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Summary 
 
Asbestos, a new operating system we have prototyped, provides novel labeling 
mechanisms that makes it easy for programmers to develop secure software.  Asbestos 
labels let applications be structured so as to tolerate flaws in major parts of the 
application without compromising security.  Moreover, a new label save/restore 
mechanism pushes beyond the traditional process abstraction to avoid continually 
accumulating restrictions when manipulating data in different compartments.  For 
example, a Web server that uses Asbestos labels to implement mandatory controls on 
client data requires only one virtual memory page per user.   
 
 

Introduction 
 
Today's software systems are insecure: floods of security advisories from vendors and 
security organizations document a steady stream of high-profile vulnerabilities in end-
user applications, operating systems, and even routers, leading to widespread attacks, 
often estimated to incur billions of dollars in direct and indirect costs. 
 
Many vulnerabilities stem from conflicts between the needs of application developers and 
the basic principles for building secure computer systems, such as giving applications 
minimal privilege. Violating the principles--by assuming elevated privilege, for example-
-makes development so much easier on conventional operating systems that it's doubtful 
the principles will ever be broadly followed there. 
 
Because one cannot hope to fix or even understand all the software people need to run, 
securing systems boils down to the problem of reasoning about the behavior of large 
amounts of software without necessarily understanding the software itself, a task that 
might be accomplished by redefining the interface between software and the underlying 
operating system. 
 
The goal of this project was to design a new operating system, called Asbestos, that 
would make it easy to control, understand, and observe interactions among applications 
without understanding the applications themselves. This approach enables people to 
monitor and control systems and enforce a wide range of security policies. A policy may 
be a set of static constraints enforced by the system or, more generally, a program that 
imposes a narrow interface for exporting information or accessing other parts of the 
system.  Such a system could apply towards platforms ranging from resource-poor 
sensors to high-end servers, to help enforce meaningful security policies on new 
applications or privilege-hungry imported legacy code. 
 
The scope of the project was to flesh out the design of Asbestos and to implement a 
skeleton prototype to explore key design decisions. The design work focused on 
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enforcing both discretionary and mandatory access control with Asbestos, and on 
exploring example applications.  The detailed results are documented in Appendixes 
A and B. 
 
This project was a short-term seedling effort, which we hoped would lead to a larger 
follow-on project for Asbestos.  Indeed, the most important result is that this project 
helped lay the groundwork for the following major implementation effort, jointly funded 
by DARPA and an NSF Cybertrust grant (CNS-0430425). 
 
 

Methods, Assumptions, and Procedures 
 
Asbestos is organized around the idea of exposing and controlling messages.  Every 
interaction between an application and the system or another application is represented as 
a message. The key problems the operating system faces are ensuring that messages 
encapsulate all interactions, understanding what parts of the system may be observed or 
modified with a given message, and most importantly making the mechanisms that 
control interaction available to unprivileged software, so that security policies need not 
all be imposed from highly privileged code. 
 
The Asbestos design solves these problems using a novel label scheme that can be 
viewed as an extension of capabilities to provide decentralized Mandatory Access 
Control (MAC).  Previously, capability-based systems have only achieved MAC by 
either marrying two very different security mechanisms (such as capabilities and a 
completely separate labeling system), or by granting processes completely disjoint sets  
of capabilities so as to achieve heavy-weight isolation. 
 
Our labeling scheme furthermore has the advantage of being decentralized--so that even 
unprivileged processes can make use of the Operating System's (OS) mandatory access 
control primitives to control the flow of information.  In traditional terms, unprivileged 
application can on-the-fly create compartments that protect the secrecy (or integrity) of 
data and processes they contain.  The process that creates a compartment controls what 
information can leave the compartment.  This ability--to downgrade information within a 
compartment--is equivalent to possessing a capability in a traditional discretionary 
capability system.  The system can be used in a degenerate way, in which the ability to 
downgrade is simply delegated around and conveys the ability to invoke services within a 
compartment.  However, applications developed for the capability model can have 
mandatory access control imposed by other compartments. 
 
Another limitation of previous operating systems is that the granularity of compartments 
is too coarse.  We designed a novel virtual memory system that can control the flow of 
information, even within a single process.  We identified a target application of a possibly 
buggy web server handling sensitive information. 
 
 

 2



 

 

Results and Discussion 
 
 
 
The result of this seedling is that it has grown into a full-fledged OS development project.  
The applications we investigated—in particular, protecting information in web servers--
turn out to be both important and hard to address with existing operating systems. 
Moreover, the initial success of our follow-on DARPA/NSF project suggests the 
approach may be effective and practical.   
 
More specifically we have prototyped both the Asbestos kernel, and a web server running 
on top of Asbestos.  The web server is designed around special Asbestos virtual memory 
system, which allows labels to be applied at the granularity of individual pages, so that 
one can control the flow of information even within one process.  Thus, even software 
bugs in the web server cannot cause one user to receive another's private data.  The 
system requires only one or two pages of memory per active user--immensely less than 
traditional operating systems, which would require one process per compartment. The 
details are in Appendixes A and B. 
 
 

Related work 
 
A number of previous systems have individually provided either the ability to isolate 
untrusted software, labels, low-level interposition facilities, or consistent intelligible 
interfaces to different types of resource. 
 
Message-based operating systems, such as Accent, Amoeba, Chorus, L4, Spring, and V 
can isolate system services by running them as independent, user-level processes, and 
provide natural support for interposition through message-based interfaces. However, 
none of these systems can provide the combined security and flexibility of Asbestos. For 
example, Amoeba bases access control on self-authenticating capabilities, precluding 
policies that restrict delegation. L4 uses a strict hierarchy of interpositions, useful for 
confining executable content, but not amenable to composition of independent 
restrictions on information flow imposed by mutually distrustful parties. 
 
 

Conclusions 
 
Asbestos is a new operating system with a labeling mechanism that promises to enforce 
security properties on applications without needing to trust the bulk of the software 
running on a system. Asbestos labels are in some ways similar to previous operating 
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systems with mandatory access control, but with several novel properties, including the 
ability for unprivileged software to create compartments on-the-fly, decentralized control 
over sanitization of data, and the ability to revert the state of a process, so as to let 
software safely messages bearing data from multiple compartments.  We hope that these 
properties will allow Asbestos to apply mandatory access control to a wider range of 
problems than in previous systems, and furthermore avoid the notorious problem of 
"accumulating taints" on processes. The initial prototype shows promise, and the seedling 
has led into a full-fledged implementation effort co-sponsored by DARPA and NSF.  
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ABSTRACT

Though system security would benefit if programmers
routinely followed the principle of least privilege [24],
the interfaces exposed by operating systems often stand
in the way. We investigate why modern OSes thwart se-
cure programming practices and propose solutions.

1 INTRODUCTION

Though many software developers simultaneously revere
and ignore the principles of their craft, they reserve spe-
cial sanctimony for the principle of least privilege, or
POLP [24]. All programmers agree in theory: an ap-
plication should have the minimal privilege needed to
perform its task. At the very least, developers must fol-
low five POLP requirements: (1) split applications into
smaller protection domains, or “compartments”; (2) as-
sign exactly the right privileges to each compartment; (3)
engineer communication channels between the compart-
ments; (4) ensure that, save for intended communication,
the compartments remain isolated from one another; and
(5) make it easy for themselves, and others, to perform a
security audit.

Unfortunately, modern operating systems render the
application of these requirements onerous, dangerous, or
impossible. In our experience (detailed in Section 2.2),
building least-privileged software is cumbersome and
labor-intensive: following POLP feels more like an abuse
of the operating system’s interface than a judicious use of
its features. Most programmers spare themselves these
difficulties by reverting to monolithic, over-privileged
application designs. Unsurprisingly, this exposes ma-
chines to attacks both old (remote attacks on privileged
servers) and new (“install attacks”, which take advan-
tage of users’ willingness to run high-privilege installers
to infect machines with adware, spyware, or malware).
We cannot write bug-free applications or prevent hon-
est users from occasionally executing malicious code. In-
stead, our best hope is to contain the damage of evil code
by resurrecting POLP.

In this paper, we examine some ways that current
OSes discourage development of least-privilege appli-
cations (Section 2), then propose OS design ideas that
might encourage it instead. A first approximation of a
POLP-friendly system is one based on capabilities, dis-
cussed in Section 3. Though capabilities have historically
flummoxed application designers, we present a more us-
able interface, based on the familiar Unix file system. In
Section 4, we discuss shortcomings in this proposed de-
sign: weaknesses in the separated system might still al-

low vulnerabilities to spread, and process-sized compart-
ments are too coarse-grained. We then propose a solution
based on decentralized mandatory access control [17].
The end result is a new operating system called Asbestos.

2 LESSONS FROM CURRENT SYSTEMS

Modern Unix-like operating systems provide a limited
API for running programs according to POLP. We ex-
amine how far administrators and programmers can push
these features if POLP is their goal.

2.1 chrooting or jailing Greedy Applications

Because Unix grants privilege with coarse granularity,
many Unix applications acquire more privileges than
they require. These “greedy applications” can be tamed
with the chroot or jail system calls. Both calls con-
fine applications to jails, areas of the file system that
administrators can configure to exclude setuid executa-
bles and sensitive files. FreeBSD’s jail goes further,
restricting a process’s use of the network and interpro-
cess communication (IPC). System administrators with
enough patience and expertise can chroot or jail
standard servers such as Apache [1], BIND [3] and send-
mail [26], though the process resembles stuffing an ele-
phant into a taxicab.

Even when possible, the chroot and jail ap-
proaches face more fundamental drawbacks:

Jails are heavyweight. The jailed file system must
contain copies of system-wide configuration files (such
as resolv.conf), shared libraries, the run-time linker,
helper executable files, and so on. Maintaining collec-
tions of duplicated files is an administrative difficulty,
especially on systems with many jailed applications.

Jails are coarse-grained. Running a process in a
jail is similar to running it on its own virtual machine.
Two jailed applications can share files only if one’s
namespace is a superset of the other, or if inefficient
workarounds are used, such as NFS-mounting a local file
system.

Jails require privilege. Unprivileged users may not
call chroot or jail.1 Jails are therefore ill-suited for
containing the many untrusted applications that should
not have privileges, such as executable email attachments
or browser plugins.

Finally, chroot or jail’s ex post facto imposition
of security is no substitute for POLP-based design. For
example, a typical dynamic content Web server (such as
Apache with PHP [18]) runs many logically unrelated
scripts within the same address space. A vulnerability in
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Figure 1: Block diagram of the OKWS system. Standard processes are
shaded, while site-specific services and databases are shown in white.
The privileged launcher process launches the demux, publisher, log-
ger and the site-specific services. The databases shown might either be
running locally, or on different machines.

any one script exposes all other scripts to attack, regard-
less of whether the server is jailed.

2.2 Ad-Hoc Privilege Separation

True privilege separation is possible on Unix through a
collection of ad-hoc techniques. For instance, our POLP-
based OK Web Server (OKWS) [12] uses a pool of
worker processes to sequester each logical function (i.e.
/show-inbox, /change-pw, and /search) of the
site into its own address space. The demux, a small, un-
privileged process, accepts incoming HTTP requests, an-
alyzes their first lines, and forwards them to the appropri-
ate workers using file descriptor passing. Workers then
respond to clients directly. A privileged launcher pro-
cess starts the suite of processes, ensuring that all are
jailed into empty subtrees of the file system, and that they
do not have the privileges to interact with one another.
Finally, since workers’ chroot environments prohibit
them from accessing the root file system directly, they
write HTTP log entries and read static HTML content
via small, unprivileged helper processes: the logger and
the publisher, respectively. Figure 1 shows a block dia-
gram of a simple OKWS configuration.

The goal of this design is to separate application logic
into disjoint compartments, so that any local vulnera-
bility (especially in site-specific work processes) can-
not spread. In particular, workers cannot send each other
signals or trace each other’s system calls, they cannot
access each other’s databases, no worker can alter any
executable or library, and workers cannot access each
other’s coredumps. Unfortunately, achieving these natu-
ral requirements complicates OKWS. Its launcher must:

1. Establish a chroot environment, with the correct
file system permissions, that contains the appro-

priate shared libraries, configuration files, run-time
linker, and worker executables.

2. Obtain unused UID and GID ranges on the system.

3. Assign the ith worker its own UID ui and GID gi.

4. Allocate a writable coredump directory for each
UID.

5. Change the ith worker’s executable to have owner
root, group gi, and access mode 0410.

6. Call chroot.

7. For each worker process i: kill all processes running
as user ui or group ID gi; fork; change user ID to ui

and group ID to gi; chdir into the dedicated dump
directory; and call exec on the correct executable.

The chown call in Step 5, the chroot call in Step 6,
and the setuid call in Step 7 all require privileged sys-
tem access, so the launcher must run as root. Unix offers
no guarantees of an atomic UID reservation (as required
in Step 2) or race-free file system permission manipula-
tions (as required throughout). Even ignoring these po-
tential security problems, this design requires involved
IPC to coordinate worker and helper processes.

Other systems use similar techniques to solve related
problems. Examples include remote execution utilities
such as OpenSSH [23] and REX [10], and mail transfer
agents such as qmail [2] and postfix [21]. Considering
these applications and others, a trend emerges: in each
instance, the intricate mechanics of privilege separation
are invented anew. To audit the exact security procedures
of these applications, one must comb tens of thousands
of lines of code, each time learning a new system. Even
automated tools that separate privileged operations [5]
require root access.

2.3 A User-Level POLP Library?

At first glance, a user-level POLP library might seem
able to abstract the security-related specifics of appli-
cations like OKWS, qmail, and so on. One such ex-
ample of this approach is found in the Polaris system
for Windows XP [30], which applies POLP to virus-
prone client applications like Web browsers and spread-
sheets2 via chroot-like containers. Such solutions have
three drawbacks. First, they require privileged access
to the system. Second, libraries must work around the
lack of good OS support for sharing across containers:
since jailed processes work with copies of files, synchro-
nization schemes are required to reconcile copies after
changes. (For example, Polaris email plug-ins run in a
jail with a copy of the attachment; a persistent “synchro-
nizer” process updates the original if the plug-in changes
the copy.) Finally, we suspect that POLP techniques used
in more complicated servers such as OKWS do not gen-
eralize well. As evidence, both OKWS and REX, an
ssh-like login facility, use the same libraries (the SFS
toolkit [16]) but share little security-related code. This
comes as no surprise since the two have very different se-
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curity aims: OKWS hides most of the file system, while
REX exposes it to authorized users; OKWS must support
millions of possible users, while REX serves only those
with login access to a given machine; application design-
ers can extend OKWS with site-specific code, while REX
runs unmodified. Fitting both POLP usages into one gen-
eral template seems a tall order.

2.4 Unix as a Capability System

One of the main difficulties with ad-hoc privilege sepa-
ration is that starting with a privileged process and sub-
tracting privileges is more cumbersome and error-prone
than starting with a totally unprivileged process and
adding privileges. Unix-like operating systems in general
favor the subtractive model, while capability-based oper-
ating systems [4, 28] favor the additive one. But Unix file
descriptors are in fact capabilities. By hobbling system
calls sufficiently—either through system call interposi-
tion [7, 22] or small kernel modifications—we can em-
ulate those semantics of capability-based operating sys-
tems that enable privilege separation.

The idea is to allow calls that use already-opened file
descriptors (such as read, write, and mmap), but shut
off all “sensitive” system calls, including those that cre-
ate new capabilities (such as open), assign capabilities
control of named resources (such as bind), and per-
form file system modifications, permissions changes, or
IPC without capabilities (such as chown, setuid, or
ptrace). In OKWS, the launcher could apply such a
policy to the worker processes, which only require ac-
cess to inherited or passed file descriptors. The launcher
could run without privilege, and would no longer nav-
igate the system call sequence seen in Section 2.2. By
disabling all unneeded privileges, the operating system
could enforce privilege separation by default.

This works because Unix’s capability-like system
calls are virtualizable. Processes are usually indifferent
to whether a file descriptor is a regular file, a pipe to an-
other process, or a TCP socket, since the same read and
write calls work in all three cases. In practical terms,
virtualization simplifies POLP-based application design.
Splitting a system into multiple processes often involves
substituting user-space helper applications for kernel ser-
vices; for instance, OKWS services write log entries to
the logger instead of a Unix file. With virtualizable sys-
tem calls, user processes can mimic the kernel’s inter-
face; programmers need not rewrite applications when
they choose to reassign the kernel’s role to a process.

More important, virtualizable system calls enable in-
terposition. If an untrustworthy process asks for a sen-
sitive capability, a skeptical operator can babysit it by
handing it a pipe to an interposer instead. The interposer
allows harmless queries and rejects those that involve
sensitive information. If the kernel API is virtualizable,
then the operator need not even recompile the untrust-
worthy process to interpose on it.

Unfortunately, most Unix system calls resist virtual-

ization. Some do not involve any capability-like objects;
others use hard-wired capabilities hidden in the kernel,
such as “current working directory” and “file system
root”. User-level emulation of these problematic calls—
which include open—is messy, if not impossible; but
scrapping open in the name of POLP seems unlikely to
compel the average programmer.

3 OPERATING SYSTEM SUPPORT FOR POLP

With the lessons from Unix, we can now imagine a
POLP-friendly operating system interface, one in which
all system calls are capability-based and virtualizable
like read and write. Adding universal virtualization
support to a Unix-like capability system would cover all
five POLP requirements. With capabilities, application
programmers can split their program into isolated com-
partments (#1 and #4), granting each compartment ex-
actly the privileges necessary to complete its task (#2).
With virtualization, programmers use standard interfaces
and libraries for communication between these compart-
ments (#3), and auditors can understand this communica-
tion by interposing at the interfaces (#5). A new take on
capabilities—one whose Unix-like appearance would be
friendlier to application programmers—could simplify
the application of POLP. This section presents a hypo-
thetical design for such a system, which we’ll call Asnix.

3.1 Asnix Design

In Asnix, interactions between a process and other parts
of the system take the form of messages sent to devices.
Devices include processes and system services as well
as hardware drivers. Messages follow the outline “per-
form operation O on capability C, and send any reply
to capability R.” The kernel forwards this message to
the device that originally issued C. There are a small
number of operation types, as in NFS [25] and Plan 9’s
9P [19]: LOOKUP, READ, WRITE, and so forth. The mes-
sage types and their associated syntax are conventions;
the kernel only enforces or interprets those messages sent
to kernel devices. Requests and replies are sent and re-
ceived asynchronously.

This design aids virtualization. All of a process’s in-
teractions with the system—whether with the kernel or
other user applications—take the same form, explicitly
involve capabilities, and shun implicit state. Consider, for
example, the Unix call open("foo"). This call in As-
nix would translate to a message that a process P sends
to the file server device FS:

P → 〈CCWD, LOOKUP, "foo", CP〉 → FS.
The first argument is a capability CCWD that identifies P’s
current working directory. The second is the command
to perform, the third represents the arguments, and the
fourth is the capability to which the file system should
send its response. Since Asnix makes explicit the CWD
state hidden in the Unix system call, either the file server
or a user process masquerading as the file server can an-
swer the message.
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3.2 Naming and Managing Capabilities

When an Asnix process P1 launches a child process P2,
it typically grants P2 a number of capabilities, rang-
ing from directories on the file system to opened net-
work connections. How can P2 then access these capa-
bilities? Traditional capability systems such as EROS fa-
vor global, persistent naming, but persistence has proven
cumbersome to kernel and application designers [27].

Instead, we advocate a per-process, Unix-style
namespace. Under Asnix, P1 makes capabilities avail-
able to P2 as files in P2’s namespace. Suppose P1’s
namespace contains a tree of files and directories under
/secret, and P1 wishes to grant P2 access to files un-
der /secret/bob. As in Plan 9 [20], P1 can mount
/secret/bob as the directory /home in P2’s names-
pace. Unlike in Plan 9, the state implicit in the per-
process namespace is handled at user level, and the ker-
nel only traffics in messages sent to capabilities. For ex-
ample, when the process P2 opens a file under /home,
the user level libraries translate the directory /home to
some capability C. The kernel sees a LOOKUP message
on C.

3.3 OKWS Under Asnix

We now consider what OKWS might look like on As-
nix. Similar to before, the application suite consists of
a launcher, demux and worker processes. Under Asnix,
the logger process simply enforces append-only access
to a log file, and might be useful for many applications
(much like syslogd on today’s systems). No publisher
process is needed.

The launcher starts each worker process with an
empty namespace (and thus no capabilities), then aug-
ments their namespaces as follows:

• In the logger’s namespace, mounts a logfile on
/okws/log.

• In the demux’s namespace, mounts TCP port 80
on /okws/listen. For each worker process i,
makes a socket pair and connects one end to
/okws/worker/i.

• In worker process i’s namespace, mounts the other
end of the above socket pair to /okws/listen.
Mounts a connection to the logger on /okws/log.
Mounts a read-only capability to the root HTML di-
rectory on /www.

• In all namespaces, makes required shared libraries
available under /lib.

The launcher then launches all processes as before.
Under Unix, the launcher had to carefully construct

jails, physically copying over files and invoking custom
helper applications like the publisher and logger to limit
file system access. Asnix, by contrast, lets the launcher
expose capabilities to child processes at arbitrary points
in their namespaces. Each child receives a synthetic file
system perfectly suited to its task.

Moreover, all capabilities available to the Asnix
OKWS processes are virtualizable. Workers accept con-
nections on /okws/listen regardless of whether they
originate from the kernel’s TCP stack or the demux. Sim-
ilarly, logging might be to a raw file or through a logging
process that enforces append-only behavior; worker pro-
cesses are oblivious to the difference.

3.4 Discussion

So far, the proposed system features no individually
novel ideas; rather, it finds a new point in the OS de-
sign space amenable to secure application construction.
Similar effects might be possible with message-passing
microkernels, or unwieldy system call interposition mod-
ules. But in Asnix, the security primitives are few and
simple, for both the kernel and application developer. Al-
though the interface exposed to applications feels like
the familiar Unix namespace (with added flexibility for
unprivileged, fine-grained jails), an application’s system
interactions are entirely defined by its capabilities, and
Asnix behaves like a capability system for the purposes
of security analysis.

4 FINE-GRAINED POLP WITH MAC

Though we believe Asnix is an improvement over the
status quo, it still falls short of enabling the high-level,
end-to-end security policies we seek. Applications in As-
nix can only express security policies in terms of pro-
cesses, but processes often access many different types
of data on behalf of different users. A security policy
based on processes alone can therefore conflate data
flows that ought to be handled separately. For exam-
ple, OKWS on Asenix achieves the policy that data
from a /change-pw process cannot flow to a corrupted
/show-inbox process; but the policy says nothing
about whether user U’s data within /show-inbox can
flow to user V , meaning an attacker who compromises
/show-inbox might be able to read an arbitrary user’s
private e-mail.

Of course, a much better policy for OKWS would be
that “only user U can access user U’s private data”. We
would like to separate users from one another, much as
we separated services in Section 3. Though a user ses-
sion involves many different processes (such as the de-
mux, databases3, and worker processes), a policy for sep-
arating users should be achievable with a small, simple,
isolated block of trusted code, as opposed to hidden au-
thorization checks scattered throughout the system. This
section extends Asnix to a new system, Asbestos, whose
kernel uses flexible mandatory access control primitives
to enforce richer end-to-end security policies. We are
currently designing and building Asbestos as a full op-
erating system for x86 machines.

4.1 Complete Isolation

One possible approach to better isolation, which we call
complete isolation, would be to prohibit server-side pro-
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cesses from speaking for multiple users. The server must
be prepared to run a process for every service–user pair;
trusted code in demux would route traffic accordingly.
Similarly, a database process exists for each user, writing
to a user-specific database file. Capabilities can guaran-
tee separation between processes as usual. More drastic
separation is possible with virtual machines [11, 32] so
that each machine can only speak for one user.

Complete isolation hides a user’s data from other
users, but at significant cost. First, such systems are not
scalable, requiring either an expensive fork-accept-close
model or a huge pool of largely-idle per-user servers.
Second, these systems do not accommodate convenient
data sharing, even with trusted processes. While tradi-
tional systems could use simple SQL statements to ag-
gregate statistics over rows of a site’s databases, com-
pletely isolated systems would have to search millions
of separate files, perhaps over NFS in the case of sepa-
rated virtual machines. Separation in this case requires a
tremendous sacrifice in flexibility for data management.
Data will not flow where it shouldn’t, because it cannot
flow at all.

4.2 Decentralized, Fine-Grained MAC

Asbestos uses decentralized, fine-grained mandatory ac-
cess control (MAC) primitives to solve this problem in
a flexible and scalable manner. Subjects on the system,
such as processes, I/O channels, and files, are assigned
labels, and special privilege is needed to remove a label
once applied. Furthermore, a subject transmits its labels
to any other objects that it successfully communicates
with. With labels, Asbestos tracks all subjects that have
accessed a given object, whether directly or via proxy.

We propose two important modifications to tradi-
tional MAC-based operating systems. First, decentral-
ization [17]: processes can create their own labeling
schemes on the fly, so that a Web server can associate
each remote user with her own label. Second, labels ap-
ply at the fine-grained level of individual memory pages,
so that a single process can act on behalf of mutually dis-
trustful users without fear of leaking data among them.
Taken together, these two modifications allow applica-
tion designers to dynamically partition server processes
into isolated sub-processes, where a sub-process consists
of a set of virtual pages that share the same label.

When a server process receives a message, it is au-
tomatically assigned to a sub-process based on the label
of the message’s source. Processing a message from user
U “contaminates” the process with U’s labels. As in tra-
ditional MAC, contamination with the label U prevents
a process from accessing resources forbidden from user
U, such as user V’s network connection. Thus, the kernel
must allow a process speaking on behalf of multiple users
to purge its labels without leaking data. Asbestos lets a
process flush its register state, remap its memory, and
clear its labels, allowing it to serve a request on behalf of
a different user V . However, the system still accommo-

dates trusted declassifiers, such as statistics collectors,
that can act on behalf of multiple users and traverse sub-
process boundaries within a virtual address space.

With decentralized, fine-grained MAC, OKWS can
achieve a strong end-to-end security policy. The only
trusted code is a labeler module upstream of demux,
which works as follows. When user U connects to the
Web server, the labeler peeks at the incoming TCP con-
nection T and authorizes it based on session state or login
information. If authorization succeeds, the labeler labels
T with U’s label. Now, any process that reads from T
and writes to memory will automatically tag that mem-
ory page with U’s label, and will therefore push that page
into U’s sub-process. The kernel allows an unprivileged
process to accumulate labels for different users (such as
for U and V), but it forbids that process from writing to a
network channel not labeled with both. Thus, if U com-
promises a server process and convinces it to read from
V’s memory, the server process will acquire labels for
both U and V , and therefore cannot write out to T .

4.3 Discussion

This decentralized MAC design, combined with the ca-
pability architecture from Section 3, makes POLP con-
venient and practical for an OKWS-like Web server.
We have no proof that other applications would simi-
larly benefit from Asbestos, but we are optimistic. As-
bestos provides simple, flexible, and fine-grained mech-
anisms for achieving the five important POLP require-
ments without sacrificing performance.

5 RELATED WORK

Asbestos proposes the marriage of previous ideas in
systems: the capability-based operating system [4, 13,
28, 33], the per-process name space [20], the virtualiz-
able kernel interface (the logical extension of system-
call interposition libraries [7, 22]), and decentralized
MAC [17].

Naturally, other operating systems predating As-
bestos meet related design goals or offer similar features.
Message-based operating systems such as L4, Amoeba,
V, Chorus and Spring can isolate system services by run-
ning them as independent, user-level processes and pro-
vide natural support for interposition through message-
based interfaces [14]; Trusted Mach in particular views
message-passing from a security perspective [6]. But
ports in microkernel systems are coarse as capabilities
go; for instance, a process can have a capability for the
file server but not for a particular directory. For POLP,
application programmers need arbitrary collections of
specific capabilities; in this respect, the microkernels of
yesteryear do not fit the bill.

The Flask System applies MAC to the Fluke Micro-
kernel [29]. Many of Flask’s core design principles have
found a modern incarnation in SELinux [15], which,
like TrustedBSD [31], adds mandatory access control to
popular Unix systems. In both, static policy files dic-
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tate which resources applications might access, and how
processes can interact with one another. Such systems
are attractive because they preserve the POSIX interface
to which many programmers are accustomed. However,
their policy extension model, which is based on privi-
leged files and kernel modules, appears to fall short of
the decentralized and uniformly-analyzable policies im-
plemented by Asbestos labels.

Type safety is another way to enforce operating
system security. Coyotos combines capabilities with
language-level verification techniques [27]. Singularity
combines strong isolation with a type-safe ABI [8]. At
user level, the Java Sandbox uses customizable policies
to specify an applet’s access rights; dynamic sandboxing
shows these policies can be automatically produced [9].
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NOTES
1Were it not for this prohibition, unprivileged users could use con-

trol of the chrooted top-level directory to elevate privileges. The at-
tack is to make a new directory /tmp/foo, hard link from /tmp/
foo/su to the system su, write a new password file /tmp/foo/
etc/passwd, call chroot on /tmp/foo, and then call su from
within the jail.

2Polaris appears not as well-suited for larger servers.
3We assume for simplicity that databases run locally, though all

concepts discussed can generalize to distributed deployments.
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ABSTRACT

Widely-used operating systems do not provide adequate
mechanisms for security-minded programmers: developing
secure applications is complicated and error prone. Asbestos,
a new operating system, provides novel labeling mechanisms
that makes it easy for programmers to develop secure soft-
ware. Asbestos labels let application developers create a wide
range of easily understood access policies, both mandatory
and discretionary; new label save/restore support makes it
possible to implement efficient services with these labels. A
Web server that uses Asbestos labels to implement mandatory
controls on client data requires only one virtual memory page
per user, demonstrating that the additional security comes at
an acceptable cost.

1 INTRODUCTION

Today’s computer systems have an undeniably bad track
record in security. We routinely hear of Web servers [19] and
other systems [28] experiencing catastrophic breaches that di-
vulge tens or hundreds of thousands of people’s private in-
formation. End users suffer from viruses and spyware that,
through various applications, infiltrate their operating sys-
tems, leak clickstream data, send spam, participate in denial
of service attacks, and perform other malicious actions.

Most of these problems can be attributed to two fac-
tors: exploitable flaws in software, and users’ willingness to
run malicious code disguised as legitimate software or docu-
ments. Unfortunately, neither factor appears likely to improve
significantly in the near future. Thus, the most viable means
of improving security in practice may be designing systems
that accommodate these threats. For example, an email reader
should be able to confine an executable attachment by only
giving it access to a display window and perhaps a tempo-
rary file system. A Web site should be able to ensure that one
user’s private data cannot be sent to another user’s browser by
a buggy Web server.

Confining processes and limiting information flow re-
quire the ability to enforce nondiscretionary security policies.
To date, most operating system support for nondiscretionary
policies has taken the form of multi-level secure (MLS) sys-
tems suitable for military-style classification policies [6].
MLS systems primarily allow security administrators to im-
pose external constraints on existing software. The nondis-

cretionary access control mechanisms in these systems typi-
cally cannot be used by ordinary users to craft their own poli-
cies, cannot help developers restructure applications to toler-
ate breaches, and cannot be applied at a fine granularity to
protect large numbers of users’ data, as would be required for
a typical Web site. Language-based information flow systems
can support somewhat more decentralized policies [26], but
there are significant advantages to implementing flow con-
trol at the OS level—not least the smaller trusted computing
base and hardware support for protection. Furthermore, even
these systems may not support the dynamic, decentralized
creation of principals. On the other hand, capability-based op-
erating systems offer some attractive features, including dy-
namic principal creation and fine-grained access control but
give up explicit control of information flow.

Motivated by the difficulty of writing secure code for to-
day’s operating systems, and believing that a clean-slate de-
sign would more likely lead to advances that could eventu-
ally be mapped back to more conventional OSes, we describe
here a new operating system, Asbestos, that combines the
advantages of capability-based and nondiscretionary-access
systems. Asbestos access control is based on a single simple
primitive, Asbestos labels, that can implement both discre-
tionary and nondiscretionary access policies, in a completely
decentralized fashion. Any process may create an access con-
trol space, represented by a handle, and control the policies
applied relative to that space. Labels straightforwardly imple-
ment traditional capabilities, mandatory access control, and
hybrid schemes.

But process-granularity labels themselves are not suffi-
cient to build fast, secure applications. A Web service, for ex-
ample, may speak concurrently to multiple users. The service
author might like to enforce a policy in which no user could
see or touch another user’s data. Process labels would force
such a service to be implemented with one process per user,
at significant resource cost. Asbestos therefore supports finer-
granularity access control, called label save/restore, that lets
a service apply labels selectively to specific memory pages.
The operating system ensures, with label checks and virtual
memory operations, that pages for a given user are visible
only during the processing of requests for that user. Even if
one user’s instance of the process is broken into, all other
user data is safe. This primitive not only helps make appli-
cations more secure, it also might facilitate new types of ser-
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vices: users could safely be granted more control over the
code running on their behalf, since labels ensure that other
users’ data will never be compromised. Our measurements
indicate that label save/restore lets an operating system run
a Web server with the same, or more comprehensive, access
control checks as a one-service-per-user model, but while us-
ing just one page of memory per user. Our implementation
runs on real x86 hardware. Despite a completely untuned im-
plementation, performance implications of label save/restore
are modest.

The contributions of this paper include Asbestos labels,
label save/restore, and our example application, a dynamic
Web server using labels and label save/restore to provide
memory efficient, safe support for multiple-user services.

1.1 A motivating application: a better web server

Dynamic Web servers often serve as gateways to databases
containing private information. In this role, a Web server is
expected to provide users with the data they require without
exposing data that should remain private. Unfortunately, as
Web sites grow in size and complexity, Web developers are
more likely to forget or misapply access controls. Worse still,
access-control techniques applied at the application level are
vulnerable to attacks on an often bloated trusted computing
base, including the operating system (e.g., Linux), the system
library (e.g., libc), the Web server (e.g., Apache), any Web
server modules (e.g., PHP or SSL), and the Web application
itself (e.g., change-pw.php). A vulnerability at any level
may allow an attacker to gain access to private data.

We believe three principles are necessary when building
secure applications such as Web servers. First, whichever se-
curity primitives are invoked, they should be implemented
with the smallest possible trusted computing base. Second,
they should be mandatory as opposed to discretionary. Third,
failures should be isolated; a bug in one function should not
compromise all data.

Software such as the OK Web server (OKWS) has shown
it is possible to contort the existing Unix interface to achieve
some security goals, such as isolation, while ignoring the
others [17]. In OKWS, each logical Web service (such as
change-pw or check-inbox) runs as a separate process
with its own address space. If an attacker compromises and
controls check-inbox, he cannot collect or change arbi-
trary user passwords (e.g., change-pw).

With the benefit of Asbestos labeling, OKWS could do
much better. On current operating systems, if a remote user
A compromises an OKWS service (e.g. check-inbox), he
would have all privileges of that service (e.g. read other users’
email). Under Asbestos, even if a remote user A can compro-
mise a service, kernel protections prevent him from accessing
user B’s information. An OKWS-like Web server in Asbestos
can achieve all three security principles.

2 RELATED WORK

Labels have long been used to enforce mandatory access con-
trol and are required by higher divisions of the DoD Trusted
Computer System Evaluation Criteria [6]. Security enhance-
ment packages with labels are available today for popular
operating systems such as Linux [21] and FreeBSD [36].
The idea of dynamically adjusting labels to track potential
information flow dates back to the High-Water-Mark secu-
rity model [18] of the ADEPT-50 in the late 1960s. Numer-
ous systems have incorporated such mechanisms, including
IX [23] and LOMAC [8].

Asbestos labels differ significantly from those of previ-
ous operating systems in several ways. In Asbestos, any pro-
cess can dynamically create a label category, a handle, and
control the propagation of information labeled with that cate-
gory. Ordinary processes can both declassify information and
raise the security clearance of other processes, but only in
the particular categories they control. By contrast, traditional
MAC systems have a fixed number of compartments and se-
curity levels, all under the control of the security administra-
tor. The ORAC model [22] does support the idea of individual
originators placing accumulating restrictions on data, but data
can still only be sanitized by users with the privileged Down-
grader role. Asbestos also differs from previous systems in
that its virtual memory system allows labels to control the
flow of information within a single process.

Asbestos labels more closely resemble language-level
flow control mechanisms. Jif [27], in particular, was an in-
spiration for Asbestos because of its support for decentral-
ized declassification through separate ownership of different
label components. Because it is a programming language, Jif
has the advantage of being able to perform most of its label
checks statically, at compile time. Run-time checks can affect
control flow on failure, thereby creating implicit information
flows [5]. However, compared to Asbestos, Jif requires a cen-
tralized principal hierarchy and has no equivalent to the asym-
metric label defaults Asbestos uses to support policies such as
preventing one process from talking to another.

Because Asbestos handles are also communication end-
points, they can be thought of as capabilities. Many be-
lieve that capabilities cannot implement mandatory access
control [2]. Strictly speaking, this is untrue. For instance,
KeyKOS [15] achieved military-grade security by isolating
processes into compartments and ensuring any capability
pointing outside a compartment designated a special multi-
level secure object. EROS [32] later successfully realized the
principles behind KeyKOS on modern hardware.

Psychologically, however, people have not accepted pure
capability-based confinement [24], perhaps from the fear that
if just one inappropriate capability escaped, the whole sys-
tem might collapse. As a result, a number of designs have
combined capabilities with authority checks [1], interposi-
tion [12], or even labels [13]. Asbestos demonstrates that with
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decentralized labels, capabilities are unnecessary—the labels
themselves can be used to implement a capability system.

Asbestos handles, as communication end points, are also
reminiscent of message-based operating systems [4, 20, 25,
30, 31, 33], some of which can confine executable con-
tent [11], others of which have had full-fledged mandatory
access control implementations [3].

Mandatory access control can also be achieved with un-
modified traditional operating systems through virtual ma-
chines [9, 14]. For example, the NetTop project [34] uses
VMware for multi-level security. Virtual machines have two
principal limitations, however: performance [16, 38] and
coarse granularity. One of the goals of Asbestos is to allow
very fine-grained information flow control, so that a single
process can handle differently labeled data. To implement a
similar structure with virtual machines would require a sepa-
rate instance of the operating system for each label.

3 OPERATING SYSTEM PRIMITIVES

Asbestos is a message-passing operating system. User-level
processes communicate with one another via messages,
which are sent to communication ports called handles. This
section describes characteristics of these primitives important
for understanding Asbestos’s more unusual features.

3.1 Handles

Asbestos handles combine aspects of communication end-
points, capabilities, and kernel-protected information labels.
An Asbestos handle is simply a 61-bit number, and appli-
cations can treat arbitrary numbers as handles. Two kernel
structures monitor and control handle usage. A single routing
table stores the device entity responsible for messages sent
to each handle; and per-process labels, described further be-
low, control information flow relative to individual handles.
Different label settings can cause a handle to act like a capa-
bility, a multi-level security (MLS) level, or a combination of
the two.

In this code fragment, an application creates a new handle.
(Some arguments have been left out for conciseness.)

handle_t h;
r = sys_new_handle(&h, ...);

The new handle system call generates a new handle, grants
the process labels access to that handle (see below), stores
the handle in the routing table, and optionally sets up an in-
kernel message queue to receive messages sent to that han-
dle. Each call to the new handle system call returns a handle
not seen before, until the space wraps around; at a rate of
1 billion handle creations per second, this would take about
73 years. new handle results are ephemeral rather than per-
sistent; a different handle sequence might arise from every
boot. They are also unpredictable. There is no way to create
a message queue for a known handle value, and the system
encrypts new handle values with a block cipher. This closes

certain covert channels—applications cannot tell how many
other handles have been created—and will facilitate virtual-
ization, since there are no known global handle values in the
system.

Processes may try to send messages to any handle. The
kernel checks the routing table to see if the handle has a con-
trolling device (either a process message queue or some in-
kernel entity). If so, the message is delivered there, subject to
access control checks; otherwise, it is treated as a label check
failure. Access control checks are implemented using labels,
as described in section 4.

Other handle system calls include handle transfer, by
which one process can transfer ownership of a handle to an-
other, and set handle label, which is described below. Each
active handle corresponds to a 64-byte kernel-private data
structure, called the vnode. The routing table simply maps
handles to vnodes. Vnodes are reference counted; when all
kernel references to a vnode disappear, the kernel may reuse
its memory. However, the kernel will not reuse the handle as-
sociated with the vnode, since that handle might still be in use
within a process.

3.2 Messages

Asbestos defines a small number of message types and con-
ventions guiding their use. For example, the LOOKUP mes-
sage type is used to look up entries in a directory or directory-
like object. We intend all applications and OS services to use
this small set of message types in a uniform manner, which
simplifies virtualization of system functionality.

Messages have six components: a destination handle, a
type, a message code, an ID, an optional reply handle, and
an optional payload. The type defines the class of operation
being requested. The device that receives the message will
send replies to the reply handle. The message code can supply
an argument for request types; for reply types, it reports any
error result. Finally, the message ID helps match replies to the
corresponding requests.

Message types include:

LOOKUP Looks up entries in directories or directory-like ob-
jects. The payload is the name of the entry to look up.
Replies use type LOOKUP_R (a general convention);
their payload generally contains one or more handle val-
ues for the entries.

READ, WRITE Requests data from an object, or writes data
to an object.

CONTROL A catchall message for non-read/write access.
The message code specifies behavior further (e.g. the file
system responds to STAT control messages).

Messages are stored for delivery on in-kernel message
queues. A message queue is associated with one or more han-
dles, all of which must be controlled by the same process; all
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messages sent to those handles are delivered to the message
queue. Message queues are implemented as circular buffers
of pages. Small message data is copied into the page contain-
ing the message header; large data uses copy-on-write page
mappings. When delivering messages from the queue to the
process, we map pages whenever possible. Message access
control checks, which use labels, are performed at send time,
but any changes to the receiving process’s labels are delayed
until the message is actually delivered.

3.3 System calls

Most Asbestos functionality, aside from sending and receiv-
ing messages and managing handles, will eventually be ac-
cessible through messages. Currently, though, we do support
other system calls. Most importantly, Asbestos processes,
like exokernel processes [7], can manage their virtual ad-
dress space, and that of other processes they control, by map-
ping and unmapping pages to and from virtual addresses.
The relevant system calls are page alloc, page map and
page unmap. However, Asbestos will not support writable
shared memory: if two processes share a page, it is mapped
either read-only or copy-on-write.

4 ASBESTOS LABELS

All Asbestos access control and information flow checks are
implemented with a single primitive, labels. Labels are flex-
ible enough to implement a wide range of discretionary and
mandatory access policies, and the Asbestos label design is
one of our main contributions. This section incrementally de-
velops and explains that design. Labels have been used pre-
viously in operating systems and secure languages. Asbestos
labels differ in their support for effective labels, temporary
restrictions that can help implement discretionary policies,
and their integrated support for decentralized declassification.
The impatient reader may wish to examine Figures 1 and 2 to
see the full design.

4.1 Process labels

Each process P has two labels, a send label PS and a receive
label PR. A process’s current access restrictions are stored
in its send label, while the receive label holds the maximum
restrictions it is willing and allowed to accept from others.
The core message access check is

PS ≤ QR, (1)

meaning P cannot send a message to Q unless P’s send label
is less than or equal to Q’s receive label. If this check succeeds
and a message is delivered, information flows from P to Q, so
we contaminate Q with P’s restrictions:

QS ← max(QS, PS).

These two operations are the core of any information flow
system, and of many previous OS label designs [8, 18, 23].

In Asbestos, a label is a function from handles to levels,
which are members of the ordered set {?, 0, 1, 2, 3} (where
? < 0 < · · · < 3). We write labels using set notation, such
as {h1 0, h2 1, 2}. The default level, which appears without a
handle at the end of the list, applies to all handles not men-
tioned explicitly; it is omitted when obvious from context.

To compare two labels, we compare each of their compo-
nents:

L1 ≤ L2 iff L1(h) ≤ L2(h) for all h.

The least-upper-bound and greatest-lower-bound operators,
max and min, are defined similarly; see Figure 1.

For example, consider processes P and Q with

PS = PR = {h 0, 1},
QS = QR = {h 3, 1}.

P can send to Q, since 0 < 3; but Q cannot send to P. Low
levels like ? are more permissive than high values when they
appear in send labels, but more restrictive when they appear
in receive labels. In general, making the system more per-
missive should require special privilege, described further in
Section 4.4.

4.2 Asymmetry

Asbestos send and receive labels default to different values.
The default send label is {1}, while the default receive label
is {2}. Furthermore, these defaults lie in the middle of the
label ordering: 0 and ? are less than either, and 3 is greater.

These asymmetric, intermediate defaults support more
flexible isolation than more conventional designs. For exam-
ple, imagine we want to prevent a process P from sending
messages to a process Q, using some handle h. Asbestos sup-
ports this in three distinct ways:

A B C
PS {h 3, 1} {1} {h 2, 1}
QR {2} {h 0, 2} {h 1, 2}

In column A, we set PS(h) to 3. Although this prevents com-
munication with Q as intended, P cannot send to any other
process either, except for those with receive label {h 3}. Such
a label change requires special privilege, since it makes the
system more permissive. In column B, we instead set QR(h)
to 0, restricting the processes that can send to Q rather than
those to which P can send. This time, normal processes can-
not send to Q.

These isolation mechanisms, which are those available in
most mandatory access control systems, limit P’s ability to
communicate with Q by limiting either P or Q’s ability to
communicate with anyone. However, Asbestos label asym-
metry lets us instead express a policy involving both P and Q,
allowing far more flexible communication while still guaran-
teeing restricted information flow. In column C, we set PS(h)
to 2 and QR(h) to 1. P clearly cannot send a message to Q. It
can communicate with most other processes, but as it does so,
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P, Q Processes ?, 0, 1, 2, 3 Label levels, in increasing order
h, dest Handles L, C, D, V , E Labels (functions from handles to levels)

PS Process P’s send label L1 ≤ L2 Label comparison: true if ∀h, L1(h) ≤ L2(h)
PR Process P’s receive label max(L1, L2) Least-upper-bound label: {h k | k = max(L1(h), L2(h))}
hR Handle h’s receive label min(L1, L2) Greatest-lower-bound label: {h k | k = min(L1(h), L2(h))}
ctlP Process P’s control handle owned(L) Owned-handles label: {h ? | L(h) = ?} ∪ {h 3 | L(h) 6= ?}

FIGURE 1: Notation.

it will contaminate those processes with the send label {h 2}.
Thus, a process X cannot send a message to Q if it has ever
communicated with P, directly or indirectly. A process that
does not want to risk contamination can simply set its receive
label to {1}; since this is more restrictive than the default, it
requires no special privilege.

4.3 Effective labels

Asbestos gives applications some control over the access con-
trol check used when sending a message. In particular, appli-
cations can further restrict access relative to the basic send
and receive labels. Since the sender chooses which labels to
apply, these effective labels can implement discretionary poli-
cies.

Senders provide a contamination label CS and a verifica-
tion label V along with every message. These labels are used
to construct effective send and receive labels ES and ER, as
follows:

ES = max(PS, CS), ER = min(QR, V).

The kernel then allows delivery only if ES ≤ ER. This implies
that PS ≤ QR, so Equation (1) would also allow delivery. ES,
rather than PS, is used to contaminate the receiver’s send la-
bel. Finally, the kernel reports the contents of V to the receiver
when delivering the message.

For example, imagine a trusted multi-user file server. Two
handles uI and uC might be allocated for each user ID u. A
process that speaks for user u would have send label {uI 0}
and receive label {uC 3}. When sending data intended exclu-
sively for user u, the file server sets CS to {uC 3}. Only pro-
cesses with receive label {uC 3} can receive the resulting mes-
sage. After receiving, their send labels rise to {uC 3}, and they
lose the ability to talk to non-u processes (which have receive
label {uC 2}). When receiving data from user u, the file server
conversely checks the V label, approving the message only if
V(uI) ≤ 0. Processes speaking for u will set V = {uI 0} on
each message.

Processes can also control the messages they are allowed
to receive by manipulating their handle labels. Each handle
has its own label, which can be arbitrarily set by the handle’s
controlling process. The handle label additionally restricts the
process-wide receive label for messages sent to that handle.
When P sends a message to Q over handle dest, the effective
receive label is actually

ER = min(QR, destR, V).

send(dest, CS, DS, V , DR, data)
Let Q be dest’s controlling process
Let ES = max(PS, CS)
Let QnewR = max(QR, DR)
Let ER = min(QnewR, destR, V)
Let Qown = owned(QS)

Requirements:
(1) ES ≤ ER

(2) DR ≤ destR

(3) If DS(h) < 3, then PS(h) = ?
(4) If DR(h) > ?, then PS(h) = ?

Effects:
Grant DS, contaminate with ES,
then restore owned handles

QS ← max(min(QS, DS), ES)
QS ← min(QS, Qown)
QR ← QnewR

new handle(L)
Let h be an unused handle

Effects:
hR ← L
hR(h)← 0
PS(h)← ?
Return h

set handle label(dest, L)
Requirement:

dest was created by P
Effect:

hR ← L

FIGURE 2: Some Asbestos label operations. P is the calling process.

By controlling the distribution of these differently-privileged
handles, processes can implement a wide range of policies.

4.4 Ownership and decontamination

Finally, the special ? level lets processes distribute handle ac-
cess and declassify information in a decentralized way. A pro-
cess with PS(h) = ? is said to own handle h and has two priv-
ileges with respect to it. First, P cannot be contaminated by
other processes with respect to h; P’s send label will stay at
{h ?} even if it receives a message with effective send label
{h 3}. Second, P can decontaminate other processes—lower
their send labels or raise their receive labels—with respect to
h. Senders provide two decontamination labels DS and DR

with every message, in addition to the contamination and ver-
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ification labels CS and V. The DS label attempts to make the
receiver’s send label more permissive by lowering some of
its levels; conversely, the DR label attempts to make the re-
ceiver’s receive label more permissive by raising some of its
levels. As we mentioned, both of these operations are priv-
ileged, but that privilege is simply modeled by PS(h) = ?.
The kernel ensures that whenever DS(h) < 3 or DR(h) > ?,
the process has PS(h) = ?. Then, assuming the message is
delivered, the kernel sets

QS ← max(min(QS, DS), ES) and

QR ← max(QR, DR),

to actually accomplish the decontamination.
Decontamination of receive labels is particularly sensi-

tive, since it can allow concurrent or later contamination. A
process may not want to allow itself to become arbitrarily
contaminated. Therefore, the kernel checks the DR label in
an additional way: it rejects the message unless DR ≤ destR.
Since processes have full control over their handle labels, they
have full control over how much contamination they are will-
ing to accept.

A process can decontaminate other processes with respect
to any handles it creates, since the new handle system call
sets PS(h) = ? for each created handle h. This allows the pro-
cess to freely distribute its handles to others. The new handle
call also sets hR(h) = 0. Since this is less than the default
level 1, only processes that have been explicitly declassified
with respect to h can send messages to h. The kernel never
reuses handles, so the result of a new handle call has never
been declassified before; a process can be sure that it can
control the set of processes that can send to h by control-
ling h’s distribution. If the process wants to accept messages
from anyone, it can simply reset the handle label using a
set handle label system call. Finally, a setlabel system call
lets a process give up ownership of a handle; setlabel can
contaminate even handles at level ?.

Ownership solves, in a decentralized way, problems that
require global trust in most label systems: information de-
classification and label initialization. For instance, the owner-
ship rules let handles implement capability semantics. When
a process P creates a handle h, the kernel sets PS(h)← ? and
hR(h)← 0. Since the kernel never reuses handles, every other
process Q must have QS(h) ≥ 1 and can’t send messages to
h. To allow sending to h, P sets QS(h) to 0 or ? using a de-
contamination label; ? lets Q grant the capability to others,
while a process with value 0 can send a message to h but can-
not transfer that right, either directly or by acting as a proxy.
Of course, if P doesn’t want h to act as a capability, it can
reset hR or contaminate its PS(h) label; capability semantics
are possible but not required.

4.5 Examples

The values stored in the send and receive labels of a process
govern the process’ ability to communicate with other enti-

ties. Using the unique features of the Asbestos label system,
such as asymmetry and the split process label design we are
able to implement a wide range of security schemes. We now
present, as a sample of the possibilities, two standard security
schemes that can be implemented using Asbestos labels.

4.5.1 Dynamic security and process isolation

First, we consider two slightly different ways in which a
process P can isolate a process Q, restricting the processes to
which Q can send and receive messages.

In one case, which we call dynamic security, Q can send
messages only to P but can receive messages from anyone.
Assume that P owns Q’s control handle and thus can change
its receive label. As mentioned earlier, P can restrict Q by
increasing a portion of its send label to a higher level than that
in any other process’s receive label—except, of course, for P.
To accomplish these requirements, P generates a new handle,
j, which has at most a default value of 2 in all processes’
receive labels; then sets QR(j) = QS(j) = 3 and PR(j) = 3
resulting in the following label setup:

Labels P Q Others
Send j ? j 3 j 1
Receive j 3 j 3 j 2

Q can still receive messages from anyone. Messages sent
from Q to processes other than P will not go through since
j’s level in all other processes’ receive labels has the default
value of 2, and thus send requirement 1 (Figure 2) does not
stand.

In another policy, process isolation, P wants to completely
isolate Q so it can send and receive messages only from P.
This starts out exactly as in the dynamic security policy, but
P goes further by restricting Q’s ability to receive. It generates
a new handle, k, which has at least the default value of 1 in all
processes’ send labels and sets QR(k) = QS(k) = 0 resulting
in the following setup:

Labels P Q Others
Send j ?, k ? j 3, k 0 j 1, k 1
Receive j 3, k 2 j 3, k 0 j 2, k 2

Q is now able to receive messages only from processes whose
send label contains k at a level less than or equal to 0. Since
the default level for the send label is 1, only P can now send
messages to Q.

4.5.2 Multi-level security

Most MLS systems are static, with predefined secrecy
levels. Asbestos labels can implement a dynamic policy, in-
cluding specific security levels and arbitrary sub-levels. This
implementation is also virtualizable; there may be several
groups of processes participating in different MLS schemes
at the same time.

Each process participating in a MLS space has a notion
of current and maximum security level. In this scheme “max-
imum level” is analogous to a security clearance. Process P
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cannot send a message to process Q if P’s current security
level is above Q’s maximum security level. In this example,
we present a scheme with secret and top secret processes (rep-
resented by handles s and t, respectively), as well as unclassi-
fied processes.

Parts of the TCB1 (such as the identity server and the
multi-level filesystem) possess s ? and t ?. A process M is in
charge of this MLS space and is part of the TCB. Process P
authenticates itself to M who is able to set P’s labels to corre-
spond to the security level it should be able to use.

All processes start out with current security level set to
“unclassified,” and thus security handles in the send label set
to their default level, 1. Once a process S’s security level is
set to “secret,” perhaps because it accesses a secret file from
the multi-level filesystem, S can no longer send messages to
unclassified processes. Since this is a restriction of S’s abil-
ity to send, some handle in SS must increase in level. This
is accomplished by including a contaminate argument C on
the send message from the filesystem to S, setting SS(s) = 3,
resulting in the following labels:

Labels U S T
Send s 1 s 3 s 1
Receive s 2 s 3 s 3

S is now able to send messages only to processes that have
had their receive label explicitly relaxed with respect to s, i.e.,
processes with security level “secret” (S and T in the example
above).

When T (whose security level is “top secret”) receives a
message from S (after S has accessed secret data), the {s 3}
label will contaminate T, restricting it to sending messages
to “secret” and “top secret” processes only If T receives “top
secret” information, TS(t) will be increased as well leading to
the following label state:

Labels U S T
Send s 1, t 1 s 3, t 1 s 3, t 3
Receive s 2, t 2 s 3, t 2 s 3, t 3

4.5.3 Discussion

These examples of security mechanisms are varied in their
semantics, and yet the label scheme we have presented is able
to implement them both. Many other security policies may be
implemented with labeling. Our label scheme is simple yet
powerful. The most advantageous part is that the correctness
of the policy implementation relies only on simple label prop-
erties.

4.6 Implementation

In user space, a label is represented as an array of handle val-
ues plus a default level. A 64-bit number can represent a label
entry: the upper 61 bits are the handle value, the lower 3 bits
encode its level in that label.

1Trusted computing base

In kernel space, labels are implemented similarly, but the
array uses 32-bit pointers to vnodes; since those pointers are
8-byte aligned, the lower 3 bits are again available for the
level. With reference counting and “copy-on-write” updates,
multiple entities can share the same label, curtailing memory
use. To minimize allocation, small vnode arrays are stored
in the same structure as the label header. Although label op-
erations, such as comparison and max, are quite common
in Asbestos, we have not yet optimized our implementation.
Nevertheless, Section 8.1 presents the results of some micro-
benchmarks.

5 LABEL SAVE/RESTORE

Asbestos labels as described so far apply at the coarse gran-
ularity of entire processes. This makes sense for an operating
system: the OS can control information flow between pro-
cesses using hardware protection mechanisms, such as vir-
tual memory page protection, but process internals are a black
box. Unfortunately, such coarse-grained labels would make it
impossible to run untrusted processes that speak for differ-
ent users at different times—an important application cate-
gory that includes most services. If a process can speak for
more than one user, the OS must essentially trust it to keep
user data internally isolated. Alternately, language-level flow
control mechanisms can enforce access control policies at a
much finer granularity, although communication with the out-
side world—i.e., other processes—can be awkward to model.

This section presents Asbestos’s label save/restore func-
tionality, which implements a middle ground. With label
save/restore, a single untrusted process can encompass any
number of independent label spaces. Information flow be-
tween these spaces is strictly protected by the operating sys-
tem, at the granularity of memory pages.

5.1 Design

Consider our example of a Web server running multiple inde-
pendent services, each of which is handling multiple concur-
rent connections for multiple users. We would like to prevent
services from modifying one another’s data and keep each
user’s data isolated from other users. Given Asbestos’s flex-
ible labels, this would be relatively easy, if we had one pro-
cess per service–user pair. Unfortunately, OSes typically have
poor support for such a large number of processes. The goal
of label save/restore is to enforce the same security guaran-
tees as this fully forked model, but at a lower cost.

Our mechanism design was motivated by the non-
blocking event-driven architecture that underlies many of to-
day’s fast servers [17, 29, 35, 37]. Although some of these
servers present the user with a thread-like API, all of them can
look like single-process event-driven servers from the OS’s
perspective. These servers are built around a simple schedul-
ing loop; roughly:

while (1) {
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get_next_event();
process_event();

}

Note that at the end of each iteration, this connection loop
has no stack or register state that depends on the event pro-
cessed during that iteration. This is intentional: servers are
designed to handle multiple concurrent and independent users
whose events are interleaved in arbitrary order; state from one
event will likely not be useful for the next. Thus, as long as
the system preserves any changes to heap connection state, it
would be safe to fork at the beginning of each iteration, and
exit at the end. Assume, then, that we fork once per iteration.
The “next event”—which, in Asbestos, is a message and its
associated label contamination and decontamination—is de-
livered into the forked copy. Thus, the original process’s label
never changes, giving us exactly the label properties we want.
Each message is delivered into a process with pristine labels,
and “subprocesses” belonging to different users do not con-
taminate one another.

Of course, heap connection state must be maintained.
A subprocess should have write access to its heap pages.
Any data belonging to other users should be inaccessible; in
fact, other subprocesses’ changes to VM state should be in-
visible. The shared stack can be visible—it is by definition
untainted—but any changes should be copy-on-write (so the
subprocess cannot leak information back to the base process).
A fully-forked model, with one independent service per user,
would of course preserve changes to shared state; we are giv-
ing up some flexibility by exiting each subprocess at the end
of the event loop. However, this flexibility isn’t critical for
most event-driven services since, again, they aim to perform
independently for different users.

Finally, there is the matter of how a subprocess should be
defined. In Asbestos, each subprocess is defined by its send
label. To mark subprocess memory, we additionally attach a
label to each physical page in the system. A subprocess’s per-
sistent heap space then consists of those pages with the same
label as the subprocess.

This subprocess-like functionality is implemented with
three system calls, vm save, vm restore, and page taint, and
VM page table manipulations. The vm save call saves the
current process’s page table and register state and waits for
a message to arrive. When a message arrives, it figures out
which subprocess to run by calculating the labels induced by
message delivery. It then updates the process’s page tables
to give appropriate access to memory (read/write, copy-on-
write, or none) based on page labels. When the process calls
vm restore, the subprocess page table is thrown away and
the process jumps back to the vm save call. Finally, subpro-
cess memory is allocated by page taint, which marks exist-
ing pages with a given label.

To illustrate, consider a Web server with one subprocess
per user. The main event loop would look up connection state
information for each incoming message, process that request,

then restore to a pristine state to wait for the next message. In
Asbestos:

1 vm_save(&msg);
2 if (new_state_msg(msg))
3 new_connection_state(msg);
4 else
5 cxn = lookup_cxn_state(msg);
6 process_user_message(msg, cxn);
7 vm_restore();

The server saves its state before accepting any messages, al-
lowing it to return to that pristine state. Notifications of new
users (line 2) are delivered in uncontaminated messages. This
allows the main subprocess to allocate and taint a portion of
virtual memory for the new user. Without this untainted mes-
sage, the user subprocess would not be able to communicate
its existence to the main subprocess, and there would be no
way to prevent different users’ connection state areas from
colliding. However, the uncontaminated process only knows
which users are active, and where it has allocated memory for
them; it cannot access actual user data. Other messages (lines
5–6) are contaminated by the user’s label, and thus start the
user subprocess. All memory changes are transient, except
for changes to memory contaminated with the user’s handle.
Data for other users is inaccessible, and private user informa-
tion cannot be exported to the untainted process (the relevant
pages are copy-on-write), so any messages that contain user
data will be contaminated with the user’s label.

5.2 Implementation

The vm save call first saves copies of the current page ta-
ble, register state, and labels. vm save takes two arguments,
a message queue identifier (that is, a handle) and a message
pointer; it also saves these arguments. Then vm save delivers
a message by: selecting a message from the specified message
queue; processing its labels, creating the send label corre-
sponding to the relevant subprocess; setting up the page table
appropriately for that subprocess; delivering the message into
the pointer specified by vm save’s caller; and returning. The
vm restore call throws away the current page table, restores
register state and labels to the saved versions, and delivers a
message, using the same code for delivery as vm save.

The interesting step in this process is setting up the page
table. Figure 3 shows pseudocode for the relevant function,
fork pages.

The label cmp function determines whether or not a page
belongs to a particular subprocess. If, for some handle h, the
page’s label at h is greater than the subprocess’s label at h,
then the page belongs to a different user and is marked in-
accessible. Otherwise, if, for some handle h, the page’s label
at h is less than the subprocess’s label at h, then the page is
less contaminated than the subprocess and should be marked
copy-on-write. Otherwise, the labels are essentially equal,
and the subprocess should share a (possibly writable) copy
with the main process. Note that this lets one subprocess view
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any changes made in strictly-less-contaminated subprocesses.
For instance, consider a save/restore process with saved la-
bel L0 = {h 0, 1} and subprocess labels L1 = {h 1, 1} and
L2 = {h 2, 1}. The most contaminated subprocess L2 will
be able to see changes made by both L0 and L1, although
its own changes are invisible to them. Although a deviation
from the forked-subprocess model, this is safe enough: since
L0 ≤ L1 ≤ L2 ≤ PR, the L0 and L1 subprocesses could com-
municate with L2 by sending it an appropriately contaminated
message.

Handle ownership (that is, handles with PS(h) = ?) adds
further complications. A process that owns a handle is privi-
leged with respect to that handle; as part of that privilege, the
process may grant the handle to others. In label save/restore,
we interpret this to mean that a subprocess that gets owner-
ship of a handle may grant that ownership to later instances
of itself. That is, we want handles owned by a subprocess to
still be owned when the subprocess wakes up again. Unfortu-
nately, page labels won’t list those owned handles, and a naive
comparison of send labels might cause the system to fork a
new copy-on-write subprocess each time ownership changes
(since the labels are not exactly the same). Thus, label cmp
ignores owned handles in its comparisons, and we remember
and restore each subprocess’s full set of owned handles.

The saved page directory and page tables are treated as
having page labels equal to the saved label. Thus, if a de-
livered message doesn’t change the process’s send label, the
“subprocess” works directly on the saved page table; any
changes it makes will persist across the next vm restore.
However, any subprocess with a different send label will work
on a copy-on-write version of the page tables. It may allo-
cate, free, and taint memory however it likes, but its changes
will disappear when it calls vm restore, with one safe excep-
tion. Any changes the tainted subprocess makes to portions
of virtual memory not mapped in the saved page table may
be made persistent (as long as the allocated pages are tagged
with the subprocess’s send label). This is because untainted
subprocesses cannot distinguish between unmapped memory
and memory tagged with a tainted label. This leads to sig-
nificant memory savings in practice. On learning that a new
user session is about to start (which is uncontaminated infor-
mation), the subprocess allocates a virtual memory region for
that user; but it need not allocate physical memory for that re-
gion. Instead, the user’s own subprocess will allocate physical
memory for it as needed.

Our current implementation of these system calls is at best
naive. We copy page tables more frequently than required,
walk the entire page table on every save/restore (rather than
just the portions that might be relevant to a given subprocess),
and flush the TLB with abandon. None of these problems are
fundamental.

label cmp(A, B)
If ∃h with A(h) > B(h) > ?,

Return +1
Else if ∃h with ? < A(h) < B(h),

Return −1
Else return 0

fork pages(L)
If label cmp(Lsave, L) = 0,

Share page tables
// But continue to fix page table permissions

Else
Share page tables copy-on-write

For each page mapping P,
(1) If label cmp(P.label, L) > 0,

// Page belongs to a different subprocess
Mark P inaccessible

(2) Else if P is read-only,
Share P read-only

(3) Else if label cmp(P.label, L) < 0,
// Page is less contaminated than L
Share P copy-on-write

(4) Else if label cmp(P.label, L) = 0,
// Page belongs to L’s subprocess;
// our modifications should be saved.
// But the saved version might be COW.
// If so, copy it now, so we can
// distinguish this case from (3).
If P is copy-on-write, then copy it
Share P

FIGURE 3: fork pages.

5.3 Discussion

Reasoning about Asbestos labels, and the more clearly safe,
yet analogous, model of subprocess forking, led us to modify
the behavior of other system calls, and our applications, to
preserve safety. For instance, our original vm save design did
not include message delivery. It simply restored the virtual
memory state, registers, and labels to their original values; the
process would continue on uncontaminated until it executed
a normal recv. This opened a storage channel: the uncontam-
inated process could discover both how many contaminated
messages were delivered, and their order relative to any un-
contaminated messages. We therefore integrated vm restore
with the single operation that might or might not contaminate
the process, namely recv, and disallowed the direct use of
recv within a save/restore block. For the final version, we will
further investigate this and other system calls—including, for
example, a call to vm save within an existing save/restore
block—to determine the maximal safe set of operations.
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6 USER-LEVEL DESIGN

Most of the applications developed for Asbestos are services,
where careful consideration of information flow and access
control was necessary. In particular, we ensured that if a front-
end service was compromised, the effects would be isolated.

6.1 Fundamental services

Identity server To maintain the notion of users, an identity
service, idd, maintains a list of all users. For each user, idd
maintains the username, password, user id, and a taint handle
and grant handle for that user. A user possessing the grant
handle speaks for that user. A user possessing the taint handle
knows some private data about that user.

“System” processes (the file server and network server)
can obtain all grant and taint handles at ? from idd. This al-
lows the file server or network server to handle contaminated
data without becoming contaminated.

Any process can request information about a user. The
process must specify the username and password for the user
it is interested in; if they match, idd replies with the user id,
the grant handle at ?, and the taint handle at 3.

File server It is necessary to have some form of persistent
storage in Asbestos, for programs, data files, etc. To do so,
the file service, asfs, maintains an on-disk filesystem. The file
system uses the taint handles from idd to provide multi-user
access; when a process accesses filesystem data, it becomes
tainted with that user’s taint handle.

6.2 Network server

All access to the network in Asbestos is through one pro-
cess, netd, which is responsible for interfacing with the TCP
stack, managing network devices, and creating connections
for other processes. As such, it has a privileged role and must
properly apply restrictions to connections it creates.

An application can send a message to netd requesting a
connection to a remote host or to listen for incoming connec-
tions. In either case, netd performs the requested operation
and grants a handle representing the new socket to the appli-
cation at ?.

Once a process has a handle to an open connection, it
may perform READ and WRITE operations to transfer data,
CONTROL operations to close the connection or change the
low-water mark, and SELECT operations to determine avail-
able buffer space. On a listening socket, a process may per-
form READ operations to accept incoming connections and
CONTROL operations to close the socket.

In order to apply labeling to network connections, netd
optionally maintains a taint for each connection. A process
may tell netd to add a taint (a handle) to a connection. Later,
when netd sends a message in response to an operation on a
connection, it contaminates the recipient with the taint at 3.
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FIGURE 4: The sequence of messages when processing a Web request.

6.3 Web server

The Asbestos Web server is an alternate implementation of
the OKWS design [17]. In the original OKWS design, one
demultiplexer accepted incoming connections and parsed the
headers to determine what service was being requested. The
connection was then handed off to a worker devoted to pro-
viding that service. The goal was to isolate services, so that
one compromised service could not affect others.

The Asbestos implementation of OKWS isolates services
in different workers, but also enforces user isolation, in order
to prevent one compromised service from leaking informa-
tion about other users. Rather than using a separate process
for each user, OKWS uses vm save and vm restore to pro-
vide full isolation of one user’s data from others.

6.3.1 The launcher

OKWS first starts launcher, which starts the separate
OKWS components and ensures proper communication priv-
ileges for each. The launcher creates N worker verify handles
(where N is the number of services), one for each worker.
These are used to verify that a worker process is valid.

The launcher starts demux first, which grants its own han-
dle (the demux handle) to the launcher. After starting demux,
launcher grants demux each of the worker verify handles.

Next, launcher starts N workers, granting each worker the
demux handle. This allows each worker to contact demux to
announce that it is ready to service a request. The launcher
also grants each worker its worker verify handle.

6.3.2 The demux

After sending the demux handle to launcher, demux waits
for each worker to contact it. When a worker contacts demux,
it passes its worker verify handle, to prove to demux that it
is a valid worker. After verifying worker W, demux creates
an new handle and sends it to W. The worker later uses this
handle to communicate with demux.

This sequence of events for handling connections is
shown in Figure 4. The demux contacts netd and opens a lis-
ten socket for incoming connections (message S1). When a
connection arrives (messages 1–2), demux reads enough of
the HTTP headers to determine what user U is making the
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request, and what worker W that user is requesting (mes-
sages 3–6). Once it has done so, it contacts idd to obtain the
taint handle for that user, sending the username and password
(message 7), receiving U’s taint handle (message 8) in re-
sponse. At this point, the demux is ready to hand the connec-
tion off to W; however, it must ensure that as soon as W reads
from U’s socket, it becomes tainted with U’s label.

6.3.3 The workers

An OKWS system will typically have many workers run-
ning, each implementing a logically distinct Web service.
Each service sends a READ message (message S2) when it
first starts up, expressing interest in incoming requests. When
the demux is ready to hand a particular worker (call it W)
a connection, it simply replies to this READ message (as in
message 9). The worker then immediately can reply with an-
other READ message (as in S2), since it is capable of serving
overlapping clients.

The handoff shown in messages 9 through 11 requires
care. Each worker maintains server-side state for each ac-
tive user it is communicating with. This state includes receive
buffers, send buffers, and perhaps cached session information
that might persist over multiple HTTP sessions. In our im-
plementation, each worker W sets aside a 64-page region for
each user U that becomes active, and it allocates pages there
lazily, as the user requires them. Moreover, it taints this entire
region with U’s taint handle, so that it might later write to it
when it has U’s taint handle in its send label.

If the demux were to deliver U’s connection tainted with
U immediately in message 9, the worker would be at a loss. It
would have to set aside a region for U’s state, but it could not
write to any persistent, non-tainted memory to indicate that
it had done so. OKWS on Asbestos instead uses a two-phase
handoff protocol. In message 9, the demux informs W that it
is about to deliver a connection for user U, but does not taint
W as it does so. W then consults a table T (implemented as
a quadratic hash table), either finding a previously allocated
region for U, or allocating a new one. Note that T resides
in uncontaminated memory. When W writes to T that it has
allocated a region for the user U, it can later read this mapping
without becoming contaminated.

After noting this new region assignment in T, W is ready
to accept the connection and the taint, and it does so in mes-
sage 10 and 11. Once it has received U’s connection, it enjoys
a reserved, pretainted region of pages, to which it can write
persistently when contaminated by U’s handle. The worker
then services U’s connection, parsing the request, sending
the reply back to the client over the connection (messages
12–15), and closing the connection (messages 16–17). Once
complete, worker W calls vm restore and waits to service
another connection.

One interesting issue remains: freeing memory. When
worker W corresponds with U over many HTTP requests, it
can grow and shrink U’s region while tainted, always leav-

ing at least one page allocated to store a map of the region.
When the user U explicitly logs off, W would like to reclaim
the last page, and reassign U’s region to other users who be-
come active. To achieve this, W sends a message to the de-
mux, informing it that U’s region should now be available to
other users. The demux immediately sends back an acknowl-
edgment, telling W to free the last page in the region. The
demux then waits a random amount of time, on the order of
ten minutes, and then sends a second uncontaminated mes-
sage, telling W to mark U’s region unallocated in the table
T.2 The region is now available for reassignment to a differ-
ent user. Note the demux must be careful to synchronize this
last messages with potential requests from U, so as to avoid
race conditions on W.

7 COVERT CHANNELS

Asbestos labels prevent processes from explicitly transmit-
ting sensitive information to unauthorized parties. However,
supposedly isolated processes can still communicate infor-
mation through covert channels. Our goal is not to eliminate
covert channels—an impossible task—just to make it signif-
icantly harder to leak information than on systems used as
Internet servers today. While high-grade military systems are
required to quantify all covert channels, for Asbestos we con-
tent ourselves with enumerating the channels.

Broadly speaking, covert channels can be categorized as
either timing or storage channels. Timing channels consist
of attacks in which process A conveys information to B by
modulating its use of system resources in a way that observ-
ably affects B’s response time. For instance, A might flush
the processor cache or cause the disk arm to be moved farther
from a subsequent request. We are less concerned with timing
channels, as to some extent they can be mitigated by limiting
processes’ ability to measure time precisely [10]. (Asbestos
offers no such feature, however, and the problem admittedly
becomes harder in the presence of network communication.)

Storage channels are caused by any state that can be mod-
ified by process A and observed by B when A is not supposed
to transmit information to B. It was a goal to avoid storage
channels that could be exploited within a single process, so
that at least two cooperating processes are required to com-
municate information in violation of a label policy.

The Asbestos design contains two inherent storage chan-
nels: the program counter, and labels. The vm restore system
call affects the program counter of an untainted process by
restarting a process at its save point with a lower send label.
Two cooperating processes can, for instance, transmit a bit of
information by the order in which they call vm restore. This
channel is roughly equivalent to the covert channel intention-
ally included by the drop-on-exec feature of IX [23].

The send system call potentially raises the value of the

2demux’s response represents a storage channel, which we mitigate by a
long delay.
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recipient’s send label to an unanticipated value. This is also
a storage channel, as labels can be observed through lack of
communication. Consider a tainted process A attempting to
communicate a bit of sensitive information to an untainted
process C. An attacker might construct two untainted pro-
cesses, B0 and B1, both of which repeatedly send heartbeat
messages to C. By sending a message that contaminates pro-
cess Bi, A can communicate the value i to C. Such storage
channels are inherent to any system with run-time checking
of dynamic labels [27].

Both of the above channels require at least two pro-
cesses, which means they can be mitigated by restricting ac-
cess to the fork device. This illustrates one advantage of the
vm save/vm restore page labeling approach, compared to a
more traditional one-label-per-process architecture. Page la-
beling reduces concurrency, thereby also reducing the num-
ber of send labels and program counters available as storage
channels at any given time.

Other Asbestos kernel data structures have been carefully
designed to avoid exploitable storage channels. Handles are
generated by incrementing a 61-bit counter, which is a stor-
age channel. However, since the kernel encrypts the counter
value with a 61-bit block cipher to produce handles, the user-
visible sequence of handles is unpredictable and thus cannot
convey information. The VM system prevents page tables and
page labels from being used as storage channels by ensuring
changes made while tainted are not visible with a lower send
label.

The current implementation still has several other storage
channels we intend to close or limit, but we believe these can
be mitigated without affecting the claims of the paper. For
example, Asbestos does not yet deal gracefully with certain
forms of resource exhaustion. Also, when a process sends a
message to an invalid handle, or to another process whose
label prevents it from replying, we intend for send always to
return the error E MAYBE. The implementation does not yet
do this uniformly.

8 EVALUATION

In this section, we present micro-benchmarks of the Asbestos
kernel and an end-to-end analysis of the performance of the
services running on top of it. We identify areas where perfor-
mance becomes a bottleneck and further work is necessary.

8.1 Micro-benchmarks

Most Asbestos operations involve label operations. In par-
ticular, all messages exchanged in the system require label
checks and potential label modifications, and page labeling
makes extensive use of label operations during save/restore
sessions. To evaluate the performance of Asbestos we need to
quantify the cost of label operations. We conducted a set of
micro-benchmarks that exercise seven basic label operations
that are considered most common and potentially costly.

Operation size = 50 size = 100 size = 200
label create 1510 1530 1531
label min 4198 5511 8078
label max 5521 5561 7644
label leq 586 1028 2021
label cmp 540 1040 2130
label add 179 199 223
label add (COW) 188 223 246

FIGURE 5: Label operations average cost measured in cycles.

The functions evaluated are the following:

label create : create a label of given size,
label min and label max : generate a label by applying the
min and max operators shown in Figure 1 to its arguments3,
label add : add a handle to a label,
label add (COW) : add a handle to a label triggering the
copy-on-write code,
label leq : “less than or equal” operator (see Figure 1),
label cmp : label comparison operation returning “less than,”
“equal,” and “greater than” values.

All measurements where taken on a PC equipped with a
2.8GHz Pentium4 processor with 1MB L2 cache and 1GB of
RAM, running Asbestos. All operations were measured using
labels with 50, 100 and 200 handles. The numbers presented
are averages for 3 runs of 100 iterations each. Figure 5 shows
the results of all seven micro-benchmarks.

label create performance is dominated by the (constant)
memory allocation cost. The average cycles for label min
and label max are dominated by a particular test case whose
cost was an order of magnitude higher than that of all other
test cases. That happened mainly due to memory allocation
and copying involved in that test. All other investigated sce-
narios showed that min and max operations scale linearly
with the size of the labels, as did label leq and label cmp,
whose behavior was very stable with no odd results. Both
label add operations’ results showed that the size of the la-
bel does not affect results significantly, mainly because the
cost is dominated by the time spent sorting the array of label
components. Triggering “copy-on-write” has a minimal per-
formance hit since our current label implementation uses a la-
bel allocation “arena” (implemented as a free-list) that speeds
up label duplication.

Micro-benchmark results revealed certain points that
could be optimized, but in general we were able to show that,
using our untuned label implementation, the average cost of
operations is reasonable and scales well with the size of the
labels involved.

8.2 End-to-End Measurements

As a proof of concept, we implemented and measured a
version of OKWS running on Asbestos. We did not expect

3Note that these operations alter their first operand, e.g. label min(a, b)
is equivalent to a = label min(a, b)
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Module Percent Execute Time
Kernel – misc 2.70
Kernel – memory mgmt 6.34
Kernel – vm-restore 28.26
Kernel – IPC 12.53
Kernel – Network 18.47
Console 6.47
User – Network 16.85
User – okws-demux 5.60
User – okws-worker 2.77

FIGURE 6: Execution time of various modules while OKWS is under heavy
load.
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FIGURE 7: CDF of request time as seen from the client.

our system’s latencies and throughput to be competitive with
highly optimized operating systems or Web servers, but we
did expect reasonable baseline performance numbers that we
could improve upon as development continues. Performance
is discussed in Section 8.2.1. More to the point, we did ex-
pect OKWS on Asbestos to be reasonably efficient in terms
of memory utilization, since an additional page of memory is
potentially all that is required to allocate an additional protec-
tion domain. An exploration of memory usage in OKWS can
be found in Section 8.2.2.

8.2.1 Web Server Speed

As shown in Figure 6, performance is largely limited by
time spent in the kernel and on networking. Over a third of
the total CPU time is spent on networking.

Our baseline measurements were all taken on a 10Mb Eth-
ernet network with a local Linux client generating requests.
The server is an AMD Athlon 1400 using 64MB of memory.
Clearly support for faster Ethernet drivers and more mem-
ory is critical for gaining more competitive performance num-
bers.

Due to bugs in our TCP/IP implementation, concurrent
connections lead to timeouts and did not offer a performance
gain. Figure 7 shows the overhead of page labeling. Our
server is able to serve over 210 connections per second. With
page labeling disabled, it is possible to serve over 240 connec-
tions per second. Page labeling currently adds about 500 µs
of CPU time to each connection, primarily in vm restore. A
modern web server should be able to handle thousands of con-
nections per second, and the time in vm restore alone cur-

rently limits Asbestos/OKWS to 2000 connections per sec-
ond. As our system matures, it will be critical to optimize
vm restore.

8.2.2 Memory Usage

In Section 5, we argued the merits of page labeling over
the more traditional fork-accept designs. Our measurements
of the Asbestos prototype’s memory utilization lend credence
to this claim. A minimal OKWS worker process requires at
least 20 pages of physical memory (each 4KB), before it has
even served an HTTP request: one page for the page direc-
tory, about four for page tables, one for a user stack, one for
a user exception stack, and others for the BSS and user heap.
Other pages are artifacts of our kernel and application imple-
mentation, though an operating system that uses fewer than
five pages per process is difficult to imagine.

The reasonable conclusion to draw is that to support n
users in the fork-accept model, OKWS would require approx-
imately 20n memory pages at a minimum, a cost which will
become prohibitive as n grows large. By contrast, page label-
ing for simple Web services achieves the lower bound that we
proposed earlier: one memory page per external client served.

To experimentally verify this claim, we configured a test
client to simulate 100 Web requests on behalf n different
users, as n grew from 1 to 25. For each run, we captured the
maximum number of pages active at any one given time. For
instance, at n = 1, we measured 1146 total pages in use as the
Web server launched and a maximum of 1264 pages in use as
the 100 serialized requests were made, all on behalf of the
same user. At n = 2, the maximum number of pages in use
increases to 1265. These patterns increases roughly linearly
until n = 25, at which point the maximum number of pages
in use is 1288. Although we can improve upon absolute mem-
ory usage, the overall trend is encouraging: for some constant
C, OKWS on Asbestos should support n concurrently active
users with only n + C pages.

9 CONCLUSION

Asbestos is an operating system that makes nondiscretionary
access control mechanisms available to unprivileged users,
giving them fine-grained, end-to-end control over the dissem-
ination of information. Asbestos provides protection through
a new labeling scheme, which, unlike schemes in previous op-
erating systems, allows data to be sanitized (or “untainted”)
by individual users within categories they control. The cat-
egories, called handles, use the same names as communica-
tion endpoints, making them a kind of generalization of ca-
pabilities. Like capabilities, processes can dynamically gen-
erate new handles, handle ownership is aggregated by pro-
cess (allowing explicit enumeration of privileges), and pro-
cesses specify temporarily label restrictions on sent messages
to avoid the unintentional use of privilege.

The Asbestos virtual memory system allows labels to be
applied at the granularity of individual pages, so that one can
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control the flow of information even within one process. A
prototype web server handles labeled data in such a way that
even software bugs cannot cause one user to receive another’s
private data. The system requires only one page of memory
per active user, and exhibits a tolerable slowdown of only
12% for the vastly increased security of fine-grained infor-
mation flow control.
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