bids and assume that a symmetric Bayesian-Nash equilibrium exists.

Theorem 3.4. Consider the SeBiDA auction game with (α, β) ∈ X × Y, i.e., both buyers and sellers
have ex post individual rationality constraint. Let (αn, βn) be a symmetric Bayesian-Nash equilibrium
with n buyers and n sellers. Then, (i) βn(v) = β̃(v) = v ∀n ≥ 2, and (ii) (αn, βn) → (α̃, β̃) in the
uniform topology as n→∞, i.e., SeBiDA is asymptotically Bayesian incentive compatible.

We will first prove two lemmas.

Lemma 3.1. Consider the SeBiDA auction game with n buyers and n sellers. Suppose the sellers use
bid strategy α with f(a), the pdf of its ask-bid under strategy α. Then, the best-response strategy of
the buyers βn satisfies βn(v) ≥ v for all n ≥ 2.

Proof. Set a0 = c0 = 0, b0 = v0 = 1. Fix a buyer j with valuation v. Suppose sellers use a fixed bidding
strategy α and denote the buyers best-response bidding strategy by βn. Consider the game denoted
G−j , where all players except buyer j participate and bid truthfully. Denote the number of matched
buyers and sellers by K = sup{k : a(k) ≤ b(k)}, which is a random variable. Here a(k) denotes the
order statistics increasing with k over the ask-bids of the participating sellers and b(k) the order statistics
decreasing with k over the buy-bids of the participating buyers. Denote X = a(K), the ask-bid of the
matched seller with the highest bid, Y = a(K+1), the ask-bid of the unmatched seller with the lowest
bid and U = b(K), the buy-bid of the matched buyer with the lowest bid. It is easy to check that when
buyer j also participates and bids b = β(v), he gets a positive payoff

π′j(b) =

{
v −X, if X < U < b and U < Y ;
v − Y, if X < Y < b and Y < U.

(3.7)

The payoff of the buyer as a function of its bid b is shown graphically in figure 3.1. The reader can
convince himself that the only relevant quantities for payoff calculation are X, Y and U . Thus, there
are only two possible cases: (i) X < Y < U and (ii) X < U < Y . Figure 3.1 (i) shows the case of (i)
and the payoffs as b varies. As b increases above the dotted line, the payoff changes from zero to v− b.
Similarly, as b increases above the dotted line in figure 3.1 (ii), the payoff changes from zero to v − x.

The expected payoff denoted by π̄′j satisfies the differential equation

dπ̄′j
db

= Pn(Ab,b)nf(b)(v − b) +
∫ b

0
Pn(Bx,b)nf(x)(n− 1)g(b)(v − x)dx, (3.8)
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Figure 3.1: The payoff of the buyer as a function of its bid, b, for various cases.

where

Pn(Ax,y) =
n−1∑
k=0

(
n− 1
k

)
F k(x)F̄n−1−k(x)

(
n− 1
k

)
Ḡk(y)Gn−1−k(y)

is the probability of the event that X = x and Y = y with x < y, among n−1 sellers and n−1 buyers.
Similarly,

Pn(Bx,y) =
n−1∑
k=1

(
n− 1
k − 1

)
F k−1(x)F̄n−k(x)

(
n− 2
k − 1

)
Ḡk−1(y)Gn−1−k(y)

is the probability of the event that X = x and Y = y with x < y, among n−1 sellers and n−2 buyers.
The boundary condition for the differential equation is π̄′j(0) = 0. The first term above arises from

the change in payoff when b is increased by ∆b and U > Y > b > X, and b + ∆b > Y as shown in
figure 3.1(i). Similarly, the second term is the change in payoff when Y > U > b > X and b+ ∆b > U

as shown in figure 3.1(ii). It is clear from (3.8) that for b ≤ v,
dπ̄′

j

db > 0. Given the sellers’ play strategy

α, the best-response strategy of the buyers βn is such that b = βn(v) and
dπ̄′

j

db = 0. From this it is clear
that

b = βn(v) ≥ v, ∀n ≥ 2. (3.9)

The above conclusion at first glance seems surprising. A buyer’s strategy is to bid more than his
true value. However, intuitively it makes sense for this mechanism since the prices are determined by
the sellers’ bids alone, and by bidding higher, a buyer only increases his probability of being matched.
Of course, if he bids too high, he may end up with a negative payoff. The result implies that under the
ex post individual rationality constraint, the buyer always uses the strategy βn = β̃.

Now, we look at the best response strategy of the sellers when the buyers bid truthfully.

Lemma 3.2. Consider the SeBiDA auction game with n buyers and n sellers and suppose buyers bid
truthfully, i.e., βn = β̃, and let αn be the sellers’ best-response strategy. Then, (αn, β̃) → (α̃, β̃) as
n→∞.
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Proof. Set a0 = c0 = 0, b0 = v0 = 1. Fix a seller i with cost c. Consider the auction game, denoted
G−i, in which seller i does not participate and all participating buyers bid truthfully. As before, denote
the number of matched buyers and sellers by K = sup{k : a(k) ≤ b(k)}, U = b(K), the bid of the lowest
matched buyer, W = b(K+1), the bid of the highest unmatched buyer, X = a(K), the bid of the highest
matched seller, Y = a(K+1), the bid of the lowest unmatched seller, and Z = a(K−1), the bid of the
next highest matched seller.

Consider the payoff of the i-th seller when he participates as well. His payoff when he bids a = α(c)
is given by

πi(a) =



x− c, if a < Z < X < W, or

Z < a < X < W ;
a− c, if Z < X < a < W, or

Z < a < W < X, or

Z < W < a < X, or

W < Z < a < X;
z − c, if a < Z < W < X, or

a < W < Z < X, or

W < a < Z < X.

(3.10)

The payoff of the seller as his bid a varies is shown graphically in figure 3.2. The reader can convince
himself that the only relevant quantities for payoff calculation are X, Z and W . Thus, there are three
cases: (i) Z < X < W , (ii) Z < W < X and (iii) W < Z < X.

a a-c
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a

a
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0
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(ii) (iii)
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Da

a

a a
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a a

EaAa

Ba

Ca
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Figure 3.2: The payoff of the seller as a function of its bid, a, for various cases.

The expected payoff denoted by π̄i satisfies the differential equation

dπ̄i(a)
da

= [Pn(Aa) + Pn(Ba) + Pn(Ca)]

−[ng(a)Pn(Da) + (n− 1)f(a)Pn(Ea)](a− c), (3.11)

with the boundary condition π̄i(1) = 0 where Aa denotes the event that there are n − 1 sellers and
n buyers and X < a < W . As a is increased by ∆a, the payoff to the seller also increases by ∆a
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since seller i is the price-determining seller. Similarly, Ba denotes the event that there are n− 1 sellers
and n buyers and Z < a < W < X and seller i is the price-determining seller. In the same way, Ca

denotes the event that there are n − 1 sellers, n buyers and max(Z,W ) < a < X and seller i is the
price-determining seller. Da denotes the event that there are n−1 sellers and n−1 buyers, X < a (with
the n-th buyer bidding a) and W ∈ [a, a+ ∆a] so that the seller i becomes unmatched as it increases
its bid. Similarly, Ea is the event that there are n − 2 sellers, n buyers, W < a (with the (n − 1)-th
seller bidding a) and X ∈ [a, a+ ∆a]. And so, as he increases his bid, he becomes unmatched.

Figure 3.2 shows these events graphically. Events Aa, Ba and Ca correspond to various cases when
the change in the bid a from a to ∆a, causes a change in payoff of ∆a. Events Da and Ea correspond
to cases when the change in the bid a from a+ ∆a, causes a change in payoff of −(a− c).

The following can then be obtained:

Pn(Aa) =
n−1∑
k=0

(
n− 1
k

)
F k(a)F̄n−1−k(a)

(
n

k + 1

)
Ḡk+1(a)Gn−(k+1)(a)

Pn(Ba) =
n−1∑
k=1

(
n− 1
k − 1

)
F k−1(a)F̄n−k(a)

(
n

k + 1

)
Ḡk+1(a)Gn−(k+1)(a)

Pn(Ca) =
n−1∑
k=1

(
n− 1
k − 1

)
F k−1(a)F̄n−k(a)

(
n

k

)
Ḡk(a)Gn−k(a)

Pn(Da) =
n−1∑
k=0

(
n− 1
k

)
F k(a)F̄n−1−k(a)

(
n− 1
k

)
Ḡk(a)Gn−1−k(a)

Pn(Ea) =
n−1∑
k=1

(
n− 2
k − 1

)
F k−1(a)F̄n−1−k(a)

(
n

k

)
Ḡk(a)Gn−k(a). (3.12)

Let a = αn(c) be the best-response strategy of the sellers. Then, dπ̄i
da = 0 at a = αn(c). For any

a < c, dπ̄i
da > 0 from (3.11). Thus,

a = αn(c) ≥ c, ∀n ≥ 2. (3.13)

If a > c, setting (3.11) equal to zero and rearranging, we get

f(a) =
[Pn(Aa) + Pn(Ba) + Pn(Ca)]− ng(a)Pn(Da)(a− c)

(n− 1)Pn(Ea)(a− c)
≥ 0,

from which we obtain

αn(c)− c ≤ [Pn(Aa) + Pn(Ba) + Pn(Ca)]
ng(a)Pn(Da)

(3.14)

≤ 1
g(a)

∑n−1
k=0

(
n−1

k

)2 zk

(k+1)∑n−1
k=0

(
n−1

k

)2
zk

Ḡ+

∑n−1
k=1

(
n−1

k

)2 zk

(n−k)∑n−1
k=0

(
n−1

k

)2
zk

ḠF̄

F


+

1
g(a)

∑n−1
k=1

(
n−1

k

)2 kzk

(n−k)2∑n−1
k=0

(
n−1

k

)2
zk

F̄

F

 ,
where z = F (a)Ḡ(a)

F̄ (a)G(a)
. Observe that the terms Ḡ(a), Ḡ(a)F̄ (a) and F̄ (a) in the numerator are upper-

bounded by one, and the term F (a) in the denominator is lower-bounded by F (c). It can now be shown
that each of the terms converges to zero for all z > 0 as n→ 0. Thus, (αn, β̃) → (α̃, β̃).
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The conclusion of this Lemma is what we would expect intuitively. If all buyers bid truthfully, then
as the number of sellers increases, increased competition forces them to bid closer and closer to their
true costs.

Proof. (Theorem 3.4) By Lemma 3.1 when the sellers use strategy αn, the buyers under the ex post
individual rationality constraint use strategy β̃. By Lemma 3.2, when the buyers bid truthfully, sellers’
best-response is αn. Thus, (αn, β̃) is a Bayesian-Nash equilibrium with n players on each side of the
market. Further, Lemma 3.2 shows that (αn, βn) = (αn, β̃) → (α̃, β̃) as n→∞, which is the conclusion
we wanted to establish.

Thus, under the ex post IR constraint, SeBiDA is ex ante budget balanced, asymptotically Bayesian
incentive compatible and efficient. Unlike in the complete information case, when the mechanism is not
incentive compatible, yet the outcome is efficient, in the incomplete information case, the mechanism
is only asymptotically efficient.

The mechanism proposed here is related to the Buyer’s Bid Double Auction (BBDA) mechanism
[144, 145, 167]. While the spirit of the two mechanisms is the same (maximizing the efficiency of
trading), the prices and the payments are different. In SeBiDA, the prices are determined by the bids of
the sellers only. This makes the market asymmetric. In the complete information case, all buyers have
no incentive to bid non-truthfully, but at least one seller does.

In BBDA, the determined price could be either a buyer’s bid or a seller’s bid. While the claim in
Theorem 2.1 of [145] is not correct, in [167], it is simply assumed that the buyers bid truthfully, which
need not be true. In fact, we found that for SeBiDA, even though under complete information, it is a
dominant strategy for buyers to bid truthfully. This is not the case for incomplete information.

The proof techniques used here are in part inspired by those developed by [24, 144, 145, 167]. The
rate of convergence of SeBiDA can be obtained from the analysis in the proof of Lemma 3.2. Strangely,
Nash equilibrium analysis was ignored in [145]. Finally, the ex post individual rationality constraint seems
restrictive at first glance. However, in two human subject experiments we have conducted using this
mechanism, it was observed that all subjects in fact always used strategies that were ex post individual
rational [77]. Thus, the predictive power of the result does not seem diminished in real-world settings
despite the assumption made. It is also pertinent to mention [146], wherein the authors show that the
k-DA class of market mechanisms are worst-case asymptotic optimal, where optimality is measured in
how quickly the inefficiency diminishes as the market size increases. The mechanisms are evaluated in
the least favorable trading environment.

Bayesian-Nash Equilibrium in a Special Combinatorial Case

We now provide an extension of Theorem 3.4 to a combinatorial case.

Corollary 3.1. Suppose the buyer valuations and seller costs are uniform over [0, 1], i.e., U1 = U2 =
U [0, 1]. The combinatorial demands of buyers are such that each item is demanded by n buyers and
there are n sellers for each item. Then, the claim of Theorem 3.4 still holds, i.e., if both buyers and sellers
have ex post individual rationality constraint and (αn, βn) is a symmetric Bayesian-Nash equilibrium,
then, (i) βn(v) = β̃(v) = v ∀n ≥ 2, and (ii) (αn, βn) → (α̃, β̃) in the uniform topology as n→∞, i.e.,
c-SeBiDA is asymptotically Bayesian incentive compatible.

The reader can check that the arguments in proof of Theorem 3.4 still hold. We provide an intuitive
argument. Suppose a buyer i would present his combinatorial bid as an itemized bid, i.e., a bid for each
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item in his bundle. Now, for each item in his bundle, it faces the same number of buyers n− 1 and the
same number of sellers n. Suppose all other buyers j 6= i divide their bid equally among all items in
their bundle, i.e., if bj is the bid for the bundle Rj , bj/|Rj | is the bid for each item in Rj . Then, buyer i
has to divide his bid bi among his items in such a way that his expected payoff is maximized. For given
bids of all players, his payoff is zero if he is not matched and non-zero if he is matched. Thus, he has
to itemize his bid in a way that he maximizes the probability of being matched. It can be verified that
when buyer valuations and seller costs are drawn uniform over [0, 1], the probability of his bid being
accepted is maximum if the bid is divided equally among all items in his bundle. Thus, he would use
the same strategy βn = bj/|Rj | on each item, which would induce the same distribution of buy-bids G
on each item. This is true for all buyers since they are symmetric. Similarly, all sellers will use the same
bid strategy αn, which will induce the distribution of ask-bids F . Now, the game has been reduced to
a single-item auction game on each item, and the result follows from Theorem 3.4.

From the Nash equilibrium analysis for the combinatorial case and the Bayesian-Nash analysis for
the single item case, it seems plausible that the Bayesian-Nash equilibrium result can be extended to
the general combinatorial case. However, the analysis becomes rather messy and is part of future work.
Thus, in the next section, we show that the c-SeBiDA outcome when there are a large number of players
(as in a continuum model) is a competitive equilibrium.

3.5 c-SeBiDA Outcome is Competitive Equilibrium in the Continuum
Model

We now present competitive analysis of the c-SeBiDA mechanism. Since competitive equilibria may not
exist for the setting considered, we investigate the behavior of the outcome of the c-SeBiDA auction
when the number of players is large enough such that no single player by itself can affect the outcome.
An idealization is a continuum of agents. Such a setting was first considered by Aumann [9] in a general
equilibrium setting and others have used this approach in the analysis of games [67, 69].

Assume the continuum of buyers is indexed by t ∈ [0, 1], and the continuum of sellers is indexed
by τ ∈ [0, 1]. There are m types of buyers and n types of sellers. Let B1, · · · , Bm and S1, · · · , Sn

partition [0, 1] so that all buyers in Bi demand the same set of items Ri (corresponding say to a route),
and all sellers in Sj offer the same item lj , Lj = {lj}. We assume that the partitions Bi’s and Sj ’s are
subintervals.

A buyer t ∈ Bi has true value v(t), bids p(t) per unit for the set Ri, and demands δ(t) ∈ [0, D]
units. Suppose v(t), p(t) ∈ [0, V ]. A seller τ ∈ Sj has true cost c(τ) and asks q(τ) for the item(s) Lj

with supply σ(τ) ∈ [0, S] units, with c(τ), q(τ) ∈ [0, C]. Let x(t) and y(τ) be the decision variables,
i.e. buyer t’s x(t) is 1, if his bid is accepted, 0 otherwise. And similarly, seller τ ’s y(τ) is 1 if his offer
is accepted, 0 otherwise. We assume that within each partition Bi, the buyers’ bid function b(t) is
non-increasing, and within each partition Sj , the sellers’ bid function q(τ) is nondecreasing.

Note that while in section 3.2, we assumed that buyers specify a maximum demand and they may
be allocated any integral units up to the maximum demand, here we will assume that their bundles are
all-or-none kind: All demand must be met or none.

Denote the indicator function by 1(·) and as before, consider the surplus maximization problem
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cLP:

sup
x,y

∫ 1

0

m∑
i=1

x(t)δ(t)p(t)1(t ∈ Bi)dt −
∫ 1

0

n∑
j=1

y(τ)σ(τ)q(τ)1(τ ∈ Sj)dτ (3.15)

s.t.∫ 1

0

n∑
j=1

y(τ)σ(τ)1(l ∈ Lj , τ ∈ Sj)dτ −
∫ 1

0

m∑
i=1

x(t)δ(t)1(l ∈ Ri, t ∈ Bi)dt ≥ 0,

∀l ∈ [1 : L] and x(t), y(τ) ∈ {0, 1},∀t, τ ∈ [0, 1].

The mechanism determines ((x∗, y∗), p̂), where (x∗, y∗) is the solution of the above continuous linear
integer program and for each l ∈ [1 : L],

p̂l = sup{q(τ) : y(τ) > 0, τ ∈ Sl}, (3.16)

and
p̌l = inf{q(τ) : y(τ) = 0, τ ∈ Sl}. (3.17)

The mechanism announces prices p̂ = (p̂1, · · · , p̂L); the matched buyers (those for which x∗(t) = 1) pay
the sum of the prices of the items in their bundle, while the matched sellers (those for which y∗(τ) = 1)
get a payment equal to the number of their items sold times the price of the item. When buyers and
sellers bid truthfully, the following result holds.

Theorem 3.5. If the bid function of the sellers q : [0, 1] → [0, C] is continuous and nondecreasing in
each partition Sj of [0, 1], then (x∗, y∗) is a competitive allocation and p̂ is a competitive price.

Proof. We first show the existence of (x∗, y∗) and (λ∗1, · · · , λ∗L), the dual variables corresponding to
the demand less than equal to supply constraints. We do this by casting the cLP above as an optimal
control problem and then appeal to Pontryagin’s maximum principle [124]. Define

ζ̇(t) := Σm
i=1x(t)δ(t)p(t)1(t ∈ Bi)− Σn

j=1y(t)σ(t)q(t)1(t ∈ Sj), (3.18)

ξ̇l(t) :=
n∑

j=1

y(t)σ(t)1(l ∈ Lj , t ∈ Sj)−
m∑

i=1

x(t)δ(t)1(l ∈ Ri, t ∈ Bi), (3.19)

θ(t) := (ξ1(t), · · · , ξL(t), ζ(t))′ , (3.20)

where θ is the state of the system, x and y are controls, and ζ(t) and ξ(t) describe the state evolution
as a function of the controls. The objective is to find the optimal control (x∗, y∗) which maximizes
ζ(1). Let

Σ(t) := {θ̇(t) : xl(0) = 0,∀l and x(t), y(t) ∈ {0, 1},∀t ∈ [0, 1]}. (3.21)

Observe that Σ(t) has cardinality at most 2L+1 in RL+1.
∫ 1
0 Σ(τ)dτ is the set of reachable states

under the set of all allowed control functions, namely, all measurable functions x and y such that
x(τ), y(τ) ∈ {0, 1}. Note that ζ(1) defines our total surplus; i.e., buyer surplus minus seller surplus,
and ξl(1) defines the excess supply for item l; i.e., total supply minus total demand for item l. Define

Γ := {θ(1) ∈ RL+1 : θ(1) ∈
∫ 1

0
Σ(τ)dτ, ξl(1) ≥ 0,∀l}, (3.22)

the set of final reachable states under all control functions such that state evolution happens according
to the equations above, and excess supply is non-negative.

39



Lemma 3.3. Γ is a compact, convex set.

Proof. By assumption, δ(t), p(t), σ(t), and q(t) are bounded. By Lyapunov’s theorem [10],
∫ 1
0 Σ(τ)dτ

is a closed and convex set. Since x and y are bounded functions, the integral is bounded as well.
Thus, it is also compact. Moreover, ξl(1) is a hyperplane, and ξ(1) ≥ 0 defines a closed subset of RL.
Therefore, {θ(1) : θ(1) ∈

∫ 1
0 Σ(τ)dτ}

⋂
{θ(1) : ξl(1) ≥ 0, l = 1, · · · , L} is a compact, convex set.

Now, our optimal control problem is: supθ(1)∈Γ ζ(1). But observe that one component of θ(1) is
ζ(1). Since Γ is compact and convex, the supremum is achieved and an optimal control (x∗, y∗) exists
in Γ. By the maximum principle [124], there exist adjoint functions p∗0(t) and p∗l (t), l = 1, · · · , L such
that ṗ∗0(t) = 0, and ṗ∗l (t) = 0, (i.e., p∗l (t) = λ∗l , a constant) for l = 0, · · · , L.

Defining the Lagrangian over the objective function and the demand less than equal to supply
constraint

L(x, y;λ) = ζ(1) +
L∑

l=1

λlξl(1), (3.23)

we get from the saddle-point theorem [160],

L(x, y;λ∗) ≤ L(x∗, y∗;λ∗) ≤ L(x∗, y∗;λ). (3.24)

We use this saddle point inequality to conclude the existence of a competitive equilibrium.

Lemma 3.4. If ((x∗, y∗), λ∗) is a saddle point satisfying the inequality (3.24) above, then the λ∗ are
competitive equilibrium prices. Moreover, p̂l ≤ λ∗l ≤ p̌l,∀l = 1, · · · , L.

Proof. Let ((x∗, y∗), λ∗) be the saddle point satisfying the above inequality. Rewrite the Lagrangian as

L(x, y;λ) =
m∑

i=1

∫
Bi

δ(t)x(t)(p(t)−
∑
l∈Rt

λl)dt+
n∑

j=1

∫
Sj

σ(τ)y(τ)(λl(τ) − q(τ))dτ

where l(τ) is the item offered by seller τ . Now, using the first saddle-point inequality, we get that
x∗(t) = 1(p(t) > Σl∈Rtλ

∗
l ) and y∗(τ) = 1(q(τ) < λ∗l(τ)), which implies that the Lagrange multipliers

are competitive equilibrium prices. To prove the second part, note that by definition, for a given τ ,
y(τ) > 0 implies that q(τ) ≤ λ∗l for τ ∈ Sl, which implies the first inequality. Again from definition, we
get that y(τ) = 0 implies that q(τ) ≥ λ∗l for τ ∈ Sl, which implies the second inequality.

To conclude the proof of the theorem, we observe that if q is continuous and non-decreasing in each
interval Sj of [0, 1], then p̂l = p̌l for each l, which then equals λ∗l by Lemma 3.4.

The implication of this result is that as the number of players becomes large, the outcome of the
above auction approximates the competitive equilibria of the associated continuum exchange economy.
We will defer discussion of the relationship between the Nash equilibria and the competitive equilibria
to the conclusions section.

We now show that the assumption that the sellers’ bid function is piecewise continuous and nonde-
creasing is necessary for the c-SeBiDA’s price to be a competitive price.

Example 3.2. Suppose that there is only one item. Buyers t ∈ [0, 0.5] have reservation value 3 while
buyers t ∈ (0.5, 1] have reservation value 4. Sellers t ∈ [0, 0.5] have reservation cost 5 while sellers
t ∈ (0.5, 1] have reservation cost 2. Then, it is clear that the buyers in (0.5, 1] and sellers (0.5, 1] will be
matched with surplus 0.5× 2 = 1. Thus, p̂ = 2 which is not equal to p̌ = 3. As can be easily checked,
the competitive price is λ∗ = 3 different from p̂.
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3.6 Chapter Summary

We have introduced a combinatorial, Sellers’ Bid, Double Auction (c-SeBiDA). It is worth noting that
a single-sided auction with one seller and zero costs is a special case of a double auction. We presented
three results for c-SeBiDA.

The first result concerned the existence of a Nash equilibrium for c-SeBiDA with full information. In
c-SeBiDA, settlement prices are determined by sellers’ bids. We showed that the allocation of c-SeBiDA
is efficient. Moreover, truth-telling is a dominant strategy for all players except the highest matched
seller for each item.

The second result concerned the Bayesian-Nash equilibrium of the mechanism under incomplete
information. We showed that under the ex post individual rationality constraint, symmetric Bayesian-
Nash equilibrium strategies converge to truth-telling for the single item auction. Thus, the mechanism
is asymptotically Bayesian incentive compatible, and hence asymptotically efficient.

The third result concerned the competitive analysis of the c-SeBiDA auction mechanism. We con-
sidered the continuum model and showed that within that model c-SeBiDA outcome is a competitive
equilibrium. This suggests that in the finite setting, the auction outcome is close to efficient.

In [66], we considered a more general setting and showed that a competitive equilibrium exists in a
continuum model of an exchange economy with indivisible items and money (a divisible item). We used
the Lyapunov’s theorem [10] for convexification of the economy and the Debreu-Gale-Nikaido Lemma
[20] to establish existence of a fixed point of the excess demand correspondence. We also showed that
there exist non-enforceable competitive equilibria based on the approximation of non-convex sets using
the Shapley-Folkman and Starr Theorems [5].

We have tested the proposed mechanism c-SeBiDA through human-subject experiments. Those
results can be found elsewhere [77].

We now situate our contribution in the literature that relates Nash and competitive equilibria.
The basic idea is that as the economy gets large (in our context the number of buyers and sellers
and quantities of items all go to infinity), Nash equilibrium strategies should converge to competitive
equilibrium strategies, because ‘market power’ diminishes.

In [145, 167], it is shown that Bayesian-Nash equilibrium strategies converge to truthful bidding as
the market size goes to infinity. The relationship is first investigated in [132]. In a later paper [52],
it is shown that under certain regularity conditions, a sufficiently replicated economy has an allocation
which is incentive-compatible, individually-rational and ex-post ε-efficient. Similarly, [67] shows that
the demand functions that an agent might consider based on strategic considerations converge to the
competitive demand functions. Further, [69] shows that under certain conditions on beliefs of individual
agents, not only do the strategic behaviors of individual agents converge to the competitive behavior,
but the Nash equilibrium allocations also converge to the competitive equilibrium allocation. The
formulation in [168] is a buyer’s bid double auction with a single type of item that maximizes surplus. It
is shown that with Bayesian-Nash strategies, the mechanism is asymptotically “incentive efficient,” the
notion of incentive efficiency being different from that of incentive compatibility and efficiency that we
use here. Along a different line of investigation, [50, 145, 140] investigate the rate of convergence of
the Nash equilibria to the competitive equilibria for buyer’s bid double auction. Finally, implementation
and mechanism design in a setting with a continuum of players is discussed in [107].
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Chapter 4

Human-subject Experiments

Recent interest in the intersection of economics and engineering has focused on the use of economic
theory to deal with allocation of resources under conflicting incentives. Implementing such systems,
however, will most likely not yield the desired theoretical outcomes. We propose the use of experimental
methods for testing such predictions and better informing the design of such incentive-based systems.
We are particularly interested in complex economic environments with complimentary goods/services.
We propose the experimental investigation of the use of combinatorial auctions for the allocation of
scarce resources in a bandwidth trading market. We performed an experimental study to investigate
theoretical results based on the auction mechanism proposed in the previous chapter that has been
implemented in a software test bed. It has been used to conduct human-subject experiments to validate
the theory developed for it in the previous chapter.

This chapter forms part of the dissertation work of Charis Kaskiris, and appeared in:
C.Kaskiris, R.Jain, R.Rajagopal and P.Varaiya, “Combinatorial auction design for band-

width trading: An experimental study,” Proc. International Conf. on Experiments in Economic Sciences,
Kyoto, Japan, December 2004.

The chapter completes the auction theory we have developed. It also demonstrates the methods
and the efficacy of conducting such human-subject economic experiments.

4.1 Introduction and Literature Review

An introduction to auction theory is provided in [90]. For a broader non-technical survey of auction
theory, see [86]. Until the early 1990s, most of the work by economists sought better understanding of
the theoretical and strategic properties of traditional auction mechanisms. The Federal Communications
Commission auctions of wireless communication licenses were different because of complementarities
between the different licenses. These economic environments have been described as combined value
auctions and were experimentally investigated in the context of airline slot allocation [129], payloads
for NASA’s Space Station [13], tracking routes [126], pollution license trading, and spectrum auctions
[96, 123, 125]. Further applications are discussed in [164]. The realization that economic models
could be used in the design of real-life mechanisms and potentially in the design of market-based control
systems in engineering and computer science [26] spurred the investigation of the validity of assumptions
made in theoretical contexts and their empirical applicability.

Dealing with complex economic environments with complementarities has proven to be a formidable
task for auction theorists. The theoretical properties of different auction formats, such as the simultane-
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ous ascending bid auctions and combinatorial auctions, were poorly understood. Therefore, designers of
such systems turned to experimental economics to investigate the properties of such mechanisms. Exper-
imental economics is the application of the laboratory method to test the validity of various economic
theories and to test new market mechanisms. Using cash-motivated subjects, economic experiments
create real world incentives to help us better understand why markets and other exchange systems work
the way they do [44, 73]. Many new auction mechanisms were introduced following improvements in
computational power.

4.2 Combinatorial Auctions

Combinatorial Auctions (CA) are studied by economists who investigate the economic rationality of
self-interested agents, and by computer scientists dealing with the computational and informational
constraints of such auctions. Combinatorial auctions enhance our ability to efficiently allocate multiple
resources in complex economic environments because of their generalized bid expression, which allows
participants to bid on packages of items with related values or costs. They also allow bidders to impose
logical constraints that limit the feasible set of auction allocations. They can also handle functional
relationships amongst bids or allocations such as budget constraints or aggregation limits. However,
this flexibility makes devising an optimal bidding strategy a computationally intensive task for bidders
and sellers.

CA allow more expressive bids in which participants can submit package bids with logical constraints
that limit allowable outcomes. This type of auction can be useful when participants’ values are comple-
mentary or when they have production and financial constraints. There are several reasons to prefer to
expand the bidding message space. One problem that combinatorial auctions solve is the “exposure”
problem, evident in simultaneous ascending auctions [112]. With individual bidding, a bidder is exposed
to the risk of winning a few licenses it wants without winning other complementary licenses it wants.
Fearing this exposure, a bidder may not bid aggressively, not participate in the auction, or try to collude
[28]. Hence, combinatorial bidding appears to have better efficiency in the presence of demand rigidities
(i.e. a bidder extracts any valuation only if the whole package is fulfilled).

However, combinatorial auctions are currently rare in practice. The main problems confronted in
implementing these auctions stem from the computational uncertainty with regards to winner determi-
nation when there are large numbers of items and participants. The auction is also cognitively complex
and can lead participants to pursue perverse bidding strategies. They also lead to inefficiencies in cases
with the “threshold” effect [23]. The threshold effect is present if aggregating smaller bids would have
displaced a larger bid, but the incentives to do so are not aligned.

The computational uncertainty in winner determination comes from the fact that winner determina-
tion in combinatorial auctions is equivalent to a Set Packing Problem [164], which is nondeterministic
polynomial time complete or hard problem. Bidding in combinatorial auctions is burdensome, both
strategically and cognitively, for all participants.

In designing combinatorial auctions, several questions need to be considered: How does the for-
mat of the auction withstand the threshold effect? Does iterative bidding allow for strategy building
through learning? What is the appropriate level of information feedback to the bidders? What is the
computational cost of the algorithms proposed?

It has been observed in the field and during experiments that in complex economic environments,
iterative auctions that permit the participants to observe the competition and learn when and how to
bid, produce better results than sealed bid auctions. Two frameworks are currently used for iterative
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procedures. The first is the use of continuous auctions [13] during which bidders may see a set of
provisional winning bids, as well as a set of bids to be combined from a standby list. The standby list
consists of non-winning bids and these bids are there to signal willingness to combine bids to outbid
larger-package bids. The second framework uses multiple rounds of sealed bid formats, which solves
repeated integer programming problems. In general, auction systems that provide feedback and allow
bidders to revise their bids seem to produce more efficient outcomes [125].

In this chapter, we compare the revenue, efficiency, and bidding properties of a particular combinato-
rial auction set-up in which there are complementarities among the objects being allocated. Specifically,
we conduct laboratory experiments allocating three links with private values and complementarities using
the combinatorial auction format under different degrees of complementarity. In the benchmark case,
every seller owns all three types of links and every buyer has private values over all subsets of links. In
alternative cases, sellers own two types of links with one type being owned by all sellers. Buyers have
valuations over bundles of links.

The remainder of the chapter is as follows: Section 4.3 presents the information and valuation
structure used in the experiments. Section 4.4 gives an overview of the experimental design and the
results of the experiments. Section 4.5 concludes the chapter.

4.3 Information and Valuation Structure

We propose using economic experiments for the design and understanding of mechanisms to allocate
resources in engineering and electronic commerce. Even though economic theory has already been ap-
plied to engineering problems, most of the models are of theoretical nature. The appropriate use of
economic theory in engineering needs to address human participation, and experimental economics pro-
vides a way for testing the robustness of such theories. They also provide an environment for formulating
new theories and testing improved designs. We investigate different properties of combinatorial auction
settings using the combinatorial auction platform we have developed. The platform allows single-sided,
double-sided, XOR/OR, combinatorial bidding, and short-selling [63]. Of particular interest is the design
of a combinatorial auction system for use in allocating links and trunks in bandwidth trading markets.

A Sellers’ Bid Double Auction (SeBiDA) mechanism is proposed in [63], which maximizes total
surplus and announces payments based on sellers’ bids. The announced allocations and prices form
a competitive equilibrium, under certain assumptions on bidding format and valuations. We replicate
these conditions and also investigate how robust the mechanism is to differing private valuations. This
will necessitate the use of different market environments with different valuations for combinations of
goods. In particular, we want to replicate a simple bandwidth trading environment, where the bidding is
over links (i.e. goods) and number of trunks (i.e. quantity of goods) on each link. Obtaining different
lengths of paths (i.e. combinations of links) provides different valuations for users.

We followed a similar valuation structure used in [113], where users were given valuations over com-
binations of links and trunks. Subjects were provided with valuation charts over different combinations
of goods at different quantities.

Sellers

Each seller owns a combination of links and trunks on those links. Each seller has a cost of operation
of each item-trunk pair drawn from a uniform discrete distribution between 5 and 15. The cost of each
additional trunk within the same link is uniform. Operation costs are only incurred when a link-trunk
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Trunks link A link B link C

1 7 5 6

2 14 10 12

3 21 15 18

Table 4.1: Example of Seller Valuations

Trunks A B C AB BC AC ABC

1 20 12 24 37 26 35 52

2 39 23 27 72 50 68 101

3 58 34 40 107 74 101 150

Table 4.2: Example of Buyer Valuations

combination is provided to a seller. There is no cost and no benefit associated with unsold link-trunk
combinations. Table 4.1 presents an example of a seller endowed with 3 trunks on each link.

In the alternative setup, all sellers own 3 trunks of one type of link, and two sets of two sellers own
3 units of each remaining type of link. Sellers can submit multiple bids (asks) with the restriction that
bids cannot be combinatorial. Seller bids are loose, meaning that a single bid may be matched with
multiple buyer bids. This would be the case when the seller submits a multi-trunk bid (e.g. $12/trunk
for 3 trunks of Link A).

Buyers

Buyers begin each round without owning any links and trunks. They are however, each provided with
a chart of private valuations over the all possible subsets and trunks that they may obtain. In the
benchmark setup, valuations for each subset of items are generated in the following way:

1. Valuation for each item is generated from a discrete uniform distribution between 10 and 20. For
example, item A may be valued at 12.

2. Valuation for each subset of two items is generated by adding the valuation for the two items.
Then a number from a uniform distribution between 0 and 5 is added. For example, item A is valued
at 12, item B is valued at 14, and the bundle AB is valued at 29.

3. Valuation for having all three items is generated by the maximum additive valuation between
combinations of two items and the valuation of the remaining object. Then a number from a uniform
distribution between 0 and 2 is added.

4. Each additional trunk for each combination is valued at -1 of the previous single item trunk; -2
of the previous double item combination; -3 of the previous all item combination.

Table 4.2 demonstrates an example of a valuation chart of a buyer based on the procedure described
above.

In the alternative setup, each buyer values different sets of links that include only one type of link
(i.e. A, AB, AC, ABC). This type of link is never the type of link that all sellers own.

Buyers may bid on combinations of items, but are restricted to have an equal number of trunks
(quantity) on each link (item). Buyer bids are not loose and need to be completely satisfied to be
matched. All buyer bids are XORed together, hence only one of them can match at each round.

The objective of each bidder would be to improve her endowment position through trading. Initially
everyone starts with a level of endowment in goods and money. Users are induced to perform well by
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only rewarding changes from the initial endowment point. In each round of the experiment, subjects
accumulate points based on their buyer/seller surplus they generated. At the end of the experiments,
$500 was split in proportion to the total surplus generated. If a participant does nothing s/he will
receive nothing at the end of the experiment. Negative balances provide subjects with no payoff (except
a showup fee).

4.4 Experimental Results

The experiment consisted of a 3-hour experimental session, which was conducted at the end of July 2004
at the xLab facilities at the University of California Berkeley. Subjects were recruited from the graduate
programs in electrical engineering, information management and systems, and economics using e-mail
postings. Participants were required to be familiar with basic networking and/or auction understanding.
There were two sessions of four rounds each. The subjects were instructed on how to bid using the web-
based interface and how the system calculates prices and performs matching. Test runs were conducted
so that the subjects could get a feel of how the system worked and how information was displayed.

In the first session (rounds 1-4 in the tables), subjects had a 50% chance of being a buyer or a
seller in each of four rounds. Each round had an equal number of sellers and buyers. Two sessions
of four rounds each were conducted. During the first session, subjects participated in four rounds of
the Combinatorial Seller’s Bid Double Auctions using the benchmark setup. During the second session
(rounds 5-8 in the tables), subjects participated in four rounds using the same auction format but with
the alternative setup valuations.

To ensure that both sessions used the same procedures, we adopted a written protocol which we
used on both sessions. In all sessions, the participants were seated in a large room, each sitting at a
desk with a laptop computer. They were read instructions and given an opportunity to ask questions.
Throughout the session, participants would only communicate through the submission of bids.

The submission of bids in the system was monitored through the server platform and once everyone
submitted the bids, they were entered into the combinatorial engine which calculated the price for each
link and which buyer and seller matched. The market information, namely the prices of the links, would
be posted for everyone to see at the conclusion of the round. The participants who matched would also
be notified of which link and what quantity they matched on. Before being asked to bid, participants
received a handout depending on whether they were a seller or a buyer. At the conclusion of the
experiment, the subjects were paid in private with checks according to their performance during the two
sessions.

Results

We present the results for both sessions in terms of efficiency, revenues, and bidding behavior. We pool
results from each round and present the average behavior of subjects during each session. We also
present how the bidding behavior of subjects changed over consecutive rounds.

Efficiency and Revenue

We begin by considering how each auction setup fared in achieving the efficient allocation of the objects.
Buyer efficiency is calculated by dividing the value of the objects actually realized by the bidders by the
theoretical maximum obtainable. In the benchmark rounds of session 1, the valuations of the buyers
were sufficiently high as to be satisfied by the sellers selling all their links and trunks. Efficiency was
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Round 1 2 3 4 5 6 7 8

Mean 56.24 37.65 76.31 81.20 63.19 50.00 55.42 71.19

σ 32.82 11.43 31.93 12.99 33.74 57.74 31.75 33.27

Table 4.3: Summary of Buyer Percentage Efficiency in Each Round

Round 1 2 3 4 5 6 7 8

Mean 55.56 41.67 72.22 75.00 63.89 66.67 58.33 72.22

σ 17.35 22.05 4.81 0.00 17.35 28.87 22.05 25.46

Table 4.4: Summary of Seller Percentage Efficiency in Each Round

then calculated by comparison between the actual outcomes and the maximum possible valuations of
the buyers.

Table 4.3 shows the associated standard deviation (σ) below each of the mean figures for efficiency
generated during each round of each session. During session 2, given the restricted supply on two links,
the valuations were compare on the highest possible combination of valuations given the supply.

For the mechanism to be efficient, it should induce participants with high valuations to be the
ones who match. Buyers with the highest valuations for each combination of links and trunks can
be identified from their valuation tables. Given our mechanism, the prices should be the highest bids
of the sellers with the highest operating costs. This is because of the distribution functions used in
assigning valuations to buyers and sellers. What we observe is that even in the case of limited supply,
the mechanism performs at about 60% buyer efficiency. What we also observe is that during session 1,
subjects have performed better with each new round.

On the seller side efficiency was calculated as percent of items sold given their initial endowments.
Table 4.4 shows mean percentage efficiency of the mechanism in distributing the sellers’ links and
trunks1.

What we observe is the mechanism performs at about 65% seller efficiency when there are no
restrictions on supply or demand, and 61% of seller efficiency when there are restrictions on demand
and supply. What we also observe is that during session 1, subjects have performed better with each
new session; a result reflected in the buyer efficiency discussion.

Bidding

Another important aspect of investigating a mechanism is with regards to patterns of underbidding or
overbidding. This means that we need to pay closer attention to the bidding of participants when their
type of bidder (buyer or seller) changes between rounds. The shading factor is a measure of how much
lower than the actual valuation of a link-trunk combination has been submitted during each round. The
average shading factor for each round is shown in Table 4.5.

What we observed was that sellers tended to overbid above their own costs of operation. What we
did not observe however, is bidding with regards to the expected price of each good. Since operating
costs were randomly drawn from a discrete uniform distribution between 5 and 15, then the expected
operating cost is 10. Suppliers who had operating costs of 5 would bid marginally higher, possibly
reflecting high risk-aversive behavior. Table 4.6 shows the overbidding behavior of sellers. The impact

1In session 2, round 3, a seller sold one more unit than s/he had, for which s/he got penalized. The efficiency reading
on the buyer side was not adjusted for that problem, since the difference would be minimal.

47



Round 1 2 3 4 5 6 7 8

Mean 23.95 28.79 19.30 31.85 27.00 18.00 13.00 23.00

σ 24.42 26.15 8.59 30.06 26.00 9.00 14.00 21.00

Table 4.5: Aggregate Average Percentage Shading Factor Per Round

Round 1 2 3 4 5 6 7 8

Mean 27.51 14.59 23.44 32.40 8.75 14.25 11.33 30.75

σ 35.14 9.97 2.83 35.10 11.81 12.01 11.50 24.96

Table 4.6: Seller Overbidding Percentage Over Costs

of this bidding behavior is also reflected in the ability of the mechanism to assign the competitive
equilibrium prices, since the final uniform price per link is the maximum successful seller ask bid value.

Buyers would underbid in most cases as reflected below. Given the way that prices were determined
in the mechanism, specifically, by having the highest accepted seller bid dictate the price, some risk-
loving buyers bid with prices exceeding their own valuations in expectation that the actual price paid
would be lower. Table 4.7 shows the underbidding behavior of buyers.

Our results show that the mechanism does not induce truth-revelation as a VCG auction [113].
Sellers tend to overbid by 26% and buyers underbid by 20%. Comparisons of this mechanism with the
alternative mechanism of simultaneous double auctions of each link or the VCG auction format could
shed some light on the comparative efficiency and strategic interactions of this auction mechanism.

4.5 Chapter Summary

Experimental economic approaches can be used to aid engineers in the design of mechanisms for allo-
cation of resources which exhibit complimentary value to users. Such environments include bandwidth
trading, spectrum auctions, airport slot planning, hospital staff scheduling, utility pricing, etc. In many
cases, the theoretical properties of different allocation mechanisms are unknown. Similarly, implementa-
tion challenges with respect to such systems can be identified through the use of experimental economic
methods. We have briefly investigated some basic properties of the c-SeBiDA mechanism. In our future
investigations, we will examine the efficiency of expanding the bidding space, allowing for buyers to
submit both XOR and OR bids. We also want to investigate the impact on efficiency, when we allow
the combinatorial auction to be multi-round ascending.

Round 1 2 3 4 5 6 7 8

Mean 20.39 42.98 18.08 31.31 44.50 21.50 14.25 16.00

σ 11.08 30.98 10.08 29.59 24.06 5.32 13.78 14.90

Table 4.7: Buyer Underbidding Percentage Over Valuations
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Chapter 5

Conclusions and Future Work

We studied competitive equilibrium in combinatorial markets, i.e., markets with indivisible goods and
money where the participants have valuations that depend on bundles of goods. We showed through
examples that for finite networks, prices that yield socially efficient allocation may not exist. We then
obtained sufficient conditions on network topology for competitive equilibrium to exist when utility
functions are linear. Namely, when the network is T.U. (Totally Unimodular, i.e., all the routes lie
on a spanning tree). The result is really an observation from network flow theory and there are other
sufficient conditions available as well. However, it seems to be the first such observation in the networking
literature.

The problem of existence of competitive equilibrium with indivisible goods is a hard one. It has been
known that, in general, C.E. does not exist in markets with indivisible goods. However, divisible goods
are really an approximation for real goods (which are almost always indivisible in real markets) in markets
with a large, even an infinite, number of players. One model of large markets with perfect competition
is the continuum model. Such models have been proposed for markets with indivisible goods and it has
been shown that the core is non-empty, but competitive equilibrium still may not exist. What is missing
in the literature is an analysis of the continuum model with indivisible goods and money. We showed
that in such a setting, a competitive equilibrium exists. The key here is the Lyapunov-Richter theorem
that enables a convexification of the economy.

However, such a result does not hold for countable economies. The main reason is that defining the
average of a sequence of correspondences is trickier as the limit may not exist.

Although a mathematical fiction, the continuum model is very useful in showing the existence of
enforceable approximate equilibria (when we require that supply exceeds demand) in finite networks.
We presented such approximate equilibria, which follow from theorems about convex approximations of
non-convex sets.

It is well-known that the set of the competitive allocations is contained in the core (the set of
Pareto-optimal allocations). However, it is unknown if the two sets are equal. This is an interesting
question and part of future work.

We then introduce a combinatorial market mechanism and present three results. The first result
concerned the existence of a Nash equilibrium for the combinatorial, Sellers’ Bid, Double Auction (c-
SeBiDA) with full information. In c-SeBiDA, settlement prices are determined by sellers’ bids. We
showed that the allocation of c-SeBiDA is efficient. Moreover, truth-telling is a dominant strategy for
all players, except the highest matched seller for each item.

The second result concerned the Bayesian-Nash equilibrium of the mechanism under incomplete in-
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formation. We showed that under the ex post individual rationality constraint, symmetric Bayesian-Nash
equilibrium strategies converge to truth-telling for the single item. Thus, the mechanism is asymptoti-
cally Bayesian incentive compatible, and hence asymptotically efficient.

The third result concerned the competitive analysis of the c-SeBIDA auction mechanism. We
considered the continuum model and showed that within that model, the c-SeBiDA outcome is a
competitive equilibrium. This suggests that in the finite setting, the auction outcome is close to efficient.

What we have essentially shown is a combinatorial market mechanism which has zero “price of
anarchy”. We have been able to deal with indivisibilities and combinatorial bundles. However, the
Nash equilibrium results are for special utility functions, namely “max-linear” functions, i.e., linear up
to a maximum and then constant. It is worth noting that the mechanism we proposed is a non-VCG
mechanism. The only known mechanisms that are efficient and incentive-compatible are of VCG type.
However, VCG mechanisms suffer from computational complexity problems and hence there is a drive
to find computationally efficient incentive compatible mechanisms. The mechanism we propose also
requires a mixed linear integer program to be solved. However, the real-time complexity is much lower
than for VCG mechanisms. Our mechanism seems to work quite well with current linear integer program
algorithms for reasonably sized problems. Still, for large problems, the mechanism’s matching problem is
NP-complete. However, it is our guess that there is a structure in the auction problems of communication
networks which will enable us to find efficient matching algorithms. This is part of future work.
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