

AD NO. _____ DTC PROJECT NO. 8-CO-160-UXO-021 REPORT NO. ATC-9004

STANDARDIZED

UXO TECHNOLOGY DEMONSTRATION SITE

MOGULS SCORING RECORD NO. 547

SITE LOCATION: U.S. ARMY ABERDEEN PROVING GROUND

> DEMONSTRATOR: G-TEK AUSTRALIA PTY LIMITED 3/10 HUDSON ROAD ALBION QLD 4010 AUSTRALIA

> TECHNOLOGY TYPE/PLATFORM: MAGNETOMETER TM-4/SLING

PREPARED BY: U.S. ARMY ABERDEEN TEST CENTER ABERDEEN PROVING GROUND, MD 21005-5059

JUNE 2005

U.S. ARMY ENVIRONMENTAL CENTER

ABERDEEN PROVING GROUND, MD 21010-5401

U.S. ARMY DEVELOPMENTAL TEST COMMAND ABERDEEN PROVING GROUND, MD 21005-5055

Prepared for:

DISTRIBUTION STATEMENT A Approved for Public Release Distribution Unlimited

DISTRIBUTION UNLIMITED, JUNE 2005.

4

DISPOSITION INSTRUCTIONS

.

Destroy this document when no longer needed. Do not return to the originator.

The use of trade names in this document does not constitute an official endorsement or approval of the use of such commercial hardware or software. This document may not be cited for purposes of advertisement.

	REP	ORT DOCUM	IENTATION PAGE			Form Approved OMB No. 0704-0188
The public reporting b maintaining the data ne suggestions for reduc Suite 1204, Arlington, of information if it doe PLEASE DO NO	urden for this collection eded, and completing a ling the burden, to Deg VA 22202-4302. Res s not display a current DT RETURN YOU	on of information is es und reviewing the collu- partment of Defense, N pondents should be a ly valid OMB control m JR FORM TO T	timated to average 1 hour per ection of information. Send cor Washington Headquarters Serv ware that notwithstanding any umber. HE ABOVE ADDRESS.	response, including the mments regarding this ices, Directorate for Ir other provision of law	e time for rev burden estim nformation Op n no person si	lewing instructions, searching existing data sources, gathering an ate or any other aspect of this collection of information, includin perations and Reports (070-0188), 1215 Jetferson Davis Highway hall be subject to any penalty for failing to comply with a collection and the subject to any penalty for failing to comply with a collection failing to comply with a collection and the subject to any penalty for failing to comply with a collection and the subject to any penalty for failing to comply with a collection and the subject to any penalty for failing to comply with a collection and the subject to any penalty for failing to comply with a collection and the subject to any penalty for failing to comply with a collection and the subject to any penalty for failing to comply with a collection and the subject to any penalty for failing to comply with a collection and the subject to any penalty for failing to comply with a collection and the subject to any penalty for failing to comply with a collection and the subject to any penalty for failing to comply with a collection and the subject to any penalty for failing to comply with a collection and the subject to any penalty for failing to comply with a collection and the subject to any penalty for failing to comply with a collection and the subject to any penalty for failing to comply with a collection and the subject to any penalty for failing to comply with a collection and the subject to any penalty for failing to comply and the subject to any penalty for failing to comply with a collection and the subject to any penalty for failing to comply with a collection and the subject to any penalty failing to comply any fail
	TE (DD-MM-YY		ORT TYPE			3. DATES COVERED (From - To)
Ju	ne 2005		Final	l		23 and 24 October 2003
MOGULS SC	ZED UXO TE		DEMONSTRATION (G-TEK AUSTRALL			ITRACT NUMBER
LIMITED)					5b. GRA	ANT NUMBER
					5c. PRO	GRAM ELEMENT NUMBER
					5d PRC	DJECT NUMBER
 AUTHOR(S) Overbay, Larr The Standardi 	y; Robitaille, G	eorge nology Demor	stration Site Scoring	Committee	Su. Phe	8-CO-160-UXO-021
					5e. TAS	KNUMBER
					5f. WOF	RK UNIT NUMBER
Commander U.S. Army Ab	IG ORGANIZATI erdeen Test Ce STC-ATC-SL	nter	ND ADDRESS(ES)			8. PERFORMING ORGANIZATION REPORT NUMBER ATC-9004
	ving Ground, N		9			
Commander U.S. Army Env ATTN: SFIM	vironmental Ce -AEC-ATT	enter	E(S) AND ADDRESS(E	ES)		10. SPONSOR/MONITOR'S ACRONYM(S) 11. SPONSOR/MONITOR'S REPORT
Aberdeen Prov	ving Ground, M	1D 21005-540	1			NUMBER(S) Same as item 8
12. DISTRIBUT Distribution u	ION/AVAILABIL	ITY STATEMENT	r			-
13. SUPPLEME	NTARY NOTES					
(UXO) utilizit Larry Overbay include the U Environmenta	ecord documen ng the APG Sta and the Standa S. Army Corps	ndardized UXO ardized UXO of Engineers, t Development	O Technology Demo echnology Demonstr he Environmental Se	nstration Site N ration Site Scor curity Technology	Aoguls. 7 ing Com ogy Certi	discriminate inert unexploded ordnance The scoring record was coordinated by mittee. Organizations on the committee fication Program, the Strategic he U.S. Army Environmental Center,
TM-4/Sling	Standardized S					ite Program, Moguls, Magnetometer
ABSTRACT C THIS PAGE ABSTRACT OF		18. NUMBER	ER 19a. NAME OF RESPONSIBLE PERSON			
a. REPORT			ABSTRACT	OF PAGES		

ACKNOWLEDGEMENTS

Authors:

Larry Overbay Jr. Matthew Boutin Military Environmental Technology Demonstration Center (METDC) U.S. Army Aberdeen Test Center (ATC) U.S. Army Aberdeen Proving Ground (APG)

> Rick Fling Christina McClung Aberdeen Test and Support Services (ATSS) Sverdrup Technology, Inc. U.S. Army Aberdeen Proving Ground (APG)

Contributor:

George Robitaille U.S. Army Environmental Center (AEC) U.S. Army Aberdeen Proving Ground (APG)

(Page ii Blank)

TABLE OF CONTENTS

	ACKNOWLEDGMENTS	i
	SECTION 1. GENERAL INFORMATION	
1.1 1.2	BACKGROUND	1
1.2	1.2.1 Scoring Methodology 1.2.2 Scoring Factors	1 1 3
1.3	STANDARD AND NONSTANDARD INERT ORDNANCE TARGETS	4
	SECTION 2. DEMONSTRATION	
2.1	DEMONSTRATOR INFORMATION	5
	2.1.1 Demonstrator Point of Contact (POC) and Address	5 5 8
	2.1.2 System Description	2
	2.1.3 Data Processing Description2.1.4 Data Submission Format	10
	2.1.4 Data Subhission Format	10
	2.1.6 Additional Records	12
2.2	APG SITE INFORMATION	13
	2.2.1 Location	13
	2.2.2 Soil Type	13
	2.2.3 Test Areas	13
	SECTION 3. FIELD DATA	

3.1	DATE OF FIELD ACTIVITIES	15
3.2	AREAS TESTED/NUMBER OF HOURS	15
3.3	TEST CONDITIONS	15
	3.3.1 Weather Conditions	15
	3.3.2 Field Conditions	15
	3.3.3 Soil Moisture	15
3.4	FIELD ACTIVITIES	16
	3.4.1 Setup/Mobilization	16
	3.4.2 Calibration	16
	3.4.3 Downtime Occasions	16
	3.4.4 Data Collection	16
	3.4.5 Demobilization	16
3.5	PROCESSING TIME	17
3.6	DEMONSTRATOR'S FIELD PERSONNEL	17
3.7	DEMONSTRATOR'S FIELD SURVEYING METHOD	17
3.8	SUMMARY OF DAILY LOGS	17

PAGE

SECTION 4. TECHNICAL PERFORMANCE RESULTS

PAGE

4.1	ROC CURVES USING ALL ORDNANCE CATEGORIES	19
4.2	ROC CURVES USING ORDNANCE LARGER THAN 20 MM	20
4.3	PERFORMANCE SUMMARIES	22
4.4	EFFICIENCY, REJECTION RATES, AND TYPE CLASSIFICATION	23
4.5	LOCATION ACCURACY	24

SECTION 5. ON-SITE LABOR COSTS

SECTION 6. COMPARISON OF RESULTS TO OPEN FIELD DEMONSTRATION

6.1	SUMMARY OF RESULTS FROM OPEN FIELD DEMONSTRATION	27
6.2	COMPARISON OF ROC CURVES USING ALL ORDNANCE	
	CATEGORIES	27
6.3	COMPARISON OF ROC CURVES USING ORDNANCE LARGER THAN	
	20 MM	29
6.4	STATISTICAL COMPARISONS	30

SECTION 7. APPENDIXES

A	TERMS AND DEFINITIONS	A-1
В	DAILY WEATHER LOGS	B-1
С	SOIL MOISTURE	C-1
D	DAILY ACTIVITY LOGS	D-1
E	REFERENCES	E-1
F	ABBREVIATIONS	F - 1
G	DISTRIBUTION LIST	G-1

SECTION 1. GENERAL INFORMATION

1.1 BACKGROUND

Technologies under development for the detection and discrimination of unexploded ordnance (UXO) require testing so that their performance can be characterized. To that end, Standardized Test Sites have been developed at Aberdeen Proving Ground (APG), Maryland and U.S. Army Yuma Proving Ground (YPG), Arizona. These test sites provide a diversity of geology, climate, terrain, and weather as well as diversity in ordnance and clutter. Testing at these sites is independently administered and analyzed by the government for the purposes of characterizing technologies, tracking performance with system development, comparing performance of different systems, and comparing performance in different environments.

The Standardized UXO Technology Demonstration Site Program is a multi-agency program spearheaded by the U.S. Army Environmental Center (AEC). The U.S. Army Aberdeen Test Center (ATC) and the U.S. Army Corps of Engineers Engineering Research and Development Center (ERDC) provide programmatic support. The program is being funded and supported by the Environmental Security Technology Certification Program (ESTCP), the Strategic Environmental Research and Development Program (SERDP) and the Army Environmental Quality Technology Program (EQT).

1.2 SCORING OBJECTIVES

The objective in the Standardized UXO Technology Demonstration Site Program is to evaluate the detection and discrimination capabilities of a given technology under various field and soil conditions. Inert munitions and clutter items are positioned in various orientations and depths in the ground.

The evaluation objectives are as follows:

a. To determine detection and discrimination effectiveness under realistic scenarios that vary targets, geology, clutter, topography, and vegetation.

b. To determine cost, time, and manpower requirements to operate the technology.

c. To determine demonstrator's ability to analyze survey data in a timely manner and provide prioritized "Target Lists" with associated confidence levels.

d. To provide independent site management to enable the collection of high quality, ground-truth, geo-referenced data for post-demonstration analysis.

1.2.1 Scoring Methodology

a. The scoring of the demonstrator's performance is conducted in two stages. These two stages are termed the RESPONSE STAGE and DISCRIMINATION STAGE. For both stages, the probability of detection (P_d) and the false alarms are reported as receiver-operating

characteristic (ROC) curves. False alarms are divided into those anomalies that correspond to emplaced clutter items, measuring the probability of false positive (P_{fp}), and those that do not correspond to any known item, termed background alarms.

b. The RESPONSE STAGE scoring evaluates the ability of the system to detect emplaced targets without regard to ability to discriminate ordnance from other anomalies. For the blind grid RESPONSE STAGE, the demonstrator provides the scoring committee with a target response from each and every grid square along with a noise level below which target responses are deemed insufficient to warrant further investigation. This list is generated with minimal processing and, since a value is provided for every grid square, will include signals both above and below the system noise level.

c. The DISCRIMINATION STAGE evaluates the demonstrator's ability to correctly identify ordnance as such and to reject clutter. For the blind grid DISCRIMINATION STAGE, the demonstrator provides the scoring committee with the output of the algorithms applied in the discrimination-stage processing for each grid square. The values in this list are prioritized based on the demonstrator's determination that a grid square is likely to contain ordnance. Thus, higher output values are indicative of higher confidence that an ordnance item is present at the specified location. For digital signal processing, priority ranking is based on algorithm output. For other discrimination approaches, priority ranking is based on human (subjective) judgment. The demonstrator also specifies the threshold in the prioritized ranking that provides optimum performance, (i.e. that is expected to retain all detected ordnance and rejects the maximum amount of clutter).

d. The demonstrator is also scored on EFFICIENCY and REJECTION RATIO, which measures the effectiveness of the discrimination stage processing. The goal of discrimination is to retain the greatest number of ordnance detections from the anomaly list, while rejecting the maximum number of anomalies arising from non-ordnance items. EFFICIENCY measures the fraction of detected ordnance retained after discrimination, while the REJECTION RATIO measures the fraction of false alarms rejected. Both measures are defined relative to performance at the demonstrator-supplied level below which all responses are considered noise, i.e., the maximum ordnance detectable by the sensor and its accompanying false positive rate or background alarm rate.

e. Based on configuration of the ground truth at the standardized sites and the defined scoring methodology, there exists the possibility of having anomalies within overlapping halos and/or multiple anomalies within halos. In these cases, the following scoring logic is implemented:

(1) In situations where multiple anomalies exist within a single R_{halo} , the anomaly with the strongest response or highest ranking will be assigned to that particular ground truth item.

(2) For overlapping R_{halo} situations, ordnance has precedence over clutter. The anomaly with the strongest response or highest ranking that is closest to the center of a particular ground truth item gets assigned to that item. Remaining anomalies are retained until all matching is complete.

(3) Anomalies located within any R_{halo} that do not get associated with a particular ground truth item are thrown out and are not considered in the analysis.

f. All scoring factors are generated utilizing the Standardized UXO Probability and Plot Program, version 3.1.1.

1.2.2 Scoring Factors

Factors to be measured and evaluated as part of this demonstration include:

- a. Response Stage ROC curves:
- (1) Probability of Detection (P_d^{res}) .
- (2) Probability of False Positive (P_{fp}^{res}).
- (3) Background Alarm Rate (BAR^{res}) or Probability of Background Alarm (P_{BA}^{res}).
- b. Discrimination Stage ROC curves:
- (1) Probability of Detection (P_d^{disc}) .
- (2) Probability of False Positive (P_{fp}^{disc}).
- (3) Background Alarm Rate (BAR^{disc}) or Probability of Background Alarm (P_{BA}^{disc}).
- c. Metrics:
- (1) Efficiency (E).
- (2) False Positive Rejection Rate (R_{fp}) .
- (3) Background Alarm Rejection Rate (R_{BA}).
- d. Other:
- (1) Probability of Detection by Size and Depth.
- (2) Classification by type (i.e., 20-, 40-, 105-mm, etc.).
- (3) Location accuracy.
- (4) Equipment setup, calibration time and corresponding man-hour requirements.
- (5) Survey time and corresponding man-hour requirements.

- (6) Reacquisition/resurvey time and man-hour requirements (if any).
- (7) Downtime due to system malfunctions and maintenance requirements.

1.3 STANDARD AND NONSTANDARD INERT ORDNANCE TARGETS

The standard and nonstandard ordnance items emplaced in the test areas are listed in Table 1. Standardized targets are members of a set of specific ordnance items that have identical properties to all other items in the set (caliber, configuration, size, weight, aspect ratio, material, filler, magnetic remanence, and nomenclature). Nonstandard targets are inert ordnance items having properties that differ from those in the set of standardized targets.

Standard Type	Nonstandard (NS)		
20-mm Projectile M55	20-mm Projectile M55		
	20-mm Projectile M97		
40-mm Grenades M385	40-mm Grenades M385		
40-mm Projectile MKII Bodies	40-mm Projectile M813		
BDU-28 Submunition			
BLU-26 Submunition			
M42 Submunition			
57-mm Projectile APC M86			
60-mm Mortar M49A3	60-mm Mortar (JPG)		
	60-mm Mortar M49		
2.75-inch Rocket M230	2.75-inch Rocket M230		
	2.75-inch Rocket XM229		
MK 118 ROCKEYE			
81-mm Mortar M374	81-mm Mortar (JPG)		
	81-mm Mortar M374		
105-mm HEAT Rounds M456			
105-mm Projectile M60	105-mm Projectile M60		
155-mm Projectile M483A1	155-mm Projectile M483A		
	500-lb Bomb		

TABLE 1. INERT ORDNANCE TARGETS

JPG = Jefferson Proving Ground

HEAT = high-explosive antitank

SECTION 2. DEMONSTRATION

2.1 DEMONSTRATOR INFORMATION

2.1.1 Demonstrator Point of Contact (POC) and Address

- POC: Peter Clark 011 61 7 3862 2588 pclark@g-tek.biz
- Address: G-TEK Australia PTY Limited 3/10 Hudson Road ALBION QLD 4010 Australia

2.1.2 System Description (provided by demonstrator)

Sensor System Description.

The hand-held TM-4 magnetometer system consisting of the following components:

Item	Manufacturer	Model
Magnetometer Control Module	G-TEK	TM-4
Cs Vapor type TMI Sensors	Geometrics	G822AS
Base-station magnetometer	G-TEK	TM-4
Digital Global Positioning System (DGPS)	NovAtel	Rt-2/OEM-4
Odometer	G-TEK	TM-4D

The TM-4 is a self-contained magnetometer system, which may be configured with up to four optically pumped magnetic sensors each recording the total magnetic field intensity in units These sensors will be mounted in an array oriented of nT to a resolution of 0.01 nT. perpendicular to the survey direction permitting up to four sensor transects to be recorded simultaneously in the open terrain with high survey productivity. The proposed sensor separation is 300 mm and ground clearance 250 mm. The measurement rate from each sensor is selectable from nominally 50 per second at 0.003 nT resolution to 400 per second at 0.08 nT. The high measurement rate permits effective real-time filtering of 50/60 Hz electromagnetic interference prior to recording position or time-based measurements at intervals appropriate to the application (in this case 50 mm or 10 Hz). The TM-4 interfaces with both industry standard real-time kinematic (RTK) DGPS and proprietary cotton thread based odometer systems. This provides versatile time or position-based positioning that is adaptable to varied terrain and vegetation conditions. A key attribute of the TM-4 is the operating system software that provides a continuous set of data quality monitors reducing the need to resurvey and improving data quality. In particular there are audio and graphic displays and alarms monitoring sensor signal quality, position data quality and navigation aids.

A two-person crew operates the TM-4 system (fig.1). One-person carries the sensor array to which is attached the DGPS antenna and odometer system. This array measures 1500 mm length by the array width, which in this case will be 900 mm. The quad-sensor array weighs 10 kg. The second person operates the navigation and data acquisition hardware carried in a backpack with batteries. This backpack measures 600 by 400 by 250 mm and weighs approximately 12 kg. The user interface is a hand-held personal computer (PC). A 5-meter cable eliminating interference at the sensors from the other hardware separates the two operators. There are no specific safety hazards identified with the use of this equipment.

Figure 1. Demonstrator's system, TM-4 magnetic data acquisition system.

Data processing consists of magnetic base-station subtraction, optional band-pass spatial filtering to enhance particular source depths, grading and imaging. Interpretation of picked anomalies involves classification (by type) and ranking (by probability UXO) using model inversion involving both magnetic remanence and the use of a database of anticipated UXO types. Products are data images and dig sheets conforming to DID OE-005-05.02 standards.

The TM-4 has been used with the G-TEK odometer system by industry and the Australian Department of Defense operators for over 14 years and with DGPS for over 7 years. The odometer remains the positioning technology of choice in adverse terrains (such as wooded scenarios), DGPS is preferred in open environments. Combined, they meet the requirements of most situations.

Positioning System Description:

G-TEK propose using a combination of the following survey/navigation technologies:

Item	Manufacturer	Model
DGPS	NovAtel	RT-2/OEM-4
Odometer	G-TEK	TM-4D
Polychain	РЕКО	100M
Siters	Various	Generic traffic cones. Wooden Dowels and flagging

The TM-4 magnetometer system interfaces with both industry standard RTK DGPS and proprietary cotton thread based odometer systems providing versatile time or position-based positioning that is adaptable to varied terrain and vegetation conditions. In both cases, where an UXO detection standard of survey coverage is required, G-TEK operators use a pre-established control grid and visual sighters for straight-line navigation, and use the DGPS or odometer primarily for data positioning.

Using DGPS in the Open Area:

DGPS is the technology of choice in situations where satellite coverage is reliable. In this case, any of the industry standard RTK systems may be used although in this program we propose using the NovAtel RT-2 system (Ashtech Z-Extreme as a backup). Our preference is to establish a Global Positioning System (GPS) base-station on a monument that is within 1 km of the survey area and to use a radio link to the roving GPS receiver. In the roving instrumentation, sensor data is time tagged with GPS time and transformed DGPS positions (and the raw National Maritime Electronics Association (NMEA) GPS data for backup) are recorded. In this way, sensor data is positioned in post processing to achieve position accuracy better than 5 cm. Prior to commencing survey, the roving GPS is located at a known reference to confirm the integrity of the system and transformations used.

Using the Odometer in the Wooded Area:

The control grid setup will combine the use of DGPS and traditional survey techniques. Navigation will be done the same as described above. However, 5 meters before the commencement of each new transect, the cotton thread is tied to either vegetation or a small peg anchored to the ground. When each control line is reached, a distance mark is recorded in the TM-4 prior to moving the cone. At the completion of each survey grid section the cotton is gathered and removed from the site. In post-processing, linear error distribution delivers positional accuracy that is typically less than 0.1 percent of the distance between control lines (0.1 percent of 25 m delivers 25 mm accuracy in this case.) Because the odometer is used in more adverse terrain including forests, protocols have been developed using the electronic notepad facility of the TM-4 for recording the location of obstacles (e.g., trees) and the direction taken around these. Thus if a UXO is detected close to such a tree, the validation team will know which side of the tree to search. Experience over many years surveying in forested

conditions has indicated that an RMS target position error of less than 300 mm can be anticipated with the greatest errors occurring where obstacles are circumvented. These errors are not cumulative and are comparable with the interpreted target position errors achieved using DGPS.

2.1.3 Data Processing Description (provided by demonstrator)

Data Processing:

The data will be processed in the following sequence (the software used at each step is noted in square brackets):

Data Acquisition:

a. The output from up to four sensors of magnetometer data will be recorded at 10 Hz in GPS mode and 5 cm in cotton odometer distance-mode G-TEK's TM-4 magnetometer acquisition software.

b. The magnetometer data will be precisely time-tagged with reference to the connected GPS, at 1 Hz.

c. The GPS positions and GPS quality information will be logged at no less than 1 Hz in the required coordinate system. Extraneous position data will be either automatically or manually flagged as "not required". Raw untransformed GPS NMEA standard strings will also be logged as backup [G-TEK's SurvNav].

d. In cotton odometer mode the precise vertices of the survey boundary and control lines are measured with the RTK-DGPS and entered into the magnetometer. The operator will be responsible for hitting the start and stop button for each line [G-TEK's TM-4 magnetometer acquisition software].

e. A magnetometer base-station will record time tagged, stationary, temporal variations at 10 Hz.

f. All data will be transferred from the field devices to the processing computer and a "Field Data Sheet" completed by each crew leader ("Attachment A, DID OE-005-05.01").

g. The GPS data will automatically be assigned unique line-numbers during the data acquisition. The data will be indexed by these line-numbers during the line-based post-processing (i.e., up to the grading stage). Extraneous data will be automatically and manually flagged as "not required" [G-TEK's SurvNav].

Post-Processing by the Processing Geophysicist:

a. The GPS track will be checked, edited and smoothed as required [GEOSOFT]. For cotton positioning the distance recorded by the precise electronic odometer will be compared to the expected known length of each line. Variations exceeding a certain tolerance will trigger the issue of a "Line-ReDo" order to the field crew leader [G-TEK's Distance-Based Processing Software].

b. At this stage the positions of individual sensors will be calculated from the precisely measured sensor-GPS antennae offsets and the instantaneous track direction of the array. These individual sensor track positions will be referenced as sub-lines 1 to 4. In distance-mode this stage is automated [G-TEK's Preprocessing software].

c. The GPS, rover magnetometer and base magnetometer data will be merged on the 10-z time-base during post-processing and corrections will be then applied [GEOSOFT]. In distance-mode just the magnetometer and base-station data are merged, positioned and corrected.

d. The magnetometer data will be automatically and manually scanned for the removal of invalid data [GEOSOFT].

e. At this stage the raw data will be exported to GEOSOFT ASCII XYZ format (with line reference headers and column labels) complying with the Raw Data Submittal guidelines on the "Standardized UXO Technology Demonstration Site - Submission for Scoring" web site. The data will then be written to compact disk (CD) for submission [GEOSOFT].

f. The data will then be re-sampled to a distance-base of no greater than 0.05 meter to facilitate band-pass filtering to reduce effects from wavelengths determined to be inconsistent with the target anomalies (e.g., deep geology, system noise) [G-TEK's GEOSOFT GXs].

g. The data will then be graded to a square mesh no greater than 0.05 meter, using minimum curvature grading and using the GEOSOFT "FLOAT" grid format [GEOSOFT].

h. The graded data will then be loaded into the viewing and interpretation software for semi-automated interpretation. This process involves the automatic selection of associated maximums and minimums whose amplitudes exceed the interpretation threshold. These are then manually checked. The selected anomalies are then inverted against a list of target items to find the best fit and the degree of magnetic remanence required. Use will be made of the ground-truth data from the Calibration Lane to fine-tune the discrimination parameters. This will then provide the basis for the discrimination classification and prioritization in the submittal [G-TEK's MagSys software].

i. The information from the selected anomalies ("Processed Data") will then be imported into a Microsoft (MS)-Excel spreadsheet for formatting for presentation as a dig sheet based on the template "Attachment C, DID OE-005-05.01" and written to CD for submittal [G-TEK's EOD Reporter MS Excel macro].

j. The dig sheet data ("Processed Data") will also be reformatted to comply with the Processed Data Submittal guidelines on the "Standardized UXO Technology Demonstration Site - Submission for Scoring" web site. The data will then be written to CD for submission [MS EXCEL].

k. The color contour, processed magnetic grid-image, with selected anomalies marked will be presented based on the map template "Attachment D, DID OE-005-05.01" also on CD [GEOSOFT].

Discrimination:

The discrimination will be performed using G-TEK's MagSys display, interpretation and discrimination software. This tool enables the selected anomalies to be inverted to a series of spheroids representing UXO and cluster items know to exist at this site. A user selectable amount of remanence will be permitted into inversion parameters. The dipole moment direction, and strength will also be listed for each item. These discrimination parameters will then be fine-tuned using the Calibration Lane data.

2.1.4 Data Submission Format

Data were submitted for scoring in accordance with data submission protocols outlined in the Standardized UXO Technology Demonstration Site Handbook. These submitted data are not included in this report in order to protect ground truth information.

2.1.5 <u>Demonstrator Quality Assurance (QA) and Quality Control (QC) (provided by</u> <u>demonstrator)</u>

Quality Control. G-TEK will perform QC steps and tests using the DID OE_005.05.02 using the following QC frequency:

Test Description	Power on	Day start	Day start/end	First day	Repeat last 2 grid lines
Equipment warm-up	5-min.				
Record sensor offsets		Х			
Personnel test		X			
Vibration test		Х			
Static and spike test			3 min/1 min/3 min		
Six line test				Х	
Repeat line test					Х
Visit survey point			Х		

Equipment/Electronics warm-up for 5 minutes: This allows for thermal stabilization of electronics.

Record Relative Sensor Position (1 cm accuracy): Document relative navigation and sensor offsets, detector separation, and detector heights above the ground surface.

Personnel Test (10 emu at 10 cm from the sensors): To ensure survey personnel have removed all potential metallic interference sources from their bodies.

Shake Test (<10 emu at 10 cm from the sensor): To identify and replace shorting cables and broken pin-outs on connectors, with the instrument held in a static position and collecting data, cables are shaken to test for shorts and broken pin-outs. Repaired or replaced cables are rigorously retested before use.

Static Background and Static Standard Response (Spike) Test (10 emu): To quantify instrument background readings, electronic drift, locate potential interference spikes, and determine impulse response and repeatability of the instrument to a standard test item. Review in real-time.

Six Line Test (Repeatability of Response Amplitude ± 20 percent, Positional Accuracy ± 20 cm): To document latency, heading effects, repeatability of response amplitude, and positional accuracy. The test line will be well marked to facilitate data collection over the exact same line each time the test is performed. Background response over the test line is established in Lines 1 and 2. A standard test item, such as a steel trailer hitch ball, will be used for Lines 3 through 6.

Visit Survey Point (+25 mm): Check that GPS base location and transformations are correct.

Repeat Last Two Lines of Each Grid (Repeatability of Response Amplitude ± 20 percent, Positional Accuracy ± -20 cm): To determine positional and geophysical data repeatability.

TM-4 MAG Calibration (>250 emu): By the use of calibration device known as an "EMUlator" (developed by G-TEK for the purpose of establishing the integrity of the TM-4 MAG) the EMUlator is placed touching the rim of the sensor coil and data is recorded for a period of 60 seconds. The EMUlator delivers a controlled response to the excitation transmitted by the TM-4 MAG.

Sensor Elevation: The TM-4 MAG will be operated at a low but uniform elevation. To help the operator achieve the elevation, a piece of non-conductive tape will be attached to the back of the coil such that it hangs 10 cm. The operator then maintains the end of the tape just touching the ground (or where he judges the ground to be below the grass cover). Higher elevations due to vegetation will be noted.

Data Processing: The data processing and interpretations will be checked by a second geophysicist, and all intermediate processing stages of the data will be retained in meaningfully named columns within GEOSOFT for this purpose. All data will be backed up daily.

Quality Assurance (QA). The data collected during the pre-survey QC checks will be processed, documented and checked by the Data Processing Geophysicist to assure that the entire system will provide the quality to achieve the desired outcome of detecting and correctly discriminating the UXO items down to their specified depths as determined by the site conditions.

• The RT-DGPS systems have a quoted accuracy of 2.0 cm + 0.1 mm/(km to the base-station) Central Error Probability (CEP) in dynamic mode. In practice, however, assuming a consistent differential correction of 1 per second and a baseline less than 2 km the worst-case absolute accuracy will be +5.0 cm with a typical accuracy of +2.5 cm. Synchronization errors between the EM detector and the GPS will be reduced by calibration down to the resolution of the sampling rate of 0.03 second. In sloping terrain there will be an additional error when the GPS antennae pole varies from the vertical.

• In the forested areas the use of an electronic cotton odometer system to track the sensors' positions along the line will be used. This system has an inherent along-line accuracy of <1 percent and a resolution of 5 cm. However, when the start and the end positions are known, this error is reduced to <0.2 percent of the distance between known points. In this case we propose to have control lines at no greater than 25 m intervals. That is an accuracy of +5 cm.

Estimated Accuracy of the Navigation System: The primary navigation method will be the use of accurately placed sighters along the control lines. The operators must then keep at least two sighters in line with the center point of the sensor array. This navigation technique will be used with both the cotton and the GPS positions tracking systems. The advantage of this system is its simplicity and applicability to difficult situations. The accuracy of this system depends on the accuracy of the pegged grid and the diligence of the operators. The anticipated typical across-line error is ± 10 cm. The effective swath width of the 2-sensor array will be 1.2 meter. The nominal lane space of 1.0 meter will allow for cross-line navigation variations.

QA of Positioning: The GEOSOFFT DoD UXO QA system will be used to report on "Line Coverage Comparisons." This report will allow the quantifications of the data positioning on a line basis. Lines that fail will trigger "Re-Do" orders to the field crew leaders.

QA of Sensor Data Quality: The quality of each sub-line of data will be quantified as the largest distance with consecutive invalid sensor data. If a sub-line fails the criteria then a "Re-Do" order will be triggered. The magnetometer base-station will be subjected to similar quality quantification and recording processes.

QA Based on a Two Traverse Resurvey: The sensor data and interpretation will be compared to the original and whole-system repeatability will be reported for quality assurance.

QA of Data Processing: During data processing the dates and times of the various data streams will be automatically correlated by the software. A second QC geophysicist will check the quality of the raw data, the selected processing parameters, interpretation parameters, and the final grid data. The data will then provide QA of the interpretation by checking each grid of the data for missed anomalies. Thee QC geophysicist can then add but not delete more anomalies. The QC geophysicist will then repeat the discrimination process on 10 percent of the anomalies and compare the results. The process will assure the quality of the final prioritized dig sheet results. The results will allow the generation of quantified assured depth of detection verse caliber graph.

2.1.6 Additional Records

The following record(s) by this vendor can be accessed via the Internet as MicroSoft Word documents at <u>www.uxotestsites.org</u>. The counterparts to this report are the Blind Grid, Scoring Record No. 268, the Open Field, Scoring Record No. 311, and the Woods, Scoring Record No. 454.

2.2 APG SITE INFORMATION

2.2.1 Location

The APG Standardized Test Site is located within a secured range area of the Aberdeen Area. The Aberdeen Area of APG is located approximately 30 miles northeast of Baltimore at the northern end of the Chesapeake Bay. The Standardized Test Site encompasses 17 acres of upland and lowland flats, woods and wetlands.

2.2.2 Soil Type

According to the soils survey conducted for the entire area of APG in 1998, the test site consists primarily of Elkton Series type soil (ref 2). The Elkton Series consist of very deep, slowly permeable, poorly drained soils. These soils formed in silty aeolin sediments and the underlying loamy alluvial and marine sediments. They are on upland and lowland flats and in depressions of the Mid-Atlantic Coastal Plain. Slopes range from 0 to 2 percent.

ERDC conducted a site-specific analysis in May of 2002 (ref 3). The results basically matched the soil survey mentioned above. Seventy percent of the samples taken were classified as silty loam. The majority (77 percent) of the soil samples had a measured water content between 15- and 30-percent with the water content decreasing slightly with depth.

For more details concerning the soil properties at the APG test site, go to <u>www.uxotestsites.org</u> on the web to view the entire soils description report.

2.2.3 Test Areas

A description of the test site areas at APG is included in Table 2.

Area	Description			
Calibration Grid Contains 14 standard ordnance items buried in six positions at variou depths to allow demonstrator to calibrate their equipment.				
Blind Test Grid	Contains 400 grid cells in a 0.2-hectare (0.5 acre) site. The center of each grid cell contains ordnance, clutter or nothing.			
Open Field	A 4-hectare (10-acre) site containing open areas, dips, ruts and obstructions the challenge platform systems or hand held detectors. The challenges include a gravel road, wet areas and trees. The vegetation height varies from 15 to 25			
Moguls	A 1.30-acre area consisting of two areas (the rectangular or driving portion of the course and the triangular section with more difficult, non-drivable terrain). A series of craters (as deep as 0.91m) and mounds (as high as 0.91m) encompass this section.			

TABLE 2.TEST SITE AREAS

SECTION 3. FIELD DATA

3.1 DATE OF FIELD ACTIVITIES (23 and 24 October 2003)

3.2 AREAS TESTED/NUMBER OF HOURS

Areas tested and total number of hours operated at each site are summarized in Table 3.

TABLE 3. AREAS TESTED AND NUMBER OF HOURS

Area	Number of Hours 0.92		
Calibration Lanes			
Mogul	9.75		

3.3 TEST CONDITIONS

3.3.1 Weather Conditions

An APG weather station located approximately one mile west of the test site was used to record average temperature and precipitation on a half hour basis for each day of operation. The temperatures listed in Table 4 represent the average temperature during field operations from 0700 to 1700 hours while precipitation data represents a daily total amount of rainfall. Hourly weather logs used to generate this summary are provided in Appendix B.

TABLE 4. TEMPERATURE/PRECIPITATION DATA SUMMARY

Date, 2003	Average Temperature, °F	Total Daily Precipitation, in.
October 23	44.38	0.00
October 24	49.45	0.01

3.3.2 Field Conditions

G-TEK surveyed the Mogul area with the Magnetometer array on 23-24 October 2003. The Mogul area was muddy due to rain events which occurred before and during testing.

3.3.3 Soil Moisture

Three soil probes were placed at various locations within the site to capture soil moisture data: Blind Grid, Calibration, Open Field, and Wooded areas. Measurements were collected in percent moisture and were taken twice daily (morning and afternoon) from five different soil depths (1 to 6 in., 6 to 12 in., 12 to 24 in., 24 to 36 in., and 36 to 48 in.) from each probe. Soil moisture logs are included in Appendix C.

3.4 FIELD ACTIVITIES

3.4.1 Setup/Mobilization

These activities included initial mobilization and daily equipment preparation and break down. A three-person crew took 5 hours and 10 minutes to perform the initial setup and mobilization. There was 3 hours and 15 minutes of daily equipment preparation and end of the day equipment break down lasted 1-hour and 5 minutes.

3.4.2 Calibration

G-TEK spent a total of 55 minutes in the calibration lanes, of which 50 minutes was spent collecting data. An additional 15 minutes was spent calibrating in the mogul area.

3.4.3 Downtime Occasions

Occasions of downtime are grouped into five categories: equipment/data checks or equipment maintenance, equipment failure and repair, weather, Demonstration Site issues, or breaks/lunch. All downtime is included for the purposes of calculating labor costs (section 5) except for downtime due to Demonstration Site issues. Demonstration Site issues, while noted in the Daily Log, are considered non-chargeable downtime for the purposes of calculating labor costs and are not discussed. Breaks and lunches are discussed in this section and billed to the total Site Survey area.

3.4.3.1 Equipment/data checks, maintenance. Equipment data checks and maintenance activities accounted for 20 minutes of site usage time. These activities included changing out batteries and routine data checks to ensure the data was being properly recorded/collected. G-TEK spent no time for breaks and lunches.

3.4.3.2 <u>Equipment failure or repair</u>. No time was needed to resolve equipment failures that occurred while surveying the Mogul.

3.4.3.3 <u>Weather</u>. No weather delays occurred during the survey.

3.4.4 Data Collection

G-TEK spent a total time of 9 hours and 45 minutes in the Mogul area, 5 hours and 5 minutes of which was spent collecting data.

3.4.5 Demobilization

The G-TEK survey crew went on to conduct a full demonstration of the site. Therefore, demobilization did not occur until 24 October 2003. On that day, it took the crew 1-hour and 35 minutes to break down and pack up their equipment.

3.5 PROCESSING TIME

G-TEK submitted the raw data from the demonstration activities on the last day of the demonstration, as required. The scoring submittal data was also provided within the required 30-day timeframe.

3.6 DEMONSTRATOR'S FIELD PERSONNEL

Mr. Peter Clark, Site Manager

Mr. Paul O'Donnell, Geophysicist

Mr. Bruce Symans, Crew Leader

Mr. Graham Browne, Field Technician

Mr. Terry Foot, Data Acquisition, Grid Setup

3.7 DEMONSTRATOR'S FIELD SURVEYING METHOD

G-TEK started surveying the Mogul area in the southwest portion and surveyed in a south/north direction. One lane was surveyed and then the demonstrator returned to the beginning of the next lane, until completion.

3.8 SUMMARY OF DAILY LOGS

Daily logs capture all field activities during this demonstration and are located in Appendix D. Activities pertinent to this specific demonstration are indicated in highlighted text.

SECTION 4. TECHNICAL PERFORMANCE RESULTS

4.1 ROC CURVES USING ALL ORDNANCE CATEGORIES

Figure 2 shows the probability of detection for the response stage (P_d^{res}) and the discrimination stage (P_d^{disc}) versus their respective probability of false positive. Figure 3 shows both probabilities plotted against their respective background alarm rate. Both figures use horizontal lines to illustrate the performance of the demonstrator at two demonstrator-specified points: at the system noise level for the response stage, representing the point below which targets are not considered detectable, and at the demonstrator's recommended threshold level for the discrimination stage, defining the subset of targets the demonstrator would recommend digging based on discrimination. Note that all points have been rounded to protect the ground truth.

The overall ground truth is composed of ferrous and non-ferrous anomalies. Due to limitations of the magnetometer, the non-ferrous items cannot be detected. Therefore, the ROC curves presented in this section are based on the subset of the ground truth that is solely made up of ferrous anomalies.

Figure 2. MAG TM-4/sling mogul probability of detection for response and discrimination stages versus their respective probability of false positive over all ordnance categories combined.

19

Figure 3. MAG TM-4/sling mogul probability of detection for response and discrimination stages versus their respective background alarm rate over all ordnance categories combined.

4.2 ROC CURVES USING ORDNANCE LARGER THAN 20 MM

Figure 4 shows the probability of detection for the response stage (P_d^{res}) and the discrimination stage (P_d^{disc}) versus their respective probability of false positive when only targets larger than 20 mm are scored. Figure 5 shows both probabilities plotted against their respective probability of background alarm. Both figures use horizontal lines to illustrate the performance of the demonstrator at two demonstrator-specified points: at the system noise level for the response stage, representing the point below which targets are not considered detectable, and at the demonstrator's recommended threshold level for the discrimination stage, defining the subset of targets the demonstrator would recommend digging based on discrimination. Note that all points have been rounded to protect the ground truth.

Figure 4. MAG TM-4/sling mogul probability of detection for response and discrimination stages versus their respective probability of false positive for all ordnance larger than 20 mm.

Figure 5. MAG TM-4/sling mogul probability of detection for response and discrimination stages versus their respective background alarm rate for all ordnance larger than 20 mm.

4.3 PERFORMANCE SUMMARIES

Results for the Mogul Area test, broken out by size, depth and nonstandard ordnance, are presented in Tables 5a and 5b (for cost results, see section 5). Results by size and depth include both standard and nonstandard ordnance. The results by size show how well the demonstrator did at detecting/discriminating ordnance of a certain caliber range (see app A for size definitions). The results are relative to the number of ordnances emplaced. Depth is measured from the geometric center of anomalies.

The RESPONSE STAGE results are derived from the list of anomalies above the demonstrator-provided noise level. The results for the DISCRIMINATION STAGE are derived from the demonstrator's recommended threshold for optimizing UXO field cleanup by minimizing false digs and maximizing ordnance recovery. The lower 90-percent confidence limit on probability of detection and probability of false positive was calculated assuming that the number of detections and false positives are binomially distributed random variables. All results in Tables 5a and 5b have been rounded to protect the ground truth. However, lower confidence limits were calculated using actual results.

The overall ground truth is composed of ferrous and non-ferrous anomalies. Due to limitations of the magnetometer, the non-ferrous items cannot be detected. Therefore, the summary presented in Table 5a exhibits results based on the subset of the ground truth that is solely the ferrous anomalies. Table 5b exhibits results based on the full ground truth. All other tables presented in this section are based on scoring against the ferrous only ground truth. The response stage noise level and recommended discrimination stage threshold values are provided by the demonstrator.

			Nonstandard		By Size		By Depth, m		
Metric	Overall S	Standard		Small	Medium	Large	< 0.3	0.3 to <1	>= 1
			RESPONSE S	TAGE					
P _d	0.25	0.30	0.25	0.10	0.35	0.50	0.30	0.30	0.15
Pd Low 90% Conf	0.23	0.23	0.17	0.06	0.26	0.36	0.24	0.20	0.05
P _d Upper 90% Conf	0.32	0.36	0.33	0.18	0.42	0.64	0.38	0.37	0.28
P _{fp}	0.30	-	-	-	-	-	0.35	0.25	0.15
Pfp Low 90% Conf	0.28	-	-	-	-	-	0.30	0.23	0.01
P _{fp} Upper 90% Conf	0.34	-	-	-	-	-	0.39	0.31	0.41
BAR	0.35	-	-	-	-	-	-	-	-
	1		DISCRIMINATIO	ON STAG	E				
P _d	0.20	0.25	0.20	0.10	0.25	0.45	0.25	0.25	0.15
Pd Low 90% Conf	0.18	0.18	0.13	0.05	0.17	0.32	0.18	0.16	0.05
P _d Upper 90% Conf	0.27	0.31	0.27	0.16	0.32	0.60	0.31	0.31	0.28
P _{fp}	0.20	-	-	-	-	-	0.30	0.15	0.00
Pfp Low 90% Conf	0.19	-	-	-	-	-	0.24	0.13	0.00
P _{fp} Upper 90% Conf	0.25	-	-	-	-	-	0.32	0.20	0.25
BAR	0.25	-	-	-	-	-	-	-	-

 TABLE 5a.
 SUMMARY OF MOGUL RESULTS (FERROUS ONLY)

Response Stage Noise Level: 7.00

Recommended Discrimination Stage Threshold: 0.50

				By Size			By Depth, m		
Metric Ov	Overall	Standard	Nonstandard	Small	Medium	Large	< 0.3	0.3 to <1	>= 1
			RESPONSE S	STAGE					
P _d	0.25	0.25	0.20	0.10	0.35	0.50	0.25	0.25	0.15
P _d Low 90% Conf	0.20	0.20	0.16	0.06	0.26	0.36	0.20	0.19	0.05
Pd Upper 90% Conf	0.29	0.32	0.29	0.15	0.42	0.64	0.33	0.35	0.27
P _{fp}	0.30	-	-	-	-	-	0.35	0.25	0.10
Pfp Low 90% Conf	0.27	-	-	-	-	-	0.29	0.23	0.01
P _{fp} Upper 90% Conf	0.33	-	-	-	-	-	0.37	0.31	0.37
BAR	0.35	-	-	-	-	-	-	-	-
			DISCRIMINATIO	ON STAG	E				
P _d	0.20	0.20	0.20	0.10	0.25	0.45	0.20	0.20	0.15
Pd Low 90% Conf	0.16	0.16	0.12	0.05	0.17	0.32	0.15	0.15	0.05
P _d Upper 90% Conf	0.24	0.27	0.25	0.13	0.32	0.60	0.27	0.30	0.27
P _{fp}	0.20	-	-	-	-	-	0.25	0.15	0.00
P _{fp} Low 90% Conf	0.19	-	-	-	-	-	0.23	0.13	0.00
P _{fp} Upper 90% Conf	0.24	-	-	-	-	-	0.30	0.20	0.23
BAR	0.25	-	-	-	-	-	-	-	-

TABLE 5b. SUMMARY OF MOGUL RESULTS (FULL GROUND TRUTH)

Response Stage Noise Level: 7.00

Recommended Discrimination Stage Threshold 0.50

Note: The recommended discrimination stage threshold values are provided by the demonstrator.

4.4 EFFICIENCY, REJECTION RATES, AND TYPE CLASSIFICATION

Efficiency and rejection rates are calculated to quantify the discrimination ability at specific points of interest on the ROC curve: (1) at the point where no decrease in P_d is suffered (i.e., the efficiency is by definition equal to one) and (2) at the operator selected threshold. These values are reported in Table 6.

	Efficiency (E)	False Positive Rejection Rate	Background Alarm Rejection Rate
At Operating Point	0.81	0.29	0.28
With No Loss of P_d	1.00	0.20	0.12

TABLE 6. EFFICIENCY AND REJECTION RATES

At the demonstrator's recommended setting, the ordnance items that were detected and correctly discriminated were further scored on whether their correct type could be identified (table 7). Correct type examples include "20-mm projectile, 105-mm HEAT Projectile, and 2.75-inch Rocket". A list of the standard type declaration required for each ordnance item was provided to demonstrators prior to testing. For example, the standard type for the three example items are 20mmP, 105H, and 2.75in, respectively.

TABLE 7. CORRECT TYPE CLASSIFICATION OF TARGETS CORRECTLY DISCRIMINATED AS UXO

Size	Percentage Correct
Small	16.7
Medium	12.5
Large	41.7
Overall	23.5

4.5 LOCATION ACCURACY

The mean location error and standard deviations appear in Table 8. These calculations are based on average missed depth for ordnance correctly identified in the discrimination stage. Depths are measured from the closest point of the ordnance to the surface. For the Blind Grid, only depth errors are calculated, since (X, Y) positions are known to be the centers of each grid square.

	Mean	Standard Deviation
Northing	0.10	0.21
Easting	-0.05	0.24
Depth	0.02	0.26

TABLE 8. MEAN LOCATION ERROR AND
STANDARD DEVIATION (M)

SECTION 5. ON-SITE LABOR COSTS

A standardized estimate for labor costs associated with this effort was calculated as follows: the first person at the test site was designated "supervisor", the second person was designated "data analyst", and the third and following personnel were considered "field support". Standardized hourly labor rates were charged by title: supervisor at \$95.00/hour, data analyst at \$57.00/hour, and field support at \$28.50/hour.

Government representatives monitored on-site activity. All on-site activities were grouped into one of ten categories: initial setup/mobilization, daily setup/stop, calibration, collecting data, downtime due to break/lunch, downtime due to equipment failure, downtime due to equipment/data checks or maintenance, downtime due to weather, downtime due to demonstration site issue, or demobilization. See Appendix D for the daily activity log. See section 3.4 for a summary of field activities.

The standardized cost estimate associated with the labor needed to perform the field activities is presented in Table 9. Note that calibration time includes time spent in the Calibration Lanes as well as field calibrations. "Site survey time" includes daily setup/stop time, collecting data, breaks/lunch, downtime due to equipment/data checks or maintenance, downtime due to failure, and downtime due to weather.

	No. People	Hourly Wage	Hours	Cost
		Initial Setup		
Supervisor	1	\$95.00	5.16	\$490.20
Data Analyst	1	57.00	5.16	294.12
Field Support	1	28.50	5.16	147.06
SubTotal				\$931.38
		Calibration		
Supervisor	1	\$95.00	1.17	\$111.15
Data Analyst	1	57.00	1.17	66.69
Field Support	1	28.50	1.17	33.35
SubTotal				\$211.19
		Site Survey		1
Supervisor	1	\$95.00	9.75	\$926.25
Data Analyst	1	57.00	9.75	555.75
Field Support	1	28.50	9.75	277.88
SubTotal				\$1,759.88

TABLE 9. ON-SITE LABOR COSTS

See notes at end of table.

TABLE 9 (CONT'D)

	No. People	Hourly Wage	Hours	Cost
]	Demobilization		•
Supervisor	1	\$95.00	1.58	\$150.10
Data Analyst	1	57.00	1.58	90.06
Field Support	1	28.50	1.58	45.03
Subtotal				\$285.19
Total				\$3,187.64

Notes: Calibration time includes time spent in the Calibration Lanes as well as calibration before each data run.

Site Survey time includes daily setup/stop time, collecting data, breaks/lunch, downtime due to system maintenance, failure, and weather.

SECTION 6. COMPARISON OF RESULTS TO OPEN FIELD DEMONSTRATION (BASED ON FERROUS ONLY GROUND TRUTH)

6.1 SUMMARY OF RESULTS FROM OPEN FIELD DEMONSTRATION

Table 10 shows the results from the Open Field survey conducted prior to surveying the Moguls during the same site visit in October of 2003. Due to the system utilizing magnetometer type sensors, all results presented in the following section have been based on performance scoring against the ferrous only ground truth anomalies. For more details on the Open Field survey results reference section 2.1.6.

			Nonstandard		By Size		By Depth, m		
Metric	Overall Standar	Standard		Small	Medium	Large	< 0.3	0.3 to <1	>= 1
			RESPONSE S	STAGE					
P _d	0.60	0.65	0.55	0.45	0.60	0.85	0.60	0.60	0.55
Pd Low 90% Conf	0.57	0.60	0.47	0.38	0.54	0.77	0.56	0.55	0.47
P _d Upper 90% Conf	0.64	0.70	0.60	0.51	0.66	0.89	0.67	0.68	0.64
P _{fp}	0.45	-	-	-	-	-	0.45	0.50	0.55
Pfp Low 90% Conf	0.45	-	-	-	-	-	0.41	0.47	0.38
P _{fp} Upper 90% Conf	0.49	-	-	-	-	-	0.47	0.53	0.74
BAR	0.30	-	-	-	-	-	-	-	-
]	DISCRIMINATIO	ON STA-G	E				
P _d	0.50	0.55	0.45	0.30	0.55	0.80	0.50	0.55	0.50
P _d Low 90% Conf	0.48	0.51	0.40	0.26	0.47	0.71	0.43	0.50	0.42
P _d Upper 90% Conf	0.56	0.61	0.53	0.39	0.59	0.84	0.54	0.63	0.60
P _{fp}	0.25	-	-	-	-	-	0.25	0.25	0.40
Pfp Low 90% Conf	0.24	-	-	-	-	-	0.23	0.23	0.21
P _{fp} Upper 90% Conf	0.28	-	-	-	-	-	0.29	0.28	0.57
BAR	0.20	-	-	-	-	-	-	-	-

TABLE 10.SUMMARY OF OPEN FIELD RESULTS FOR THEMAGNETOMETER TM-4/SLING (FERROUS ONLY)

6.2 COMPARISON OF ROC CURVES USING ALL ORDNANCE CATEGORIES

Figure 6 shows P_d^{res} versus the respective P_{fp} over all ordnance categories. Figure 7 shows P_d^{disc} versus their respective P_{fp} over all ordnance categories. Figure 7 uses horizontal lines to illustrate the performance of the demonstrator at the recommended discrimination threshold levels, defining the subset of targets the demonstrator would recommend digging based on discrimination. The ROC curves in this section are a sole reflection of the ferrous only survey.

27

Figure 6. MAG TM-4/sling P_d^{res} stages versus the respective P_{fp} over all ordnance categories combined.

Figure 7. MAG TM-4/sling P_d^{disc} versus the respective P_{fp} over all ordnance categories combined.

6.3 COMPARISON OF ROC CURVES USING ORDNANCE LARGER THAN 20 MM

Figure 8 shows the P_d^{res} versus the respective probability of P_{fp} over ordnance larger than 20 mm. Figure 9 shows P_d^{disc} versus the respective P_{fp} over ordnance larger than 20 mm. Figure 9 uses horizontal lines to illustrate the performance of the demonstrator at the recommended discrimination threshold levels, defining the subset of targets the demonstrator would recommend digging based on discrimination.

Figure 8. MAG TM-4/sling P_d^{res} versus the respective P_{fp} for ordnance larger than 20 mm.

Figure 9. MAG TM-4/sling P_d^{disc} versus the respective P_{fp} for ordnance larger than 20 mm.

6.4 STATISTICAL COMPARISONS

Statistical Chi-square significance tests were used to compare results between the Open Field and Mogul Area scenarios. The intent of the comparison is to determine if the feature introduced in each scenario has a degrading effect on the performance of the sensor system. However, any modifications in the UXO sensor system during the test, like changes in the processing or changes in the selection of the operating threshold, will also contribute to performance differences.

The Chi-square test for comparison between ratios was used at a significance level of 0.05 to compare Open Field to Mogul Area with regard to P_d^{res} , P_d^{disc} , P_{fp}^{res} and P_{fp}^{disc} , Efficiency and Rejection Rate. These results are presented in Table 11. A detailed explanation and example of the Chi-square application is located in Appendix A.

TABLE 11. CHI-SQUARE RESULTS – OPEN FIELD VERSUS MOGULS

Metric	Small	Medium	Large	Overall
P _d ^{res}	Significant	Significant	Significant	Significant
P _d ^{disc}	Significant	Significant	Significant	Significant
P _{fp} ^{res} P _{fp} ^{disc}	Not Significant	Not Significant	Not Significant	Not Significant
P _{fp} ^{disc}	-	-	-	Significant
Efficiency	-	-	-	Not Significant
Rejection rate	-	-	-	Significant

(Page 32 Blank)

SECTION 7. APPENDIXES

APPENDIX A. TERMS AND DEFINITIONS

GENERAL DEFINITIONS

Anomaly: Location of a system response deemed to warrant further investigation by the demonstrator for consideration as an emplaced ordnance item.

Detection: An anomaly location that is within R_{halo} of an emplaced ordnance item.

Emplaced Ordnance: An ordnance item buried by the government at a specified location in the test site.

Emplaced Clutter: A clutter item (i.e., non-ordnance item) buried by the government at a specified location in the test site.

 R_{halo} : A pre-determined radius about the periphery of an emplaced item (clutter or ordnance) within which a location identified by the demonstrator as being of interest is considered to be a response from that item. If multiple declarations lie within R_{halo} of any item (clutter or ordnance), the declaration with the highest signal output within the R_{halo} will be utilized. For the purpose of this program, a circular halo 0.5 meters in radius will be placed around the center of the object for all clutter and ordnance items less than 0.6 meters in length. When ordnance items are longer than 0.6 meters, the halo becomes an ellipse where the minor axis remains 1 meter and the major axis is equal to the length of the ordnance plus 1 meter.

Small Ordnance: Caliber of ordnance less than or equal to 40 mm (includes 20-mm projectile, 40-mm projectile, submunitions BLU-26, BLU-63, and M42).

Medium Ordnance: Caliber of ordnance greater than 40 mm and less than or equal to 81 mm (includes 57-mm projectile, 60-mm mortar, 2.75 in. Rocket, MK118 Rockeye, 81-mm mortar).

Large Ordnance: Caliber of ordnance greater than 81 mm (includes 105-mm HEAT, 105-mm projectile, 155-mm projectile, 500-pound bomb).

Shallow: Items buried less than 0.3 meter below ground surface.

Medium: Items buried greater than or equal to 0.3 meter and less than 1 meter below ground surface.

Deep: Items buried greater than or equal to 1 meter below ground surface.

Response Stage Noise Level: The level that represents the point below which anomalies are not considered detectable. Demonstrators are required to provide the recommended noise level for the Blind Grid test area.
Discrimination Stage Threshold: The demonstrator selected threshold level that they believe provides optimum performance of the system by retaining all detectable ordnance and rejecting the maximum amount of clutter. This level defines the subset of anomalies the demonstrator would recommend digging based on discrimination.

Binomially Distributed Random Variable: A random variable of the type which has only two possible outcomes, say success and failure, is repeated for n independent trials with the probability p of success and the probability 1-p of failure being the same for each trial. The number of successes x observed in the n trials is an estimate of p and is considered to be a binomially distributed random variable.

RESPONSE AND DISCRIMINATION STAGE DATA

The scoring of the demonstrator's performance is conducted in two stages. These two stages are termed the RESPONSE STAGE and DISCRIMINATION STAGE. For both stages, the probability of detection (P_d) and the false alarms are reported as receiver operating characteristic (ROC) curves. False alarms are divided into those anomalies that correspond to emplaced clutter items, measuring the probability of false positive (P_{fp}) and those that do not correspond to any known item, termed background alarms.

The RESPONSE STAGE scoring evaluates the ability of the system to detect emplaced targets without regard to ability to discriminate ordnance from other anomalies. For the RESPONSE STAGE, the demonstrator provides the scoring committee with the location and signal strength of all anomalies that the demonstrator has deemed sufficient to warrant further investigation and/or processing as potential emplaced ordnance items. This list is generated with minimal processing (e.g., this list will include all signals above the system noise threshold). As such, it represents the most inclusive list of anomalies.

The DISCRIMINATION STAGE evaluates the demonstrator's ability to correctly identify ordnance as such, and to reject clutter. For the same locations as in the RESPONSE STAGE anomaly list, the DISCRIMINATION STAGE list contains the output of the algorithms applied in the discrimination-stage processing. This list is prioritized based on the demonstrator's determination that an anomaly location is likely to contain ordnance. Thus, higher output values are indicative of higher confidence that an ordnance item is present at the specified location. For electronic signal processing, priority ranking is based on algorithm output. For other systems, priority ranking is based on human judgment. The demonstrator also selects the threshold that the demonstrator believes will provide "optimum" system performance, (i.e., that retains all the detected ordnance and rejects the maximum amount of clutter).

Note: The two lists provided by the demonstrator contain identical numbers of potential target locations. They differ only in the priority ranking of the declarations.

RESPONSE STAGE DEFINITIONS

Response Stage Probability of Detection (P_d^{res}) : $P_d^{res} = (No. of response-stage detections)/(No. of emplaced ordnance in the test site).$

Response Stage False Positive (fp^{res}): An anomaly location that is within R_{halo} of an emplaced clutter item.

Response Stage Probability of False Positive (P_{fp}^{res}): $P_{fp}^{res} =$ (No. of response-stage false positives)/(No. of emplaced clutter items).

Response Stage Background Alarm (ba^{res}): An anomaly in a blind grid cell that contains neither emplaced ordnance nor an emplaced clutter item. An anomaly location in the open field or scenarios that is outside R_{halo} of any emplaced ordnance or emplaced clutter item.

Response Stage Probability of Background Alarm (P_{ba}^{res}): Blind Grid only: $P_{ba}^{res} = (No. of response-stage background alarms)/(No. of empty grid locations).$

Response Stage Background Alarm Rate (BAR^{res}) : Open Field only: $BAR^{res} = (No. of response-stage background alarms)/(arbitrary constant).$

Note that the quantities P_d^{res} , P_{fp}^{res} , P_{ba}^{res} , and BAR^{res} are functions of t^{res}, the threshold applied to the response-stage signal strength. These quantities can therefore be written as $P_d^{res}(t^{res})$, $P_{fp}^{res}(t^{res})$, $P_{ba}^{res}(t^{res})$, and BAR^{res}(t^{res}).

DISCRIMINATION STAGE DEFINITIONS

Discrimination: The application of a signal processing algorithm or human judgment to response-stage data that discriminates ordnance from clutter. Discrimination should identify anomalies that the demonstrator has high confidence correspond to ordnance, as well as those that the demonstrator has high confidence correspond to nonordnance or background returns. The former should be ranked with highest priority and the latter with lowest.

Discrimination Stage Probability of Detection (P_d^{disc}) : $P_d^{disc} = (No. of discrimination-stage detections)/(No. of emplaced ordnance in the test site).$

Discrimination Stage False Positive (fp^{disc}): An anomaly location that is within R_{halo} of an emplaced clutter item.

Discrimination Stage Probability of False Positive (P_{fp}^{disc}): $P_{fp}^{disc} = (No. of discrimination stage false positives)/(No. of emplaced clutter items).$

Discrimination Stage Background Alarm (ba^{disc}): An anomaly in a blind grid cell that contains neither emplaced ordnance nor an emplaced clutter item. An anomaly location in the open field or scenarios that is outside R_{halo} of any emplaced ordnance or emplaced clutter item.

Discrimination Stage Probability of Background Alarm (P_{ba}^{disc}): $P_{ba}^{disc} = (No. of discrimination-stage background alarms)/(No. of empty grid locations).$

Discrimination Stage Background Alarm Rate (BAR^{disc}): BAR^{disc} = (No. of discrimination-stage background alarms)/(arbitrary constant).

Note that the quantities P_d^{disc} , P_{fp}^{disc} , P_{ba}^{disc} , and BAR^{disc} are functions of t^{disc}, the threshold applied to the discrimination-stage signal strength. These quantities can therefore be written as $P_d^{disc}(t^{disc})$, $P_{fp}^{disc}(t^{disc})$, and BAR^{disc}(t^{disc}).

RECEIVER-OPERATING CHARACERISTIC (ROC) CURVES

ROC curves at both the response and discrimination stages can be constructed based on the above definitions. The ROC curves plot the relationship between P_d versus P_{fp} and P_d versus BAR or P_{ba} as the threshold applied to the signal strength is varied from its minimum (t_{min}) to its maximum (t_{max}) value.¹ Figure A-1 shows how P_d versus P_{fp} and P_d versus BAR are combined into ROC curves. Note that the "res" and "disc" superscripts have been suppressed from all the variables for clarity.

Figure A-1. ROC curves for open field testing. Each curve applies to both the response and discrimination stages.

¹Strictly speaking, ROC curves plot the P_d versus P_{ba} over a pre-determined and fixed number of detection opportunities (some of the opportunities are located over ordnance and others are located over clutter or blank spots). In an open field scenario, each system suppresses its signal strength reports until some bare-minimum signal response is received by the system. Consequently, the open field ROC curves do not have information from low signal-output locations, and, furthermore, different contractors report their signals over a different set of locations on the ground. These ROC curves are thus not true to the strict definition of ROC curves as defined in textbooks on detection theory. Note, however, that the ROC curves obtained in the Blind Grid test sites are true ROC curves.

METRICS TO CHARACTERIZE THE DISCRIMINATION STAGE

The demonstrator is also scored on efficiency and rejection ratio, which measure the effectiveness of the discrimination stage processing. The goal of discrimination is to retain the greatest number of ordnance detections from the anomaly list, while rejecting the maximum number of anomalies arising from nonordnance items. The efficiency measures the amount of detected ordnance retained by the discrimination, while the rejection ratio measures the fraction of false alarms rejected. Both measures are defined relative to the entire response list, i.e., the maximum ordnance detectable by the sensor and its accompanying false positive rate or background alarm rate.

Efficiency (E): $E = P_d^{\text{disc}}(t^{\text{disc}})/P_d^{\text{res}}(t_{\text{min}}^{\text{res}})$; Measures (at a threshold of interest), the degree to which the maximum theoretical detection performance of the sensor system (as determined by the response stage tmin) is preserved after application of discrimination techniques. Efficiency is a number between 0 and 1. An efficiency of 1 implies that all of the ordnance initially detected in the response stage was retained at the specified threshold in the discrimination stage, t^{disc} .

False Positive Rejection Rate (R_{fp}): $R_{fp} = 1 - [P_{fp}^{disc}(t^{disc})/P_{fp}^{res}(t_{min}^{res})]$; Measures (at a threshold of interest), the degree to which the sensor system's false positive performance is improved over the maximum false positive performance (as determined by the response stage tmin). The rejection rate is a number between 0 and 1. A rejection rate of 1 implies that all emplaced clutter initially detected in the response stage were correctly rejected at the specified threshold in the discrimination stage.

Background Alarm Rejection Rate (Rba):

Blind Grid: $R_{ba} = 1 - [P_{ba}^{disc}(t^{disc})/P_{ba}^{res}(t_{min}^{res})].$ Open Field: $R_{ba} = 1 - [BAR^{disc}(t^{disc})/BAR^{res}(t_{min}^{res})]).$

Measures the degree to which the discrimination stage correctly rejects background alarms initially detected in the response stage. The rejection rate is a number between 0 and 1. A rejection rate of 1 implies that all background alarms initially detected in the response stage were rejected at the specified threshold in the discrimination stage.

CHI-SQUARE COMPARISON EXPLANATION:

The Chi-square test for differences in probabilities (or $2 \ge 2$ contingency table) is used to analyze two samples drawn from two different populations to see if both populations have the same or different proportions of elements in a certain category. More specifically, two random samples are drawn, one from each population, to test the null hypothesis that the probability of event A (some specified event) is the same for both populations (ref 3).

A 2 x 2 contingency table is used in the Standardized UXO Technology Demonstration Site Program to determine if there is reason to believe that the proportion of ordnance correctly detected/discriminated by demonstrator X's system is significantly degraded by the more challenging terrain feature introduced. The test statistic of the 2 x 2 contingency table is the Chi-square distribution with one degree of freedom. Since an association between the more challenging terrain feature and relatively degraded performance is sought, a one-sided test is performed. A significance level of 0.05 is chosen which sets a critical decision limit of 2.71 from the Chi-square distribution with one degree of freedom. It is a critical decision limit because if the test statistic calculated from the data exceeds this value, the two proportions tested will be considered significantly different. If the test statistic calculated from the data is less than this value, the two proportions tested will be considered not significantly different.

An exception must be applied when either a 0 or 100 percent success rate occurs in the sample data. The Chi-square test cannot be used in these instances. Instead, Fischer's test is used and the critical decision limit for one-sided tests is the chosen significance level, which in this case is 0.05. With Fischer's test, if the test statistic is less than the critical value, the proportions are considered to be significantly different.

Standardized UXO Technology Demonstration Site examples, where blind grid results are compared to those from the open field and open field results are compared to those from one of the scenarios, follow. It should be noted that a significant result does not prove a cause and effect relationship exists between the two populations of interest; however, it does serve as a tool to indicate that one data set has experienced a degradation in system performance at a large enough level than can be accounted for merely by chance or random variation. Note also that a result that is not significant indicates that there is not enough evidence to declare that anything more than chance or random variation within the same population is at work between the two data sets being compared.

Demonstrator X achieves the following overall results after surveying each of the three progressively more difficult areas using the same system (results indicate the number of ordnance detected divided by the number of ordnance emplaced):

Blind Grid	Open Field	Moguls
$P_d^{res} 100/100 = 1.0$	8/10 = .80	20/33 = .61
$P_d^{\text{disc}} 80/100 = 0.80$	6/10 = .60	8/33 = .24

 P_d^{res} : BLIND GRID versus OPEN FIELD. Using the example data above to compare probabilities of detection in the response stage, all 100 ordnance out of 100 emplaced ordnance items were detected in the blind grid while 8 ordnance out of 10 emplaced were detected in the open field. Fischer's test must be used since a 100 percent success rate occurs in the data. Fischer's test uses the four input values to calculate a test statistic of 0.0075 that is compared against the critical value of 0.05. Since the test statistic is less than the critical value, the smaller response stage detection rate (0.80) is considered to be significantly less at the 0.05 level of significance. While a significant result does not prove a cause and effect relationship exists between the change in survey area and degradation in performance, it does indicate that the detection ability of demonstrator X's system seems to have been degraded in the open field relative to results from the blind grid using the same system. P_d^{disc} : BLIND GRID versus OPEN FIELD. Using the example data above to compare probabilities of detection in the discrimination stage, 80 out of 100 emplaced ordnance items were correctly discriminated as ordnance in blind grid testing while 6 ordnance out of 10 emplaced were correctly discriminated as such in open field-testing. Those four values are used to calculate a test statistic of 1.12. Since the test statistic is less than the critical value of 2.71, the two discrimination stage detection rates are considered to be not significantly different at the 0.05 level of significance.

 P_d^{res} : OPEN FIELD versus MOGULS. Using the example data above to compare probabilities of detection in the response stage, 8 out of 10 and 20 out of 33 are used to calculate a test statistic of 0.56. Since the test statistic is less than the critical value of 2.71, the two response stage detection rates are considered to be not significantly different at the 0.05 level of significance.

 P_d^{disc} : OPEN FIELD versus MOGULS. Using the example data above to compare probabilities of detection in the discrimination stage, 6 out of 10 and 8 out of 33 are used to calculate a test statistic of 2.98. Since the test statistic is greater than the critical value of 2.71, the smaller discrimination stage detection rate is considered to be significantly less at the 0.05 level of significance. While a significant result does not prove a cause and effect relationship exists between the change in survey area and degradation in performance, it does indicate that the ability of demonstrator X to correctly discriminate seems to have been degraded by the mogul terrain relative to results from the flat open field using the same system.

APPENDIX B. DAILY WEATHER LOGS

Date & Time	Average Temp (°F)	Maximum Temp (°F)	Minimum Temp (°F)	Relative Humidity (%)	Total Precip (in)
10/13/2003					
00:00:00	63	63.9	62.4	86.5	0
10/13/2003					
01:00:00	64	64.9	62.8	80.2	0
10/13/2003					
02:00:00	63	64.5	61.6	71.39	0
10/13/2003					
03:00:00	60.8	62.1	59.8	70.15	0
10/13/2003					
04:00:00	59.1	60.3	57.7	70.46	0
10/13/2003					
05:00:00	55.3	57.8	53	78.39	0
10/13/2003					0
06:00:00	55.1	56.3	52.8	76.67	0
10/13/2003				10.07	0
07:00:00	51.6	53.2	50.3	86.3	0
10/13/2003			00.0	00.0	0
08:00:00	55.8	60.6	51.2	81.9	0
10/13/2003		0010	51.2	01.9	0
09:00:00	62	63.3	60.5	62.18	0
10/13/2003		0010	00.5	02.10	0
10:00:00	64.6	65.9	63	54.9	0
10/13/2003	01.0	05.5	05	54.5	0
11:00:00	66.7	67.7	65.5	48.23	0
10/13/2003	00.7	07.7	05.5	40.25	0
12:00:00	68.6	70.2	67.5	44.38	0
10/13/2003	00.0	10.2	07.5	44.50	0
13:00:00	70.5	71.5	69.7	42.08	0
10/13/2003	10.5	71.5	07.7	42.00	0
14:00:00	72	73	71.3	39.13	0
10/13/2003	12	15	71.5	59.15	0
15:00:00	72.5	73.2	71.7	37.51	0
10/13/2003	1 41.5	13.2	/1./	57.51	0
16:00:00	72.9	74.1	71.9	37.03	0
10/13/2003	12.7	17.1	/1.7	57.05	0
17:00:00	70.5	73.1	67.7	44.83	0
10/13/2003	1010	10.1	01.1		0
18:00:00	63.6	67.7	60.4	64.13	0
10/13/2003		0	00.7	04.15	0
19:00:00	58.2	60.8	56.1	81.3	0
10/13/2003		0010	50.1	01.5	0
20:00:00	54.8	56.5	52.6	89.6	0
10/13/2003	2.10	000	52.0	07.0	0
21:00:00	52.6	53.3	51.8	95.1	0
10/13/2003	52.0	55.5	51.0	95.1	0
22:00:00	51.7	53	50.2	96.6	0
10/13/2003	51.1	55	50.2	20.0	0
23:00:00	50.1	51.3	48.6	97.5	0

TABLE B-1. WEATHER LOG

Date & Time	Average Temp (°F)	Maximum Temp (°F)	Minimum Temp (°F)	Relative Humidity (%)	Total Precip (in)
10/14/2003					
00:00:00	49.5	50.6	48.5	97.7	0
10/14/2003					
01:00:00	48.4	49	47.9	98.1	0
10/14/2003					
02:00:00	48.1	48.9	47.6	98.5	0
10/14/2003					
03:00:00	47.8	48.6	47.2	98.6	0
10/14/2003					
04:00:00	48.5	49.8	47.4	98.7	0
10/14/2003					
05:00:00	48.9	49.7	48.4	98.6	0
10/14/2003					
06:00:00	49.2	49.8	48.6	98.2	0
10/14/2003					
07:00:00	50.2	51.4	49.5	98.4	0
10/14/2003					
08:00:00	53.5	57.6	49.6	97.8	0
10/14/2003				2710	0
09:00:00	58.2	58.8	57	93.2	0
10/14/2003				70.2	0
10:00:00	59.4	61.5	58.2	90.9	0
10/14/2003		0110	50.2	70.7	0
11:00:00	62.1	63.4	60.9	76.27	0
10/14/2003	0.211	00.1	00.5	10.21	0
12:00:00	64.8	66.8	63.1	68.16	0
10/14/2003	0110	00.0	05.1	00.10	0
13:00:00	66.3	66.8	65.8	62.79	0
10/14/2003	00.5	00.0	05.0	02.19	0
14:00:00	67.1	67.9	66	65.61	0
10/14/2003	07.1	01.5	00	05.01	0
15:00:00	67.4	67.9	66.9	61.98	0
10/14/2003	07.4	07.5	00.9	01.90	0
16:00:00	66.9	67.7	65.6	62.65	0
10/14/2003	00.7	07.7	05.0	02.05	0
17:00:00	66.6	67.1	65.9	64.35	0
10/14/2003	00.0	07.1	05.9	04.55	0
18:00:00	66.7	67.2	66	59.18	0
10/14/2003	00.7	01.2	00	39.10	0
19:00:00	64.4	66.3	61.6	66.71	0.01
10/14/2003	0111	00.5	01.0	00.71	0.01
20:00:00	60.9	62.3	59.6	85.4	0.06
10/14/2003	00.9	02.3	59.0	0.4	0.00
21:00:00	59.8	60.9	59.1	067	0.54
10/14/2003	57.0	00.9	59.1	96.7	0.54
22:00:00	60.6	62.6	50 0	07.2	0.50
10/14/2003	00.0	02.0	58.8	97.3	0.58
23:00:00	59	50.4	59 6	07.4	0.00
25.00.00	59	59.4	58.6	97.4	0.09

Date & Time	Average Temp (°F)	Maximum Temp (°F)	Minimum Temp (°F)	Relative Humidity (%)	Total Precip (in)
10/15/2003					
00:00:00	59.4	59.8	58.9	95.9	0.05
10/15/2003	_		-		
01:00:00	58.6	59.4	58.2	95.2	0.06
10/15/2003					
02:00:00	58.4	59	57.8	95.9	0
10/15/2003					
03:00:00	58.2	59.6	56.6	84	0
10/15/2003					
04:00:00	56.9	57.7	56.3	76.63	0
10/15/2003					
05:00:00	57.5	58.1	56.6	68.15	0
10/15/2003					
06:00:00	56.9	57.5	56.3	68.6	0
10/15/2003					
07:00:00	57.1	58.4	56.4	67.96	0
10/15/2003					
08:00:00	59.3	61.1	57.9	62.94	0
10/15/2003					
09:00:00	61.1	61.8	60.2	56.07	0
10/15/2003					
10:00:00	61.6	62.8	60.4	49.26	0
10/15/2003					
11:00:00	61.6	63.6	60.6	45.58	0
10/15/2003					
12:00:00	62.1	63.1	61.4	37.39	0
10/15/2003					
13:00:00	62.3	63.2	61.6	34.49	0
10/15/2003					
14:00:00	62.3	63.4	61.3	35.6	0
10/15/2003					
15:00:00	62.1	62.9	60.9	34.25	0
10/15/2003					
16:00:00	61.9	62.6	61.4	32	0
10/15/2003					
17:00:00	60.9	62.1	59.5	32.13	0
10/15/2003					
18:00:00	57.9	59.7	56.2	38.03	0
10/15/2003					
19:00:00	54	56.6	51.4	48.83	0
10/15/2003					
20:00:00	51.5	52.3	50.3	56.15	0
10/15/2003					
21:00:00	49.4	50.7	48.4	62.51	0
10/15/2003					
22:00:00	49.1	51	46.7	61.25	0
10/15/2003					
23:00:00	46.1	47.1	44.7	70.62	0

Date & Time	Average Temp (°F)	Maximum Temp (°F)	Minimum Temp (°F)	Relative Humidity (%)	Total Precip (in)
10/16/2003					
00:00:00	45.3	47.6	42.9	74.08	0
10/16/2003					
01:00:00	45	46.1	43.3	76.85	0
10/16/2003					
02:00:00	43.2	44.3	42.5	85.9	0
10/16/2003					
03:00:00	44	45.3	43	81.6	0
10/16/2003				0110	
04:00:00	45	46.3	44.1	79.04	0
10/16/2003				12101	
05:00:00	45.1	46.3	43.7	79.29	0
10/16/2003			1017	17.27	0
06:00:00	44.6	45.2	43.9	80.2	0
10/16/2003				00.2	0
07:00:00	45	46.4	44.1	78.73	0
10/16/2003	15	10.1	++.1	10.15	0
08:00:00	49.5	52.4	46.3	73.12	0
10/16/2003	47.5	52.4	40.5	75.12	0
09:00:00	55.3	58	52.1	61.45	0
10/16/2003	55.5	58	52.1	01.43	0
10:00:00	60.4	62	57.8	49.01	0
10/16/2003	00.4	02	57.0	49.01	0
11:00:00	63.1	64.9	61.6	44.5	0
10/16/2003	05.1	04.9	01.0	44.5	0
12:00:00	65.9	67.1	64.3	40.72	0
10/16/2003	03.9	07.1	04.3	40.73	0
13:00:00	67.4	68.6		28.02	0
10/16/2003	07.4	08.0	66	38.93	0
14:00:00	68.6	70.0	(7.0	20.51	0
10/16/2003	08.0	70.2	67.2	38.51	0
	60.5	70	(0)	27.41	0
15:00:00	69.5	70	69	37.41	0
10/16/2003	69.2	(0.1	(())	10.07	0
16:00:00	68.3	69.1	66.3	42.96	0
10/16/2003	"	(()	(5	40.01	0
17:00:00	66	66.9	65	48.21	0
10/16/2003	(2.0	(5.0	(2.2	<i></i>	~
18:00:00	63.8	65.2	62.8	54.51	0
10/16/2003	61.1	(2.0	50.5	54.05	0
19:00:00	61.1	63.2	59.5	54.05	0
10/16/2003	57.7	50.0	55.0	(0.2)	0
20:00:00	57.7	59.8	55.9	60.26	0
10/16/2003	54	5()	50.7	70 (0	~
21:00:00	54	56.2	52.7	72.68	0
10/16/2003	52.2	50.5	50 -	70 70	-
22:00:00	53.2	53.6	52.7	79.79	0
10/16/2003	50.5				
23:00:00	53.5	54.5	52.9	81.2	0

10/17/2003 01:00:00 10/17/2003 02:00:00 10/17/2003 03:00:00 10/17/2003 03:00:00 10/17/2003 04:00:00 10/17/2003 05:00:00 10/17/2003 06:00:00 10/17/2003 06:00:00 10/17/2003 07:00:00 10/17/2003 09:00:00 10/17/2003 10/17/2003 10:00:00 10/17/2003 11:00:00 10/17/2003 12:00:00 10/17/2003 13:00:00 10/17/2003 14:00:00 10/17/2003 15:00:00 10/17/2003 15:00:00 10/17/2003 16:00:00 10/17/2003 16:00:00 10/17/2003 18:00:00 10/17/2003 18:00:00 10/17/2003 <	52.7 51.4 50.9 50.5 50.3 50.5	53.4 52.8 51.3 51.7 51.2	Temp (°F) 52 50.1 50.3 49.1	Humidity (%) 84.5 88.4 91.9	Precip (in) 0 0 0
10/17/2003 01:00:00 10/17/2003 02:00:00 10/17/2003 03:00:00 10/17/2003 03:00:00 10/17/2003 04:00:00 10/17/2003 05:00:00 10/17/2003 06:00:00 10/17/2003 06:00:00 10/17/2003 07:00:00 10/17/2003 09:00:00 10/17/2003 10/17/2003 10/17/2003 10/17/2003 10/17/2003 11:00:00 10/17/2003 12:00:00 10/17/2003 13:00:00 10/17/2003 14:00:00 10/17/2003 15:00:00 10/17/2003 15:00:00 10/17/2003 16:00:00 10/17/2003 18:00:00 10/17/2003 18:00:00 10/17/2003 19:00:00	51.4 50.9 50.5 50.3	52.8 51.3 51.7	50.1 50.3	88.4	0
01:00:00 10/17/2003 10/17/2003 02:00:00 10/17/2003 03:00:00 10/17/2003 04:00:00 10/17/2003 05:00:00 10/17/2003 06:00:00 10/17/2003 06:00:00 10/17/2003 06:00:00 10/17/2003 07:00:00 10/17/2003 09:00:00 10/17/2003 10/17/2003 10/17/2003 10/17/2003 10/17/2003 11:00:00 10/17/2003 12:00:00 10/17/2003 13:00:00 10/17/2003 14:00:00 10/17/2003 15:00:00 10/17/2003 15:00:00 10/17/2003 16:00:00 10/17/2003 16:00:00 10/17/2003 16:00:00 10/17/2003 18:00:00 10/17/2003 19:00:00	50.9 50.5 50.3	51.3 51.7	50.3		
10/17/2003 02:00:00 10/17/2003 03:00:00 10/17/2003 04:00:00 10/17/2003 04:00:00 10/17/2003 05:00:00 10/17/2003 06:00:00 10/17/2003 07:00:00 10/17/2003 08:00:00 10/17/2003 09:00:00 10/17/2003 10/17/2003 10/17/2003 10/17/2003 10/17/2003 12:00:00 10/17/2003 13:00:00 10/17/2003 14:00:00 10/17/2003 15:00:00 10/17/2003 15:00:00 10/17/2003 16:00:00 10/17/2003 16:00:00 10/17/2003 18:00:00 10/17/2003 18:00:00 10/17/203 19:00:00	50.9 50.5 50.3	51.3 51.7	50.3		
02:00:00 10/17/2003 10/17/2003 3:00:00 10/17/2003 04:00:00 10/17/2003 05:00:00 10/17/2003 06:00:00 10/17/2003 06:00:00 10/17/2003 07:00:00 10/17/2003 08:00:00 10/17/2003 09:00:00 10/17/2003 10/17/2003 10/17/2003 11:00:00 10/17/2003 11:00:00 10/17/2003 11:00:00 10/17/2003 11:00:00 10/17/2003 11:00:00 10/17/2003 11:00:00 10/17/2003 11:00:00 10/17/2003 11:00:00 10/17/2003 11:00:00 10/17/2003 11:00:00 10/17/2003 11:00:00 10/17/2003 11:00:00 10/17/2003 11:00:00 10/17/2003 11:00:00 10/17/2003 11:00:00 10/17/2003 11:00:00 10/17/2003 11:00:00 10/17/2003 11:00:00	50.5 50.3	51.7	50.3		
10/17/2003 3:00:00 3:00:00 10/17/2003 04:00:00 3:00:00 10/17/2003 05:00:00 3:00:00 10/17/2003 06:00:00 3:00:00 10/17/2003 06:00:00 3:00:00 10/17/2003 07:00:00 3:00:00 10/17/2003 09:00:00 3:00:00 10/17/2003 10:00:00 3:00:00 10/17/2003 12:00:00 3:00:00 10/17/2003 13:00:00 3:00:00 10/17/2003 15:00:00 3:00:00 10/17/2003 15:00:00 3:00:00 10/17/2003 15:00:00 3:00:00 10/17/2003 15:00:00 3:00:00 10/17/2003 16:00:00 3:00:00 10/17/2003 16:00:00 3:00:00 10/17/2003 16:00:00 3:00:00 10/17/2003 18:00:00 3:00:00 10/17/2003 19:00:00 3:00:00	50.5 50.3	51.7		91.9	0
03:00:00 10/17/2003 04:00:00 10/17/2003 05:00:00 10/17/2003 06:00:00 10/17/2003 07:00:00 10/17/2003 07:00:00 10/17/2003 07:00:00 10/17/2003 09:00:00 10/17/2003 10/17/2003 10/17/2003 10/17/2003 11:00:00 10/17/2003 11:00:00 10/17/2003 11:00:00 10/17/2003 11:00:00 10/17/2003 11:00:00 10/17/2003 11:00:00 10/17/2003 11:00:00 10/17/2003 11:00:00 10/17/2003 11:00:00 10/17/2003 11:00:00 10/17/2003 11:00:00 10/17/2003 11:00:00 10/17/2003 11:00:00 10/17/2003 11:00:00 10/17/2003 11:00:00 10/17/2003 11:00:00 10/17/2003 11:00:00 10/17/2003 11:00:00 10/17/2003 11:00:00 <td>50.3</td> <td>51.7</td> <td></td> <td></td> <td>0</td>	50.3	51.7			0
10/17/2003 04:00:00 10/17/2003 05:00:00 10/17/2003 05:00:00 10/17/2003 06:00:00 10/17/2003 07:00:00 10/17/2003 07:00:00 10/17/2003 09:00:00 10/17/2003 10/17/2003 10/17/2003 10:00:00 10/17/2003 11:00:00 10/17/2003 12:00:00 10/17/2003 13:00:00 10/17/2003 14:00:00 10/17/2003 15:00:00 10/17/2003 16:00:00 10/17/2003 17:00:00 10/17/2003 18:00:00 10/17/2003 18:00:00 10/17/2003 19:00:00	50.3		49.1		
10/17/2003 04:00:00 10/17/2003 05:00:00 10/17/2003 06:00:00 10/17/2003 06:00:00 10/17/2003 07:00:00 10/17/2003 09:00:00 10/17/2003 09:00:00 10/17/2003 10/17/2003 10:00:00 10/17/2003 10/17/2003 12:00:00 10/17/2003 13:00:00 10/17/2003 14:00:00 10/17/2003 15:00:00 10/17/2003 16:00:00 10/17/2003 16:00:00 10/17/2003 16:00:00 10/17/2003 18:00:00 10/17/2003 18:00:00 10/17/2003 19:00:00	50.3			90.6	0
10/17/2003 05:00:00 10/17/2003 06:00:00 10/17/2003 07:00:00 10/17/2003 07:00:00 10/17/2003 08:00:00 10/17/2003 09:00:00 10/17/2003 10/17/2003 10/17/2003 10/17/2003 10/17/2003 12:00:00 10/17/2003 13:00:00 10/17/2003 14:00:00 10/17/2003 15:00:00 10/17/2003 16:00:00 10/17/2003 16:00:00 10/17/2003 18:00:00 10/17/2003 18:00:00 10/17/2003 18:00:00 10/17/2003 19:00:00		51.2			
10/17/2003 05:00:00 10/17/2003 06:00:00 10/17/2003 07:00:00 10/17/2003 07:00:00 10/17/2003 08:00:00 10/17/2003 09:00:00 10/17/2003 10/17/2003 10/17/2003 10/17/2003 10/17/2003 10/17/2003 12:00:00 10/17/2003 13:00:00 10/17/2003 14:00:00 10/17/2003 15:00:00 10/17/2003 16:00:00 10/17/2003 17:00:00 10/17/2003 18:00:00 10/17/2003 18:00:00 10/17/2003 19:00:00			49.1	89.5	0
05:00:00 10/17/2003 06:00:00 10/17/2003 07:00:00 10/17/2003 07:00:00 10/17/2003 08:00:00 10/17/2003 10/17/2003 10/17/2003 10/17/2003 10/17/2003 10/17/2003 11:00:00 </td <td>50.5</td> <td></td> <td></td> <td>0710</td> <td></td>	50.5			0710	
10/17/2003 06:00:00 10/17/2003 07:00:00 10/17/2003 08:00:00 10/17/2003 09:00:00 10/17/2003 10/17/2003 09:00:00 10/17/2003 10/17/2003 10/17/2003 10/17/2003 12:00:00 10/17/2003 13:00:00 10/17/2003 15:00:00 10/17/2003 15:00:00 10/17/2003 16:00:00 10/17/2003 16:00:00 10/17/2003 18:00:00 10/17/2003 18:00:00 10/17/2003 19:00:00		51.2	49.6	87.9	0
06:00:00 10/17/2003 07:00:00 10/17/2003 08:00:00 10/17/2003 09:00:00 10/17/2003 10/17/2003 10/17/2003 10/17/2003 10/17/2003 10/17/2003 10/17/2003 10/17/2003 10/17/2003 10/17/2003 10/17/2003 10/17/2003 15:00:00 2 10/17/2003 15:00:00 2 10/17/2003 16:00:00 2 10/17/2003 16:00:00 2 10/17/2003 18:00:00 2 10/17/2003 18:00:00 2 10/17/2003 18:00:00 2 10/17/2003 19:00:00			12.0	07.2	
10/17/2003 4 07:00:00 4 10/17/2003 8 08:00:00 5 10/17/2003 9 09:00:00 5 10/17/2003 10 10/17/2003 10 10/17/2003 10 10/17/2003 10 10/17/2003 12:00:00 10/17/2003 13:00:00 10/17/2003 14:00:00 10/17/2003 15:00:00 10/17/2003 16:00:00 10/17/2003 10/17/2003 16:00:00 5 10/17/2003 18:00:00 10/17/2003 18:00:00 10/17/2003 19:00:00	50	51	48.5	87.7	0
07:00:00 4 10/17/2003 3 08:00:00 3 10/17/2003 9:00:00 10/17/2003 1 10:00:00 3 10:00:00 3 10:00:00 3 10:00:00 3 10/17/2003 1 10/17/2003 1 10/17/2003 1 10/17/2003 1 10/17/2003 1 10/17/2003 3 15:00:00 3 16:00:00 3 10/17/2003 1 10/17/2003 1 10/17/2003 5 10/17/2003 5 10/17/2003 5 10/17/2003 5 10/17/2003 5 10/17/2003 5 10/17/2003 5 10/17/2003 5 10/17/2003 5 10/17/2003 5 10/17/2003 5 10/17/2003 5			10.0	01.1	U
10/17/2003 3 08:00:00 3 10/17/2003 9:00:00 10/17/2003 10:00:00 10/17/2003 10:00:00 10/17/2003 11:00:00 10/17/2003 12:00:00 10/17/2003 13:00:00 10/17/2003 14:00:00 10/17/2003 15:00:00 10/17/2003 16:00:00 10/17/2003 16:00:00 10/17/2003 17:00:00 10/17/2003 18:00:00 10/17/2003 19:00:00	49.6	50.8	48.6	90.5	0
08:00:00 10/17/2003 09:00:00 10/17/2003 10/17/2003 10:00:00 10/17/2003 11:00:00	17.0	50.0	40.0	70.5	0
10/17/2003 9:00:00 9:00:00 10/17/2003 10:00:00 9:00:00 10/17/2003 10:00:00 9:00:00 10/17/2003 11:00:00 9:00:00 10/17/2003 11:00:00 9:00:00 10/17/2003 13:00:00 9:00:00 10/17/2003 14:00:00 9:00:00 10/17/2003 15:00:00 9:00:00 10/17/2003 16:00:00 9:00:00 10/17/2003 17:00:00 9:00:00 10/17/2003 18:00:00 9:00:00 10/17/2003 19:00:00 9:00:00	51.8	53	50.6	86.9	0
09:00:00 10/17/2003 10:00:00 10/17/2003 10/17/2003 11:00:00	0110	55	50.0	00.9	0
10/17/2003 10:00:00 10/17/2003 11:00:00 10/17/2003 12:00:00 10/17/2003 13:00:00 10/17/2003 13:00:00 10/17/2003 14:00:00 10/17/2003 15:00:00 10/17/2003 16:00:00 10/17/2003 16:00:00 10/17/2003 10/17/2003 10/17/2003 10/17/2003 10/17/2003 10/17/2003 10/17/2003 19:00:00 10/17/2003 19:00:00	54.1	55.8	52.5	82	0
10:00:00 10/17/2003 10/17/2003 11:00:00 10/17/2003 12:00:00 10/17/2003 13:00:00 10/17/2003 14:00:00 10/17/2003 15:00:00 10/17/2003 16:00:00 10/17/2003 16:00:00 10/17/2003 10/17/2003 10/17/2003 10/17/2003 10/17/2003 10/17/2003 10/17/2003 18:00:00 10/17/2003 5 10/17/2003 5 10/17/2003 5 10/17/2003 5 10/17/2003 5 10/17/2003 5 10/17/2003 5 10/17/2003 5 10/17/2003 5 10/17/2003 5 10/17/2003 5 10/17/2003 5 10/17/2003 5 10/17/2003 5 10/17/2003 5		55.0	52.5	02	0
10/17/2003 11:00:00 10/17/2003 12:00:00 12:00:00 10/17/2003 13:00:00 10/17/2003 14:00:00 10/17/2003 15:00:00 10/17/2003 16:00:00 10/17/2003 16:00:00 10/17/2003 10/17/2003 10/17/2003 10/17/2003 10/17/2003 10/17/2003 10/17/2003 19:00:00	55.4	56	54.7	75.27	0
11:00:00 10/17/2003 10/17/2003 12:00:00 10/17/2003 13:00:00 10/17/2003 14:00:00 10/17/2003 15:00:00 10/17/2003 16:00:00 10/17/2003 16:00:00 10/17/2003 16:00:00 10/17/2003 17:00:00 10/17/2003 10/17/2003 10/17/2003 10/17/2003 10/17/2003 5 10/17/2003 5 10/17/2003 5 10/17/2003 5 10/17/2003 5 10/17/2003 5 10/17/2003 5 10/17/2003 5 10/17/2003 5 10/17/2003 5 10/17/2003 5 10/17/2003 5 10/17/2003 5		50	54.7	15.21	0
10/17/2003 12:00:00 10/17/2003 13:00:00 13:00:00 10/17/2003 14:00:00 10/17/2003 15:00:00 10/17/2003 16:00:00 10/17/2003 16:00:00 10/17/2003 10/17/2003 10/17/2003 10/17/2003 10/17/2003 10/17/2003 18:00:00 5 10/17/2003 19:00:00	55.8	56.4	55.3	73.27	0
12:00:00 2 10/17/2003 1 13:00:00 2 10/17/2003 1 14:00:00 2 10/17/2003 1 15:00:00 2 10/17/2003 1 16:00:00 2 10/17/2003 1 10/17/2003 1 10/17/2003 2 10/17/2003 2 10/17/2003 2 10/17/2003 2 10/17/2003 2 10/17/2003 2 10/17/2003 2 10/17/2003 2 10/17/2003 2 10/17/2003 2 10/17/2003 2 10/17/2003 3 19:00:00 5	55.0	50.4	55.5	13.21	0
10/17/2003 13:00:00 10/17/2003 14:00:00 10/17/2003 15:00:00 10/17/2003 16:00:00 10/17/2003 16:00:00 10/17/2003 17:00:00 10/17/2003 18:00:00 10/17/2003 18:00:00 10/17/2003 19:00:00	55.6	56.3	55.2	71.2	0
13:00:00 4 10/17/2003 1 14:00:00 4 10/17/2003 1 15:00:00 4 10/17/2003 1 10/17/2003 1 10/17/2003 1 10/17/2003 1 10/17/2003 5 10/17/2003 5 10/17/2003 5 10/17/2003 5 10/17/2003 5 10/17/2003 5 10/17/2003 5 10/17/2003 5 10/17/2003 5 10/17/2003 5 10/17/2003 5 10/17/2003 5	55.0	50.5	55.2	/1.2	0
10/17/2003 1 14:00:00 2 10/17/2003 1 15:00:00 2 10/17/2003 1 16:00:00 2 10/17/2003 1 10/17/2003 1 10/17/2003 1 10/17/2003 1 10/17/2003 1 18:00:00 2 10/17/2003 1 19:00:00 5	56.6	57.7	55.7	69.08	0
14:00:00 4 10/17/2003 5 15:00:00 5 10/17/2003 5 10/17/2003 5 10/17/2003 5 10/17/2003 5 10/17/2003 5 10/17/2003 5 10/17/2003 5 10/17/2003 5 10/17/2003 5 10/17/2003 5 10/17/2003 5 10/17/2003 5	.0.0	51.1	55.7	09.00	0
10/17/2003 15:00:00 5 10/17/2003 16:00:00 5 10/17/2003 17:00:00 5 10/17/2003 18:00:00 5 10/17/2003 18:00:00 5 10/17/2003 19:00:00 5	58.1	59	57.3	66.98	0
15:00:00 5 10/17/2003 1 16:00:00 5 10/17/2003 1 17:00:00 5 10/17/2003 1 18:00:00 5 10/17/2003 5 10/17/2003 5 10/17/2003 5 10/17/2003 5 10/17/2003 5	50.1	39	57.5	00.98	0
10/17/2003 5 16:00:00 5 10/17/2003 1 17:00:00 5 10/17/2003 1 18:00:00 5 10/17/2003 1 19:00:00 5	57.6	58.4	56.8	68.63	0
16:00:00 5 10/17/2003 1 17:00:00 5 10/17/2003 1 18:00:00 5 10/17/2003 1 10/17/2003 5	57.0	50.4	50.0	08.03	0
10/17/2003 5 17:00:00 5 10/17/2003 18:00:00 5 10/17/2003 19:00:00 5	56.8	57.2	56.5	70.86	0
17:00:00 5 10/17/2003 18:00:00 5 10/17/2003 19:00:00 5	.0.0	51.2	50.5	/0.80	0
10/17/2003 18:00:00 5 10/17/2003 19:00:00 5	55.3	56.7	54.2	80.1	0
18:00:00 5 10/17/2003 19:00:00 5	5.5	50.7	34.2	00.1	0
10/17/2003 19:00:00 5	53.6	54.7	52.8	85.7	0
19:00:00 5	5.0	54.7	52.0	03.1	0
	52.2	53.3	51.1	88.5	0.01
10/1//2003		55.5	51.1	00.3	0.01
	50.7	51.5	49.7	92.8	0.02
10/17/2003		51.5	47.1	92.0	0.02
	19.3	50.2	48.8	04.7	0.02
10/17/2003	7.5	50.2	40.0	94.7	0.02
		49.3	18 4	02.5	0
10/17/2003	18.8	49.3	48.4	93.5	0
23:00:00 4	18.8	48.6	47.8	93.3	0

Date & Time	Average Temp (°F)	Maximum Temp (°F)	Minimum Temp (°F)	Relative Humidity (%)	Total Precip (in)
10/18/2003					
00:00:00	48.1	48.4	47.8	94	0
10/18/2003					
01:00:00	48.1	48.4	47.8	94.7	0
10/18/2003					
02:00:00	47.4	48.3	46.4	94.9	0
10/18/2003					
03:00:00	46	46.7	44.9	96.3	0
10/18/2003					
04:00:00	44.8	45.3	43.7	97.6	0
10/18/2003					
05:00:00	44.8	45.4	44.1	97.9	0
10/18/2003					
06:00:00	44.3	44.8	43.8	98.5	0
10/18/2003				2010	0
07:00:00	44.2	44.8	43.8	98.7	0
10/18/2003			.5.0	20.1	0
08:00:00	45.4	48.3	43.7	98.6	0
10/18/2003	1011	10.0	15.7	20.0	0
09:00:00	49.8	51.9	47.4	87.3	0
10/18/2003	17.0	51.5	47.4	01.5	0
10:00:00	53.3	55	51.2	70.82	0
10/18/2003			51.2	70.02	0
11:00:00	56	57.2	54.5	53.7	0
10/18/2003		57.2	54.5	55.7	0
12:00:00	56.9	57.9	55.9	48.82	0
10/18/2003	50.5	51.5	55.5	40.02	0
13:00:00	58.6	59.7	57.6	40.83	0
10/18/2003	0010	57.1	57.0	+0.05	0
14:00:00	58.6	59.7	57.2	37.97	0
10/18/2003	50.0	57.1	51.2	51.51	0
15:00:00	59	60.2	57.9	39.36	0
10/18/2003		00.2	51.5	57.50	0
16:00:00	58.8	59.8	58.2	39.33	0
10/18/2003	0010	0,210	55.2	57.55	0
17:00:00	57.4	58.6	56.2	41.5	0
10/18/2003					0
18:00:00	52	56.5	48.7	61.14	0
10/18/2003				5	0
19:00:00	47.2	49.8	44.7	79.42	0
10/18/2003					0
20:00:00	44.1	45	42.9	90.4	0
10/18/2003			.2.7	2017	0
21:00:00	42.5	43.5	41.1	94.2	0
10/18/2003		1010		51.6	0
22:00:00	41.9	42.3	41.2	96.5	0
10/18/2003		12.5	71.2	20.5	0
23:00:00	41.5	42.3	40.9	96.7	0

Date & Time	Average Temp (°F)	Maximum Temp (°F)	Minimum Temp (°F)	Relative Humidity (%)	Total Precip (in)
10/19/2003					
00:00:00	41.4	41.8	41	97.7	0
10/19/2003					
01:00:00	42.4	43.4	41.3	97.9	0
10/19/2003					
02:00:00	44	44.8	43.1	96.8	0
10/19/2003					
03:00:00	45.4	46.3	44.6	95.9	0
10/19/2003					
04:00:00	46.3	47	45.8	95.4	0
10/19/2003					
05:00:00	47.1	48.3	46.4	96.3	0
10/19/2003					
06:00:00	50.2	51	48.3	80.5	0
10/19/2003					
07:00:00	51.7	52.6	50.8	75.4	0
10/19/2003					
08:00:00	53	53.7	52.1	67.44	0
10/19/2003					
09:00:00	54.4	55.6	52.7	67.01	0
10/19/2003			0211	07.01	
10:00:00	57	59.9	54.6	61.51	0
10/19/2003			2.110	01.01	0
11:00:00	62.4	63.8	59.6	53.53	0
10/19/2003					
12:00:00	63.4	65.3	62.2	48.72	0
10/19/2003		0010	02.2	10.72	0
13:00:00	65.1	66.3	63.6	44.24	0
10/19/2003		0010	00.0	11.21	0
14:00:00	65.6	67.1	64.2	41.7	0
10/19/2003	0010	07.1	01.2	41.7	0
15:00:00	65.6	66.4	64.1	38.45	0
10/19/2003		0011	0.11	50.15	0
16:00:00	64.9	65.6	64	38.83	0
10/19/2003				00.00	0
17:00:00	63.4	64.5	61.8	41.49	0
10/19/2003		0110	01.0	11.12	0
18:00:00	58.6	62	56.2	54.36	0
10/19/2003				2	•
19:00:00	53.5	56.7	49.8	69.72	0
10/19/2003					0
20:00:00	49.9	52	48.5	79.79	0
10/19/2003					0
21:00:00	47.8	50.4	45.3	86	0
10/19/2003					0
22:00:00	46.1	48.8	44.9	88.3	0
10/19/2003				0010	0
23:00:00	47.2	49.1	44.8	80	0

Date & Time	Average Temp (°F)	Maximum Temp (°F)	Minimum Temp (°F)	Relative Humidity (%)	Total Precip (in)
10/20/2003					
00:00:00	47.3	48.3	46.3	79.55	0
10/20/2003					
01:00:00	46.3	47.5	45.1	81.4	0
10/20/2003					
02:00:00	45.6	46.5	44.9	82.2	0
10/20/2003					
03:00:00	44.2	46	41.5	85.4	0
10/20/2003					
04:00:00	41	41.8	40.1	95.7	0
10/20/2003					
05:00:00	40.5	42.1	38.8	96.4	0
10/20/2003					
06:00:00	39.2	39.9	38.1	97.7	0
10/20/2003					
07:00:00	38.7	39.8	37.8	98.5	0
10/20/2003					~
08:00:00	45	49.5	39.4	92.6	0
10/20/2003					
09:00:00	50.9	52.2	49.3	78.03	0
10/20/2003					
10:00:00	53.8	55.6	51.9	67.64	0
10/20/2003					
11:00:00	55.7	56.6	54.7	65.53	0
10/20/2003					
12:00:00	58.3	60.3	56.5	59.89	0
10/20/2003					
13:00:00	60.7	61.8	59.6	60.4	0
10/20/2003					
14:00:00	61.1	61.9	60.4	62.19	0
10/20/2003					
15:00:00	61.8	62.4	61.3	61.34	0
10/20/2003					
16:00:00	61.7	62.2	61	62.69	0
10/20/2003					
17:00:00	59.9	61.7	57.1	68.05	0
10/20/2003					
18:00:00	54.9	57.2	52.9	82.6	0
10/20/2003					
19:00:00	52.1	53.2	50.9	91.6	0
10/20/2003					
20:00:00	50.5	52.1	49.6	95	0
10/20/2003					
21:00:00	50.1	53	48.6	97.3	0
10/20/2003					
22:00:00	52.5	53.8	49.9	97	0
10/20/2003					
23:00:00	54.1	55.8	52.8	95.9	0

Date & Time	Average Temp (°F)	Maximum Temp (°F)	Minimum Temp (°F)	Relative Humidity (%)	Total Precip (in)
10/21/2003					
00:00:00	56.2	58.2	54.7	95.4	0
10/21/2003					
01:00:00	58.4	59.6	57	93	0
10/21/2003					
02:00:00	58.7	59.7	57.6	92.8	0
10/21/2003				2.0	
03:00:00	59.3	59.9	58.6	91	0
10/21/2003			0010	71	
04:00:00	60	60.6	59.5	83.3	0
10/21/2003			0710	00.0	0
05:00:00	61	61.8	60.1	76.24	0
10/21/2003		0110	00.1	70.24	0
06:00:00	60.9	61.5	60.4	76.52	0
10/21/2003				10.02	0
07:00:00	60.8	61.4	60.3	79.51	0
10/21/2003		U.I.I	00.0	17.51	0
08:00:00	62	63.2	60.9	77.63	0
10/21/2003		00.2	00.5	11.05	0
09:00:00	63.9	65.2	62.8	73.79	0
10/21/2003	0012	00.2	02.0	15.15	0
10:00:00	65.7	66.8	64.2	69.71	0
10/21/2003	00.1	00.0	04.2	09.71	0
11:00:00	68.2	70	66.3	64.61	0
10/21/2003	00.2	10	00.5	04.01	0
12:00:00	70.2	70.8	69.5	60.71	0
10/21/2003	70.2	70.0	09.5	00.71	0
13:00:00	70.9	72	70.1	61.1	0
10/21/2003	10.9	12	70.1	01.1	0
14:00:00	72.1	72.4	71.6	58.93	0
10/21/2003	72.1	12.4	/1.0	30.93	0
15:00:00	71.6	72.1	71	62.39	0
10/21/2003	71.0	72.1	/1	02.39	0
16:00:00	69.7	71.2	68.2	68.65	0
10/21/2003	09.1	/1.2	00.2	00.00	0
17:00:00	67.5	69	66.5	73.14	0
10/21/2003	07.5	09	00.5	15.14	0
18:00:00	67.3	67.7	66.8	72.37	0
10/21/2003	07.5	01.1	00.0	12.31	0
19:00:00	68.2	69.4	67.2	67.6	0
10/21/2003	00.2	07.4	07.2	07.0	0
20:00:00	69.2	69.9	68.6	53.48	0
10/21/2003	07.2	09.9	08.0	33.40	0
21:00:00	67.9	68.8	67	54.01	0
10/21/2003	07.9	00.0	67	54.01	0
22:00:00	65.1	67.4	61.8	59 27	0
10/21/2003	05.1	07.4	01.8	58.37	0
	61.2	62.1	60.4	70.00	0
23:00:00	61.3	62.1	60.4	70.99	0

Date & Time	Average Temp (°F)	Maximum Temp (°F)	Minimum Temp (°F)	Relative Humidity (%)	Total Precip (in)
10/22/2003					
00:00:00	59.7	61	58.4	77.06	0
10/22/2003					
01:00:00	58.9	59.8	58.2	78.13	0
10/22/2003					
02:00:00	58.8	59.8	57.6	73.63	0
10/22/2003					
03:00:00	57	58	56.1	78.07	0
10/22/2003					
04:00:00	55.9	56.5	55.2	81.1	0
10/22/2003					
05:00:00	54.8	56.3	52.9	82.6	0
10/22/2003					
06:00:00	52.8	53.6	52.3	84.6	0
10/22/2003					
07:00:00	52.1	52.6	51.4	81.9	0
10/22/2003					
08:00:00	53.1	54.1	51.5	76.09	0
10/22/2003					
09:00:00	54.7	55.9	53.8	73.2	0
10/22/2003					
10:00:00	56.6	57.3	55.6	60.99	0
10/22/2003					
11:00:00	58.2	60	56.6	54.83	0
10/22/2003					
12:00:00	57.4	58.6	56.4	57.11	0
10/22/2003					
13:00:00	57.4	59.6	56.4	57.89	0
10/22/2003					
14:00:00	56.6	59.6	53	57.29	0
10/22/2003					
15:00:00	53.4	54	52.9	67.26	0
10/22/2003					
16:00:00	53.8	55.2	53	60.9	0
10/22/2003					
17:00:00	52.7	53.6	51.7	55.96	0
10/22/2003					
18:00:00	50.4	52.1	49	55.99	0
10/22/2003					
19:00:00	47.8	49.1	47	62.61	0
10/22/2003					
20:00:00	47	47.6	46.5	64.2	0
10/22/2003					
21:00:00	46.4	47.1	45.6	63.04	0
10/22/2003					
22:00:00	45.1	46.1	44.2	64.12	0
10/22/2003					
23:00:00	44.4	44.9	43.7	57.34	0

10/23/2003 00:00:00 10/23/2003 01:00:00 10/23/2003 02:00:00 10/23/2003 03:00:00 10/23/2003 03:00:00 10/23/2003 04:00:00 10/23/2003 05:00:00 10/23/2003 05:00:00 10/23/2003 06:00:00 10/23/2003 07:00:00 10/23/2003 09:00:00 10/23/2003 10/23/2003 10/23/2003 10/23/2003 11:00:00 10/23/2003 12:00:00 10/23/2003 13:00:00 10/23/2003 13:00:00 10/23/2003 15:00:00 10/23/2003 15:00:00 10/23/2003 16:00:00 10/23/2003 16:00:00 10/23/2003 16:00:00 10/23/2003	43.5 42.3 42 41.1 39.3 37 36.2 36.2 39.7 42.9	Temp (°F) 44.5 42.9 42.4 42.2 40.2 38.1 36.9 37.8 41.5 44.8	Temp (°F) 42.1 41.8 41.2 39.9 37.6 36.2 35.7 35 37.5	Humidity (%) 59.12 66.12 64.67 60.97 64.36 74.28 76.52 78.67 70.46	Precip (in) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10/23/2003 01:00:00 10/23/2003 02:00:00 10/23/2003 03:00:00 10/23/2003 03:00:00 10/23/2003 04:00:00 10/23/2003 05:00:00 10/23/2003 06:00:00 10/23/2003 07:00:00 10/23/2003 09:00:00 10/23/2003 09:00:00 10/23/2003 10/23/2003 10/23/2003 11:00:00 10/23/2003 12:00:00 10/23/2003 13:00:00 10/23/2003 13:00:00 10/23/2003 15:00:00 10/23/2003 15:00:00 10/23/2003 16:00:00 10/23/2003 16:00:00 10/23/2003 16:00:00 10/23/2003 16:00:00 10/23/2003 16:00:00 <	42.3 42 41.1 39.3 37 36.2 36.2 39.7 42.9	42.9 42.4 42.2 40.2 38.1 36.9 37.8 41.5	41.8 41.2 39.9 37.6 36.2 35.7 35 37.5	66.12 64.67 60.97 64.36 74.28 76.52 78.67	0 0 0 0 0 0
01:00:00 10/23/2003 02:00:00 10/23/2003 03:00:00 10/23/2003 04:00:00 10/23/2003 04:00:00 10/23/2003 05:00:00 10/23/2003 06:00:00 10/23/2003 06:00:00 10/23/2003 07:00:00 10/23/2003 09:00:00 10/23/2003 10/23/2003 10/23/2003 10/23/2003 11:00:00 10/23/2003 12:00:00 10/23/2003 13:00:00 10/23/2003 13:00:00 10/23/2003 15:00:00 10/23/2003 15:00:00 10/23/2003 16:00:00 10/23/2003 16:00:00 10/23/2003 16:00:00 10/23/2003 16:00:00 10/23/2003 16:00:00 <	42 41.1 39.3 37 36.2 36.2 39.7 42.9	42.9 42.4 42.2 40.2 38.1 36.9 37.8 41.5	41.8 41.2 39.9 37.6 36.2 35.7 35 37.5	66.12 64.67 60.97 64.36 74.28 76.52 78.67	0 0 0 0 0 0
01:00:00 10/23/2003 02:00:00 10/23/2003 03:00:00 10/23/2003 04:00:00 10/23/2003 04:00:00 10/23/2003 05:00:00 10/23/2003 06:00:00 10/23/2003 06:00:00 10/23/2003 07:00:00 10/23/2003 09:00:00 10/23/2003 10/23/2003 10/23/2003 10/23/2003 11:00:00 10/23/2003 12:00:00 10/23/2003 13:00:00 10/23/2003 13:00:00 10/23/2003 15:00:00 10/23/2003 15:00:00 10/23/2003 16:00:00 10/23/2003 16:00:00 10/23/2003 16:00:00 10/23/2003 16:00:00 10/23/2003 16:00:00 <	42 41.1 39.3 37 36.2 36.2 39.7 42.9	42.4 42.2 40.2 38.1 36.9 37.8 41.5	41.2 39.9 37.6 36.2 35.7 35 37.5	64.67 60.97 64.36 74.28 76.52 78.67	0 0 0 0 0
10/23/2003 02:00:00 10/23/2003 03:00:00 10/23/2003 04:00:00 10/23/2003 04:00:00 10/23/2003 05:00:00 10/23/2003 06:00:00 10/23/2003 07:00:00 10/23/2003 07:00:00 10/23/2003 09:00:00 10/23/2003 10:00:00 10/23/2003 10:00:00 10/23/2003 12:00:00 10/23/2003 13:00:00 10/23/2003 13:00:00 10/23/2003 15:00:00 10/23/2003 15:00:00 10/23/2003 16:00:00 10/23/2003 16:00:00 10/23/2003 16:00:00 10/23/2003 16:00:00 10/23/2003 18:00:00	42 41.1 39.3 37 36.2 36.2 39.7 42.9	42.4 42.2 40.2 38.1 36.9 37.8 41.5	41.2 39.9 37.6 36.2 35.7 35 37.5	64.67 60.97 64.36 74.28 76.52 78.67	0 0 0 0 0
02:00:00 10/23/2003 03:00:00 10/23/2003 04:00:00 10/23/2003 05:00:00 10/23/2003 06:00:00 10/23/2003 07:00:00 10/23/2003 08:00:00 10/23/2003 10/23/2003 11:00:00 10/23/2003 12:00:00 10/23/2003 13:00:00 10/23/2003 13:00:00 10/23/2003 13:00:00 10/23/2003 13:00:00 10/23/2003 13:00:00 10/23/2003 13:00:00 10/23/2003 13:00:00 10/23/2003 15:00:00 10/23/2003 15:00:00 10/23/2003 16:00:00 10/23/2003 16:00:00 10/23/2003 16:00:00 10/23/2003 16:00:00 10/23/2003 16:00:00 10/23/2003 16:00:00 10/23/2003 16:00:00 10/23/2003 16:00:00 10/23/2003 16:00:00 10/23/2003 16:00:00 10/23/2003 17:00:00 10/23/2003 18:00:00	41.1 39.3 37 36.2 36.2 39.7 42.9	42.2 40.2 38.1 36.9 37.8 41.5	39.9 37.6 36.2 35.7 35 37.5	60.97 64.36 74.28 76.52 78.67	0 0 0 0
10/23/2003 03:00:00 10/23/2003 04:00:00 10/23/2003 05:00:00 10/23/2003 05:00:00 10/23/2003 06:00:00 10/23/2003 06:00:00 10/23/2003 07:00:00 10/23/2003 09:00:00 10/23/2003 10/23/2003 10/23/2003 11:00:00 10/23/2003 12:00:00 10/23/2003 13:00:00 10/23/2003 13:00:00 10/23/2003 15:00:00 10/23/2003 15:00:00 10/23/2003 16:00:00 10/23/2003 16:00:00 10/23/2003 16:00:00 10/23/2003 17:00:00 10/23/2003 18:00:00	41.1 39.3 37 36.2 36.2 39.7 42.9	42.2 40.2 38.1 36.9 37.8 41.5	39.9 37.6 36.2 35.7 35 37.5	60.97 64.36 74.28 76.52 78.67	0 0 0 0
03:00:00 10/23/2003 04:00:00 10/23/2003 05:00:00 10/23/2003 06:00:00 10/23/2003 07:00:00 10/23/2003 08:00:00 10/23/2003 10:00:00 10/23/2003 11:00:00 10/23/2003 12:00:00 10/23/2003 13:00:00 10/23/2003 13:00:00 10/23/2003 14:00:00 10/23/2003 15:00:00 10/23/2003 15:00:00 10/23/2003 15:00:00 10/23/2003 15:00:00 10/23/2003 15:00:00 10/23/2003 16:00:00 10/23/2003 17:00:00 10/23/2003 17:00:00 10/23/2003 18:00:00	39.3 37 36.2 36.2 39.7 42.9	40.2 38.1 36.9 37.8 41.5	37.6 36.2 35.7 35 37.5	64.36 74.28 76.52 78.67	0 0 0 0
10/23/2003 04:00:00 10/23/2003 05:00:00 10/23/2003 06:00:00 10/23/2003 06:00:00 10/23/2003 07:00:00 10/23/2003 08:00:00 10/23/2003 09:00:00 10/23/2003 10/23/2003 10/23/2003 10/23/2003 12:00:00 10/23/2003 13:00:00 10/23/2003 13:00:00 10/23/2003 15:00:00 10/23/2003 15:00:00 10/23/2003 15:00:00 10/23/2003 16:00:00 10/23/2003 16:00:00 10/23/2003 17:00:00 10/23/2003 18:00:00	39.3 37 36.2 36.2 39.7 42.9	40.2 38.1 36.9 37.8 41.5	37.6 36.2 35.7 35 37.5	64.36 74.28 76.52 78.67	0 0 0 0
04:00:00 10/23/2003 05:00:00 10/23/2003 06:00:00 10/23/2003 07:00:00 10/23/2003 08:00:00 10/23/2003 10/23/2003 10:00:00 10/23/2003 11:00:00 10/23/2003 12:00:00 10/23/2003 13:00:00 10/23/2003 14:00:00 10/23/2003 15:00:00 10/23/2003 15:00:00 10/23/2003 15:00:00 10/23/2003 16:00:00 10/23/2003 16:00:00 10/23/2003 16:00:00 10/23/2003 16:00:00 10/23/2003 16:00:00 10/23/2003 16:00:00 10/23/2003 16:00:00 10/23/2003 16:00:00 10/23/2003 16:00:00 10/23/2003 17:00:00 10/23/2003 18:00:00	37 36.2 36.2 39.7 42.9	38.1 36.9 37.8 41.5	36.2 35.7 35 37.5	74.28 76.52 78.67	0 0 0
10/23/2003 05:00:00 10/23/2003 06:00:00 10/23/2003 07:00:00 10/23/2003 07:00:00 10/23/2003 08:00:00 10/23/2003 09:00:00 10/23/2003 10:00:00 10/23/2003 11:00:00 10/23/2003 12:00:00 10/23/2003 13:00:00 10/23/2003 15:00:00 10/23/2003 15:00:00 10/23/2003 15:00:00 10/23/2003 16:00:00 10/23/2003 16:00:00 10/23/2003 18:00:00	37 36.2 36.2 39.7 42.9	38.1 36.9 37.8 41.5	36.2 35.7 35 37.5	74.28 76.52 78.67	0 0 0
05:00:00 10/23/2003 06:00:00 10/23/2003 07:00:00 10/23/2003 08:00:00 10/23/2003 09:00:00 10/23/2003 10:00:00 10/23/2003 12:00:00 10/23/2003 13:00:00 10/23/2003 14:00:00 10/23/2003 15:00:00 10/23/2003 15:00:00 10/23/2003 15:00:00 10/23/2003 15:00:00 10/23/2003 15:00:00 10/23/2003 15:00:00 10/23/2003 15:00:00 10/23/2003 15:00:00 10/23/2003 16:00:00 10/23/2003 17:00:00 10/23/2003 18:00:00	36.2 36.2 39.7 42.9	36.9 37.8 41.5	35.7 35 37.5	76.52 78.67	0
10/23/2003 06:00:00 10/23/2003 07:00:00 10/23/2003 08:00:00 10/23/2003 08:00:00 10/23/2003 09:00:00 10/23/2003 10:00:00 10/23/2003 11:00:00 10/23/2003 12:00:00 10/23/2003 13:00:00 10/23/2003 15:00:00 10/23/2003 15:00:00 10/23/2003 15:00:00 10/23/2003 16:00:00 10/23/2003 16:00:00 10/23/2003 18:00:00	36.2 36.2 39.7 42.9	36.9 37.8 41.5	35.7 35 37.5	76.52 78.67	0
06:00:00 10/23/2003 07:00:00 10/23/2003 08:00:00 10/23/2003 09:00:00 10/23/2003 09:00:00 10/23/2003 10:00:00 10/23/2003 11:00:00 10/23/2003 12:00:00 10/23/2003 13:00:00 10/23/2003 15:00:00 10/23/2003 15:00:00 10/23/2003 15:00:00 10/23/2003 15:00:00 10/23/2003 16:00:00 10/23/2003 17:00:00 10/23/2003 18:00:00	36.2 39.7 42.9	37.8 41.5	35 37.5	78.67	0
10/23/2003 07:00:00 10/23/2003 08:00:00 10/23/2003 09:00:00 10/23/2003 09:00:00 10/23/2003 10:00:00 10/23/2003 11:00:00 10/23/2003 12:00:00 10/23/2003 13:00:00 10/23/2003 14:00:00 10/23/2003 15:00:00 10/23/2003 16:00:00 10/23/2003 16:00:00 10/23/2003 16:00:00 10/23/2003 18:00:00	36.2 39.7 42.9	37.8 41.5	35 37.5	78.67	0
07:00:00 10/23/2003 08:00:00 10/23/2003 09:00:00 10/23/2003 10:00:00 10/23/2003 11:00:00 10/23/2003 12:00:00 10/23/2003 13:00:00 10/23/2003 14:00:00 10/23/2003 15:00:00 10/23/2003 16:00:00 10/23/2003 17:00:00 10/23/2003 18:00:00	39.7 42.9	41.5	37.5		
10/23/2003 08:00:00 10/23/2003 09:00:00 10/23/2003 10:00:00 10/23/2003 10:00:00 10/23/2003 11:00:00 10/23/2003 12:00:00 10/23/2003 13:00:00 10/23/2003 14:00:00 10/23/2003 15:00:00 10/23/2003 16:00:00 10/23/2003 17:00:00 10/23/2003 18:00:00	39.7 42.9	41.5	37.5		
08:00:00 10/23/2003 09:00:00 10/23/2003 10:00:00 10/23/2003 11:00:00 10/23/2003 12:00:00 10/23/2003 13:00:00 10/23/2003 13:00:00 10/23/2003 14:00:00 10/23/2003 15:00:00 10/23/2003 16:00:00 10/23/2003 16:00:00 10/23/2003 16:00:00 10/23/2003 18:00:00	42.9			70.46	-
10/23/2003 09:00:00 10/23/2003 10:00:00 10/23/2003 11:00:00 10/23/2003 12:00:00 10/23/2003 13:00:00 10/23/2003 13:00:00 10/23/2003 14:00:00 10/23/2003 15:00:00 10/23/2003 16:00:00 10/23/2003 16:00:00 10/23/2003 18:00:00	42.9			70.40	1 1
09:00:00 10/23/2003 10:00:00 10/23/2003 11:00:00 10/23/2003 12:00:00 10/23/2003 13:00:00 10/23/2003 13:00:00 10/23/2003 14:00:00 10/23/2003 15:00:00 10/23/2003 16:00:00 10/23/2003 17:00:00 10/23/2003 18:00:00		44.8			0
10/23/2003 10:00:00 10/23/2003 11:00:00 10/23/2003 12:00:00 10/23/2003 13:00:00 10/23/2003 14:00:00 10/23/2003 15:00:00 10/23/2003 16:00:00 10/23/2003 16:00:00 10/23/2003 17:00:00 10/23/2003 18:00:00		44.0	41.2	60.1	0
10:00:00 10/23/2003 11:00:00 10/23/2003 12:00:00 10/23/2003 13:00:00 10/23/2003 14:00:00 10/23/2003 15:00:00 10/23/2003 15:00:00 10/23/2003 16:00:00 10/23/2003 17:00:00 10/23/2003 18:00:00			41.2	00.1	0
10/23/2003 11:00:00 10/23/2003 12:00:00 10/23/2003 13:00:00 10/23/2003 14:00:00 10/23/2003 15:00:00 10/23/2003 15:00:00 10/23/2003 16:00:00 10/23/2003 16:00:00 10/23/2003 17:00:00 10/23/2003 18:00:00	45.4	46.7	44.1	47.69	0
11:00:00 10/23/2003 12:00:00 10/23/2003 13:00:00 10/23/2003 14:00:00 10/23/2003 15:00:00 10/23/2003 16:00:00 10/23/2003 16:00:00 10/23/2003 17:00:00 10/23/2003 18:00:00	43.4	40.7	44.1	47.09	0
10/23/2003 12:00:00 10/23/2003 13:00:00 10/23/2003 14:00:00 10/23/2003 15:00:00 10/23/2003 16:00:00 10/23/2003 16:00:00 10/23/2003 17:00:00 10/23/2003 18:00:00	44.8	45.5	44.1	43.87	0
12:00:00 10/23/2003 13:00:00 10/23/2003 14:00:00 10/23/2003 15:00:00 10/23/2003 16:00:00 10/23/2003 16:00:00 10/23/2003 17:00:00 10/23/2003 18:00:00	44.0	43.5	44.1	43.07	0
10/23/2003 13:00:00 10/23/2003 14:00:00 10/23/2003 15:00:00 10/23/2003 16:00:00 10/23/2003 17:00:00 10/23/2003 17:00:00 10/23/2003 18:00:00	45.7	46.7	44.3	40.99	0
13:00:00 10/23/2003 14:00:00 10/23/2003 15:00:00 10/23/2003 16:00:00 10/23/2003 17:00:00 10/23/2003 18:00:00	45.7	40.7	44.5	40.99	0
10/23/2003 14:00:00 10/23/2003 15:00:00 10/23/2003 16:00:00 10/23/2003 17:00:00 10/23/2003 18:00:00	45.4	46.1	44.9	43.86	0
14:00:00 10/23/2003 15:00:00 10/23/2003 16:00:00 10/23/2003 17:00:00 10/23/2003 18:00:00	45.4	40.1	44.9	45.00	0
10/23/2003 15:00:00 10/23/2003 16:00:00 10/23/2003 17:00:00 10/23/2003 18:00:00	47.3	49.5	45	43.51	0
15:00:00 10/23/2003 16:00:00 10/23/2003 17:00:00 10/23/2003 18:00:00	47.5	47.5		45.51	0
10/23/2003 16:00:00 10/23/2003 17:00:00 10/23/2003 18:00:00	47.3	48.9	46.1	43.71	0
16:00:00 10/23/2003 17:00:00 10/23/2003 18:00:00	17.5	10.2	40.1	45.71	0
10/23/2003 17:00:00 10/23/2003 18:00:00	46.6	47.1	46.2	43.78	0
17:00:00 10/23/2003 18:00:00			40.2	45.70	0
10/23/2003 18:00:00	46.9	47.7	46.1	44.3	0
18:00:00	10.5	47.7	40.1	44.5	0
the second se	44	46.2	41.4	54.06	0
		+0.2	71.7	54.00	0
19:00:00	39.1	41.7	37.4	73.81	0
10/23/2003	57.1	71.7	57.4	75.01	0
20:00:00	35.9	38.1	34.2	85.6	. 0
10/23/2003	55.7	50.1	57.2	05.0	0
21:00:00		37.4	33.9	87.9	0
10/23/2003	35.6	57.4	55.9	01.9	0
22:00:00	35.6	36.9	33.8	85	0
10/23/2003		50.9	55.0	0.0	0
23:00:00	35.6 35.6			86.5	0

Date & Time	Average Temp (°F)	Maximum Temp (°F)	Minimum Temp (°F)	Relative Humidity (%)	Total Precip (in)
10/24/2003					
00:00:00	33	35.2	31.8	90.5	0
10/24/2003					
01:00:00			30.8	94.7	0
10/24/2003					
02:00:00	31.1	33	30.5	95	0
10/24/2003					
03:00:00	30.6	31.4	29.9	96.5	0
10/24/2003					
04:00:00	30.7	32.4	29.6	97	0
10/24/2003					
05:00:00	33.2	34.2	32.1	92.2	0
10/24/2003			02.1	72.2	0
06:00:00	33.8	35	32.3	85.5	0
10/24/2003			52.5	05.5	0
07:00:00	34.6	35.5	33.9	80.1	0
10/24/2003	0.110		55.5	00.1	0
08:00:00	37.3	40.3	35.3	75.9	0
10/24/2003	51.5	40.5	55.5	13.9	0
09:00:00	43.4	46.5	39.9	65.98	0.01
10/24/2003	13.1	40.5	39.9	03.90	0.01
10:00:00	48.3	50.2	46.3	54.67	0
10/24/2003	+0.5	50.2	40.3		0
11:00:00	51.5	52.6	49.7	40.00	0
10/24/2003	51.5	52.0	49.7	48.88	0
12:00:00	53.7	55.3	52	46.17	0
10/24/2003	55.7	55.5	52	46.17	0
13:00:00	54.6	55.9	53.5	42.01	0
10/24/2003	54.0	55.9	55.5	43.21	0
14:00:00	55.2	57.5	54	42.10	0
10/24/2003	55.2	51.5		43.19	0
15:00:00	56.2	57.6	54.4	42.75	0
10/24/2003	50.2	57.0	54.4	42.75	0
16:00:00	55.1	56.1	54.4	44.07	0
10/24/2003	55.1	50.1	54.4	44.07	0
17:00:00	54	55.1	51.9	48.64	0
10/24/2003	54	55.1	51.9	40.04	0
18:00:00	48.2	52.2	11.2	66.00	0
10/24/2003	40.2	56.6	44.3	66.22	0
19:00:00	43.4	44.8	42	915	0
10/24/2003	TJ.T	0	42	81.5	0
20:00:00	41	42.3	39.3	80.1	0
10/24/2003	41	42.3	39.3	89.1	0
21:00:00	39.3	41	38.1	02.7	0
10/24/2003	59.5	41	30.1	92.7	0
22:00:00	37.9	39	37.2	06.4	0
10/24/2003	51.5	59	37.2	96.4	0
23:00:00	37.3	38	36.7	97.9	0

4

APPENDIX C. SOIL MOISTURE

Daily Soil Moisture Logs

Demonstrator: GTEK Date: October 14, 2003 Times: No AM Readings, 1600 hours

Probe Location:	Layer, in.	AM Reading, %	PM Reading, %
Wet Area	0 to 6	No Readings Taken	- Cr
	6 to 12		
	12 to 24		
	24 to 36		
	36 to 48		No Readings Taken
Wooded Area	0 to 6	No Readings Taken	
	6 to 12		
	12 to 24		
	24 to 36		
	36 to 48		No Readings Taken
Open Area	0 to 6	No Readings Taken	
	6 to 12		
	12 to 24		
	24 to 36		
	36 to 48		No Readings Taken
Calibration Lanes	0 to 6	No Readings Taken	39.5
	6 to 12		37.7
	12 to 24		0.8
	24 to 36		4.5
	36 to 48		4.6
Blind Grid/Moguls	0 to 6	No Readings Taken	2.7
	6 to 12		23.4
	12 to 24		36.6
	24 to 36		35.8
	36 to 48		37.9

C-1

Demonstrator: GTEK Date: October 15, 2003 Times: 0800 hours, 1600 hours

Probe Location:	Layer, in.	AM Reading, %	PM Reading, %		
Wet Area	0 to 6	60.2	59.1		
	6 to 12	73.1	73.6		
	12 to 24	76.8	76.3		
	24 to 36	53.7	54.0		
	36 to 48	48.4	49.1		
Wooded Area	0 to 6	No Readings Taken	No Readings Taken		
	6 to 12				
	12 to 24				
	24 to 36				
	36 to 48				
Open Area	0 to 6	22.1	20.2		
	6 to 12	6.3	5.7		
	12 to 24	16.8	17.3		
	24 to 36	26.7	26.1		
	36 to 48	49.9	51.3		
Calibration Lanes	0 to 6	No Readings Taken	No Readings Taken		
	6 to 12				
	12 to 24				
	24 to 36				
	36 to 48				
Blind Grid/Moguls	0 to 6	No Readings Taken	No Readings Taken		
	6 to 12		0		
	12 to 24				
	24 to 36				
	36 to 48				

Demonstrator: GTEK Date: October 16, 2003 Times: 0830 hours, 1445 hours

Probe Location:	Layer, in.	AM Reading, %	PM Reading, %		
Wet Area	0 to 6	69.4	70.1		
	6 to 12	73.1	73.8		
	12 to 24	71.9	70.9		
	24 to 36	54.8	54.2		
	36 to 48	50.1	49.7		
Wooded Area	0 to 6	No Readings Taken	No Readings Taken		
	6 to 12				
	12 to 24				
	24 to 36				
	36 to 48				
Open Area	0 to 6	18.1	17.6		
	6 to 12	0.3	0.3		
	12 to 24	18.9	18.7		
	24 to 36	21.9	21.6		
	36 to 48	29.3	29.7		
Calibration Lanes	0 to 6	No Readings Taken	No Readings Taken		
	6 to 12				
	12 to 24				
	24 to 36				
	36 to 48				
Blind Grid/Moguls	0 to 6	No Readings Taken	No Readings Taker		
	6 to 12				
	12 to 24				
	24 to 36				
	36 to 48				

Demonstrator: GTEK Date: October 17, 2003 Times: 0825 hours, 1345 hours

Probe Location:	Layer, in.	AM Reading, %	PM Reading, %		
Wet Area	0 to 6	70.2	70.8		
	6 to 12	72.5	73.1		
	12 to 24	72.2	71.8		
	24 to 36	52.6	53.1		
	36 to 48	49.1	48.8		
Wooded Area	0 to 6	No Readings Taken	No Readings Taken		
	6 to 12				
	12 to 24				
	24 to 36				
	36 to 48				
Open Area	0 to 6	16.5	16.6		
	6 to 12	0.2	0.4		
	12 to 24	19.2	18.9		
	24 to 36	22.3	21.9		
	36 to 48	29.8	29.9		
Calibration Lanes	0 to 6	No Readings Taken	No Readings Taken		
	6 to 12		_		
	12 to 24				
	24 to 36				
	36 to 48				
Blind Grid/Moguls	0 to 6	No Readings Taken	No Readings Taken		
	6 to 12				
	12 to 24				
	24 to 36				
	36 to 48				

C-4

Demonstrator: GTEK Date: October 18, 2003 Times: 0845 hours, 1400 hours

Probe Location:	Layer, in.	AM Reading, %	PM Reading, %		
Wet Area	0 to 6	69.3	69.1		
	6 to 12	71.3	72.8		
	12 to 24	71.8	71.2		
	24 to 36	52.5	53.5		
	36 to 48	49.7	50.1		
Wooded Area	0 to 6	No Readings Taken	No Readings Taken		
	6 to 12				
	12 to 24				
	24 to 36				
	36 to 48				
Open Area	0 to 6	15.7	15.6		
	6 to 12	0.3	0.4		
	12 to 24	18.3	18.9		
	24 to 36	21.8	21.2		
	36 to 48	29.3	29.1		
Calibration Lanes	0 to 6	No Readings Taken	No Readings Taken		
	6 to 12				
	12 to 24				
	24 to 36				
	36 to 48				
Blind Grid/Moguls	0 to 6	No Readings Taken	No Readings Taken		
	6 to 12		C C		
	12 to 24				
	24 to 36				
	36 to 48				

Demonstrator: GTEK Date: October 20, 2003 Times: 0800 hours, 1400 hours

Probe Location:	Layer, in.	AM Reading, %	PM Reading, %		
Wet Area	0 to 6	78.6	78.1		
	6 to 12	75.3	75.0		
	12 to 24	68.7	69.0		
	24 to 36	51.8	52.1		
	36 to 48	48.1	48.2		
Wooded Area	0 to 6	No Readings Taken	No Readings Taken		
	6 to 12				
	12 to 24				
	24 to 36				
	36 to 48				
Open Area	en Area 0 to 6		12.2		
	6 to 12	2.1	2.3		
	12 to 24	14.6	14.4		
	24 to 36	20.8	20.8		
	36 to 48	25.6	25.3		
Calibration Lanes	0 to 6	No Readings Taken			
	6 to 12				
	12 to 24				
	24 to 36				
	36 to 48				
Blind Grid/Moguls	0 to 6	No Readings Taken	No Readings Taken		
	6 to 12				
	12 to 24				
	24 to 36				
	36 to 48				

C-6

.

Demonstrator: GTEK Date: October 21, 2003 Times: 0800 hours, 1400 hours

Probe Location:	Layer, in.	AM Reading, %	PM Reading, %		
Wet Area	0 to 6	77.8	77.6		
	6 to 12	75.8	75.9		
	12 to 24	69.3	69.2		
	24 to 36	52.3	52.4		
	36 to 48	49.3	49.7		
Wooded Area	0 to 6	No Readings Taken	No Readings Taken		
	6 to 12				
	12 to 24				
	24 to 36				
	36 to 48				
Open Area	0 to 6	11.9	11.9		
	6 to 12	2.2	2.4		
	12 to 24	14.7	14.5		
	24 to 36	21.2	21.3		
	36 to 48	26.3	26.1		
Calibration Lanes	0 to 6	No Readings Taken	No Readings Taken		
	6 to 12				
	12 to 24				
	24 to 36				
	36 to 48				
Blind Grid/Moguls	0 to 6	No Readings Taken	No Readings Taken		
	6 to 12	-			
	12 to 24				
	24 to 36				
	36 to 48				

C-7

Demonstrator: GTEK Date: October 22, 2003 Times: 0800 hours, 1400 hours

Probe Location:	Layer, in.	AM Reading, %	PM Reading, %		
Wet Area	0 to 6	No Readings Taken	No Readings Taken		
	6 to 12				
	12 to 24				
	24 to 36				
	36 to 48				
Wooded Area	0 to 6	11.8	12.2		
	6 to 12	5.7	5.1		
	12 to 24	4.3	4.4		
	24 to 36	51.8	51.4		
	36 to 48	54.3	53.9		
Open Area	0 to 6	No Readings Taken	No Readings Taken		
	6 to 12				
	12 to 24				
	24 to 36				
	36 to 48				
Calibration Lanes	0 to 6	No Readings Taken	No Readings Taken		
	6 to 12				
	12 to 24				
	24 to 36				
	36 to 48				
Blind Grid/Moguls	0 to 6	4.4	4.5		
	6 to 12	9.6	9.3		
	12 to 24	34.8	34.9		
	24 to 36	36.7	36.2		
	36 to 48	38.5	38.8		

Demonstrator: GTEK Date: October 23, 2003 Times: 0800 hours, 1400 hours

Probe Location:	Layer, in.	AM Reading, %	PM Reading, %		
Wet Area	0 to 6	No Readings Taken	No Readings Taken		
	6 to 12				
	12 to 24				
	24 to 36				
	36 to 48				
Wooded Area	0 to 6	12.1	12.0		
	6 to 12	6.2	5.9		
	12 to 24	4.7	4.4		
	24 to 36	52.3	52.0		
	36 to 48	54.7	54.2		
Open Area	0 to 6	No Readings Taken	No Readings Taken		
	6 to 12				
	12 to 24				
	24 to 36				
	36 to 48				
Calibration Lanes	0 to 6	No Readings Taken	No Readings Taken		
	6 to 12				
	12 to 24				
	24 to 36				
	36 to 48				
Blind Grid/Moguls	0 to 6	4.3	4.1		
	6 to 12	9.5	9.4		
	12 to 24	34.8	35.0		
	24 to 36	36.3	36.2		
	36 to 48	38.1	37.8		

Demonstrator: GTEK Date: October 24, 2003 Times: 0800 hours, 1400 hours

Probe Location:	Layer, in.	AM Reading, %	PM Reading, %		
Wet Area	0 to 6	No Readings Taken	No Readings Taken		
	6 to 12				
	12 to 24				
	24 to 36				
	36 to 48				
Wooded Area	0 to 6	12.2	11.9		
	6 to 12	6.7	6.4		
	12 to 24	4.8	4.9		
	24 to 36	52.7	52.4		
	36 to 48	55.2	54.6		
Open Area	0 to 6	No Readings Taken	No Readings Taken		
	6 to 12				
	12 to 24				
	24 to 36				
	36 to 48				
Calibration Lanes	0 to 6	No Readings Taken	39.2		
	6 to 12		36.2		
	12 to 24		0.5		
	24 to 36		4.1		
	36 to 48		3.8		
Blind Grid/Moguls	0 to 6	4.5	4.0		
	6 to 12	9.7	9.7		
	12 to 24	34.9	34.5		
	24 to 36	36.7	36.2		
	36 to 48	38.4	38.7		

C-10

SUI	Τ	YQC	YOC	YQC	YOC	YOC	YOU	YOU	YOC	YQ	YOU
nditic		MUI	MUI	MUI	MUI	MUI	MUE	MUL	MUE	MUE	MUDDY
Field Conditions		LINEAR CLOUDY MUDDY	LINEAR CLOUDY MUDDY	LINEAR CLOUDY MUDDY	LINEAR CLOUDY MUDDY	LINEAR CLOUDY MUDDY	LINEAR CLOUDY MUDDY	LINEAR CLOUDY MUDDY	LINEAR CLOUDY MUDDY	LINEAR CLOUDY MUDDY	YUNW
	I AUCI II	LINEAR	LINEAR	LINEAR	LINEAR	LINEAR	LINEAR	LINEAR	LINEAR	LINEAR	LINEAR
Track Method = Other	Trypian	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Track	MICHION	GPS	GPS	GPS	GPS	GPS	GPS	GPS	GPS	GPS	GPS
Operational Status -		INITIAL SET UP	CALIBRATE EQUIPMENT USING METAL OBJECTS	COLLECT DATA	CHANGE BATTERY	COLLECT DATA	BREAK/LUNCH	COLLECT DATA	CALIBRATE EQUIPMENT USING METAL OBJECTS	CHECKED GPS EQUIPMENT	EQUIPMENT BREAKDOWN/ END OF DAIL Y OPERATIONS
Onorational Status	TM-5 EMU DUAL SENSOR	INITIAL SET UP	CALIBRATE	COLLECT DATA	DOWNTIME MAINTENANCE CHECK	COLLECT DATA	BREAK/LUNCH	COLLECT DATA	CALIBRATE	DOWNTIME MAINTENANCE CHECK	DAILY START/STOP
Duration,		165	10	80	10	50	10	20	30	75	30
Status Stop Time		1300	1310	1430	1440	1530	1540	1600	1630	1745	1815
Status Status Start Stop Time		1015	1300	1310	1430	1440	1530	1540	1600	1630	1745
Area Tested		CALIBRATION LANE	CALIBRATION LANE	CALIBRATION LANE	CALIBRATION LANE	BLIND TEST GRID	BLIND TEST GRID	BLIND TEST GRID	BLIND TEST GRID	BLIND TEST GRID	BLIND TEST GRID
No. of People		2	2	2	2	2	2	2	2	2	2
Date		10/14/2003	10/14/2003	10/14/2003	10/14/2003	10/14/2003	10/14/2003	10/14/2003	10/14/2003	10/14/2003	10/14/2003

3

APPENDIX D. DAILY LOG OF ACTIVITIES

No.	Ctotur		Ctatuc					Track			
Start Stop Duration,	Start Stop Duration,	Stop Duration,	Duration,	(Operational Status -	Track	Method = Other			
reupie Area Lested Lime Lime min (I I me I me min	11me min	uiu		Operational Status	Comments	Method	Explain	Pattern	Field Co	Field Conditions
2 OPEN FIELD 0800 1015 135 D	0800 1015 135	1015 135			DAILY START/STOP	START OF DAILY OPERATIONS	GPS	NA	LINEAR	YUNY	MUDDY
2 OPEN FIELD 1015 1100 45 D	1015 1100 45	1100 45			DAILY START/STOP	SET UP SPACING WITH TAPES	GPS	NA	LINEAR	YUNY	MUDDY
2 OPEN FIELD 1100 1115 15	1100 1115	1115	15		CALIBRATE	CALIBRATE EQUIPMENT USING METAL OBJECTS	GPS	NA	LINEAR	WINDY	MUDDY
2 OPEN FIELD 1115 1245 90	1115 1245	1245	06		COLLECT DATA	COLLECT DATA	GPS	NA	LINEAR	YUNY	MUDDY
1245 1300 45	1245 1300 45	1300 45		MAI	DOWNTIME MAINTENANCE CHECK	EQUIPMENT CHECK, PUT TAPE ON SENSORS TO PREVENT WATER DAMAGE	GPS	NA	LINEAR	YUNIW	Μυσργ
1300 1400 60	1300 1400 60	1400 60		0	COLLECT DATA	COLLECT DATA	GPS	NA	LINEAR	YUNY	MUDDY
2 OPEN FIELD 1400 1405 5 0	1400 1405 5	1405 5		0	COLLECT DATA	COLLECT DATA	GPS	NA	LINEAR	WINDY	MUDDY
2 OPEN FIELD 1405 1710 185 C	1405 1710 185	1710 185		0	COLLECT DATA	COLLECT DATA	GPS	NA	LINEAR	WINDY	MUDDY
2 OPEN FIELD 1710 1800 50 DA	1710 1800 50	1800 50		DA	DAILY START/STOP	EQUIPMENT BREAKDOWN/ END OF DAILY OPERATIONS	GPS	NA	LINEAR	SUNNY	MUDDY

Image Time Time <t< th=""><th></th><th>No.</th><th></th><th>Status Status Start Ston</th><th></th><th>Duration</th><th></th><th>Ortertional Status -</th><th>Track</th><th>Track Method</th><th></th><th>_</th><th></th></t<>		No.		Status Status Start Ston		Duration		Ortertional Status -	Track	Track Method		_	
TM-5 EMU DUAL SENSOR 2 OPEN FIELD 0804 45 DALLY START/STOP START OF DALLY GPS 2 OPEN FIELD 0845 0900 15 CALIBRATE CALIBRATE GPS 2 OPEN FIELD 0845 0900 15 CALIBRATE CALIBRATE GPS 2 OPEN FIELD 0900 1010 70 COLLECT DATA COLLECT DATA GPS 2 OPEN FIELD 1010 1020 1010 70 COLLECT DATA GPS 2 OPEN FIELD 1010 1020 1310 170 COLLECT DATA GPS 2 OPEN FIELD 1310 170 COLLECT DATA COLLECT DATA GPS 2 OPEN FIELD 1310 1700 225 COLLECT DATA COLLECT DATA GPS 2 OPEN FIELD 1311 1700 225 COLLECT DATA CPLANGE BATTERY GPS 2 OPEN FIELD 1700 225 COLLECT DATA COLLECT DATA CPLANGE BATTERY GPS 2 OPEN FIELD <t< th=""><th>Date</th><th>People</th><th></th><th>Time</th><th>Time</th><th>min</th><th>Operational Status</th><th>Comments</th><th>Method</th><th>Explain</th><th>Pattern</th><th>Field Co</th><th>Field Conditions</th></t<>	Date	People		Time	Time	min	Operational Status	Comments	Method	Explain	Pattern	Field Co	Field Conditions
2 OPEN FIELD 0804 45 DAILY START/STOP START OF DAILY GPS 2 OPEN FIELD 0845 0900 15 CALIBRATE GPS 2 OPEN FIELD 0845 0900 15 CALIBRATE GPS 2 OPEN FIELD 0900 1010 70 COLLECT DATA GPS 2 OPEN FIELD 1010 1020 10 DOWNTME CALIBRATE GPS 2 OPEN FIELD 1010 1020 10 DOWNTME CALIBRATE GPS 2 OPEN FIELD 1010 1020 10 DOWNTME CHANGE BATTERY GPS 2 OPEN FIELD 1010 1020 10 MAINTENANCE CHECK CHANGE BATTERY GPS 2 OPEN FIELD 1020 1310 1700 COLLECT DATA COLLECT DATA GPS 2 OPEN FIELD 1315 1700 225 COLLECT DATA COLLECT DATA GPS 2 OPEN FIELD 1315 1700 225 COLLECT DATA COLLECT DATA GPS							TM-5 EMU DUAL SEP	NSOR					
20PEN FIELD0845090015CALIBRATECALIBRATEGPS20PEN FIELD0900101070COLLECT DATACBSMETAL OBJECTSGPS20PEN FIELD1000101070COLLECT DATACDLACT DATAGPS20PEN FIELD101010201070COLLECT DATACDLACT DATAGPS20PEN FIELD101010201070COLLECT DATACOLLECT DATAGPS20PEN FIELD13101310170COLLECT DATACOLLECT DATAGPS20PEN FIELD131013151700225COLLECT DATACOLLECT DATAGPS20PEN FIELD13151700225COLLECT DATACOLLECT DATAGPS20PEN FIELD1700173030DAILY START/STOPEQUIPMENTGPS20PEN FIELD1700173030DAILY START/STOPEQUIPMENTGPS20PEN FIELD1700173030DAILY START/STOPSTART OF DAILYGPS20PEN FIELD1700173030DAILY START/STOPSTART OF DAILYGPS20PEN FIELD073008080DAILY START/STOPSTART OF DAILYGPS20PEN FIELD07300810200DAILY START/STOPSTART OF DAILYGPS20PEN FIELD07300810200DAILY START/STOPSTART OF DAILYGPS20PEN FIEL	10/16/2003	2	OPEN FIELD	0800	0845	45	DAILY START/STOP	START OF DAILY OPERATIONS	GPS	NA	LINEAR	SUNNY	MUDDY
2 OPEN FIELD 0900 1010 70 COLLECT DATA GPS 2 OPEN FIELD 1010 1020 10 1020 10 MAINTENANCE CHECK CHANGE BATTERY GPS 2 OPEN FIELD 1010 1020 170 070 COLLECT DATA CPS 2 OPEN FIELD 1010 1020 1310 170 COLLECT DATA CPS 2 OPEN FIELD 1310 1315 5 MAINTENANCE CHECK CHANGE BATTERY GPS 2 OPEN FIELD 1310 1315 5 MAINTENANCE CHECK COLLECT DATA GPS 2 OPEN FIELD 1315 1700 225 COLLECT DATA CPLACET DATA GPS 2 OPEN FIELD 1315 1700 225 COLLECT DATA COLLECT DATA GPS 2 OPEN FIELD 1315 1700 225 COLLECT DATA COLLECT DATA GPS 2 OPEN FIELD 1730 30 DAILY START/STOP BREAKDOWN END GPS 2 OPEN FIELD 0730 08	10/16/2003	2	OPEN FIELD	0845	0060	15	CALIBRATE	CALIBRATE EQUIPMENT USING METAL OBJECTS	GPS	NA	LINEAR	SUNNY	MUDDY
2OPEN FIELD101010201010102DOWNTIMECHANGE BATTERYGPS2OPEN FIELD10201310170COLLECT DATAGPSGPS2OPEN FIELD131013155MOWNTIMECHANGE BATTERYGPS2OPEN FIELD13151700225COLLECT DATAGPS2OPEN FIELD13151700225COLLECT DATAGPS2OPEN FIELD13151700225COLLECT DATAGPS2OPEN FIELD1700173030DAILY START/STOPBREAKDOWN/ENDGPS2OPEN FIELD0730085080DAILY START/STOPBREAKDOWN/ENDGPS2OPEN FIELD0730085080DAILY START/STOPSTART OF DAILYGPS2OPEN FIELD0730051020DAILY START/STOPSTART OF DAILYGPS2OPEN FIELD0730051020DAILY START/STOPST	10/16/2003	2	OPEN FIELD	0060	1010	70	COLLECT DATA	COLLECT DATA	GPS	NA	LINEAR	SUNNY	MUDDY
2OPEN FIELD10201310170COLLECT DATAGPS2OPEN FIELD131013155DOWNTIMECHANGE BATTERYGPS2OPEN FIELD13151700225COLLECT DATAGPS2OPEN FIELD13151700225COLLECT DATAGPS2OPEN FIELD1700173030DAILY START/STOPEQUIPMENTGPS2OPEN FIELD0730085080DAILY START/STOPEQUIPMENTGPS2OPEN FIELD0730085080DAILY START/STOPSTART OF DAILYGPS2OPEN FIELD0850091020DAILY START/STOPSTART OF DAILYGPS	10/16/2003	2	OPEN FIELD	1010	1020	10	DOWNTIME MAINTENANCE CHECK	CHANGE BATTERY	GPS	NA	LINEAR	SUNNY	MUDDY
2OPEN FIELD131013155DOWNTIMECHANGE BATTERYGPS2OPEN FIELD13151700225COLLECT DATAGPS2OPEN FIELD1700173030DAILY START/STOPEQUIPMENTGPS2OPEN FIELD1700173030DAILY START/STOPEQUIPMENTGPS2OPEN FIELD0730085080DAILY START/STOPEQUIPMENTGPS2OPEN FIELD0730085080DAILY START/STOPSTART OF DAILYGPS2OPEN FIELD0730085080DAILY START/STOPSTART OF DAILYGPS2OPEN FIELD0730085080DAILY START/STOPSTART OF DAILYGPS2OPEN FIELD0730085080DAILY START/STOPSTART OF DAILYGPS2OPEN FIELD085080DAILY START/STOPSTART OF DAILYGPS2OPEN FIELD08509020DAILY START/STOPSTART OF DAILYGPS	10/16/2003	2	OPEN FIELD	1020	1310	170	COLLECT DATA	COLLECT DATA	GPS	NA	LINEAR	SUNNY	MUDDY
2OPEN FIELD13151700225COLLECT DATAGPS2OPEN FIELD1700173030DAILY START/STOPEQUIPMENTGPS2OPEN FIELD0730085080DAILY START/STOPEQUIPMENTGPS2OPEN FIELD0730085080DAILY START/STOPSTART OF DAILYGPS2OPEN FIELD0730085080DAILY START/STOPSTART OF DAILYGPS2OPEN FIELD0730085080DAILY START/STOPSTART OF DAILYGPS2OPEN FIELD0850091020DAILY START/STOPSTART OF DAILYGPS2OPEN FIELD0850091020DAILY START/STOPSTART OF DAILYGPS	10/16/2003	2	OPEN FIELD	1310	1315	5	DOWNTIME MAINTENANCE CHECK	CHANGE BATTERY	GPS	NA	LINEAR	SUNNY	MUDDY
2 OPEN FIELD 1700 1730 30 DAILY START/STOP EQUIPMENT GPS 2 OPEN FIELD 0730 0850 80 DAILY START/STOP EQUIPMENT GPS 2 OPEN FIELD 0730 0850 80 DAILY START/STOP START OF DAILY GPS 2 OPEN FIELD 0730 0850 80 DAILY START/STOP START OF DAILY GPS 2 OPEN FIELD 0850 0910 20 DAILY START/STOP START OF DAILY GPS 2 OPEN FIELD 0850 0910 20 DAILY START/STOP SET UP SPACING GPS	10/16/2003	2	OPEN FIELD	1315	1700	225	COLLECT DATA	COLLECT DATA	GPS	NA	LINEAR	SUNNY	MUDDY
2 OPEN FIELD 0730 0850 80 DAILY START/STOP START OF DAILY GPS 2 OPEN FIELD 0850 0910 20 DAILY START/STOP SET UP SPACING GPS 2 OPEN FIELD 0850 0910 20 DAILY START/STOP SET UP SPACING GPS	10/16/2003	2	OPEN FIELD	1700	1730	30	DAILY START/STOP	EQUIPMENT BREAKDOWN/ END OF DAILY OPERATIONS	GPS	NA	LINEAR	SUNNY	MUDDY
2 OPEN FIELD 0850 0910 20 DAILY START/STOP SET UP SPACING GPS TAPES	10/17/2003	2	OPEN FIELD	0730	0850	80	DAILY START/STOP	START OF DAILY OPERATIONS	GPS	NA	LINEAR	SUNNY	MUDDY
	10/17/2003	2	OPEN FIELD	0850	0910	20	DAILY START/STOP	SET UP SPACING TAPES	GPS	NA	LINEAR	SUNNY	MUDDY

Status Status						Track Method			
		-	Operational Status	Operational Status - Comments	Track	= Other Explain	Pattern	Field Conditions	nditions
		1	TM-5 EMU DUAL SENSOR		STORESAULT.		TT TANK T		STOTION
0910 0930 20	20		COLLECT DATA	COLLECT DATA	GPS	NA	LINEAR	SUNNY	MUDDY
0930 955 25	25		DAILY START/STOP	SET UP SPACING WITH TAPES	GPS	NA	LINEAR	SUNNY	MUDDY
0955 1100 65	65		COLLECT DATA	COLLECT DATA	GPS	NA	LINEAR	SUNNY	MUDDY
1100 1110 10			BREAK/LUNCH	BREAK/LUNCH	GPS	NA	LINEAR	SUNNY	MUDDY
1110 1140 30	30		COLLECT DATA	COLLECT DATA	GPS	NA	LINEAR	SUNNY	MUDDY
1140 1150 10	10		DOWNTIME MAINTENANCE CHECK	CHANGE BATTERY	GPS	NA	LINEAR	SUNNY	MUDDY
1150 1350 120	120		COLLECT DATA	COLLECT DATA	GPS	NA	LINEAR	SUNNY	MUDDY
1350 1410 20	20		DOWNTIME MAINTENANCE CHECK	CHANGE BATTERY	GPS	NA	LINEAR	SUNNY	MUDDY
1410 1600 110	110		COLLECT DATA	COLLECT DATA	GPS	NA	LINEAR	SUNNY	MUDDY
1600 1640 40	40		DAILY START/STOP	EQUIPMENT BREAKDOWN/ END OF DAILY OPERATIONS	GPS	NA	LINEAR	SUNNY	MUDDY

	litions	MUDDY	MUDDY	MUDDY	MUDDY	MUDDY	MUDDY	MUDDY	MUDDY	MUDDY	MUDDY
	Field Conditions	SUNNY N	SUNNY N	SUNNY N	SUNNY N	SUNNY N	SUNNY N	SUNNY N	SUNNY N	SUNNY M	SUNNY M
	Pattern	LINEAR	LINEAR	LINEAR	LINEAR	LINEAR	LINEAR	LINEAR	LINEAR	LINEAR	LINEAR
Track Method = Other	Explain	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Track	Method	GPS	GPS	GPS	GPS	GPS	GPS	GPS	GPS	GPS	GPS
Operational Status -	Comments	START OF DAILY OPERATIONS	CALIBRATE EQUIPMENT USING METAL OBJECTS	COLLECT DATA	CHANGE BATTERY	COLLECT DATA	BREAK/LUNCH	COLLECT DATA	CHANGE BATTERY	COLLECT DATA	EQUIPMENT BREAKDOWN/ END OF DALLY
	Operational Status	DAILY START/STOP ST.	CALIBRATE	COLLECT DATA	DOWNTIME MAINTENANCE CHECK	COLLECT DATA	BREAK/LUNCH	COLLECT DATA	DOWNTIME MAINTENANCE CHECK	COLLECT DATA	DAILY START/STOP
Duration,	min	45	30	120	20	80	10	55	10	150	35
	Time	0810	0840	1040	1100	1220	1230	1325	1335	1605	1640
Status Start	Time	0725	0810	0840	1040	1100	1220	1230	1325	1335	1605
	Area lested	OPEN FIELD	OPEN FIELD	OPEN FIELD	OPEN FIELD	OPEN FIELD	OPEN FIELD	OPEN FIELD	OPEN FIELD	OPEN FIELD	OPEN FIELD
No. of	reopie	2	2	2	2	2	2	2	2	2	2
	Date	10/18/2003	10/18/2003	10/18/2003	10/18/2003	10/18/2003	10/18/2003	10/18/2003	10/18/2003	10/18/2003	10/18/2003

Operational Status Operational Status Track I contain Cother Pattern Field Conditions TM-5 EMU DUAL SENSOR Field Conditions Track I conditions Pattern Field Conditions DALLY START/STOP START OF DALLY GPS NA LINEAR SUNNY MUDDY DALLY START/STOP START OF DALLY GPS NA LINEAR SUNNY MUDDY CALIBRATE CALIBRATE GPS NA LINEAR SUNNY MUDDY COLLECT DATA COLLECT DATA GPS NA LINEAR SUNNY MUDDY MAINTENANCE CHANGE BATTERY GPS NA LINEAR SUNNY MUDDY DOWNTIME COLLECT DATA GPS NA LINEAR SUNNY MUDDY MAINTENANCE CHANGE BATTERY GPS NA LINEAR SUNNY MUDDY DOWNTIME COLLECT DATA GPS NA LINEAR SUNNY MUDDY DOWNTIME DATA CHECK GPS NA LINEAR SUNNY <th></th>	
Comments Method Explain Pattern Field Conservation SENSOR START OF DALLY GPS NA LINEAR SUNNY START OF DALLY GPS NA LINEAR SUNNY FQUIPMENT USING GPS NA LINEAR SUNNY CALIBRATE GPS NA LINEAR SUNNY COULECT DATA GPS NA LINEAR SUNNY COLLECT DATA GPS NA LINEAR SUNNY DATA CHECK GPS NA LINEAR SUNNY COLLECT DATA GPS NA LINEAR SUNNY DATA CHECK GPS NA LINEAR SUNNY COLLECT DATA GPS NA LINEAR SUNNY BREAK/LUNCH GPS NA	Status Status Start Stop Duration,
START OF DAILY GPS NA LINEAR SUNNY START OF DAILY GPS NA LINEAR SUNNY CALIBRATE GPS NA LINEAR SUNNY EQUIPMENT USING GPS NA LINEAR SUNNY COLLECT DATA GPS NA LINEAR SUNNY DATA CHECK GPS NA LINEAR SUNNY DATA CHECK GPS NA LINEAR SUNNY BREAK/LUNCH GPS NA LINEAR SUNNY <t< th=""><th>-</th></t<>	-
START OF DAILY GPS NA LINEAR SUNNY OPERATIONS GPS NA LINEAR SUNNY CALIBRATE GPS NA LINEAR SUNNY DETAL OBJECTS GPS NA LINEAR SUNNY COLLECT DATA GPS NA LINEAR SUNNY DATA CHECK GPS NA LINEAR SUNNY DATA CHECK GPS NA LINEAR SUNNY V UDATA CHECK GPS NA LINEAR SUNNY BREAK/LUNCH GPS NA LINEAR SUNNY BREAK/LUNCH GPS NA LINEAR SUNNY	
CALIBRATE GPS NA LINEAR SUNNY EQUIPMENT USING METAL OBJECTS NA LINEAR SUNNY COLLECT DATA GPS NA LINEAR SUNNY CHANGE BATTERY GPS NA LINEAR SUNNY CHANGE BATTERY GPS NA LINEAR SUNNY COLLECT DATA GPS NA LINEAR SUNNY DATA CHECK GPS NA LINEAR SUNNY BREAK/LUNCH GPS NA LINEAR SUNNY COLLECT DATA GPS NA LINEAR SUNNY BREAK/LUNCH GPS NA LINEAR SUNNY COLLECT DATA GPS NA LINEAR SUNNY COLLECT DATA GPS NA LINEAR SUNNY	0745 0830 45
COLLECT DATAGPSNALINEARSUNNYCHANGE BATTERYGPSNALINEARSUNNYCOLLECT DATAGPSNALINEARSUNNYDATA CHECKGPSNALINEARSUNNYCOLLECT DATAGPSNALINEARSUNNYDATA CHECKGPSNALINEARSUNNYDATA CHECKGPSNALINEARSUNNYDATA CHECKGPSNALINEARSUNNYBREAK/LUNCHGPSNALINEARSUNNYBREAK/LUNCHGPSNALINEARSUNNYBREAK/LUNCHGPSNALINEARSUNNYBREAK/LUNCHGPSNALINEARSUNNYBREAK/LUNCHGPSNALINEARSUNNYBREAK/LUNCHGPSNALINEARSUNNYCOLLECT DATAGPSNALINEARSUNNYCOLLECT DATAGPSNALINEARSUNNYCOLLECT DATAGPSNALINEARSUNNYCOLLECT DATAGPSNALINEARSUNNYCOLLECT DATAGPSNALINEARSUNNYCOLLECT DATAGPSNALINEARSUNNY	830 0850 20
CHANGE BATTERY GPS NA LINEAR SUNNY COLLECT DATA GPS NA LINEAR SUNNY DATA CHECK GPS NA LINEAR SUNNY COLLECT DATA GPS NA LINEAR SUNNY DATA CHECK GPS NA LINEAR SUNNY COLLECT DATA GPS NA LINEAR SUNNY BREAK/LUNCH GPS NA LINEAR SUNNY VITH TAPES O NA LINEAR SUNNY EQUIPMENT CHECK GPS NA LINEAR SUNY	0850 1100 130
COLLECT DATA GPS NA LINEAR SUNNY DATA CHECK GPS NA LINEAR SUNNY COLLECT DATA GPS NA LINEAR SUNNY COLLECT DATA GPS NA LINEAR SUNNY BREAK/LUNCH GPS NA LINEAR SUNNY VITH TAPES NA LINEAR SUNNY UNY EQUIPMENT CHECK GPS NA LINEAR SUNNY COLLECT DATA GPS NA LINEAR SUNNY	1100 1105 5
DATA CHECK GPS NA LINEAR SUNNY COLLECT DATA GPS NA LINEAR SUNNY BREAK/LUNCH GPS NA LINEAR SUNNY COLLECT DATA GPS NA LINEAR SUNNY COLLECT DATA GPS NA LINEAR SUNNY	1105 1115 10
COLLECT DATA GPS NA LINEAR SUNNY BREAK/LUNCH GPS NA LINEAR SUNNY BREAK/LUNCH GPS NA LINEAR SUNNY SET UP SPACING GPS NA LINEAR SUNNY WITH TAPES NA LINEAR SUNNY EQUIPMENT CHECK GPS NA LINEAR SUNNY COLLECT DATA GPS NA LINEAR SUNNY	1115 1130 15
BREAK/LUNCH GPS NA LINEAR SUNNY SET UP SPACING GPS NA LINEAR SUNNY WITH TAPES NA LINEAR SUNNY EQUIPMENT CHECK GPS NA LINEAR SUNNY COLLECT DATA GPS NA LINEAR SUNNY	
SET UP SPACING GPS NA LINEAR SUNNY WITH TAPES BOUIPMENT CHECK GPS NA LINEAR SUNNY EQUIPMENT CHECK GPS NA LINEAR SUNNY COLLECT DATA GPS NA LINEAR SUNNY	1300 1350 50
EQUIPMENT CHECK GPS NA LINEAR SUNNY COLLECT DATA GPS NA LINEAR SUNNY	1350 1410 20
COLLECT DATA GPS NA LINEAR SUNNY	1410 1450 40
	1450 1555 65

	No.		Status	Status	Duration.		Onerational Status -	Track	Track Method			
P	People	Area Tested	Time	Time	min	Operational Status	Comments	Method	Explain	Pattern	Field Co	Field Conditions
ł						TM-5 EMU DUAL SENSOR	INSOR					
	2	OPEN FIELD	1555	1610	15	DOWNTIME MAINTENANCE CHECK	DATA CHECK	GPS	NA	LINEAR	SUNNY	MUDDY
	2	OPEN FIELD	1610	1655	45	COLLECT DATA	COLLECT DATA	GPS	NA	LINEAR	SUNNY	MUDDY
10/20/2003	2	OPEN FIELD	1655	1730	35	DAILY START/STOP	EQUIPMENT BREAKDOWN/ END OF DAILY OPERATIONS	GPS	NA	LINEAR	SUNNY	MUDDY
10/21/2003		OPEN FIELD	0735	0910	95	DAILY START/STOP	START OF DAILY OPERATIONS	GPS	NA	LINEAR	SUNNY	MUDDY
10/21/2003		OPEN FIELD	0910	0940	30	CALIBRATE	CALIBRATE EQUIPMENT USING METAL OBJECTS	GPS	NA	LINEAR	SUNNY	MUDDY
10/21/2003	2	OPEN FIELD	0940	1030	50	COLLECT DATA	COLLECT DATA	GPS	NA	LINEAR	SUNNY	MUDDY
10/21/2003		OPEN FIELD	1030	1105	35	DOWNTIME MAINTENANCE CHECK	DATA CHECK	GPS	NA	LINEAR	SUNNY	MUDDY
10/21/2003	2	OPEN FIELD	1105	1315	130	COLLECT DATA	COLLECT DATA	GPS	NA	LINEAR	SUNNY	MUDDY
10/21/2003		OPEN FIELD	1315	1330	15	DOWNTIME MAINTENANCE CHECK	CHANGE BATTERY	GPS	NA	LINEAR	SUNNY	MUDDY
10/21/2003	2	OPEN FIELD	1330	1450	80	COLLECT DATA	COLLECT DATA	GPS	NA	LINEAR	SUNNY	MUDDY

	10		YC	X	YC	YC	X	X	YC	Y	Y	X			
	ndition		MUDDY	MUDDY	YOODY	MUDDY	MUDDY	MUDDY	MUDDY	MUDDY	MUDE	MUDE			
	Field Conditions		SUNNY	SUNNY	SUNNY	CLOUDY	CLOUDY	CLOUDY	CLOUDY	CLOUDY	CLOUDY MUDDY	LINEAR CLOUDY MUDDY			
	Pattern		LINEAR	LINEAR	LINEAR	LINEAR	LINEAR	LINEAR	LINEAR	LINEAR	LINEAR	LINEAR			
Track Method = Other	Explain		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA			
Track	Method		GPS	GPS	GPS	GPS	GPS	GPS	GPS	GPS	GPS	GPS			
Operational Status -	Comments	NSOR	DATA CHECK	COLLECT DATA	EQUIPMENT BREAKDOWN/ END OF DAILY OPERATIONS	START OF DAILY OPERATIONS	CALIBRATE EQUIPMENT USING METAL OBJECTS	COLLECT DATA	CHANGE BATTERY	COLLECT DATA	DATA CHECK	COLLECT DATA			
	Operational Status	TM-5 EMU DUAL SENSOR	DOWNTIME MAINTENANCE CHECK	COLLECT DATA	DAILY START/STOP	DAILY START/STOP	CALIBRATE	COLLECT DATA	DOWNTIME MAINTENANCE CHECK	COLLECT DATA	DOWNTIME MAINTENANCE CHECK	COLLECT DATA			
Duration,	min		30	50	20	130	15	110	10	75	40	061			
Status Stop	Time		1520	1610	1630	0945	1000	1150	1200	1315	1355	1705			
Status Start	Time		1450	1520	1610	0735	0945	1000	1150	1200	1315	1355			
	Area Tested		OPEN FIELD	OPEN FIELD	OPEN FIELD	MOGUL AREA	MOGUL AREA	MOGUL AREA	MOGUL AREA	MOGUL AREA	MOGUL AREA	MOGUL AREA			
No. of	People		2	2	2	2	2	2	2	2	2	2			
	Date		10/21/2003	10/21/2003	10/21/2003	10/22/2003	10/22/2003	10/22/2003	10/22/2003	10/22/2003	10/22/2003	10/22/2003			
100	the local division of the	-	-		-		-			-					
-----	---------------------------	-----------------------------	---------------------------	-----------------------------	---------------------	--	------------------------------	---	---------------------	-------------------------------	--	----------------------------------	---------------------	----------------------------------	---------------------
			nditions		MUDDY		MUDDY	MUDDY	MUDDY		MUDDY	MUDDY	MUDDY	MUDDY	MUDDY
			Field Conditions		LINEAR CLOUDY MUDDY		LINEAR CLOUDY MUDDY	LINEAR CLOUDY MUDDY	LINEAR CLOUDY MUDDY		LINEAR CLOUDY MUDDY	LINEAR CLOUDY MUDDY	LINEAR CLOUDY MUDDY	LINEAR CLOUDY MUDDY	LINEAR CLOUDY MUDDY
			Pattern		LINEAR		LINEAR	LINEAR	LINEAR		LINEAR	LINEAR	LINEAR	LINEAR	LINEAR
	Track	= Other	Explain		NA		NA	NA	NA		COTTON ODOMETER	COTTON	COTTON	COTTON	COTTON
		Track	Method		GPS		GPS	GPS	GPS		NA	NA	NA	NA	NA
		Operational Status -	Comments	SENSOR	EQUIPMENT	BREAKDOWN/ END OF DAILY OPERATIONS	START OF DAILY OPERATIONS	CALIBRATE EQUIPMENT USING METAL OBJECTS	COLLECT DATA	SENSOR	STARTED USING SINGLE HEAD AND COTTON MARKING SYSTEM	CHANGE BATTERY	COLLECT DATA	CHANGE BATTERY, DATA CHECK	COLLECT DATA
			Operational Status	TM-5 EMU DUAL SENSOR	DAILY START/STOP		DAILY START/STOP	CALIBRATE	COLLECT DATA	TM-5 EMU SINGLE SENSOR	COLLECT DATA	DOWNTIME MAINTENANCE CHECK	COLLECT DATA	DOWNTIME MAINTENANCE CHECK	COLLECT DATA
		Duration,	min		25		40	20	99		75	20	145	30	60
	Status	Stop	Time		1730		0810	0830	0930		1045	1105	1330	1400	1500
	Status	Start	Time		1705		0730	0810	0830		0930	1045	1105	1330	1400
			Area Tested		MOGUL	AREA	WOODED AREA	WOODED AREA	WOODED AREA		WOODED AREA	WOODED AREA	WOODED AREA	WOODED AREA	WOODED AREA
	No.	Jo .	People		2		2	2	2		2	2	2	2	2
		,	Date		10/22/2003		10/23/2003	10/23/2003	10/23/2003		10/23/2003	10/23/2003	10/23/2003	10/23/2003	10/23/2003

9

-

	No.		Status						Irack Method			
Date	People	Area Tested	Time	Stop	Duration, min	Operational Status	Operational Status - Comments	Track Method	= Other Explain	Pattern	Field Conditions	ditions
						TM-5 EMU SINGLE SENSOR	SENSOR					
10/23/2003	2	WOODED AREA	1500	1615	75	COLLECT DATA	COLLECT DATA	NA	COTTON	LINEAR	LINEAR CLOUDY MUDDY	MUDDY
10/23/2003	2	WOODED AREA	1615	1630	15	DAILY START/STOP	EQUIPMENT BREAKDOWN/ END OF DAILY OPERATIONS	NA	COTTON ODOMETER	LINEAR	LINEAR CLOUDY MUDDY	MUDDY
10/24/2003	2	WOODED AREA	0800	0815	15	DAILY START/STOP	START OF DAILY OPERATIONS	NA	COTTON	LINEAR	LINEAR CLOUDY MUDDY	MUDDY
10/24/2003	2	WOODED AREA	0815	0830	15	COLLECT DATA	COLLECT DATA	NA	COTTON	LINEAR	LINEAR CLOUDY MUDDY	MUDDY
10/24/2003	2	WOODED AREA	0830	0845	15	DOWNTIME MAINTENANCE CHECK	CHANGE BATTERY	NA	COTTON	LINEAR	LINEAR CLOUDY MUDDY	MUDDY
10/24/2003	2	WOODED AREA	0845	0630	45	COLLECT DATA	COLLECT DATA	NA	COTTON	LINEAR	LINEAR CLOUDY MUDDY	MUDDY
10/24/2003	2	CALIBRATION LANE	0930	0945	15	CALIBRATE	CALIBRATE EQUIPMENT USING METAL OBJECTS	NA	COTTON	LINEAR	LINEAR CLOUDY MUDDY	MUDDY
10/24/2003	2	CALIBRATION LANE	0945	1115	06	COLLECT DATA	COLLECT DATA IN TEST PIT	NA	COTTON	LINEAR	LINEAR CLOUDY MUDDY	MUDDY
10/24/2003	2	CALIBRATION LANE	1115	1200	45	DEMOBILIZATION	DEMOBILIZATION	NA	COTTON	LINEAR		MUDDY
10/24/2003	2	CALIBRATION LANE	1200	1220	20	COLLECT DATA	COLLECT DATA	NA	COTTON ODOMETER	LINEAR	LINEAR CLOUDY MUDDY	MUDDY

	Field Conditions		MUDDY	MUDDY		YOODY	MUDDY	MUDDY	MUDDY	MUDDY	MUDDY	MUDDY	MUDDY
			LINEAR CLOUDY MUDDY	LINEAR CLOUDY MUDDY		LINEAR CLOUDY MUDDY	CLOUDY	CLOUDY	LINEAR CLOUDY MUDDY	LINEAR CLOUDY MUDDY	LINEAR CLOUDY MUDDY	CLOUDY MUDDY	LINEAR CLOUDY MUDDY
	Pattern		LINEAR	LINEAR		LINEAR	LINEAR	LINEAR	LINEAR	LINEAR	LINEAR	LINEAR	LINEAR
Track Method	= Other Explain		COTTON ODOMETE R	COTTON ODOMETE R		GPS	GPS	GPS	GPS	GPS	GPS	GPS	GPS
Truch	Method		NA	NA		NA	NA	NA	NA	NA	NA	NA	NA
Constitution of Chanter	Operational Status - Comments	E SENSOR	COLLECT DATA	DEMOBILIZATION	ster	INITIAL SET UP	COLLECT DATA	CHANGE BATTERY	SET UP SPACING TAPES	COLLECT DATA	CHANGE BATTERY	COLLECT DATA	EQUIPMENT BREAKDOWN/ END OF DAILY OPERATIONS
	Operational Status	TM-5 EMU SINGLE SENSOR	COLLECT DATA	DEMOBILIZATION	MAGNETOMETER	INTTAL SET UP	COLLECT DATA	DOWNTIME MAINTENANCE CHECK	DAILY START/STOP	COLLECT DATA	DOWNTIME MAINTENANCE CHECK	COLLECT DATA	DAILY START/STOP
Duration	min		25	140		310	<u>50</u>	2	20	40	s	20	30
Status	Time		1245	1505	1	1525	1615	1620	1640	1720	1725	1745	1815
Statu s Stort	Time		1220	1245		1015	1525	1615	1620	1640	1720	1725	1745
	Area Tested		BLIND TEST GRID	BLIND TEST GRID		CALIBRATION LANE	CALIBRATION	CALIBRATION LANE	BLIND TEST GRID	BLIND TEST GRID	BLIND TEST GRID	BLIND TEST GRID	BLIND TEST GRID
No.	People		2	2		8	<mark>ന</mark>	<mark>.03</mark>	3	3	3	3	3
	Date		10/24/2003	10/24/2003		10/14/2003	10/14/2003	10/14/2003	10/14/2003	10/14/2003	10/14/2003	10/14/2003	10/14/2003

9

Note: Activities pertinent to this specific demonstration are indicated in highlighted text.

	SUI		YQC	YQC	YQ	YOU	YOU	YO	λQ	λQ	λQ	λQ
	onditio		MUDDY	MUDDY	MUDDY	MUDDY	MUDDY	MUDDY	MUDDY	MUDDY	MUDDY	MUDDY
	Field Conditions		WINDY	WINDY	WINDY	WINDY	YUNIW	WINDY	YUNY	YUNDY	YUNY	WINDY
	Pattern		LINEAR	LINEAR	LINEAR	LINEAR	LINEAR	LINEAR	LINEAR	LINEAR	LINEAR	LINEAR
Track Method - Other	Explain		GPS	GPS	GPS	GPS	GPS	GPS	GPS	GPS	GPS	GPS
Track	Method		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Onerational Status -	Comments	ETER	START OF DAILY OPERATIONS	SET UP SPACING TAPES	CALIBRATE	COLLECT DATA	EQUIPMENT CHECK, PUT TAPE ON SENSORS TO PREVENT WATER DAMAGE	COLLECT DATA	CHANGE BATTERY	COLLECT DATA	CHANGE BATTERY	COLLECT DATA
	Operational Status	MAGNETOMETER	DAILY START/STOP	DAILY START/STOP	CALIBRATE	COLLECT DATA	DOWNTIME MAINTENANCE CHECK	COLLECT DATA	DOWNTIME MAINTENANCE CHECK	COLLECT DATA	DOWNTIME MAINTENANCE CHECK	COLLECT DATA
Duration.	min		135	06	25	35	15	120	15	45	15	09
Status	Time		1015	1145	1210	1245	1300	1500	1515	1600	1615	1715
Status Start	Time		0800	1015	1145	1210	1245	1300	1500	1515	1600	1615
	Area Tested		OPEN FIELD	OPEN FIELD	OPEN FIELD	OPEN FIELD	OPEN FIELD	OPEN FIELD	OPEN FIELD	OPEN FIELD	OPEN FIELD	OPEN FIELD
No.	People		3	3	3	æ	3	3	3	e	3	ŝ
	Date		10/15/2003	10/15/2003	10/15/2003	10/15/2003	10/15/2003	10/15/2003	10/15/2003	10/15/2003	10/15/2003	10/15/2003

			×		×	2	2	2	2	5	5			
	Field Conditions		MUDDY		MUDDY	MUDDY	MUDDY	MUDDY	MUDDY	MUDDY	MUDDY	MUDDY	MUDDY	MUDDY
	Field Co		WINDY		SUNNY	SUNNY	SUNNY	SUNNY	SUNNY	SUNNY	SUNNY	SUNNY	SUNNY	SUNNY
	Pattern		LINEAR		LINEAR	LINEAR	LINEAR	LINEAR	LINEAR	LINEAR	LINEAR	LINEAR	LINEAR	LINEAR
Track Method = Other	Explain		GPS		GPS	GPS	GPS	GPS	GPS	GPS	GPS	GPS	GPS	GPS
Track	Method		NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Operational Status -	Comments	AETER	EQUIPMENT	OF DAILY OPERATIONS	START OF DAILY OPERATIONS	CALIBRATE	COLLECT DATA	CHANGE BATTERY	COLLECT DATA	CHANGE BATTERY	COLLECT DATA	SET UP SPACING TAPES	COLLECT DATA	CHANGE BATTERY
	Operational Status	MAGNETOMETER	DAILY START/STOP		DAILY START/STOP	CALIBRATE	COLLECT DATA	DOWNTIME MAINTENANCE CHECK	COLLECT DATA	DOWNTIME MAINTENANCE CHECK	COLLECT DATA	DAILY START/STOP	COLLECT DATA	DOWNTIME MAINTENANCE CHECK
Duration,	min		45		45	45	80	10	70	5	06	85	96	45
	Time		1800		0845	0630	1050	1100	1210	1215	1345	1510	1640	1645
Status Start	Time		1715		0800	0845	0630	1050	1100	1210	1215	1345	1510	1640
	Area Tested		OPEN FIELD		OPEN FIELD	OPEN FIELD	OPEN FIELD	OPEN FIELD	OPEN FIELD	OPEN FIELD	OPEN FIELD	OPEN FIELD	OPEN FIELD	OPEN FIELD
No. of	People		33		3	3	3	3	3	3	3	3	3	3
	Date		10/15/2003		10/16/2003	10/16/2003	10/16/2003	10/16/2003	10/16/2003	10/16/2003	10/16/2003	10/16/2003	10/16/2003	10/16/2003

Г		SI		DΥ	DΥ	λ	Х	Х	λ	λ	λ	X	X
		Idition		MUDI	MUDDY	MUDDY	MUDDY	MUDDY	MUDDY	MUDI	MUDDY	MUDDY	MUDDY
		Field Conditions		YOUNNY MUDDY	SUNNY	SUNNY	SUNNY	SUNNY	SUNNY I	YUUNY MUDDY	SUNNY I	SUNNY I	NNNY I
		Pattern		LINEAR	LINEAR	LINEAR	LINEAR	LINEAR	LINEAR	LINEAR	LINEAR	LINEAR	LINEAR
Track	Method = Other	Explain		GPS	GPS	GPS	GPS	GPS	GPS	GPS	GPS	GPS	GPS
	Track	Method		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Operational Status -	Comments	METER	COLLECT DATA	EQUIPMENT BREAKDOWN/ END OF DAILY OPERATIONS	START OF DAILY OPERATIONS	CALIBRATE	COLLECT DATA	CHANGE BATTERY	COLLECT DATA	SET UP SPACING TAPES	COLLECT DATA	BAD CABLE CONNECTION, RECONNECTED CABLES
		Operational Status	MAGNETOMETER	COLLECT DATA	DAILY START/STOP	DAILY START/STOP	CALIBRATE	COLLECT DATA	DOWNTIME MAINTENANCE CHECK	COLLECT DATA	DAILY START/STOP	COLLECT DATA	EQUIPMENT FAILURE
	Duration,	min		15	30	100	20	90	20	30	40	55	25
		Time		1700	1730	0910	0630	1100	1120	1150	1230	1325	1350
R	Start	_		1645	1700	0730	0910	930	1100	1120	1150	1230	1325
		Area Tested		OPEN FIELD	OPEN FIELD	OPEN FIELD	OPEN FIELD	OPEN FIELD	OPEN FIELD	OPEN FIELD	OPEN FIELD	OPEN FIELD	OPEN FIELD
	of of	People		3	e	e	ę	ŝ	3	3	3	e	3
		Date		10/16/2003	10/16/2003	10/17/2003	10/17/2003	10/17/2003	10/17/2003	10/17/2003	10/17/2003	10/17/2003	10/17/2003

	s		Y	X	X	X	Z	X	×	X	X	X	X
	Field Conditions		MUDDY	MUDDY	MUDDY	MUDDY	MUDDY	MUDDY	MUDDY	MUDDY	MUDDY	MUDDY	MUDD
	Field C		SUNNY	SUNNY	SUNNY	SUNNY	SUNNY	SUNNY	SUNNY	SUNNY	KNNNS	SUNNY	YUUNY MUDDY
	Pattern		LINEAR	LINEAR	LINEAR	LINEAR	LINEAR	LINEAR	LINEAR	LINEAR	LINEAR	LINEAR	LINEAR
Track Method = Other	Explain		GPS	GPS	GPS	GPS	GPS	GPS	GPS	GPS	GPS	GPS	GPS
Track	Method		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Operational Status -	Comments	AETER	COLLECT DATA	CHANGE BATTERY	COLLECT DATA	EQUIPMENT BREAKDOWN/ END OF DAILY OPERATIONS	START OF DAILY OPERATIONS	CALIBRATE	COLLECT DATA	CHANGE BATTERY	COLLECT DATA	CHANGE BATTERY	BAD SATELLITE QUALITY
	Operational Status	MAGNETOMETER	COLLECT DATA	DOWNTIME MAINTENANCE CHECK	COLLECT DATA	DAILY START/STOP	DAILY START/STOP	CALIBRATE	COLLECT DATA	DOWNTIME MAINTENANCE CHECK	COLLECT DATA	DOWNTIME MAINTENANCE CHECK	EQUIPMENT FAILURE
Duration,	min		55	15	50	50	45	25	65	10	80	5	10
	Time		1445	1500	1550	1640	0810	0835	0940	0950	1110	1115	1125
Status Start	Time		1350	1445	1500	1550	0725	0810	0835	0940	0950	1110	1115
	Area Tested		OPEN FIELD	OPEN FIELD	OPEN FIELD	OPEN FIELD	OPEN FIELD	OPEN FIELD	OPEN FIELD	OPEN FIELD	OPEN FIELD	OPEN FIELD	OPEN FIELD
No. of	People		3	3	3	3	3	3	3	3	3	3	3
ļ	Date		10/17/2003	10/17/2003	10/17/2003	10/17/2003	10/18/2003	10/18/2003	10/18/2003	10/18/2003	10/18/2003	10/18/2003	10/18/2003

	nditions	MUDDY	MUDDY	MUDDY	MUDDY	MUDDY	MUDDY	MUDDY	MUDDY	MUDDY	MUDDY	MUDDY
	Field Conditions	SUNNY	SUNNY	SUNNY	SUNNY	SUNNY	SUNNY	SUNNY	SUNNY	SUNNY	SUNNY	SUNNY MUDDY
	Pattern	LINEAR	LINEAR	LINEAR	LINEAR	LINEAR	LINEAR	LINEAR	LINEAR	LINEAR	LINEAR	LINEAR
Track Method = Other	Explain	GPS	GPS	GPS	GPS	GPS	GPS	GPS	GPS	GPS	GPS	GPS
Track	Method	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Operational Status -	Comments	COLLECT DATA	BREAK/LUNCH	COLLECT DATA	SET UP SPACING TAPES	COLLECT DATA	CHANGE BATTERY	COLLECT DATA	CHANGE BATTERY	COLLECT DATA	EQUIPMENT BREAKDOWN/ END OF DAILY OPERATIONS	START OF DAILY OPERATIONS
	Uperational Status C	COLLECT DATA	BREAK/LUNCH	COLLECT DATA	DAILY START/STOP	COLLECT DATA	DOWNTIME MAINTENANCE CHECK	COLLECT DATA	DOWNTIME MAINTENANCE CHECK	COLLECT DATA	DAILY START/STOP	DAILY START/STOP
Duration,	um	30	35	30	25	55	s	55	15	35	30	60
Status Stop	TIME	1155	1230	1300	1325	1420	1425	1520	1535	1610	1640	0845
Status Start Time	TILLE	1125	1155	1230	1300	1325	1420	1425	1520	1535	1610	0745
Area Tactad		OPEN FIELD	OPEN FIELD	OPEN FIELD	OPEN FIELD	OPEN FIELD	OPEN FIELD	OPEN FIELD	OPEN FIELD	OPEN FIELD	OPEN FIELD	OPEN FIELD
No. of People	T CODIC	e	6	e	3	3	3	3	3	3	3	3
Date	Daw	10/18/2003	10/18/2003	10/18/2003	10/18/2003	10/18/2003	10/18/2003	10/18/2003	10/18/2003	10/18/2003	10/18/2003	10/20/2003

-	2		X	Y	X	X	Z	X	X	Z	X	X	Z
	Field Conditions		MUDD	MUDDY	MUDDY	MUDDY	MUDDY	MUDDY	MUDDY	MUDDY	MUDDY	MUDD	MUDDY
	Field C		YUUNY MUDDY	SUNNY	SUNNY	SUNNY	SUNNY	SUNNY	SUNNY	SUNNY	SUNNY	YUUNY MUDDY	SUNNY
	Pattern		LINEAR	LINEAR	LINEAR	LINEAR	LINEAR	LINEAR	LINEAR	LINEAR	LINEAR	LINEAR	LINEAR
Track Method = Other	Explain		GPS	GPS	GPS	GPS	GPS	GPS	GPS	GPS	GPS	GPS	GPS
Track	Method		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Operational Status -	Comments	IETER	CALIBRATE	COLLECT DATA	CHANGE BATTERY	COLLECT DATA	SET UP SPACING TAPES	CHANGE BATTERY	BREAK/LUNCH	COLLECT DATA	CHANGE BATTERY	COLLECT DATA	CHANGE BATTERY
	Operational Status	MAGNETOMETER	CALIBRATE	COLLECT DATA	DOWNTIME MAINTENANCE CHECK	COLLECT DATA	DAILY START/STOP	DOWNTIME MAINTENANCE CHECK	BREAK/LUNCH	COLLECT DATA	DOWNTIME MAINTENANCE CHECK	COLLECT DATA	DOWNTIME MAINTENANCE CHECK
Duration,	min		30	65	10	45	45	10	20	50	10	90	5
Status Stop	Time		0915	1020	1030	1115	1200	1210	1230	1320	1330	1500	1505
Status Start	Time		0845	0915	1020	1030	1115	1200	1210	1230	1320	1330	1500
	Area Tested		OPEN FIELD	OPEN FIELD	OPEN FIELD	OPEN FIELD	OPEN FIELD	OPEN FIELD	OPEN FIELD	OPEN FIELD	OPEN FIELD	OPEN FIELD	OPEN FIELD
No. of	People		3	3	3	3	3	3	3	3	3	3	3
	Date		10/20/2003	10/20/2003	10/20/2003	10/20/2003	10/20/2003	10/20/2003	10/20/2003	10/20/2003	10/20/2003	10/20/2003	10/20/2003

	itions		MUDDY	MUDDY	MUDDY	MUDDY	MUDDY	MUDDY	MUDDY	MUDDY	MUDDY	YOOU	YOOU
	Field Conditions		IM YN		_							YUUNY MUDDY	YUUNY MUDDY
	Field		SUNNY	SUNNY	SUNNY	SUNNY	SUNNY	SUNNY	SUNNY	SUNNY	SUNNY	SUNN	SUNN
	Pattern		LINEAR	LINEAR	LINEAR	LINEAR	LINEAR	LINEAR	LINEAR	LINEAR	LINEAR	LINEAR	LINEAR
Track Method = Other	Explain		GPS	GPS	GPS	GPS	GPS	GPS	GPS	GPS	GPS	GPS	GPS
Track	Method		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Operational Status -	Comments	IETER	SET UP SPACING TAPES	COLLECT DATA	CHANGE BATTERY	COLLECT DATA	EQUIPMENT BREAKDOWN/ END OF DAIL Y OPERATIONS	START OF DAILY OPERATIONS	CALIBRATE	COLLECT DATA	DOWNLOAD DATA	CHANGE BATTERY	BREAK/LUNCH
	Operational Status	MAGNETOMETER	DAILY START/STOP	COLLECT DATA	DOWNTIME MAINTENANCE CHECK	COLLECT DATA	DAILY START/STOP	DAILY START/STOP	CALIBRATE	COLLECT DATA	DOWNTIME MAINTENANCE CHECK	DOWNTIME MAINTENANCE CHECK	BREAK/LUNCH
Duration,	min		20	50	10	35	30	45	40	70	20	10	20
Status Stop	Time		1525	1615	1625	1700	1730	0820	0060	1010	1030	1040	1100
Status Status Start Stop	Time		1505	1525	1615	1625	1700	0735	0820	0060	1010	1030	1040
	Area Tested		OPEN FIELD	OPEN FIELD	OPEN FIELD	OPEN FIELD	OPEN FIELD	OPEN FIELD	OPEN FIELD	OPEN FIELD	OPEN FIELD	OPEN FIELD	OPEN FIELD
No. of	People		3	e	3	3	б	3	3	3	ε	3	3
	Date		10/20/2003	10/20/2003	10/20/2003	10/20/2003	10/20/2003	10/21/2003	10/21/2003	10/21/2003	10/21/2003	10/21/2003	10/21/2003

'n,		Contraction of the second	Operational Status -	Track	Method = Other	; F		
	nim	Operational Status C MACNETOMETER	Comments	Method	Explain	Pattern	Field Co	Field Conditions
1100 1150	50	COLLECT DATA	COLLECT DATA	NA	GPS	LINEAR	SUNNY	MUDDY
1150 1200	10	DOWNTIME MAINTENANCE CHECK	CHANGE BATTERY	NA	GPS	LINEAR	SUNNY	MUDDY
1200 1330	90	COLLECT DATA	COLLECT DATA	NA	GPS	LINEAR	SUNNY	MUDDY
1330 1345	15	DOWNTIME MAINTENANCE CHECK	CHANGE BATTERY	NA	GPS	LINEAR	SUNNY	MUDDY
1345 1435	50	COLLECT DATA	COLLECT DATA	NA	GPS	LINEAR	SUNNY	MUDDY
1435 1445	10	DOWNTIME MAINTENANCE CHECK	CHANGE BATTERY	NA	GPS	LINEAR	SUNNY	MUDDY
1445 1600	75	COLLECT DATA	COLLECT DATA	NA	GPS	LINEAR	SUNNY	MUDDY
1600 1630	30	DAILY START/STOP	EQUIPMENT BREAKDOWN/ END OF DAILY OPERATIONS	NA	GPS	LINEAR	CLOUDY	MUDDY
0735 0935	 120	DAILY START/STOP	START OF DAILY OPERATIONS	NA	COTTON	LINEAR	CLOUDY	MUDDY
0935 1000	25	CALIBRATE	CALIBRATE	NA	COTTON	LINEAR	CLOUDY MUDDY	MUDDY

Itional Status - Track Track Domments Method CGE BATTERY NA GE BATTERY NA LECT DATA NA GE BATTERY NA LECT DATA NA LECT DATA NA LECT DATA NA	Operational Status Opera MAGNETOMETER COLLECT DATA COL DOWNTIME CHAN MAINTENANCE CHAN COLLECT DATA COL COLLECT DATA COL				Start Imme Time 1000 1145 1145 1205 1205 1300 1300	of People Area Tested Start 3 WOODED 1000 3 WOODED 1145 3 WOODED 1145 3 WOODED 1205 3 MOODED 1205 3 MOODED 1205 3 MOODED 1205
Comments Method Explain Pattern LECT DATA NA COTTON LINEAR GE BATTERY NA COTTON LINEAR GE BATTERY NA COTTON LINEAR LECT DATA NA COTTON LINEAR GE BATTERY NA COTTON LINEAR LECT DATA NA COTTON LINEAR GE BATTERY NA COTTON LINEAR GE BATTERY NA COTTON LINEAR		S X X X	mun 105 55 55 55	Iime min 1145 105 1205 20 1300 55 1305 5	Iime min 1145 105 1205 20 1300 55 1305 5 1400 55	Area rested Lime Lime
LECT DATA NA COTTON LINEAR GE BATTERY NA ODOMETER LECT DATA NA COTTON LINEAR DOMETER COTTON LINEAR GE BATTERY NA COTTON LINEAR GE BATTERY NA COTTON LINEAR DOMETER GE BATTERY NA COTTON LINEAR GE BATTERY NA COTTON LINEAR LECT DATA NA COTTON LINEAR LECT DATA NA COTTON LINEAR DOMETER		W C W	105 20 55 55 55	1145 105 1205 20 1300 55 1305 55	1145 105 1205 20 1300 55 1305 5 1400 55	1000 1145 105 1145 1205 20 1205 1300 55 1300 1305 5
NA COTTON LINEAR CLOUDY ODOMETER CLOUDY NA COTTON LINEAR CLOUDY			20 55 55 55	1205 20 1300 55 1305 5	1205 20 1300 55 1305 5 1400 55	1145 1205 20 1205 1300 55 1300 1305 5
NA COTTON LINEAR CLOUDY 0DOMETER ODOMETER LINEAR CLOUDY NA COTTON LINEAR CLOUDY				1300	1300 1305 1400	1205 1300 1300 1305
NA COTTON LINEAR CLOUDY ODOMETER NA COTTON LINEAR CLOUDY NA COTTON LINEAR CLOUDY NA COTTON LINEAR CLOUDY NA COTTON LINEAR CLOUDY ODOMETER CLOUDY				1305	1305 1400	1300 1305
NA COTTON LINEAR CLOUDY ODOMETER NA COTTON LINEAR CLOUDY ODOMETER NA COTTON LINEAR CLOUDY	CHECK				1400	VANC
NA COTTON LINEAR CLOUDY ODOMETER NA COTTON LINEAR CLOUDY	COLLECT DATA			1400		1305 1400
NA COTTON LINEAR	DOWNTIME C MAINTENANCE CHECK		10	1410		1400 1410
ODUMETER	COLLECT DATA		65	1515		1515
CHANGE BATTERY NA COTTON LINEAR CLOUDY MUDDY ODOMETER	DOWNTIME C MAINTENANCE CHECK		5	1520	1520	1515 1520
COLLECT DATA NA COTTON LINEAR CLOUDY MUDDY ODOMETER	COLLECT DATA		55	1615		1520 1615
EQUIPMENT NA COTTON LINEAR CLOUDY MUDDY BREAKDOWN/ END ODOMETER ODOMETER OF DAILY OPERATIONS	DAILY START/STOP B		75 1	1730 75	75	1730 75

Field Conditions		MUDDY	MUDDY	CLOUDY MUDDY	MUDDY	AUDDY	MUDDY	MUDDY	MUDDY	MUDDY	MUDDY	
Field C		CLOUDY	CLOUDY	CLOUDY	CLOUDY	CLOUDY	CLOUDY	CLOUDY	CLOUDY	CLOUDY	CLOUDY	CLOUDY
Pattern		LINEAR	LINEAR	LINEAR	LINEAR	LINEAR	LINEAR	LINEAR	LINEAR	LINEAR	LINEAR	LINEAR
Track Method = Other Explain		GPS	GPS	GPS	GPS	GPS	GPS	GPS	GPS	GPS	GPS	GPS
Track Method		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Operational Status - Comments	ETER	START OF DAILY OPERATIONS	CALIBRATE	SET UP SPACING TAPES	COLLECT DATA	CHANGE BATTERY	COLLECT DATA	CHANGE BATTERY	COLLECT DATA	SET UP SPACING TAPES	COLLECT DATA	CHANGE BATTERY
Operational Status	MAGNETOMETER	DAILY START/STOP	CALIBRATE	DAILY START/STOP	COLLECT DATA	DOWNTIME MAINTENANCE CHECK	COLLECT DATA	DOWNTIME MAINTENANCE CHECK	COLLECT DATA	DAILY START/STOP	COLLECT DATA	DOWNTIME MAINTENANCE CHECK
Duration, min		06	15	09	<mark>55</mark>	N.	09	<mark>N</mark>	10	45	<mark>55</mark>	10
Status Stop Time		0060	0915	1015	1110	1115	1215	1220	1230	1315	1410	1420
Status Start Time		0730	0060	0915	1015	1110	1115	1215	1220	1230	1315	1410
Area Tested		MOGUL AREA	MOGUL AREA	MOGUL AREA	MOGUL AREA	MOGUL AREA	MOGUL AREA	MOGUL AREA	MOGUL AREA	MOGUL AREA	MOGUL AREA	MOGUL AREA
No. of People		n	<mark>.03</mark>	3	3	3	3	<mark>.03</mark>	3	<mark>.0</mark>	<mark>.0</mark>	8
Date		10/23/2003	10/23/2003	10/23/2003	10/23/2003	10/23/2003	10/23/2003	10/23/2003	10/23/2003	10/23/2003	10/23/2003	10/23/2003

Note: Activities pertinent to this specific demonstration are indicated in highlighted text.

Field Conditions		CLOUDY MUDDY	CLOUDY MUDDY	CLOUDY MUDDY	CLOUDY MUDDY	CLOUDY MUDDY	CLOUDY MUDDY	CLOUDY MUDDY	CLOUDY MUDDY	CLOUDY MUDDY	CLOUDY MUDDY
Pattern		LINEAR	LINEAR	LINEAR	LINEAR	LINEAR	LINEAR	LINEAR	LINEAR	LINEAR	LINEAR
Track Method = Other Explain		GPS	GPS	GPS	GPS	GPS	GPS	GPS	GPS	GPS	GPS
Track Method		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Operational Status - Comments	IETER	COLLECT DATA	EQUIPMENT BREAKDOWN/ END OF DAILY	OPERATIONS START OF DAILY OPERATIONS	CALIBRATE	COLLECT DATA IN TEST PIT	CHANGE BATTERY	COLLECT DATA IN TEST PIT	BREAK/LUNCH	COLLECT DATA	DEMOBILIZATION
Operational Status	MAGNETOMETER	COLLECT DATA	DAILY START/STOP	DAILY START/STOP	CALIBRATE	COLLECT DATA	DOWNTIME MAINTENANCE CHECK	COLLECT DATA	BREAK/LUNCH	COLLECT DATA	DEMOBILIZATION
Duration, min		65	<mark>65</mark>	60	15	105	10	15	65	<mark>90</mark>	95
Status Status Start Stop Time Time		1525	1630	0060	0915	1100	1110	1125	1230	1330	1505
Status Start Time		1420	1525	0800	0060	0915	1100	1110	1125	1230	1330
Area Tested		MOGUL AREA	MOGUL AREA	CALIBRATION TEST PIT	CALIBRATION TEST PIT	CALIBRATION TEST PIT	CALIBRATION TEST PIT	CALIBRATION TEST PIT	CALIBRATION TEST PIT	MOGUL AREA	MOGUL AREA
No. of People		3	3	3	3	ю	3	3	3	<mark>ന</mark>	3
Date		10/23/2003	10/23/2003	10/24/2003	10/24/2003	10/24/2003	10/24/2003	10/24/2003	10/24/2003	10/24/2003	10/24/2003

Note: Activities pertinent to this specific demonstration are indicated in highlighted text.

APPENDIX E. REFERENCES

.

- 1. Standardized UXO Technology Demonstration Site Handbook, DTC Project No. 8-CO-160-000-473, Report No. ATC-8349, March 2002.
- 2. Aberdeen Proving Ground Soil Survey Report, October 1998.
- 3. Data Summary, UXO Standardized Test Site: APG Soils Description, May 2002.
- 4. Yuma Proving Ground Soil Survey Report, May 2003.

APPENDIX F. ABBREVIATIONS

 AEC = U.S. Army Environmental Center APG = Aberdeen Proving Ground ASCII = American Standard Code for Information Interchange. ATC = U.S. Army Aberdeen Test Center CEP = Central Error of Probability EM = electromagnetic EMI = electromagnetic interference EMIS = Electromagnetic Induction Spectroscopy ERDC = U.S. Army Corps of Engineers Engineering Research and Development Center ESTCP = Environmental Security Technology Certification Program
ASCII=American Standard Code for Information Interchange.ATC=U.S. Army Aberdeen Test CenterCEP=Central Error of ProbabilityEM=electromagneticEMI=electromagnetic interferenceEMIS=Electromagnetic Induction SpectroscopyERDC=U.S. Army Corps of Engineers Engineering Research and Development CenterESTCP=Environmental Security Technology Certification Program
ATC=U.S. Army Aberdeen Test CenterCEP=Central Error of ProbabilityEM=electromagneticEMI=electromagnetic interferenceEMIS=Electromagnetic Induction SpectroscopyERDC=U.S. Army Corps of Engineers Engineering Research and Development CenterESTCP=Environmental Security Technology Certification Program
CEP=Central Error of ProbabilityEM=electromagneticEMI=electromagnetic interferenceEMIS=Electromagnetic Induction SpectroscopyERDC=U.S. Army Corps of Engineers Engineering Research and Development CenterESTCP=Environmental Security Technology Certification Program
EM=electromagneticEMI=electromagnetic interferenceEMIS=Electromagnetic Induction SpectroscopyERDC=U.S. Army Corps of Engineers Engineering Research and Development CenterESTCP=Environmental Security Technology Certification Program
EMI=electromagnetic interferenceEMIS=Electromagnetic Induction SpectroscopyERDC=U.S. Army Corps of Engineers Engineering Research and Development CenterESTCP=Environmental Security Technology Certification Program
EMIS =Electromagnetic Induction SpectroscopyERDC =U.S. Army Corps of Engineers Engineering Research and Development CenterESTCP =Environmental Security Technology Certification Program
ERDC = U.S. Army Corps of Engineers Engineering Research and Development Center ESTCP = Environmental Security Technology Certification Program
ESTCP = Environmental Security Technology Certification Program
ESTCP = Environmental Security Technology Certification Program
EQT = Army Environmental Quality Technology Program
GPS = Global Positioning System
JPG = Jefferson Proving Ground
NMEA = National Maritime Electronics Association
POC = point of contact
QA = quality assurance
QC = quality control
ROC = receiver-operating characteristic
RTK = real time kinematic
RTS = Robotic Total Station
SERDP = Strategic Environmental Research and Development Program
UXO = unexploded ordnance
1
YPG = U.S. Army Yuma Proving Ground

(Page F-2 Blank)

APPENDIX G. DISTRIBUTION LIST

DTC Project No. 8-CO-160-UXO-021

Addressee	No. of Copies
Commander U.S. Army Environmental Center ATTN: SFIM-AEC-ATT (Mr. George Robitaille) Aberdeen Proving Ground, MD 21010-5401	2
G-TEK Australia PTY Limited ATTN: (Peter Clark) 3/10 Hudson Road ALBION QLD 4010 Australia	1
SERDP/ESTCP ATTN: (Ms. Anne Andrews) 901 North Stuart Street, Suite 303 Arlington, VA 22203	1
Commander U.S. Army Aberdeen Test Center ATTN: CSTE-DTC-SL-E (Mr. Larry Overbay) (Library) CSTE-DTC-AT-CS-R Aberdeen Proving Ground, MD 21005-5059	1 1 1
Defense Technical Information Center 8725 John J. Kingman Road, STE 0944 Fort Belvoir, VA 22060-6218	2

Secondary distribution is controlled by Commander, U.S. Army Environmental Center, ATTN: SFIM-AEC-ATT.

AD NO. _____ DTC PROJECT NO. 8-CO-160-UXO-021 REPORT NO. ATC-9014

STANDARDIZED

UXO TECHNOLOGY DEMONSTRATION SITE

MOGULS SCORING RECORD NO. 136

SITE LOCATION: U.S. ARMY YUMA PROVING GROUND

DEMONSTRATOR: U.S. ARMY CORPS OF ENGINEERS ENGINEERING RESEARCH AND DEVELOPMENT CENTER 3909 HALLS FERRY ROAD VICKSBURG, MS 39180-6199

TECHNOLOGY TYPE/PLATFORM: GEM-3/PUSHCART

PREPARED BY: U.S. ARMY ABERDEEN TEST CENTER ABERDEEN PROVING GROUND, MD 21005-5059

JUNE 2005

Prepared for: U.S. ARMY ENVIRONMENTAL CENTER ABERDEEN PROVING GROUND, MD 21010-5401

U.S. ARMY DEVELOPMENTAL TEST COMMAND ABERDEEN PROVING GROUND, MD 21005-5055

DISTRIBUTION STATEMENT A Approved for Public Release Distribution Unlimited

DISTRIBUTION UNLIMITED, JUNE 2005.

DISPOSITION INSTRUCTIONS

Destroy this document when no longer needed. Do not return to the originator.

The use of trade names in this document does not constitute an official endorsement or approval of the use of such commercial hardware or software. This document may not be cited for purposes of advertisement.

REPORT DOCUMENTATION PAGE						Form Approved OMB No. 0704-0188
The public reporting b naintaining the data ne suggestions for reduc Suite 1204, Arlington, of information if it doe PLEASE DO NO	urden for this collection eded, and completing a sing the burden, to Dep VA 22202-4302. Resp s not display a current CTRETURN YOU	n of information is esti nd reviewing the colle artment of Defense, W pondents should be aw y valid OMB control nu JR FORM TO TH	imated to average 1 hour per ru ction of information. Send com ashington Headquarters Servic vare that notwithstanding any o imber. IE ABOVE ADDRESS.	esponse, including th ments regarding this ces, Directorate for li ther provision of law	e time for rev burden estim nformation Op v, no person s	iewing instructions, searching existing data sources, gathering a tate or any other aspect of this collection of information, includi perations and Reports (0704-0188), 1215 Jefferson Davis Highwu hall be subject to any penalty for failing to comply with a collection that a collection is the subject to any penalty for failing to comply with a collection of the subject to any penalty for failing to comply with a collection of the subject to any penalty for failing to comply with a collection of the subject to any penalty for failing to comply with a collection of the subject to any penalty for failing to comply with a collection of the subject to any penalty for failing to comply with a collection of the subject to any penalty for failing to comply with a collection of the subject to any penalty for failing to comply with a collection of the subject to any penalty for failing to comply with a collection of the subject to any penalty for failing to comply with a collection of the subject to any penalty for failing to comply with a collection of the subject to any penalty for failing to comply with a collection of the subject to any penalty for failing to comply with a collection of the subject to any penalty for failing to comply with a collection of the subject to any penalty for failing to comply with a collection of the subject to any penalty for failing to comply the subject to any penalty for failing to comply the subject to any penalty for failing to complex the subject to any penalty for failing to complex the subject to any penalty for failing to complex the subject to any penalty for failing to complex the subject to any penalty for failing to complex the subject to any penalty for failing to complex the subject to any penalty for failing to complex the subject to any penalty for failing to complex the subject to comple
	TE (DD-MM-YY) ane 2005	(Y) 2. REPO	RT TYPE Final			3. DATES COVERED (From - To) 21 May 2003
MOGULS SC	ZED UXO TEO ORING RECO ENGINEERIN	RD NO. 136 (L	DEMONSTRATION J.S. ARMY CORPS (AND DEVELOPM)	OF		NTRACT NUMBER
					5c. PRC	OGRAM ELEMENT NUMBER
	y; Robitaille, G		stration Site Scoring C	Committee		SJECT NUMBER 8-CO-160-UXO-021
					5f. WOF	RK UNIT NUMBER
Commander J.S. Army Ab ATTN: CSTH	NG ORGANIZATI erdeen Test Ce 3-STC-ATC-SL ving Ground, M	nter E	D ADDRESS(ES)			8. PERFORMING ORGANIZATION REPORT NUMBER ATC-9014
Commander U.S. Army En ATTN: SFIM	vironmental Ce	nter	E(S) AND ADDRESS(E	S)		10. SPONSOR/MONITOR'S ACRONYM(S) 11. SPONSOR/MONITOR'S REPORT NUMBER(S) Same as item 8
2. DISTRIBUT Distribution u	ION/AVAILABILI nlimited.	TY STATEMENT				
3. SUPPLEME	ENTARY NOTES					
Standardized Standardized Corps of Engi	ecord documen UXO Technolo UXO Technolo neers, the Envir	gy Demonstrat gy Demonstrat ronmental Secu	ion Site Mogul. The ion Site Scoring Com rity Technology Certi	scoring record mittee. Organ ification Progr	d was coo nizations ram, the S	ploded ordnance (UXO) utilizing the YPG rdinated by Larry Overbay and the on the committee include the U.S. Army Strategic Environmental Research and I Center, and the U.S. Army Aberdeen Test
15. SUBJECT ERDC UXO		te, YPG, Stand	ardized UXO Techno	ology Demonst	tration Si	te Program, Moguls UXO GEM-3/Pushca
	16. SECURITY CLASSIFICATION OF:		17. LIMITATION OF	18. NUMBER	19a. NA	ME OF RESPONSIBLE PERSON
16. SECURITY a. REPORT	b. ABSTRACT		ABSTRACT	OF PAGES	1	

ACKNOWLEDGEMENTS

Authors:

Larry Overbay Jr. Matthew Boutin Military Environmental Technology Demonstration Center (METDC) U.S. Army Aberdeen Test Center (ATC) U.S. Army Aberdeen Proving Ground (APG)

> Robert Archiable EC 111, Limited Liability Company (LLC) U.S. Army Yuma Proving Ground (YPG)

Christina McClung Aberdeen Test and Support Services (ATSS) Sverdrup Technology, Inc. U.S. Army Aberdeen Proving Ground (APG)

Contributor:

George Robitaille U.S. Army Environmental Center (AEC) U.S. Army Aberdeen Proving Ground (APG)

(Page ii Blank)

TABLE OF CONTENTS

PAGE

	ACKNOWLEDGMENTS	i
	SECTION 1. GENERAL INFORMATION	
1.1	BACKGROUND	1
1.2	SCORING OBJECTIVES	1
	1.2.1 Scoring Methodology	1
	1.2.2 Scoring Factors	3
1.3	STANDARD AND NONSTANDARD INERT ORDNANCE TARGETS	4
	SECTION 2. DEMONSTRATION	
2.1	DEMONSTRATOR INFORMATION	5
2.1	2.1.1 Demonstrator Point of Contact (POC) and Address	
	2.1.2 System Description	5 5
	2.1.3 Data Processing Description	6
	2.1.4 Data Submission Format	6
	2.1.5 Demonstrator Quality Assurance (QA) and Quality Control (QC)	7
	2.1.6 Additional Records	7
2.2	YPG SITE INFORMATION	8
	2.2.1 Location	8
	2.2.2 Soil Type	8
	2.2.3 Test Areas	9
	SECTION 3. FIELD DATA	
3.1	DATE OF FIELD ACTIVITIES	11
3.2	AREAS TESTED/NUMBER OF HOURS	11
3.3	TEST CONDITIONS	11
0.0	3.3.1 Weather Conditions	11
	3.3.2 Field Conditions	11
	3.3.3 Soil Moisture	11
3.4	FIELD ACTIVITIES	12
	3.4.1 Setup/Mobilization	12
	3.4.2 Calibration	12
	3.4.3 Downtime Occasions	12
	3.4.4 Data Collection	12
	3.4.5 Demobilization	12
3.5	PROCESSING TIME	13
3.6	DEMONSTRATOR'S FIELD PERSONNEL	13
3.7	DEMONSTRATOR'S FIELD SURVEYING METHOD	13
3.8	SUMMARY OF DAILY LOGS	13

SECTION 4. TECHNICAL PERFORMANCE RESULTS

PAGE

4.1	ROC CURVES USING ALL ORDNANCE CATEGORIES	15
4.2	ROC CURVES USING ORDNANCE LARGER THAN 20 MM	16
4.3	PERFORMANCE SUMMARIES	18
4.4	EFFICIENCY, REJECTION RATES, AND TYPE CLASSIFICATION	19
4.5	LOCATION ACCURACY	19

SECTION 5. ON-SITE LABOR COSTS

SECTION 6. COMPARISON OF RESULTS TO OPEN FIELD DEMONSTRATION

6.1	SUMMARY OF RESULTS FROM OPEN FIELD DEMONSTRATION	23
6.2	COMPARISON OF ROC CURVES USING ALL ORDNANCE	
	CATEGORIES	23
6.3	COMPARISON OF ROC CURVES USING ORDNANCE LARGER THAN	
	20 MM	25
6.4	STATISTICAL COMPARISONS	26

SECTION 7. APPENDIXES

A	TERMS AND DEFINITIONS	A-1
B	DAILY WEATHER LOGS	B-1
С	SOIL MOISTURE	C-1
D	DAILY ACTIVITY LOGS	D-1
E	REFERENCES	E-1
F	ABBREVIATIONS	F - 1
G	DISTRIBUTION LIST	G-1

SECTION 1. GENERAL INFORMATION

1.1 BACKGROUND

Technologies under development for the detection and discrimination of unexploded ordnance (UXO) require testing so that their performance can be characterized. To that end, Standardized Test Sites have been developed at Aberdeen Proving Ground (APG), Maryland and U.S. Army Yuma Proving Ground (YPG), Arizona. These test sites provide a diversity of geology, climate, terrain, and weather as well as diversity in ordnance and clutter. Testing at these sites is independently administered and analyzed by the government for the purposes of characterizing technologies, tracking performance with system development, comparing performance of different systems, and comparing performance in different environments.

The Standardized UXO Technology Demonstration Site Program is a multi-agency program spearheaded by the U.S. Army Environmental Center (AEC). The U.S. Army Aberdeen Test Center (ATC) and the U.S. Army Corps of Engineers Engineering Research and Development Center (ERDC) provide programmatic support. The program is being funded and supported by the Environmental Security Technology Certification Program (ESTCP), the Strategic Environmental Research and Development Program (SERDP) and the Army Environmental Quality Technology Program (EQT).

1.2 SCORING OBJECTIVES

The objective in the Standardized UXO Technology Demonstration Site Program is to evaluate the detection and discrimination capabilities of a given technology under various field and soil conditions. Inert munitions and clutter items are positioned in various orientations and depths in the ground.

The evaluation objectives are as follows:

a. To determine detection and discrimination effectiveness under realistic scenarios that vary targets, geology, clutter, topography, and vegetation.

b. To determine cost, time, and manpower requirements to operate the technology.

c. To determine demonstrator's ability to analyze survey data in a timely manner and provide prioritized "Target Lists" with associated confidence levels.

d. To provide independent site management to enable the collection of high quality, ground-truth, geo-referenced data for post-demonstration analysis.

1.2.1 Scoring Methodology

a. The scoring of the demonstrator's performance is conducted in two stages. These two stages are termed the RESPONSE STAGE and DISCRIMINATION STAGE. For both stages, the probability of detection (P_d) and the false alarms are reported as receiver-operating

characteristic (ROC) curves. False alarms are divided into those anomalies that correspond to emplaced clutter items, measuring the probability of false positive (P_{fp}), and those that do not correspond to any known item, termed background alarms.

b. The RESPONSE STAGE scoring evaluates the ability of the system to detect emplaced targets without regard to ability to discriminate ordnance from other anomalies. For the blind grid RESPONSE STAGE, the demonstrator provides the scoring committee with a target response from each and every grid square along with a noise level below which target responses are deemed insufficient to warrant further investigation. This list is generated with minimal processing and, since a value is provided for every grid square, will include signals both above and below the system noise level.

c. The DISCRIMINATION STAGE evaluates the demonstrator's ability to correctly identify ordnance as such and to reject clutter. For the blind grid DISCRIMINATION STAGE, the demonstrator provides the scoring committee with the output of the algorithms applied in the discrimination-stage processing for each grid square. The values in this list are prioritized based on the demonstrator's determination that a grid square is likely to contain ordnance. Thus, higher output values are indicative of higher confidence that an ordnance item is present at the specified location. For digital signal processing, priority ranking is based on algorithm output. For other discrimination approaches, priority ranking is based on human (subjective) judgment. The demonstrator also specifies the threshold in the prioritized ranking that provides optimum performance, (i.e. that is expected to retain all detected ordnance and rejects the maximum amount of clutter).

d. The demonstrator is also scored on EFFICIENCY and REJECTION RATIO, which measures the effectiveness of the discrimination stage processing. The goal of discrimination is to retain the greatest number of ordnance detections from the anomaly list, while rejecting the maximum number of anomalies arising from non-ordnance items. EFFICIENCY measures the fraction of detected ordnance retained after discrimination, while the REJECTION RATIO measures the fraction of false alarms rejected. Both measures are defined relative to performance at the demonstrator-supplied level below which all responses are considered noise, i.e., the maximum ordnance detectable by the sensor and its accompanying false positive rate or background alarm rate.

e. Based on configuration of the ground truth at the standardized sites and the defined scoring methodology, there exists the possibility of having anomalies within overlapping halos and/or multiple anomalies within halos. In these cases, the following scoring logic is implemented:

(1) In situations where multiple anomalies exist within a single R_{halo} , the anomaly with the strongest response or highest ranking will be assigned to that particular ground truth item.

(2) For overlapping R_{halo} situations, ordnance has precedence over clutter. The anomaly with the strongest response or highest ranking that is closest to the center of a particular ground truth item gets assigned to that item. Remaining anomalies are retained until all matching is complete.

2

(3) Anomalies located within any R_{halo} that do not get associated with a particular ground truth item are thrown out and are not considered in the analysis.

f. All scoring factors are generated utilizing the Standardized UXO Probability and Plot Program, version 3.1.1.

1.2.2 Scoring Factors

Factors to be measured and evaluated as part of this demonstration include:

- a. Response Stage ROC curves:
- (1) Probability of Detection (P_d^{res}) .
- (2) Probability of False Positive (P_{fp}^{res}).
- (3) Background Alarm Rate (BAR^{res}) or Probability of Background Alarm (P_{BA}^{res}).
- b. Discrimination Stage ROC curves:
- (1) Probability of Detection (P_d^{disc}) .
- (2) Probability of False Positive (P_{fp}^{disc}) .
- (3) Background Alarm Rate (BAR^{disc}) or Probability of Background Alarm (P_{BA}^{disc}).
- c. Metrics:
- (1) Efficiency (E).
- (2) False Positive Rejection Rate (R_{fp}) .
- (3) Background Alarm Rejection Rate (R_{BA}).
- d. Other:
- (1) Probability of Detection by Size and Depth.
- (2) Classification by type (i.e., 20-, 40-, 105-mm, etc.).
- (3) Location accuracy.
- (4) Equipment setup, calibration time and corresponding man-hour requirements.
- (5) Survey time and corresponding man-hour requirements.

- (6) Reacquisition/resurvey time and man-hour requirements (if any).
- (7) Downtime due to system malfunctions and maintenance requirements.

1.3 STANDARD AND NONSTANDARD INERT ORDNANCE TARGETS

The standard and nonstandard ordnance items emplaced in the test areas are listed in Table 1. Standardized targets are members of a set of specific ordnance items that have identical properties to all other items in the set (caliber, configuration, size, weight, aspect ratio, material, filler, magnetic remanence, and nomenclature). Nonstandard targets are inert ordnance items having properties that differ from those in the set of standardized targets.

Standard Type	Nonstandard (NS)
20-mm Projectile M55	20-mm Projectile M55
	20-mm Projectile M97
40-mm Grenades M385	40-mm Grenades M385
40-mm Projectile MKII Bodies	40-mm Projectile M813
BDU-28 Submunition	
BLU-26 Submunition	
M42 Submunition	
57-mm Projectile APC M86	
60-mm Mortar M49A3	60-mm Mortar (JPG)
	60-mm Mortar M49
2.75-inch Rocket M230	2.75-inch Rocket M230
	2.75-inch Rocket XM229
MK 118 ROCKEYE	
81-mm Mortar M374	81-mm Mortar (JPG)
	81-mm Mortar M374
105-mm HEAT Rounds M456	
105-mm Projectile M60	105-mm Projectile M60
155-mm Projectile M483A1	155-mm Projectile M483A
	500-lb Bomb

TABLE 1. INERT ORDNANCE TARGETS

JPG = Jefferson Proving Ground

HEAT = high-explosive antitank

SECTION 2. DEMONSTRATION

2.1 DEMONSTRATOR INFORMATION

2.1.1 Demonstrator Point of Contact (POC) and Address

- POC: Mr. Jose Llopis (601) 634-3164
- Address: U.S. Army Corps of Engineers Engineering Research and Development Center 3909 Halls Ferry Road Vicksburg, MS 39180-6199

2.1.2 System Description (provided by demonstrator)

The GEM-3 system is able to collect multiple channels of complex frequency domain electromagnetic interference (EMI) data over a wide range of audio frequencies (30 Hz to 48 kHz). The system is a wheeled pushcart with a 96-cm sensor head, a mounted electronics console, a user interface, and a real-time kinematic (RTK) Global Positioning System (GPS) (fig. 1). The sensor head consists of three coils. The primary transmitter coil is the outer coil in the sensor head. The receiver coil is the inner coil in the sensor head. The bucking transmitter coil is the middle coil in the sensor head. The current in the bucking coil flows in the opposite direction of the current in the primary transmitter coil. This suppresses the dipole moment on the receiver coil that is directly from the primary transmitter coil. The electronics console contains the multifrequency current waveform generator, the analog-to-digital converter receiver electronics, the digital signal processor, and the power management module. The user interface utilizes a personal digital assistant (PDA). The PDA is used for data logging and allows for real-time control of the system. The PDA also allows for real-time display of the data collected. The RTK GPS will require a base station to be set up at a suitable reference point for radio communication with the mobile unit on the GEM-3 system. The GEM-3 system's acquisition of multifrequency data allows for performing what Geophex Ltd., the developer of the system, calls electromagnetic induction spectroscopy (EMIS) on buried objects. EMIS provides a method to discriminate UXO targets from natural and man-made clutter objects by means of their unique, complex (in-phase and quadrature) frequency responses.

Figure 1. Demonstrator's system, GEM-3 pushcart.

2.1.3 Data Processing Description (provided by demonstrator)

The GEM-3 data acquired at the test site will be processed using a combination of ERDC-developed programs and Geosoft's Oasis Montaj. First, basic data corrections such as background subtraction and time-synchronization between the sensor data and GPS data will be performed. The raw data, after these basic corrections, will be submitted in Geosoft XYZ format. Two Response Stage submissions will be made within 30 days. One will be based on a threshold applied to the total magnitude of the sensor inphase and quadrature response for all frequencies. The second will be based on interactive histogram analysis of the data. Data from each of these detection schemes will be used by the target discrimination algorithm to generate separate Discrimination Stage submissions. The discrimination algorithm compares sensor data collected near each detected anomaly with calibration data acquired over the target types of interest at the beginning of the data collection.

One of ERDC's primary objectives for this data acquisition is to obtain high quality data to further our modeling and analysis research. Therefore, ERDC plans to make further data submissions using other detection and discrimination algorithms on this same dataset, alone and in combination with data from other sensors.

2.1.4 Data Submission Format

Data were submitted for scoring in accordance with data submission protocols outlined in the Standardized UXO Technology Demonstration Site Handbook. These submitted data are not included in this report in order to protect ground truth information.

2.1.5 <u>Demonstrator Quality Assurance (QA) and Quality Control (QC) (provided by</u> <u>demonstrator)</u>

The operators will perform three levels of quality control (QC) checks: the first day of the project, the beginning of the day, and whenever there is an equipment change (i.e. batteries, data dump, etc.). On the first day of the project, the operators will lay out a 10-meter long line oriented North to South with a ferrite bar at the center. This line will be well marked and used each time the instrument and positioning are tested. The operators will test for instrument response over the ferrite bar, as well as conduct a position check and a latency check. The operators will walk the line slowly in two directions and then back the pushcart up until it is centered on the ferrite bar. This will set the location of the ferrite bar as well as the instrument response, which will be referenced every time the operators check the equipment.

Each morning the operators will perform functional equipment checks. The operators will visually inspect all equipment for damage. They will then power up the equipment. The operators will perform static and instrument response tests to ensure that the data is stable when the instrument is in a static position over a marked location. These tests will be performed after the instrument has had sufficient time to warm up.

Quality assurance (QA) will be the responsibility of the project lead; he will ensure that test data will be inspected and recorded each day using a known target (e.g. ferrite bar) with the GEM-3 sensors, and using a reference position with the RTK GPS. Geo-referenced data sets will be inspected at the end of the day for GEM-3 data quality and navigation integrity (reasonableness criteria).

Data analysis will be performed each day. This analysis will include inspection of the data for inconsistencies (bad data and errors) and to verify RTK GPS data show good coverage and limited dropouts. If the data show the sensor or electronics are not taking acceptable data or the RTK GPS dropouts are too numerous/large for data analysis or good coverage, that section will be flagged for a resurvey.

2.1.6 Additional Records

The following record(s) by this vendor can be accessed via the Internet as MicroSoft Word documents at <u>www.uxotestsites.org</u>. The counterparts to this report are the Blind Grid, Scoring Record No. 134, and the Open Field, Scoring Record No. 135.

2.2 YPG SITE INFORMATION

2.2.1 Location

YPG is located adjacent to the Colorado River in the Sonoran Desert. The UXO Standardized Test Site is located south of Pole Line Road and east of the Countermine Testing and Training Range. The Open Field range, Calibration Grid, Blind Grid, Mogul area, and Desert Extreme area comprise the 350 by 500-meter general test site area. The open field site is the largest of the test sites and measures approximately 200 by 350 meters. To the east of the open field range are the calibration and blind test grids that measure 30 by 40 meters and 40 by 40 meters, respectively. South of the Open Field is the 135- by 80-meter Mogul area consisting of a sequence of man-made depressions. The Desert Extreme area is located southeast of the open field site and has dimensions of 50 by 100 meters. The Desert Extreme area, covered with desert-type vegetation, is used to test the performance of different sensor platforms in a more severe desert conditions/environment.

2.2.2 Soil Type

Soil samples were collected at the YPG UXO Standardized Test Site by ERDC to characterize the shallow subsurface (< 3 m). Both surface grab samples and continuous soil borings were acquired. The soils were subjected to several laboratory analyses, including sieve/hydrometer, water content, magnetic susceptibility, dielectric permittivity, X-ray diffraction, and visual description.

There are two soil complexes present within the site, Riverbend-Carrizo and Cristobal-Gunsight. The Riverbend-Carrizo complex is comprised of mixed stream alluvium, whereas the Cristobal-Gunsight complex is derived from fan alluvium. The Cristobal-Gunsight complex covers the majority of the site. Most of the soil samples were classified as either a sandy loam or loamy sand, with most samples containing gravel-size particles. All samples had a measured water content less than 7 percent, except for two that contained 11-percent moisture. The majority of soil samples had water content between 1 to 2 percent. Samples containing more than 3 percent were generally deeper than 1 meter.

An X-ray diffraction analysis on four soil samples indicated a basic mineralogy of quartz, calcite, mica, feldspar, magnetite, and some clay. The presence of magnetite imparted a moderate magnetic susceptibility, with volume susceptibilities generally greater than 100 by 10-5 SI.

For more details concerning the soil properties at the YPG test site, go to <u>www.uxotestsites.org</u> on the web to view the entire soils description report.

8

2.2.3 Test Areas

A description of the test site areas at YPG is included in Table 2.

Area	Description
Calibration Grid	Contains the 15 standard ordnance items buried in six positions at various angles and depths to allow demonstrator equipment calibration.
Blind Grid	Contains 400 grid cells in a 0.16-hectare (0.39-acre) site. The center of each grid cell contains ordnance, clutter, or nothing.
Open Field	A 4-hectare (10-acre) site containing open areas, dips, ruts, and obstructions, including vegetation.
Mogul	A 2.64 acre area consisting of two areas (the rectangular or driving portion of the course and the triangular section with more difficult, non-drivable terrain). A series of craters (as deep as 0.91m) and trenches (as deep as 0.91m) encompass this section.

TABLE 2. TEST SITE AREAS

SECTION 3. FIELD DATA

3.1 DATE OF FIELD ACTIVITIES (21 May 2003)

3.2 AREAS TESTED/NUMBER OF HOURS

Areas tested and total number of hours operated at each site are summarized in Table 3.

TABLE 3. AREAS TESTED AND NUMBER OF HOURS

Area	Number of Hours
Calibration Lanes	5.25
Mogul	5.55

3.3 TEST CONDITIONS

3.3.1 Weather Conditions

A YPG weather station located approximately one mile west of the test site was used to record average temperature and precipitation on a half hour basis for each day of operation. The temperatures listed in Table 4 represent the average temperature during field operations from 0700 to 1700 hours while precipitation data represents a daily total amount of rainfall. Hourly weather logs used to generate this summary are provided in Appendix B.

TABLE 4. TEMPERATURE/PRECIPITATION DATA SUMMARY

Date, 2003	Average Temperature, °F	Total Daily Precipitation, in.
21 May	N/A	N/A

3.3.2 Field Conditions

The field was dry and the weather was warm throughout the ERDC survey.

3.3.3 Soil Moisture

Three soil probes were placed at various locations within the site to capture soil moisture data: Blind Grid, Calibration, Desert Extreme, Open Field areas. Measurements were collected in percent moisture and were taken twice daily (morning and afternoon) from five different soil depths (1 to 6 in., 6 to 12 in., 12 to 24 in., 24 to 36 in., and 36 to 48 in.) from each probe. Soil moisture logs are included in Appendix C.

3.4 FIELD ACTIVITIES

3.4.1 Setup/Mobilization

These activities included initial mobilization and daily equipment preparation and break down. A five-person crew took 6 hours and 30 minutes to perform the initial setup and mobilization. There was 1-hour and 20 minutes of daily equipment preparation and end of the day equipment break down lasted 15 minutes.

3.4.2 Calibration

ERDC spent a total of 5 hours and 15 minutes in the calibration lanes, of which 1-hour and 50 minutes was spent collecting data. An additional 7 minutes of calibration took place in the Mogul area.

3.4.3 Downtime Occasions

Occasions of downtime are grouped into five categories: equipment/data checks or equipment maintenance, equipment failure and repair, weather, Demonstration Site issues, or breaks/lunch. All downtime is included for the purposes of calculating labor costs (section 5) except for downtime due to Demonstration Site issues. Demonstration Site issues, while noted in the Daily Log, are considered non-chargeable downtime for the purposes of calculating labor costs and are not discussed. Breaks and lunches are discussed in this section and billed to the total Site Survey area.

3.4.3.1 Equipment/data checks, maintenance. Equipment data checks and maintenance activities accounted for 53 minutes of site usage time. These activities included changing out batteries and routine data checks to ensure the data was being properly recorded/collected. ERDC spent no time for breaks and lunches.

3.4.3.2 <u>Equipment failure or repair</u>. 12 minutes was needed to resolve equipment failures that occurred while surveying the Mogul. A GPS mount broke. It was repaired and no further action was needed.

3.4.3.3 Weather. No weather delays occurred during the survey.

3.4.4 Data Collection

ERDC spent a total time of 5 hours and 33 minutes in the Mogul area, 2 hours and 53 minutes of which was spent collecting data.

3.4.5 Demobilization

The ERDC survey crew went on to conduct a full demonstration of the site. Therefore, demobilization did not occur until 22 May 2003. On that day, it took the crew 46 minutes to break down and pack up their equipment.

3.5 PROCESSING TIME

ERDC submitted the raw data from the demonstration activities on the last day of the demonstration, as required. The scoring submittal data was also provided within the required 30-day timeframe.

3.6 DEMONSTRATOR'S FIELD PERSONNEL

Field Manager:	Jose Llopis	
Field Engineer:	Troy Broston, Eric Smith	
Quality Assurance:	Don Yule	
GPS Support:	Tom Berry	

3.7 DEMONSTRATOR'S FIELD SURVEYING METHOD

ERDC collected data in a linear fashion and in a north to south direction.

3.8 SUMMARY OF DAILY LOGS

Daily logs capture all field activities during this demonstration and are located in Appendix D. Activities pertinent to this specific demonstration are indicated in highlighted text.

SECTION 4. TECHNICAL PERFORMANCE RESULTS

4.1 ROC CURVES USING ALL ORDNANCE CATEGORIES

Figure 2 shows the probability of detection for the response stage (P_d^{res}) and the discrimination stage (P_d^{disc}) versus their respective probability of false positive. Figure 3 shows both probabilities plotted against their respective background alarm rate. Both figures use horizontal lines to illustrate the performance of the demonstrator at two demonstrator-specified points: at the system noise level for the response stage, representing the point below which targets are not considered detectable, and at the demonstrator's recommended threshold level for the discrimination stage, defining the subset of targets the demonstrator would recommend digging based on discrimination. Note that all points have been rounded to protect the ground truth.

Figure 2. GEM-3/pushcart mogul probability of detection for response and discrimination stages versus their respective probability of false positive over all ordnance categories combined.

Figure 3. GEM-3/pushcart mogul probability of detection for response and discrimination stages versus their respective background alarm rate over all ordnance categories combined.

4.2 ROC CURVES USING ORDNANCE LARGER THAN 20 MM

Figure 4 shows the probability of detection for the response stage (P_d^{res}) and the discrimination stage (P_d^{disc}) versus their respective probability of false positive when only targets larger than 20 mm are scored. Figure 5 shows both probabilities plotted against their respective background alarm rate. Both figures use horizontal lines to illustrate the performance of the demonstrator at two demonstrator-specified points: at the system noise level for the response stage, representing the point below which targets are not considered detectable, and at the demonstrator's recommended threshold level for the discrimination stage, defining the subset of targets the demonstrator would recommend digging based on discrimination. Note that all points have been rounded to protect the ground truth.

Figure 4. GEM-3/pushcart mogul probability of detection for response and discrimination stages versus their respective probability of false positive for all ordnance larger than 20 mm.

Figure 5. GEM-3/pushcart mogul probability of detection for response and discrimination stages versus their respective background alarm rate for all ordnance larger than 20 mm.

4.3 PERFORMANCE SUMMARIES

Results for the Mogul test broken out by size, depth and nonstandard ordnance are presented in Table 5 (for cost results, see section 5). Results by size and depth include both standard and nonstandard ordnance. The results by size show how well the demonstrator did at detecting/discriminating ordnance of a certain caliber range (see app A for size definitions). The results are relative to the number of ordnance items emplaced. Depth is measured from the geometric center of anomalies.

The RESPONSE STAGE results are derived from the list of anomalies above the demonstrator-provided noise level. The results for the DISCRIMINATION STAGE are derived from the demonstrator's recommended threshold for optimizing UXO field cleanup by minimizing false digs and maximizing ordnance recovery. The lower 90 percent confidence limit on probability of detection and $P_{\rm fp}$ was calculated assuming that the number of detections and false positives are binomially distributed random variables. All results in Table 5 have been rounded to protect the ground truth. However, lower confidence limits were calculated using actual results.

					By Size			By Depth, r	n
Metric	Overall	Standard	Nonstandard	Small Med	Medium	Large	< 0.3	0.3 to <1	>= 1
	1		RESPONSE S	STAGE					
P _d	0.30	0.30	0.35	0.20	0.35	0.65	0.35	0.35	0.15
Pd Low 90% Conf	0.27	0.23	0.26	0.15	0.25	0.46	0.26	0.23	0.01
P _d Upper 90% Conf	0.38	0.38	0.46	0.30	0.47	0.80	0.41	0.45	0.45
P _{fp}	0.35	-	-	-	-	-	0.35	0.25	0.00
P _{fp} Low 90% Conf	0.29	-	-	-	-	-	0.31	0.17	0.00
P _{fp} Upper 90% Conf	0.38	-	-	-	-	-	0.41	0.38	0.68
BAR	0.05	-	-	-	-	-	-	-	-
			DISCRIMINATIO	ON STAG	E	,			
P _d	0.30	0.25	0.35	0.15	0.35	0.55	0.30	0.30	0.15
P _d Low 90% Conf	0.23	0.18	0.24	0.11	0.25	0.35	0.22	0.18	0.01
P _d Upper 90% Conf	0.34	0.32	0.44	0.25	0.47	0.70	0.37	0.40	0.45
P _{fp}	0.35	-	-	-	-	-	0.35	0.25	0.00
P _{fp} Low 90% Conf	0.28	-	-	-	-	-	0.30	0.15	0.00
P _{fp} Upper 90% Conf	0.37	-	-	-	-	-	0.41	0.35	0.68
BAR	0.05	-	-	-	-	-	-	-	-

TABLE 5. SUMMARY OF MOGUL RESULTS FOR GEM-3/PUSHCART

Response Stage Noise Level: 50.00

Recommended Discrimination Stage Threshold: 70.00

Note: The recommended discrimination stage threshold values are provided by the demonstrator.

4.4 EFFICIENCY, REJECTION RATES, AND TYPE CLASSIFICATION

Efficiency and rejection rates are calculated to quantify the discrimination ability at specific points of interest on the ROC curve: (1) at the point where no decrease in P_d is suffered (i.e., the efficiency is by definition equal to one) and (2) at the operator selected threshold. These values are reported in Table 6.

	Efficiency (E)	False Positive Rejection Rate	Background Alarm Rejection Rate
At Operating Point	0.87	0.03	0.18
With No Loss of P_d	1.00	0.00	0.00

TABLE 6. EFFICIENCY AND REJECTION RATES

At the demonstrator's recommended setting, the ordnance items that were detected and correctly discriminated were further scored on whether their correct type could be identified (table 7). Correct type examples include "20-mm projectile, 105-mm HEAT Projectile, and 2.75-inch Rocket". A list of the standard type declaration required for each ordnance item was provided to demonstrators prior to testing. For example, the standard type for the three example items are 20mmP, 105H, and 2.75in, respectively.

TABLE 7.	CORRECT TYPE CLASSIFICATION
(OF TARGETS CORRECTLY
	DISCRIMINATED AS UXO

Size	Percentage Correct
Small	N/A
Medium	N/A
Large	N/A
Overall	N/A

Note: The demonstrator did not attempt to provide type classification.

4.5 LOCATION ACCURACY

The mean location error and standard deviations appear in Table 8. These calculations are based on average missed depth for ordnance correctly identified in the discrimination stage. Depths are measured from the closest point of the ordnance to the surface. For the Blind Grid, only depth errors are calculated, since (X, Y) positions are known to be the centers of each grid square.

TABLE 8.	MEAN	LOCATION	N ERROR ANI	D
STA	ANDAR	D DEVIATI	ON (M)	

	Mean	Standard Deviation
Northing	-0.05	0.24
Easting	0.00	0.19
Depth	0.05	0.28

SECTION 5. ON-SITE LABOR COSTS

A standardized estimate for labor costs associated with this effort was calculated as follows: the first person at the test site was designated "supervisor", the second person was designated "data analyst", and the third and following personnel were considered "field support". Standardized hourly labor rates were charged by title: supervisor at \$95.00/hour, data analyst at \$57.00/hour, and field support at \$28.50/hour.

Government representatives monitored on-site activity. All on-site activities were grouped into one of ten categories: initial setup/mobilization, daily setup/stop, calibration, collecting data, downtime due to break/lunch, downtime due to equipment failure, downtime due to equipment/data checks or maintenance, downtime due to weather, downtime due to demonstration site issue, or demobilization. See Appendix D for the daily activity log. See section 3.4 for a summary of field activities.

The standardized cost estimate associated with the labor needed to perform the field activities is presented in Table 9. Note that calibration time includes time spent in the Calibration Lanes as well as field calibrations. "Site survey time" includes daily setup/stop time, collecting data, breaks/lunch, downtime due to equipment/data checks or maintenance, downtime due to failure, and downtime due to weather.

	No. People	Hourly Wage	Hours	Cost
		Initial Setup		
Supervisor	1	\$95.00	6.5	\$617.50
Data Analyst	1	57.00	6.5	370.50
Field Support	2	28.50	6.5	370.50
SubTotal				\$1,358.50
		Calibration		
Supervisor	1	\$95.00	5.37	\$510.15
Data Analyst	1	57.00	5.37	306.09
Field Support	3	28.50	5.37	459.14
SubTotal				\$1,275.38
		Site Survey		
Supervisor	1	\$95.00	5.55	\$527.25
Data Analyst	1	57.00	5.55	299.25
Field Support	1	28.50	5.55	158.18
SubTotal				\$984.68

TABLE 9. ON-SITE LABOR COSTS

See notes at end of table.

TABLE 9 (CONT'D)

	No. People	Hourly Wage	Hours	Cost
]	Demobilization		
Supervisor	1	\$95.00	0.77	\$73.15
Data Analyst	1	57.00	0.77	43.89
Field Support	1	28.50	0.77	21.95
Subtotal				\$138.99
Total				\$3,757.55

Notes: Calibration time includes time spent in the Calibration Lanes as well as calibration before each data run.

Site Survey time includes daily setup/stop time, collecting data, breaks/lunch, downtime due to system maintenance, failure, and weather.

SECTION 6. COMPARISON OF RESULTS TO OPEN FIELD DEMONSTRATION

6.1 SUMMARY OF RESULTS FROM OPEN FIELD DEMONSTRATION

Table 10 shows the results from Open Field survey conducted prior to surveying the Moguls during the same site visit in May of 2003. For more details on the Open Field survey results reference section 2.1.6.

					By Size			By Depth, r	n
Metric	Overall S	Standard Nonstandard	Small	Medium	Large	< 0.3	0.3 to <1	>= 1	
			RESPONSE S	STAGE					
P _d	0.45	0.45	0.55	0.35	0.60	0.65	0.50	0.50	0.05
Pd Low 90% Conf	0.44	0.39	0.48	0.31	0.52	0.60	0.46	0.46	0.03
P _d Upper 90% Conf	0.50	0.47	0.57	0.39	0.63	0.73	0.54	0.56	0.16
P _{fp}	0.50	-	-	-	-	-	0.55	0.50	N/A
Pfp Low 90% Conf	0.50	-	-	-	-	-	0.51	0.47	N/A
Pfp Upper 90% Conf	0.54	-	-	-	-	-	0.55	0.55	0.21
BAR	0.15	-	-	-	-	-	-	-	-
			DISCRIMINATIO	ON STAG	E				
P _d	0.45	0.40	0.50	0.30	0.55	0.65	0.45	0.50	0.05
Pd Low 90% Conf	0.41	0.37	0.44	0.27	0.50	0.57	0.43	0.44	0.03
P _d Upper 90% Conf	0.47	0.45	0.53	0.35	0.61	0.71	0.50	0.54	0.16
P _{fp}	0.50	-	-	-	-	-	0.50	0.45	N/A
Pfp Low 90% Conf	0.47	-	-	-	-	-	0.48	0.42	N/A
P _{fp} Upper 90% Conf	0.50	-	-	-	-	-	0.52	0.49	0.21
BAR	0.05	-	-	-	-	-	-	-	-

TABLE 10. SUMMARY OF OPEN FIELD RESULTS FOR THE GEM-3/PUSHCART

6.2 COMPARISON OF ROC CURVES USING ALL ORDNANCE CATEGORIES

Figure 6 shows P_d^{res} versus the respective P_{fp} over all ordnance categories. Figure 7 shows P_d^{disc} versus their respective P_{fp} over all ordnance categories. Figure 7 uses horizontal lines to illustrate the performance of the demonstrator at the recommended discrimination threshold levels, defining the subset of targets the demonstrator would recommend digging based on discrimination.

Figure 6. GEM-3/pushcart P_d^{res} stages versus the respective P_{fp} over all ordnance categories combined.

Figure 7. GEM-3/pushcart P_d^{disc} versus the respective P_{fp} over all ordnance categories combined.

6.3 COMPARISON OF ROC CURVES USING ORDNANCE LARGER THAN 20 MM

Figure 8 shows the P_d^{res} versus the respective probability of P_{fp} over ordnance larger than 20 mm. Figure 9 shows P_d^{disc} versus the respective P_{fp} over ordnance larger than 20 mm. Figure 9 uses horizontal lines to illustrate the performance of the demonstrator at the recommended discrimination threshold levels, defining the subset of targets the demonstrator would recommend digging based on discrimination.

Figure 8. GEM-3/pushcart P_d^{res} versus the respective P_{fp} for ordnance larger than 20 mm.

Figure 9. GEM-3/pushcart P_d^{disc} versus the respective P_{fp} for ordnance larger than 20 mm.

6.4 STATISTICAL COMPARISONS

Statistical Chi-square significance tests were used to compare results between the Open Field and Mogul Area scenarios. The intent of the comparison is to determine if the feature introduced in each scenario has a degrading effect on the performance of the sensor system. However, any modifications in the UXO sensor system during the test, like changes in the processing or changes in the selection of the operating threshold, will also contribute to performance differences.

The Chi-square test for comparison between ratios was used at a significance level of 0.05 to compare Open Field to Mogul Area with regard to P_d^{res} , P_d^{disc} , P_{fp}^{res} and P_{fp}^{disc} , Efficiency and Rejection Rate. These results are presented in Table 11. A detailed explanation and example of the Chi-square application is located in Appendix A.

Metric	Small	Medium	Large	Overall
P _d ^{res}	Significant	Significant	Not Significant	Significant
P _d ^{disc}	Significant	Significant	Not Significant	Significant
P _{fp} ^{res}	Not Significant	Not Significant	Not Significant	Not Significant
P _{fp} ^{disc}	-	-	-	Significant
Efficiency	-	-	-	Significant
Rejection rate	-	-	-	Not Significant

TABLE 11. CHI-SQUARE RESULTS – OPEN FIELD VERSUS MOGUL

SECTION 7. APPENDIXES

APPENDIX A. TERMS AND DEFINITIONS

GENERAL DEFINITIONS

Anomaly: Location of a system response deemed to warrant further investigation by the demonstrator for consideration as an emplaced ordnance item.

Detection: An anomaly location that is within R_{halo} of an emplaced ordnance item.

Emplaced Ordnance: An ordnance item buried by the government at a specified location in the test site.

Emplaced Clutter: A clutter item (i.e., non-ordnance item) buried by the government at a specified location in the test site.

 R_{halo} : A pre-determined radius about the periphery of an emplaced item (clutter or ordnance) within which a location identified by the demonstrator as being of interest is considered to be a response from that item. If multiple declarations lie within R_{halo} of any item (clutter or ordnance), the declaration with the highest signal output within the R_{halo} will be utilized. For the purpose of this program, a circular halo 0.5 meters in radius will be placed around the center of the object for all clutter and ordnance items less than 0.6 meters in length. When ordnance items are longer than 0.6 meters, the halo becomes an ellipse where the minor axis remains 1 meter and the major axis is equal to the length of the ordnance plus 1 meter.

Small Ordnance: Caliber of ordnance less than or equal to 40 mm (includes 20-mm projectile, 40-mm projectile, submunitions BLU-26, BLU-63, and M42).

Medium Ordnance: Caliber of ordnance greater than 40 mm and less than or equal to 81 mm (includes 57-mm projectile, 60-mm mortar, 2.75 in. Rocket, MK118 Rockeye, 81-mm mortar).

Large Ordnance: Caliber of ordnance greater than 81 mm (includes 105-mm HEAT, 105-mm projectile, 155-mm projectile, 500-pound bomb).

Shallow: Items buried less than 0.3 meter below ground surface.

Medium: Items buried greater than or equal to 0.3 meter and less than 1 meter below ground surface.

Deep: Items buried greater than or equal to 1 meter below ground surface.

Response Stage Noise Level: The level that represents the point below which anomalies are not considered detectable. Demonstrators are required to provide the recommended noise level for the Blind Grid test area.

Discrimination Stage Threshold: The demonstrator selected threshold level that they believe provides optimum performance of the system by retaining all detectable ordnance and rejecting the maximum amount of clutter. This level defines the subset of anomalies the demonstrator would recommend digging based on discrimination.

Binomially Distributed Random Variable: A random variable of the type which has only two possible outcomes, say success and failure, is repeated for n independent trials with the probability p of success and the probability 1-p of failure being the same for each trial. The number of successes x observed in the n trials is an estimate of p and is considered to be a binomially distributed random variable.

RESPONSE AND DISCRIMINATION STAGE DATA

The scoring of the demonstrator's performance is conducted in two stages. These two stages are termed the RESPONSE STAGE and DISCRIMINATION STAGE. For both stages, the probability of detection (P_d) and the false alarms are reported as receiver operating characteristic (ROC) curves. False alarms are divided into those anomalies that correspond to emplaced clutter items, measuring the probability of false positive (P_{fp}) and those that do not correspond to any known item, termed background alarms.

The RESPONSE STAGE scoring evaluates the ability of the system to detect emplaced targets without regard to ability to discriminate ordnance from other anomalies. For the RESPONSE STAGE, the demonstrator provides the scoring committee with the location and signal strength of all anomalies that the demonstrator has deemed sufficient to warrant further investigation and/or processing as potential emplaced ordnance items. This list is generated with minimal processing (e.g., this list will include all signals above the system noise threshold). As such, it represents the most inclusive list of anomalies.

The DISCRIMINATION STAGE evaluates the demonstrator's ability to correctly identify ordnance as such, and to reject clutter. For the same locations as in the RESPONSE STAGE anomaly list, the DISCRIMINATION STAGE list contains the output of the algorithms applied in the discrimination-stage processing. This list is prioritized based on the demonstrator's determination that an anomaly location is likely to contain ordnance. Thus, higher output values are indicative of higher confidence that an ordnance item is present at the specified location. For electronic signal processing, priority ranking is based on algorithm output. For other systems, priority ranking is based on human judgment. The demonstrator also selects the threshold that the demonstrator believes will provide "optimum" system performance, (i.e., that retains all the detected ordnance and rejects the maximum amount of clutter).

Note: The two lists provided by the demonstrator contain identical numbers of potential target locations. They differ only in the priority ranking of the declarations.

RESPONSE STAGE DEFINITIONS

Response Stage Probability of Detection (P_d^{res}) : $P_d^{res} = (No. of response-stage detections)/$ (No. of emplaced ordnance in the test site).

Response Stage False Positive (fp^{res}): An anomaly location that is within R_{halo} of an emplaced clutter item.

Response Stage Probability of False Positive (P_{fp}^{res}) : $P_{fp}^{res} = (No. of response-stage false positives)/(No. of emplaced clutter items).$

Response Stage Background Alarm (ba^{res}): An anomaly in a blind grid cell that contains neither emplaced ordnance nor an emplaced clutter item. An anomaly location in the open field or scenarios that is outside R_{halo} of any emplaced ordnance or emplaced clutter item.

Response Stage Probability of Background Alarm (P_{ba}^{res}): Blind Grid only: $P_{ba}^{res} = (No. of response-stage background alarms)/(No. of empty grid locations).$

Response Stage Background Alarm Rate (BAR^{res}): Open Field only: $BAR^{res} = (No. of response-stage background alarms)/(arbitrary constant).$

Note that the quantities P_d^{res} , P_{fp}^{res} , P_{ba}^{res} , and BAR^{res} are functions of t^{res}, the threshold applied to the response-stage signal strength. These quantities can therefore be written as $P_d^{res}(t^{res})$, $P_{fp}^{res}(t^{res})$, $P_{ba}^{res}(t^{res})$, and BAR^{res}(t^{res}).

DISCRIMINATION STAGE DEFINITIONS

Discrimination: The application of a signal processing algorithm or human judgment to response-stage data that discriminates ordnance from clutter. Discrimination should identify anomalies that the demonstrator has high confidence correspond to ordnance, as well as those that the demonstrator has high confidence correspond to nonordnance or background returns. The former should be ranked with highest priority and the latter with lowest.

Discrimination Stage Probability of Detection (P_d^{disc}) : $P_d^{disc} = (No. of discrimination-stage detections)/(No. of emplaced ordnance in the test site).$

Discrimination Stage False Positive (fp^{disc}) : An anomaly location that is within R_{halo} of an emplaced clutter item.

Discrimination Stage Probability of False Positive (P_{fp}^{disc}): $P_{fp}^{disc} = (No. of discrimination stage false positives)/(No. of emplaced clutter items).$

Discrimination Stage Background Alarm (ba^{disc}): An anomaly in a blind grid cell that contains neither emplaced ordnance nor an emplaced clutter item. An anomaly location in the open field or scenarios that is outside R_{halo} of any emplaced ordnance or emplaced clutter item.

Discrimination Stage Probability of Background Alarm (P_{ba}^{disc}): $P_{ba}^{disc} = (No. of discrimination-stage background alarms)/(No. of empty grid locations).$

Discrimination Stage Background Alarm Rate (BAR^{disc}): BAR^{disc} = (No. of discrimination-stage background alarms)/(arbitrary constant).

Note that the quantities P_d^{disc} , P_{fp}^{disc} , P_{ba}^{disc} , and BAR^{disc} are functions of t^{disc}, the threshold applied to the discrimination-stage signal strength. These quantities can therefore be written as $P_d^{disc}(t^{disc})$, $P_{fp}^{disc}(t^{disc})$, $P_{ba}^{disc}(t^{disc})$, and BAR^{disc}(t^{disc}).

RECEIVER-OPERATING CHARACERISTIC (ROC) CURVES

ROC curves at both the response and discrimination stages can be constructed based on the above definitions. The ROC curves plot the relationship between P_d versus P_{fp} and P_d versus BAR or P_{ba} as the threshold applied to the signal strength is varied from its minimum (t_{min}) to its maximum (t_{max}) value.¹ Figure A-1 shows how P_d versus P_{fp} and P_d versus BAR are combined into ROC curves. Note that the "res" and "disc" superscripts have been suppressed from all the variables for clarity.

Figure A-1. ROC curves for open field testing. Each curve applies to both the response and discrimination stages.

¹Strictly speaking, ROC curves plot the P_d versus P_{ba} over a pre-determined and fixed number of detection opportunities (some of the opportunities are located over ordnance and others are located over clutter or blank spots). In an open field scenario, each system suppresses its signal strength reports until some bare-minimum signal response is received by the system. Consequently, the open field ROC curves do not have information from low signal-output locations, and, furthermore, different contractors report their signals over a different set of locations on the ground. These ROC curves are thus not true to the strict definition of ROC curves as defined in textbooks on detection theory. Note, however, that the ROC curves obtained in the Blind Grid test sites are true ROC curves.

METRICS TO CHARACTERIZE THE DISCRIMINATION STAGE

The demonstrator is also scored on efficiency and rejection ratio, which measure the effectiveness of the discrimination stage processing. The goal of discrimination is to retain the greatest number of ordnance detections from the anomaly list, while rejecting the maximum number of anomalies arising from nonordnance items. The efficiency measures the amount of detected ordnance retained by the discrimination, while the rejection ratio measures the fraction of false alarms rejected. Both measures are defined relative to the entire response list, i.e., the maximum ordnance detectable by the sensor and its accompanying false positive rate or background alarm rate.

Efficiency (E): $E = P_d^{\text{disc}}(t^{\text{disc}})/P_d^{\text{res}}(t_{\text{min}}^{\text{res}})$; Measures (at a threshold of interest), the degree to which the maximum theoretical detection performance of the sensor system (as determined by the response stage tmin) is preserved after application of discrimination techniques. Efficiency is a number between 0 and 1. An efficiency of 1 implies that all of the ordnance initially detected in the response stage was retained at the specified threshold in the discrimination stage, t^{disc}.

False Positive Rejection Rate (R_{fp}) : $R_{fp} = 1 - [P_{fp}^{disc}(t^{disc})/P_{fp}^{res}(t_{min}^{res})]$; Measures (at a threshold of interest), the degree to which the sensor system's false positive performance is improved over the maximum false positive performance (as determined by the response stage tmin). The rejection rate is a number between 0 and 1. A rejection rate of 1 implies that all emplaced clutter initially detected in the response stage were correctly rejected at the specified threshold in the discrimination stage.

Background Alarm Rejection Rate (Rba):

Blind Grid: $R_{ba} = 1 - [P_{ba}^{disc}(t^{disc})/P_{ba}^{res}(t_{min}^{res})].$ Open Field: $R_{ba} = 1 - [BAR^{disc}(t^{disc})/BAR^{res}(t_{min}^{res})]).$

Measures the degree to which the discrimination stage correctly rejects background alarms initially detected in the response stage. The rejection rate is a number between 0 and 1. A rejection rate of 1 implies that all background alarms initially detected in the response stage were rejected at the specified threshold in the discrimination stage.

CHI-SQUARE COMPARISON EXPLANATION:

The Chi-square test for differences in probabilities (or $2 \ge 2$ contingency table) is used to analyze two samples drawn from two different populations to see if both populations have the same or different proportions of elements in a certain category. More specifically, two random samples are drawn, one from each population, to test the null hypothesis that the probability of event A (some specified event) is the same for both populations (ref 3).

A 2 x 2 contingency table is used in the Standardized UXO Technology Demonstration Site Program to determine if there is reason to believe that the proportion of ordnance correctly detected/discriminated by demonstrator X's system is significantly degraded by the more challenging terrain feature introduced. The test statistic of the 2 x 2 contingency table is the

A-5

Chi-square distribution with one degree of freedom. Since an association between the more challenging terrain feature and relatively degraded performance is sought, a one-sided test is performed. A significance level of 0.05 is chosen which sets a critical decision limit of 2.71 from the Chi-square distribution with one degree of freedom. It is a critical decision limit because if the test statistic calculated from the data exceeds this value, the two proportions tested will be considered significantly different. If the test statistic calculated from the data is less than this value, the two proportions tested will be considered not significantly different.

An exception must be applied when either a 0 or 100 percent success rate occurs in the sample data. The Chi-square test cannot be used in these instances. Instead, Fischer's test is used and the critical decision limit for one-sided tests is the chosen significance level, which in this case is 0.05. With Fischer's test, if the test statistic is less than the critical value, the proportions are considered to be significantly different.

Standardized UXO Technology Demonstration Site examples, where blind grid results are compared to those from the open field and open field results are compared to those from one of the scenarios, follow. It should be noted that a significant result does not prove a cause and effect relationship exists between the two populations of interest; however, it does serve as a tool to indicate that one data set has experienced a degradation in system performance at a large enough level than can be accounted for merely by chance or random variation. Note also that a result that is not significant indicates that there is not enough evidence to declare that anything more than chance or random variation within the same population is at work between the two data sets being compared.

Demonstrator X achieves the following overall results after surveying each of the three progressively more difficult areas using the same system (results indicate the number of ordnance detected divided by the number of ordnance emplaced):

.

Blind Grid	Open Field	Moguls
$P_d^{\text{res}} 100/100 = 1.0$	8/10 = .80	20/33 = .61
$P_d^{disc} 80/100 = 0.80$	6/10 = .60	8/33 = .24

 P_d^{res} : BLIND GRID versus OPEN FIELD. Using the example data above to compare probabilities of detection in the response stage, all 100 ordnance out of 100 emplaced ordnance items were detected in the blind grid while 8 ordnance out of 10 emplaced were detected in the open field. Fischer's test must be used since a 100 percent success rate occurs in the data. Fischer's test uses the four input values to calculate a test statistic of 0.0075 that is compared against the critical value of 0.05. Since the test statistic is less than the critical value, the smaller response stage detection rate (0.80) is considered to be significantly less at the 0.05 level of significance. While a significant result does not prove a cause and effect relationship exists between the change in survey area and degradation in performance, it does indicate that the detection ability of demonstrator X's system seems to have been degraded in the open field relative to results from the blind grid using the same system. P_d^{disc} : BLIND GRID versus OPEN FIELD. Using the example data above to compare probabilities of detection in the discrimination stage, 80 out of 100 emplaced ordnance items were correctly discriminated as ordnance in blind grid testing while 6 ordnance out of 10 emplaced were correctly discriminated as such in open field-testing. Those four values are used to calculate a test statistic of 1.12. Since the test statistic is less than the critical value of 2.71, the two discrimination stage detection rates are considered to be not significantly different at the 0.05 level of significance.

 P_d^{res} : OPEN FIELD versus MOGULS. Using the example data above to compare probabilities of detection in the response stage, 8 out of 10 and 20 out of 33 are used to calculate a test statistic of 0.56. Since the test statistic is less than the critical value of 2.71, the two response stage detection rates are considered to be not significantly different at the 0.05 level of significance.

 P_d^{disc} : OPEN FIELD versus MOGULS. Using the example data above to compare probabilities of detection in the discrimination stage, 6 out of 10 and 8 out of 33 are used to calculate a test statistic of 2.98. Since the test statistic is greater than the critical value of 2.71, the smaller discrimination stage detection rate is considered to be significantly less at the 0.05 level of significance. While a significant result does not prove a cause and effect relationship exists between the change in survey area and degradation in performance, it does indicate that the ability of demonstrator X to correctly discriminate seems to have been degraded by the mogul terrain relative to results from the flat open field using the same system.

APPENDIX B. DAILY WEATHER LOGS

TABLE B-1. WEATHER LOG

Weat	Weather Data from Yuma Proving Ground					
		Average				
	Time,	Temperature,		Precipitation,		
Date	EDST	°F	%	in.		
5/7/2003		66.1	33	0.00		
5/7/2003		64.8	35	0.00		
5/7/2003		63.2	36	0.00		
5/7/2003		62.0	37	0.00		
5/7/2003	05:00	61.2	37	0.00		
5/7/2003	06:00	60.2	38 37	0.00		
5/7/2003 5/7/2003	07:00 08:00	62.1 63.4	38	0.00		
5/7/2003	08:00	66.0	36	0.00		
5/7/2003	10:00	69.2	33	0.00		
5/7/2003	11:00	72.1	30	0.00		
5/7/2003	12:00	74.6	26	0.00		
5/7/2003	13:00	76.5	25	0.00		
5/7/2003	14:00	77.4	24	0.00		
5/7/2003	15:00	77.4	23	0.00		
5/7/2003	16:00	77.9	23	0.00		
5/7/2003	17:00	76.6	25	0.00		
5/7/2003	18:00	74.7	26	0.00		
5/7/2003	19:00	71.8	33	0.00		
5/7/2003	20:00	69.5	36	0.00		
5/7/2003	21:00	67.8	40	0.00		
5/7/2003	22:00	65.8	45	0.00		
5/7/2003	23:00	64.9	46	0.00		
5/7/2003	24:00	63.8	47	0.00		
5/8/2003		62.6	47	0.00		
5/8/2003		61.8	45	0.00		
5/8/2003	03:00	59.7	45	0.00		
5/8/2003 5/8/2003	04:00	58.0 56.8	53	0.00		
5/8/2003		55.5	56	0.00		
5/8/2003		57.5	53	0.00		
5/8/2003		60.5	47	0.00		
5/8/2003	09:00	65.1	40	0.00		
5/8/2003		67.3	36	0.00		
5/8/2003		71.1	30	0.00		
5/8/2003	-	72.9	29	0.00		
5/8/2003		74.4	27	0.00		
5/8/2003		76.4	24	0.00		
5/8/2003	-	77.2	23	0.00		
5/8/2003	16:00	78.1	22	0.00		
5/8/2003	17:00	77.3	24	0.00		
5/8/2003	-	76.2	22	0.00		
5/8/2003	19:00	73.5	22	0.00		

		Average		
	Time,	Temperature,	RH.	Precipitation
Date	EDST	°F	%	in.
5/8/2003	20:00	69.5	29	0.00
5/8/2003	21:00	67.3	28	0.00
5/8/2003	22:00	64.5	32	0.00
5/8/2003	23:00	62.8	32	0.00
5/8/2003	24:00	60.8	38	0.00
5/9/2003	01:00	58.6	43	0.00
5/9/2003	02:00	57.9	45	0.00
5/9/2003	03:00	56.1	49	0.00
5/9/2003	04:00	54.6	52	0.00
5/9/2003	05:00	55.1	52	0.00
5/9/2003	06:00	55.0	51	0.00
5/9/2003	07:00	56.7	49	0.00
5/9/2003	08:00	59.7	45	0.00
5/9/2003	09:00	62.9	39	0.00
5/9/2003	10:00	65.8	33	0.00
5/9/2003	11:00	67.7	29	0.00
5/9/2003	12:00	69.8	26	0.00
5/9/2003	13:00	71.4	22	0.00
5/9/2003	14:00	72.2	17	0.00
5/9/2003	15:00	73.0	18	0.00
5/9/2003	16:00	75.0	16	0.00
5/9/2003	17:00	76.0	14	0.00
5/9/2003	18:00	75.8	12	0.00
5/9/2003	19:00	73.5	20	0.00
5/9/2003	20:00	71.4	20	0.00
5/9/2003	21:00	68.5	22	0.00
5/9/2003	22:00	66.4	24	0.00
5/9/2003	23:00	65.9	23	0.00
5/9/2003	24:00	63.4	27	0.00
5/10/2003	01:00	60.5	34	0.00
5/10/2003	02:00	59.6	39	0.00
5/10/2003	03:00	56.9	42	0.00
5/10/2003	04:00	54.6	44	0.00
5/10/2003	05:00	53.2	43	0.00
5/10/2003	06:00	51.0	44	0.00
5/10/2003	07:00	58.1	32	0.00
5/10/2003	08:00	64.8	31	0.00
5/10/2003	09:00	68.4	25	0.00
5/10/2003	10:00	72.5	20	0.00
5/10/2003	11:00	76.3	15	0.00
5/10/2003	12:00	77.8	12	0.00
5/10/2003	13:00	79.8	13	0.00
5/10/2003	14:00	81.7	12	0.00
5/10/2003		81.8	12	0.00
5/10/2003	16:00	83.2	10	0.00

Weath	ier Dat	a from Yuma P	rovir	ng Ground
Date	Time, EDST	Average Temperature, °F	RH, %	Precipitation in.
5/10/2003		83.3	10	0.00
5/10/2003		82.7	10	0.00
5/10/2003		81.6	10	0.00
5/10/2003		78.1	13	0.00
5/10/2003	21:00	75.4	15	0.00
5/10/2003	22:00	72.8	15	0.00
5/10/2003	23:00	68.9	18	0.00
5/10/2003	24:00	66.1	19	0.00
5/12/2003		71.2	21	0.00
5/12/2003	02:00	69.7	21	0.00
5/12/2003	03:00	67.2	23	0.00
5/12/2003	04:00	63.2	24	0.00
5/12/2003	05:00	63.4	25	0.00
5/12/2003	06:00	61.7	26	0.00
5/12/2003	07:00	65.9	21	0.00
5/12/2003	08:00	74.7	15	0.00
5/12/2003	09:00	81.7	14	0.00
5/12/2003	10:00	86.5	12	0.00
5/12/2003	11:00	89.3	10	0.00
5/12/2003	12:00	90.8	11	0.00
5/12/2003	13:00	93.0	8	0.00
5/12/2003	14:00	94.3	8	0.00
5/12/2003	15:00	95.7	8	0.00
5/12/2003	16:00	95.0	8	0.00
5/12/2003	17:00	94.7	9	0.00
5/12/2003	18:00	94.7	9	0.00
5/12/2003	19:00	92.2	9	0.00
5/12/2003	20:00	89.5	9	0.00
5/12/2003	21:00	85.3	10	0.00
5/12/2003	22:00	83.4	16	0.00
5/12/2003	23:00	80.4	17	0.00
5/12/2003	24:00	79.1	19	0.00
5/14/2003	01:00	76.0	21	0.00
5/14/2003	02:00	74.1	21	0.00
5/14/2003	03:00	72.4	22	0.00
5/14/2003	04:00	73.2	21	0.00
5/14/2003	05:00	71.8	21	0.00
5/14/2003	06:00	73.4	18	0.00
5/14/2003	07:00	73.2	19	0.00
5/14/2003	08:00	77.0	15	0.00
5/14/2003	09:00	82.6	13	0.00
5/14/2003	10:00	85.0	12	0.00
5/14/2003	11:00	88.9	10	0.00
5/14/2003	12:00	92.4	9	0.00
5/14/2003	13:00	94.8	8	0.00

Weat	her Dat	a from Yuma P	rovir	ng Ground
	-	Average	DII	
Dete	Time,	Temperature, °F	RH,	
Date	EDST		%	in.
5/14/2003	14:00	97.4	7	0.00
5/14/2003	15:00	96.2	6	0.00
5/14/2003	16:00	96.5	7	0.00
5/14/2003	17:00	94.6	9	0.00
5/14/2003	18:00	93.8	7	0.00
5/14/2003	19:00	92.0	8	0.00
5/14/2003	20:00	87.9	10	0.00
5/14/2003	21:00	84.4	11	0.00
5/14/2003	22:00	81.9	11	0.00
5/14/2003	23:00	79.4	12	0.00
5/14/2003	24:00	78.6	12	0.00
5/15/2003	01:00	62.5	39	0.00
5/15/2003	02:00	61.1	40	0.00
5/15/2003	03:00	60.0	44	0.00
5/15/2003	04:00	58.1	49	0.00
5/15/2003	05:00	57.9	51	0.00
5/15/2003	06:00	57.0	52	0.00
5/15/2003	07:00	60.8	46	0.00
5/15/2003	08:00	64.5	45	0.00
5/15/2003	09:00	68.3	37	0.00
5/15/2003	10:00	73.1	31	0.00
5/15/2003	11:00	78.0	26	0.00
5/15/2003	12:00	81.0	23	0.00
5/15/2003	13:00	83.4	22	0.00
5/15/2003	14:00	85.7	20	0.00
5/15/2003	15:00	87.5	18	0.00
5/15/2003	16:00	89.7	17	0.00
5/15/2003	17:00	89.8	17	0.00
5/15/2003	18:00	89.9	17	0.00
5/15/2003	19:00	88.4	18	0.00
5/15/2003	20:00	86.0	19	0.00
5/15/2003	21:00	83.4	21	0.00
5/15/2003		80.2	22	0.00
5/15/2003	23:00	75.7	25	0.00
5/15/2003	24:00	73.7	26	0.00
5/16/2003	01:00	73.9	29	0.00
5/16/2003	02:00	70.8	32	0.00
5/16/2003	02:00	69.2	32	0.00
5/16/2003	03.00	68.5	33	0.00
5/16/2003	04.00	66.7	35	0.00
5/16/2003	05:00	65.4	35	0.00
5/16/2003	07:00	70.5	30	
				0.00
5/16/2003	08:00	79.3	23	0.00
5/16/2003	09:00	86.4	17	0.00
5/16/2003	10:00	90.0	14	0.00

.

Weath	ner Dat	a from Yuma P	rovir	ng Ground
Date	Time, EDST	Average Temperature, °F	RH, %	Precipitation in.
5/16/2003		92.0	14	0.00
5/16/2003		94.0	13	0.00
5/16/2003	13:00	95.5	12	0.00
5/16/2003	14:00	97.9	11	0.00
5/16/2003		98.9	11	0.00
5/16/2003	16:00	99.9	11	0.00
5/16/2003	17:00	99.4	12	0.00
5/16/2003	18:00	99.1	10	0.00
5/16/2003	19:00	97.7	11	0.00
5/16/2003	20:00	93.1	12	0.00
5/16/2003	21:00	87.8	14	0.00
5/16/2003	22:00	86.1	16	0.00
5/16/2003	23:00	83.0	18	0.00
5/16/2003	23:00	80.4	19	0.00
5/19/2003		79.3	19	0.00
5/19/2003	01:00	77.6	19	0.00
	02:00	75.2	20	0.00
5/19/2003	03:00	73.4	20	0.00
5/19/2003		71.6	24	0.00
5/19/2003	05:00		24	
5/19/2003	06:00	68.4		0.00
5/19/2003	07:00	74.2 80.5	23	0.00
5/19/2003	08:00	80.5	23	0.00
5/19/2003	09:00			0.00
5/19/2003	10:00	89.7	14	
5/19/2003	11:00	94.4 97.3	11	0.00
5/19/2003	12:00		10	0.00
5/19/2003	13:00	99.8	8	0.00
5/19/2003		101.0	8	0.00
5/19/2003	-	101.1	8	0.00
5/19/2003	16:00	101.3	7	0.00
5/19/2003	17:00	101.9	7	0.00
5/19/2003	18:00	101.0	7	0.00
5/19/2003		99.1	8	0.00
5/19/2003		95.2	9	0.00
5/19/2003		91.4	11	0.00
5/19/2003	22:00	88.1	11	0.00
5/19/2003	23:00	83.8	13	0.00
5/19/2003	24:00	81.7	15	0.00
6/4/2003	01:00	81.0	19	0.00
6/4/2003	02:00	80.0	22	0.00
6/4/2003	03:00	78.0	22	0.00
6/4/2003	04:00	75.5	28	0.00
6/4/2003	05:00	75.1	32	0.00
6/4/2003	06:00	74.3	34	0.00
6/4/2003	07:00	77.1	32	0.00

B-5

Weat	her Dat	ta from Yuma l	Provi	ng Ground
Date	Time, EDST	Average Temperature, °F	RH, %	Precipitation, in.
6/4/2003		82.1	27	0.00
6/4/2003		87.3	22	0.00
6/4/2003		89.9	19	0.00
6/4/2003	11:00	93.9	15	0.00
6/4/2003	12:00	95.8	14	0.00
6/4/2003	13:00	98.5	13	0.00
6/4/2003	14:00	100.8	12	0.00
6/4/2003	15:00	102.5	12	0.00
6/4/2003	16:00	103.5	11	0.00
6/4/2003	17:00	103.4	10	0.00
6/4/2003	18:00	102.5	10	0.00
6/4/2003	19:00	100.0	10	0.00
6/4/2003	20:00	96.6	11	0.00
6/4/2003	21:00	94.1	11	0.00
6/4/2003	22:00	90.9	12	0.00
6/4/2003	23:00	86.7	14	0.00
6/4/2003	24:00	84.1	16	0.00

APPENDIX C. SOIL MOISTURE

SOIL MOISTURE LOGS (6 through 17, 19 through 22, and 28 through 30 May 2003)

Date	Time			bratio ading	n Area s (%)	1	Time			ogul A adings			Time]		t Extre	eme Ar s (%)	ea
		0 to	6 to	12 to	24 to	36 to		0 to	6 to	12 to	24 to	36 to		0 to	6 to	12 to	24 to	36 to
	0.7.10	_	12 in.			48 in.	0007	6 in.	12 in.			48 in.	0.00	6 in.	12 in.		36 in.	48 in.
5/6/2003	0748	1.8	2.2	3.7	3.6	4.0	0807	1.7	2.0	3.4	4.0	4.1	800	1.7	2.0	3.5	3.9	4.0
	1237	1.8	2.2	3.6	3.6	4.0	1246	1.6	2.0	3.6	3.9	4.0	1254	1.7	2.0	3.4	3.9	4.1
5/7/2003	0723	1.8	2.2	3.6	3.6	3.9	0740	1.6	2.0	3.6	3.9	3.9	733	1.7	2.0	3.4	3.9	4.1
	1255	1.8	2.2	3.7	3.6	4.0	1310	1.6	2.0	3.5	3.9	4.0	1305	1.7	2.0	3.4	3.9	4.1
5/8/2003	0715	1.8	2.2	3.6	3.6	3.9	0724	1.6	2.0	3.6	4.0	3.9	732	1.7	2.0	3.4	3.9	4.1
	1243	1.8	2.2	3.7	3.6	3.9	1250	1.6	2.0	3.5	4.0	4.0	1258	1.7	2.0	3.4	3.9	4.1
5/9/2003	0623	1.8	2.2	3.6	3.6	3.9	0638	1.6	2.0	3.5	3.9	3.9	631	1.7	2.0	3.4	3.9	4.1
	1306	1.8	2.2	3.6	3.6	3.9	1315	1.6	2.0	3.5	3.9	3.9	1324	1.7	2.0	3.4	3.9	4.1
5/10/2003	0618	1.8	2.2	3.7	3.6	3.9	0626	1.6	2.0	3.5	3.9	4.0	634	1.7	2.0	3.4	3.9	4.1
	1203	1.8	2.2	3.6	3.6	3.9	1212	1.6	2.0	3.6	3.9	4.0	1221	1.7	2.0	3.4	3.9	4.1
5/12/2003	0630	1.8	2.2	3.7	3.6	3.9	0638	1.6	2.0	3.6	3.9	4.0	644	1.7	2.0	3.4	3.9	4.1
	1256	1.8	2.2	3.6	3.6	3.9	1305	1.6	2.0	3.5	3.9	4.0	1313	1.7	2.0	3.4	3.9	4.1
5/13/2003	0711	1.8	2.2	3.6	3.6	3.9	0719	1.7	2.0	3.6	3.9	4.0	726	1.7	2.0	3.4	3.9	4.1
	1312	1.8	2.2	3.7	3.6	4.0	1323	1.6	2.0	3.6	3.9	4.0	1332	1.7	2.0	3.4	3.9	4.1
5/14/2003	0630	1.8	2.2	3.7	3.6	4.0	0639	1.7	2.0	3.6	3.9	4.0	647	1.7	2.0	3.4	3.9	4.1
	1302	1.8	2.2	3.7	3.6	3.9	1312	1.7	2.0	3.6	4.0	4.0	1318	1.7	2.0	3.4	3.9	4.1
5/15/2003	0626	1.8	2.2	3.6	3.6	3.9	0640	1.7	2.0	3.6	3.9	4.0	648	1.7	2.0	3.4	3.9	4.1
	1302	1.8	2.2	3.7	3.6	4.0	1310	1.6	2.0	3.6	4.0	4.0	1318	1.7	2.0	3.4	3.9	4.1
5/16/2003	0622	1.8	2.2	3.7	3.6	3.9	0629	1.7	2.0	3.6	4.0	4.0	0637	1.7	2.0	3.4	3.9	4.1
	1250	1.8	2.2	3.6	3.6	3.9	1258	1.6	2.0	3.5	3.9	4.0	1305	1.7	2.0	3.4	3.9	4.1
5/17/2003	0610	1.8	2.2	3.7	3.6	3.9	0618	1.6	2.0	3.6	3.9	4.0	0626	1.7	2.0	3.4	3.9	4.1
	1319	1.8	2.2	3.6	3.6	4.0	1327	1.6	2.0	3.6	3.9	4.0	1334	1.7	2.0	3.4	3.9	4.1
5/19/2003	0600	1.8	2.2	3.6	3.6	4.0	0608	1.6	1.9	3.6	3.9	4.0	0615	1.7	2.0	3.4	4.0	4.1
	1306	1.8	2.2	3.7	3.6	4.0	1316	1.6	2.0	3.6	3.9	4.0	1324	1.7	2.0	3.4	4.0	4.1
5/20/2003	0534	1.8	2.2	3.7	3.6	4.0	0542	1.6	2.0	3.6	3.9	4.0	0550	1.7	2.0	3.4	3.9	4.1
	1311	1.8	2.2	3.7	3.6	4.0	1320	1.6	2.0	3.6	3.9	4.0	1326	1.7	2.0	3.4	4.0	4.1
5/21/2003	0547	1.8	2.2	3.7	3.6	4.0	0555	1.6	2.0	3.6	4.0	4.1	0603	1.7	2.0	3.4	4.0	4.1
	1301	1.8	2.2	3.7	3.6	4.0	1309	1.6	2.0	3.6	4.0	4.0	1316	1.7	2.0	3.4	4.0	4.1
5/22/2003	0535	1.8	2.2	3.7	3.6	4.0	0543	1.6	2.0	3.6	4.0	4.0	0550	1.7	2.0	3.4	4.0	4.1
	1303	1.8	2.2	3.7	3.6	4.0	1311	1.6	2.0	3.6	4.0	4.0	1318	1.7	2.0	3.4	4.0	4.1
5/28/2003	0722	1.8	2.2	3.7	3.6	4.0	0730	1.6	2.0	3.6	4.0	4.0	0743	1.7	2.0	3.4	4.0	4.1
	1210	1.8	2.2	3.7	3.6	4.0	1218	1.6	2.0	3.6	4.0	4.0	1225	1.7	2.0	3.4	4.0	4.1
5/29/2003	0645	1.8	2.2	3.7	3.6	4.0	0653	1.6	2.0	3.6	4.0	4.0	0700	1.7	2.0	3.4	4.0	4.1
	1222	1.8	2.2	3.7	3.6	4.0	1230	1.6	2.0	3.6	4.0	4.0	1237	1.7	2.0	3.4	4.0	4.1
5/30/2003	0600	1.8	2.2	3.7	3.6	4.0	0609	1.6	2.0	3.6	4.0	4.0	0616	1.7	2.0	3.4	4.0	4.1
	1239	1.8	2.2	3.7	3.6	4.0	1248	1.6	2.0	3.6	4.0	4.0	1255	1.7	2.0	3.4	4.0	4.1

	tions	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY
	Field Conditions	HOT	HOT	HOT	HOT	HOT	HOT	HOT	HOT	HOT	HOT	HOT	HOT	HOT	HOT	HOT
	Pattern	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Track Method=Other	Explain	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Track	Method	NA	NA	NA	NA	GPS	NA	GPS	GPS	NA	GPS	NA	GPS	GPS	GPS	GPS
Operational Status -		SETTING UP EQUIPMENT	FUNCH	SETTING UP EQUIPMENT	BREAKING DOWN EQUIPMENT EOD	SETTING UP EQUIPMENT	RUNNING CAL LANE, BI DIRECTION, NORTH/SOUTH	CHECKING/ DOWNLOADING DATA	RUNNING CAL LANE BI DIRECTION EAST/WEST	CHECKING/ DOWNLOADING DATA	LUNCH	CHECKING/ DOWNLOADING DATA	RUNNING BTG, BIDIRECTION EAST/WEST	CHECKING/ DOWNLOADING DATA	SETTING UP EQUIPMENT	COLLECT DATA OVER PIT
	Operational Status	SET UP/MOBILIZATION	BREAK/LUNCH	SET UP/MOBILIZATION	SET UP/MOBILIZATION	SET UP/MOBILIZATION	COLLECTING DATA	DOWNTIME DUE TO EQUIPMENT MAINTENANCE/CHECK	COLLECTING DATA	DOWNTIME DUE TO EQUIPMENT MAINTENANCE/CHECK	BREAK/LUNCH	DOWNTIME DUE TO EQUIPMENT MAINTENANCE/CHECK	COLLECTING DATA	DOWNTIME DUE TO EQUIPMENT MAINTENANCE/CHECK	SET UP/MOBILIZATION	COLLECTING DATA
Duration,	min	30	15	270	30	45	09	75	20	20	30	30	75	35	20	25
Status Status Start Stop	Time	1045	1100	1530	1600	0815	0915	1030	1120	1140	1210	1240	1355	1430	1450	1515
Status Start	Time	1015	1045	1100	1530	0730	0815	0915	1030	1120	1140	1210	1240	1355	1430	1450
	Area Tested	INTIAL SETUP	INTIAL SETUP	INTIAL SETUP	INITIAL SETUP	INITIAL SETUP	CALIBRATION LANES	CALIBRATION	CALIBRATION LANES	CALIBRATION LANES	CALIBRATION LANES	CALIBRATION LANES	BLIND TEST GRID	BLIND TEST GRID	CALIBRATION PIT	CALIBRATION
No.	People		4	4	4	S	S	N.	<mark>N</mark>	N	S	N.	S	S	S	5
		5/5/2003	5/5/2003	5/5/2003	5/5/2003	5/6/2003	5/6/2003	5/6/2003	5/6/2003	5/6/2003	5/6/2003	5/6/2003	5/6/2003	5/6/2003	5/6/2003	5/6/2003

D-1

APPENDIX D. DAILY ACTIVITY LOGS

	tions	suon	DRY		DRY	DRY		DRY	DRY		DRY		DRY	DRY		DRY		DRY	DRY		DRY	DRY		DRY	DRY	DRY
	Field Condi	Field Conditions	HOT		HOT	HOT		COOL/WINDY	COOL/WINDY		YONIWIDY		HOT/WINDY	Y dNIW/TOH		YUNIWIDY		HOT/WINDY	HOT/WINDY		YON/WINDY	YUNIWIDY		HOT/WINDY	COOL/WINDY	COOL/WINDY
	Dattorn	Fattern	NA		NA	NA		NA	NA		NA		NA	NA		NA		NA	NA		NA	NA		NA	NA	NA
Track	Track Method=Other	Explain	NA		NA	NA		NA	NA		NA		NA	NA		NA		NA	NA		NA	NA		NA	NA	NA
	Track]	Method	GPS		GPS	NA		NA	GPS		GPS		GPS	GPS		GPS		NA	NA		GPS	GPS		NA	NA	GPS
	- sm		CHANGE OUT	BATTERY	COLLECT DATA OVER	BREAKING DOWN	EQUIPMENT EOD	SETTING UP EQUIPMENT	RUNNING OPEN	RANGE, GRID A2, BIDIRECTIONAL E/W	CHECKING/	DOWNLOADING DATA	SETTING UP EQUIPMENT	RUNNING OPEN	RANGE, GRID A3, BIDIRECTIONAL E/W	CHECKING/	DOWNLOADING DATA	BREAK	SETTING UP	EQUIPMENT	RUNNING OPEN RANGE GRID G2, BIDIRECTIONAL E/W	CHECKING/	DOWNLOADING DATA	BREAKING DOWN FOLIIPMENT FOD	SETTING UP EOUIPMENT	RUNNING OPEN
	Onenotional Status	Operational Status	DOWNTIME DUE TO	EQUIPMENT MAINTENANCE/CHECK	COLLECTING DATA	SET UP/MOBILIZATION		SET UP/MOBILIZATION	COLLECTING DATA		DOWNTIME DUE TO	EQUIPMENT MAINTENANCE/CHECK	SET UP/MOBILIZATION	COLLECTING DATA		DOWNTIME DUE TO	EQUIPMENT	BREAK/LUNCH	SET UP/MOBILIZATION		COLLECTING DATA	DOWNTIME DUE TO	EQUIPMENT MAINTENANCE/CHECK	SET UP/MOBILIZATION	SET UP/MOBILIZATION	COLLECTING DATA
	Duration,	mm	5		5	10		100	100		40		10	95		30		20	10		06	20		10	45	125
Status Status	Stop		1520		1525	1535		0855	1035		1115		1125	1300		1330		1350	1400		1530	1550		1600	0745	0950
Status	Start	Time	1515		1520	1525		0715	0855		1035		1115	1125		1300		1330	1350		1400	1530		1550	0200	0745
			CALIBRATION	PIT	CALIBRATION	CALIBRATION	PIT	OPEN RANGE	OPEN RANGE		OPEN RANGE		OPEN RANGE	OPEN RANGE		OPEN RANGE		OPEN RANGE	OPEN RANGE		OPEN RANGE	OPEN RANGE		OPEN RANGE	OPEN RANGE	OPEN RANGE
No.	of	People	2		5	5		4	4		4		4	4		4		4	4		4	4		4	5	5
	Tete	Date	5/6/2003		5/6/2003	5/6/2003		5/7/2003	5/7/2003		5/7/2003		5/7/2003	5/7/2003		5/7/2003		5/1/2003	5/7/2003		5/7/2003	5/7/2003		5/7/2003	5/8/2003	5/8/2003

	~	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY
	ž.			_	-											\square
	Field Conditions	COOL/WINDY	YON/WINDY	HOT/WINDY	HOT/WINDY	YONIW/TOH	HOT/WINDY	YON/WINDY	HOT/WINDY	YONIW/TOH	COOL	COOL/WINDY	COOL/WINDY	COOL/WINDY	COOL/WINDY	COOL/WINDY
	Pattern	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	LINEAR	NA	LINEAR	NA	NA
Track Method=Other	Explain	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Method	GPS	GPS	GPS	GPS	NA	GPS	NA	NA	NA	NA	GPS	GPS	GPS	GPS	NA
tus -		CHECKING/ DOWNLOADING DATA	RUNNING BTG BIDIRECTIONAL NORTH/ SOUTH	CHECKING/ DOWNLOADING DATA	LUNCH	LAYOUT LANES WITH ROPE	COLLECT DATA OVER PIT	BREAK	LAYOUT LANES WITH ROPE	BREAKING DOWN EQUIPMENT EOD	SETTING UP EQUIPMENT	RUNNING OPEN RANGE, GRID F2,F3,F4,F5 BIDIRECTIONAL E/W	CHECKING/ DOWNLOADING DATA	RUNNING OPEN RANGE, GRID F2,F3,F4,F5 BIDIRECTIONAL E/W	CHECKING/ DOWNLOADING DATA	LUNCH
Operational Status		DOWNTIME DUE TO EQUIPMENT MAINTENANCE/CHECK	COLLECTING DATA	DOWNTIME DUE TO EQUIPMENT MAINTENANCE/CHECK	BREAK/LUNCH	SET UP/MOBILIZATION	COLLECTING DATA	BREAK/LUNCH	SET UP/MOBILIZATION	SET UP/MOBILIZATION	SET UP/MOBILIZATION	COLLECTING DATA	DOWNTIME DUE TO EQUIPMENT MAINTENANCE/CHECK	COLLECTING DATA	DOWNTIME DUE TO EQUIPMENT MAINTENANCE/CHECK	BREAK/LUNCH
Duration,	min	30	70	15	30	45	100	20	50	10	35	85	20	85	30	30
	Time	1020	1130	1145	1215	1300	1440	1500	1550	1600	0720	0845	5060	1030	1100	1130
Status Status Start Stop	Time	0950	1020	1130	1145	1215	1300	1440	1500	1550	0645	0720	0845	6005	1030	1100
		OPEN RANGE	BLIND TEST GRID	BLIND TEST GRID	BLIND TEST GRID	OPEN RANGE	CALIBRATION PIT	CALIBRATION PIT	OPEN RANGE	OPEN RANGE	OPEN RANGE	OPEN RANGE	OPEN RANGE	OPEN RANGE	OPEN RANGE	OPEN RANGE
No. of	People	S	S.	S	5	5	5	5	5	5	4	4	4	4	4	4
	_	5/8/2003	5/8/2003	5/8/2003	5/8/2003	5/8/2003	5/8/2003	5/8/2003	5/8/2003	5/8/2003	5/9/2003	5/9/2003	5/9/2003	5/9/2003	5/9/2003	5/9/2003

		Υ			DRY	DRY	DRY		DRY			DRY	DRY	DRY	DRY		DRY	DRY	DRY
	itions	DRY		_	D	D	DF		DF			DI	D	DF	DF	_	D	DH	Dł
	Field Conditions	HOT/WINDY			HOT/WINDY	HOT/WINDY	HOT/WINDY		HOT/WINDY			YONIW/TOH	HOT/WINDY	HOT/WINDY	COOL		COOL	COOL	HOT
	Pattern	LINEAR			NA	LINEAR	NA		LINEAR			NA	LINEAR	NA	NA		LINEAR	LINEAR	LINEAR
Track Method=Other	Explain	NA			NA	NA	NA		NA			NA	NA	NA	NA		NA	NA	NA
Track	Method	GPS			GPS	GPS	GPS		GPS			GPS	GPS	NA	NA		GPS	GPS	GPS
Operational Status -	Comments	RUNNING OPEN	RANGE, GRID F2,F3,F4,F5	BIDIRECTIONAL E/W	CHANGE OUT PROCESSOR UNIT	RUNNING OPEN RANGE, GRID F2,F3,F4,F5 BIDIRECTIONAL E/W	CHECKING/ DOWNI DADING	DATA	RUNNING OPEN	RANGE, GRID F2,F3,F4,F5	BIDIRECTIONAL E/W	CHANGE OUT BATTERY	RUNNING OPEN RANGE, GRID F2,F3,F4,F5 RIDIBECTION AI EAW	BREAKING DOWN	SETTING UP	EQUIPMENT	RUNNING OPEN RANGE, GRID E2,E3,E4,E5 BIDIRECTIONAL E/W	SWAPPED OUT FIELD COMPUTER	RUNNING OPEN RANGE, GRID E2,E3,E4,E5 BIDIRECTIONAL E/W
	Operational Status	COLLECTING DATA			DOWNTIME DUE TO EQUIPMENT MAINTENANCE/CHECK	COLLECTING DATA	DOWNTIME DUE TO FOUTIPMENT	MAINTENANCE/CHECK	COLLECTING DATA			DOWNTIME DUE TO EQUIPMENT MAINTENANCE/CHECK	COLLECTING DATA	SET UP/MOBILIZATION	SET UP/MOBILIZATION		COLLECTING DATA	DOWNTIME DUE TO EQUIPMENT MAINTENANCE/CHECK	COLLECTING DATA
Duration,	min	80			10	30	60		15			15	20	20	30		86	2	107
	_	1250			1300	1330	1430		1445			1500	1520	1540	00100		0826	0828	1015
Status Status Start Stop	Time	1130			1250	1300	1330		1430			1445	1500	1520	0630		0700	0826	0828
	Area Tested	OPEN RANGE			OPEN RANGE	OPEN RANGE	OPEN RANGE		OPEN RANGE			OPEN RANGE	OPEN RANGE	OPEN RANGE	OPEN RANGE	-	OPEN RANGE	OPEN RANGE	OPEN RANGE
No.	People	4			4	S	S		5			5	S	5	5		Ś	5	S
		5/9/2003			5/9/2003	5/9/2003	5/9/2003		5/9/2003			5/9/2003	5/9/2003	5/9/2003	5/10/2003		5/10/2003	5/10/2003	5/10/2003

	No.		Status	Status Status					Track			
Data	of	Area Tostad	Start	Stop	Duration,	Onerational Status	Operational Status - Comments	Track	Track Method=Other Method Explain	Pattern	Field Conditions	ions
5/10/2003	5	0	1015		25	BREAK/LUNCH		NA	NA	NA	HOT	DRY
5/10/2003	2	OPEN RANGE	1040		20	DOWNTIME DUE TO EQUIPMENT	CHECKING/ DOWNLOADING	GPS	NA	NA	HOT	DRY
5/10/2003	4	OPEN RANGE	1100	1243	103	MAIN I ENANCECHEUR COLLECTING DATA	DATA RUNNING OPENRANGE, GRID E2,E3,E4,E5	GPS	NA	LINEAR	НОТ	DRY
5/10/2003	4	OPEN RANGE	1243	1246	3	DOWNTIME DUE TO EQUIPMENT MAINTENANCE/CHECK	CHANGE OUT PROCESSOR UNIT	GPS	NA	NA	HOT	DRY
5/10/2003	4	OPEN RANGE	1246	1340	54	COLLECTING DATA	RUNNING OPEN RANGE, GRID E2,E3,E4,E5 BIDIRECTIONAL EW	GPS	NA	LINEAR	HOT	DRY
5/10/2003	4	OPEN RANGE	1340	1400	20	SET UP/MOBILIZATION	BREAKING DOWN EQUIPMENT EOD	GPS	NA	NA	HOT	DRY
5/12/2003	5	OPEN RANGE	0200	0721	21	SET UP/MOBILIZATION	SETTING UP EOUIPMENT	GPS	NA	NA	HOT	DRY
5/12/2003	S	OPEN RANGE	0721	0725	4	COLLECTING DATA	EQUIPMENT WAS CALIBRATED USING CAL BALL	GPS	NA	NA	HOT	DRY
5/12/2003	S	OPEN RANGE	0725	0825	60	COLLECTING DATA	RUNNING OPEN RANGE, GRID E2,E3,E4,E5 BIDIRECTIONAL E/W	GPS	NA	LINEAR	НОТ	DRY
5/12/2003	5	OPEN RANGE	0825	0935	50	DOWNTIME DUE TO EQUIPMENT MAINTENANCE/CHECK	CHECKING/ DOWNLOADING DATA	GPS	NA	NA	HOT	DRY
5/12/2003	5	OPEN RANGE	0935	1025	50	COLLECTING DATA	RUNNING OPEN RANGE, GRID A4,A5 BIDIRECTIONAL E/W	GPS	NA	LINEAR	HOT	DRY
5/12/2003	5	OPEN RANGE	1025	1030	S	DOWNTIME DUE TO EQUIPMENT MAINTENANCE/CHECK	CHECKING/ DOWNLOADING DATA	GPS	NA	NA	HOT	DRY
5/12/2003	5	OPEN RANGE	1030	1325	175	DOWNTIME DUE TO EQUIPMENT FAILURE	WHEEL AXLE BROKE	NA	NA	NA	HOT	DRY
5/12/2003	5	OPEN RANGE	1325	1330	5	SET UP/MOBILIZATION	BREAKING DOWN EQUIPMENT EOD	NA	NA	NA	НОТ	DRY

		Statu									
Area Tested	P	Start Time	t Stop	Duration, min	Operational Status	Operational Status - Comments	Track	Method=Other Explain	Pattern	Field Conditions	tions
OPEN RANGE	13		1215		SET UP/MOBILIZATION	SETTING UP EQUIPMENT	GPS		NA	HOT	DRY
OPEN RANGE	13	3 1215	5 1300	45	COLLECTING DATA	RUNNING OPEN RANGE, A4,A5 BIDIRECTIONAL E/W	GPS	NA	LINEAR	HOT	DRY
OPEN RANGE		3 1300	1320	20	DOWNTIME DUE TO EQUIPMENT MAINTENANCE/CHECK	CHECKING/ DOWNLOADING DATA	GPS	NA	NA	HOT	DRY
OPEN RANGE	12	3 1320) 1430	70	COLLECTING DATA	RUNNING OPEN RANGE, A4,A5 BIDIRECTIONAL E/W	GPS	NA	LINEAR	HOT	DRY
OPEN RANGE	15	3 1430	1447	17	BREAK/LUNCH	BREAK	NA	NA	NA	HOT	DRY
OPEN RANGE	B	3 1447	1535	48	COLLECTING DATA	RUNNING OPEN RANGE, A4,A5 BIDIRECTIONAL E/W	NA	NA	LINEAR	HOT	DRY
OPEN RANGE	GE	3 1535	5 1545	10	DOWNTIME DUE TO EQUIPMENT MAINTENANCE/CHECK	CHECKING/ DOWNLOADING DATA	GPS	NA	NA	HOT	DRY
OPEN RANGE	10E	3 1545	5 1600	15	SET UP/MOBILIZATION	BREAKING DOWN EQUIPMENT EOD	NA	NA	NA	HOT	DRY
OPEN RANGE	1GE	3 0630	0735	65	SET UP/MOBILIZATION	SETTING UP EQUIPMENT	NA	NA	NA	WARM	HUMID
OPEN RANGE	15	3 0735	0739	4	COLLECTING DATA	EQUIPMENT WAS CALIBRATED USING CAL BALL	GPS	NA	LINEAR	WARM	HUMID
OPEN RANGE	10 E	3 0739	0850	71	COLLECTING DATA	RUNNING OPEN RANGE, A4,A5 BIDIRECTIONAL E/W	GPS	NA	LINEAR	WARM	HUMID
OPEN RANGE	10E	3 0850	0920	30	DOWNTIME DUE TO EQUIPMENT MAINTENANCE/CHECK	CHECKING/ DOWNLOADING DATA	GPS	NA	NA	WARM	HUMID
OPEN RANGE	NGE	3 0920	1020	60	COLLECTING DATA	RUNNING OPEN RANGE, D4,D5 BIDIRECTIONAL E/W	GPS	NA	LINEAR	WARM	HUMID
OPEN RANGE	NGE	3 1020	1035	15	DOWNTIME DUE TO EQUIPMENT MAINTENANCE/CHECK	CHECKING/ DOWNLOADING DATA	GPS	NA	NA	WARM	HUMID
OPEN RANGE	B	3 1035	5 1130	55	BREAK/LUNCH	LUNCH	NA	NA	NA	WARM	HUMID

	No.		Status Status	Status					Track			
Date	of People	Area Tested	Start	Stop	Duration,	Operational Status	Operational Status - Comments	Track	Track Method=Other Method Explain	Pattern	Field Conditions	tions
5/14/2003	-	0	1130	1325	115	COLLECTING DATA	RUNNING OPEN	GPS	NA	LINEAR	WARM	HUMID
							RANGE, D4,D5 BIDIRECTIONAL E/W					
5/14/2003	S	OPEN RANGE	1325	1400	35	DOWNTIME DUE TO EQUIPMENT MAINTFNANCF/CHFCK	CHECKING/ DOWNLOADING DATA	GPS	NA	NA	WARM	DIMUH
5/14/2003		OPEN RANGE	1400	1430	30	BREAK/LUNCH	BREAK	NA	NA	NA	WARM	HUMID
5/14/2003	5	OPEN RANGE	1430	1530	120	COLLECTING DATA	RUNNING OPEN	GPS	NA	LINEAR	WARM	HUMID
							RANGE, D4,D5 BIDIRECTIONAL E/W					
5/14/2003	5	OPEN RANGE	1530	1600	30	SET UP/MOBILIZATION	BREAKING DOWN EQUIPMENT EOD	NA	NA	NA	WARM	HUMID
5/15/2003	5	OPEN RANGE	0645	0710	25	SET UP/MOBILIZATION	SETTING UP EQUIPMENT	NA	NA	NA	COOL	DRY
5/15/2003	5	OPEN RANGE	0710	0735	25	COLLECTING DATA	RUNNING OPEN	GPS	NA	LINEAR	COOL	DRY
							BIDIRECTIONAL E/W					
5/15/2003	5	OPEN RANGE	0735	0742	7	DOWNTIME DUE TO	CHECKING/	GPS	NA	NA	COOL	DRY
D-7						EQUIPMENT MAINTENANCE/CHECK	DOWNLOADING					
5/15/2003	3 5	OPEN RANGE	0742	0750	8	COLLECTING DATA	RUNNING OPEN	GPS	NA	LINEAR	COOL	DRY
							RANGE, B2,B3 BIDIRECTIONAL E/W					
5/15/2003	5 5	OPEN RANGE	0750	0755	5	DOWNTIME DUE TO EQUIPMENT FAILURE	GPS DOWN	GPS	NA	NA	COOL	DRY
5/15/2003	5	OPEN RANGE	0755	0925	90	COLLECTING DATA	RUNNING OPEN RANGE, B2,B3 BIDIRECTIONAL E/W	GPS	NA	LINEAR	COOL	DRY
5/15/2003	5 5	OPEN RANGE	0925	0945	20	DOWNTIME DUE TO FOLIDMENT	CHECKING/ DOWNI DADING	GPS	NA	NA	COOL	DRY
						MAINTENANCE/CHECK	DATA					
5/15/2003	5	OPEN RANGE	0945	1140	115	COLLECTING DATA	RUNNING OPEN	GPS	NA	LINEAR	HOT	DRY
							BIDIRECTIONAL E/W					
5/15/2003	3 5	OPEN RANGE	1140	1150	10	DOWNTIME DUE TO FOURDMENT	CHECKING/ DOWNI DADING	GPS	NA	NA	HOT	DRY
						MAINTENANCE/CHECK	DATA					
5/15/2003	3 5	OPEN RANGE	1150	1250	60	BREAK/LUNCH	CHOW	NA	NA	NA	HOT	DRY

No.		S	Status Status	Status					Track			
Of	Area Tactad		Start	Stop	Duration,	Onerational Statue	Operational Status -	Track	Track Method=Other	Dattern	Field Conditions	ione
	10			1255	5	SET UP/MOBILIZATION	SET UP ON C4,C5	NA	NA	NA	HOT	DRY
2	OPEN RANGE			1320	25	COLLECTING DATA	RUNNING OPEN RANGE, C4,C5	GPS	NA	LINEAR	HOT	DRY
							BIDIRECTIONAL E/W					
	OPEN RANGE		1320	1325	5	DOWNTIME DUE TO EQUIPMENT FAILURE	COMMUNICATION ERROR INFIELD COMPUTOR	GPS	NA	NA	HOT	DRY
	OPEN RANGE	-	1325	1330	5	DOWNTIME DUE TO	CHANGE OUT FIELD	GPS	NA	NA	HOT	DRY
						EQUIPMENT MAINTENANCE/CHECK	COMPUTORS					
	OPEN RANGE		1330	1530	120	COLLECTING DATA	RUNNING OPEN RANGE, C4.C5	GPS	NA	LINEAR	HOT	DRY
							BIDIRECTIONAL E/W					
	OPEN RANGE		1530	1600	30	SET UP/MOBILIZATION	BREAKING DOWN FOLIIPMENT FOD	NA	NA	NA	HOT	DRY
	OPEN RANGE	-	0640	0655	15	SET UP/MOBILIZATION	SETTING UP FOLIPMENT	NA	NA	NA	COOL	DRY
4	OPEN RANGE		0655	0700	5	COLLECTING DATA	EQUIPMENT WAS CALIBRATED USING CAL BALL	GPS	NA	NA	COOL	DRY
4	OPEN RANGE	-	0700	0825	85	COLLECTING DATA	RUNNING OPEN RANGE, C4,C5 BIDIRECTIONAL E/W	GPS	NA	LINEAR	COOL	DRY
4	OPEN RANGE		0825	0850	25	DOWNTIME DUE TO EQUIPMENT	CHECKING/ DOWNLOADING	GPS	NA	NA	COOL	DRY
4	OPEN RANGE		0850	0060	10	SET UP/MOBILIZATION	SET UP ON D3	NA	NA	NA	COOL	DRY
4	OPEN RANGE		0060	1110	130	COLLECTING DATA	RUNNING OPEN RANGE, D3 BIDIRECTIONAL E/W	GPS	NA	LINEAR	HOT	DRY
4	OPEN RANGE		1110	1125	15	DOWNTIME DUE TO EQUIPMENT MAINTENANCE/CHECK	CHECKING/ DOWNLOADING DATA	GPS	NA	NA	HOT	DRY
4	OPEN RANGE	-	1125	1235	70	BREAK/LUNCH	CHOW	NA	NA	NA	HOT	DRY
4	OPEN RANGE		1235	1330	55	COLLECTING DATA	RUNNING OPEN RANGE, D3 BIDIRECTIONAL E/W	GPS	NA	LINEAR	HOT	DRY
4	OPEN RANGE		1330	1410	40	BREAK/LUNCH	BREAK	NA	NA	NA	HOT	DRY

Status	Status St	Status St	Sti	_				-Torres	Track			
of Start Stop Duration, People Area Tested Time Time min Operat	Area Tested Time Time min	Stop Duration, Time min	Duration, min		Operat	Operational Status	Operational Status - Comments	Irack Method	I rack Method=Other Method Explain	Pattern	Field Conditions	itions
OPEN RANGE 1410 1515 65	OPEN RANGE 1410 1515 65	1515 65	65		COLLEC	COLLECTING DATA	EN	GPS	NA	LINEAR	HOT	DRY
4 OPEN RANGE 1515 1530 15 DOWNT EQU	1515 1530 15	1530 15	15		DOWNT EQU	DOWNTIME DUE TO EQUIPMENT MAINTENANCF/CHECK	CHECKING/ DOWNLOADING DATA	GPS	NA	NA	НОТ	DRY
4 OPEN RANGE 1530 1600 30 SET UP/	1530 1600 30	1600 30	30		SET UP/	SET UP/MOBILIZATION	BREAKING DOWN EOUIPMENT EOD	NA	NA	NA	HOT	DRY
4 OPEN RANGE 0630 0715 45 SET UI	0630 0715 45	0715 45	45		SET UI	SET UP/MOBILIZATION	SETTING UP EQUIPMENT	NA	NA	NA	HOT	DRY
4 OPEN RANGE 0715 0720 5 COL	0715 0720 5	0720 5	S	5 COL	COL	COLLECTING DATA	EQUIPMENT WAS CALIBRATED USING CAL BALL	GPS	NA	NA	НОТ	DRY
4 OPEN RANGE 0720 0825 65 COLI	0720 0825 65	0825 65	65		COLI	COLLECTING DATA	RUNNING OPEN RANGE, D2 BIDIRECTIONAL E/W	GPS	NA	LINEAR	HOT	DRY
4 OPEN RANGE 0825 0921 56 DOWJ E MAINT	0825 0921 56	0921 56	- 26		DOW B MAINT	DOWNTIME DUE TO EQUIPMENT MAINTENANCE/CHECK	CHECKING/ DOWNLOADING DATA	GPS	NA	NA	HOT	DRY
4 OPEN RANGE 0921 1040 79 COLLI	0921 1040 79	1040 79	79		COLLI	COLLECTING DATA	RUNNING OPEN RANGE, B5 BIDIRECTIONAL E/W	GPS	AN	LINEAR	НОТ	DRY
4 OPEN RANGE 1040 1045 5 DOWI B MAINT	1040 1045 5	1045 5	5	5 DOWI B(MAINT	DOWI E(MAINT	DOWNTIME DUE TO EQUIPMENT MAINTENANCE/CHECK	CHECKING/ DOWNLOADING DATA	GPS	NA	NA	НОТ	DRY
4 OPEN RANGE 1045 1120 35 BI	1045 1120 35	1120 35	35		BI	BREAK/LUNCH	CHOW	NA	NA	NA	HOT	DRY
	1120 1230 70	1230 70	70		COL	COLLECTING DATA	RUNNING OPEN RANGE, B5 BIDIRECTIONAL E/W	GPS	NA	LINEAR	HOT	DRY
3 OPEN RANGE 1230 1245 15 DOV	1230 1245 15	1245 15	15		DOV	DOWNTIME DUE TO EQUIPMENT MAINTENANCE/CHECK	CHECKING/ DOWNLOADING DATA	GPS	NA	NA	НОТ	DRY
	1245 1335 50	1335 50	50			BREAK/LUNCH	BREAK	NA	NA	NA	HOT	DRY
3 OPEN RANGE 1335 1400 25 CO	1335 1400 25	1400 25	25		CO	COLLECTING DATA	CONDUCTED EQUIPMENT INTERFERENCE TEST	GPS	NA	NA	HOT	DRY
3 OPEN RANGE 1400 1430 30 SET	1400 1430 30	1430 30	30	_	SET	SET UP/MOBILIZATION	BREAKING DOWN EQUIPMENT EOD	NA	NA	NA	HOT	DRY

•

•

No.		Status	Status Status					Track			
Oconto	Anna Tactad	Start	Stop	Duration,	Ononotional Statue	Operational Status -	Track	Track Method=Other	Dattarn	Field Conditions	ione
	OPEN RANGE	0090		-	SET UP/MOBILIZATION		NA	NA	NA	HOT	DRY
	OPEN RANGE	0615	0620	5	COLLECTING DATA	EQUIPMENT WAS EQUIPMENT WAS CALIBRATED USING	GPS	NA	NA	HOT	DRY
	OPEN RANGE	0620	0743	83	COLLECTING DATA	RUNNING OPEN RANGE, B4 RIDIRFCTIONAL F/W	GPS	NA	LINEAR	HOT	DRY
	OPEN RANGE	0743	0815	32	DOWNTIME DUE TO EQUIPMENT MAINTENANCE/CHECK	CHECKING/ DOWNLOADING DATA	NA	NA	NA	HOT	DRY
	OPEN RANGE	0815	0930	75	COLLECTING DATA	RUNNING OPEN RANGE, B4 BIDIRECTIONAL E/W	GPS	NA	LINEAR	HOT	DRY
	OPEN RANGE	0930	0945	15	DOWNTIME DUE TO EQUIPMENT MAINTENANCE/CHECK	CHECKING/ DOWNLOADING DATA	NA	NA	NA	HOT	DRY
	OPEN RANGE	0945	0950	S	DOWNTIME DUE TO EQUIPMENT MAINTENANCE/CHECK	CHANGE OUT BATTERY	NA	NA	NA	HOT	DRY
	OPEN RANGE	0950	0955	5	BREAK/LUNCH	BREAK	NA	NA	NA	HOT	DRY
	OPEN RANGE	0955	1005	10	COLLECTING DATA	RUNNING OPEN RANGE, B4 BIDIRECTIONAL E/W	GPS	NA	LINEAR	HOT	DRY
	OPEN RANGE	1005	1010	5	SET UP/MOBILIZATION	SET UP ON GRID C2,C3	NA	NA	NA	HOT	DRY
	OPEN RANGE	1010	1024	14	DOWNTIME DUE TO EQUIPMENT MAINTENANCE/CHECK	CHECKING/ DOWNLOADING DATA	GPS	NA	NA	HOT	DRY
	OPEN RANGE	1024	1130	99	COLLECTING DATA	RUNNING OPEN RANGE, C2,C3 BIDIRECTIONAL E/W	GPS	NA	LINEAR	HOT	DRY
1	OPEN RANGE	1130	1145	15	DOWNTIME DUE TO EQUIPMENT MAINTENANCE/CHECK	CHECKING/ DOWNLOADING DATA	GPS	NA	NA	HOT	DRY
	OPEN RANGE	1145	1310	85	BREAK/LUNCH	CHOW/BREAK	NA	NA	NA	HOT	DRY
	OPEN RANGE	1310	1410	60	COLLECTING DATA	RUNNING OPEN RANGE, C2,C3 BIDIRECTIONAL E/W	GPS	NA	LINEAR	HOT	DRY

	hone	DDV		DRY		DRY	DRY		DRY		DRY		DRY	DRV	ING	DRY		DRY		DRY		DRY	DRY		DRY	
	Wald Conditions	FIELD COLIM		HOT		HOT	HOT		HOT		HOT		HOT	HOT		HOT		HOT		HOT		HOT	HOT		HOT	
	Dattorn	NA		NA		NA	NA		LINEAR		NA		NA	I INFAR		NA		LINEAR		NA		NA	NA		LINEAR	
Track	Method Method=Other	NA	1.00	NA		NA	NA		NA		NA		NA	NA		NA		NA		NA		NA	NA		NA	
Track	Method	CDC	2	NA		NA	GPS		GPS		GPS		NA	SPC		GPS		GPS		GPS		NA	NA		GPS	
	tus -	CUECKING	DOWNLOADING	BREAKING DOWN	EQUIPMENT EOD	SETTING UP EQUIPMENT	EQUIPMENT WAS	CALIBRATED USING CAL BALL	RUNNING OPEN	BIDIRECTIONAL E/W	CHECKING/	DOWNLOADING	BREAK	PLINNING OPEN	RANGE, C2,C3 BIDIRECTIONAL E/W	CHECKING/	DOWNLOADING DATA	RUNNING OPEN	BIDIRECTIONAL EW	CHECKING/	DOWNLOADING	BREAK	SET UP IN YUMA	EXTREME	RUNNING YUMA EXTREME	BIDIRECTIONAL NORTH/SOUTH
	Ononotional Chatua	Operational Status	EQUIPMENT MAINTENANCE/CHECK	SET UP/MOBILIZATION		SET UP/MOBILIZATION	COLLECTING DATA		COLLECTING DATA		DOWNTIME DUE TO	EQUIPMENT	BREAKILUNCH	COLLECTING DATA		DOWNTIME DUE TO	EQUIPMENT MAINTENANCE/CHECK	COLLECTING DATA		DOWNTIME DUE TO	EQUIPMENT MAINTENANCF/CHECK	BREAK/LUNCH	SET UP/MOBILIZATION		COLLECTING DATA	
	Duration,	um of	2	10		15	4		89		20		27	CV	74	13		37		15		20	12		47	
		1420	0741	1430		0545	0549		0718		0738		0805	7180	1400	0060		0937		0952		1012	1024		1111	
		1410	OTLI	1420		0530	0545		0549		0718		0738			0847		0060		0937		0952	1012		1024	
	Anon Tooted	AFCA LESTED		OPEN RANGE		OPEN RANGE	OPEN RANGE		OPEN RANGE		OPEN RANGE		OPEN RANGE	ODENI D ANGE	OFEN NAMOE	OPEN RANGE		OPEN RANGE		OPEN RANGE		OPEN RANGE	YUMA	EXTREME	YUMA EXTREME	
No.	of	reopie	t	4		4	4		4		4		4		1	4		4		4		4	4		4	
		Date 1	CUUZICIC	5/19/2003		5/20/2003	5/20/2003		5/20/2003		5/20/2003		5/20/2003	2000002	CUU2/102/C	5/20/2003		5/20/2003		5/20/2003		5/20/2003	5/20/2003		5/20/2003	

Status	Status	Status	Status	- House	1		Omenetional Status	Track	Track			
People Area Tested Time Time min Operational Status	Area Tested Time Time min	Time min	Time min		Operation	al Status	Operational Status - Comments	Mennou	Explain Explain	Pattern	Field Conditions	tions
YUMA EXTREME	YUMA 1111 1130 19 EXTREME	1130 19	1130 19		DOWNTIMI EQUIPN MAINTENAN	E DUE TO AENT CE/CHECK	CHECKING/ DOWNLOADING DATA	GPS	NA	NA	HOT	DRY
4 YUMA 1130 1230 60 BREAK/LUNCH EXTREME	1130 1230 60	1230 60	99		BREAK	LUNCH	TUNCH	NA	NA	NA	HOT	DRY
4 YUMA 1230 1245 15 SET UP/MC EXTREME	1230 1245 15	1245 15	15		SET UP/MO	SET UP/MOBILIZATION	SETUP	NA	NA	NA	HOT	DRY
4 YUMA 1245 1248 3 COLLE EXTREME 2248 3 COLLE	1245 1248 3	1248 3	3		COLLE	COLLECTING DATA	EQUIPMENT WAS CALIBRATED USING CAL BALL	GPS	NA	NA	НОТ	DRY
4 YUMA 1248 1255 7 COLLE EXTREME EXTREME	1248 1255 7	1255 7	2		COLLE	COLLECTING DATA	RUNNING YUMA EXTREME BIDIRECTIONAL NORTH/SOUTH	GPS	NA	LINEAR	НОТ	DRY
4 YUMA 1255 1300 5 DOWN EXTREME EQUIPM	1255 1300 5	1300 5	5		DOWN	DOWNTIME DUE TO EQUIPMENT FAILURE	FIELD COMPUTER OVERHEAT/FAILED	NA	NA	NA	HOT	DRY
4 YUMA 1300 1310 10 SET UP/	1300 1310 10	1310 10	10		SET UP/	SET UP/MOBILIZATION	BREAKING DOWN EQUIPMENT EOD	NA	NA	NA	HOT	DRY
3 YUMA 0530 0550 20 SET UP/N EXTREME	0530 0550 20	0550 20	20		SET UP/N	SET UP/MOBILIZATION	SETTING UP EQUIPMENT	NA	NA	NA	HOT	DRY
3 YUMA 0550 0600 10 COLLEC EXTREME	0550 0600 10	0600 10	10		COLLEC	COLLECTING DATA	EQUIPMENT WAS CALIBRATED USING CAL BALL	GPS	NA	NA	HOT	DRY
3 YUMA 0600 0605 5 COLLEC EXTREME	0600 0605 5	0605 5	S		COLLEC	COLLECTING DATA	RUNNING YUMA EXTREME BIDIRECTIONAL NORTH/SOUTH	GPS	NA	LINEAR	HOT	DRY
3 YUMA 0605 0614 9 DOWN EXTREME 0605 0614 9 DOWN	0605 0614 9	0614 9	6		DOWN7 EQI MAINTEN	DOWNTIME DUE TO EQUIPMENT MAINTENANCE/CHECK	CHECKING/ DOWNLOADING DATA	GPS	NA	NA	HOT	DRY
3 YUMA 0614 0750 96 COLLEC EXTREME	0614 0750 96	0750 96	96		COLLEC	COLLECTING DATA	RUNNING YUMA EXTREME BIDIRECTIONAL NORTH/SOUTH	GPS	NA	LINEAR	HOT	DRY
3 YUMA 0750 0810 20 DOWNT EXTREME 60 0810 20 DOWNT EXTREME 60	0750 0810 20	0810 20	20		DOWNT EQU MAINTEN	DOWNTIME DUE TO EQUIPMENT MAINTENANCE/CHECK	CHECKING/ DOWNLOADING DATA	GPS	NA	NA	НОТ	DRY

		DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY
	idition												
	Field Conditions	HOT	HOT	HOT	HOT	HOT	HOT	HOT	HOT	HOT	HOT	HOT	HOT
	Pattern	NA	LINEAR	NA	NA	LINEAR	NA	LINEAR	NA	NA	NA	LINEAR	NA
Track Method-Other	Explain	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Track	Method	NA	GPS	GPS	NA	GPS	GPS	GPS	NA	GPS	GPS	GPS	GPS
Onerational Statue			RUNNING YUMA EXTREME BIDIRECTIONAL	CHECKING/ DOWNLOADING DATA	SET UP IN MOGUL AREA	RUNNING MOGUL AREA, BIDIRECTIONAL NORTHSOUTH	CHECKING/ DOWNLOADING DATA	RUNNING MOGUL AREA, BIDIRECTIONAL NORTH/SOUTH	GPS MOUNT BROKE, OPERATOR ERROR	CHECKING/ DOWNLOADING DATA	EQUIPMENT WAS CALIBRATED USING CAL BALL	RUNNING MOGUL AREA, BIDIRECTIONAL NORTH/SOUTH	CHECKING/ DOWNLOADING DATA
	Operational Status	BREAK/LUNCH	COLLECTING DATA	DOWNTIME DUE TO EQUIPMENT MAINTENANCE/CHECK	SET UP/MOBILIZATION	COLLECTING DATA	DOWNTIME DUE TO EQUIPMENT MAINTENANCE/CHECK	COLLECTING DATA	DOWNTIME DUE TO EQUIPMENT FAILURE	DOWNTIME DUE TO EQUIPMENT MAINTENANCE/CHECK	COLLECTING DATA	COLLECTING DATA	DOWNTIME DUE TO EQUIPMENT MAINTENANCE/CHECK
Duration	Durauon,	10	30	30	10	<mark>.10</mark>	20	58	12	20	1 5	45	13
Status	Time	0820	0850	0920	0930	1040	1100	1158	1210	1230	1237	1322	1335
	Time		0820	0850	0920	0630	1040	1100	1158	1210	1230	1237	1322
	Area Tested	YUMA	EXTREME EXTREME	YUMA EXTREME	MOGUL AREA	MOGUL AREA	MOGUL AREA	MOGUL AREA	MOGUL AREA	MOGUL AREA	MOGUL AREA	MOGUL AREA	MOGUL AREA
No.	Deonle	3	e	e	3	(C)	3	<mark>.00</mark>	3	3	60	100	3
	Date)3	5/21/2003	5/21/2003	5/21/2003	5/21/2003	5/21/2003	5/21/2003	5/21/2003	5/21/2003	5/21/2003	5/21/2003	5/21/2003

	No.		Status Status	Status					Track			
Date	People	Area Tested	Start	Stop	Duration, min	Operational Status	Operational Status - Comments	Track Method	Track Method=Other Method Explain	Pattern	Field Conditions	ions
33	3	2	1335	1445	70	COLLECTING DATA	IUL	GPS	NA	LINEAR	HOT	DRY
							AREA, BIDIRECTIONAL NORTH/SOUTH					
5/21/2003	3	MOGUL AREA	1445	1500	15	SET UP/MOBILIZATION	BREAKING DOWN EOUIPMENT EOD	NA	NA	NA	HOT	DRY
5/22/2003	3	YUMA EXTREME	0530	0637	67	SET UP/MOBILIZATION	SETTING UP EQUIPMENT	NA	NA	NA	HOT	DRY
5/22/2003	3	YUMA EXTREME	0637	0642	S	COLLECTING DATA	EQUIPMENT WAS CALIBRATED USING CAL BALL	GPS	NA	NA	HOT	DRY
5/22/2003	ŝ	YUMA EXTREME	0642	0745	63	COLLECTING DATA	RUNNING YUMA EXTREME BIDIRECTIONAL NORTH/SOUTH	GPS	NA	LINEAR	НОТ	DRY
5/22/2003	3	YUMA EXTREME	0745	0800	15	DOWNTIME DUE TO EQUIPMENT MAINTENANCE/CHECK	CHECKING/ DOWNLOADING DATA	GPS	NA	NA	HOT	DRY
5/22/2003	ŝ	YUMA EXTREME	0800	0930	90	COLLECTING DATA	RUNNING YUMA EXTREME BIDIRECTIONAL NORTH/SOUTH	GPS	NA	LINEAR	HOT	DRY
5/22/2003	3	YUMA EXTREME	0930	0935	5	DOWNTIME DUE TO EQUIPMENT MAINTENANCE/CHECK	SWAP OUT BATTERIES	NA	NA	NA	HOT	DRY
5/22/2003	ŝ	YUMA EXTREME	0935	0950	15	COLLECTING DATA	RUNNING YUMA EXTREME BIDIRECTIONAL NORTH/SOUTH	GPS	NA	LINEAR	НОТ	DRY
5/22/2003	3	YUMA EXTREME	0950	1005	15	DOWNTIME DUE TO EQUIPMENT MAINTENANCE/CHECK	CHECKING/ DOWNLOADING DATA	GPS	NA	NA	HOT	DRY
5/22/2003	3	YUMA EXTREME	1005	1020	15	BREAK/LUNCH	BREAK	NA	NA	NA	HOT	DRY
5/22/2003	3	CALIBRATION PIT	1020	1028	80	SET UP/MOBILIZATION	SET UP OVER CALIBRATION PIT	NA	NA	NA	HOT	DRY
5/22/2003	3	CALIBRATION PIT	1028	1030	2	COLLECTING DATA	EQUIPMENT WAS CALIBRATED USING CAL BALL	GPS	NA	NA	НОТ	DRY

	ditions	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY
	Field Conditions	НОТ	HOT	HOT	HOT	HOT	HOT	НОТ	НОТ	HOT	HOT	HOT	НОТ	HOT
	Pattern	LINEAR	LINEAR	LINEAR	NA	NA	NA	NA	LINEAR	LINEAR	LINEAR	LINEAR	NA	NA
Track Method=Other	Explain	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Track	Method	GPS	GPS	GPS	NA	GPS	NA	GPS	GPS	GPS	GPS	GPS	GPS	NA
Operational Status -	-	RUNNING SIGNITURE DATA ON 40MM MARK II	RUNNING SIGNITURE DATA ON 57MM	RUNNING SIGNITURE DATA ON 60MM	BREAK	CHECKING/ DOWNLOADING DATA	LUNCH	EQUIPMENT WAS CALIBRATED USING CAL BALL	RUNNING SIGNITURE DATA ON ROCKEYE MK118	RUNNING SIGNITURE DATA ON 2.75 ROCKET	RUNNING SIGNITURE DATA ON 105 STANDARD	RUNNING SIGNITURE DATA ON 155MM	EQUIPMENT WAS CALIBRATED USING CAL BALL	END OF TEST
	Operational Status	COLLECTING DATA	COLLECTING DATA	COLLECTING DATA	BREAK/LUNCH	DOWNTIME DUE TO EQUIPMENT MAINTENANCE/CHECK	BREAK/LUNCH	COLLECTING DATA	COLLECTING DATA	COLLECTING DATA	COLLECTING DATA	COLLECTING DATA	COLLECTING DATA	DEMOBILIZATION
Duration,	min	22	13	23	10	11	51	3	12	25	27	25	2	46
	Time	1052	1105	1128	1138	1149	1240	1243	1255	1320	1347	1412	1414	1500
Status Status Start Stop	Time	1030	1052	1105	1128	1138	1149	1240	1243	1255	1320	1347	1412	1414
	Area Tested	CALIBRATION PIT	CALIBRATION PIT	CALIBRATION PIT	CALIBRATION PIT	CALIBRATION PIT	CALIBRATION PIT	CALIBRATION PIT	CALIBRATION PIT	CALIBRATION PIT	CALIBRATION PIT	CALIBRATION PIT	CALIBRATION PIT	CALIBRATION
No.	People	с.	3	3	3	6	3	3	3	3	3	3	3	3
	Date	5/22/2003	5/22/2003	5/22/2003	5/22/2003	5/22/2003	5/22/2003	5/22/2003	5/22/2003	5/22/2003	5/22/2003	5/22/2003	5/22/2003	5/22/2003

D-15

.

APPENDIX E. REFERENCES

- 1. Standardized UXO Technology Demonstration Site Handbook, DTC Project No. 8-CO-160-000-473, Report No. ATC-8349, March 2002.
- 2. Aberdeen Proving Ground Soil Survey Report, October 1998.
- 3. Data Summary, UXO Standardized Test Site: APG Soils Description, May 2002.
- 4. Yuma Proving Ground Soil Survey Report, May 2003.
- 5. Practical Nonparametric Statistics, W.J. Conover, John Wiley & Sons, 1980, ages 144 through 151.

APPENDIX F. ABBREVIATIONS

- AEC = U.S. Army Environmental Center
- APG = Aberdeen Proving Ground
- ATC = U.S. Army Aberdeen Test Center
- HEAT = high-explosive, antitank
- EMI = electromagnetic interference
- EMIS = Electromagnetic Induction Spectroscopy
- ERDC = U.S. Army Corps of Engineers Engineering Research and Development Center
- ESTCP = Environmental Security Technology Certification Program
- EQT = Army Environmental Quality Technology Program
- GPS = Global Positioning System
- JPG = Jefferson Proving Ground
- PDA = personal digital assistant
- POC = point of contact
- PVC = polyvinyl chloride
- QA = quality assurance
- QC = quality control
- ROC = receiver-operating characteristic
- RTK = real time kinematic
- SERDP = Strategic Environmental Research and Development Program
- UXO = unexploded ordnance
- YPG = U.S. Army Yuma Proving Ground

APPENDIX G. DISTRIBUTION LIST

DTC Project No. 8-CO-160-UXO-021

Addressee	No. of Copies
Commander U.S. Army Environmental Center ATTN: SFIM-AEC-ATT (Mr. George Robitaille) Aberdeen Proving Ground, MD 21010-5401	2
Commander U.S. Army Corps of Engineers Engineering Research and Development Center ATTN: (Mr. Jose Llopis) 3909 Halls Ferry Road Vicksburg, MS 39180-619	1
SERDP/ESTCP ATTN: (Ms. Anne Andrews) 901 North Stuart Street, Suite 303 Arlington, VA 22203	1
Commander U.S. Army Aberdeen Test Center ATTN: CSTE-DTC-SL-E (Mr. Larry Overbay) (Library) CSTE-DTC-AT-CS-R Aberdeen Proving Ground, MD 21005-5059	1 1 1
Defense Technical Information Center 8725 John J. Kingman Road, STE 0944 Fort Belvoir, VA 22060-6218	2

Secondary distribution is controlled by Commander, U.S. Army Environmental Center, ATTN: SFIM-AEC-ATT.

(Page G-2 Blank)