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Chapter 1

Introduction and Summary

1.1 Motivating Problems

As every individual... intends only his own gain, and he is in this, as in many other cases, led by an
invisible hand to promote an end which was no part of his intention. Nor is it always the worse for
the society that it was no part of it. By pursuing his own interest he frequently promotes that of the
society more effectually than when he really intends to promote it.

—Adam Smith, An Inquiry into the Nature and Causes of the Wealth of Nations IV.2:9, 1776.

We study a classical question in a modern context. There are a number of buyers and sellers of
a number of distinct goods. Each participant is selfish. It cares more for its own benefit than of the
social welfare. Each good is indivisible. It must go completely to one of the participants. Moreover,
the participants are not ‘passive’ as Smith [156] and Walras [166] believed, but ‘actively’ take actions
to further their interest in the spirit of Cournot [27] and Edgeworth [37], and later, von Neumann and
Morgenstern [117] and Nash [116].

We are thus interested in the following questions. When does an equilibrium exist in a market with
several indivisible goods? And what economic mechanisms yield an allocation that promotes the welfare
of the society as a whole? To put it more concretely, we want to examine the existence of competitive
equilibrium in a combinatorial market , i.e., an exchange economy with several indivisible goods such
that consumers have interdependent valuations: A consumer’s utility is for a bundle of indivisible goods.
Further, we seek auction or market mechanisms that yield social welfare maximizing allocations when
participants or agents exercise strategic behavior.

Despite this being a long standing question, it has only been incompletely resolved for the setting
of interest. The following problems from communication networks and operations research motivated
this work.

Wireless Networks. Consider a cellular network. An agency such as the FCC [39] wants to auc-
tion spectrum to wireless service providers such as AT&T, Cingular, Sprint and Verizon. The wireless
service providers on their part, bid for spectrum in various cells. They aim for widespread coverage
for their customers and derive maximum benefit if they can provide service in contiguous cells. Thus,
wireless service providers need spectrum in bundles of cells. Moreover, the FCC auctions spectrum in
some indivisible chunks such as 10 MHz. Thus, spectrum is an indivisible good. These two features of
spectrum make the allocation problem combinatorial. The FCC wants to find allocation mechanisms
that determine uniform (every unit sells for same price) and anonymous (users are not discriminated
depending on their identity or ability to pay) prices. Moreover, the mechanisms are required to yield



efficient allocation, i.e., those that maximize the social welfare. We will be more specific later.

Communication Networks. Now, consider a communication network with links {1,---, L}.
There are owners of capacity on links such as AT&T, MCI and Sprint. And there are service-providers
such as AOL, Earthlink and Comcast. An owner i owns a certain amount C;; Mbps of capacity on a
particular link and has a reservation cost ¢;(b,1) if it were to sell b units on link I. A service-provider
J has a reservation utility v;(b, R;) for b units of capacity on route R;, which is a bundle of links.
As before, the capacity is exchanged in some indivisible unit say 10 Mbps. This makes the exchange
problem combinatorial. We need a market mechanism whose outcome is efficient, i.e., maximizes the
trading surplus.

Electricity Markets. A similar problem arises in power networks. In fact, there is a well established
system for trading power on a daily basis. This has “commoditized” power thus making the market more
efficient, and ultimately benefiting the consumers. Though the question of mechanisms that achieve
full efficiency remains open [127].

Air-slot Allocation. Air-landing and take-off slots are currently allocated to airlines depending
on their bids. However, air traffic changes dramatically and this necessitates the need for re-allocation.
Currently, this re-allocation is left to the air-traffic controllers with penalties for the errant airlines.
However, this reallocation could be determined efficiently through a combinatorial auction [129].

Supply-Chain Management. Similar problems arise in several manufacturing contexts. For
example, a car manufacturing unit may bid for x units of an item A and item B. It needs both, say, to
produce a car. Other car manufacturing units may have similar demands. There could be sellers offering
each of items A and B. The exchange could then be determined by a combinatorial auction. Such
exchanges are currently determined by bilateral contracts which lead to inefficiencies in the market.

Thus, at an abstract level, the problems that we study are of considerable interest to various areas
of engineering, computer science, operations research and management. The solution that we offer is
practical. However, in each case, additional technological infrastructure may be necessary. For example,
in the context of communication networks, we would need a technology that can establish the routes
bought in an automated fashion. This becomes particularly crucial with large numbers of buyers and
sellers as in bandwidth exchanges. This study is limited to solving the abstract problem, although it has
immediate relevance for these real-world problems.

Thus, the following questions from the above problems motivated our work.

Q.1. When does competitive equilibrium exist in a combinatorial market?
Q.2. What mechanisms achieve outcomes close to competitive equilibrium?

Q.3. Do there exist optimal mechanisms that minimize efficiency loss of any Nash equilibrium when the
players act strategically? Does the incomplete information case result in sub-optimal outcomes?

Q.4. How do the theoretical results compare to real world settings when human agents are involved?

In the rest of this summary, we give a high-level description of how we answer these questions.
We also discuss how it relates to various research areas, and how it contributes to each of them. In
section 1.2, we describe our work on existence of competitive equilibrium in a particular model of large
combinatorial markets. In section 1.3, we describe the set-up for combinatorial markets and extant
auction mechanism design theory for such markets. Section 1.4 discusses the strategic behavior of
agents in an auction and how it may result in Nash equilibrium allocations which are inefficient. In the



congestion games literature, this has been called the price of anarchy. Section 1.5 presents human-
subject experimental results used to verify the game theoretic results that we obtained. Section 1.6
summarizes the contributions.

1.2 Models of Large Markets and Economic Efficiency

First, we investigate whether economically efficient resource allocations are attainable in a large market
with independent participants.

Suppose there are N agents and L commodities. All commodities are indivisible. They are often
treated as perfectly divisible. This is more for mathematical convenience and may be acceptable when
the quantities involved are large but not otherwise. (Even oil which is divisible is actually sold in units of
barrels.) Thus, throughout, we regard all goods as indivisible. Moreover, we will consider all agents to
be consumers. That is, it is a pure exchange economic system and does not involve firms or production.
A consumer ¢ has a consumption set X; with a preference order <; on any pair of consumptions in X;.
It is known that for continuous preferences on connected consumption sets, there exists a continuous
utility function [30]. With indivisible commodities, preferences are not continuous and the consumption
sets are not connected. However, when =; is a complete order on X, it is easy to see that there exists
a utility function on X;. At times, it is more convenient to work directly with utility functions. We
will assume that there is a divisible good or currency that circulates as numeraire or money. We will
assign a price pg to it as well. The price of all other goods is then obtained in terms of this currency by
dividing the price of each good by the price of money.

Given the utility functions of the consumers, the first pertinent question is what allocations are
more desirable than others. This has received the attention of economists for a long time. Following
Marshall [104], we shall assume that allocations that maximize the social welfare, the sum of utility
functions of the consumers is more desirable. One reason for choosing such allocations is that they are
Pareto-efficient [121]: the allocation cannot be changed to make one agent strictly better off and no
other agent worse off.

We will assume that each consumer has a utility function quasi-linear in money. There are no income
effects. Moreover, all the goods and the total money available is allocated to the consumers as their
initial endowment. We seek a market equilibrium wherein a price is assigned to each commodity. And
at that price, the demands of all the consumers is such that the market clears, i.e., every unit of each
commodity gets allocated to some consumer. We will assume that each participant does not anticipate
the effect of his actions on price. Such market equilibria are referred to as general or competitive or
Walrasian equilibria.

The notion of competitive equilibrium (C.E.) dates back to Walras [166], but it was Wald [165]
who laid its modern mathematical foundations and first rigorously proved its existence in competitive
markets. This program was carried forward by Arrow and Debreu [4], Gale [47] and McKenzie [110], who
proved existence for economies with divisible commodities under the assumption of convex preferences
and connected consumption sets. Over the years, this has been improved to the following statement.

Theorem (Arrow-Debreu). Suppose consumer preferences are continuous, strictly convex and
strongly monotone. Suppose there is positive endowment of every commodity and that the excess
demand correspondence ®(-) satisfies the following properties.

(i) It is continuous.

(ii) It is homogeneous of degree zero.

(i) p - (p) = 0 for all p (Walras's law).



(iv) There is an s > 0 such that ®;(p) > —s for every commodity | and all p.
(v) If p* — p, where p # 0 and p; = 0 for some l, then

max D;(p") — o0.

Then, a competitive equilibrium exists.

A competitive equilibrium is regarded as a desirable outcome because of the First Theorem of Welfare
Economics: A competitive equilibrium allocation is Pareto-efficient [3]. There are converse theorems.
But they require additional conditions on the preferences. For example, the Second Theorem of Welfare
Economics states: If each consumer holds strictly positive initial endowment of each commodity, the
preferences are convex, continuous and strongly monotonic, then there exist prices such that a Pareto-
efficient allocation is also a competitive allocation at those prices [30].

Of course, a competitive equilibrium need not always exist and not all Pareto-efficient allocations
need be feasible. An allocation should be attainable by actions of a consumer or of a coalition of
consumers. Thus, the concept of the core of an economy C is introduced: The set of feasible allocations
of the economy such that it cannot be improved upon by any coalition. Clearly, every allocation in the
core is Pareto-efficient. Furthermore, the set of all competitive equilibrium allocations CE, is contained
in the core. The interesting question then is the equivalence of C and C&.

A competitive equilibrium need not exist in an economy with indivisible goods. The difficulties
primarily lie in the fact that the utility functions are non-concave and discontinuous, and that the
consumption sets are totally disconnected. This makes use of any of the standard fixed point theorems
such as the Brouwer or the Kakutani fixed point theorems impossible.

Early attempts to deal with indivisible commodities considered “matching models”, inspired by the
“stable marriage” assignment problem of Gale and Shapley [49]. Shapley and Shubik [152] studied the
competitive equilibrium problem in asymmetric markets with buyers and sellers, each participant being
one or the other. Shapley and Scarf [151] considered the more general exchange model in which a
participant could be both buyer and seller. They focussed on the core and showed that an exchange
economy with indivisible goods has a nonempty core. In all this work, it is assumed that each participant
buys or sells only one commodity. Thus, the market was non-combinatorial.

The problem remains of interest in recent literature as well [95, 100, 17]. However, each of these
approaches makes some assumption which restricts general application of the work. For example, [95]
assumes that each participant owns at least one indivisible commodity initially. Moreover, utility is also
derived from at most one indivisible commodity. A combinatorial market is considered in [17] but the
agent preferences considered are rather special. Each agent is assumed to have a reservation value
for each bundle. Ma [100] considers a general setting but without money, and obtains necessary and
sufficient conditions for existence of competitive equilibrium.

Efforts have been made to characterize the limit points of market equilibria of economies with non-
convex preferences and indivisibilities as the market grows in size. Debreu and Scarf [31] proposed one
model of large economies as a finite economy replicated countably many times. More general models
of countable economies were considered in [59, 35]. However, C.E. may not exist even in countable
economies with non-convex preferences. Thus, there have been attempts to deal with non-convex
preferences in a finite setting by characterizing approximate equilibria. Starr [158] characterized certain
approximate competitive equilibrium based on results which state that non-convexities in an aggregate of
non-convex sets do not grow in size with the number of sets making up the aggregate. This “averaging”
results in non-convexities becoming less important in a large economy.



Aumann introduced a continuum set of participants [9] to model large economies with perfect
competition wherein each participant is negligible compared to the overall size of the economy. Unlike
[4], he did not assume anything about the valuation of the participants. But the goods are divisible and
in such a setting, he showed that competitive equilibrium exists [11]. It was shown by Mas-Colell [105]
that Aumann’s results do not extend to a continuum economy with indivisible goods without money, i.e.,
competitive equilibrium need not exist in continuum exchange economies with indivisible commodities.
However, Khan and Yamakazi [85] showed that the core of a continuum economy with indivisible goods
is non-empty. This raised the hope that some allocations in the core may be decentralized through
competitive prices.

In chapter 2, we provide exactly such a result.

We consider an exchange economy with multiple commodities and money. Unlike [17, 95, 100], we
consider very general preferences and do not make any assumption on initial endowments. Moreover,
we consider a combinatorial market. Our only assumption is that the preferences are continuous and
monotonic in money. Our interest is in the perfect competition case, in which each participant is
negligible enough that it cannot affect the prices and the allocation. We adopt Aumann’s continuum
model as our model of perfect competition and obtain the following result.

Theorem 3.2 (C.E. Existence). Suppose agent preferences are continuous and monotonic in money.
There is a positive endowment of every commodity and each consumer has positive endowment of some
commodity. Assume that the excess demand correspondence satisfies the following properties.

(i) ®(p) is homogeneous in p.

(ii) Boundary condition: Suppose p* — p*, and pj = 0 for some l. Then, z{ — oo, V2" € ®(p”).

(iii) Walras' Law holds: p -z = 0,z € ®(p),Vp € A, the relative interior of A.

Then, a competitive equilibrium exists in the continuum exchange economy with indivisible commodities
and money.

The result is important from a finite economy setting since using the Shapley-Folkman and the Starr
theorem [158], one can now show the existence of various approximate competitive equilibrium.

1.3 Auction Mechanism Design for Combinatorial Markets

As noted above a competitive equilibrium is a desirable outcome. Having proved the existence of
competitive equilibrium in the continuum economy and various approximate competitive equilibria in
the finite economy, the question now is whether there exist mechanisms for combinatorial markets such
that it results in a competitive equilibrium with a price assigned to each good.

A simple market mechanism that achieves competitive equilibrium for one divisible commodity is the
following. Each buyer and each seller reveals his demand as a function of price. The trading price p* is
then determined as the one at which aggregate demand equals aggregate supply. Each buyer receives a
quantity of the commodity that he said he demands at the price p*. Similarly, each seller sells a quantity
of the commodity that he said he can supply at the price p*.

This can be generalized to the case of a combinatorial market with many indivisible goods. While
the auction mechanism that we present is for a general combinatorial market, the design is motivated
by the communication network resource allocation problem we discussed in section 1.1.

We consider multi-item combinatorial double auctions for resource allocation. Assume that sellers
offer “loose” bundles, each with just one type of item (such as a link). For example, if a seller has 5
units of item A and 5 units of item B, he makes two OR offers; one with 5 units of item A and another
with 5 units of item B. But then, within each bundle, only a fraction of the units may get sold; say 3



out of 5 units. The buyer’s bundles on the other hand are of “all-or-none” kind. If a buyer bids for 5
units of both item A and item B, and if this bid is accepted, the buyer must receive all 5 units of each
of the two items. As mentioned earlier, this requirement is motivated by situations wherein buyers want
to acquire routes on communication networks. The assumption of non-combinatorial “loose” bundles
for sellers allows us to set uniform prices on items.

We now describe the mechanism that specifies the ‘rules of a game' among buyers and sellers.

Suppose there are L items (I1,---,lz), m buyers and n sellers. Buyer i has (true) reservation
value v; per unit for a bundle of items R; C {l1,---,lp}, and submits a buy bid of b; per unit and
demands up to J; units of the bundle R;. Thus, the buyers have quasi-linear utility functions of the
form u?(z;w, R;) = ;(z) + w wherein w is money and

_ r-v;, forx <4,
0; - (R for x > 6;.

Seller j has (true) per unit cost ¢; and offers to sell up to o; units of /; at a unit price of a;. Denote
Lj = {l;}. Sellers, too, have quasi-linear utility functions of the form u;(z;w, Lj) = —¢;(z) +w wherein
w is money and

T C; forx < o;
¢j(x) = ” -
00, for x > o;.

The mechanism receives all these bids, and matches some buy and sell bids. The possible matches
are described by integers z;,y;: 0 < x; < 9; is the number of units of bundle R; allocated to buyer 4
and 0 < y; < 0; is the number of units of item [; sold by seller j.

The mechanism determines the allocation (z*,y*) as the solution of the surplus maximization prob-
lem MIP:

max > biwi = 5 a5y, (1.1)

st Yyl e Ly) - Y, ell € R) > 0,Vl € [1: L),
T; € [0 : 5i],Vi, Y; € [O,Uj],Vj.

MIP is a mixed integer program: Buyer i's bid is matched up to his maximum demand &;; Seller j's bid

will also be matched up to his maximum supply o;. z; is constrained to be integral; y;f will be integral

1
due to the demand less than equal to supply constraint.

The settlement price is the highest ask-price among matched sellers,
P =max{a; 1 y; > 0,1 € L;}. (1.2)

The payments are determined by these prices. Matched buyers pay the sum of the prices of items in
their bundle; matched sellers receive a payment equal to the number of units sold times the price for
the item. Unmatched buyers and sellers do not participate. This completes the mechanism description.

Our proposed mechanism called c-SeBiDA (combinatorial Sellers’ Bid Double Auction) is combinato-
rial and in a framework that allows us to define uniform and anonymous prices on the links. Such prices
are highly desirable from an economic perspective as they yield socially efficient and Pareto-optimal
outcomes, but they are achieved by few auction mechanisms.

The analysis of combinatorial auctions is usually very difficult, and even more so for combinatorial
double auctions. We thus consider the continuum model and show that the auction outcome is a
competitive equilibrium in chapter 3.



Theorem 4.1 (c-SeBiDA outcome is C.E.). [If bid functions of sellers are continuous and non-
decreasing, the c-SeBiDA outcome ((x*,y*),p*) is a competitive equilibrium in the continuum model.

While the continuum model is an idealization of the scenario where there are a large number of
agents such that no single agent can affect the auction outcome by himself, it suggests that the auction
outcome is likely an approximate competitive equilibrium, and hence close to efficient. The methodology
used in the proof is novel in that it casts the mechanism in an optimal control framework and appeals
to Pontryagin's maximum principle to conclude that the outcome is indeed a competitive equilibrium.

The c-SeBiDA mechanism is similar in spirit to the k-DA mechanism proposed in [145]. However,
the two mechanisms are different. In particular, k-DA is non-combinatorial and only for one type of
good. It cannot be generalized to the combinatorial case.

In the next section, we discuss other proposals for combinatorial auctions and the properties of
c-SeBiDA when the participants are strategic.

1.4 Strategic Behavior in Auctions and The Price of Anarchy

In the discussion so far, we have assumed that the participants do not anticipate that their actions
affect the outcome, i.e., they are price-taking. However, in a realistic economic scenario involving a
finite number of participants, agents do anticipate how they may affect the outcome and hence act
strategically.

Thus, we now focus on how strategic behavior of players affects price when they have complete
information. We will assume that players don't strategize over the quantities (namely, d;,0;), which
will be considered fixed in the players’ bids. A strategy for buyer ¢ is a buy bid b;. A strategy for
seller j is an ask bid a;. Let 6 = ((a1,--- ,an), (b1, - ,by)) denote a collective strategy. Given 6, the
mechanism determines the allocation (z*,y*) and the prices {;}. So the payoff to buyer i and seller j
is, respectively,

uf(0) = wi() x> (1.3)
lER;

wi0) = yi- Y by (1.4)

lGLj

The bids b;,a; may be different from the true valuations v;, c;, which however figure in the payoffs.
Observe that 6 really is a function of all the v; and ¢;. Thus, in shorthand, we will also write §(v, c) to
emphasize this dependence.

When players have complete information about true valuations and costs of the other players, they
choose the strategies to maximize their own payoffs given the strategies of others. When they have
incomplete information, they maximize E[u?(6)|b;] (or E[u;(0)]a;]), the expected value of their payoff
conditioned on their strategy.

A collective strategy 6* is a Nash equilibrium if no player can increase his payoff by unilaterally
changing his strategy. In the case of incomplete information, it is called a Bayesian-Nash equilibrium.

We now describe some criteria to evaluate auction mechanisms. In the discussion below, we will
drop the superscripts on .

Individual Rational (IR). A mechanism is ex post IR if u;(6(v,c)) > 0 for all v,¢, i.e., the utility
derived from any outcome is non-negative. It is interim IR if E[u;(6(v, c)|v;] > 0 for all v; (similarly



for ¢;), i.e., the expected utility given that it knows its own valuation (or cost) and the distribution of
others is non-zero. It is ex ante IR if E[u;(f(v,c))] > 0, i.e., the expected utility when it only knows
the distribution of its own and others valuations (or costs). We assume that the utility derived from
non-participation is zero. In this study, we take ex post IR as the desired property.

Incentive Compatible (IC). A mechanism is /C if truth-telling is a dominant-strategy Nash equilib-
rium, i.e., 0 = ((c1,- -+ ,¢pn), (v1,- -+ ,vy)) is a Nash equilibrium of the auction game. In the incomplete
information case, a mechanism with truth-telling as a Bayesian-Nash equilibrium is said to be Bayesian
Incentive Compatible (IC). It is pertinent to mention here that when the mechanism is IC or Bayesian
IC, truth-telling need not be the only equilibrium.

Efficiency. A mechanism is (allocatively) efficient if it maximizes ), u;(6(v, c)) for all v and c.

Budget-balancing. A mechanism is strong budget-balanced if the aggregate payments of the buyers
equals the aggregate payment of the sellers. It is weakly budget-balanced if the aggregate payments of
the buyers is greater than or equal to the aggregate payment of the sellers.

Vickrey [162] was the first to realize that despite strategic behavior, there are mechanisms that are
IR, IC and efficient. His work was expanded upon by Clark [25] and Groves [51]. It is now well known
that the only known positive result in the mechanism design theory is the VCG class of mechanisms
[108, 91]. The generalized Vickrey (combinatorial) auction (GVA) (with complete information) is ex
post individual rational, dominant strategy incentive compatible and efficient [164]. It is however not
budget-balanced. The incomplete information version of GVA (dAGVA) is Bayesian IC, efficient and
budget-balanced. It is, however, not ex post IR. Indeed, there exists no mechanism which is efficient,
budget-balanced, ex post IR and dominant strategy IC (Hurwicz impossibility theorem) [60]. Moreover,
there exists no mechanism which is efficient, budget-balanced, ex post IR and Bayesian IC (Myerson-
Satterthwaite impossibility theorem) [115].

The mechanism we provide is a non-VCG combinatorial (market) mechanism which in the complete
information case is always efficient, budget-balanced, ex post IR and “almost” dominant strategy IC.
In the incomplete information case, it is budget-balanced, ex post IR and asymptotically efficient and
Bayesian IC.

Moreover, we show in chapter 3 that any Nash equilibrium allocation (say of a network resource
allocation game) is always efficient (zero efficiency loss). Specifically,

Theorem 4.2 (Nash equilibria of c-SeBiDA). (i) A Nash equilibrium exists in the c-SeBiDA game.
(ii) Except for the matched seller with the highest bid on each item, it is a dominant strategy for each
player to bid truthfully. (iii) Any Nash equilibrium allocation is always efficient.

In the case of incomplete information, we will show that any Bayesian-Nash equilibrium allocation
is asymptotically efficient.

Theorem 4.3 (Bayesian-Nash equilibria of c-SeBiDA). Consider the SeBiDA auction game when
both buyers and sellers have ex post individual rationality constraint. Let (ay,(3,) be a symmetric
Bayesian-Nash equilibrium with n buyers and n sellers. Then, (i) 8,(v) = B(v) = v ¥n > 2, and (ii)
(an, Bn) — (&,B) in the uniform topology as n — oo, i.e., SeBiDA is asymptotically Bayesian incentive
compatible.

Ours is one of few proposals for a combinatorial double auction mechanism. It appears to be the
only combinatorial market mechanism for strategic agents with unrestricted strategy spaces. We are
able to achieve efficient allocations. Furthermore, the mechanism'’s linear integer program structure
makes the computation manageable for many practical applications [77].

This seems to be the only known combinatorial double-auction mechanism with these properties.
We now describe relevant literature.



In the classical auction theory literature, most of the attention is focused on one-sided, single-item
auctions [86]. There is now a growing body of research devoted to combinatorial auctions [164]. The
interplay between economic, game-theoretic and computational issues has sparked interest in algorithmic
mechanism design [137]. Some iterative, ascending price combinatorial auctions achieve efficiencies close
to the Vickrey auction [12, 33, 112, 141]. But generalized Vickrey auction mechanisms for multiple
heterogeneous items may not be computationally tractable [137, 122]. Thus, mechanisms which rely
on approximation of the integer program (though with restricted strategy spaces such as “bounded” or
“myopic rationality”) [122] or linear programming (when there is a particular structure such as “gross”
or “agent substitutability” ) [18] have been proposed.

In [32], one of the first multi-item auction mechanisms is introduced. However, it is not combinatorial
and consideration is only given to computation of equilibria among truth-telling agents. An auction for
single items is presented in [144]. It is similar in spirit to what we present, but cannot be generalized to
multiple items. In [176], a modified Vickrey double auction with participation fees is presented, while
[34] considers truthful double auction mechanisms and obtains upper bounds on the profit of any such
auction. But the setting in both [34, 144] is non-combinatorial since each bid is for an individual item
only.

Our results also relate to recent efforts in the network pricing [40, 78, 94, 153] and congestion games
literature [89, 136]. There is an ongoing effort to propose mechanisms for network resource allocation
through auctions [79] and to bound the worst case Nash equilibrium efficiency loss (the so-called “price
of anarchy” [89]) of such mechanisms when users act strategically [71, 102]. An optimal mechanism
that minimizes this efficiency loss has also been proposed in [143], though not extended to the case
of multiple items. Most of this literature regards the good (in this case, bandwidth) as divisible, with
complete information for all players. The case of indivisible goods or incomplete information case is
regarded in the literature as harder.

We considered indivisible goods, combinatorial buy-bids and incomplete information, and showed
that the price of anarchy of c-SeBiDA zero.

It is worth noting that a one-sided auction is a special case of a double auction when there is only
one seller with zero costs. The network and congestion games [78, 89] are all one-sided auctions.

1.5 Validating Economic Theory through Experiments

It is reasonable to question whether the predictions made by the theory discussed above are accurate
predictors of human economic behavior in the real world. The first issue is the assumptions made in
developing the theory. The second, even more basic issue, is whether humans make completely rational
choices. To incorporate irrational behavior within mathematical models, various bounded rationality
models have been proposed. However, the ultimate test for any economic theory is still its success in
making good predictions in the marketplace. Thus, pioneered by Vernon L. Smith [155], a methodology
of testing economic theory through human subject experiments has been developed. Econometric
methods have already revolutionized economics. Roth [137] argues that experimental economics will
play the same role in game theory.

Thus, to validate the auction theory that we have developed, we implemented the c-SeBiDA mech-
anism in a web-based software test-bed [8]. It was then used to conduct human subject experiments to
validate the mechanism.

It was observed that as the number of participants was increased, the auction outcome seemed to
converge to the efficient allocation. The participants’ bids seemed to converge to their true values.



However, considering limitations on the number of participants in a laboratory setting, such a formal
conclusion cannot be drawn.

A surprising result was that most participants (except for economic graduate student participants!)
seemed to be rather risk-averse. The analysis predicts buyers would bid more than true value. However,
this was rarely observed.

Considering that conducting economic experiments is a rather delicate operation, the results re-
ported in chapter 4 should be considered preliminary. However, they do point out the efficacy of such
experiments.

1.6 Contributions

We have essentially answered the four questions that we posed in section 1.1.

We showed that a competitive equilibrium exists in a continuum exchange economy with indivisible
commodities and money. Surprisingly, this result appears to be apparently unknown in the literature.
Our proof involved use of the Lyapunov-Richter theorem for integrals of correspondences. We used the
Debreu-Gale-Nikaido lemma instead of the Kakutani fixed point theorem. This implies the existence of
some approximate competitive equilibria in finite economies.

We have introduced a combinatorial, sellers’ bid, double auction (c-SeBiDA)—a combinatorial mar-
ket mechanism. We considered the continuum model and showed that within that model, c-SeBiDA
outcome is a competitive equilibrium. This suggests that in the finite setting, the auction outcome is
close to efficient.

We then considered strategic behavior of players and showed the existence of a Nash equilibrium
in the c-SeBiDA auction game with full information. In c-SeBiDA, settlement prices are determined
by sellers” bids. We showed that the allocation of c-SeBiDA is efficient. Moreover, truth-telling is a
dominant strategy for all players except the highest matched seller for each item. We then considered
the Bayesian-Nash equilibrium of the mechanism under incomplete information. We showed that under
the ex post individual rationality constraint, symmetric Bayesian-Nash equilibrium strategies converge
to truth-telling for the single item auction. Thus, the mechanism is asymptotically Bayesian incentive
compatible, and hence asymptotically efficient.

We have shown that, surprisingly, c-SeBiDA has zero “price of anarchy” in the complete information
case, and asymptotically zero “price of anarchy” in the incomplete information case.

We have tested the proposed mechanism c-SeBiDA through human-subject experiments.
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Chapter 2

Existence of Competitive Equilibrium in
Combinatorial Markets

We investigated the existence of competitive equilibrium in combinatorial markets, i.e., markets with
several indivisible goods wherein agents have valuations for combinations of various goods. The work
was motivated by a resource allocation problem in communication networks with independent and selfish
buyers and sellers of bandwidth. We assumed that participants do not anticipate that their demand
or supply can affect the allocation. In particular, we adopted Aumann’s continuum exchange economy
as a model of perfect competition. We first showed how network topology affects the existence of
competitive equilibrium. We then showed the existence of competitive equilibrium in a continuum
combinatorial market with money. We made minimal assumptions on preferences; only that they are
continuous and monotonic in money. We assume that the excess demand correspondence satisfies
standard assumptions such as Walras' law. The existence of competitive equilibrium in the continuum
combinatorial market was then used to show the existence of various enforceable and non-enforceable
approximate competitive equilibria.

2.1 Introduction

We studied the existence of competitive equilibrium in a combinatorial market , i.e., a pure exchange
economy with several indivisible goods and one divisible good numeraire or money. Each participant
may have interdependent valuations over various goods. This was motivated by the following problem
in communication networks.

Consider a network G = (N, L) with a finite set of nodes IV, and links L. The transmission capacity
(or bandwidth) comes in some integral number of trunks (each trunk being say, 10 Mbps). There are
M agents, each with an initial endowment of money and link bandwidth. The allocation of the network
resources is determined through a double auction between buyers and sellers. Each buyer specifies the
bundle of links (comprising a route), the bandwidth (number of trunks) on each link, and the maximum
price it is willing to pay for the bundle; each seller specifies a similar bundle and the minimum price it is
willing to accept. We assume that each agent’s preferences are monotonic over the bundle (they prefer
larger bundles to strictly smaller ones) and continuous in money. Moreover, we assume that buyers
insist on getting the same bandwidth on all links in their bundles.

The framework is quite general and can be extended to the case where the network consists of
several autonomous systems and their owners are trying to negotiate Service Level Agreements (SLAs)
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about capacity, access and QoS issues.

We are interested in the following questions: When are Pareto-efficient allocations achievable in a
network through a (decentralized) market mechanism? How does efficiency depend on network topology?
How does economic efficiency scale with the size of the market? What market mechanisms are available
to achieve economic efficiency?

It is well known that competitive equilibrium need not exist in an exchange economy with indivisible
goods. The difficulties primarily lie in the fact that the utility functions are non-concave and discontin-
uous, and that the consumption sets are totally disconnected. This makes use of any of the standard
fixed point theorems such as the Brouwer or the Kakutani fixed point theorems to prove existence of
competitive equilibrium impossible.

Early attempts to deal with indivisible commodities considered “matching models” inspired by the
“stable marriage” assignment problem of Gale and Shapley [49]. Shapley and Shubik [152] studied
the competitive equilibrium problem in asymmetric markets when there are buyers and sellers. The
commodities are indivisible such as houses [76], but it is assumed that each participant buys or sells
only one commodity.

Shapley and Scarf [151] considered the more general exchange model where a participant could
be both a buyer and a seller. They focussed on the problem of core and showed that an exchange
economy with indivisible goods has a nonempty core. Quinzii [128] studied a similar problem, but
considered money as another good, and showed that competitive equilibrium exists and it has a non-
empty core. Gale [48] started with slightly different assumptions and also showed that competitive
equilibrium exists. In all of the above, it was assumed that utility functions satisfied a “non-transferable”
assumption. Yamamoto [175] further generalized this by removing some of these assumptions. All of
the above assumed that each participant buys or sells only one commodity. Thus, the market was
non-combinatorial.

The problem remains of interest in recent literature as well. In [95], van der Laan et al. considered
Walrasian equilibrium, but they assumed that each participant owns at least one indivisi