

In cooperation with the Bureau of Reclamation

## River Gain and Loss Studies for the Red River of the North Basin, North Dakota and Minnesota

#### Open-File Report 2004-1076



| including suggestions for reducing       | completing and reviewing the collect<br>this burden, to Washington Headqu<br>uld be aware that notwithstanding ar<br>OMB control number. | arters Services, Directorate for Infor | mation Operations and Reports | , 1215 Jefferson Davis I                  | Highway, Suite 1204, Arlington |  |  |
|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------|-------------------------------------------|--------------------------------|--|--|
| 1. REPORT DATE <b>2004</b>               |                                                                                                                                          |                                        |                               |                                           | RED                            |  |  |
| 4. TITLE AND SUBTITLE                    |                                                                                                                                          |                                        |                               | 5a. CONTRACT                              | NUMBER                         |  |  |
| River Gain and Lo<br>Dakota and Minne    | ss Studies for the Roseta                                                                                                                | 5b. GRANT NUM                          | <b>IBER</b>                   |                                           |                                |  |  |
| Dakota and winne                         | sota                                                                                                                                     |                                        | 5c. PROGRAM E                 | LEMENT NUMBER                             |                                |  |  |
| 6. AUTHOR(S)                             |                                                                                                                                          |                                        | 5d. PROJECT NU                | MBER                                      |                                |  |  |
|                                          |                                                                                                                                          |                                        |                               | 5e. TASK NUMBER                           |                                |  |  |
|                                          |                                                                                                                                          |                                        |                               | 5f. WORK UNIT                             | NUMBER                         |  |  |
|                                          | ZATION NAME(S) AND AE f the Interior U.S. G OC 20240                                                                                     |                                        | 49 C. Street,                 | 8. PERFORMING<br>REPORT NUMBI             | GORGANIZATION<br>ER            |  |  |
| 9. SPONSORING/MONITO                     | RING AGENCY NAME(S) A                                                                                                                    | ND ADDRESS(ES)                         |                               | 10. SPONSOR/MONITOR'S ACRONYM(S)          |                                |  |  |
|                                          |                                                                                                                                          |                                        |                               | 11. SPONSOR/MONITOR'S REPORT<br>NUMBER(S) |                                |  |  |
| 12. DISTRIBUTION/AVAIL Approved for publ | LABILITY STATEMENT<br>ic release, distributi                                                                                             | on unlimited                           |                               |                                           |                                |  |  |
| 13. SUPPLEMENTARY NO  The original docum | otes<br>nent contains color i                                                                                                            | mages.                                 |                               |                                           |                                |  |  |
| 14. ABSTRACT                             |                                                                                                                                          |                                        |                               |                                           |                                |  |  |
| 15. SUBJECT TERMS                        |                                                                                                                                          |                                        |                               |                                           |                                |  |  |
| 16. SECURITY CLASSIFIC                   | CATION OF:                                                                                                                               |                                        | 17. LIMITATION OF             | 18. NUMBER                                | 19a. NAME OF                   |  |  |
| a. REPORT<br><b>unclassified</b>         | b. ABSTRACT<br><b>unclassified</b>                                                                                                       | c. THIS PAGE<br>unclassified           | ABSTRACT<br><b>UU</b>         | OF PAGES<br><b>44</b>                     | RESPONSIBLE PERSON             |  |  |

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and

**Report Documentation Page** 

Form Approved OMB No. 0704-0188

# River Gain and Loss Studies for the Red River of the North Basin, North Dakota and Minnesota

**By Tara Williams-Sether** 

Open-File Report 2004-1076

In cooperation with the Bureau of Reclamation

### U.S. DEPARTMENT OF THE INTERIOR GALE A. NORTON, Secretary

U.S. GEOLOGICAL SURVEY CHARLES G. GROAT, Director

Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

For additional information write to:

District Chief U.S. Geological Survey Water Resources Division 821 East Interstate Avenue Bismarck, ND 58503-1199

Copies of this report can be purchased from:

U.S. Geological Survey Information Services Box 25286 Denver, CO 80225-0286

### CONTENTS

| Abs  | stract                                                                                                | 1  |
|------|-------------------------------------------------------------------------------------------------------|----|
| Intr | oduction                                                                                              | 1  |
| Riv  | er gain and loss studies for the Sheyenne River                                                       | 2  |
| Riv  | er gain and loss studies for other rivers                                                             | 6  |
| Sun  | nmary                                                                                                 | 9  |
| Ref  | erences                                                                                               | 9  |
|      |                                                                                                       |    |
| FIG  | URES                                                                                                  |    |
| 1.   | Map showing locations of aquifers and physiographic areas in the Red River of the North Basin,        |    |
|      | North Dakota and Minnesota                                                                            | 3  |
| 2.   | Map showing locations of streamflow-measurement sites used in Paulson (1964) and Guenthner            |    |
|      | (1991) to determine ground-water discharge to the Sheyenne River in North Dakota                      | 4  |
| 3.   | Graph showing mean water losses estimated for the Sheyenne River in North Dakota using the            |    |
|      | long-term year-by-year hydrologic budget method, 1943-96                                              | 6  |
| 4.   | Map showing locations of streamflow-measurement sites in North Dakota                                 |    |
|      | Map showing locations of streamflow-measurement sites on the Otter Tail River in Minnesota            |    |
|      | Mean monthly streamflow for selected sites on the Sheyenne River in North Dakota, October through     |    |
| 1.   | February 1957-62                                                                                      | 11 |
| 2.   | Streamflow for the Sheyenne River between Valley City and West Fargo, North Dakota, September 13      |    |
|      | through November 19, 1963.                                                                            | 12 |
| 3.   | Streamflow for selected sites on the Sheyenne River in North Dakota, October 1986                     | 13 |
| 4.   | Estimated monthly net evaporation losses for additional flows to the Sheyenne River in North Dakota,  |    |
|      | 1931-84                                                                                               | 15 |
| 5.   | Mean water losses estimated for the Sheyenne River in North Dakota using the long-term year-by-year   |    |
|      | hydrologic budget method, 1943-96                                                                     | 16 |
| 6.   | Monthly mean water losses estimated for selected Sheyenne River reaches in North Dakota using the     |    |
|      | hydrograph method                                                                                     | 17 |
| 7.   | Statistics of the autocorrelation analysis (statistical method) for the Sheyenne River reach between  |    |
|      | Kindred and West Fargo, North Dakota                                                                  | 18 |
| 8.   | Estimated water losses for the Sheyenne River reach between Kindred and West Fargo, North             |    |
|      | Dakota                                                                                                | 19 |
| 9.   | Streamflow for selected sites on the Turtle, Forest, and Park Rivers in North Dakota, October through | 20 |
| 10   | December 1991                                                                                         |    |
| IU.  | Streamflow and changes in streamflow for sites on the Otter Tail River in Minnesota                   | 21 |

## River Gain and Loss Studies for the Red River of the North Basin, North Dakota and Minnesota

By Tara Williams-Sether

#### **Abstract**

The Dakota Water Resources Act passed by the U.S. Congress in 2000 authorized the Secretary of the Interior to conduct a comprehensive study of future water-quantity and -quality needs of the Red River of the North (Red River) Basin in North Dakota and of possible options to meet those water needs. To obtain the river gain and loss information needed to properly account for available streamflow within the basin, available river gain and loss studies for the Sheyenne, Turtle, Forest, and Park Rivers in North Dakota and the Wild Rice, Sand Hill, Clearwater, South Branch Buffalo, and Otter Tail Rivers in Minnesota were reviewed. Ground-water discharges for the Sheyenne River in a reach between Lisbon and Kindred, N. Dak., were about 28.8 cubic feet per second in 1963 and about 45.0 cubic feet per second in 1986. Estimated monthly net evaporation losses for additional flows to the Sheyenne River from the Missouri River ranged from 1.4 cubic feet per second in 1963 to 51.0 cubic feet per second in 1976. Maximum water losses for a reach between Harvey and West Fargo, N. Dak., for 1956-96 ranged from about 161 cubic feet per second for 1976 to about 248 cubic feet per second for 1977. Streamflow gains of 1 to 1.5 cubic feet per second per mile were estimated for the Wild Rice, Sand Hill, and Clearwater Rivers in Minnesota. The average ground-water discharge for a 5.2-mile reach of the Otter Tail River in Minnesota was about 14.1 cubic feet per second in August 1994. The same reach lost about 14.1 cubic feet per second between February 1994 and June 1994 and about 21.2 cubic feet per second between August 1994 and August 1995.

#### INTRODUCTION

The Dakota Water Resources Act passed by the U.S. Congress on December 15, 2000, authorized the Secretary of the Interior to conduct a comprehensive study of future water-quantity and -quality needs of the Red River of the North (Red River) Basin in North Dakota and of possible options to meet those water needs. The Red River receives most of its flow from its eastern tributaries because of regional patterns in precipitation, evapotranspiration, soils, and topography. Although streamflow in the river varies greatly, the highest streamflows generally occur in spring and early summer as a result of snowmelt, rain falling on melting snow, or heavy rain falling on saturated soils. Streamflows in the river during the remainder of the year generally are less than one-fourth of the average annual streamflow (Stoner and others, 1993).

Many glacial-drift and bedrock aquifers within the Red River Basin are connected hydraulically to rivers within the basin. The most evident connections occur where surficial aquifers are crossed by rivers and the rivers receive direct ground-water discharge. The rivers within the basin tend to receive ground water from glacial-drift aquifers in upland moraine areas but have a reduced tendency to gain flow from ground water in the Red River Valley Lake Plain. The rivers that cross the Red River Valley Lake Plain generally lose water during the summer, possibly as a result of evaporation, but also have the potential to gain small amounts of water indirectly from regional bedrock aquifers that underlie the valley. The water is gained through glacial drift, wetlands, and flowing wells (Stoner and others, 1993). The amount of water gained by or lost from rivers within the Red River Basin also can be altered by climatic factors, such as droughts and wet periods, that affect the hydrologic responses of the rivers.

To obtain the river gain and loss information needed to properly account for available streamflow within the Red River Basin, the U.S. Geological Survey, in cooperation with the Bureau of Reclamation, which administrates the comprehensive study authorized by the Dakota Water Resources Act, reviewed available river gain and loss studies for the basin. This report presents an overview of the studies that were reviewed and summarizes part of the gain and loss information given in those studies. The gain and loss information can be used to design and plan potential water-delivery systems to meet future water needs of the Red River Basin.

#### RIVER GAIN AND LOSS STUDIES FOR THE SHEYENNE RIVER

The Sheyenne River, a major tributary to the Red River, is limited to North Dakota. The river has a drainage area of about 6,910 square miles (not including the closed Devils Lake Basin) and is about 500 miles long. From its headwaters near Harvey, N. Dak., the river flows east to Pekin, N. Dak., south to Lisbon, N. Dak., and then northeast to its confluence with the Red River north of Fargo, N. Dak. (Souris-Red-Rainy River Basins Commission, 1972, p. D-50).

The Sheyenne River Basin lies in two distinct physiographic areas in North Dakota (fig. 1). The Drift Prairie area extends from the headwaters to near Lisbon, and the Red River Valley Lake Plain area extends from near Lisbon to the confluence of the Sheyenne River with the Red River. A hilly delta topography exists from Valley City, N. Dak., to near Kindred, N. Dak. Most of the Sheyenne River Valley from the headwaters to Kindred is incised into glacial till. The valley from Sheyenne, N. Dak., to Kindred ranges from 100 to 200 feet in depth and from 0.2 to 2 miles in width. The average gradient of the river is 1.5 feet per mile in the Drift Prairie and hilly delta areas and about 1 foot per mile in the Red River Valley Lake Plain area.

Zero streamflow has been recorded at times in the upper reaches of the Sheyenne River. Streamflow in the lower reaches of the river is regulated partly by releases from Baldhill Dam, which began operation in 1949. Lake Ashtabula, formed by Baldhill Dam, has a storage capacity of 69,100 acre-feet between the invert of the outlet conduit and the normal pool elevation. Lake Ashtabula is operated for flood control, municipal water supply, recreation, and stream-pollution abatement through low-flow augmentation. The capacity of Lake Ashtabula at the maximum pool elevation of 1,273.2 feet above the North American Vertical Datum of 1988 is 116,500 acre-feet.

Paulson (1964) investigated geologic factors that affect ground-water discharge for the Sheyenne River and indicated ground-water discharge was about 28.8 cubic feet per second from September 13 through November 19, 1963, in a reach of 94 river miles between Lisbon and Kindred. Mean monthly streamflow for selected sites on the Sheyenne River for October through February 1957-62 is listed in table 1 at the back of this report, and streamflow for the Sheyenne River between Valley City and West Fargo, N. Dak., for September 13 through November 19, 1963, is listed in table 2 at the back of this report. The locations of the streamflow-measurement sites used in Paulson (1964) are shown in figure 2. Paulson (1983) reported that if a gain of ground-water discharge and streamflow releases from Lake Ashtabula did not occur, little streamflow would be contributed from the Sheyenne River to the Red River except during periods of high surface runoff.

Guenthner (1991) reported ground-water discharges for two reaches of the Sheyenne River. Near Warwick, N. Dak. (from site 05055500 to site 9; fig. 2), ground-water discharge was 14.4 cubic feet per second on October 15 and 16, 1986. Between site A near Lisbon and site L near Kindred, ground-water discharge was about 45.0 cubic feet per second on October 21 and 22, 1986. Streamflow for selected sites on the Sheyenne River for October 1986 is listed in table 3 at the back of this report. The locations of the streamflow-measurement sites used in Guenthner (1991) are shown in figure 2.

Guenthner (1993) investigated the effects of transporting Missouri River water via the Garrison Diversion Unit on the Sheyenne River and the Red River and estimated monthly net evaporation (evaporation minus precipitation) losses for the additional flows to the system. Net evaporation losses estimated for the additional flows for 1931-84 ranged from 1.4 cubic feet per second in January 1963 to 51.0 cubic feet per second in August 1976 (table 4 at the back of this report). Other water losses, such as those caused by infiltration and bank storage, were not determined.

Houston Engineering, Inc. (1997), presented a hydrologic assessment of water losses in the Sheyenne River by seepage and evaporation. Some of the results obtained in the assessment also were presented by Gu and Deutschman (2001). The hydrologically based methods used to estimate the water losses were the long-term hydrologic budget method, the hydrograph (short-term water balance) method, and the statistical (an autocorrelation analysis) method. The long-term hydrologic budget method was performed year by year and month by month for the Sheyenne River by using data available for 1943-96. Results obtained with the long-term year-by-year hydrologic budget method are listed in table 5 at the back of this report. The long-term mean water loss of about 38.6 cubic feet per second from Harvey to West Fargo was determined by using data available for 1956-96 and applying an evapotranspiration coefficient of 0.94. Because water losses are affected by soil-moisture and ground-water table conditions, which, in turn, are affected by precipitation, Houston Engineering, Inc. (1997), used the current year's precipitation in the long-term hydrologic budget method to determine maximum water losses of about 200 cubic feet per second for 1964 and about 248 cubic feet per second for 1977 between Harvey and West Fargo. Using the previous year's precipitation in the long-term hydrologic budget method, the maximum

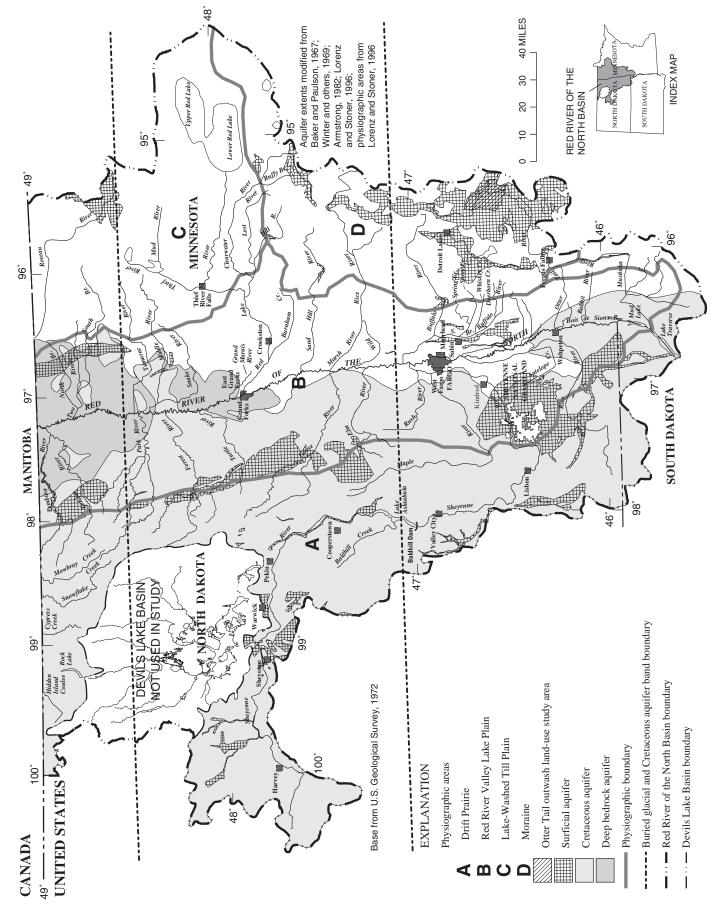



Figure 1. Locations of aquifers and physiographic areas in the Red River of the North Basin, North Dakota and Minnesota. (Modified from Cowdery, 1998.)

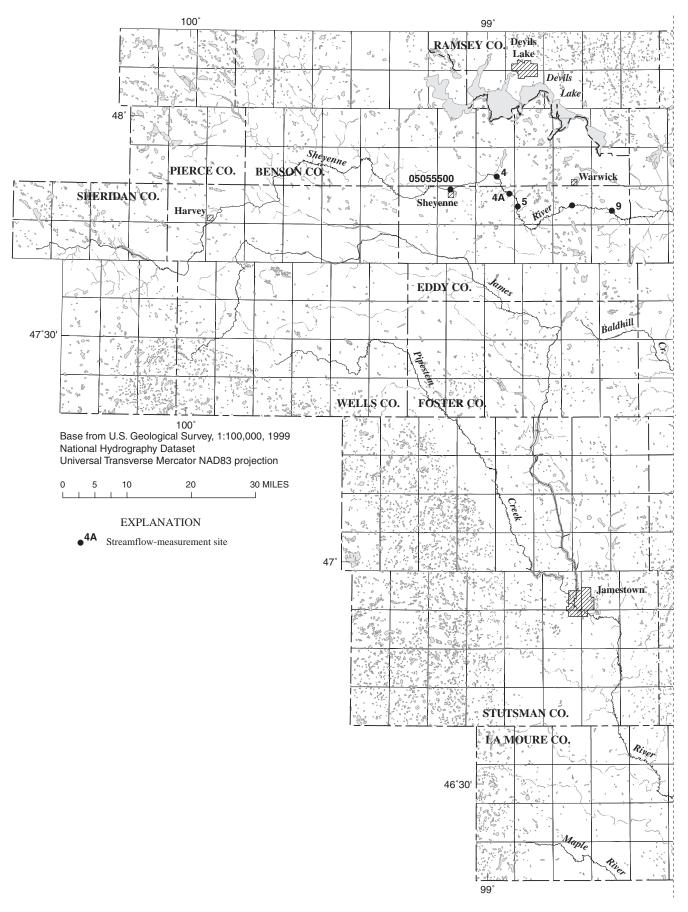
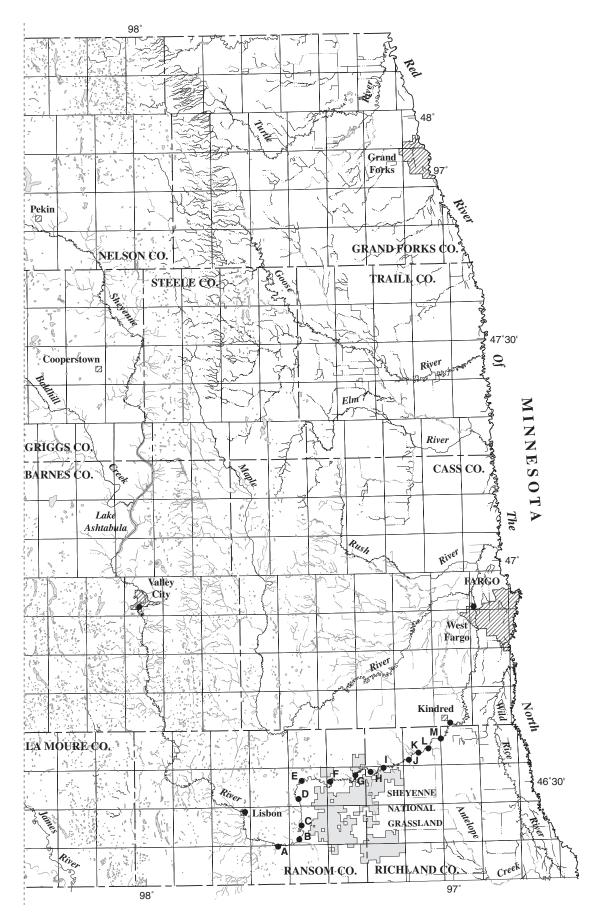
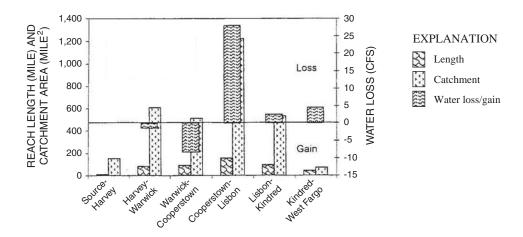





Figure 2. Locations of streamflow-measurement sites used in Paulson (1964) and Guenthner (1991) to determine ground-water

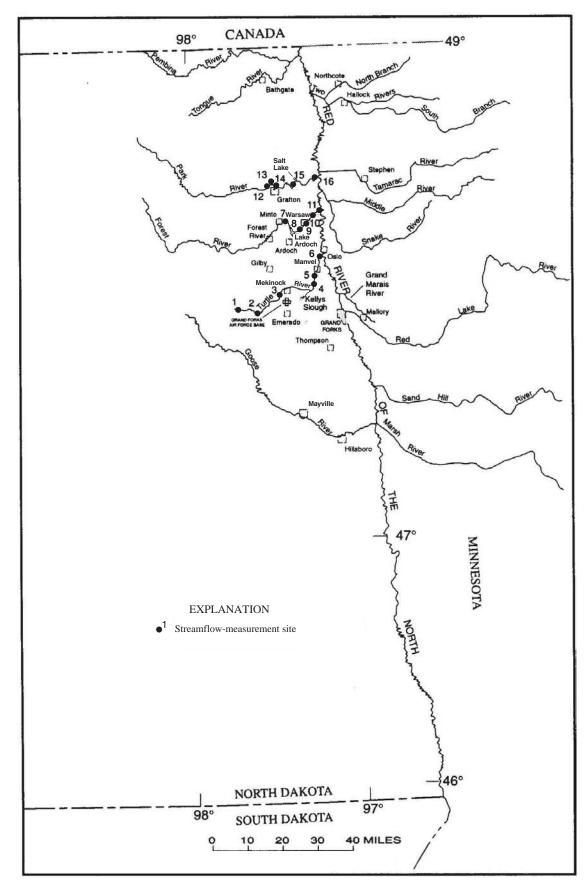


discharge to the Sheyenne River in North Dakota.

water losses were about 236 cubic feet per second for 1963 and about 161 cubic feet per second for 1976. Precipitation amounts were minimal for both of those years. A maximum water loss of about 60 cubic feet per second between Warwick and Cooperstown, N. Dak., was determined for 1964. Results of the long-term month-by-month hydrologic budget method indicated that water losses generally occurred during June through October and ranged from 126 to 277 cubic feet per second. The largest losses occurred during June and July. The Sheyenne River has a gaining reach from Harvey to Cooperstown, primarily during April, and a losing reach from Cooperstown to West Fargo, primarily during June through October. Main-channel water losses occurred between Cooperstown and Lisbon (fig. 3). The hydrograph method was



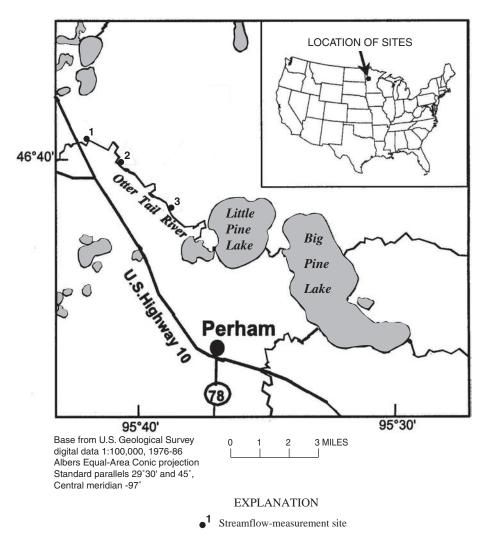
**Figure 3.** Mean water losses estimated for the Sheyenne River in North Dakota using the long-term year-by-year hydrologic budget method, 1943-96. (Modified from Gu and Deutschman, 2001.)


limited to periods of no rain and did not account for runoff. Results obtained with the hydrograph method are listed in table 6 at the back of this report for selected Sheyenne River reaches. The statistical method (an autocorrelation analysis) was applied to the Sheyenne River reach between Kindred and West Fargo for selected time periods. Statistics for the autocorrelation analysis for the reach between Kindred and West Fargo are listed in table 7 at the back of this report. Water losses estimated with the long-term hydrologic budget method, the hydrograph method, and the statistical method are listed in table 8 at the back of this report. The hydrograph and statistical methods underestimated water losses because precipitation and runoff were not considered (Houston Engineering, Inc., 1997). However, the contribution of precipitation and runoff to streamflow was considered in the long-term hydrologic budget method.

Strobel and Radig (1997) investigated the effects of the 1993 flood on water levels in the Sheyenne Delta aquifer. They concluded that, although no estimates of ground-water discharge were made, high stage within the Sheyenne River during July and August 1993 possibly caused water-table gradients near the river to reverse, and water from the river flowed into the aquifer as temporary bank storage.

#### RIVER GAIN AND LOSS STUDIES FOR OTHER RIVERS

Maclay and others (1972) estimated streamflow gains of 1 to 1.5 cubic feet per second per mile where the Wild Rice, Sand Hill, and Clearwater Rivers in Minnesota flowed through surficial outwash, ice contact, and beach-ridge sand and gravel aquifers. Streamflow losses were reported for an 11-mile reach of the South Branch Buffalo River downstream from Sabin, Minn., where pumpage from the Moorhead, Minn., municipal well field withdraws ground water from the Buffalo aquifer located beneath the river and for a 22-mile reach of the South Branch Buffalo River from Deerhorn Creek, Minn., to 5 miles downstream from Whiskey Creek, Minn.


Strobel and Gerla (1992) investigated the effects of saline ground-water discharge on water quality of the Red River in northeastern North Dakota. Estimated ground-water discharges for sites on the Turtle, Forest, and Park Rivers in North Dakota (fig. 4) were not reported but can be estimated using the recorded streamflow measurements listed in table 9 at the back of this report for October through December 1991.



**Figure 4.** Locations of streamflow-measurement sites in North Dakota. (Modified from Strobel and Gerla, 1992.)

Strobel (1996) investigated the hydrologic factors that affect ground-water discharge in the Red River Basin in northeastern North Dakota and used some of the data from the 1992 study. Estimated ground-water discharges were not reported in the 1996 study, but Strobel (1996) indicated that many known and unknown free-flowing wells within the Red River Basin contributed to streamflow. The amount of streamflow contributed by the wells and the effects of the contribution on the hydrology and hydraulics of the basin are not known.

Puckett and others (2002) investigated the effects of the Otter Tail outwash aquifer on streamflows in the Otter Tail River in Minnesota. The investigation was part of a study to delineate redox processes and flow paths in the riparian zone of a glacial-outwash aquifer. Streamflow measurements were made during February through August 1994 and during August 1995 at three sites on the Otter Tail River (fig. 5; table 10 at the back of this report). Changes in streamflow



**Figure 5.** Locations of streamflow-measurement sites on the Otter Tail River in Minnesota. (Modified from Puckett and others, 2002.)

between the measurement sites are listed in table 10. The August sampling was conducted on the last day of the month at the end of the growing season when evapotranspiration losses may have been greatly reduced. Therefore, the increases in streamflow during what were typically low-flow periods are what would be expected for a river that gains streamflow from ground-water discharge. Puckett and others (2002) indicated that within a 5.2-mile reach of the Otter Tail River, the average ground-water discharge was about 14.1 cubic feet per second (0.4 cubic meter per second) in August 1994. Puckett and others (2002) also indicated that, by assuming the ground-water discharge was relatively constant, the same reach lost about 14.1 cubic feet per second (0.4 cubic meter per second) between February 1994 and June 1994 and about 21.2 cubic feet per second (0.6 cubic meter per second) between August 1994 and August 1995.

#### **SUMMARY**

The Dakota Water Resources Act passed by the U.S. Congress in 2000 authorized the Secretary of the Interior to conduct a comprehensive study of future water-quantity and -quality needs of the Red River of the North (Red River) Basin in North Dakota and of possible options to meet those water needs. To obtain the river gain and loss information needed to properly account for available streamflow within the basin, available river gain and loss studies for the Sheyenne, Turtle, Forest, and Park Rivers in North Dakota and the Wild Rice, Sand Hill, Clearwater, South Branch Buffalo, and Otter Tail Rivers in Minnesota were reviewed. This report presents an overview of the studies that were reviewed and summarizes part of the gain and loss information given in those studies. The gain and loss information can be used to design and plan potential water-delivery systems to meet future water needs of the Red River Basin.

Ground-water discharges for the Sheyenne River in a reach between Lisbon and Kindred, N. Dak., were about 28.8 cubic feet per second in 1963 and about 45.0 cubic feet per second in 1986. Ground-water discharge near Warwick, N. Dak., was 14.4 cubic feet per second in 1986. Estimated monthly net evaporation losses for additional flows to the Sheyenne River from the Missouri River ranged from 1.4 cubic feet per second in 1963 to 51.0 cubic feet per second in 1976. Using a long-term hydrologic budget method, a long-term mean water loss of about 38.6 cubic feet per second was determined for a reach between Harvey and West Fargo, N. Dak., for 1956-96. The maximum water losses for the reach were about 236 cubic feet per second for 1963, 200 cubic feet per second for 1964, 161 cubic feet per second for 1976, and 248 cubic feet per second for 1977. A maximum water loss of about 60 cubic feet per second between Warwick and Cooperstown, N. Dak., was determined for 1964. Water losses from the Sheyenne River generally occurred during June through October. The largest losses occurred during June and July.

Streamflow gains of 1 to 1.5 cubic feet per second per mile were estimated for the Wild Rice, Sand Hill, and Clearwater Rivers in Minnesota. Streamflow losses were reported for an 11-mile reach of the South Branch Buffalo River downstream from Sabin, Minn., and for a 22-mile reach of the South Branch Buffalo River from Deerhorn Creek, Minn., to 5 miles downstream from Whiskey Creek, Minn. Within a 5.2-mile reach of the Otter Tail River, the average ground-water discharge was about 14.1 cubic feet per second (0.4 cubic meter per second) in August 1994. The same reach lost about 14.1 cubic feet per second (0.4 cubic meter per second) between February 1994 and June 1994 and about 21.2 cubic feet per second (0.6 cubic meter per second) between August 1994 and August 1995.

#### REFERENCES

- Armstrong, C.A., 1982, Ground-water resources of Ransom and Sargent Counties, North Dakota: North Dakota State Water Commission County Ground-Water Studies 31, pt. III, and North Dakota Geological Survey Bulletin 69, pt. III, 51 p.
- Baker, C.H., Jr., and Paulson, Q.F., 1967, Geology and ground water resources, Richland County, North Dakota, pt. III, Ground water resources: North Dakota Geological Survey Bulletin 46 and North Dakota State Water Commission County Ground Water Studies 7, 47 p.
- Cowdery, T.K., 1998, Ground-water quality in the Red River of the North Basin, Minnesota and North Dakota, 1991-95: U.S. Geological Survey Water-Resources Investigations Report 98-4175, 15 p.
- Gu, R., and Deutschman, M., 2001, Hydrologic assessment of water losses in river: Journal of Water Resources Planning and Management, v. 127, no. 1, January/February 2001, p. 6-12.
- Guenthner, R.S., 1991, Methods for estimating monthly mean concentrations of selected water-quality constituents for stream sites in the Red River of the North Basin, North Dakota and Minnesota: U.S. Geological Survey Water-Resources Investigations Report 91-4086, 113 p.
- Harkness, R.E., Haffield, N.D., and Ryan, G.L., 1988, Water resources data for North Dakota, water year 1987: U.S. Geological Survey Water-Data Report ND-87-1, 392 p.

- Houston Engineering, Inc., 1997, Sheyenne River channel losses: Garrison Diversion Conservancy District White Paper, 27 p.
- Lorenz, D.L., and Stoner, J.D., 1996, Sampling design for assessing water quality in the Red River of the North Basin, Minnesota, North Dakota, and South Dakota, 1993-1995: U.S. Geological Survey Water-Resources Investigations Report 96-4129, 4 p., 2 pls.
- Maclay, R.W., Winter, T.C., and Bidwell, L.E., 1972, Water resources of the Red River of the North drainage basin in Minnesota: U.S. Geological Survey Water-Resources Investigation Report 1-72, 129 p.
- Paulson, Q.F., 1964, Geologic factors affecting discharge of the Sheyenne River in southeastern North Dakota: U.S. Geological Survey Professional Paper 501-D, p. D177-D181.
- Puckett, L.J., Cowdery, T.K., McMahon, P.B., Tornes, L.H., and Stoner, J.D., 2002, Using chemical, hydrologic, and age dating analysis to delineate redox processes and flow paths in the riparian zone of a glacial outwash aquifer-stream system: Water Resources Research, v. 38, no. 8, p. 9-1 through 9-20.
- Souris-Red-Rainy River Basins Commission, 1972, Souris-Red-Rainy River Basins comprehensive study: v. 3, Appendix D, p. D-1 through D-157.
- Stoner, J.D., Lorenz, D.L., Wiche, G.J., and Goldstein, R.M., 1993, Red River of the North Basin, Minnesota, North Dakota, and South Dakota: Journal of the American Water Resources Association, Water Resources Bulletin, v. 29, no. 4, p. 575-615.
- Strobel, M.L., 1996, Hydrologic factors affecting the discharge of ground water in the Red River of the North Basin, northeastern North Dakota: Ph.D. Dissertation, University of North Dakota, Grand Forks, North Dakota, 251 p.
- Strobel, M.L., and Gerla, P.J., 1992, Effects of saline ground-water discharge on water quality of the Red River of the North, northeastern North Dakota: Proceedings, North Dakota Water Quality Symposium, Bismarck, North Dakota, March 25-26, 1992, p. 60-82.
- Strobel, M.L., and Radig, S.A., 1997, Effects of the 1993 flood on water levels and water quality in the Sheyenne Delta aquifer, southeastern North Dakota, 1993-94: U.S. Geological Survey Water-Resources Investigations Report 97-4163, 43 p.
- Winter, T.C., Bidwell, L.E., and Maclay, R.W., 1969, Water resources of the Otter Tail River watershed, west-central Minnesota: U.S. Geological Survey Hydrologic Investigations Atlas HA-296, 4 p.
- Wolf, R.J., 1981, Hydrogeology of the Buffalo aquifer, Clay and Wilkin Counties, west-central Minnesota: U.S. Geological Survey Water-Resources Investigations Report 81-4, 83 p.

**Table 1.** Mean monthly streamflow for selected sites on the Sheyenne River in North Dakota, October through February 1957-62

[Modified from Paulson, 1964]

|                                          | Streamflow<br>(cubic feet<br>per second) |
|------------------------------------------|------------------------------------------|
| Valley City, N. Dak. (253 river miles al | bove mouth)                              |
| October                                  | 28.0                                     |
| November                                 | 41.5                                     |
| December                                 | 43.5                                     |
| January                                  | 41.6                                     |
| February                                 | 40.1                                     |
| Average for 5-month period               | 38.9                                     |
| Lisbon, N. Dak. (162 river miles abo     | ve mouth)                                |
| October                                  | 31.7                                     |
| November                                 | 42.9                                     |
| December                                 | 41.9                                     |
| January                                  | 38.8                                     |
| February                                 | 42.5                                     |
| Average for 5-month period               | <sup>1</sup> 39.6                        |
| Kindred, N. Dak. (68 river miles abo     | ove mouth)                               |
| October                                  | 50.7                                     |
| November                                 | 62.0                                     |
| December                                 | 56.5                                     |
| January                                  | 52.7                                     |
| February                                 | 51.5                                     |
| Average for 5-month period               | <sup>2</sup> 54.7                        |
| West Fargo, N. Dak. (24 river miles at   | pove mouth)                              |
| October                                  | 52.6                                     |
| November                                 | 61.0                                     |
| December                                 | 59.3                                     |
| January                                  | 54.4                                     |
| February                                 | _52.6                                    |
| Average for 5-month period               | <sup>3</sup> 55.9                        |

<sup>&</sup>lt;sup>1</sup>The average gain between Valley City and Lisbon, N. Dak., was 0.7 cubic foot per second; the average gain per mile of river between Valley City and Lisbon, N. Dak., was 0.008 cubic foot per second.

<sup>&</sup>lt;sup>2</sup>The average gain between Lisbon and Kindred, N. Dak., was 15.1 cubic feet per second; the average gain per mile of river between Lisbon and Kindred, N. Dak., was 0.160 cubic foot per second.

<sup>&</sup>lt;sup>3</sup>The average gain between Kindred and West Fargo, N. Dak., was 1.2 cubic feet per second; the average gain per mile of river between Kindred and West Fargo, N. Dak., was 0.027 cubic foot per second.

**Table 2.** Streamflow for the Sheyenne River between Valley City and West Fargo, North Dakota, September 13 through November 19, 1963 [Modified from Paulson, 1964; --, not estimated; -, indicates water loss]

|                          |            | Streamflow<br>(cubic feet per second) |           |            |            |                   | Average<br>streamflow for                                                                                                                                              | Estimated                                               |
|--------------------------|------------|---------------------------------------|-----------|------------|------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| Site Riv                 | River mile | September 13                          | October 1 | October 15 | October 29 | November 19       | <ul> <li>September 13         <ul> <li>through</li> </ul> </li> <li>November 19             <ul> <li>(cubic feet</li> <ul> <li>per second)</li> </ul> </ul></li> </ul> | ground-water<br>discharge<br>(cubic feet<br>per second) |
| Valley City <sup>1</sup> | 253.0      | 11.0                                  | 7.90      | 6.90       | 5.70       | <sup>2</sup> 33.0 | 7.87                                                                                                                                                                   |                                                         |
| Lisbon                   | 162.0      | 6.98                                  | 6.22      | 11.4       | 13.7       | $^{2}25.0$        | 9.57                                                                                                                                                                   | 1.7                                                     |
| Site A                   | 147.5      | 8.60                                  | 8.02      | 11.0       | 17.0       | $^{2}21.4$        | 11.1                                                                                                                                                                   | 1.5                                                     |
| Site B                   | 141.6      | 10.3                                  | 8.96      | 13.2       | 19.3       | <sup>2</sup> 18.6 | 12.9                                                                                                                                                                   | 1.8                                                     |
| Site C                   | 134.9      | 11.1                                  | 9.31      | 11.4       | 21.3       | 16.2              | 13.9                                                                                                                                                                   | 1.0                                                     |
| Site D                   | 131.5      | 11.7                                  | 9.20      | 13.9       | 21.8       | 19.2              | 15.2                                                                                                                                                                   | 1.3                                                     |
| Site E                   | 125.9      | 11.6                                  | 8.56      | 15.0       | 21.1       | 18.2              | 14.9                                                                                                                                                                   | 3                                                       |
| Site F                   | 114.0      | 16.6                                  | 12.5      | 18.6       | 27.9       | 24.5              | 20.0                                                                                                                                                                   | 5.1                                                     |
| Site G                   | 104.0      | 21.9                                  | 18.8      | 24.1       | 28.7       | 30.8              | 24.9                                                                                                                                                                   | 4.9                                                     |
| Site H                   | 97.4       | 24.1                                  | 21.1      | 28.3       | 33.1       | 27.5              | 26.9                                                                                                                                                                   | 2.0                                                     |
| Site I                   | 91.8       | 29.8                                  | 26.2      | 32.9       | 35.0       | 33.0              | 31.4                                                                                                                                                                   | 4.5                                                     |
| Site J                   | 87.6       | 31.5                                  | 25.8      | 34.9       | 39.5       | 38.3              | 34.0                                                                                                                                                                   | 2.6                                                     |
| Site K                   | 81.1       | 34.2                                  | 29.5      | 37.8       | 46.2       | 39.1              | 37.4                                                                                                                                                                   | 3.4                                                     |
| Site L                   | 77.3       | 36.6                                  | 26.6      | 35.9       | 43.4       | 39.4              | 36.4                                                                                                                                                                   | -1.0                                                    |
| Site M                   | 73.6       | 34.5                                  | 28.8      | 37.2       | 41.4       | 42.0              | 36.8                                                                                                                                                                   | .4                                                      |
| Near Kindred             | 68.1       | 33.5                                  | 31.0      | 37.8       | 46.1       | 43.8              | 38.4                                                                                                                                                                   | 1.6                                                     |
| West Fargo <sup>1</sup>  | 24.5       | 36.0                                  | 26.0      | 33.0       | 45.0       | $^{2}54.0$        | 35.0                                                                                                                                                                   | -3.4                                                    |

<sup>&</sup>lt;sup>1</sup>Streamflow computed from gage-height record.

 $<sup>^2\</sup>mbox{Streamflow}$  affected by releases from Lake Ashtabula. Not used in computing averages.

 Table 3. Streamflow for selected sites on the Sheyenne River in North Dakota, October 1986

[Modified from Harkness and others, 1988; --, not estimated; -, indicates water loss]

| Date             | Time             | Instantaneous<br>streamflow<br>(cubic feet<br>per second) | Average<br>streamflow<br>(cubic feet<br>per second) | Estimated<br>ground-water<br>discharge<br>(cubic feet<br>per second) |
|------------------|------------------|-----------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------|
|                  | Sheyenne River a | t Sheyenne, N. Dak. (station n                            | umber05055500)                                      |                                                                      |
| October 15, 1986 | 1350             | 7.90                                                      |                                                     |                                                                      |
| October 16, 1986 | 0955             | .40                                                       | 3.9                                                 |                                                                      |
| October 16, 1986 | 1355             | 3.50                                                      |                                                     |                                                                      |
|                  | Sheyenne R       | tiver, site 4 (site identifier475)                        | 1480995754)                                         |                                                                      |
| October 15, 1986 | 1540             | 11.1                                                      |                                                     |                                                                      |
| October 16, 1986 | 1140             | 9.51                                                      | 10.0                                                | 6.1                                                                  |
| October 16, 1986 | 1545             | 9.55                                                      |                                                     |                                                                      |
|                  | Sheyenne Ri      | ver, site 4A (site identifier475                          | 50010985530)                                        |                                                                      |
| October 16, 1986 | 0930             | 11.4                                                      | 10.6                                                | 0.6                                                                  |
| October 16, 1986 | 1530             | 9.70                                                      | 10.0                                                | 0.0                                                                  |
|                  | Sheyenne R       | tiver, site 5 (site identifier4747                        | 7550985323)                                         |                                                                      |
| October 15, 1986 | 1705             | 10.9                                                      |                                                     |                                                                      |
| October 16, 1986 | 1115             | 11.4                                                      | 11.2                                                | 0.6                                                                  |
| October 16, 1986 | 1530             | 11.3                                                      |                                                     |                                                                      |
|                  | Sheyenne R       | tiver, site 9 (site identifier4746                        | 6240983318)                                         |                                                                      |
| October 15, 1986 | 1615             | 18.0                                                      |                                                     |                                                                      |
| October 16, 1986 | 1105             | 19.1                                                      | 18.3                                                | 7.1                                                                  |
| October 16, 1986 | 1530             | 17.7                                                      |                                                     |                                                                      |
|                  | Sheyenne R       | iver, site A (site identifier462)                         | 2020973347)                                         |                                                                      |
| October 21, 1986 | 1310             | 32.1                                                      |                                                     |                                                                      |
| October 22, 1986 | 0935             | 30.6                                                      | 31.0                                                |                                                                      |
| October 22, 1986 | 1230             | 30.4                                                      |                                                     |                                                                      |
|                  | Sheyenne R       | iver, site C (site identifier462                          | 5400972934)                                         |                                                                      |
| October 21, 1986 | 1425             | 36.4                                                      |                                                     |                                                                      |
| October 22, 1986 | 1045             | 35.1                                                      | 35.6                                                | 4.6                                                                  |
| October 22, 1986 | 1330             | 35.3                                                      |                                                     |                                                                      |
|                  | Sheyenne R       | iver, site D (site identifier472                          | 8180973003)                                         |                                                                      |
| October 21, 1986 | 1530             | 45.9                                                      |                                                     |                                                                      |
| October 22, 1986 | 1125             | 40.2                                                      | 42.0                                                | 6.4                                                                  |
| October 22, 1986 | 1430             | 39.9                                                      |                                                     |                                                                      |
|                  | Sheyenne R       | iver, site E (site identifier463                          | 0540972923)                                         |                                                                      |
| October 21, 1986 | 1420             | 39.8                                                      |                                                     |                                                                      |
| October 22, 1986 | 0920             | 38.6                                                      | 39.3                                                | -2.7                                                                 |
| October 22, 1986 | 1325             | 39.5                                                      |                                                     |                                                                      |
|                  | Sheyenne R       | iver, site F (site identifier4630                         | 0530972340)                                         |                                                                      |
| October 21, 1986 | 1600             | 45.4                                                      |                                                     |                                                                      |
| October 22, 1986 | 1100             | 47.7                                                      | 46.7                                                | 7.4                                                                  |
| October 22, 1986 | 1515             | 46.9                                                      |                                                     |                                                                      |
|                  | Sheyenne R       | iver, site G (site identifier463                          | 1290971847)                                         |                                                                      |
| October 21, 1986 | 1320             | 52.8                                                      |                                                     |                                                                      |
| October 22, 1986 | 0915             | 51.7                                                      | 52.9                                                | 6.2                                                                  |
| October 22, 1986 | 1250             | 54.2                                                      |                                                     |                                                                      |
|                  | Sheyenne R       | iver, site H (site identifier463                          | 1500971540)                                         |                                                                      |
| October 21, 1986 | 1455             | 54.5                                                      |                                                     |                                                                      |
| October 22, 1986 | 1100             | 55.7                                                      | 55.1                                                | 2.2                                                                  |
| October 22, 1986 | 1430             | 55.2                                                      |                                                     |                                                                      |

Table 3. Streamflow for selected sites on the Sheyenne River in North Dakota, October 1986—Continued

[Modified from Harkness and others, 1988; --, not estimated; -, indicates water loss]

| Date             | Time       | Instantaneous<br>streamflow<br>(cubic feet<br>per second) | Average<br>streamflow<br>(cubic feet<br>per second) | Estimated<br>ground-water<br>discharge<br>(cubic feet<br>per second) |
|------------------|------------|-----------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------|
|                  | Sheyenne R | liver, site I (site identifier4632                        | 2210971306)                                         |                                                                      |
| October 21, 1986 | 1405       | 61.9                                                      |                                                     |                                                                      |
| October 22, 1986 | 0905       | 63.3                                                      | 63.2                                                | 8.1                                                                  |
| October 22, 1986 | 1640       | 64.4                                                      |                                                     |                                                                      |
|                  | Sheyenne R | iver, site J (site identifier463                          | 3250970814)                                         |                                                                      |
| October 21, 1986 | 1230       | 68.4                                                      |                                                     |                                                                      |
| October 22, 1986 | 1155       | 67.9                                                      | 68.1                                                | 4.9                                                                  |
| October 22, 1986 | 1445       | 68.0                                                      |                                                     |                                                                      |
|                  | Sheyenne R | iver, site L (site identifier463                          | 4530970428)                                         |                                                                      |
| October 21, 1986 | 1350       | 78.0                                                      |                                                     |                                                                      |
| October 22, 1986 | 0905       | 74.4                                                      | 76.0                                                | 7.9                                                                  |
| October 22, 1986 | 1315       | 75.6                                                      |                                                     |                                                                      |

**Table 4.** Estimated monthly net evaporation losses for additional flows to the Sheyenne River in North Dakota, 1931-84 [Modified from Guenthner, 1993]

| <b>88</b> 41 |                    | Estimated net evaporation loss |                       |  |
|--------------|--------------------|--------------------------------|-----------------------|--|
| Month        | Year of occurrence | Inches                         | Cubic feet per second |  |
| January      | 1963               | 0.21                           | 1.4                   |  |
| February     | 1934               | .28                            | 2.1                   |  |
| March        | 1958               | .66                            | 4.5                   |  |
| April        | 1980               | 1.78                           | 12.6                  |  |
| May          | 1980               | 6.66                           | 45.6                  |  |
| June         | 1974               | 5.49                           | 38.8                  |  |
| July         | 1936               | 7.21                           | 49.4                  |  |
| August       | 1976               | 7.42                           | 51.0                  |  |
| September    | 1948               | 5.68                           | 40.2                  |  |
| October      | 1945               | 2.62                           | 17.9                  |  |
| November     | 1939               | .87                            | 6.2                   |  |
| December     | 1939               | .23                            | 1.6                   |  |

**Table 5.** Mean water losses estimated for the Sheyenne River in North Dakota using the long-term year-by-year hydrologic budget method, 1943-96 [Modified from Gu and Deutschman, 2001; c<sub>1</sub>, evapotranspiration coefficient; -, indicates water gain]

|                                 | Period of record | Reach length<br>(miles) |                | Water loss<br>(cubic feet per second) |                       |                       |                       |
|---------------------------------|------------------|-------------------------|----------------|---------------------------------------|-----------------------|-----------------------|-----------------------|
|                                 | used             | (iiiies)                | (square miles) | c <sub>1</sub> = 0.925                | c <sub>1</sub> = 0.93 | c <sub>1</sub> = 0.94 | c <sub>1</sub> = 0.95 |
| Warwick to Cooperstown, N. Dak. | 1951-80          | 91                      | 510            | 6                                     | 3                     | -3.7                  | -11                   |
| Harvey to West Fargo, N. Dak.   | 1956-96          | 465                     | 3,090          | 99                                    | 79                    | 38.6                  | -1.7                  |

**Table 6.** Monthly mean water losses estimated for selected Sheyenne River reaches in North Dakota using the hydrograph method [Modified from Houston Engineering, Inc., 1997]

| Year | Month     | Mean<br>streamflow <sup>1</sup><br>(cubic feet per second) | Mean<br>precipitation <sup>2</sup><br>(inch) | Monthly mean<br>water loss<br>(cubic feet per second) | Water loss over<br>the reach<br>(nondimensional) | Water loss over<br>the reach per mile<br>(nondimensional) |
|------|-----------|------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------|
|      |           | K                                                          | Lindred to West Far                          | go, N. Dak. (43 miles)                                |                                                  |                                                           |
| 1956 | November  | 47                                                         | 1.52                                         | 4.04                                                  | 0.086                                            | 0.0020                                                    |
| 1956 | December  | 59                                                         | .30                                          | 3.42                                                  | .058                                             | .0013                                                     |
| 1957 | January   | 56                                                         | .31                                          | 15.74                                                 | .281                                             | .0065                                                     |
| 1957 | February  | 58                                                         | .32                                          | 15.60                                                 | .269                                             | .0063                                                     |
| 1957 | September | 324                                                        | 4.00                                         | 34.34                                                 | .106                                             | .0025                                                     |
| 1989 | December  | 33                                                         | .19                                          | 2.20                                                  | .068                                             | .0016                                                     |
| 1990 | January   | 25                                                         | .06                                          | 2.67                                                  | .107                                             | .0025                                                     |
| 1990 | February  | 33                                                         | .48                                          | 6.90                                                  | .209                                             | .0049                                                     |
| 1990 | March     | 92                                                         | 1.64                                         | 22.82                                                 | .248                                             | .0058                                                     |
| 1990 | April     | 107                                                        | 1.60                                         | 15.73                                                 | .147                                             | .0034                                                     |
|      |           | Wa                                                         | arwick to Coopersto                          | wn, N. Dak. (91 miles)                                |                                                  |                                                           |
| 1981 | February  | 154                                                        | 0.96                                         | 78.54                                                 | 0.510                                            | 0.0056                                                    |
| 1985 | August    | 80                                                         | 4.18                                         | 62.40                                                 | .780                                             | .0086                                                     |
| 1991 | August    | 15                                                         | 1.65                                         | 4.28                                                  | .285                                             | .0031                                                     |
| 1991 | September | 22                                                         | 3.35                                         | 7.11                                                  | .323                                             | .0025                                                     |

<sup>&</sup>lt;sup>1</sup>The long-term average streamflows are 225 cubic feet per second at Kindred, N. Dak., and 59 cubic feet per second at Warwick, N. Dak.

 $<sup>^2</sup>$ The long-term mean monthly precipitation amount is 1.525 inches.

Table 7. Statistics of the autocorrelation analysis (statistical method) for the Sheyenne River reach between Kindred and West Fargo, North Dakota

[Data from Houston Engineering, Inc., 1997; lag, streamflow traveltime from upstream (Kindred) to downstream (West Fargo); r, maximum correlation coefficient corresponding to lag;  $Q_{ds}$ , streamflow downstream; c, regression equation coefficient;  $Q_{us}$ , streamflow upstream; d, regression equation coefficient;  $R^2$ , coefficient of determination]

|                                            | Autoco | Regression |                                                                                |      |                |
|--------------------------------------------|--------|------------|--------------------------------------------------------------------------------|------|----------------|
| Period                                     | Lag    |            | $\mathbf{Q}_{\mathrm{ds}} = \mathbf{c}(\mathbf{Q}_{\mathrm{us}})^{\mathrm{d}}$ |      |                |
|                                            | (days) | r<br>      | С                                                                              | d    | R <sup>2</sup> |
| October 1, 1956, through February 13, 1957 | 2      | 0.756      | 3.39                                                                           | 0.65 | 0.708          |
| February 14, 1957, through August 19, 1957 | 2      | .806       | .736                                                                           | 1.08 | .673           |
| August 20, 1957, through December 25, 1957 | 2      | .977       | 2.25                                                                           | .845 | .943           |
| May 1, 1989, through December 31, 1989     | 1      | .901       | .868                                                                           | 1.06 | .814           |
| January 1, 1990, through December 31, 1990 | 2      | .909       | 1.531                                                                          | .872 | .891           |
| January 1, 1991, through February 18, 1992 | 2      | .853       | 1.718                                                                          | .845 | .717           |

**Table 8.** Estimated water losses for the Sheyenne River reach between Kindred and West Fargo, North Dakota

[Data from Houston Engineering, Inc., 1997; c<sub>1</sub>, evapotranspiration coefficient; -, indicates water gain]

|                                            | Average                                               | Water loss<br>(cubic feet per second)                               |                   |                    |  |
|--------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------|-------------------|--------------------|--|
| Period                                     | streamflow <sup>1</sup><br>(cubic feet<br>per second) | Long-term<br>hydrologic<br>budget method<br>(c <sub>1</sub> = 0.94) | Hydrograph method | Statistical method |  |
| October 1, 1956, through February 13, 1957 | 47                                                    | 7.7                                                                 | 5.21              | 5.75               |  |
| February 14, 1957, through August 19, 1957 | 96                                                    | -4.7                                                                | -9.7              | -5.8               |  |
| August 20, 1957, through December 25, 1957 | 173                                                   | 1.1                                                                 | -1.43             | -2.12              |  |
| May 1, 1989, through December 31, 1989     | 53                                                    | 9                                                                   | -5.3              | -6.47              |  |
| January 1, 1990, through December 31, 1990 | 52                                                    | 9.2                                                                 | 4.6               | 3.95               |  |
| January 1, 1991, through February 18, 1992 | 51                                                    | 9.3                                                                 | 2.4               | 3.32               |  |

 $<sup>^{1}</sup>$ The long-term average streamflow at Kindred, N. Dak., is 225 cubic feet per second.

**Table 9.** Streamflow for selected sites on the Turtle, Forest, and Park Rivers in North Dakota, October through December 1991 [Modified from Strobel and Gerla, 1992]

| Date of measurement | Streamflow<br>(cubic feet per second) | Date of measurement | Streamflow<br>(cubic feet per second) |  |  |
|---------------------|---------------------------------------|---------------------|---------------------------------------|--|--|
| Turtle R            | River, site 1                         | Forest River        | at Minto, N. Dak., site 7             |  |  |
| December 10         | 1.4                                   | December 10         | 10                                    |  |  |
| Turtle R            | River, site 2                         | Forest Rive         | er at Lake Ardoch, site 8             |  |  |
| October 11          | 4.4                                   | October 11          | 21                                    |  |  |
| November 4          | 8.7                                   | November 29         | 20                                    |  |  |
| December 10         | 5.9                                   | December 10         | 12                                    |  |  |
| Turtle River at Mel | kinock, N. Dak., site 3               | Forest R            | iver at mouth, site 11                |  |  |
| October 11          | 3.8                                   | October 11          | 34                                    |  |  |
| November 4          | 9.1                                   | November 29         | 20                                    |  |  |
| December 10         | 7.7                                   | December 10         | 12                                    |  |  |
| Turtle River at M   | anvel, N. Dak., site 4                | Pa                  | Park River, site 15                   |  |  |
| October 11          | 3.6                                   | December 11         | 8.8                                   |  |  |
| Turtle River below  | Manvel, N. Dak., site 5               | Park Ri             | Park River at mouth, site 16          |  |  |
| December 10         | 5.1                                   | December 11         | 8.4                                   |  |  |
| Turtle River        | at mouth, site 6                      |                     |                                       |  |  |
| November 4          | 37                                    |                     |                                       |  |  |
| December 10         | 6.6                                   |                     |                                       |  |  |

Table 10. Streamflow and changes in streamflow for sites on the Otter Tail River in Minnesota

[Modified from Puckett and others, 2002; --, no data]

| Date –        | Streamflow<br>(cubic meters per second) |        |                        |        |                          |              |
|---------------|-----------------------------------------|--------|------------------------|--------|--------------------------|--------------|
|               | Site 1                                  | Site 2 | Upstream net<br>change | Site 3 | Downstream net<br>change | Total change |
| February 1994 | 2.1                                     |        |                        | 2.5    | 0.4                      | 0.4          |
| June 1994     | 5.0                                     | 5.0    | 0                      | 5.0    | 0                        | 0            |
| August 1994   | 2.6                                     | 2.8    | .2                     | 3.0    | .2                       | .4           |
| August 1995   | 2.1                                     | 2.1    | 0                      | 1.9    | 2                        | 2            |