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ABSTRACT

Title of Dissertation: MODELING AND REDUCTION WITH

APPLICATIONS TO SEMICONDUCTOR

PROCESSING

Andrew J. Newman, Doctor of Philosophy, 1999

Dissertation directed by: Professor P. S. Krishnaprasad
Department of Electrical and Computer Engineering

This thesis consists of several somewhat distinct but connected parts, with

an underlying motivation in problems pertaining to control and optimization of

semiconductor processing. The first part (Chapters 3 and 4) addresses problems

in model reduction for nonlinear state-space control systems. In 1993, Scherpen

generalized the balanced truncation method to the nonlinear setting. However,

the Scherpen procedure is not easily computable and has not yet been applied

in practice. We offer a method for computing a working approximation to the

controllability energy function, one of the main objects involved in the method.

Moreover, we show that for a class of second-order mechanical systems with dis-

sipation, under certain conditions related to the dissipation, an exact formula for



the controllability function can be derived. We then present an algorithm for a

numerical implementation of the Morse-Palais lemma, which produces a local co-

ordinate transformation under which a real-valued function with a non-degenerate

critical point is quadratic on a neighborhood of the critical point. Application

of the algorithm to the controllabilty function plays a key role in computing the

balanced representation. We then apply our methods and algorithms to derive

balanced realizations for nonlinear state-space models of two example mechanical

systems: a simple pendulum and a double pendulum.

The second part (Chapter 5) deals with modeling of rapid thermal chemical

vapor deposition (RTCVD) for growth of silicon thin films, via first-principles and

empirical analysis. We develop detailed process-equipment models and study the

factors that influence deposition uniformity, such as temperature, pressure, and

precursor gas flow rates, through analysis of experimental and simulation results.

We demonstrate that temperature uniformity does not guarantee deposition thick-

ness uniformity in a particular commercial RTCVD reactor of interest. In the

third part (Chapter 6) we continue the modeling effort, specializing to a control

system for RTCVD heat transfer. We then develop and apply ad-hoc versions of

prominent model reduction approaches to derive reduced models and perform a

comparative study.
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PREFACE

“What have you done for science?”

—P. S. Krishnaprasad

This question has been posed to me repeatedly over the past five years. With

this thesis, I finally offer an answer.

The contents herein take some small steps toward making nonlinear balanc-

ing, a new model reduction method introduced by other researchers, accessible for

use in practical applications. I hope that this work is followed by improvements,

and leads to additional interesting and useful results, and, ultimately, to practi-

cal implementation. I intend to pursue this goal and would be pleased if other

researchers find fruitful points of departure. I also hope that readers who have

worked with standard versions of the methods described in this thesis will gain a

better understanding of when and how to use them.

It has been my good fortune, through the skillful and tireless efforts of my

advisor, to have my research funded by various grants and a joint project with

an industrial partner, Northrop Grumman Corporation (Electronic Sensors and

Systems Sector) of Linthicum, Maryland. This project has afforded me the invalu-

able experience of performing research toward solving “real-world” manufacturing

problems from which I have benefited greatly. It is worthwhile to mention that

in such a situation the objectives of the parties may not perfectly coincide, e.g.,

ii



enhanced fundamental understanding of physical-chemical processes versus manu-

facturing support leading to immediately tangible cost reductions. I can only hope

that I have balanced the competing pressures in a way that is somewhat satisfying

to all of the involved parties.

During the more than seven years I spent here in College Park, the campus and

the city have changed and improved signficantly in many ways. I consider myself

lucky to have worked here during the presidency of Dr. William E. Kirwan. More-

over, the ISR, under the leadership of Dr. Steven Marcus and Dr. Gary Rubloff,

and the ECE Department, under the leadership of Dr. Nariman Farvardin, have

been wonderful and stimulating places to work over this period. I have noticed the

results of their efforts on a daily basis. Moreover, it has been a pleasure to work

with Dr. David Bader and Dr. Raadhakrishnan Poovendran toward the establish-

ment of a thriving ECE graduate student association. Finally, it is a good thing

that College Park has an establishment dedicated to “smoothies,” as they kept my

energy level high without resorting to coffee (the beverage of choice, it seems, for

graduate students).

My advisor gave me all sorts of advice and guidance over the past several years

on a variety of subjects. Yet there was a common theme that is characterized in a

statement that he repeated often. It is one that I will remember and try to apply

in the future.

“Be relentless in the pursuit of knowledge.”

—P. S. Krishnaprasad

Andrew Joseph Newman
College Park, Maryland
December, 1999
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Chapter 1

Introduction

This thesis consists of several somewhat distinct but connected parts, with an un-

derlying motivation in problems pertaining to control and optimization of semicon-

ductor processing. The first part (Chapters 3 and 4) addresses problems in model

reduction for nonlinear state-space control systems. The problems are motivated

by a thorough discussion and analysis of prominent state-of-the-art approaches.

We then offer solutions via methods, tools, and algorithms for computation of bal-

anced realizations, both in general and motivated by specific applications. The

second part (Chapter 5) deals with modeling of rapid thermal chemical vapor de-

position (RTCVD) for growth of silicon thin films, via first-principles and empirical

analysis. We present detailed process-equipment models and study the factors that

influence deposition uniformity through analysis of experimental and simulation

results. In the third part (Chapter 6) we continue the modeling effort, specializing

to a control system for RTCVD heat transfer. We then develop and apply ad-hoc

versions of prominent model reduction approaches to derive reduced models and

perform a comparative study.

In this introductory chapter we provide background material, an overview of the
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scope and contributions of this thesis, and a guide to its organization by chapters.

1.1 Background

The modeling of complex dynamical systems is one of the most important sub-

jects in science and engineering. For control engineers, the subject is crucial, since

control law design requires the formulation of a suitable mathematical model for

the system of interest. For many systems, the underlying physics is known and

physics-based models exist whose predictive capability has been demonstrated ex-

perimentally and is well established. For example, the Navier-Stokes equations

(see, e.g., [61]) together with appropriate boundary conditions and initial condi-

tions provide a reliable mathematical description for the flow of a Newtonian fluid.

It is often the case that a model is too complicated to be useful for its intended

application. Highly complex models cause difficulties in controller synthesis and

may place excessive computational burdens on software and hardware used for

simulation and control. For example, the difficulties involved with the design of

control algorithms using a nonlinear partial differential equation (PDE) model

such as Navier-Stokes are well known (e.g., [70, 99]). One remedy is to make

approximations to the model, based on physical considerations and mathematical

analysis, in order to derive a simpler model from the original complicated one.

This is what is generally referred to as model reduction.

The distinction between modeling and model reduction is blurry and varies

among different authors. Verriest [160] defines modeling as the process whereby

an abstract mathematical model is matched to the physical reality, and model

reduction the process whereby a simpler mathematical model is derived from an

existing mathematical model. This notion is intuitive but we mention the following
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exceptions. We interpret simplifications based solely on physical considerations,

such as eliminating terms describing conductive effects in a heat transfer problem

where radiative effects are dominant, as falling within the realm of modeling, and

take the resulting simpler (but still complicated) model as the new starting point

for model reduction. Also, there are situations in control engineering and physics in

which the model contains redundancies that can be eliminated through mathemat-

ical analysis, yielding simplified models which make exactly the same, rather than

approximate, predictions as the original. Examples include non-minimal linear

state-space models (see e.g., [72]) and certain conservative systems with symme-

tries (e.g., [100]). Again, we take the model with redundancies already eliminated

as the starting point for reduction.

1.1.1 Model Reduction

Two basic attributes of a mathematical model are its fidelity and complexity.

Generally speaking, the fidelity of a model, also called correctness, refers to its

capability to predict the behavior of the system being modeled. It can also be

thought of as the degree to which characteristics of the physical system are reflected

by the model. The complexity of a model is given, roughly, by the number of

unknowns that must be determined in order to characterize the system behavior.

There is a natural trade-off between these two attributes. Approximations resulting

in a complexity reduction necessarily degrade fidelity and vice-versa (otherwise, as

stated earlier, the original model is an unacceptable starting point).

The advantages of low complexity are clear. It allows for an easier understand-

ing of model dynamics and simplification of controller synthesis. The reduced com-

putational burden of low complexity models leads to faster and easier computer
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simulation, faster control algorithms, and more reliable controller implementations

(whether in hardware or software) since there are fewer sources of potential fail-

ure. Again referring to the control of fluid flows, initial successes have recently

been shown toward using low complexity models, derived from Navier-Stokes, in

the development of control algorithms for the wall region of a turbulent boundary

layer [99].

The model reduction problem, then, is one of finding a systematic methodology

within a given mathematical framework to produce an efficient or optimal trade-off

of fidelity versus complexity. By efficient and optimal, respectively, we mean rela-

tively small and the smallest possible degradation in fidelity for a given complexity

reduction. Thus, the procedure should quantify the effect of a given approxima-

tion on fidelity in some meaningful way. Guaranteed error bounds are desirable.

It is also useful for the procedure to guarantee the preservation of properties such

as open-loop and closed-loop stability. It is then up to the designer to choose

the degree of reduction based on considerations for the particular application of

interest.

This thesis deals with model reduction within the framework of continuous-time

state-space control systems. By control system we mean a dynamical system with

exogenous inputs (e.g., controls, disturbances) and outputs (e.g., measurements,

variables of interest). The dimension of a state-space model, also known as the

model order, is the number, possibly infinite, of independent variables needed to

characterize the “state” of the system, which, roughly speaking, represents the

memory that the system has of its past. These variables are called state variables,

or state components, and an ordered collection of all of them is called the system

state. The set of allowable values for the state is called the state-space, also
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known as the phase-space. Definitions and a mathematical set-up are presented in

Section 2.1.

If there are a finite number of state variables, then we call the system finite-

dimensional. Otherwise, by convention the system order is set to infinity and

we call the system infinite-dimensional, also known as a distributed parameter

system. In the state-space context, complexity is equivalent to model order. Thus,

it is clear that model reduction is essential in the infinite-dimensional setting. The

original (physics-based) model is called the full-order model, while approximations

are called reduced-order models.

One measure of fidelity, i.e., the quality of approximation, is given by

sup
u∈U

‖y − yr‖

‖u‖
(1.1)

where y represents the full-order system output, yr represents the reduced-order

system output, u represents the input belonging to the admissible class U , and

‖·‖ denotes an appropriate norm. This amounts to measuring the worst-case error

between the outputs of the original and reduced models over all admissible input

signals. Other measures of fidelity can also be used depending upon the situation.

The general methodology for state-space model reduction involves coordinate

transformation followed by component truncation. The procedure is illustrated in

Figure 1.1. The state can be expressed in terms of coordinates, i.e., as a linear

combination of basis elements for the state-space. For reduction we find a coordi-

nate system in which each state component is ranked according to its contribution,

or importance, to the relevant (e.g., input-to-output) system behavior. Then, the

system evolution equation is expressed in terms of the new coordinates, and state

components with relatively little importance are deleted from the model. Integra-

tion of the reduced evolution equation gives the trajectory of the reduced-order
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Figure 1.1: General state-space model reduction methodology.

state. Finally, an approximation to the original full-order state is reconstructed

from the reduced-order state. The choice of coordinate transformation is what

generally distinguishes different methods and is the key to achieving efficiency.

In earlier practice, model approximation has been largely based on heuristics

and ad-hoc trial-and-error methods. However, over the past few decades, model

reduction on a solid mathematical basis has been the subject of extensive research

from a broad range of viewpoints and over a large number of application areas.

This research has resulted in a variety of reduction tools.

One tool that has found much recent application in simplification of models

for fluid flow, especially in the area of turbulence, is the proper orthogonal decom-

position (POD) (see, e.g., [15, 67, 96, 147]), also known as the Karhunen-Loeve

expansion (see, e.g., [126, 166]) of a second-order stochastic process. The POD

can be described, roughly, as a procedure for extracting a basis for an orthogonal

decomposition of the state-space from an ensemble of signals. In the context of

model reduction for dynamical systems, the ensemble must capture, or represent,

the relevant system behavior. The procedure is attractive for several reasons. It

is applicable to linear and nonlinear models, and to models of finite and infinite

dimension. It provides a meaningful ranking of state components from an energy
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contribution viewpoint, and enjoys properties such as optimality (see e.g., [15]) in

the sense of data compression and error minimization. The POD is a tool of major

importance to this thesis and is described in detail in Section 3.2.

The POD has been independently rediscovered and analyzed from different

points of view several times since the 1940’s (see [15] for a brief history). It has

been applied in a variety of areas including image processing (e.g., [146]), modeling

and control of chemical processes (e.g., [25, 52]), and turbulence modeling (e.g., [11,

12, 149]). While the properties of the POD are well known and useful from the

point of view of reducing the dimension of a single ordinary or partial differential

equation model, the control viewpoint introduces new issues. By letting controls

take values in a suitable function space, a family of ordinary or partial differential

equations is obtained. From the empirical perspective, it becomes unclear how

to generate a representative data ensemble, since the system response depends

strongly on the chosen input signal. The ranking of states, and properties such

as optimality, lose their precise meaning. Furthermore, the relationship between

states and outputs is ignored in determining the POD basis.

Nevertheless, during the 1990’s, the POD has been prominent as a tool for

model reduction of state-space control systems, particularly in the area of temper-

ature control for rapid thermal processing (RTP) (e.g., [1, 5, 6, 13, 120, 157]), a

process used for several functions involved in manufacturing semiconductor devices

(see Section 1.1.2). In control system applications of POD, mathematical rigor is

replaced by ad-hoc procedures. For example, in [13] the authors generate several

reduced models for an RTP system, each corresponding to a different operating

point, and switch among them via heuristic rules according to the state trajectory.

Thus, the method can be effective as part of an overall ad-hoc procedure, but not
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necessarily satisfying from a control-theoretic point of view.

The basis elements generated by the POD procedure are often referred to as

principal components (see Section 2.3) or empirically determined eigenfunctions,

because they are extracted from an empirically generated ensemble of signals.

There are other model reduction procedures that use a fixed, rather than empirical,

basis for an orthogonal decomposition of the state-space. For example, wavelet

bases (see, e.g., [35]) have recently been used in model approximation for the

control of heat diffusion and vibration damping in a visco-thermoelastic rod [20].

However, these methods do not take advantage of existing physical or empirical

knowledge of the system in choosing the basis. Consequently, there is little that

can be said about their effectiveness in general situations.

Considerable work has been devoted to model reduction for finite-dimensional

linear time-invariant (LTI) control systems, dating back to the 1960s (see [53]

for a complete list of references through 1976). These efforts generally fall into

the categories of polynomial approximations in the frequency-domain, state-space

transformation and component truncation in the time-domain, and parametric

optimization techniques (see [48] for a complete overview). Some of these are mo-

tivated by and designed for a particular application. For example, modal analysis

(see, e.g., [103]) is mainly used as a tool for reducing the complexity of linear lightly

damped mechanical systems (e.g., [26]).

An LTI state-space method of general importance and applicability is balanc-

ing, introduced by Moore [109] in 1981 for stable, minimal, finite-dimensional LTI

systems. In this method, a system is transformed to balanced form, which means

that it is “equally controllable and observable.” The states of a balanced realiza-

tion can be ranked according to their influence on the input-to-output behavior of
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the system, as measured by its input-to-output gain, or Hankel norm. For LTI sys-

tems, balancing is strongly related to the POD, in the sense that the basis for the

balancing coordinate transformation can be derived using principal components

generated via injection of impulsive inputs. We elaborate on balancing for LTI

systems in Section 3.3.

During the 1980s and 1990s, various versions of balancing and other Hankel-

norm based methods (e.g., [34, 54, 113]) were developed for finite- and infinite-

dimensional LTI systems. Concurrently, there was a substantial effort toward

development of algorithms and computational tools (e.g., [91, 136]) for practical

implementation of linear balancing, resulting in its wide application to produce

low-order models for LTI control systems. The main objects of importance in

linear balancing are the controllability and observability Gramian matrices. Thus,

the computational tools are based mainly on well known and efficient algorithms

for matrix algebra problems.

Scherpen [140, 141] extended the balancing approach, introducing in 1993 a

general theory and procedure of balancing for a class of stable, affine, smooth,

finite-dimensional nonlinear systems. The main objects of importance in non-

linear balancing are the controllability and observability energy functions. The

balancing coordinate transformation is local to a neighborhood of the origin and

determined by application of the Morse-Palais lemma, which gives a canonical form

for functions in the neighborhood of a non-degenerate critical point. Scherpen’s

nonlinear balancing procedure forms a major part of the foundation for this thesis,

and is detailed throughout Chapter 4.

In contrast to the linear case, the nonlinear balancing procedure is not immedi-

ately amenable to computational implementation. For example, the controllability
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energy function corresponds to the value function for a nonlinear optimal control

problem. Also, the Morse-Palais lemma guarantees the existence of a transfor-

mation to a canonical form for the controllability energy function, but provides

no constructive procedure for obtaining it. Thus, tools have not yet appeared for

computing balanced realizations for nonlinear systems, and the procedure has not

yet been applied as a tool for model reduction.

In this thesis we offer methods for computing balanced realizations for nonlinear

systems. We rely heavily on the theory of stochastically excited dynamical systems,

i.e., control systems with Gaussian white noise injected at the input terminals. The

state of such a system is a stochastic process with an associated density function.

The evolution of the state is governed by a stochastic differential equation, and

the evolution of the density function is governed by a pair of hypoelliptic diffusion

equations. In the case of a linear system, the covariance matrix of the steady-

state density is equal to the controllability Gramian matrix of the corresponding

deterministic system, a fact which motivates useful generalizations to the nonlinear

setting. Mathematical preliminaries for dealing with stochastically excited systems

are presented in Section 2.6.

The model reduction tools that we develop have general applicability but be-

come impractical for systems of sufficiently high dimension. However, for certain

specific types of systems, we can obtain computable results, e.g., an exact formula

for the controllability function. We study the class of second-order mechanical

systems characterized by a Hamiltonian (conservative) structure and perturbed by

dissipation and forcing. Under certain conditions, steady-state densities can be

obtained for these systems from which the controllability energy function can be

derived.
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1.1.2 Modeling: Rapid Thermal CVD for Silicon Growth

In recent years, the semiconductor industry has begun to employ mathematical and

computational models as tools to aid in equipment design (e.g., [29, 49, 155]), sim-

ulation (e.g., [84, 98]), process optimization (e.g., [135]), and model-based process

control (e.g., [30, 139, 63]). These modeling efforts have been motivated primarily

by gains in manufacturing cost effectiveness. In particular, the design of new equip-

ment and manufacturing processes is typically performed via costly trial-and-error

procedures. Modeling and simulation are used to reduce the number of required

experiments, thus reducing the associated cost and development cycle time. Fur-

thermore, as device sizes shrink, and as wafer sizes grow, process control becomes

more challenging and specifications become tighter. In many cases, model-based

process control is needed to accomplish the task.

One semiconductor manufacturing process that has been the subject of much

recent modeling activity from various points of view is chemical vapor deposition

(CVD) (see e.g., [75, 133, 144]), a common way of depositing thin layers of con-

ducting and insulating films over the surface of a semiconductor wafer. In CVD,

the material is deposited from a gaseous precursor to the substrate via chemical

reactions that are activated by heat energy. In this thesis, we are concerned with

dynamic and steady-state models of CVD for growth of silicon thin films on a sili-

con wafer. In particular, we focus on rapid thermal CVD, i.e., CVD processes that

employ RTP technology for wafer heating. The process is illustrated in Figure 1.2.

RTP (see e.g., [18, 132]) is a technology for rapidly heating and cooling a single

semiconductor wafer, allowing manufacturing processes to achieve high tempera-

tures for short (e.g., 5 seconds), well-controlled periods of time. The wafer is usually

heated by energy radiated from specially designed high-power lamps. A tempo-

11



Semiconductor Wafer

Flow of Precursor Gases

Heat Radiation from 
Lamps

Diffusion of Reactants 
to Wafer Surface

Thermally Activated 
Chemical Reactions

Figure 1.2: Simplified illustration of rapid thermal CVD.

rally varying temperature profile is programmed to achieve the desired processing

step. RTP technology is versatile; its capabilities have been used in several wafer

processing functions including annealing, CVD, oxidation, nitridation, and contact

sintering. Several different designs exist for RTCVD equipment (e.g., [27, 80, 155]).

Precise control of the temperature distribution across the wafer surface during

RTP is critical to achieving a uniform film thickness across the wafer surface,

ensuring reproducibility from wafer to wafer, and minimizing thermal stress on

the wafer during processing. Even small temperature variations (non-uniformities)

can cause large thickness variations, resulting in costly reductions in process yield.

Various control strategies have been tried recently, including Run-to-Run (RtR)

control (e.g., [68, 86, 168]) and model-based feedback control (e.g., [63, 62, 39]).

The modeling and analysis of CVD equipment and processes presented in this

thesis are mainly the result of a joint project [116, 117, 115] between the Institute

for Systems Research (ISR) of the University of Maryland, College Park, and the

Electronic Sensors and Systems Sector of Northrop Grumman Corporation (NG-

ESSS), Baltimore, MD, undertaken during 1997 and 1998. The overall objective
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of the project was to improve manufacturing effectiveness for epitaxial growth

of silicon and silicon-germanium (Si-Ge) thin films on a silicon wafer. Epitaxial

growth, or epitaxy, (see, e.g., [134, 162]) refers to the deposition of a thin layer

of material onto the surface of a single-crystal substrate in such a manner that

the layer is also single-crystal and has a fixed and predetermined crystallographic

orientation with respect to the substrate.

The equipment used at NG-ESSS to deposit the thin films (and currently a

production tool in use for various processes) was the Epsilon-1 RTCVD reactor,

manufactured by ASM America, Phoenix, AZ. NG-ESSS uses the Epsilon-1 to de-

posit both poly-crystalline and epitaxial (single-crystal) layers of silicon, depending

on the application. Silicon epitaxy provides flexibility for a device designer to tai-

lor or optimize the device performance by allowing for greater control of doping

concentration and profile in deposited layers. Si-Ge films are always epitaxial.

Chapter 5 contains details regarding the CVD equipment and processes involved

in our modeling effort.

One important modeling objective is the prediction of deposition rates and

thickness uniformity given operating conditions such as flow rates of process gases,

wafer temperature, and chamber pressure. Therefore, the process-equipment model

for silicon growth in the Epsilon-1 describes the flow of process gases through the

chamber, heat transfer in the gas phase and within and among the various solids in

the chamber including the wafer, the transport of chemical species within a mul-

ticomponent gas, and chemical mechanisms for gas phase and surface reactions.

It takes the form of a set of coupled nonlinear PDEs and associated boundary

conditions together with chemical kinetics equations. Moreover, we note that due

to the asymmetrical design of the Epsilon-1 deposition chamber and heat lamp ap-
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paratus, models incorporating three spatial dimensions are required to sufficiently

describe the various phenomena (approximations incorporating one or two spatial

dimensions via symmetries are useful in certain situations). Discretization (e.g.,

finite-volumes, finite-elements) at a suitable resolution results in a model with

thousands of states.

Due to the scale and scope of the overall process-equipment model, it is ad-

vantageous to develop a separate model that focuses specifically on heat transfer

among the various solid surfaces in the RTP chamber including the semiconductor

wafer. Such models are often used in model-based control strategies for achieving

temperature uniformity across the wafer surface. However, as we demonstrate in

Chapter 5, temperature uniformity does not necessarily ensure deposition thickness

uniformity.

Nevertheless, in Chapter 6, we develop such a RTP heat transfer model pertain-

ing specifically to the Epsilon-1. Physics-based models for RTP heat transfer give

a distributed parameter control system with a radiative (4-th power) nonlinearity

in the governing equations and boundary conditions. Low-order approximations

to the model are desired in order to facilitate control law design, model-based

feedback control implementation, and computer simulation. We derive low-order

models for the RTP heat transfer control system using the reduction approaches

described in this thesis, and compare their relative merits and drawbacks.

1.2 Scope and Contributions

We list here the main contributions of this thesis.
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• We develop useful methods, tools, and algorithms to compute the energy

functions and coordinate transformations involved in the Scherpen theory

and procedure for nonlinear balancing. We apply our approach to derive, for

the first time, balanced representations of nonlinear state-space models.

• We offer a new method involving stochastic excitation for approximating the

controllability energy function of a nonlinear system.

• We determine conditions under which an exact formula can be written for the

controllability energy function of a nonlinear Hamiltonian system perturbed

by dissipation and forcing. We apply our result to provide an expression for

the controllability function of a 4-state nonlinear mechanical system.

• We present an algorithm for a numerical implementation of the Morse-Palais

lemma, i.e., computation of a local coordinate transformation under which

a real-valued function with a non-degenerate critical point is quadratic on a

neighborhood of the critical point.

• We develop a collection of programs and utilities in a standard program-

ming language to facilitate the practical application of our methods and

algorithms.

• We develop a high-fidelity process-equipment model for deposition of silicon

thin films in a commercial rapid thermal CVD reactor. The model allows

us to simulate growth experiments under a broad range of process condi-

tions while taking account of the various physical and chemical phenomena

involved in CVD of silicon from a multi-component gas.
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• We investigate the factors that influence deposition rate and uniformity in a

commercial reactor including the effects of temperature, precursor gas flow

rates, and chamber pressure. We determine relationships between the various

factors and growth rate that can be used to predict their effects in a particular

situation.

• We demonstrate through anecdotal evidence, simulation results, and experi-

mental data that achieving deposition thickness uniformity requires a certain

degree of temperature non-uniformity across the wafer surface.

• We apply view factor methods to develop a radiative heat transfer model

for the heating of a semiconductor wafer via tungsten-halogen lamps in

a commercial RTP reactor. The model incorporates a non-symmetric 3-

dimensional chamber and lamp array geometry, a feature not commonly

found in the literature. Furthermore, the model is partially validated through

an ad-hoc experimental procedure.

• We formulate ad-hoc procedures for applying standard reduction methodolo-

gies to physics-based models for RTP heat transfer. We apply the procedures

to a high-order control system model for heat transfer in a commercial RTP

chamber to derive low-order model approximations that faithfully reproduce

the relevant input-to-output behavior of the original model.

• We provide a guide to the use of standard and ad-hoc model reduction ap-

proaches that does not sacrifice rigor while serving as a practical tool that

emphasizes computational issues and potential hazards. In the process we

illuminate important connections between prominent methods.
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We list here some contributions of this thesis that either support the main body

of work or are necessary for completeness of the exposition but are not of primary

interest or importance.

• We present a new proof of a theorem by Scherpen that appeals to the con-

nections between the result and optimal control theory.

• We provide new and more general conditions on the output map of a nonlin-

ear system such that the observability energy function exists, i.e., is finite.

• We bring to light and illustrate through examples issues of non-uniqueness

regarding the Morse coordinate transformation and balancing transforma-

tion.

• We demonstrate that the consumption of process gases in the Epsilon-1

RTCVD reactor can be reduced by decreasing the purge gas flow.

1.3 Thesis Outline

The material presented in this thesis is reasonably self contained. It is organized

by chapters as follows.

Chapter 2 We provide the mathematical preliminaries necessary for working with

the main topics of this thesis.

Chapter 3 We introduce two prominent model reduction approaches: POD and

balanced truncation. We describe the current state-of-the-art, including the

underlying theory, computational issues, advantages and shortcomings, and

selected applications. The material in this chapter motivates the research
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in Chapter 4 and explains the methods and computational tools used in

Chapter 6.

Chapter 4 We address the problem of computability pertaining to the Scherpen

theory and procedure for balancing of nonlinear systems. We offer methods

and algorithms toward balancing stable affine nonlinear control systems, with

some emphasis on computation of the controllability energy function and

the Morse coordinate transformation of a function around a non-degenerate

critical point.

Chapter 5 We develop high-fidelity physical-chemical models for predicting the

behavior and output of a commercial RTCVD reactor used for depositing

thin films of Si and Si-Ge on silicon wafers in a manufacturing environment.

We present the results of simulations and growth experiments and use them

to study the factors that influence deposition rate and uniformity in the

reactor.

Chapter 6 We formulate a physical model describing heat transfer in a commer-

cial RTCVD reactor. We then derive low-order models for the resulting RTP

heat transfer control system, using ad-hoc versions of methods described in

Chapter 3.

Chapter 7 We present concluding remarks and comments on future research op-

portunities.

Appendices The Appendices contain supporting material that is essential for

completeness but that would be disruptive within the main exposition.
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Chapter 2

Preliminaries

This thesis makes use of tools, and draws concepts and ideas, from several different

areas of science and mathematics. Here we collect the basic definitions and results

so that they may be used without any detailed explanation later in the thesis.

Topics are covered in additional depth in the listed references.

2.1 State-Space Control Systems

This thesis deals with model reduction of continuous-time state-space control sys-

tems. We focus on methods and algorithms for reduction of finite-dimensional

models. The mathematical framework for these models is that of ordinary differ-

ential equations (ODEs) for the state evolving on a smooth manifold and repre-

sented in terms of a local coordinate system. The necessary machinery for working

with manifolds and local coordinates is set up in Appendix B. The reduction ap-

proaches that we consider require some elements of system theory (continuous-time

finite-dimensional) which appear in Section 2.2.

Some of the modeling and reduction methods are directly applicable in the
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infinite-dimensional setting. However, for purposes of this thesis, we generally

assume that an infinite-dimensional model has been suitably discretized and work

with the finite-dimensional approximation.

In the finite-dimensional case, the state-space control system model is given

by a pair of equations, the state equation and the output equation, respectively,

describing the evolution of the state on a smooth manifold given a specified in-

put, and the relationship between the state and output. Here we present these

equations in their most general form, followed by some important specializations.

An important component of the state-space model reduction procedure is coordi-

nate transformation. For this reason, we describe what happens to the evolution

equations under diffeomorphic change of coordinates.

The material contained in this section is standard. Our treatment is based on

texts by Khalil [79], Nijmeijer and van der Schaft [121], and Isidori [69]. For proofs

we refer to the literature.

System Equations

The state-space is assumed to be an n-dimensional smooth manifold M . The

finite-dimensional control system evolving on M is given by the equations

ẋ (t) = f (t, x(t), u(t)) (2.1)

y (t) = h (t, x(t), u(t)) (2.2)

where x = (x1, . . . , xn) ∈ IRn denotes local coordinates for the state,

u = (u1, . . . , um) ∈ U ⊂ IRm denotes the input (control), and y = (y1, . . . , yp) ∈ IRp

denotes the output. The maps f and h are to be interpreted as their respective

corresponding local representatives. The map f : IR+ × IRn × IRm → IRn is called

the system map. The map h : IR+ × IRn × IRm → IRp is called the output map.
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We often make assumptions about the regularity of f and h, e.g., that they are of

class Ck or possibly smooth. The ordinary differential equation (2.1) is called the

state equation and governs the time evolution of the state given a specified input

and initial state. Equation (2.2) is called the output equation. These equations are

written in vector notation, shorthand for

ẋ1(t) = f1(t, x1(t), . . . , xn(t), u1(t), . . . , um(t))

...
... (2.3)

ẋn(t) = fn(t, x1(t), . . . , xn(t), u1(t), . . . , um(t))

and

y1(t) = h1(t, x1(t), . . . , xn(t), u1(t), . . . , um(t))

...
... (2.4)

yp(t) = hp(t, x1(t), . . . , xn(t), u1(t), . . . , um(t))

Each input signal u belongs to the class U of admissible controls, which we take as

the set

U =
{
u : IR+ → U ⊂ IRm : u ∈ C∞

}
(2.5)

or sometimes more generally

U =
{
u : IR+ → U ⊂ IRm : u is piecewise continuous from the right

}
(2.6)

Given a specified input ū and initial state x0, the time evolution of the state is

given by the initial value problem

ẋ(t) = f̄(t, x(t)) x(t0) = x0 (2.7)

where

f̄ (t, x(t))
4
= f (t, x(t), ū(t))
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In order for (2.7) to predict the state trajectory, it must have a unique solution.

This can be guaranteed under conditions given by the following result.

Theorem 2.1.1 (Local Existence and Uniqueness) Let f̄(t, x) be piecewise

continuous in t and satisfy the Lipschitz condition

∥∥∥ f̄(t, x)− f̄(t, y)
∥∥∥ ≤ L ‖x− y ‖ (2.8)

for all x, y ∈ B = {x ∈ IRn : ‖x− x0 ‖ ≤ r} and for all t ∈ [t0, t1]. Then, there

exists some δ > 0 such that the initial value problem (2.7) has a unique solution

over [t0, t0 + δ]. 2

Remark 2.1.2 The unique solution of (2.7) on [t0, t0 + δ], if it exists, is given by

x (t) = x0 +
∫ t

t0

f̄ (s, x(s)) ds t ∈ [t0, t0 + δ] (2.9)

It is referred to as the state trajectory and sometimes denoted x (t, x0, t0, ū) to

explicitly indicate the initial state, initial time, and specified input. The corre-

sponding output y (t) is referred to as the output trajectory. 2

Remark 2.1.3 The Lipschitz property is weaker than continuous differentiability.

In this thesis, we usually work with f and u that are smooth in their respective

arguments. Thus, we generally assume local existence and uniqueness of solutions

for the systems that we consider, unless specified otherwise. 2

A point x for which f(·, x, 0) ≡ 0 is called an equilibrium. If a system has an

equilibrium, then, without loss of generality, we assume that it is at x = 0, i.e.,

f(·, 0, 0) = 0, unless otherwise specified. We also assume that h(·, 0, 0) = 0 so that

the output is zero whenever the state is zero.
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We focus our attention on state-space models for which the functions f and h

do not depend explicitly on t, i.e.,

ẋ(t) = f (x(t), u(t)) (2.10)

y(t) = h (x(t), u(t)) (2.11)

With a specified input u, these models are referred to as autonomous or time-

invariant.

A particular class of systems that we consider in this thesis is the class of

autonomous affine systems

ẋ(t) = f (x(t)) +
m∑
i=1

gi (x(t)) ui(t) (2.12)

y(t) = h (x(t)) (2.13)

in which the input enters the state equation in an affine way, and there is no direct

feedthrough of the input to the output. The maps f : IRn → IRn, gi : IRn → IRn,

i ∈ m, and h : IRn → IRp are to be interpreted as local representatives. As before,

we assume, without loss of generality, the existence of an equilibrium at x = 0,

i.e., f(0) = 0, as well as h(0) = 0.

Remark 2.1.4 Sometimes we use the notation gij which refers to the i-th compo-

nent of the j-th input function, i.e., gij = (gj)i. 2

Coordinate Transformations

Model reduction involves smooth coordinate transformations of the state-space.

Let {e1, . . . , en} denote the standard basis for IRn, i.e., ei is a vector with a 1 in

the i-th position and a 0 in every other position. We assume that the functions

f , g, and h have been formulated with respect to the standard coordinate system,
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i.e., the basis for the original local coordinate system is the standard basis, so that

in terms of local coordinates the state vector can be written

x =
n∑
i=1

xi ei

We now consider what happens to Equations (2.12) and (2.13) under coordinate

transformation. Let U and V be subsets of IRn containing 0. Let S : U → V be

a diffeomorphism such that S(0) = 0 (to preserve the equilibrium at 0). The fact

that S is a diffeomorphism allows for reversing the transformation and recovering

the original state, and guarantees that the system in the new coordinates is still

smooth. We call S a smooth local coordinate transformation about the origin.

Under the smooth local coordinate transformation

z 7→ x = S(z) (2.14)

the control system (2.12)-(2.13) transforms to

ż(t) = f̂ (z(t)) +
m∑
i=1

ĝi (z(t)) ui(t) (2.15)

y(t) = ĥ (z(t)) (2.16)

where

f̂(z) = [DS(z)]−1
f (S(z))

ĝi(z) = [DS(z)]−1 gi (S(z)) i ∈ m

ĥ(z) = h (S(z))

Linear Time-Invariant Systems

It will be useful on occasion to consider the special case of a linear time-invariant

(LTI) system. The LTI specialization of (2.12)-(2.13) takes the form

ẋ = Ax+Bu (2.17)
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y = Cx (2.18)

where A is n× n, B is n×m, and C is p× n.

In the LTI case, the state-space manifold M is equal to IRn. The unique global

solution of (2.17) with initial state x(0) = x0 is given by the variation of constants

formula

x (t) = exp (A t) x0 +
∫ t

0
exp (A (t− s)) B u(s) ds (2.19)

A coordinate transformation is global and linear, represented by an invertible trans-

formation matrix. Let S be the transformation matrix. Under the linear change

of coordinates

z 7→ x = S z (2.20)

the LTI control system (2.17)-(2.18) transforms to

ż = Â z + B̂u (2.21)

y = Ĉ z (2.22)

where

Â = S−1AS , B̂ = S−1B , Ĉ = C S (2.23)

2.2 Some Elements of System Theory

In this thesis certain key elements of systems theory appear frequently. The no-

tions of stability, controllability, and observability of a control system are essential.

They are used in their most general form as well as specializations for particular

situations. For example, in Section 4.6 we will need to show that certain example

systems are locally accessible, locally observable, and asymptotically stable.

25



The material contained in this section is drawn mainly from texts by Khalil [79],

Nijmeijer and van der Schaft [121], Vidyasagar [161], and class notes in Geometric

Control presented by Dayawansa [37] at the University of Maryland. For proofs

we refer to the literature.

Stability

Here we present some standard definitions and results on the local stability of a

time-invariant system without inputs, i.e.,

ẋ (t) = f (x(t)) (2.24)

where f : D ⊂ IRn → IRn is locally Lipschitz so that there exists a unique solution

on an interval [0, δ].

We are concerned with the stability of equilibrium points. Without loss of

generality we can assume that the system has an equilibrium at 0, i.e., f(0) = 0.

Definition 2.2.1 (Stability of Equilibrium) The equilibrium point x = 0 of

system (2.24) is said to be stable if for any neighborhood U of 0 there exits a

neighborhood V of 0 such that if x(0) ∈ V then the solution x(t, 0, x(0)) belongs to

U for all t ≥ 0. 2

Remark 2.2.2 The equilibrium point x = 0 of (2.24) is said to be unstable if it

is not stable. 2

Definition 2.2.3 (Asymptotic Stability of Equilibrium) The equilibrium

point x = 0 of (2.24) is said to be asymptotically stable if it is stable and there

exists a neighborhood W such that if x(0) ∈W then

lim
t→∞

x (t, 0, x(0)) = 0 (2.25)

2
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Definition 2.2.4 (Region of Attraction) Let x = 0 be asymptotically stable

for the system (2.24). The region of attraction is defined as the set

{
x0 ∈ IRn : lim

t→∞
x(t, 0, x0) = 0

}
(2.26)

i.e., the set of points from which the trajectory approaches the origin as t → ∞.

2

Definition 2.2.5 (Exponential Stability of Equilibrium) The equilibrium

point x = 0 of (2.24) is said to be exponentially stable if there exist constants

k > 0 and γ > 0, such that

‖ x(t) ‖ ≤ k x(0) exp (−γ t) t ≥ 0 (2.27)

2

Remark 2.2.6 Depending on the situation, stability (asymptotic stability) of

(2.24) can be verified via the direct method of Lyapunov, indirect method of Lya-

punov, or the invariance principle of LaSalle. Instability can be verified via a

theorem of Cetaev. Since we do not explicitly use these results in this thesis, we

refer the reader to the literature. 2

Controllability

Here we present some standard definitions and results regarding the controllability

and reachability of a nonlinear system, some of which pertain specifically to the

affine system (2.12). In addition, we introduce the notion of asymptotic reachabil-

ity, which appears in Chapter 4. See [121] for background on the notion of a Lie

algebra.
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Definition 2.2.7 (Controllable System) The system (2.12) is said to be con-

trollable if for any two points x1, x2 in M there exists a finite time T and an

admissible input u : [0, T ]→ U such that x(T, 0, x1, u) = x2. 2

Definition 2.2.8 (Reachable Set) The reachable set RV (x0, T ) from x0 at time

T > 0 following trajectories which remain for t ≤ T in the neighborhood V of x0

is defined as the set of all points x ∈ M for which there exists u : [0, t]→ U such

that x(t, x0, 0, u) ∈ V , t ∈ [0, T ] and x(T ) = x. We also denote

RV
T (x0) = ∪τ≤T R

V (x0, τ ) (2.28)

2

Definition 2.2.9 (Locally Accessible System) The system (2.12) is said to be

(i) locally accessible from x0 if RV
T (x0) contains a non-empty open set of M for

all neighborhoods V of x0 and all T > 0;

(ii) locally accessible if the condition in (i) holds for every x0 ∈M ;

(iii) locally strongly accessible from x0 if, for any neighborhood V of x0, the set

RV (x0, T ) contains a non-empty open set for any T > 0 sufficiently small;

(iv) locally strongly accessible if the condition in (iii) holds for every x0 ∈M .

2

Definition 2.2.10 (Accessibility Algebra, Accessibility Distribution)

For the system (2.12)-(2.13), the

(i) accessibility algebra C is the smallest subalgebra of the Lie algebra of vector

fields on M that contains {f, g1, . . . , gn};
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(ii) strong accessibility algebra C0 is the smallest subalgebra that contains

g1, . . . , gm and satisfies [f,X] ∈ C0 for all X ∈ C0;

(iii) accessibility distribution C(x) at x ∈ M is the distribution generated by the

accessibility algebra, i.e.,

C(x) = span {X(x) : Xis a vector field in C}

(iv) strong accessibility distribution C0(x) at x ∈M is the distribution generated

by the strong accessibility algebra, i.e.,

C0(x) = span {X(x) : Xis a vector field in C0}

2

Theorem 2.2.11 For the system (2.12)-(2.13), if

(i) dim (C(x0)) = n then the system is locally accessible from x0;

(ii) dim (C(x)) = n for all x ∈M then the system is locally accessible;

(iii) dim (C0(x0)) = n then the system is locally strongly accessible from x0;

(iv) dim (C0(x)) = n for all x ∈M then the system is locally strongly accessible.

2

Definition 2.2.12 (Asymptotically Reachable System) The system (2.12)

is said to be asymptotically reachable from x0 on a neighborhood W of x0 if for

each x ∈W there exists a u ∈ U such that x(t, 0, x0, u) ∈W for all t ≥ 0 and

lim
t→∞

x(t, 0, x0, u) = x

2
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Observability

Here we present some standard definitions and results regarding the observability

of a nonlinear system, some of which pertain specifically to the affine system (2.12)-

(2.13).

Definition 2.2.13 (Indistinguishable States) Two states x1, x2 ∈M are said

to be V -indistinguishable (denoted x1 I
V x2 for system (2.12)-(2.13) if for each

admissible input u : [0, t] → U , T > 0, with the property that x(t, 0, x1, u) and

x(t, 0, x2, u) both remain in V for t ≤ T , the output function t 7→ y(t, 0, x1, u) for

t ≥ 0 and initial state x(0) = x1 and the output function t 7→ y(t, 0, x2, u) for t ≥ 0

and initial state x(0) = x2 are identical on their common domain of definition. 2

Definition 2.2.14 (Observable System) The system (2.12)-(2.13) is said to be

observable if x1 I
M x2 implies that x1 = x2. 2

Definition 2.2.15 (Locally Observable System) The system (2.12)-(2.13) is

said to be

(i) locally observable at x0 if there exists a neighborhood W of x0 such that for

every neighborhood V ⊂ W of x0 the relation x0 I
V x1 implies that x1 = x0,

i.e., indistinguishability implies equality;

(ii) locally observable if it is locally observable at each x0.

2

Definition 2.2.16 (Zero-state Observable System) The system

(2.12)-(2.13) is said to be

(i) locally zero-state observable if there exists a neighborhood W of 0 such that

for each x ∈W , if y(t, 0, x, 0) = 0 for t ≥ 0 then x(t, 0, x, 0) = 0 for t ≥ 0;
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(ii) zero-state observable if the above holds for all x ∈M .

2

Definition 2.2.17 (Observation Space, Observability Codistribution)

For the system (2.12)-(2.13), the

(i) observation space O is the linear space of functions on M containing

h1, . . . , hp and all repeated Lie derivatives LX1LX2 · · ·LXkhj for j ∈ p and

with Xi, i = 1, 2, . . . in the set {f, g1, . . . , gn};

(ii) observability codistribution dO at x ∈M is defined by

dO(x) = span {dH(x) : H ∈ O}

2

Theorem 2.2.18 For the system (2.12)-(2.13), if

(i) dim (dO(x0)) = n then the system is locally observable at x0;

(ii) dim (dO(x)) = n for all x ∈M then the system is locally observable.

2

2.3 Principal Component Analysis

Principal component analysis (PCA) refers to a particular type of orthogonal de-

composition for a matrix-valued signal F (t) as described below. The signal is

represented by a piecewise continuous map F : IR+ → IRn×m. We use (and adapt

somewhat) the terminology presented by Moore [109].

The Gramian matrix is an object of primary interest.
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Definition 2.3.1 (Gramian Matrix) Given a piecewise continuous map

F : [t1, t2]→ IRn×m, the Gramian matrix W 2 [t1, t2] for F is defined by

W 2 [t1, t2] =
∫ t2

t1

F (t) FT (t) dt (2.29)

2

We usually deal with signals on the interval [0,∞) (infinite-time-horizon) and will

use the term Gramian matrix and notation W 2 to mean W 2[0,∞) unless otherwise

noted. Gramians with finite time horizons are useful in situations where the signals

of interest grow unbounded, e.g., unstable systems.

The Gramian matrix W 2 is a non-negative definite matrix. Therefore, it has

n non-negative real eigenvalues σ2
1 ≥ . . . ≥ σ2

n ≥ 0 and n corresponding mutually

orthogonal unit eigenvectors v1, . . . , vn (we ignore the case where W 2 has repeated

eigenvalues and Jordan blocks of order 2 or higher).

The standard Fourier analysis tells us that any signal F : [t1, t2]→ IRn×m can

be represented as the linear combination of dyads

F (t) =
n∑
i=1

vi ai
T(t) (2.30)

where

ai
T(t) = vi

T F (t) , i ∈ n (2.31)

correspond to the Fourier coefficients.

Remark 2.3.2 PCA refers to an orthogonal decomposition (2.30) of signal F (t)

in which the basis vectors vi, i ∈ n are the unit eigenvectors of W 2. 2

Remark 2.3.3 Regarding (2.30), we use the following standard terminology, re-

ferring to the i-th, respectively, principal component vi ai
T(t), component vector vi,

component magnitude σi, and component function vector ai(t). 2
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The PCA enjoys some useful properties.

Proposition 2.3.4 (Moore [109]) For F : IR+ → IRn×m with PCA given by

(2.30) the following relationships hold:∫ t2

t1
ai
T(t) aj(t) dt = 0 , i 6= j (2.32)∫ t2

t1
‖ ai(t) ‖

2
dt = σ2

i (2.33)∫ t2

t1

‖F (t) ‖2
F dt =

n∑
i=1

σ2
i (2.34)

where ‖ · ‖F denotes the Frobenius norm. 2

The efficiency of the PCA as an orthogonal decomposition is due to the follow-

ing result.

Proposition 2.3.5 (Moore [109]) Let SF denote the space

SF = {v : v ∈ Im(F (t)), t ∈ [t1, t2]}

Let k be a fixed integer, 1 ≤ k ≤ n. Over the class of piecewise continuous FA(t)

satisfying dim(SFA) = k, the residuals

JF =
∫ t2

t1
‖F (t)− FA(t) ‖2

F dt (2.35)

JS = max
‖ v ‖=1

∫ t2

t1

∥∥∥ vT (F (t)− FA(t))
∥∥∥2
dt (2.36)

are minimized by

FA(t) = Fk(t)
4
=

k∑
i=1

vi ai
T(t) (2.37)

with error residuals

JF =
n∑

i=k+1

σ2
i (2.38)

JS = σ2
k+1 (2.39)

2
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Remark 2.3.6 The set SF is spanned by those component vectors of W 2 corre-

sponding to non-zero component magnitudes. 2

Remark 2.3.7 Proposition 2.3.5 says that the most efficient k-th order approxi-

mation to F is given by the PCA. 2

2.4 Hilbert Spaces

The notion of a Hilbert space appears prominently in this thesis, particularly in

the context of second-order stochastic processes and stochastically excited systems.

We work with several examples of Hilbert spaces and frequently use the concepts

of orthogonality, basis, and separability. The material contained in this section is

standard. It is drawn mainly from texts by Akhiezer and Glazman [3] and Gohberg

and Goldberg [56]. We refer to the literature for the proofs.

Definition 2.4.1 (Hilbert Space) A Hilbert space H is a vector space over IR

or IC together with an inner product 〈 ·, · 〉 and which is complete as a metric space.

2

Remark 2.4.2 The norm is defined as ‖φ ‖ =
√
〈φ, φ 〉 for φ ∈ H and the metric

is defined as d (φ, ψ) = ‖φ− ψ ‖ for φ, ψ ∈ H. The members of a Hilbert space

are called elements or vectors. In this thesis, we consider only Hilbert spaces over

IR. 2

The concepts of orthogonality and orthonormal sets will be crucial.

Definition 2.4.3 (Orthogonal Vectors) Two distinct vectors φ and ψ in a Hil-

bert space H are said to be orthogonal if

〈φ, ψ 〉 = 0 (2.40)
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Definition 2.4.4 (Orthonormal Set) A countable collection of vectors

Φ = {φ1, φ2, . . .} in a Hilbert space H is said to be an orthonormal set if any two

distinct vectors φi, φj ∈ Φ, i 6= j are orthogonal and ‖φi ‖ = 1 for all i ≥ 1. 2

Definition 2.4.5 (Complete Orthonormal Set) An orthonormal set

Φ = {φ1, φ2, . . .} in a Hilbert space H is said to be complete in H if there exists

no vector in H, except the zero vector, that is orthogonal to every vector in Φ. 2

When a Hilbert space contains an orthonormal set, every element of the Hilbert

space can be represented as a convergent series expansion.

Proposition 2.4.6 (Series Expansion Representation) If Φ = {φ1, φ2, . . .}

is an orthonormal set in H then for each y ∈ H, the series

∞∑
k=1

〈 y, φk 〉 φk (2.41)

converges. Conversely, if

y =
∑
k

αk φk (2.42)

then αk = 〈 y, φk 〉. 2

We wish to establish conditions under which every vector in the Hilbert space

is guaranteed to have the stated expansion.

Definition 2.4.7 (Orthonormal Basis) A countable orthonormal set

Φ = {φ1, φ2, . . .} is said to be an orthonormal basis for H if for each y ∈ H and

for some α1, α2, . . . ∈ IR

y =
∑
i

αi φi (2.43)

2
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Remark 2.4.8 By the previous result we know that αi = 〈 y, φi 〉. Each 〈 y, φi 〉 is

called a Fourier coefficient of y ∈ H. 2

Proposition 2.4.9 The orthonormal set Φ = {φ1, φ2, . . .} is an orthonormal basis

for the Hilbert space H if and only if Φ is complete in H. 2

Remark 2.4.10 Thus, if there exists a complete orthonormal set in the Hilbert

space, then every element of the Hilbert space can be expanded in terms of the basis

vectors and Fourier coefficients. 2

It is logical to now ask under what conditions a Hilbert space will contain such

a complete orthonormal set.

Definition 2.4.11 (Separable Hilbert Space) A Hilbert space H is separable

if H contains a countable set which is dense in H. 2

Proposition 2.4.12 A Hilbert space contains an orthonormal basis if and only if

it is separable. 2

Remark 2.4.13 In summary, we find that those Hilbert spaces that are separable

contain a countable, complete, orthonormal set of vectors, i.e. an orthonormal ba-

sis for the Hilbert space, in which every vector in the Hilbert space can be expanded.

2

Finally, we note the following result which states that if an orthonormal basis

exists, it is not unique.

Proposition 2.4.14 (Non-uniqueness of Orthonormal Basis) Given a com-

plete orthonormal set of vectors {φi, i = 1, 2, . . .}, the set {ψi, i = 1, 2, . . .} where

ψi =
∑
j

αij φj (2.44)
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for coefficients satisfying ∑
k

αik αjk = δij (2.45)

is also a complete orthonormal set of vectors. 2

Now we present some important examples of Hilbert spaces that we will use in

this thesis.

Example 2.4.15 (IRn) The space of n-tuples (x1, . . . , xn) of real numbers for which

n∑
i=1

|xi|
2 <∞ (2.46)

is denoted IRn and is an n-dimensional Hilbert space. 2

Example 2.4.16 (`2) The space of infinite sequences (x1, x2, . . .) of real numbers

for which
∞∑
i=1

|xi|
2 <∞ (2.47)

is denoted `2 and is an infinite-dimensional Hilbert space. 2

Example 2.4.17 (L2(D)) The space of real-valued Lebesgue-measurable square-

integrable functions f on a domain D such that

∫
D
|f (x)|2 dx <∞ (2.48)

is denoted L2(D) and generally is an infinite-dimensional Hilbert space. (It is

actually a Hilbert space of equivalence classes of functions but we can treat it as

a space of functions by identifying functions which are equal almost everywhere.)

The inner product on L2 is given by

〈 f, g 〉L2 =
∫
D
f (x) g (x) dx (2.49)

2
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Remark 2.4.18 In this thesis we often deal with the spaces L2[a, b], L2[0,∞), and

L2(−∞, 0]. 2

We are especially concerned with the following property of the above Hilbert

spaces.

Fact 2.4.19 All of the above Hilbert spaces are separable, i.e. contain a countable

orthonormal basis. 2

Moreover, we have the following result.

Proposition 2.4.20 Any two separable infinite-dimensional Hilbert spaces are

isomorphic. 2

Remark 2.4.21 Actually, we can make the stronger statement that any two sep-

arable Hilbert spaces are linearly isometric. Hence, `2 and L2 are indistinguishable

as Hilbert spaces. 2

2.5 Stochastic Processes

This thesis relies heavily on the theory of continuous-parameter stochastic pro-

cesses. In this section, we set up the mathematical framework. The material

contained in this section is standard. It is drawn mainly from texts by Ash and

Gardner [8], Astrom [10], Davis [36], Papoulis [126], and Wong [166], and class

notes in Random Processes presented by Narayan [114] at the University of Mary-

land. Some basic elements of probability theory are needed, including probability

spaces, measurable functions, and expectation. These subjects are covered in the

aforementioned texts. We refer to the literature for all proofs.
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In what follows, we use the notation (Ω,A,P) to denote a probability space

with sample space Ω, associated σ-algebra A, and probability measure P. The

terminology random variable refers to an A-measurable IRn-valued function X

defined on Ω. Such a function is often called a random vector for the case where

n > 1. However, we use the term random variable regardless of the value of the

positive integer n. We will not deal with complex-valued random variables. We

usually suppress the dependence of X on ω ∈ Ω and write X as shorthand for

X(ω). The expected value of a random variable X is defined by

E [X ] =
∫

Ω
X (ω)P(dω) (2.50)

Definition 2.5.1 (Stochastic Process) A stochastic process {Xt, t ∈ T} is a

family of IRn-valued random variables indexed by a real parameter t and defined on

a common probability space (Ω,A,P). 2

Remark 2.5.2 The parameter set T is usually taken to be an interval [a, b] where

a < b. In the cases where a = −∞, b = ∞, or both, the interval, respectively, is

(−∞, b], [a,∞), or (−∞,∞). The parameter t represents time unless otherwise

specified. 2

Remark 2.5.3 The ω-dependence is suppressed in the notation {Xt, t ∈ T} which

is shorthand for {X(ω, t), ω ∈ Ω, t ∈ T}. 2

Remark 2.5.4 Similarly, we can define a stochastic process with multiple param-

eters, e.g., a two-parameter stochastic process {Xt,x, t ∈ T, x ∈ D} indexed by two

real parameters t and x with respective index sets T and D. In this example, the

parameters t and x, respectively, typically represent time and a spatial variable. 2
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Definition 2.5.5 (Sample Path) For each ω ∈ Ω, {Xt, t ∈ T} is a IRn-valued

function defined on T and is called a sample function or sample path of the process.

2

Remark 2.5.6 In addition, we also note that, by definition, for each t ∈ T , the

functionXt : Ω→ IRn is a random variable. 2

Transition Properties

When working with stochastically excited systems we will encounter processes that

possess the Markov property.

Definition 2.5.7 (Markov Process) A process {Xt, t ∈ T} is said to be a Mar-

kov process if for any increasing collection t1, t2, . . . , tn ∈ T

P(Xtn < xn|Xtν = xν , ν = 1, . . . , n− 1) = P(Xtn < xn|Xtn−1 = xn−1) (2.51)

2

Definition 2.5.8 (Transition Density) Let {Xt, t ∈ T} be a Markov process.

The transition function of the process is defined by

P (x, t; y, s) = P (Xt < x;Xs = y) (2.52)

If there is a function p (x, t; y, s) such that

P (x, t; y, s) =
∫ x

−∞
p (u, t; y, s) du (2.53)

then we call p (x, t; y, s) the transition density function. 2

Remark 2.5.9 The transition density function p (x, t; y, s) represents the proba-

bility density of being in state x at time t given that the process is in state y at

time s. 2
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Time Independence and Averaging Properties

Time independence and averaging properties are of importance for our purposes.

We wish to be able to take time averages in lieu of ensemble averages, since explicit

probability measures may not be available. This requires the property of ergodicity,

which in turn requires the property of stationarity.

Definition 2.5.10 (Stationary Process) A process {Xt, t ∈ IR} is said to be

stationary if for any (t1, . . . , tn) the joint distribution of {Xt1+t0 , Xt2+t0 , . . . , Xtn+t0}

does not depend on t0. 2

A rigorous definition of what it means for a stationary process to be ergodic

requires additional machinery (see, e.g., [166]) which we do not provide here. In-

stead, we state the following property of an ergodic process which is of primary

interest for our purposes.

Proposition 2.5.11 Let {Xt, t ∈ IR} be a separable and measurable ergodic pro-

cess. Let f be any Borel function such that E [ |f (X0)| ] <∞. Then

E [ f (X0) ] = lim
T→∞

1

2T

∫ T

−T
f (Xt) dt almost surely (2.54)

Conversely, if (2.54) holds for every such f , then {Xt, t ∈ IR} is ergodic. 2

Remark 2.5.12 By stationarity, E [ f (Xt) ] = E [ f (X0) ] for all t. We inter-

pret Proposition 2.5.11 as saying that, for an ergodic process, time average equals

ensemble average. 2

Second-Order Processes

A class of stochastic processes of great importance is the class of second-order

processes. In this thesis we make extensive use of the covariance function of a
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stochastic process. In order for a process to have a covariance function, it must be

a second-order process.

Definition 2.5.13 (Second-Order Random Variable) A random variable X

is said to be a second-order random variable if E[‖X‖2] < ∞ where ‖ · ‖ denotes

the usual Euclidean norm. 2

Definition 2.5.14 (Second-Order Stochastic Process) A process

{Xt, t ∈ T} is said to be a second-order stochastic process if for each fixed t ∈ T ,

Xt is a second order random variable. 2

Thus, a second-order stochastic process is a parameterized family of second-

order random variables. It has at least a first moment, second moment, and second

central moment, called its mean, correlation, and covariance.

Definition 2.5.15 (Mean, Correlation, Covariance) Let {Xt, t ∈ T} be a

second-order process. The mean function µ : T → IRn, correlation function R :

T×T → IRn×n, and covariance function R : T×T → IRn×n are defined, respectively,

as

µ(t) = E[Xt] (2.55)

R(t, s) = E[XtX
T
s ] (2.56)

R(t, s) = E[(Xt − µ(t))(Xs − µ(s))T] (2.57)

2

Remark 2.5.16 The correlation and covariance functions are sometimes referred

to, respectively, as the autocorrelation and autocovariance functions. 2
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Remark 2.5.17 For each t ∈ T , the mean function µ(t) is an n-vector. For each

t, s ∈ T , the correlation and covariance functions, respectively, R(t, s) and R(t, s),

are n× n-matrices. 2

Remark 2.5.18 For a process with zero mean, R(t, s) = R(t, s) and the covari-

ance and correlation functions can be used interchangeably. 2

A covariance function satisfies a number of important properties. Two of im-

portance for our purposes are as follows.

Proposition 2.5.19 (Symmetry of Covariance) Let {Xt, t ∈ T} be a second-

order process. Its covariance function is symmetric, i.e.,

R(t, s) = R(s, t) t, s ∈ T (2.58)

2

Proposition 2.5.20 (Non-negativity of Covariance) Let {Xt, t ∈ T} be a

second-order process. Its covariance function is non-negative definite, i.e., for any

finite collection t1, . . . , tn and real constants α1, . . . , αn

n∑
i=1

n∑
j=1

αi αj R(ti, tj) ≥ 0 (2.59)

2

We are interested in working with covariance functions that are time indepen-

dent. This can be ensured by assuming that the second-order process is stationary.

However, stationarity is stronger than we actually need.

Definition 2.5.21 (Wide-Sense Stationary Process) A second-order process

{Xt, t ∈ IR} is said to be wide-sense stationary if its covariance function R(t, s) is
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a function only of the difference t− s, i.e.,

R(t, s) = R(t− s) t, s ∈ T (2.60)

2

Remark 2.5.22 A stationary second-order process is wide-sense stationary, but

the converse is not necessarily true. Also, note that for a wide-sense stationary

process, the mean function must be a constant, i.e., µ(t) ≡ µ. 2

One object of importance that is associated with a wide-sense stationary second-

order process is its spectral density function, which will appear in the description

of white noise.

Definition 2.5.23 (Spectral Density Function) The spectral density function

for a wide-sense stationary second-order process {Xt, t ∈ T} with covariance R(τ)

is defined as

S (ν) =
∫ ∞
−∞

exp (−i2πντ ) R (τ) dτ ν ∈ IR (2.61)

2

Remark 2.5.24 The inversion integral is

R (τ) =
∫ ∞
−∞

exp (i2πντ ) S (ν) dν τ ∈ IR (2.62)

2

We will be working with series expansions and stochastic differential equations.

Thus, we need to take limits and derivatives. We use the following notions of limits

and continuity when dealing with a second-order process.
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Definition 2.5.25 (Quadratic Mean Convergence) A sequence of random

variables
{
X(n)

}
is said to converge in quadratic mean to X if

lim
n→∞

E
[ ∥∥∥X(n) −X

∥∥∥2
]

= 0 (2.63)

We call X the limit in quadratic mean (q.m. limit) of
{
X(n)

}
and use the notation

X = lim
n→∞

in q.m.X(n) (2.64)

Definition 2.5.26 (Quadratic Mean Continuous Process) A second-order

process {Xt, t ∈ T} is said to be continuous in quadratic mean (q.m. continuous)

at t if

lim
h→0

E
[
‖Xt+h −Xt ‖

2
]

= 0 (2.65)

A process that is q.m. continuous at every t ∈ T is said to be a q.m. continuous

process. 2

An important fact about q.m. continuous processes that we will use is

Proposition 2.5.27 (Continuity of Covariance) If {Xt, t ∈ T} is a second-

order q.m. continuous process then its covariance function R(·, ·) is continuous at

every point on the square T × T . 2

Two-Parameter Second-Order Processes

We will find it useful to redefine some of the above notions in the context of two-

parameter stochastic processes. Consider a two-parameter second-order process

{Xt,x, t ∈ T, x ∈ D}. The mean function, correlation function, and covariance

function, respectively, are given by

µ(t, x) = E[Xt,x] (2.66)

R(t, x, s, y) = E[Xt,xX
T
s,y] (2.67)

R(t, x, s, y) = E[(Xt,x − µ(t, x))(Xs,y − µ(s, y))T] (2.68)
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It is often useful to fix one of the two parameters. When the parameter t repre-

sents time and the parameter x represents space, we use the following terminology.

The functions

R(t, x, t, y) = E[Xt,xX
T
t,y] (2.69)

R(t, x, t, y) = E[(Xt,x − µ(t, x))(Xt,y − µ(t, y))T] (2.70)

R(t, x, s, x) = E[Xt,xX
T
s,x] (2.71)

R(t, x, s, x) = E[(Xt,x − µ(t, x))(Xs,x − µ(s, x))T] (2.72)

are called, respectively, the spatial correlation, spatial covariance, temporal correla-

tion, and temporal covariance. Sometimes, the term two-point precedes the object

name, e.g., two-point spatial covariance. The symbols R and R are used to denote,

respectively, the correlation and covariance functions, in all cases.

If a two-parameter second-order process is wide-sense stationary with respect

to time, then the spatial correlation and spatial covariance, respectively, can be

written in terms of the spatial parameters only, i.e.,

R(t, x, t, y) = R(x, y)

R(t, x, t, y) = R(x, y)

If a two-parameter second-order process is wide-sense stationary with respect to

the spatial variable, then the temporal correlation and temporal covariance, re-

spectively, can be written in terms of the temporal parameters only, i.e.,

R(t, x, s, x) = R(t, s)

R(t, x, s, x) = R(t, s)

Finally, the notion of q.m. continuity must be considered with respect to one

particular parameter, i.e., a two-parameter second-order process
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{Xt,x, t ∈ T, x ∈ D} is q.m. continuous with respect to t ∈ T if for each x ∈ D

lim
h→0

E
[
‖Xt+h,x −Xt,x ‖

2
]

= 0 (2.73)

and similarly for q.m. continuity with respect to x ∈ D.

Hilbert Space Properties

It will be necessary to collect random variables as members of a Hilbert space.

Definition 2.5.28 (Linear Operation on a Second-Order Process) Let

{Xt, t ∈ T} be a second-order process. A random variable Y is said to be derived

from a linear operation on {Xt, t ∈ T} if either of the following are true:

(i) For some integer N and times {t1, . . . , tN}

Y =
N∑
i=1

αiXti (2.74)

(ii) Y is the q.m. limit of a sequence of such finite linear combinations.

2

Definition 2.5.29 (HX) The collection of all random variables derived from lin-

ear operations on a process {Xt, t ∈ T} is denoted HX. 2

Remark 2.5.30 The set HX is generally an infinite-dimensional Hilbert space.

It is separable, and so is linearly isometric with `2 (see Section 2.4). The inner

product on HX is given by

〈 Y, Z 〉HX = E
[
Y ZT

]
(2.75)

2
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Gaussian Processes

A special case of a second-order stochastic process of great importance for our

purposes is a Gaussian process. We first need to define what we mean by a Gaussian

random variable.

Definition 2.5.31 (Gaussian Random Variable) A second-order random vari-

able Z with µ = E[Z] and σ2 = E[(Z − µ)2] is said to be Gaussian if σ2 = 0, in

which case Z = µ with probability 1, or

Pr (Z < a) =
∫ a

−∞

1
√

2πσ2
exp

[
−

1

2

(z − µ)2

σ2

]
dz (2.76)

2

Remark 2.5.32 A random variable that is Gaussian is also referred to as normal.

2

Remark 2.5.33 A Gaussian random n-vector has a density function determined

only by parameters µ and R, given by

pZ(z) =
1

(2πσ2)n/2
exp

[
−

1

2
(z − µ)TR−1 (z − µ)

]
(2.77)

2

Definition 2.5.34 (Gaussian Process) A second-order stochastic process

{Xt, t ∈ T} is said to be a Gaussian process if for some integer N and times

{t1, . . . , tN}, every finite linear combination of the form

Z =
N∑
i=1

αiXti (2.78)

is a Gaussian random variable. 2
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The Wiener Process (Brownian Motion)

One important special case of a Gaussian process is the Wiener process, which is the

mathematical abstraction of the physical phenomena known as Brownian motion.

We use the terms Wiener process and Brownian motion process interchangeably.

The Wiener process is a zero mean process with certain properties, defined as

follows.

Definition 2.5.35 (Orthogonal Increments) A process {Xt, t ∈ T} is said to

have orthogonal increments if for any non-overlapping intervals (s, t) and (s′, t′)

E
[

(Xt′ −Xs′)(Xt −Xs)
T
]

= 0 (2.79)

2

Remark 2.5.36 A process that has orthogonal increments is said to be an orthog-

onal increments process. 2

Definition 2.5.37 (Independent Increments) A process {Xt, t ∈ T} is said

to have independent increments if for any two non-overlapping intervals (s, t) and

(s′, t′), the random variables (Xt′ −Xs′) and (Xt −Xs) are independent. 2

Remark 2.5.38 A process that has independent increments is said to be an inde-

pendent increments process. 2

Remark 2.5.39 Clearly, the class of independent increments processes is a sub-

class of the class of orthogonal increments processes. 2

Definition 2.5.40 (Stationary Increments) A process {Xt, t ∈ T} has station-

ary increments if the variance of the increment (Xt − Xs) depends only on the

distance |t− s|, i.e.,

E[(Xt −Xs)
2] = E[(Xt+r −Xs+r)

2] r, s, t ∈ T (2.80)
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Remark 2.5.41 A process that has stationary increments is said to be a station-

ary increments process. 2

Proposition 2.5.42 A q.m. continuous process {Xt, t ∈ T} is said to have sta-

tionary orthogonal increments if and only if its covariance function is

R(t, s) = σ2 min(t, s) (2.81)

2

Now we define the Wiener process. It is defined for positive time, usually on

the interval [0,∞).

Definition 2.5.43 (Wiener Process) A process
{
Wt, t ∈ IR+

}
is said to be a

Wiener process or a Brownian motion process if it has zero mean, i.e., E [Wt ] = 0

for t ≥ 0, and it has stationary independent Gaussian increments. 2

Remark 2.5.44 By a standard Wiener process we mean that W0 = 0 and

E[W 2
1 ] = 1. Thus, a standard Wiener process is a Gaussian process with mean

µ(t) ≡ 0 and covariance function R(t, s) = min(t, s). 2

Remark 2.5.45 Some important properties of a Wiener process are

(i) Any sample path W (t) is continuous everywhere with probability 1, differen-

tiable nowhere, and of infinite length.

(ii) The increment (Wt+h −Wt) is of order O(
√
h), i.e., dWt is proportional to

√
dt.

2
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Even though the sample path of a Wiener process is nowhere differentiable, it

is often written, formally, that there is a process
{
ζt, t ∈ IR+

}
such that

ζt =
d

dt
Wt (2.82)

and the converse

Wt =
∫ t

0
ζs ds (2.83)

are true in some useful sense. Such a process
{
ζt, t ∈ IR+

}
is called white noise. A

process with the above relationship to Brownian motion, i.e., its formal derivative,

is extremely useful in applications, even though it does not exist in the traditional

sense. We elaborate and justify its relationship with a Wiener process as follows.

White Noise

A white noise is usually described (and sometimes defined) as a wide-sense station-

ary process with a spectral density function that is constant over all frequencies,

i.e.,

S(ν) = S0 ν ∈ IR (2.84)

This description has the following implications:

(i) R(0) =∞

(ii) R(τ) = δ(τ)S0

Thus, a process with the above description is not a second-order process and does

not have a well-defined spectral density. In fact, a white noise is not well-defined

as a stochastic process. Rather, it is a generalized process. We will not proceed

with a digression on generalized processes here. See Arnold [7] for an exposition on

this subject. For completeness, we include the definition of a white noise process.
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Definition 2.5.46 (White Noise) A generalized Gaussian stochastic process Φζ

is said to be a Gaussian white noise process if it has mean functional E [ Φζ ] = 0

and covariance functional

Cζ (φ, ψ) =
∫ ∞
−∞

φ(t)ψ(t) dt (2.85)

Remark 2.5.47 When the Wiener process is considered as a generalized process,

the covariance function of its derivative is given by

R(t, s) = δ(t− s)S0 (2.86)

which is the covariance function of a white noise process. Thus, white noise{
ζt, t ∈ IR+

}
is the derivative of the Wiener process

{
Wt, t ∈ IR+

}
when both pro-

cesses are considered as generalized processes. This justifies the relationships (2.82)

and (2.83). 2

It suffices for our purposes to use the formal description of a white noise pro-

cess, justified by noting that
{
ζt, t ∈ IR+

}
is never used outside of an integral. In

particular, an expression of the form

∫ b

a
ζt φ(t) dt (2.87)

is said to be a white noise integral. Expression (2.87) is merely formal; there is no

stochastic process
{
ζt, t ∈ IR+

}
for which such an integral exits. Rather, it is to

be interpreted as a stochastic integral,

∫ b

a
φ(t) dWt (2.88)

which is defined in Section 2.6.
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2.6 Stochastically Excited Dynamical Systems

A stochastically excited dynamical system is a control system with white noise

injected at the input terminals. These systems play a crucial role in the model

reduction approach presented in this thesis. The time evolution of the state of

such a system is not governed by differential equations using the ordinary Stieltjes

calculus. Instead, it is necessary to work with the stochastic calculus, including

stochastic differential equations (SDEs). Moreover, the state is a stochastic pro-

cess, with an associated probability density function, the evolution of which is

governed by a pair of diffusion equations.

The material contained in this section is based on that presented in texts by

Arnold [7], Astrom [10], Davis [36], and Wong [166], papers by Brockett [22] and

Fuller [51], and class notes in Stochastic Control presented by Marcus [101] at the

University of Maryland. It relies heavily on the material presented in Section 2.5.

We refer to the literature for all proofs.

2.6.1 State Equations

Recall the form of the state equation for an affine control system

ẋ (t) = f (t, x(t)) +
m∑
i=1

gi (t, x(t)) ui(t) (2.89)

where for purposes of generality we include the possibility of explicit time depen-

dence. By a stochastically excited dynamical system, we mean an affine control

system for which the m components of the input, ui, i ∈ m, have been replaced by

the sample paths of m Gaussian white noises,
{

(ζt)i, t ∈ IR+
}

, i ∈ m.

The evolution equation for the state process
{
Xt, t ∈ IR+

}
takes the form

d

dt
Xt = f(t,Xt) +

m∑
i=1

gi(t,Xt) (ζt)i (2.90)
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The meaning of (2.90) is given in terms of the stochastic integral. In particular,

given a function φ : Ω× IR→ IRn×m, a stochastic integral is a quantity of the form

I (φ) =
∫ b

a
φ (ω, t) dW (ω, t) (2.91)

Because
{
Wt, t ∈ IR+

}
is neither differentiable nor of bounded variation, (2.91)

does not have a well-defined interpretation as an integral in the ordinary sense.

Therefore, it is necessary to define what we mean by (2.91).

We use the following norm for functions φ : Ω× IR→ IRn×m

‖φ ‖ =
∫ b

a

n∑
i=1

m∑
j=1

E
[
|φij (·, t)|2

]
dt (2.92)

The stochastic integral is defined in terms of a step function or a sequence of

step functions.

Definition 2.6.1 ((ω, t)-Step Function) Let φ be jointly measurable in (ω, t)

and such that ‖φ ‖ < ∞. If there exist times t0, . . . , tn, independent of ω as

functions, such that a < t0 < · · · < tn < b and

φ(ω, t) = φν(t) tν ≤ t < tν+1 ν = 1, . . . , n− 1 (2.93)

then φ is said to be an (ω, t)-step function. 2

Definition 2.6.2 (Stochastic Integral) Let φ be jointly measurable in (ω, t) and

such that ‖φ ‖ <∞. The quantity

I (φ) =
∫ b

a
φ (ω, t) dW (ω, t) (2.94)

is said to be a stochastic integral defined as follows:

(i) If φ is an (ω, t)-step function then

∫ b

a
φ (ω, t) dW (ω, t) =

n−1∑
ν=1

φν(ω) [W (ω, tν+1)−W (ω, tν)] (2.95)

54



(ii) Otherwise,

∫ b

a
φ(ω, t)dW (ω, t) = lim

n→∞
in q.m.

∫ b

a
φn(ω, t) dW (ω, t) (2.96)

where {φn} is a sequence of (ω, t)-step functions satisfying

lim
n→∞

‖φ− φn ‖
2 = 0 (2.97)

2

Remark 2.6.3 The existence of the convergent sequence in (2.97) is guaranteed

(see, e.g., [166] Chap. 4 Prop. 2.1). 2

Remark 2.6.4 In what follows, and throughout this thesis, we take the limits of

integration as a = 0 and b = ∞ unless specified otherwise. In this case, the

stochastic integral is defined via the limit in q.m. as b→∞. 2

The mathematical model for a stochastically excited dynamical system uses

the notion of a stochastic differential equation and a white noise driven differential

equation, both of which are interpreted precisely via the stochastic integral.

Definition 2.6.5 (Stochastic Differential Equation) Given functions

f : IR+ × IRn → IRn and gi : IR+ × IRn → IRn, i ∈ m, a stochastic differential

equation (SDE) is an equation of the form

dXt = f(t,Xt) dt+
m∑
i=1

gi(t,Xt) (dWt)i (2.98)

2

Definition 2.6.6 (Solution of SDE) A process
{
Xt, t ∈ IR+

}
is said to satisfy

the SDE (2.98) with initial condition X0 = X if
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(i) The quantities ∫ t

0
gi(s,Xs) (dWs)i i ∈ n

are capable of being interpreted as stochastic integrals.

(ii) For each t, Xt is almost surely equal to the random variable defined by

X +
∫ t

0
f(s,Xs) ds+

∫ t

0

m∑
i=1

gi(s,Xs) (dWs)i

where the first integral is of ordinary type and the second is a stochastic

integral.

2

Remark 2.6.7 Thus, the SDE (2.98) is an expression that means

Xt = X0 +
∫ t

0
f(s,Xs) ds+

∫ t

0

m∑
i=1

gi(s,Xs) (dWs)i (2.99)

where the first integral is of ordinary type and the second is a stochastic integral.

2

The existence and uniqueness of a solution {Xt, t ∈ [0, b]} of SDE (2.98) is

guaranteed under certain regularity conditions on f and g. Furthermore, under

those conditions, the unique solution is a Markov process.

Proposition 2.6.8 (Properties of Solutions) Let {Wt, t ∈ [0, b]} be a Wiener

process and X be a second-order random variable. Let f(t, x) and g(t, x), t ∈

[0, b], x ∈ IR, be measurable in (t, x). Suppose that f and g satisfy the following

conditions:

|f(t, x)− f(t, y)|+ |g(t, x)− g(t, y)| ≤ K |x− y| (2.100)

|f(t, x)|+ |g(t, x)| ≤ K
√

1 + x2 (2.101)

Then there exists a process {Xt, t ∈ [0, b]} such that
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(i) {Xt, t ∈ [0, b]} satisfies the SDE (2.98) with initial condition X0 = X.

(ii) {Xt, t ∈ [0, b]} is unique with probability 1.

(iii) {Xt, t ∈ [0, b]} is a Markov process.

(iv) {Xt, t ∈ [0, b]} has continuous sample paths with probability 1.

2

Remark 2.6.9 The condition (2.100) is called the uniform Lipschitz condition

and the condition (2.101) is called the restriction on growth condition. The con-

stants K can be the same. If the restriction on growth condition is violated, we get

the effect of an “explosion” of the solution, i.e., a finite escape time. 2

The connection between a stochastically excited system and SDEs is made

using the notion of a white noise driven differential equation.

Definition 2.6.10 (White Noise Driven Differential Equation) Given

functions f : IR+×IRn → IRn and gi : IR+×IRn → IRn, i ∈ m, a white noise driven

differential equation is an equation of the form (2.90) (repeated below)

d

dt
Xt = f(t,Xt) +

m∑
i=1

gi(t,Xt) (ζt)i

where for each i,
{

(ζt)i, t ∈ IR+
}

is a Gaussian white noise. 2

The interpretation of (2.90) is that of a sequence of SDEs

d

dt
X

(n)
t = f(t,X

(n)
t ) +

m∑
i=1

gi(t,X
(n)
t ) (ζ

(n)
t )i (2.102)

where
{
ζ

(n)
t , t ∈ IR+

}
represents a sequence of Gaussian processes that converges

in some suitable sense to a white noise, yet for each n,
{
ζ

(n)
t , t ∈ IR+

}
has well-

behaved sample paths. If the sequence of processes
{
X

(n)
t , t ∈ IR+

}
converges (say,

in q.m.) to a process
{
Xt, t ∈ IR+

}
then we interpret Xt as the solution of (2.90).
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It was shown by Wong and Zakai [164, 165] that, given the above interpretation,

the precise mathematical meaning of (2.90) is that of an SDE (given elementwise)

(dXt)i = f̄i (t,Xt) dt+
m∑
i=1

gi (t,Xt) (dWt)i i ∈ n (2.103)

where

f̄i (t,Xt) = fi (t,Xt) +
1

2

n∑
j=1

m∑
k=1

∂gik

∂Xj

(t,Xt) gjk (t,Xt) i ∈ n (2.104)

and gij = (gj)i, i ∈ n, j ∈ m.

Definition 2.6.11 (Correction Term) The second term on the right side of

(2.104) is called the correction term (sometimes referred to as the Ito-Stratonovich

correction term). Its appearance is due to the fact that dWt is proportional to
√
dt

(see Remark 2.5.45). 2

Remark 2.6.12 To summarize, a stochastically excited system is an affine control

system with Gaussian white noise injected at the input terminals. It is modeled by

a white noise driven differential equation (2.90), which is interpreted as an SDE of

the form (2.103). The SDE (2.103) is defined in terms of the stochastic integral,

i.e., by an integral equation of the form (2.99), but with f replaced by f̄ , i.e., the

sum of f and the correction term. 2

Remark 2.6.13 When the functions gi, i ∈ m are independent of x, i.e., gi(·, x) =

gi(·), then the correction term vanishes. 2

Remark 2.6.14 (Simulation) Care must be taken in order to correctly imple-

ment a numerical simulation of SDE (2.103). In particular, the continuous-time

Wiener process must be approximated by a sequence of Gaussian random variables.

The statistics of these random variables must be chosen in a manner consistent with

the approximation scheme. Details are provided in Appendix C. 2
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2.6.2 Diffusion Equations

We have presented the mathematical framework regarding the time evolution of

the state for a stochastically excited system. The state, which is represented by

a Markov process, has an associated transition probability, which also evolves in

time. The transition probability of a process satisfying an SDE can be obtained by

solving either of a pair of parabolic PDEs. These equations are called the backward

and forward equations of Kolmogorov, or diffusion equations.

Let the process {Xt, t ∈ T} be the unique solution of the SDE (2.98) and

have transition function P (x, t; y, s) and transition density function p(x, t; y, s)

(see Definition 2.5.8). The forward time evolution of p(x, t; y, s) is governed by the

forward equation of Kolmogorov, also known as the Fokker-Planck equation, given

by

∂p

∂t
(x, t; y, s) = L p =

−
n∑
i=1

∂

∂xi
(fi (t, x) p (x, t; y, s))

+
1

2

n∑
i=1

n∑
j=1

∂2

∂xi ∂xj
(bij (t, x) p (x, t; y, s)) (2.105)

with initial condition

p (x, s; y, s) = δ (x− y)

and where

bij (t, x) =
m∑
k=1

gik (t, x) gjk (t, x) =
[
[g (t, x)] [g (t, x)]T

]
ij

The reverse time evolution of P (x, t; y, s) is governed by the backward equation

of Kolmogorov, given by

∂P

∂s
(x, t; y, s) = L∗ P =
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n∑
i=1

fi (s, y)
∂

∂yi
(P (x, t; y, s))

+
1

2

n∑
i=1

n∑
j=1

bij (s, y)
∂2

∂yi ∂yj
(P (x, t; y, s)) (2.106)

with terminal condition

lim
t↑s

P (x, t; y, s) =
{ 1 x > y

0 x < y

Detailed derivations of Equations (2.105) and (2.106) are presented in [7, 166]. For

a history and derivation of the Fokker-Planck equation from a physical point of

view see [51].

Remark 2.6.15 The operators L and L∗ are linear and adjoints. 2

Remark 2.6.16 When working with a white noise driven equation, it is important

to keep in mind that the functions fi, i ∈ n, must incorporate the correction term.

2

Existence and uniqueness of solutions to Equations (2.105) and (2.106) can

be shown under suitable regularity conditions (see, e.g., [7, 166]). However, the

following result by Elliott [42, 43] (and elaborated upon by Brockett [21, 22]) is

more useful for our purposes (because it appeals to our control theoretic viewpoint).

Theorem 2.6.17 (Elliott [42, 43]) Suppose that

(i) the Lie algebra of vector fields generated by {f, g1, . . . , gm} consists of com-

plete vector fields on a manifold M ; and

(ii) the smallest Lie algebra which contains g1, . . . , gn and which is closed under

bracketing with f spans the tangent space of M at each point.
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Then the corresponding SDE (2.103) defines smooth transition densities on M . 2

Remark 2.6.18 By completeness of a vector field f , we mean that the solution

of ẋ = f (x) , x(0) = x0 is defined for all time, i.e., no finite escape times in

forward or backward time. 2

Remark 2.6.19 Theorem 2.6.17 states that strong local accessibility of the corre-

sponding affine control system, together with a completeness condition on vector

fields, guarantees the existence of smooth transition densities, i.e., smooth solutions

of the Fokker-Planck equation, for all times t. We apply this result in Section 4.3.2.

2

In many applications, the functions fi, i ∈ n, and gij, i ∈ n, j ∈ m, (and

hence the bij) are time-independent. In such cases we are often interested in the

steady-state probability density (if any) which p approaches as t becomes large.

In the steady-state,
∂p

∂t
vanishes, i.e., the probability density is stationary, and

Equation (2.105) simplifies to the stationary Fokker-Planck equation

0 = −
n∑
i=1

∂

∂xi
(fi (x) p∞ (x)) +

1

2

n∑
i=1

n∑
j=1

∂2

∂xi ∂xj
(bij (x) p∞ (x)) (2.107)

where p∞ (x) denotes the stationary probability density (if it exists).

Remark 2.6.20 The dependence of the transition density on y and s vanishes in

the steady-state case. 2

A solution p∞ (x), if it is to represent a probability density function, must also

satisfy

p∞ (x) ≥ 0 x ∈ IRn (2.108)

and ∫
IRn p∞ (x) dx = 1 (2.109)
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Definition 2.6.21 (Stationary Solution) A solution of (2.107) which also sat-

isfies (2.108) and (2.109) is called a stationary solution of the Fokker-Planck equa-

tion. 2

Boundary conditions for (2.107) are assigned as

lim
x→∞

p∞ (x) = 0 (2.110)

and as a consequence

lim
x→∞

∂p∞

∂x
(x) = 0 (2.111)

We can use Theorem 2.6.17 in order to establish the existence of a smooth

invariant density. In addition, Zakai [169] shows how to prove existence via a

Lyapunov criterion. Moreover, Fuller [51] argues that we can heuristically assume

the existence of a unique stationary asymptotically stable transition density if

(i) No part of the system is completely isolated from the effects of the white

noise.

(ii) The system has restoring forces which prevent the ensemble from dispersing

to infinity.

We shall make the standing assumption that the stochastically excited systems

we work with yield a unique stationary asymptotically stable transition density,

unless noted otherwise. We call this transition density the steady-state density,

stationary density, or invariant density.

Closed form solutions of (2.107) exist in certain special cases such as for systems

with a conservative (Hamiltonian) part and a dissipative part [51, 171]. These

solutions will be exploited in Chapter 4.
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2.7 Mechanical Systems

Mechanical systems whose dynamics can be described by the Euler-Lagrange or

Hamilton equations of motion form a subclass of nonlinear control systems that

is of major importance in this thesis. In particular, we will consider mechanical

systems consisting of open chained rigid links. In this section we briefly present the

mathematical framework for working with this subclass of systems. The material

is standard and drawn mainly from texts by Murray, Li, and Sastry [112] and

Nijmeijer and van der Schaft [121] and a paper by Fuller [51]. We refer to the

literature for all proofs.

The motion of a mechanical system can be described by a set of variables that

completely determines the configuration of the system. We refer to such a set of

variables as generalized coordinates, denoted in vector form as q = (q1, . . . , qn) ∈

IRn, where n denotes the number of degrees of freedom (DOF) of the system.

For a mechanical system consisting of rigid links, the generalized coordinates are

almost always chosen to be the angles of the joints. We also refer to the qi as the

generalized positions and q̇i as the generalized velocities.

We express the external forces applied to the system in terms of components

along the generalized coordinates. These forces are referred to as generalized forces,

denoted in vector form as F = (F1, . . . , Fn) ∈ IRn. For the rigid link system with

joint angles acting as generalized coordinates, the generalized forces are the torques

applied about the joint axes.

The kinetic energy K of the system is a function of the generalized positions

and velocities, i.e., K = K (q, q̇). For a system of rigid links it is usually written as

the sum of a translational component and a rotational component. The potential

energy U is a function of position only, i.e., U = U (q). It is usually written as
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the sum of stored energies due to gravity and mechanical stiffness. The dissipation

energy R (also called the Rayleigh dissipation function) is generally a function of

position and velocity, i.e., R = R (q, q̇). It contains terms reflecting generalized

mechanical damping.

We define the Lagrangian as the difference between the kinetic and potential

energies of the system, i.e.,

L (q, q̇) = K (q, q̇)− U (q) (2.112)

The equations of motion for the system can be derived from the Lagrangian L and

the Rayleigh dissipation function R via the Euler-Lagrange equations of motion.

Theorem 2.7.1 (Euler-Lagrange Equations of Motion) The equations of

motion for a mechanical system with generalized coordinates q ∈ IRn, generalized

forces F ∈ IRn, and Lagrangian L are given by

d

dt

∂L

∂q̇i
−
∂L

∂qi
= Fi −

∂R

∂q̇i
i ∈ n (2.113)

2

A control system model in standard state-space form is obtained from the Euler-

Lagrange equations of motion by interpreting the external forces as the control

inputs and expressing the kinetic energy as

K (q, q̇) =
1

2
q̇TM (q) q̇ (2.114)

where M (q) is a positive-definite matrix called the inertia matrix or mass matrix.

The equations of motion can be written

M (q) q̈ + C (q, q̇) +N (q, q̇) = F (2.115)
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where C (q, q̇) represents Coriolis and centrifugal force terms and N (q, q̇) includes

gravity and other forces which act at the joints (e.g., torsional damping, stiffness).

The state-space model is given by

d

dt

 q

q̇

 =

 q̇

−M−1 (q) (C (q, q̇) +N (q, q̇))

+

 0

M−1 (q)

F (2.116)

We define the generalized momenta p = (p1, . . . , pn) ∈ IRn in terms of the

generalized coordinates q and Lagrangian L via the Legendre transformation

pi =
∂L

∂q̇i
i ∈ n (2.117)

We define the Hamiltonian, in terms of the generalized positions and momenta, as

the sum of the kinetic and potential energies of the system, i.e.,

H (q, p) = K (q, p) + U (q) (2.118)

The Hamiltonian H and Lagrangian L are related by

H (q, p) = 〈 p, q̇ 〉 − L (q, q̇) (2.119)

The equations of motion can be restated in coordinates (q, p), in terms of the

HamiltonianH, mass matrixM , and Rayleigh dissipation functionR (reformulated

in terms of q and p), in the obvious vector notation as

d

dt

 q

p

 =


∂H

∂p
(q, p)

−
∂H

∂q
(q, p)−M (q)

∂R

∂p
(q, p)

+

 0

1I

F (2.120)

Remark 2.7.2 An advantage of this formulation is that the equations of motion

immediately constitute a control system in standard state-space form. 2

Remark 2.7.3 Using either formulation, the equations of motion yield a state-

space model of dimension 2n, i.e., two state variables per DOF. We refer to such

a model as a second-order system. 2
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Remark 2.7.4 A system (2.120) for which there is no dissipation or forcing is

referred to as Hamiltonian or conservative. This terminology reflects the fact that

the total energy of the system remains constant, i.e., Ḣ = 0. We refer to the

system (2.120) as a Hamiltonian system perturbed by dissipation and forcing. 2

The Poisson bracket is generally a bilinear map from C∞(M) × C∞(M) into

C∞(M), where M is a manifold, satisfying the properties of skew-symmetry, Jacobi

identity, and the Leibniz rule (see [121]). We will use a special case of the Poisson

bracket where M = IRn × IRn, i.e., represents the space of generalized positions

and momenta, defined as follows.

Definition 2.7.5 (Poisson Bracket) Let F : IRn×IRn → IR and G : IRn×IRn →

IR be smooth functions. The Poisson bracket of F and G is the bilinear map defined

by

{F,G} (q, p) =
n∑
i=1

(
∂F

∂pi

∂G

∂qi
−
∂F

∂qi

∂G

∂pi

)
(q, p) (q, p) ∈ IRn × IRn (2.121)

We will use the following lemma in Chapter 4.

Lemma 2.7.6 Let F : IRn × IRn → IR be a functional of the Hamiltonian H, i.e.,

F = F (H(q, p)) ∈ IR. Then {F,H} = 0.

Proof

{F,H} =
n∑
i=1

[
∂F

∂pi

∂H

∂qi
−
∂F

∂qi

∂H

∂pi

]
(2.122)

=
n∑
i=1

[
∂F

∂H

∂H

∂pi

∂H

∂qi
−
∂F

∂H

∂H

∂qi

∂H

∂pi

]
(2.123)

=
n∑
i=1

[
∂F

∂H

(
∂H

∂pi

∂H

∂qi
−
∂F

∂qi

∂H

∂pi

)]
(2.124)

= 0 (2.125)
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Chapter 3

Standard and Ad-Hoc

Approaches to Model Reduction

3.1 Introduction

This chapter introduces two prominent and related approaches for deriving low-

order approximations to high-order nonlinear system models, referred to generically

as the POD and balanced truncation. Basic versions of these methods have become

standard model reduction tools and have been used in a variety of application areas

during the past two decades.

Although the POD and balanced truncation are founded in rigorous mathemat-

ical results, application of these standard tools to model reduction for nonlinear

control systems requires ad-hoc assumptions and procedures. Perhaps the most

obvious ad-hoc procedure is linearization, whereby it is assumed that the original

nonlinear model can be approximated (locally) by a linear system derived from a

Taylor series expansion. The literature regarding applied balanced truncation to

this date is concerned only with model reduction for linear systems. The POD, on
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the other hand, can be applied to nonlinear control system models, but assump-

tions about locality, and situational procedures, are still needed. The POD has

been applied recently in situations where the input is pre-determined or the system

is expected to evolve close to a pre-specified trajectory.

The purpose of this chapter is to

• provide an overview of the state-of-the-art, including important aspects of

the underlying theory, computational issues, advantages and shortcomings,

and selected applications;

• motivate the research presented in Chapter 4; and

• explain the methods and computational tools used in Chapter 6.

The POD and balancing methods for determining a suitable coordinate transfor-

mation are presented, respectively, in Sections 3.2 and 3.3. The general procedure

for component truncation is outlined in Section 3.4. We summarize and make some

additional remarks in Section 3.5. The subject matter relies heavily on concepts

introduced in Sections 2.1-2.5.

3.2 Proper Orthogonal Decomposition

The proper orthogonal decomposition (POD) of a second-order stochastic process

is one member of the class of representations known as orthogonal expansions (the

Fourier series, or harmonic decomposition, is another example). Its usefulness in

the area of model reduction stems from its mathematical properties pertaining to

its efficiency in terms of representing an ensemble of signals. The POD is also

known as the Karhunen-Loeve expansion (named after two [76, 95] of the several
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scientists who are credited with its independent discovery; see [15]), and in certain

contexts as principal component analysis (PCA).

An orthogonal expansion of a second-order stochastic process {Xt, t ∈ T} is an

expression of the form

Xt =
∞∑
i=1

σi(t)Zi t ∈ T (3.1)

where the set {Z1, Z2, . . .} is an orthonormal basis for HX (see Definition 2.5.29)

and the coefficient functions {σi(t) = 〈Xt, Zi 〉 , i = 1, 2, . . .} are completely de-

terministic and square-integrable on T . Representations of this form permit the

family of random variables {Xt, t ∈ T} to be expressed as a linear combination of

a countable number of orthonormal random variables {Z1, Z2, . . .}.

The separable Hilbert space HX contains an infinite number of possible or-

thonormal basis sets {Z1, Z2, . . .} (see Proposition 2.4.14). We shall see that the

basis derived via the POD is an advantageous choice. In particular, the coefficient

functions {σ1, σ2, . . .} form an orthonormal set in L2(T ), the span of which is ca-

pable of representing all members of the ensemble, and the individual terms in the

series (3.1) can be ranked according their respective relative contributions to the

energy, on average, contained in members of the ensemble. This ranking allows

for an efficient representation via truncation of (3.1) at a suitably low index. The

POD and its properties are derived mainly using the spectral theory of compact,

self-adjoint, integral operators, as described in the following sections.

The exposition contained in this section is based on that from several sources,

but we believe that it is original in its treatment, in particular toward illuminating

the applied aspects in a rigorous way. Rigorous mathematical treatments are

given, from a purely theoretical standpoint in [8, 96, 166], and with a view toward

applications to model reduction in [15, 67, 118, 119, 147, 149]. For simplicity we
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introduce the main results in the context of one-parameter processes. Later, results

are interpreted in terms of two-parameter processes for purposes of application.

3.2.1 Derivation

Consider an ensemble of signals

{X(ω, ·) : [a, b]→ IRn, ω ∈ Ω} (3.2)

Each member of the ensemble (i.e., for each fixed ω) is a function in L2 [a, b]. We

assign to the ensemble a probabilistic structure including an associated averaging

operation E [ · ]. The nature of the randomness is not important for the sake of

this discussion. It could be due, e.g., to strong dependence on unpredictable initial

conditions. We assume that the stochastic process {Xt, t ∈ [a, b]} is second-order,

and without loss of generality, has zero mean, i.e., E [Xt ] ≡ 0.

Now, consider the problem of determining which single deterministic function

φ ∈ L2 [a, b], is most similar, on average, to the members of the ensemble, i.e., find

φ such that

max
ψ

E
[
〈Xt, ψ 〉L2

]
‖ψ ‖2

L2

=
E
[
〈Xt, φ 〉L2

]
‖φ ‖2L2

(3.3)

Remark 3.2.1 The function φ is most nearly parallel to signals in the ensemble,

on average, in the function space L2 [a, b]. 2

The maximization problem (3.3) is a classical problem in the calculus of vari-

ations. A necessary condition for (3.3) to hold is that φ be an eigenfunction

of the integral operator with kernel given by the two-point covariance function

R(t, s) = E
[
XtX

T
s

]
, i.e.,

∫ b

a
R(t, s)φ(s)ds = λφ(t) t ∈ [a, b] (3.4)
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Remark 3.2.2 The spectral theory of compact, self-adjoint, integral operators (see,

e.g., [150]) ensures that the maximum in (3.3) is achieved and corresponds to the

largest eigenvalue λmax of the integral operator in (3.4). Furthermore, under the

condition that [a, b] is bounded, Hilbert-Schmidt theory (see, e.g., [56]) guarantees

the existence of a countably infinite number of solutions {φ1, φ2, . . .} of (3.4). 2

The key result is Mercer’s theorem (see, e.g., [56]), which gives the spectral

decomposition of an integral operator with continuous, self-adjoint, non-negative

definite kernel.

Theorem 3.2.3 (Mercer) Let k(·, ·) be a continuous, Hermitian symmetric, non-

negative definite function on [a, b] × [a, b]. If {φ1, φ2, . . .} are the orthonormal

eigenvectors corresponding to the non-zero eigenvalues {λ1, λ2, . . .} of the integral

operator with kernel k(·, ·) then for all t, s ∈ [a, b]

k(t, s) =
∞∑
i=1

λi φi(t)φi(s) (3.5)

The series converges absolutely and uniformly on [a, b]× [a, b]. 2

Remark 3.2.4 The spectral decomposition of the covariance is given by

R(t, s) =
∞∑
i=1

λi φi(t)φi(s) (3.6)

where {φ1, φ2, . . .} are solutions of the integral equation (3.4). It follows from non-

negative definiteness of R that the eigenvalues {λ1, λ2, . . .} are non-negative. By

convention they are ordered such that λi ≥ λi+1. 2

The POD is a direct consequence of Mercer’s theorem.
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Theorem 3.2.5 (Proper Orthogonal Decomposition) Let {Xt, t ∈ [a, b]} be

a zero-mean q.m. continuous second-order stochastic process with covariance func-

tion R(t, s). The process Xt has an orthogonal decomposition

X(ω, t) = lim
N→∞

in q.m.
N∑
i=1

√
λi ai(ω)φi(t) t ∈ [a, b] (3.7)

with

E [ ai aj ] = δij (3.8)

and

〈φi, φj 〉L2[a,b] =
∫ b

a
φi(t)φj(t) dt = δij (3.9)

if and only if the {φ1, φ2, . . .} are the orthonormal eigenfunctions and the

{λ1, λ2, . . .} are the corresponding eigenvalues of the integral operator with kernel

R(·, ·), i.e.,

∫ b

a
R(t, s)φi(s) ds = λi φi(t) t ∈ [a, b] i = 1, 2, . . . (3.10)

In that case, the series (3.7) converges uniformly on [a, b].

Proof See Appendix D and [8, 96, 166].

Remark 3.2.6 The coefficient functions φi that correspond to non-zero eigenval-

ues λi (and hence that contribute to the convergent series in (3.5) and (3.7)) are

called the empirical eigenfunctions of the ensemble. They form an orthonormal ba-

sis for the subspace of L2 [a, b] to which all members of the ensemble belong (except

for a set of measure zero; see Fact 3.2.24). 2

Remark 3.2.7 The uncorrelated random variables {a1, a2, . . .} are given by

ai(ω) = (
√
λi)
−1 ∫ b

a
φi(t)X(ω, t)dt i = 1, 2, . . . (3.11)

and form the desired orthonormal basis for HX . 2
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Remark 3.2.8 Each eigenvalue λi can be interpreted as the mean energy of the

signals in the ensemble projected onto the φi-axis in function space L2 [a, b] (see,

e.g., [118] for the calculation), i.e.,

λi = E
[
| 〈φi, Xt 〉L2[a,b] |

2
]

i = 1, 2, . . . (3.12)

This interpretation justifies the ranking of terms in the series (3.7) by relative

energy contribution. 2

Two Parameter Processes

To model the two-parameter case, consider the ensemble of signals

{X(ω, ·, ·) : [0,∞)×D → IRn, ω ∈ Ω} (3.13)

where D is bounded. Each member of the ensemble is a function in, respectively,

L2[0,∞) and L2 (D), for fixed x and fixed t. As before, we assign a probabilistic

structure and assume that the process {Xt,x, t ∈ [0,∞), x ∈ D} is second-order

and has zero mean, i.e., E [Xt,x ] ≡ 0. We also assume that the process is wide-

sense stationary and ergodic with respect to t. It then has a spatial covariance

function given by

R(x, y) = E
[
Xt,xX

T
t,y

]
= lim

T→∞

1

T

∫ T

0
Xt,xX

T
t,y dt (3.14)

The spectral decomposition and spatial POD, respectively, are given by

R(x, y) =
∞∑
i=1

λi φi(x)φi(y) (3.15)

where convergence is absolute and uniform on D ×D, and

X(ω, t, x) = lim
N→∞

in q.m.
N∑
i=1

√
λi ai(ω, t)φi(x) t ∈ [0,∞), x ∈ D (3.16)

where convergence is uniform on [0,∞)×D.
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Remark 3.2.9 The coefficient functions φi that correspond to non-zero eigenval-

ues λi are called the spatial empirical eigenfunctions of the ensemble. They are the

unit magnitude solutions of the family of integral equations∫
D
R(x, y)φi(y) dy = λi φi(x) x ∈ D i = 1, 2, . . . (3.17)

and form an orthonormal basis for the subspace of L2 (D) to which all members of

the ensemble belong for each fixed t (except for a set of measure zero). 2

Remark 3.2.10 The random functions {a1, a2, . . .} are given by

ai(ω, t) = (
√
λi)
−1 ∫

D
φi(x)X(ω, t, x) dx i = 1, 2, . . . (3.18)

They are stochastic processes, inherit ergodicity from Xt,x, and are uncorrelated in

the sense that

E [ ai(t) aj(t) ] = lim
T→∞

∫ T

0
ai(t) aj(t) dt = δij (3.19)

2

Remark 3.2.11 Sirovich [147] refers to the spatial empirical eigenfunctions

{φ1, φ2, . . .} as coherent structures. This terminology stems from the interpretation

of the signals as realizations of a physical flow in time and space (e.g., fluid momen-

tum, heat). The empirical eigenfunctions then correspond to physically manifested,

coherent spatial structures in the flow. 2

Remark 3.2.12 Each eigenvalue λi can be interpreted as the mean energy of the

signals in the ensemble projected onto the φi-axis in function space L2 (D), and

equivalently, by ergodicity with respect to time, as the average relative time spent

by signals in the ensemble along the φi-axis, i.e.,

λi = E
[
| 〈φi, Xt,x 〉L2(D) |

2
]

= lim
T→∞

1

T

∫ T

0

∣∣∣〈φi, Xt,x 〉L2(D)

∣∣∣2 dt i = 1, 2, . . .

(3.20)
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Remark 3.2.13 We note that since the time domain is unbounded (which typically

models the evolution of a dynamical system), there is no “temporal POD” for this

two-parameter case. This is due to the fact that the integral operator with kernel

R(t, s) is compact if and only if its domain is bounded, and hence has no spectral

decomposition in the case of unbounded domain. 2

Sampled Data Processes

In most practical applications, we work with processes that are sampled in time

or space or both. Consider the ensemble of sampled signals

{X(ω, ·) : {1, 2, . . .} → IRn, ω ∈ Ω} (3.21)

Each member of the ensemble is a vector in `2. As usual, we assume that the

process {Xk, k = 1, 2, . . .} is second-order, and without loss of generality, has zero

mean, i.e., E [Xk ] ≡ 0. The discrete covariance function is given by

R (j, k) = E
[
XjXk

T
]

(3.22)

which, in the case that Xk is scalar valued, can be written as a matrix R = [R]jk =

[R (j, k)] (if Xk is vector valued then R can be written as a fourth-order tensor).

The matrix (tensor) R is real, symmetric, and non-negative definite.

The spectral theorem (see, e.g., [154]) states that every real symmetric matrix

R can be diagonalized by an orthogonal matrix, i.e., there exists an orthogonal

matrix Φ and a real diagonal matrix Λ = diag (λ1, . . . , λn) such that R = Φ Λ ΦT.

We write the spectral decomposition of R in (3.22) as

R =
∞∑
i=1

λi φi φi
T (3.23)

where each vector φi is the i-th column of Φ.
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Remark 3.2.14 The operator given by multiplication by the covariance matrix is

always compact, even with an infinite number of rows and columns. We need not

worry about boundedness of the time domain here (i.e., even though k = 1, 2, . . .,

the spectral decomposition exists). 2

Remark 3.2.15 Because the covariance matrix R is non-negative definite, the

eigenvalues {λ1, λ2, . . .} are non-negative. By convention they are ordered such

that λi ≥ λi+1. 2

The sampled data POD is a direct consequence of the spectral theorem.

Theorem 3.2.16 (Sampled Data POD) Let {Xk, k = 0, 1, . . .} be a zero-mean

scalar-valued discrete-parameter second-order stochastic process with covariance

matrix R. The process Xk has an orthogonal decomposition

X(ω, k) = lim
N→∞

in q.m.
N∑
i=1

√
λi ai(ω) (φi)k k = 0, 1, . . . (3.24)

with

E [ ai aj ] = δij (3.25)

and

〈φi, φj 〉 = φi
T φj = δij (3.26)

if and only if the {φ1, φ2, . . .} are the orthonormal eigenvectors and the {λ1, λ2, . . .}

are the corresponding eigenvalues of the matrix R, i.e.,

Rφi = λi φi i = 1, 2, . . . (3.27)

Proof See Appendix D.

Remark 3.2.17 The vectors φi corresponding to non-zero eigenvalues λi are called

the empirical eigenvectors of the ensemble. They form an orthonormal basis for
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the subspace of `2 to which all members of the ensemble belong (except for a set of

measure zero). 2

Remark 3.2.18 The uncorrelated random variables {a1, a2, . . .} are given by

ai(ω) =
(√

λi

)−1 ∞∑
k=1

(φi)k X(ω, k) (3.28)

and form the desired orthonormal basis for HX . 2

Remark 3.2.19 It is often convenient to express the scalar-valued sampled data

process {Xk, k = 0, 1, . . .} as a random vector X = [X1, X2, . . .]
T. In this case the

covariance matrix is given by R = E
[
XXT

]
and the sampled data POD (3.24)

is written compactly as

X = Φ Λ1/2 a = Φ b (3.29)

where Φ = [Φ]ki = [(φi)k] is an orthogonal matrix whose columns are the empirical

eigenvectors, Λ = diag (λ1, λ2, . . .), and

a = [a1, a2, . . .]
T = Λ−1/2 ΦTX (3.30)

and b = Λ1/2 a are random vectors. The mean energy interpretation of the eigen-

values is expressed by

λi = E
[
|φi
TX|2

]
i = 1, 2, . . . (3.31)

2

Two Parameter Sampled Data Processes

The typical situation that arises in dynamical systems applications is that of an

ensemble of signals that evolves on a time continuum but whose spatial domain

has been discretized. Moreover it is usually the case that the spatial domain is
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bounded, resulting in a finite number of samples in the spatial parameter (e.g., time

evolution of the temperature field in a solid body discretized via finite-elements).

Consider an ensemble of such signals

{X(ω, ·, ·) : [0,∞)× {1, . . . , n} → IRn, ω ∈ Ω} (3.32)

We assume as before that the process

{Xt,k, t ∈ [0,∞), k = 1, . . . , n}

is second-order and has zero mean, i.e., E [Xt,k ] ≡ 0. We also assume that the

process is wide-sense stationary and ergodic with respect to t. The discrete spatial

covariance function is given by

R (j, k) = E [Xt,jXt,k ] = lim
T→∞

∫ T

0
Xt,jXt,k dt (3.33)

which as before can be expressed as a matrix R = [R]jk = [R (j, k)] with spectral

decomposition R =
∑n
i=1 λi φi φi

T.

The sampled-data spatial POD is given by

X(ω, t, k) =
n∑
i=1

√
λi ai(ω, t) (φi)k k = 1, . . . , n (3.34)

Remark 3.2.20 The vectors φi corresponding to non-zero eigenvalues λi are called

the spatial empirical eigenvectors of the ensemble. They are the unit length solu-

tions of (3.27) (i.e., unit eigenvectors of the matrix R) and form an orthonormal

basis for the subspace of IRn to which all members of the ensemble belong for each

fixed t (except for a set of measure zero). 2

Remark 3.2.21 The random functions {a1, . . . , an} are given by

ai(ω, t) =
(√

λi

)−1 n∑
k=1

(φi)k X(ω, t, k) (3.35)

They are stochastic processes, inherit ergodicity from Xt,k, and are uncorrelated in

the sense of (3.19). 2
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Remark 3.2.22 In applications, the continuous-time scalar-valued sampled spa-

tial data process

{Xt,k, t ∈ [0,∞), k = 1, . . . , n}

is often expressed as a one-parameter vector process Xt = [Xt,1, . . . , Xt,n]T. In this

case the spatial covariance matrix is given by

R = E
[
XtX

T
t

]
= lim

T→∞

∫ T

0
XtX

T
t dt (3.36)

and the sampled data spatial POD (3.34) is written compactly as

Xt = Φ Λ1/2 a(t) = Φ b(t) (3.37)

where Φ = [Φ]ki = [(φi)k] is an orthogonal n × n-matrix whose columns are the

spatial empirical eigenvectors, Λ = diag (λ1, . . . , λn), and

a(t) = [a1(t), . . . , an(t)]T = Λ−1/2 ΦTXt (3.38)

and b(t) = Λ1/2 a(t) are vector processes. The mean energy and average time

duration interpretations of the eigenvalues are expressed, respectively, by

λi = E
[ ∣∣∣φiTXt

∣∣∣2 ] = lim
T→∞

∫ T

0

∣∣∣φiTXt

∣∣∣2 dt i = 1, . . . , n (3.39)

2

Remark 3.2.23 The relationship between the POD of a second-order stochastic

process and the PCA of a matrix valued signal (see Section 2.3) becomes apparent

by observing that the infinite time horizon Gramian matrix W 2 given by (2.29)

for signal X(t) corresponds to the two-point spatial covariance matrix R. The

sampled-data spatial POD (3.34) is then the same as the PCA (2.30) where the

square root of the λi have been subsumed into the coefficient functions ai(t). 2
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3.2.2 Properties

There are two properties of the POD in which we are most interested here. The

first says that the POD does in fact produce a representation that is capable of

describing all of the observed phenomena from which it was derived. The other

is the main property of interest in the context of model reduction. It says that

the POD is optimal, or most efficient, in terms of modeling the signal set with the

fewest number of modes.

Recall the ensemble of signals

{X(ω, ·) : [a, b]→ IRn, ω ∈ Ω} (3.40)

and suppose that the associated POD orthonormal basis set is {φ1, φ2, . . .}. We

define the span of the empirical basis as the collection of functions that can be

represented by a convergent sequence of a linear combination of empirical eigen-

functions, i.e.,

Sφ =

{
∞∑
i=1

αi φi :
∞∑
i=1

αi <∞

}
(3.41)

Similarly, the span of all members of the ensemble is given by

SX =

{
∞∑
i=1

βiX(ωi, t) :
∞∑
i=1

βi <∞

}
(3.42)

It is shown in [15] that

Fact 3.2.24 The sets Sφ and SX are equivalent with the exception of a set of

measure zero. 2

Remark 3.2.25 Thus, every member of the ensemble that generated the empirical

eigenfunctions, and linear combinations thereof, can be represented by a convergent

series of a linear combination of the empirical eigenfunctions. 2
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The optimality of the POD in terms of modeling a signal from among an

ensemble of signals is expressed by the following result (see, e.g., [15, 147]).

Proposition 3.2.26 (Optimality of the POD) Consider the ensemble

{X(ω, ·) : [a, b]→ IRn, ω ∈ Ω}

and let {φ1, φ2, . . .} be the empirical eigenfunctions with corresponding eigenvalues

{λ1, λ2, . . .}. Let

{X(ω̄, t), ω̄ ∈ Ω, t ∈ [a, b]}

be a member of the ensemble with POD

X(ω̄, t) =
∞∑
i=1

bi(ω̄)φi(t) (3.43)

where the eigenvalues have been subsumed into the random coefficients, i.e., for

each i, bi(ω) =
√
λi ai(ω). Let {ψ1, ψ2, . . .} be an arbitrary orthonormal set such

that for some random variables {c1, c2, . . .}

X(ω̄, t) =
∞∑
i=1

ci(ω̄)ψi(t) (3.44)

Then for each truncation index N

N∑
i=1

E [ | 〈φi, Xt 〉 | ] =
N∑
i=1

λi ≥
N∑
i=1

E [ | 〈ψi, Xt 〉 | ] (3.45)

and equivalently
N∑
i=1

E
[
‖ bi ‖

2
]

=
N∑
i=1

λi ≥
N∑
i=1

E
[
‖ ci ‖

2
]

(3.46)

2

Remark 3.2.27 Thus, for any given number of modes N , the projection of any

member of the ensemble onto the subspace spanned by the most energetic N mem-

bers of the empirical basis will contain more energy, on average, than the projection

onto the subspace spanned by N members of any other orthonormal basis. 2
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Remark 3.2.28 The optimality property may also be interpreted as a minimiza-

tion of the error, on average, between members of the ensemble and the truncated

orthogonal expansion. To see this, observe that the minimum of the mean-squared

error

E

 ∥∥∥∥∥Xt −
N∑
i=1

ci(ω)ψi(t)

∥∥∥∥∥
2
 =

E
[
‖Xt ‖

2
]

+
N∑
i=1

E
[
‖ ci ψi ‖

2
]
− 2

N∑
i=1

E [ 〈 ci ψi, Xt 〉 ] (3.47)

is achieved when
∑N
i=1 E [ 〈 ci ψi, Xt 〉 ] is maximized. Equation (3.45) gives the

empirical basis as the maximizing orthonormal set. 2

Remark 3.2.29 There exists no explicit error bound, e.g., corresponding to (1.1),

in terms of the eigenvalues or otherwise. 2

Remark 3.2.30 In the two-parameter case, the optimality properties

(3.45) and (3.46) are expressed, respectively, as

N∑
i=1

E [ | 〈φi(x), Xt,x 〉 | ] =
N∑
i=1

λi ≥
N∑
i=1

E [ | 〈ψi(x), Xt,x 〉 | ] (3.48)

and equivalently

N∑
i=1

E
[
‖ bi(t) ‖

2
]

=
N∑
i=1

λi ≥
N∑
i=1

E
[
‖ ci(t) ‖

2
]

(3.49)

for each N , where

X(ω̄, t, x) =
∞∑
i=1

bi(ω̄, t)φi(x) =
∞∑
i=1

ci(ω̄, t)ψi(x) (3.50)

2
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3.2.3 Computation

The computational aspects of the POD are crucial to analyzing its advantages

and shortcomings as a model reduction methodology. We consider the issues of

centering, practical computation of the empirical basis, and practical derivation of

low-order models for nonlinear control systems.

Centering and Zero-Mean Processes

Consider the ensemble,

{Z(ω, ·) : T → IRn, ω ∈ Ω} (3.51)

It is often the case that members of the ensemble are very similar to each other

in the sense of (3.3) because their respective differences are small in magnitude

compared with the magnitude of the signals themselves. This centering problem

is addressed simply by subtracting out the average signal µ(t) = E [Zt ] from each

ensemble member, i.e.,

Xt = Zt − µ(t) (3.52)

to give the zero-mean process Xt.

Remark 3.2.31 The process Xt represents the deviation or fluctuation from the

mean signal. The recentering minimizes the effect of noise and numerical error in

computations and generates a POD basis set and corresponding ranking of modes

that more accurately reflects the differences in energy content between signals. This

justifies our emphasis on zero-mean processes in Section 3.2.1. 2
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Remark 3.2.32 The centering is similarly applied to the two-parameter and sam-

pled data cases, i.e.,

Xt,x = Zt,x − µ(t, x) µ(t, x) = E [Zt,x ]

Xk = Zk − µ(k) µ(k) = E [Zk ]

Xt,k = Zt,k − µ(t, k) µ(t, k) = E [Zt,k ]

(3.53)

2

Computing the Empirical Basis

Here we present standard methods for computing the empirical basis. Consider

the typical dynamical systems application where Xt = [Xt,1, . . . , Xt,n]T is a zero-

mean vector process representing the fluctuation from the mean of a physical flow

in time (continuous) and space (discretized), or possibly some other multi-variable

state evolution in continuous time. We make the standard assumptions as usual.

We need to compute an approximation to the spatial covariance matrix

R = E
[
XtX

T
t

]
= lim

T→∞

1

T

∫ T

0
XtX

T
t dt (3.54)

This is accomplished by sampling the flow Xt at times {t1, t2, . . .}, i.e., capturing

“snapshots”

{X(t1), X(t2), . . .}

The times can be equally spaced by a fixed interval τ , i.e., tν = (ν−1) τ (mimicking

the action of a strobe). We define the approximation

R̂ = lim
M→∞

1

M

M∑
ν=1

X(tν)X
T(tν) (3.55)

For all practical purposes, we must make another approximation and use only a

fixed finite number M of samples, i.e.,

R̂M =
1

M

M∑
ν=1

X(tν)X
T(tν) (3.56)
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Remark 3.2.33 The approximation improves as the number of samples M in-

creases. The actual number of samples that are captured and used will depend on

practical considerations. However, it is reasonable to assume that M � n. 2

Remark 3.2.34 In the applied literature, one often sees equation (3.56) written

as

R̂M =
1

M
Ξ ΞT (3.57)

where

Ξ = [Ξ]kν
4
= [Xk(tν)] (3.58)

is a n ×M matrix called the data matrix. Actually, it is common for authors to

ignore the 1/M factor and the fact that an approximation is being made, and to

write R = Ξ ΞT. Also, this procedure is commonly mistaken for the “method of

snapshots,” which refers to something somewhat different, to be described shortly.

2

Remark 3.2.35 The approximate spatial covariance has only M non-zero eigen-

values and hence M approximate empirical eigenvectors. Thus, the span of the

empirical basis is at most an M-dimensional subspace of IRn. 2

Now we can use standard matrix algebra algorithms to compute the spectral

decomposition

R̂M = Φ Λ ΦT (3.59)

The approximate empirical eigenvectors are given by the first M columns

{φ1, . . . , φM} of the n × n orthogonal matrix Φ. They correspond to the M non-

zero eigenvalues {λ1, . . . , λM}, i.e., the non-zero diagonal entries of Λ (in decreasing

order).
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Remark 3.2.36 In the applied literature, the spectral decomposition of R̂M is usu-

ally accomplished by computing the singular value decomposition (SVD) of the data

matrix Ξ, i.e.,

Ξ = Φ Σ ΨT (3.60)

where Φ is the n×n orthogonal matrix containing the empirical eigenvectors, Σ is

n×M given by

Σ =


diag (σ1, . . . , σM)

0

 =


(M diag (λ1, . . . , λM))1/2

0

 (3.61)

and Ψ is M ×M and orthogonal. Thus, the empirical eigenvectors are computed

correctly via the SVD.

The ordering of the σi remains the same as that of the λi (and hence also the

ranking of modes). However, the precise meaning via relative energy resides with

the eigenvalues. Sometimes authors have ignored the square root operation and

mistakenly based their truncation analysis on the singular values. Moreover, it is

common for authors to claim that the POD and the SVD are equivalent procedures,

which ignores the underlying theory, assumptions, and approximations pertaining

to the POD. It is more accurate to think of the SVD as a tool that can be used in

practical computation of the POD. 2

Computational difficulties occur when the dimension n of Xt is large, e.g., due

to a high resolution spatial discretization. In particular, this forces the spectral de-

composition of a large matrix, possibly requiring very high computational expense,

and possibly leading to the accumulation of large numerical errors. Sirovich [147]

introduced a method to deal with this situation, coining the names “method of

snapshots” and “method of strobes”. It is a method for computing the empirical
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eigenvectors without forming and decomposing the very large two-point spatial

covariance matrix.

Assume that the snapshots X(tν) are linearly independent vectors in IRn, i.e.,

the data matrix Ξ is has full column rank, and define the M ×M matrix

ĈM =
1

M
ΞT Ξ (3.62)

Let {ψ1, . . . , ψM} and {µ1, . . . , µM} be, respectively, the eigenvectors and eigen-

values of ĈM , i.e.,

µi ψi = ĈM ψi =
1

M
ΞT Ξψi i ∈M (3.63)

A simple calculation reveals that if we define

φi = Ξψi i ∈M (3.64)

then

µi φi =
1

M
Ξ ΞT φi = R̂M φi i ∈M (3.65)

Remark 3.2.37 Thus, the eigenvalues µi of the M ×M matrix ĈM correspond

exactly to the non-zero eigenvalues λi of the n × n matrix R̂M . The relation-

ship between the empirical eigenvectors φi and the eigenvectors ψi of ĈM is given

by (3.64), i.e., the empirical eigenvectors are linear combinations of the snapshots

X(tν). 2

Remark 3.2.38 The advantage of the method of snapshots is that we compute the

empirical eigenvectors via spectral decomposition of the M×M matrix ĈM instead

of the much larger n× n matrix R̂M . 2

Remark 3.2.39 In the literature, sometimes ĈM is referred to as the covariance

matrix. It is actually a temporal covariance. Time sampling produces a compact
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operator which admits a spectral decomposition yielding temporal empirical eigen-

vectors, which are related to the spatial empirical eigenvectors by (3.64). 2

Deriving the Reduced-Order Model

Here we describe the typical procedure for deriving a reduced-order model from

the full-order model. Our presentation is in the context of finite-dimensional con-

trol systems, although it generalizes easily to the infinite-dimensional setting (see,

e.g., [118, 119]).

We assume that the full-order state-space model has been derived via first prin-

ciples or empirical analysis or both, with autonomous state equation and output

equation, respectively,

ẋ = f (x, u) (3.66)

y = h (x) (3.67)

where x ∈ IRn represents local coordinates for the full-order state. It is also possible

that the actual physical system being modeled is available for experimentation.

An ensemble of signals is needed to compute the empirical basis. In order for

the POD to yield an efficient basis for an orthogonal expansion, the signals in the

ensemble should represent or capture the essential system behavior. This means

that the modeler must choose one or more sets of inputs and initial conditions to

produce what he deems to be the representative system response. An ensemble

of state trajectories is then generated via numerical simulation of the state equa-

tion (3.66), or possibly via experimentation if practical. A suitable set of sampling

times must be chosen to determine the snapshot data which forms the data matrix.

Given the data matrix, the empirical eigenvectors {φ1, . . . , φM} corresponding

to the non-zero eigenvalues {λ1, . . . , λM} are computed via the POD, whether by
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direct SVD or the Sirovich method of snapshots, and arranged into the matrix

Φ = [φ1, . . . , φM ] ∈ IRn×M (3.68)

The relative magnitudes of the eigenvalues are then analyzed in order to choose

a truncation index k < M � n such that, from the viewpoint of the modeler, the

resulting model order is sufficiently low while retaining sufficiently high signal en-

ergy on average, i.e., provides a favorable tradeoff between fidelity and complexity.

This analysis yields a truncated transformation matrix

Φk = [φ1, . . . , φk] ∈ IRn×k (3.69)

The reduced-order state z ∈ IRk and the approximate reconstruction of the

original full-order state x̂ ∈ IRn, respectively, are defined by

z
4
= Φk

T x (3.70)

x̂
4
= Φk z (3.71)

The reduced state equation is computed via Galerkin projection

ż = Φk
T ẋ = Φk

T f (x, u) ≈ Φk
T f (Φk z, u) (3.72)

yielding the reduced-order control system

ż = f̂ (z, u) (3.73)

ŷ = ĥ (z) (3.74)

where the reduced system map f̂ : IRk × U → IRk and reduced output map ĥ :

IRk → IRp are defined, respectively, by

f̂ (z, u)
4
= Φk

T f (Φk z, u) ĥ (z)
4
= h (Φk z) (3.75)
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and ŷ ∈ IRp is the approximate reconstruction of the output.

The reduced state equation (3.73) is numerically integrated using initial reduced-

order state z(0) = Φk
T x(0) where x(0) corresponds to the desired initial full-order

state. This produces the reduced-order state trajectory z(t), from which an ap-

proximation to the full-order trajectory is reconstructed via x̂(t) = Φk
T z(t).

Remarks

We conclude this section with some remarks on the advantages and drawbacks

of the POD as a tool for computing a coordinate transformation for state-space

model reduction.

• The modeler has a great deal of discretion in determining the reduced-order

model. He chooses the ensemble of signals (via choice of inputs and initial

conditions), sampling times, and truncation index. While the POD is a

natural tool for efficiently representing signals in an ensemble, it is merely

part of an ad-hoc procedure for reducing the order of a dynamical system.

It does not work directly with the system map f .

• The POD is optimal for efficiently representing signals that belong to an

ensemble, e.g., state trajectories generated via simulation of the ODE (3.66)

for a chosen set of inputs. However, because the admissible controls consti-

tute a much larger set, the resulting family of ODEs will produce trajectories

that do not belong to the ensemble. The efficiency of the POD in terms of

representing all possible state trajectory signals is unknown.

• There have been no results of which we are aware regarding a rigorous or

systematic methodology for generating a representative ensemble of signals

to characterize the state response of a nonlinear control system.
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• Snapshot data may fail to capture dynamical effects occurring at widely

differing time scales.

• The state-to-output relationship y = h(x) is not used in determining the

empirical basis. Since the output consists of variables of particular interest,

it would appear that ignoring this relationship is to the method’s detriment.

3.2.4 Applications

The POD has become prominent as a tool for complexity reduction during the

1980s and 1990s, finding application in a wide variety of areas. Here we describe

some examples in order to illustrate its capabilities for efficient representation and

the ad-hoc nature of the procedure as applied to model reduction for nonlinear

dynamical systems. We emphasize applications to order reduction for RTP models

in order to provide background and motivation for subsequent material.

The capabilities of the POD become apparent in the context of data compres-

sion for image processing, for which the POD is a natural tool. For example,

in [146], the authors apply the POD to compress the amount of data needed to

reconstruct pixelized images of human faces (27×27 pixels with 28 gray levels). In

their study, linear combinations of 40 dominant “empirical eigenfaces” are capable

of representing face images, both within and outside of the original population

(115 faces), to within 3% error, thus reducing the dimension of the representation

space from 222 to 40.

Various studies have demonstrated the effectiveness of the POD as a tool for de-

riving low-order characterizations of a spatially distributed flow v(t, x) representing

the time evolution of some physical phenomenon. Examples include applications

to pipe flow in a wall region, [11], Rayleigh-Benard convective flow [40], turbulent
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channel flow [12], and vibration of a thin membrane in a stadium [19]. In these

studies, the ensemble of signals {v(t, x)} is a collection of realizations for the time-

varying flow field, i.e., the unique solutions of a family of initial value problems.

In each study it is shown that the pre-computed flow can be represented with

high accuracy using a number of empirical eigenfunctions that is relatively small

compared with the discretization resolution used to simulate the original evolution

equations (O (103) reduction is consistently achieved). Moreover, the structural

aspect of the eigenfunctions is observed, e.g., as rolls and shearing motions in [12].

However, it is important to note that, in these examples, low-order approxi-

mations to the original evolution equations are not derived. Rather, the focus is

on deriving low-order representations of pre-computed flow fields, a task naturally

suited for the POD. Thus, these applications do not necessarily fall within the

realm of what we consider to be model reduction. The subject of deriving low-

order evolution equations for spatially distributed flows using the POD basis is

covered in, e.g., [148], but examples are not offered and computational issues such

as those pointed out in Section 3.2.3 are not addressed.

During the 1990’s, the POD has appeared in various ad-hoc methodologies

related to the control of state-space models for dynamical systems. Strategies

for control of turbulent flows are proposed in [99], where the authors use low-

dimensional models and knowledge of the extracted coherent structures to deter-

mine how, when, and where to interfere with the flow in the boundary layer. In [25],

a nonlinear feedback law is constructed which requires information only about the

dominant empirical eigenfunctions without using the original nonlinear model.

There has been much recent activity in the development of models to be used

for control of the temperature distribution on a semiconductor wafer in a RTP
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chamber. Dynamic models of heat transfer in a generic RTP system with 5 lamp

banks are presented in [5, 6]. The full-order model has 116 states, each represent-

ing the temperature at a physical location in the chamber. In [6], an ensemble of

representative trajectories is generated by simulating the state equation using a

collection of control inputs consisting of a nominal optimal control (a time-varying

power setting for each lamp bank) and several perturbations via pseudo-random

binary sequences. It is then shown that a reduced model derived via Galerkin

projection onto the span of 30 POD basis vectors is sufficient to reproduce tem-

perature dynamics to within one-third of a degree. In [5], an ensemble is generated

by simulations using the nominal optimal control perturbed by a uniform 5%-10%.

After truncation of all but the most energetic 40 POD modes, further reductions

to a 15 state system were obtained by various procedures, including the “slaving”

of modes, i.e., setting the time derivatives of a pre-determined number of “slave”

modes to zero, resulting in a “steady manifold” and a set of differential-algebraic

equations.

Similar studies of model reduction for heat transfer in a RTP chamber with 3

lamp banks are presented in [1, 157]. In these studies, an ensemble is generated

via three simulations: one with each of the lamp banks set to 100% power and the

other two turned off. A reduced model with, respectively, 4 and 5 states, is derived

from the original models of order 100 and 76, respectively, using the POD and an

orthogonal collocation discretization scheme. The reduced model is then used to

compute a control for tracking a desired temperature trajectory at several points

on the wafer surface.

Another RTP heat transfer application, for which the order reduction is of

considerably greater magnitude, is presented in [13]. A finite-element discretiza-
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tion of a generic RTP chamber results in a dynamic model with 5060 unknowns.

There are 3 operating points of interest, each corresponding to a particular uniform

steady-state temperature across the wafer surface. Consequently, the authors de-

rive three reduced models of order 10, each corresponding to one of the operating

points, and each capable of reproducing temperature trajectories in a vicinity of

the operating point to within 1% error. The overall strategy then involves switch-

ing among the three reduced models according to a pre-determined set of rules.

Various computational issues regarding the numerical integration of a switched set

of state equations are addressed.

Remark 3.2.40 The ad-hoc nature of the POD applied to model reduction for

state-space control systems is made clear in the examples presented above. The

discretion of the modeler in choosing the ensemble and designing the overall pro-

cedure is evident in all cases. Moreover, the state-to-output relationship is consis-

tently ignored in determining the reduced model. 2

3.3 Balanced Truncation for Linear Systems

One technique that is used often in dealing with nonlinear state-space models is

linearization, in which the model is approximated, locally about an equilibrium,

by a linear system derived from a Taylor series expansion of the system map. We

then work with the resulting linear model for purposes of, e.g., control. In addition,

there are various system identification techniques that directly yield a linear model.

One method for reducing the order of a linear system is balanced truncation. It

is well established and widely applied, mainly due to its simplicity, computability,

and good performance.
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The balanced realization is one of the infinitely many different state-space real-

izations for a given LTI system. Its properties have made it very useful in control

engineering and signal processing. Mullis and Roberts [111] first introduced the

balanced realization in 1976 to study roundoff noise in digital filters. In 1981,

Moore [109] proposed the balanced truncation method for reducing the order of

a stable finite-dimensional LTI system. The terminology “balanced” reflects the

characterization of the realization as one that is equally controllable and observ-

able, a notion that is made precise in Section 3.3.1. When a system is in balanced

form, the importance of an individual state component to the input-to-output be-

havior of the system is indicated by the relative magnitude of its corresponding

Hankel singular value. This provides for a meaningful ranking of state components

and a guide for truncating those with relatively small contribution.

The method of balanced truncation, or balancing, has been extended in sev-

eral directions, including to infinite-dimensional linear systems [34, 55], unstable

linear systems [104, 122], closed-loop linear systems incorporating various types

of controller structures (e.g., LQG [71], H∞ [113]), and conservative mechanical

systems [158]. To accommodate many practical applications, the method has been

modified to incorporate frequency weighting [4, 44]. Glover [54] showed that the

balanced truncation method is not optimal with respect to the Hankel norm and

introduced a closely related method that achieves optimality. We will not work

with these extensions or modifications in this thesis. However, generalizations of

the method to the nonlinear setting are of paramount importance here and are

introduced in Section 3.3.5.

The material contained in this section is well known. Our exposition is mainly

based on the presentations in [54, 109, 141, 170], and some results drawn from [127].
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We refer to the literature for the proofs.

3.3.1 Derivation

Consider the LTI system

ẋ = Ax+B u y = C x (3.76)

where A is n×n, B is n×m, and C is p×n. The transfer function matrix for (3.76)

is given by

G(s) = C (s 1I− A)−1B (3.77)

We say that (A,B,C) is a realization for G(s). We say that A is stable if spec (A) ⊂

IC−.

Definition 3.3.1 (Controllability and Observability Gramians) Consider

the realization (A,B,C) and let A be stable. The n × n symmetric non-negative

definite matrices

Wc =
∫ ∞

0
exp (A t) BBT exp

(
AT t

)
dt (3.78)

Wo =
∫ ∞

0
exp

(
AT t

)
CTC exp (A t) dt (3.79)

exist and are called, respectively, the controllability Gramian and the observability

Gramian. 2

Interpretations of the Gramians are important to understanding their use in

model reduction. Consider the following interpretations from the energy point of

view. The minimum control energy required to reach state x0 from 0 in infinite time

is given by x0Wc
−1 x0. Hence, Wc

−1 can be used as an indicator of the amount of

input energy needed to reach a given state. Similarly, the output energy generated
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by releasing the system from initial state x0 with the input turned off is given by

x0Wo x0. Hence, Wo can be used as an indicator of the effect that a given initial

state has on the output.

Another important interpretation is what Moore referred to as a signal injection

view of Kalman’s minimal realization theory. The controllability Gramian appears

in the PCA (see Section 2.3) of the matrix-valued signal X(t) = exp (A t) B. This

signal corresponds to a collection of state responses to unit impulses injected at

the input terminals. Similarly, the observability Gramian appears in the PCA of

the matrix-valued signal Y T(t) = exp
(
AT t

)
CT. The signal Y (t) corresponds to

a collection of output responses to unit impulses injected as disturbances at the

output terminals of the input filter. In his derivation, Moore used the PCA of these

signals to characterize the controllable subspace and the orthogonal complement

of the unobservable subspace, and to find a coordinate system in which those

subspaces are spanned by the same PCA component vectors. This point of view

illustrates the connections between the POD, PCA, and balanced realizations for

linear systems.

Example 3.3.2 The controllability or observability Gramian alone cannot give

an accurate indication of the dominance of the state components pertaining to

the input-to-output behavior. Consider the following example from [170]. For the

transfer matrix

G(s) =
3 s+ 18

s2 + 3 s+ 18
(3.80)

we have the family of realizations

A =

 −1 −4/α

4α −2

 B =

 1

2α

 C =
[
−1 2/α

]
(3.81)
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with Gramians

Wc =

 1/2 0

0 α2

 Wo =

 1/2 0

0 1/α2

 (3.82)

We see that the degree to which the second state component is controllable or ob-

servable can be made arbitrarily high or low, but not independently. 2

The following properties of the Gramians are important for our purposes.

Theorem 3.3.3 (Lyapunov Equations) Consider the realization (A,B,C) and

let A be stable. The controllability Gramian Wc and the observability Gramian Wo

are the unique solutions of the matrix Lyapunov equations, respectively,

AWc +WcA
T +BBT = 0 (3.83)

ATWo +WoA+ CTC = 0 (3.84)

2

Theorem 3.3.4 Consider the realization (A,B,C) and let A be stable. The con-

trollability Gramian Wc is positive definite if and only if (A,B) is controllable.

Likewise, the observability Gramian Wo is positive definite if and only if (C,A) is

observable. 2

A meaningful ranking of states is provided by the Hankel singular values.

Definition 3.3.5 (Hankel Singular Values) Consider the realization (A,B,C)

with A stable, controllability Gramian Wc, and observability Gramian Wo. The

Hankel singular values of the system are defined as the positive square roots of the

eigenvalues of the product WcWo, i.e.,

σi = (λi(WcWo))
1/2 i ∈ n (3.85)

where by convention they are ordered such that σi ≥ σi+1. 2
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Remark 3.3.6 Under similarity transformation x = S x̂, the Gramians transform

to, respectively,

Ŵc = S−1Wc

(
ST
)−1

Ŵo = STWo S (3.86)

and the product WcWo transforms to S−1WcWo S. Thus, the Hankel singular

values are invariant under similarity transformation. 2

Remark 3.3.7 If the realization (A,B,C) is minimal then the Hankel singular

values are strictly positive. We will work only with minimal realizations. 2

Fact 3.3.8 Let G(s) be the transfer function matrix for the minimal realization

(A,B,C) with A stable. The largest Hankel singular value of the system is equal

to the Hankel norm of the system, i.e.,

‖G ‖2H = σ2
1 (3.87)

The other Hankel singular values may be characterized inductively in a similar

way. 2

Example 3.3.9 The Hankel singular values in Example 3.3.2 are 1 and 0.5. 2

We now define the balanced realization in terms of the Gramians and note its

relationship with the Hankel singular values.

Definition 3.3.10 (Balanced Realization) A minimal realization (A,B,C)

with A stable, controllability Gramian Wc, and observability Gramian Wo is said

to be balanced if

Wc = Σ = Wo (3.88)

where Σ = diag (σ1, . . . , σn) > 0. 2
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Remark 3.3.11 Such a realization is also referred to as internally balanced [109]

and diagonal balanced [66]. 2

Remark 3.3.12 The diagonal entries in Σ correspond to the Hankel singular val-

ues of the system. 2

Remark 3.3.13 The origin of the terminology “balanced” is apparent, i.e., the

system is equally controllable and observable, as indicated by the equality of the

Gramians. 2

Theorem 3.3.14 (Existence and Uniqueness of a Balanced Realization)

Let the realization (A,B,C) be minimal and let A be stable. Then there exists a

coordinate transformation x = Sbal x̂ such that

Ŵc
4
= Sbal

−1Wc

(
Sbal

T
)−1

= Σ = Sbal
TWo Sbal

4
= Ŵo (3.89)

where Σ = diag (σ1, . . . , σn) > 0. It is unique up to an arbitrary orthogonal trans-

formation T such that T Σ = ΣT . 2

Remark 3.3.15 We refer to Sbal as the balancing coordinate transformation. 2

There are two other special forms that are related to the balanced realization

and that will be important for computing balanced realizations in the nonlinear

setting.

Definition 3.3.16 (Input-Normal, Output-Normal) A minimal realization

(A,B,C) with A stable, controllability Gramian Wc, and observability Gramian

Wo is said to be input-normal if

Wc = 1I Wo = Σ2 (3.90)
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where Σ is the diagonal matrix of Hankel singular values. Furthermore, it is said

to be output-normal if

Wc = Σ2 Wo = 1I (3.91)

2

Remark 3.3.17 The input-normal and output-normal realizations are easily ob-

tained from the balanced realization by scalings on the states, respectively, x =

Σ1/2 x̂ and x = Σ−1/2 x̂. 2

3.3.2 Properties

We now justify the use of the balanced realization as a tool for model reduction.

Let A be stable and (A,B,C) be a minimal realization in balanced form so that

Wc = Σ = Wo. Then the magnitude of the Hankel singular value σi, relative to

the others, is an indication of the degree to which the i-th state component is,

simultaneously, controllable and observable, relative to the others. Equivalently,

a small σi means that it is relatively difficult both to reach and to observe the

state (0, . . . , 0, xi, 0, . . . , 0), and visa-versa. Finally, from an energy point of view,

σi is interpreted as indicating the contribution of the i-th state component to the

input-to-output energy gain of the system, as measured by the Hankel norm.

Suppose that σk � σk+1 for some k. Then those states corresponding to

σk+1, . . . , σn are considerably less important than states corresponding to σ1, . . . , σk.

Consequently, truncation of the less important states causes little degradation to

the predictive capability of the model, as pertaining to the input-to-output behav-

ior. These ideas are made more precise in the following discussion.

We derive the reduced-order model via partitioning and truncation. Consider
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the partition of the balanced Gramian

Σ =

 Σ1 0

0 Σ2

 (3.92)

where Σ1 = diag (σ1, . . . , σk) and Σ2 = diag (σk+1, . . . , σn). In addition, we parti-

tion (A,B,C) accordingly as

A =

 A11 A12

A21 A22

 B =

 B1

B2

 C =
[
C1 C2

]
(3.93)

We refer to the subsystem (A11, B1, C1) as the truncated system. It can be used as

a k-th-order reduced model to approximate the n-th order full model (A,B,C).

The following results say that the truncated system is balanced and stable.

Theorem 3.3.18 (Pernebo and Silverman [127]) Let (A,B,C) be balanced

with Gramian Σ and partitions (3.92) and (3.93). Then both subsystems

(A11, B1, C1) and (A22, B2, C2) are balanced and their controllability and observ-

ability Gramians are equal to, respectively, Σ1 and Σ2. 2

Theorem 3.3.19 (Pernebo and Silverman [127]) Let (A,B,C) be balanced

with Gramian Σ and partitions (3.92) and (3.93). If σk > σk+1 (i.e., σk 6= σk+1)

then both subsystems (A11, B1, C1) and (A22, B2, C2) are asymptotically stable. 2

Remark 3.3.20 Truncation amounts to setting

xk+1 = · · · = xn = 0 (3.94)

There is another method [46] for generating a reduced model in which we set

ẋk+1 = · · · = ẋn = 0 (3.95)
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Using the latter method, the full-order and reduced-order models have matching

DC gains (steady-state response). The former method typically produces a better

approximation to the full-order model over a range of frequencies, but the DC gains

are not guaranteed to match. Using either method, the reduced model is stable and

balanced. 2

The performance of balanced truncation as a model reduction method is char-

acterized by the following error bound.

Theorem 3.3.21 (Glover [54]) Let (A,B,C) be balanced with Gramian Σ, par-

titions (3.92) and (3.93), and transfer function matrix G(s). Let the truncated

system (A11, B1, C1) have transfer function matrix G1(s). Then

‖G−G1 ‖H ≤ ‖G−G1 ‖∞ ≤ 2
n∑

i=k+1

σi (3.96)

2

Remark 3.3.22 Thus, if σk+1, . . . , σn are small then the error is small and the

truncated system is a good approximation in terms of the Hankel norm, i.e., the

error bound can be used as a measure of model fidelity corresponding to (1.1). 2

Remark 3.3.23 The upper bound for the error (3.96) is not optimal, but is close

to optimal. See Glover [54] for a characterization of all optimal Hankel norm

approximations to (A,B,C) and associated error bounds. 2

3.3.3 Computation

Given a minimal realization (A,B,C) with A stable, a balanced realization can be

obtained efficiently through the standard algorithms of Laub [90], Moore [109], and

the more elegant algorithm of Laub, et.al. [91]. The latter algorithm is currently,
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and has been since 1994, the standard balancing algorithm used in MATLAB [102].

These algorithms use standard, efficient, and stable matrix algebra and decompo-

sition routines such as for SVD and Cholesky decomposition. There is little or no

trouble in computing balanced realizations for LTI systems in most situations.

Numerical difficulties arise in using these algorithms when the condition number

of the product matrix WcWo is high. This corresponds to the situation where

some states are nearly uncontrollable or nearly unobservable, i.e., the realization is

nearly non-minimal. Safonov and Chiang [136] introduced a method to deal with

this situation, which they called a “Schur method” in reference to the fact that it

is computed using the Schur decomposition of the product matrix WcWo.

The idea is to avoid balancing altogether by computing orthonormal bases,

via the ordered Schur form, for the left and right eigenspaces associated with

the “big” eigenvalues of WcWo. The reduced k-th order model is not necessarily

balanced, but has exactly the same transfer function as would any k-th order

balanced realization. Thus, the reduced unbalanced model enjoys the same error

bound as a reduced balanced model. The algorithm is stable and effective without

regard to nearness to unobservability or uncontrollability.

Finally, we note that Helmke and Moore [66] have presented gradient flows

on the class of positive definite matrices that converge to the unique symmetric

positive definite balancing transformation matrix, as well as to all balancing trans-

formation matrices for a given realization (A,B,C). The gradient flows converge

exponentially fast to the balanced realization. The gradient flow method has not

yet become prominent for applications due to issues of practical implementation.

The details of the various algorithms discussed here are presented in Ap-

pendix E.

104



3.3.4 Applications

Balanced truncation has become prominent as a tool for model reduction during the

1980s and 1990s mainly due to its simplicity, computability, and good performance.

It has been applied in a wide variety of areas, including the several that we briefly

discuss here. We note that in these and most practical situations, the balancing

procedure is modified somewhat to suit the intended application. However, the

role which ad-hoc techniques play in balanced model reduction is small compared

with that for POD methods.

One drawback of balancing is that the state variables in the balanced realiza-

tion lose their physical meaning. Blelloch, Mingori, and Wei [17] addressed this

problem in their application of balanced truncation to linear models for lightly

damped mechanical systems with gyroscopic and small circulatory forces such as

large flexible space structures. Specifically, they used the result that the modal rep-

resentation for certain systems becomes asymptotically balanced as the damping

approaches zero. Thus, a lightly damped structure in modal form, which retains

the physical meaning of the state variables, is approximately balanced. After de-

riving an approximate balanced realization for the model of a dual-spin spacecraft,

they take advantage of its properties to reduce the model order.

Friswell, Penny, and Garvey [50] conducted a comparative study of reduction

methods for models of high degree-of-freedom mechanical structures with local

nonlinearities. The nonlinear term (nonlinear forces) was ignored in computing the

linear coordinate transformations, which were then applied to the full nonlinear

model. The authors applied the reduction methods to models of a cantilever beam

system and a pinned beam system. For the simulations they conducted, reduced-

order models derived via balanced truncation predicted the response of the full-
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order nonlinear model more accurately than the other methods, including modal

coordinates.

Ramirez and Maciejowski [130] directly formulated a balanced model for a

stirred tank chemical reactor from pulse response data. They used the canonical

form of Ober [122, 123] and a related system identification algorithm to produce

a high-order balanced realization. Truncation yielded a 3-state linear model. The

input-to-output response of the low-order balanced model was compared with that

of a 3-state nonlinear physical-chemical model and its linearization. For the simu-

lations they conducted, the balanced model captured the nonlinear dynamics of the

system more accurately than did the linearization. It was then used in the design

of an LQG optimal control law and Kalman filter for regulation in the presence of

large disturbances.

Finally, we note that balanced truncation has been studied [116, 120], and used

in at least one commercial software package [129], for order reduction of nonlinear

models for heat transfer in RTP chambers. In these applications, linearized versions

of the models are used to compute the balancing coordinate transformation, which

is then applied to the original nonlinear model. Truncation yields low-order models

for use in simulation, control, and optimization.

3.3.5 Nonlinear Generalizations

There have been two recent independent attempts (of which we are aware) to

generalize the method of balanced truncation to the nonlinear setting. In 1993,

Scherpen [140, 141] introduced a general theory and procedure of balancing for a

class of stable, affine, smooth, finite-dimensional nonlinear systems. The approach

is inherently nonlinear; it produces a nonlinear balancing coordinate transforma-
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tion that is local to a neighborhood of the origin. In 1999, Lall, Marsden, and

Glavaski [137] introduced a method that is inherently linear; it produces a linear

change of coordinates by constructing and decomposing matrices that serve as gen-

eralized Gramians for the nonlinear system. We introduce and remark on these

methods below to provide background for Chapter 4.

Scherpen Nonlinear Balancing

The Scherpen methodology departs from the signal injection viewpoint of Moore

while remaining consistent with its results in the LTI case. The main objects

of importance are the controllability and observability energy functions. These

functions serve the role that the controllability and observability Gramian matrices

do in linear balancing, i.e., they provide a well-defined measure of the degree to

which a system is, respectively, controllable or observable. However, unlike the

Gramians, they are not easily computable.

In the LTI case, the energy functions specialize to quadratic forms involving

the Gramian matrices. Thus, it is natural that, in the nonlinear setting, the first

step in the balancing procedure is to determine a nonlinear change of coordinates

in a neighborhood of the origin under which the controllability function is lo-

cally quadratic. This is accomplished by application of the Morse-Palais lemma,

which gives a quadratic canonical form for functions in the neighborhood of a non-

degenerate critical point. Again, there exist no practical methods for computing

the desired change of coordinates.

Further nonlinear coordinate transformations take the system to special forms

that are analogous to input-normal, output-normal, and balanced. When the

system is in balanced form, state components can be ranked and deleted according
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to their respective contributions to the input-to-output energy of the system, as

indicated by the respective relative magnitudes of the singular value functions,

which are generalizations of the Hankel singular values.

Remark 3.3.24 The method is consistent with the LTI balancing procedure in

the following sense. Suppose the nonlinear system is realized with (f, g, h) which

has linearization (A,B,C) about 0. Let Ψ be the nonlinear balancing transfor-

mation for (f, g, h) about 0 and
(
f̂ , ĝ, ĥ

)
be the balanced realization. Let S and(

Â, B̂, Ĉ
)

be the linearizations, respectively, of Ψ and
(
f̂ , ĝ, ĥ

)
about 0. Let T be

the balancing transformation matrix for (A,B,C). Then S = T and
(
Â, B̂, Ĉ

)
=

(T−1AT, T−1B,C T ). 2

Remark 3.3.25 In contrast to the linear case, the nonlinear balancing procedure

is not immediately amenable to computational implementation. For example, the

controllability energy function corresponds to the value function for a nonlinear

optimal control problem. Also, the Morse-Palais lemma guarantees the existence

of a transformation to the desired canonical form, but provides no constructive

procedure for obtaining it. Thus, tools have not yet appeared for computing balanced

realizations for nonlinear systems, and the Scherpen procedure has not yet been

applied as a tool for model reduction. 2

Scherpen Pseudo-Balancing

We note that, in 1994, Scherpen [141] also introduced a method for balancing in the

special case of a nonlinear Hamiltonian system. A special technique is necessary

because such a system is conservative and therefore not asymptotically stable. The

method is a nonlinear generalization of the pseudo-balancing approach of van der

Schaft and Oeloff [158]. The idea is to derive an associated “gradient system”

108



of dimension n, from the original Hamiltonian system of dimension 2n, that is

asymptotically stable and thus can be balanced.

Remark 3.3.26 To date, the only “balanced” realizations for nonlinear systems

that have appeared in the literature have been derived via pseudo-balancing [141,

159], i.e., are pseudo-balanced Hamiltonian systems. 2

LMG Nonlinear “Balancing”

The method of Lall, Marsden, and Glavaski (LMG) adopts the signal injection

viewpoint of Moore and extends it by expanding the class of allowable impulsive

test signals to include rigid rotations and uniform scalings of the original impulsive

vector signals. In a procedure analogous to that of Moore, application of PCA to

the resulting collection of system response signals produces matrices, called the

empirical controllability Gramian and the empirical observability Gramian, that

serve the role that their respective counterparts do in the LTI case. Thus, again

like that of Moore, the approach is strongly related to the POD.

Remark 3.3.27 As with the Scherpen method, the LMG method is consistent with

the LTI balancing procedure. It is shown that the use of the expanded input signal

space has no effect when applied in the LTI case, i.e., the LMG method specializes

to the usual balanced truncation for LTI systems. 2

Remark 3.3.28 The computational framework of the LMG method is the same

as that of Moore, i.e., it involves matrix algebra and decompositions. Therefore, it

retains the computational ease and efficiency of LTI balancing. 2

Remark 3.3.29 The nomenclature “empirical Gramian” used to distinguish the

new objects from the familiar Gramians is misleading, since the empirical Gramians
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are no more nor less “empirical” than the familiar Gramians. This is made clear

by Moore’s signal injection viewpoint. The new objects are better described as

extended Gramians, to indicate that they are constructed by taking account of the

broader class of impulsive test signals. Moreover, the properties of these Gramians

pertaining to controllability and observability in the nonlinear setting are unclear

and not discussed. 2

The authors claim that the method provides a balanced truncation via ranking

of subspaces, but the authors never actually define what they mean by a “balanced

nonlinear system.” The proposed change of coordinates balances the empirical

Gramians, i.e., makes them equal to the same positive-definite diagonal matrix.

While the consequences of such a change of coordinates are known in the LTI

case, the implications on the nonlinear system realization are not known and never

discussed. Moreover, no quantification of the importance of a particular subspace

is offered. Thus, it is unclear as to how exactly the LMG method is an extension

of balancing to nonlinear systems.

The LMG method does provide an organized framework for injecting test sig-

nals with additional degrees of freedom beyond that which Moore described, while

remaining compatible with the linear theory, and reinforcing the importance and

special properties of impulsive signals as inputs. In particular, the rigid rotations

and scalings of the impulsive inputs are chosen such that they excite the nonlinear

system in some appropriate manner. The authors suggest that experience and ex-

perimental data may be useful in choosing parameters. Thus, the method suffers

from some of the shortcomings associated with the POD, albeit with the choice of

input signals parameterized in an organized fashion.
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Remark 3.3.30 Generalizations of the Gramian matrices to the nonlinear setting

that are compatible with the Scherpen theory for nonlinear balancing have recently

appeared [59]. These generalizations have the advantage that their properties per-

taining to controllability and observability are well-defined. 2

3.4 Component Truncation

Recall the general methodology for state-space model reduction outlined in Sec-

tion 1.1.1 and illustrated by Figure 1.1. Once a coordinate transformation has

been selected, it is applied to the model equations to yield the transformed sys-

tem. Then, state components are ranked, and some are deleted. We will refer

to this process as component truncation. We have already presented component

truncation procedures for the special cases of

• a linear orthogonal coordinate transformation Φ for a nonlinear model (POD

- via projection Φk); and

• a linear coordinate transformation Sbal for a LTI model (balanced truncation

- via partition and truncation).

Here we present the general procedure and make some remarks about practical

computation.

Let the full-order state-space model be given by the autonomous state equation

and output equation, respectively,

ẋ = f (x, u) (3.97)

y = h (x) (3.98)
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where x ∈ IRn represents local coordinates for the full-order state. Suppose that

we apply the diffeomorphic change of coordinates

z 7→ x = S(z) (3.99)

under which the system map and output map transform to (see Section 2.1), re-

spectively,

f̂(z, u) = [DS(z)]−1 f (S(z), u) (3.100)

ĥ(z) = h (S(z)) (3.101)

We reduce the system order, or truncate state components, by setting

zk+1 = · · · = zn = 0 (3.102)

so that f̂k+1, . . . , f̂n are no longer relevant to the model. We define the truncated

state

z1 4= [z1, . . . , zk]
T (3.103)

and the truncated system map and output map, respectively,

f̂ 1
(
z1, u

)
4
=


f̂1(z1, . . . , zk, 0, . . . , 0, u)

...

f̂k(z1, . . . , zk, 0, . . . , 0, u)

 ĥ1
(
z1
)
4
=


ĥ1(z1, . . . , zk, 0, . . . , 0)

...

ĥp(z1, . . . , zk, 0, . . . , 0)


(3.104)

The reduced-order model and approximate state reconstruction are given by

ż1 = f̂ 1
(
z1, u

)
(3.105)

ŷ = ĥ1
(
z1
)

(3.106)

and

x̂ = S(z1, . . . , zk, 0, . . . , 0) (3.107)
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The reduction in dimensionality of the state-space manifold from n to k is

not necessarily reflected in practical computations. Suppose that we are given

(f, g, h) and compute a suitable local transformation S. Consider a numerical

integration of the reduced state equation (3.105). This computation requires, for

each time step, evaluation of the k real-valued functions in the reduced system map

f̂ 1 =
(
f̂1, . . . , f̂k

)
. However, practically speaking, these function evaluations must

be performed using the known original f and known diffeomorphism S via (3.100).

Thus, it is actually necessary to evaluate the n real-valued functions in the full

state map f = (f1, . . . , fn), partially defeating the purpose of the reduction. This

dilemma has been alluded to in the applied POD literature [5, 6] without further

explanation.

Remark 3.4.1 It appears desirable to have a computational procedure in which

the transformed system map f̂ can be evaluated without needing to evaluate the full

system map f . 2

Remark 3.4.2 This issue does not enter into the LTI case. The linear structure

allows for the elimination of a subsystem that is completely irrelevant to computa-

tions for the reduced model. 2

3.5 Remarks

We have studied two prominent methodologies for model reduction of linear and

nonlinear systems. The POD approach is applicable to linear and nonlinear mod-

els, and to models of finite and infinite dimension. It produces a set of basis vectors

for a linear orthogonal change of coordinates. The basis vectors are called empiri-

cal eigenvectors, and in certain contexts they correspond to physically manifested
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spatial structures in a spatially distributed flow. The procedure can be character-

ized as statistical and empirical in nature, in that the basis is derived via spectral

decomposition of the covariance associated with an ensemble of empirically gen-

erated signals. Its effectiveness relies on the ability of the ensemble to capture

the essential system behavior. The POD coordinate transformation is not derived

directly from the model or its intrinsic properties. Furthermore, it completely

ignores the state-to-output relationship.

The empirical eigenvectors are computed easily using SVD. The corresponding

eigenvalues provide a meaningful ranking of state components in terms of sig-

nal energy as captured by the ensemble. However, there exist no explicit error

bounds in terms of the eigenvalues or otherwise. Coordinate transformation and

component truncation occur simultaneously via linear projection onto the low-

dimensional subspace. Versions of the method have been applied within overall

ad-hoc procedures for particular situations.

The balancing approach produces a linear change of coordinates for an LTI

system. The balanced realization is derived directly from the model parameters

(A,B,C) through decompositions of the Gramians Wc and Wo. The procedure can

be characterized as control-theoretic in nature, in that it derives from controllabil-

ity and observability properties of the system, although the signal injection view

of Moore reveals connections to the POD.

The balancing transformation is easily computable using efficient matrix alge-

bra algorithms. The Hankel singular values provide a well-defined and meaningful

ranking of state components in terms of contribution to the input-to-output be-

havior. Furthermore, the norm of the error between the full and reduced models is

explicitly computed in terms of the discarded Hankel singular values. Component
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truncation is performed via partition and subsystem elimination. The method has

been applied to linear models for various physical systems.

The theory and procedure of Scherpen generalizes the established linear method

to the nonlinear setting. The balancing transformation is nonlinear and local to a

neighborhood of the origin. It retains some of the appealing features of the linear

method, e.g., the balancing transformation is derived directly from the model

parameters f , g, and h, and emphasizes state components that are both strongly

controllable and strongly observable, so that state components which are least

likely to influence the measurements are truncated. However, the procedure is not

easily computable and its performance has not yet been observed in applications.

We address these issues in Chapter 4.
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Chapter 4

Computing Balanced Realizations

for Nonlinear Systems

4.1 Introduction

This chapter addresses the problem of computability pertaining to the Scherpen

theory and procedure for balancing of nonlinear systems. We offer methods and al-

gorithms toward computing balanced realizations for stable affine nonlinear control

systems, i.e., state-space models of the form

ẋ(t) = f (x(t)) +
m∑
i=1

gi (x(t)) ui(t) (4.1)

y(t) = h (x(t)) (4.2)

where u = (u1, . . . , um) ∈ U ⊂ IRm, y = (y1, . . . , yp) ∈ IRp, and x = (x1, . . . , xn)

are local coordinates for a smooth state-space manifold M . The maps f , g1, . . . , gm

are smooth and we assume that f(0) = 0 and h(0) = 0.

We say that f is stable (asymptotically stable) if 0 is a stable (asymptotically

stable) equilibrium for ẋ = f(x), and normally assume asymptotic stability of f .
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We refer to the triple (f, g, h) as a realization of the nonlinear system.

In Sections 4.2 and 4.3 we consider the problem of computing the controllability

energy function without solving the family of optimal control problems implied in

its definition. Stochastically excited systems (see Section 2.6) play a major role

in our methodology. We present a stochastic method for computing an estimate

of the controllability function, and show that in certain situations the method

provides an exact solution. The procedure is tested on applications via Monte-

Carlo experiments.

The crucial step in the balancing procedure is finding a local coordinate trans-

formation under which the controllability function is quadratic in a neighborhood

of 0. The Morse-Palais lemma ensures the existence of a quadratic canonical form

for a function with a non-degenerate critical point at 0, such as the controllability

and observability energy functions. However, it provides no constructive procedure

for obtaining the desired local change of coordinates. In Section 4.4 we develop an

algorithm for computing the desired nonlinear transformation.

In Section 4.5 we present the overall procedure for computing the balancing

transformation and algorithms for performing the required computations. We ap-

ply the methods developed in this chapter to two example problems. The results

are presented in Section 4.6. We compute a balanced realization for a forced

damped pendulum system, and make progress toward balancing a forced damped

double pendulum system. Additional remarks and a summary are presented in

Section 4.7.
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4.2 Energy Functions

As stated earlier, a balanced realization is one that is equally controllable and

observable. In order to make such a statement meaningful, we must provide a

measure of the degree to which a system realization, and its state components, are,

respectively, controllable and observable. These properties can be quantified in a

precise way via, respectively, the controllability and observability energy functions

of the system.

Definition 4.2.1 (Controllability Function) The controllability function,

Lc : IRn → IR, for system (4.1)-(4.2) is defined by

Lc (x0) = min

u ∈ L2(−∞, 0)

x(−∞) = 0 , x(0) = x0

1

2

∫ 0

−∞
‖ u(t) ‖2

dt (4.3)

2

Definition 4.2.2 (Observability Function) The observability function,

Lo : IRn → IR, for system (4.1)-(4.2) is defined by

Lo (x0) =
1

2

∫ ∞
0
‖ y(t) ‖2 dt x(0) = x0 u(t) ≡ 0, t ≥ 0 (4.4)

2

Remark 4.2.3 The value of Lc at state x0 is the minimum amount of control

energy required to reach the state x0 from 0. The value of Lo at state x0 is the

amount of output energy generated by the system’s natural response to initial state

x0. 2

Remark 4.2.4 There are other definitions of Lo for which the input u plays a

direct role. These can be considered closed loop generalizations of (4.4), which
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then corresponds to an open loop observability function. For details and results

see [58, 142]. In this thesis we use only the Lo given by (4.4). 2

Fact 4.2.5 In the case of an LTI system (3.76) the controllability and observability

functions, respectively, specialize to the quadratic functions

Lc(x0) =
1

2
x0
TWc

−1 x0 (4.5)

Lo(x0) =
1

2
x0
TWo x0 (4.6)

where the symmetric positive-definite matrices Wc and Wo are, respectively, the

familiar controllability and observability Gramian matrices, given, respectively,

by (3.78) and (3.79) (see [140, 141]). 2

4.2.1 Properties

There are several properties of the controllability and observability energy func-

tions that we will use in our computational effort. It is clear that both of these

functions are non-negative (vanish only at 0). However, they are not necessarily

finite everywhere in a neighborhood of the origin, nor is the minimum at 0 neces-

sarily non-degenerate, i.e., isolated. We need both Lc and Lo to be finite (i.e., to

exist) and non-degenerate in a neighborhood of 0 in order to perform the balancing

computations. We now discuss conditions under which the energy functions enjoy

those properties.

Theorem 4.2.6 (Scherpen and Gray [142]) Suppose that f is asymptotically

stable on a neighborhood W of 0. Then Lc(x) is smooth, finite, and satisfies

Lc(x) > 0 for x ∈ W , x 6= 0 if and only if the system (4.1)-(4.2) is asymptot-

ically reachable from 0 on W . 2
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Remark 4.2.7 It makes intuitive sense that a reachability property determines

whether Lc is finite, since if we have a state x0 that is not reachable, the minimum

in (4.3) will fail to exist at x0. In that case, by convention, we take Lc(x0) =∞.

2

Remark 4.2.8 Non-degeneracy of Lc is guaranteed by asymptotic stability of f .

Intuitively, some positive control energy must be required to steer away from the

asymptotically stable origin to states in some open neighborhood. 2

Interestingly, but not surprisingly, we have a dual situation regarding Lo. In a

reversal of the situation for Lc, non-degeneracy (rather than finiteness) of Lo is de-

termined by an observability property, and finiteness (rather than non-degeneracy)

of Lo is determined by stability properties. We first state the condition for non-

degeneracy of Lo.

Theorem 4.2.9 (Scherpen [140]) Suppose that f is asymptotically stable on a

neighborhood W of 0. If the system (4.1)-(4.2) is zero-state observable on W , then

Lo(x) > 0 for x ∈W , x 6= 0. 2

To ensure that Lo is finite, we use stability conditions on f together with addi-

tional conditions on h. It turns out that the typical situation in which the origin

is exponentially stable and h is smooth with h(0) = 0 is sufficient to guarantee

that Lo is finite on a neighborhood W of 0. In fact, we derive somewhat weaker

sufficient conditions, presented in the following.

Proposition 4.2.10 Suppose that f is asymptotically stable with region of attrac-

tion W . Let x0 ∈W . Let x(t) be the unique solution to the initial value problem

ẋ = f(x) x(0) = x0 (4.7)
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Suppose that there exists a time t1 ≥ 0 and positive constants α and β such that

for all t ≥ t1

‖x(t) ‖ ≤ α exp (−β(t− t1)) (4.8)

Suppose that h is locally Lipschitz on W with h(0) = 0. Define y(t) = h (x(t)) for

t ≥ 0. Then y ∈ L2[0,∞).

Proof Since h is locally Lipschitz on W , there exists a constant L > 0 such that

‖ h(x)− h(0) ‖ ≤ L ‖x− 0 ‖ (4.9)

in some compact neighborhood V ⊂W of 0. By h(0) = 0 we have ‖h(x) ‖ ≤ L ‖x ‖

for all x ∈ V . Let U = V ∩ B(0, α). Let t2 = min {t ≥ 0 : x(t) ∈ U}. Then for

t ≥ t2

‖ y(t) ‖ = ‖h(x(t)) ‖ ≤ Lα exp (−β (t− t1)) (4.10)

and

∫ ∞
t2

‖ y(t) ‖2 dt ≤ L2 α2 exp (2 β t1)
∫ ∞
t2

exp (−2 β t) dt

=
L2 α2

2 β
exp (2 β (t1 − t2)) (4.11)

Now, by asymptotic stability, x(t) is finite for all t ≥ 0 for arbitrary x0 ∈ W .

Furthermore, h is continuous on V (by Lipschitz property and compactness of V ).

Therefore y(t) = h (x(t)) <∞ for 0 ≤ t ≤ t2. This implies that for some γ > 0

∫ t2

0
‖ y(t) ‖2

dt = γ <∞ (4.12)

Thus, ∫ ∞
0
‖ y(t) ‖2

dt ≤ γ +
L2 α2

2 β
exp (2 β (t1 − t2)) , (4.13)

i.e., y ∈ L2[0,∞).
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Remark 4.2.11 The proposition asserts that Lo is finite on W whenever all of

the following hold:

(i) The equilibrium 0 is asymptotically stable with region of attraction containing

W .

(ii) There exists a neighborhood of 0, possibly smaller, in which 0 is exponentially

stable.

(iii) The function h is at least locally Lipschitz on W .

2

Remark 4.2.12 Scherpen [141] considers only the more general case where h

is smooth and states the more conservative condition that the linearization A =[
∂f
∂x

(0)
]

be asymptotically stable, i.e., that 0 be exponentially stable. 2

Remark 4.2.13 Given a Lipschitz h, mere asymptotic stability of 0 without a

neighborhood of exponential stability is insufficient to guarantee a finite Lo. Sys-

tems whose linearizations yield eigenvalues on the imaginary axis are candidates

for belonging to such a class of systems. For example, consider the system ẋ = −x3

with h(x) = x (smooth) and x(0) = 0. The output trajectory is y(t) =
(
1/
√

2
)
t−1/2

so that ‖ y(t)‖2 t→∞
−→ 0 as t−1, but y does not belong to L2[0,∞). If Lo fails to exist

at x0 then by convention we take Lo(x0) =∞. 2

Remark 4.2.14 The systems we work with generally have smooth h with h(0) = 0.

Moreover, many physical systems, including mechanical systems with damping,

enjoy exponential stability. Throughout this thesis, we usually can assume that the

functions Lc and Lo are finite, smooth, and non-degenerate everywhere in their

domain, without further explanation. 2
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We now present an important theoretical result that we use later to analyze

the results of our computational methods. The functions Lc and Lo each satisfy a

familiar nonlinear PDE, respectively, a Hamilton-Jacobi-Bellman (HJB) equation

associated with an optimal control problem, and a nonlinear type of Lyapunov

equation.

Theorem 4.2.15 (Scherpen [140, 141])

(i) Suppose that 0 is an asymptotically stable equilibrium of −
(
f + g gT

[
∂Lc
∂x

]T)
on a neighborhood V of 0. Then, for all x ∈ V , Lc is the unique smooth

solution of

0 =
∂Lc
∂x

(x) f (x)+
1

2

∂Lc
∂x

(x) g (x) gT (x)

[
∂Lc
∂x

(x)

]T
Lc(0) = 0 (4.14)

under the assumption that (4.14) has a smooth solution on V .

(ii) Suppose that 0 is an asymptotically stable equilibrium of f(x) on a neigh-

borhood W of 0. Then, for all x ∈ W , Lo(x) is the unique smooth solution

of

0 =
∂Lo

∂x
(x) f (x) +

1

2
hT (x) h (x) Lo(0) = 0 (4.15)

under the assumption that (4.15) has a smooth solution on W .

Proof See Remark 4.2.16 and Appendix F.

Remark 4.2.16 Scherpen [140, 141] proves Theorem 4.2.15 via a completing the

square argument and straightforward manipulation of Equations (4.14) and (4.15)

and Definitions 4.3 and 4.4. We offer a different proof in Appendix F that appeals

to the connections between Equations (4.14) and (4.15) and optimal control theory.

2
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Remark 4.2.17 Smooth solutions of (4.14) and (4.15) exist locally about 0 if the

matrix A =
[
∂f
∂x

(0)
]

is Hurwitz, so we will assume that the theorem is generally

applicable. 2

Remark 4.2.18 For the case of a linear system, Equations (4.14) and (4.15)

specialize to the matrix Lyapunov equations (3.83) and (3.84) (repeated below)

AWc +WcA
T +BBT = 0

ATWo +WoA+ CTC = 0

2

4.2.2 Remarks on Computation and Applications

Here we briefly point out some of the difficulties involved with computing the

controllability and observability energy functions, and discuss some straightforward

but likely impractical approaches.

Suppose that we have suitably discretized the state-space in such a way that

there are p evenly spaced grid points along each of the n dimensions. This means

that there are pn total grid points at which the energy functions are to be evaluated.

We denote the set of discrete grid points by X ⊂ IRn.

A direct computation of Lc from Definition 4.3 requires the numerical solution

of pn optimal control problems for the nonlinear system (4.1), one for each initial

state x0 ∈ X . In particular, to use a standard solution approach, the minimization

problem in (4.3) should be restated so that the optimal control problem corresponds

to signals in positive time, i.e., controls in L2(0,∞). We make the changes of

variables

τ
4
= −t z(τ)

4
= x(−τ) v(τ)

4
= u(−τ) (4.16)
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for t ≤ 0 and τ ≥ 0 so that (4.1) and (4.3), respectively, transform to

ż (t) = −f (z(t))− g (z(t)) v(t) (4.17)

and

Lc (x0) = min

v ∈ L2(0,∞)

z(0) = x0 , z(∞) = 0

1

2

∫ ∞
0
‖ v (τ) ‖2 dτ (4.18)

Remark 4.2.19 For the system (4.17), 0 is an unstable equilibrium. Therefore,

the minimum energy control which takes the state from x0 6= 0 to 0 cannot be

u ≡ 0, again demonstrating the non-degeneracy of Lc. 2

There exist computational methods and at least one software toolbox (RI-

OTS [143]) for solving broad classes of optimal control problems such as (4.18).

However, regardless of the computational complexity of the solution algorithms,

the overall computational complexity is at least o(pn), the number of optimal con-

trol problems we need to solve. Even for very low-order systems, the computational

expense is prohibitive.

Remark 4.2.20 Similarly, the overall computational complexity for a direct com-

putation of Lo from Definition 4.4 is at least o(pn). However, for each x ∈ X ,

rather than a numerical solution of an optimal control problem, we merely need a

numerical integration of the system equations. Although still impractical in general,

it is feasible for low-order systems. 2

Another computational approach that immediately comes to mind is numerical

solution of the nonlinear PDE (4.14) for the value function Lc. Equation (4.14)

is of Hamilton-Jacobi type (see [47, 93] for an extensive analysis of this type of
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equation, including existence and uniqueness results, and properties of solutions)

and of the general form

H(x, u,Du) = 0, x ∈ Ω u = φ, x ∈ ∂Ω (4.19)

where the function H is called the Hamiltonian, u is the unknown function, Du

denotes the gradient of u, Ω is the domain of definition for u, and φ is a prescribed

boundary condition. In the case of (4.14) we have u = Lc and Ω = IRn. Rather

than a boundary condition we have the supplemental condition Lc(0) = 0.

These types of equations are in general nonlinear first-order problems for which

there is no hope to find classical solutions (i.e., a solution of class C1 at least).

Instead, one must deal with suitable generalized solutions (i.e., locally Lipschitz

on Ω, continuous on Ω̄, and almost everywhere differentiable). The correct class

of generalized solutions was established by Crandall and Lions in [33, 93]. There

they introduced the notion of the viscosity solution of nonlinear first-order PDEs

which are the generalized solutions of primary interest in many areas of application

including this one. Briefly, under certain hypotheses, for ε > 0, the solution uε of

H(x, uε, Duε)− ε4uε = 0, x ∈ Ω uε = φ, x ∈ ∂Ω (4.20)

approximates the viscosity solution of (4.19) with error estimate

|uε(x)− u(x)| ≤ c
√
ε (4.21)

for some constant c.

Crandall and Lions [32] give finite-difference schemes for approximating these

viscosity solutions along with error estimates. Souganidis [153] establishes results

concerning the convergence of explicit and implicit finite-difference schemes to

viscosity solutions. However, except when dealing with low-dimensional state-
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spaces, the finite-difference schemes become impractical as the number of grid

points becomes prohibitively large.

Remark 4.2.21 Similarly, finite-difference schemes for solution of the nonlinear

PDE (4.15) become impractical in higher dimensions. 2

4.3 Stochastic Methods for Computation

We seek a method for computing the controllability energy function without solving

the family of optimal control problems implied in its definition, or solving the

associated HJB equation. In this section we offer an approach, based primarily on

the theory of stochastically excited dynamical systems, for computing an estimate

of the controllability function. We show that in certain situations the method

provides an exact solution.

4.3.1 Stationary Densities and the Controllability Func-

tion

In Section 2.6 we introduced the notion of a stochastically excited dynamical sys-

tem, i.e., a control system for which the m components of the input, ui, i ∈ m, have

been replaced by the sample paths of m Gaussian white noises,
{

(ζt)i, t ∈ IR+
}

,

i ∈ m. The state equation is given by

d

dt
Xt = f(Xt) +

m∑
i=1

gi(Xt) (ζt)i (4.22)

Recall that the white noise driven system (4.22) is interpreted correctly via the

SDE (given elementwise)

(dXt)i = f̄i (Xt) dt+
m∑
i=1

gi (Xt) (dWt)i i ∈ n (4.23)
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where

f̄i (Xt) =

fi (Xt) +
1

2

n∑
j=1

m∑
k=1

∂gik
∂Xj

(Xt) gjk (Xt)

 i ∈ n (4.24)

and gij = (gj)i, i ∈ n, j ∈ m, and where (4.23) is defined in terms of a corresponding

stochastic integral.

Recall also that the state Xt is a Markov process with transition probability

density p(x, t; y, s). Time evolution of p(x, t; y, s) is governed by the Fokker-Planck

equation, given by

∂p

∂t
(x, t; y, s) =

−
n∑
i=1

∂

∂xi

(
f̄i (x) p (x, t; y, s)

)
+

1

2

n∑
i=1

n∑
j=1

∂2

∂xi ∂xj
(bij (x) p (x, t; y, s)) (4.25)

with initial condition

p (x, s; y, s) = δ (x− y)

and where

bij (x) =
m∑
k=1

gik (x) gjk (x) =
[
[g (x)] [g (x)]T

]
ij

Finally, recall that in the steady-state, the probability density is stationary,

and Equation (4.25) simplifies to the stationary Fokker-Planck equation

0 = −
n∑
i=1

∂

∂xi

(
f̄i (x) p∞ (x)

)
+

1

2

n∑
i=1

n∑
j=1

∂2

∂xi ∂xj
(bij (x) p∞ (x)) (4.26)

where p∞ (x) denotes the stationary probability density (if it exists).

In this section, we propose a method for computing the controllability func-

tion that relies heavily on the above framework. We are motivated initially by

observations concerning the relationship between the controllability function of a

linear system and the stationary density of the corresponding linear stochastically

excited system.
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Linear Case

The solution of a linear stochastic initial value problem is given by a variation of

constants formula for the state process. Moreover, the time evolutions of its mean

and its covariance are governed by a pair of ODEs. These results are summarized

in the following theorem (see, e.g., [36]).

Theorem 4.3.1 Let {Wt} be an m-vector process with stationary orthogonal in-

crements, x0 an n-vector random variable orthogonal to HW with

µ0 = E [x0 ] (4.27)

R0 = E
[

(x0 − µ0)(x0 − µ0)T
]

(4.28)

and A(·), B(·) matrices of dimension n×n and n×m, respectively, whose elements

are piecewise continuous real-valued functions. Then the stochastic initial value

problem

dXt = A(t)Xt dt+B(t) dWt X0 = x0 (4.29)

has the unique solution

Xt = Φ(t, 0) x0 +
∫ t

0
Φ(t, s)B(s) dWs (4.30)

where Φ(·, ·) is the transition matrix corresponding to A(·). The moments µ(t) =

E [Xt ] and R(t) = E
[

(Xt − µ(t))(Xt − µ(t))T
]

are the unique solutions of the

initial value problems

µ̇(t) = A(t)µ(t) µ(0) = µ0 (4.31)

Ṙ(t) = A(t)R(t) +R(t)AT(t) +B(t)BT(t) R(0) = R0 (4.32)

2
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Remark 4.3.2 It is well known that the response of a linear system to a Gaus-

sian stochastic input such as the white noise process ζt is also a Gaussian process

(see, e.g., [126]). Thus, Theorem 4.3.1 implies that the state process Xt, given

by (4.30), is Gaussian, with mean µ(t) and covariance R(t) evolving according

to (4.31) and (4.32), respectively. Additional moments are not required to charac-

terize the density. 2

We can immediately apply this result to the case of an asymptotically stable

LTI system.

Corollary 4.3.3 Consider the LTI system realization (A,B,C) with A stable and

controllability Gramian matrix Wc. Suppose that we replace the input signal u(t)

with the sample function of a Gaussian white noise process {ζt}. Suppose that the

evolution of the white noise driven system generates the state process Xt with mean

µ (t) and covariance R (t). Then the mean and covariance satisfy

lim
t→∞

µ (t) = 0 (4.33)

lim
t→∞

R (t) = Wc (4.34)

Proof The key observation is that (4.32) is also satisfied if we replace R(t) with

the finite-time-horizon Gramian matrix

W (t) =
∫ t

0
exp (As) BBT exp

(
ATs

)
ds (4.35)

and let W (0) = 0 (see, e.g., [72]). By asymptotic stability, R(t) = W (t)→ Wc as

t → ∞. In addition, asymptotic stability together with Equation (4.31) implies

that µ(t)→ 0 as t→∞.

Thus, for a stochastically excited LTI system, the transition density function

p(x, t; y, s) describing the random properties of the state process Xt is Gaussian.
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The stationary density p∞(x) has zero mean and covariance equal to the control-

lability Gramian matrix Wc, i.e.,

p∞(x) = [(2π)n det (Wc)]
−1/2

exp
(
−

1

2
xTWc

−1 x

)
(4.36)

Recall that in the LTI case, the controllability function Lc is given by the

quadratic form in Equation (4.5). Thus, in the LTI case, the controllability function

Lc and the stationary density p∞ are related exactly by

p∞(x) = [(2π)n det (Wc)]
−1/2

exp (−Lc(x)) (4.37)

and

Lc(x) = −log (p∞(x)) + log
(
[(2π)n det (Wc)]

−1/2
)

(4.38)

Nonlinear Setting

In the nonlinear setting, the density p(x, t; y, s), and in particular the stationary

density p∞(x), are not, in general, Gaussian, nor determined completely by their

mean and covariance, i.e., higher order moments are involved. However, because

the balancing coordinate transformation is local to a neighborhood of the origin,

we are mainly interested in capturing a local characterization of the controllability

function. In light of this, Equation (4.38) suggests that a useful approximation of

Lc is defined by

L′c(x)
4
= −log (p∞(x)) + C (4.39)

where C is a normalizing constant, dependent on the particular system, such that

L′c(0) = 0. By Equation (4.38), L′c specializes to the exact Lc in the LTI case.

Remark 4.3.4 The approximation L′c captures the nonlinearity intrinsic to the

realization (f, g), which is manifested in the stationary density p∞ through the
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evolution of the nonlinear stochastically excited system. It provides a useful work-

ing approximation, i.e., a reasonably accurate measure of the degree to which state

components are controllable in a neighborhood of the origin. Substitution of the ap-

proximation L′c for Lc into the Scherpen balancing procedure results in a realization

that is not balanced, but nearly balanced. The property of equal controllability and

observability of state components is satisfied so closely that the attractive properties

of such a realization in terms of model reduction are still enjoyed. 2

There exist certain nonlinear systems for which Equation (4.39) provides an

exact, rather than approximate, formula for the controllability function. As one

simple example, consider the process Xt governed by the first-order SDE

dXt = −∇φ(Xt) + dWt (4.40)

where φ : IRn → IRn is a C1 map such that −∇φ is asymptotically stable.

Remark 4.3.5 In general, a process modeled by a first-order SDE is referred to as

a Langevin process or an Ornstein-Uhlenbeck process. The terminology originates

with the equation of Langevin [89], which describes the motion of a free particle in a

viscous fluid, where the random noise models the impulsive forces due to collisions

between the fluid molecules and the free particle. 2

The stationary Fokker-Planck equation for the steady-state transition density

p∞ of the Langevin process governed by (4.40) is given by

0 =
1

2

n∑
i=1

∂2p∞

∂xi2
(x) +

n∑
i=1

∂2φ

∂xi2
(x) p∞ (x) +

n∑
i=1

∂φ

∂xi
(x)

∂p∞

∂xi
(x) , (4.41)

i.e.,

0 =
1

2
4p∞ (x) + p∞ (x) 4φ (x) + (∇ p∞ (x))T∇φ (x) (4.42)
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Proposition 4.3.6 The density function

pMB
∞ (x) = C exp (−2φ(x)) (4.43)

satisfies the stationary Fokker-Planck equation (4.42) where C is a constant such

that
∫
pMB
∞ = 1.

Proof Equation (4.42) follows directly from

∇ pMB
∞ (x) = −2C exp (−2φ (x)) ∇φ (x)

= −2 pMB
∞ (x) ∇φ (x) (4.44)

and

4pMB
∞ (x) = −2∇ ·

(
pMB
∞ (x) ∇φ (x)

)
= −2

[
pMB
∞ (x) 4φ (x) +

(
∇ pMB

∞ (x)
)T
∇φ (x)

]
(4.45)

Remark 4.3.7 A density of the form (4.43) is referred to as a Maxwell-Boltzmann

density. It originally appeared in the work of Maxwell and Boltzmann on modeling

heat in a medium as the random motion of the constituent molecules, where φ

represents the total energy in the system. The steady-state density describing the

random properties of molecule positions and velocities is of the form (4.43). 2

Now, using (4.39), define

LMB
c (x) = −log

(
pMB
∞ (x)

)
+ log (C) = 2φ(x) (4.46)

Proposition 4.3.8 The function LMB
c satisfies the HJB equation (4.14) and thus

is the unique controllability energy function for the Langevin system, i.e., stable

affine nonlinear system with f(x) = −∇φ(x) and g(x) = 1I.

133



Proof The statement follows from straightforward substitution.

Systems modeled by the first-order SDE (4.40) do not comprise a sufficiently

general class to be useful in many situations of interest. In particular, if g(x) 6= 1I,

the density pMB
∞ does not generally satisfy the stationary Fokker-Planck equation

and the function LMB
c does not generally satisfy the HJB equation. In the next

section, we seek conditions under which a broader class of systems admits an exact

relationship between the stationary density and the controllability function.

4.3.2 Second-Order Mechanical Systems

In this section we determine conditions under which the controllability function

for a second-order mechanical system can be expressed exactly in terms of the

stationary density for the corresponding stochastically excited system. We adopt

and modify somewhat the notation and framework of Fuller [51] and Zhu and

Yang [171]. These authors have presented conditions under which exact solutions

of the stationary Fokker-Planck equation can be derived. We show that in certain

cases, the same conditions are sufficient for expressing the controllability function

in terms of the stationary density, while in other cases, additional conditions are

required.

Hamiltonian System Perturbed by Dissipation and Forcing

We consider a forced, dissipatively perturbed, n-DOF Hamiltonian system as de-

scribed in Section 2.7. Let q = (q1, . . . , qn) ∈ IRn and p = (p1, . . . , pn) ∈ IRn

denote, respectively, the generalized displacements and momenta. Let the Hamil-

tonian H ′ = H ′ (q, p), i.e., the sum of the kinetic and potential energies of the

system, be C2. Let c′ij = c′ij (q, p) for i, j ∈ n be C1 functions representing gener-
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alized nonlinear dissipation coefficients. Let dij = dij (q, p) for i, j ∈ n be C2. The

system that we consider is governed by the equations of motion, for i ∈ n

q̇i =
∂H ′

∂pi
(4.47)

ṗi = −
∂H ′

∂qi
−

n∑
j=1

c′ij
∂H ′

∂pj
+

m∑
k=1

dik u (4.48)

The system is realized in standard state-space form with coordinates x =

(q, p) ∈ IR2n and

fi =
∂H ′

∂pi
i = 1, . . . , n

fi = −
∂H ′

∂qi
−

n∑
j=1

c′ij
∂H ′

∂pj
i = n+ 1, . . . , 2n (4.49)

(gk)i = 0 i = 1, . . . , n; k = 1, . . . ,m

(gk)i = dik i = n+ 1, . . . , 2n; k = 1, . . . ,m (4.50)

The output map h is irrelevant for purposes of the discussion here.

Stochastically Excited System

The corresponding stochastically excited system is governed by the SDEs, for i ∈ n

dQi =
∂H ′

∂Pi
dt (4.51)

dPi = −

∂H ′
∂Qi

+
n∑
j=1

c′ij
∂H ′

∂Pj
+

1

2

n∑
j=1

m∑
k=1

∂dik
∂Pj

djk

 dt

+
m∑
k=1

dik (dWt)i (4.52)

where we have adopted the usual notation by substituting Q for q and P for p

when dealing with the corresponding random variables.

It is usually the case that the correction terms
1

2

n∑
j=1

m∑
k=1

∂dik

∂Pj
djk, i ∈ n, can be

split into two parts: one which modifies the conservative forces and the other that
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modifies the damping forces (see [171]). We assume that this can be accomplished,

and

(i) combine the first part with −
∂H ′

∂Qi

to form effective conservative force terms

∂H

∂Qi

with a new Hamiltonian H = H (Q,P ) such that
∂H

∂Pi
=
∂H ′

∂Pi
;

(ii) combine the second part with
n∑
j=1

c′ij
∂H ′

∂Pj
to form effective dissipative force

terms
n∑
j=1

cij
∂H

∂Pj
with new damping coefficients cij = cij (Q,P ).

Equations (4.51) and (4.52) can be rewritten, for i ∈ n

dQi =
∂H

∂Pi
dt (4.53)

dPi = −

 ∂H
∂Qi

+
n∑
j=1

cij
∂H

∂Pj

 dt+
m∑
k=1

dik (dWt)i (4.54)

Stationary Fokker-Planck Equation

The stationary Fokker-Planck equation governing the stationary transition density

p∞ = p∞ (q, p) associated with the SDEs (4.53) and (4.54) is given by

0 =
n∑
i=1

[
−

∂

∂Qi

(
∂H

∂Pi
p∞

)
+

∂

∂Pi

(
∂H

∂Qi

p∞

)]

+
n∑
i=1

 ∂

∂Pi

 n∑
j=1

cij
∂H

∂Pj
p∞

+
1

2

n∑
j=1

∂2

∂Pi ∂Pj
(bij p∞)

 (4.55)

where

bij =
m∑
k=1

dik djk =
[
[d] [d]T

]
ij

and subject to boundary conditions (vanishing probability flow)

lim
‖ (q,p) ‖→∞

∂H

∂Pi
p∞ = 0 (4.56)

and

lim
‖ (q,p) ‖→∞

 ∂H
∂Qi

+
n∑
j=1

cij
∂H

∂Pj

 p∞ +
1

2

n∑
j=1

∂

∂Pj
(bij p∞) = 0 (4.57)
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Observe that the first summation term on the right-hand-side of (4.55) is equal

to the Poisson bracket of p∞ and H, i.e.,

{p∞, H} =
n∑
i=1

[
−
∂H

∂Pi

∂p∞

∂Qi

+
∂H

∂Qi

∂p∞

∂Pi

]

=
n∑
i=1

[
−

∂

∂Qi

(
∂H

∂Pi
p∞

)
+

∂

∂Pi

(
∂H

∂Qi

p∞

)]
(4.58)

Thus, we can rewrite the stationary Fokker-Planck equation (4.55) as

0 = {p∞, H}+
n∑
i=1

 ∂

∂Pi

n∑
j=1

(
cij

∂H

∂Pj
p∞

)
+

1

2

n∑
j=1

∂2

∂Pi ∂Pj
(bij p∞)

 (4.59)

Existence of Smooth Stationary Densities

Before proceeding, we must establish the existence of a smooth stationary density

in this special case of a stochastically excited and dissipatively perturbed Hamilto-

nian system. We appeal to Theorem 2.6.17. First we show that the corresponding

deterministic system has the required property of local strong accessibility.

A system of the form (4.47)-(4.48) can be derived from the equations of motion

(see Section 2.7)

M (q) q̈ + C (q, q̇) +N (q, q̇) = F (4.60)

Let qd and q̇d represent desired position and velocity trajectories. Define e = q−qd

as the error between the actual and desired trajectories. Consider the control law

F = M (q) (q̈d −Kv ė−Kp e) + C (q, q̇) +N (q, q̇) + w (4.61)

where Kv and Kp are constant gain matrices and w is an exogenous input vector.

The resulting error dynamics can be written as

M (q) (ë+Kv ė+Kp e) = w (4.62)

Since M is positive definite for all q, we can write

ë+Kv ė+Kp e = M−1 (q) w (4.63)
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We can choose Kv and Kp so that this linear ODE governing the error yields a

stable, controllable LTI system. Moreover, for the LTI system, controllability is

equivalent to local strong accessibility. Thus, using the above feedback transfor-

mation, we may conclude that the forced, dissipatively perturbed, Hamiltonian

system with equations of motion (2.115) is locally strongly accessible.

Remark 4.3.9 The control law (4.61) is often referred to as the computed torque

control law in the robotics literature (see, e.g., [112]). 2

It is clear that the completeness property is satisfied in the case that (4.60)

yields a linear system. We now argue, formally, that there are many interesting

cases in the nonlinear setting for which the vector fields in the Lie algebra generated

by {f, g1, . . . , gn} are complete.

Observe that the Hamiltonian is typically of the form

H (q, p) = pTM (q)−1 p+ U (q) (4.64)

By the conservation law Ḣ = 0 for the system with zero dissipation, we have that

q lies within the interior a n-dimensional torus (a compact set) for all time (with

zero dissipation q lies on the torus; otherwise within the interior). Furthermore,

p lies within the interior of a compact set formed by taking a union of ellipsoids

parameterized by q for all time. Thus, there exist no exploding solutions of ẋ =

f (x).

Now, consider the case where the dik are constant vector fields. This situation

is a common one, e.g., torque inputs at the joints of a serial manipulator. Clearly,

such vector fields produce no exploding solutions. On the other hand, it is possible,

due to the nonlinear mass matrix M (q), for brackets of the form [f, gi] to produce

vector fields that are not complete. For purposes of this discussion, we take the
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position, without justification, that such brackets will often produce complete vec-

tor fields, and assume that smooth transition densities exist for the systems with

which we work.

Constant Parameter Case

We first consider the case where the parameters c′ij and dik are independent of q

and p, i.e., are constants. In this situation, the correction term vanishes, H = H ′,

and cij = c′ij . The following is modified from Fuller [51].

Theorem 4.3.10 (Fuller [51]) Consider the stochastically excited system corre-

sponding to the forced, dissipatively perturbed, n-DOF Hamiltonian system gov-

erned by the SDEs (4.53)-(4.54) where H is the Hamiltonian. Suppose that the

coefficients cij and dik are independent of q and p. Furthermore, suppose that the

following constant ratio holds for all i, j ∈ n:

cij
bij

= ` = constant (4.65)

Then the unique stationary density p∞ that satisfies Equation (4.59) is

p∞ (q, p) = C exp (−2 `H (q, p)) (4.66)

where C is a constant such that
∫
p∞ = 1.

Proof Observe that p∞ is a functional of H, i.e., p∞ = p∞ (H(q, p)), which

implies by Lemma 2.7.6 that {p∞, H} = 0. Observe also that

∂p∞
∂Pj

= −2 `
∂H

∂Pj
p∞ (4.67)

Since the cij and dij are constants, the stationary Fokker-Planck equation (4.59)

can be written

0 =
n∑
i=1

∂

∂Pi

 n∑
j=1

(
cij

∂H

∂Pj
p∞ +

1

2
bij

∂p∞
∂Pj

) (4.68)
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By Equations (4.65) and (4.67) we have, for i, j ∈ n

cij
∂H

∂Pj
p∞ +

1

2
bij

∂p∞

∂Pj
= cij

∂H

∂Pj
p∞ − ` bij

∂H

∂Pj
p∞ (4.69)

= (cij − ` bij)
∂H

∂pj
(4.70)

= 0 (4.71)

Finally, we observe that p∞ satisfies the boundary conditions (4.56) and (4.57).

Remark 4.3.11 The density (4.66) is of Maxwell-Boltzmann form (see

Remark 4.3.7). 2

Remark 4.3.12 The condition (4.65) is referred to as the equipartition of en-

ergy condition. The terminology derives from the situation in statistical mechan-

ics where each DOF of a multi-particle system is associated with the same mean

energy. 2

Remark 4.3.13 The equipartition of energy condition imposes a severe restriction

on the class of systems for which (4.66) is the stationary density. 2

The controllability function Lc uniquely satisfies the HJB equation (4.14),

which, for realization (f, g) given in Equations (4.49) and (4.50), takes the form

0 = {Lc, H}+
n∑
i=1

∂Lc
∂pi

n∑
j=1

(
−cij

∂H

∂pj
+

1

2
bij

∂Lc
∂pj

) (4.72)

The relationship between the stationary density and the controllability function,

and an exact formula for the latter in terms of the Hamiltonian, are given in the

following result.

Theorem 4.3.14 Consider the forced, dissipatively perturbed, n-DOF Hamilto-

nian control system, governed by the evolution equations (4.47) and (4.48), and
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realized by (f, g) given in Equations (4.49) and (4.50). Under the conditions stated

in Theorem 4.3.10, the unique controllability energy function for the system is given

by

Lc (q, p) = −log (p∞(q, p)) + C ′

= 2 `H (q, p) + C ′ (4.73)

where p∞ is the stationary density of the corresponding stochastically excited system

and C ′ is a constant such that Lc (0, 0) = 0.

Proof It is necessary and sufficient to show that Lc satisfies Equation (4.72).

Since Lc is a functional of H, Lemma 2.7.6 implies that {Lc, H} = 0. Furthermore,

∂Lc

∂pj
= 2 `

∂H

∂pj
, so that Equation (4.72) becomes

0 =
n∑
i=1

2 `
∂H

∂pi

n∑
j=1

(
−cij

∂H

∂pj
+ ` bij

∂H

∂pj

) (4.74)

=
n∑
i=1

2 `
∂H

∂pi

n∑
j=1

∂H

∂pj
(` bij − cij)

 (4.75)

which is clearly satisfied given the equipartition of energy condition (4.65).

General Setting

We now consider the more general situation where the parameters c′ij and dik are

permitted to be functions of q and p. The following is modified from Zhu and

Yang [171].

Theorem 4.3.15 (Zhu and Yang [171]) Consider the stochastically excited sys-

tem corresponding to the forced, dissipatively perturbed, n-DOF Hamiltonian sys-

tem governed by the SDEs (4.53)-(4.54) where H is the Hamiltonian. Suppose that
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the following ratio holds for all i ∈ n and for some functional h of H:

∑n
j=1

(
2 cij

∂H

∂Pj
+
∂bij
∂Pj

)
∑n
j=1 bij

∂H

∂Pj

= h (H) (4.76)

Then the unique stationary density p∞ that satisfies Equation (4.59) is

p∞ (q, p) = C exp

(
−
∫ H(q,p)

0
h(u) du

)
(4.77)

where C is a constant such that
∫
p∞ = 1.

Proof Assume that there exists φ (H) such that

p∞ (q, p) = C exp (−φ (H(q, p))) (4.78)

Then as before {p∞, H} = 0 and
∂p∞
∂Pj

= −
∂φ

∂H

∂H

∂Pj
p∞. The stationary Fokker-

Planck equation (4.59) can then be written

0 =
n∑
i=1

 n∑
j=1

(
2 cij

∂H

∂Pj
+
∂bij
∂Pj
− bij

∂H

∂Pj

∂φ

∂H

) (4.79)

which is clearly satisfied if we assign
∂φ

∂H
= h (H) where h (H) is defined by Equa-

tion (4.76). Thus, the desired functional φ is obtained through integration yielding

Equation (4.77).

Remark 4.3.16 The density (4.77) is of Maxwell-Boltzmann form. 2

Remark 4.3.17 The condition (4.76) is analogous to an equipartition of energy

condition, again imposing a severe restriction on the class of systems for which

(4.77) is the stationary density. 2

The relationship between the stationary density and the controllability func-

tion, and an exact formula for the latter in terms of the Hamiltonian, are given in

the following result.

142



Theorem 4.3.18 Consider the forced, dissipatively perturbed, n-DOF Hamilto-

nian control system, governed by the evolution equations (4.47) and (4.48), and

realized by (f, g) given in Equations (4.49) and (4.50). Suppose that the following

ratio holds for all i ∈ n and for some functional r of H:

∑n
j=1 cij

∂H

∂pj∑n
j=1 bij

∂H

∂pj

= r (H) (4.80)

Then the unique controllability energy function for the system is given by

Lc (q, p) = 2
∫ H(q,p)

0
r(u) du+ C ′ (4.81)

where C ′ is a constant such that Lc (0, 0) = 0. Furthermore, if the bij are indepen-

dent of p then

Lc (q, p) = −log (p∞(q, p)) + C ′ (4.82)

where p∞ is the stationary density of the corresponding stochastically excited sys-

tem.

Proof Assume that Lc (q, p) = φ (H(q, p)) for some functional φ of H. Then

{Lc, H} = 0. The HJB equation (4.72) can be written

0 =
n∑
i=1

∂H

∂pi

∂φ

∂H

(
bij

∂H

∂pj

∂φ

∂H
− 2 cij

∂H

∂pj

)
(4.83)

which is clearly satisfied if we assign
∂φ

∂H
= 2 r (H) where r (H) is defined by

Equation (4.80). Thus, the desired functional φ is obtained through integration

yielding Equation (4.81). Moreover, if the bij are independent of p then 2 r (H) =

h (H) where h (H) is defined in Equation (4.76). In that case Equation (4.82)

holds.
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4.3.3 Monte-Carlo Experiments

In situations where we do not have an exact formula for the controllability func-

tion, we wish to use the approximation given by Equation (4.39) in the nonlinear

balancing procedure. This requires determining the stationary density p∞(x), or a

suitable estimate. Approximating p∞(x) via Monte-Carlo experiments is a natural

approach.

Each experiment corresponds to a numerical simulation of the white noise

driven system (4.22), with zero initial state and input corresponding to a dis-

cretized approximation of a sample path for Gaussian white noise. The numerical

schemes that we used for approximating a white noise signal and integrating the

SDEs are detailed in Appendix C. The state response trajectory Xt for each ex-

periment is sampled and recorded. An approximation of the steady-state, i.e.,

limt→∞Xt, is generated by simulating the system over a sufficiently large time

period, e.g., several multiples of its largest time constant.

We approximate the time evolution of the density function p(x, t; 0, 0) by his-

togramming the collection of trajectories at fixed values of t. Likewise, we approxi-

mate the stationary density p∞(x) by histogramming the collection of steady-state

responses. Naturally, the approximations improve as the number of experiments

in the collection increases. Moreover, a larger set of experiments allows for his-

togramming at a higher resolution. Statistics of the density such as µ(t), µ∞, R(t),

and R∞ can be computed and analyzed to confirm the correctness of the data.

The results of Monte-Carlo experiments to approximate the controllability func-

tions for an example problem are presented in Section 4.6.
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4.4 Computing the Morse Coordinate Transfor-

mation

Recall that for an LTI system, the energy functions Lc and Lo globally take the form

of quadratic functions given, respectively, by (4.5) and (4.6). We wish to generalize

the linear balancing procedure to the nonlinear setting, but the functions Lc and

Lo are not, in general, quadratic. However, we can appeal to some important

results from critical point theory (see, e.g., [108]) in order to find a change of

coordinates under which a smooth function takes a quadratic form locally around

a non-degenerate critical point. The key result is the Morse lemma [110], which

guarantees the existence of the desired canonical form for functions with a non-

degenerate critical point defined on a finite-dimensional manifold, and an analogous

result of Palais [125], which generalizes the notion to functions defined on a Hilbert

space. The established results are presented from various points of view in [16, 57,

60, 88, 108].

4.4.1 The Morse-Palais Lemma

The functions Lc and Lo are smooth real-valued mappings defined on local coor-

dinates x ∈ IRn for n-dimensional manifold M . Thus, we can use the fact that

the local behavior of a smooth real-valued function on a manifold is known at

almost every point up to diffeomorphism. To see this, we introduce the following

terminology (see [57, 60]).

Definition 4.4.1 (Critical Point) A point p is said to be a critical point of the

smooth real-valued function f if the partial derivatives with respect to local coordi-
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nates {x1, . . . , xn} satisfy

∂f

∂xi
(p) = 0 i ∈ n (4.84)

Otherwise, the point p is said to be a regular point of f . 2

Remark 4.4.2 If a point p is regular, then we can invoke the implicit function

theorem and choose a coordinate system so that f is simply the first coordinate

function in a neighborhood of p. Thus the local behavior of f around regular points

is completely characterized. 2

The functions Lc and Lo each have a critical point at 0. We now focus on

characterizing the local behavior of a function around critical points.

Definition 4.4.3 (Non-degenerate Critical Point) A critical point p of the

smooth real-valued function f is called non-degenerate if the Hessian matrix of

second partials at p

D2f (p) =

[
∂2f

∂xi ∂xj
(p)

]
(4.85)

is nonsingular. Otherwise p is called degenerate. 2

Definition 4.4.4 (Morse Function) A smooth real-valued function f with a non-

degenerate critical point at p is said to be a Morse function at p. 2

Remark 4.4.5 Under conditions outlined in Section 4.2, the functions Lc and Lo

are Morse functions at 0. 2

Definition 4.4.6 (Index, Nullity) The index of a bilinear functional A on IRn

is defined to be the maximal dimension of a subspace of IRn on which A is negative

definite. The nullity of A is defined as the dimension of the nullspace of A. The

index and nullity of a critical point p of function f are, respectively, the index and

nullity of the bilinear functional A(x, y) = 〈D2f(p) x, y 〉. 2
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There is a canonical form for a Morse function f in the neighborhood of its

non-degenerate critical point p, completely described by the index of p. This idea

is made precise in finite-dimensions in a theorem by Morse [110] and generalized to

Hilbert spaces in a theorem by Palais [125]. The theorems state that there exists

a local change of coordinates under which a Morse function is quadratic on some

neighborhood of its non-degenerate critical point. We refer to this result as the

Morse-Palais lemma, for which we present a version based on that in Milnor [108]

and Lang [88]. Henceforth we assume without loss of generality that p = 0.

Theorem 4.4.7 (Morse-Palais) Let f be a smooth real-valued function defined

on an open neighborhood O of 0 in the Hilbert space E . Assume that f(0) = 0 and

that 0 is a non-degenerate critical point of f . Then there exists a neighborhood

U ⊂ O of 0, a local change of coordinates φ on U , and an invertible symmetric

operator A such that

f (x) = 〈Aφ(x), φ(x) 〉E x ∈ U (4.86)

2

We defer the proof momentarily and present some related and supporting re-

sults.

Corollary 4.4.8 Let f be a smooth real-valued function defined on an open neigh-

borhood O of 0 in the Hilbert space E . Assume that f(0) = 0 and that 0 is a

non-degenerate critical point of f . Then there exists a neighborhood U ⊂ O of

0, a local change of coordinates z = ξ(x) on U , and an orthogonal decomposition

E = F + F⊥ such that if we write z = ξ(x) = u+ v with u ∈ F and v ∈ F⊥ then

f (z) = f (ξ(x)) = 〈u, u 〉E − 〈 v, v 〉E x ∈ U (4.87)

2
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Figure 4.1: An example of a Morse function on IR2 (with level contours) before
and after transformation to spherical quadratic form.

Remark 4.4.9 Consider the special case where E = IRn and critical point 0 has

index r. Define z = ξ(x) for x ∈ U and ψ = ξ−1 on ξ(U). Then Corollary 4.4.8

implies that

f(x) = f (ψ(z)) = −
r∑
i=1

z2
i +

n∑
i=r+1

z2
i (4.88)

In the new coordinates, the function f is said to be in spherical quadratic form.

The transformation is illustrated in Figure 4.1. 2

Definition 4.4.10 (Morse Coordinate Transformation) A change of coordi-

nates ψ satisfying (4.88) is said to be a Morse coordinate transformation for f

around 0. 2

The original proof by Morse uses the Gram-Schmidt orthogonalization process

which is essentially a coordinate-by-coordinate induction argument. The gener-

alization by Palais is proved without a coordinate-wise procedure, which, as we

demonstrate later, is advantageous for purposes of computation. Moreover, cer-

tain decompositions of smooth functions with non-degenerate critical points are
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integral to the proofs. We merely outline the proofs, emphasizing the decompo-

sitions since they are essential to computing the desired transformation. For a

concise presentation of the Morse lemma and proof see Milnor [108]. The Palais

version is found in [88, 125].

The following lemma provides a decomposition of any smooth real-valued func-

tion defined on a finite-dimensional manifold. It is a simple application of the first

fundamental theorem of integral calculus.

Lemma 4.4.11 Let f be a smooth real-valued function defined in an open con-

vex neighborhood O of 0 in n-dimensional manifold M . Then there exist smooth

functions gi, i ∈ n on O such that

f(x) =
n∑
i=1

gi(x) xi i ∈ n, x ∈ O (4.89)

Furthermore, if 0 is a critical point of f then

gi(0) =
∂f

∂xi
(0) i ∈ n (4.90)

2

The proof is instructive in that it shows us how to compute one such collection

of functions gi, i ∈ n.

Proof By the fundamental theorem of calculus

f (x)− f (0) =
∫ 1

0

df

dt
(tx) dt =

∫ 1

0

n∑
i=1

∂f

∂xi
(tx) xi dt (4.91)

Define

gi (x) =
∫ 1

0

∂f

∂xi
(tx) dt (4.92)

to yield (4.89).

Applying Lemma 4.4.11 twice to f around a critical point at 0 results in the

following decomposition.
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Lemma 4.4.12 Let f be a smooth real-valued function defined in an open convex

neighborhood O of 0 in n-dimensional manifold M . Let 0 be a critical point of f .

Then there exist smooth functions hij, i, j ∈ n on O such that

f(x) =
n∑
i=1

n∑
j=1

hij(x) xi xj i, j ∈ n, x ∈ O (4.93)

Moreover, the symmetry property

hij(x) = hji(x) i, j ∈ n, x ∈ O (4.94)

holds, and it is true that

hij (0) =
1

2

∂2f

∂xi ∂xj
(0) =

1

2
D2f (0) (4.95)

2

We now return to the proof of Theorem (4.4.7). The argument follows from

decomposition (4.93). We denote H(x) = [H(x)]ij = [hij(x)]. Some details are

omitted here (see [88]).

Morse-Palais Lemma (Theorem 4.4.7)

Proof Non-degeneracy of critical point 0 ensures that H(0) is nonsingular.

Equation (4.86) is satisfied if, for all x ∈ O, we define A by

A (x) = H (0) x (4.96)

and define φ by

φ (x) = C (x) x (4.97)

where (
C (x)*A (x) C (x)

)
(x) = H (x) x (4.98)
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and C (x)* denotes the adjoint operator. The desired operator-valued map C is

given, for x ∈ O, by

C (x) = B (x)1/2 (4.99)

where B is defined for x ∈ O by

B (x) x = H (0)−1H (x) x (4.100)

The operator square root in (4.99) is guaranteed to exist for x in some neighborhood

U ⊂ O of 0 because B (x) is close to the identity operator 1I on a neighborhood of

0, and the square root function has a convergent power series expansion near 1I.

Remark 4.4.13 Corollary 4.4.8 then results directly from the fact that operator A

is symmetric, positive definite on F , and negative definite on F⊥. This allows for

the change of coordinates z = A1/2 x on F and z = −A1/2 x on F⊥ to yield (4.88).

2

4.4.2 Properties

A Morse coordinate transformation ψ for f around 0 is not unique. This can be

argued as a consequence of the non-uniqueness of the functions gi in the decom-

position (4.89) and the functions hij in the decomposition (4.93). Consider the

isotropy transformation T : IRn → IRn such that

T (x) x = x x ∈ IRn (4.101)

At each point x, the isotropy T (x) is a pure rotation about an axis passing through

the origin and x. Let G(x) = (g1(x), . . . , gn(x)). Then Equation (4.89) implies that

f(x) = G(x) x = G(x)T (x) x = G̃(x) x (4.102)

151



where G̃(x) = G(x)T (x) comprises another set of gi satisfying (4.89). The non-

uniqueness of the functions hij in (4.93) follows as an immediate consequence.

Remark 4.4.14 Even though the functions gi and hij are not unique, their values

at the origin, i.e., gi(0) and hij(0), are invariants of the function f and given by

first and second derivatives, respectively. 2

The non-uniqueness of the Morse coordinate transformation can also be shown

from the following viewpoint. Consider f with index r, and rewrite (4.88) as

f (ψ(z)) = zTE z (4.103)

where E is the block diagonal matrix

E =

 −1Ir 0

0 1In−r

 (4.104)

Let Θ1 ∈ O(r) and Θ2 ∈ O(n− r) and define the block diagonal matrix

Θ =

 Θ1 0

0 Θ2

 (4.105)

and the change of coordinates

ψ̂ (z) = ψ (Θ z) z ∈ ψ−1 (U) (4.106)

Then

f
(
ψ̂(z)

)
= (Θz)TE (Θz) = zT

(
ΘTEΘ

)
z = zTE z (4.107)

Thus, ψ̂ is also a Morse coordinate transformation for f around 0.

Remark 4.4.15 A function f with non-degenerate critical point 0 admits a family

of Morse coordinate transformations, parameterized by the spaces of orthogonal

matrices O(r) and O(n − r). It is not clear, however, if this family exhausts the

entire collection of Morse transformations for f around 0. 2
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Example 4.4.16 To illustrate the nonuniqueness property, consider the polyno-

mial function f on IR2

f (x) = 3x3
1 − x

2
1x2 − x1x

2
2 + 2x3

2 + 5x2
1 − 2x1x2 + 2x2

2 (4.108)

which has a non-degenerate critical point at (0, 0). Applying the decomposition

(4.93), i.e., f(x) = xTH(x) x, yields the invariant

H(0) =

 5 −1

−1 2

 (4.109)

One valid choice for H(x), computed via repeated application of (4.92), is given by

H (x) =

 5 + 3x1 −
1
3
x2 −1− 1

3
x1 −

1
3
x2

−1− 1
3
x1 −

1
3
x2 2− 1

3
x1 + 2x2

 (4.110)

Two other valid choices are

H (x) =

 5 + 3x1 −1− 0.5x1 − 0.5x2

−1− 0.5x1 − 0.5x2 2 + 2x2

 (4.111)

and

H (x) =

 5 + 3x1 − x2 −1

−1 2 + 2x2 − x1

 (4.112)

Each different choice of H(x) will result in a different Morse coordinate transfor-

mation ψ via (4.100). 2

Remark 4.4.17 We were able to perform the above calculations for a given (con-

trived) polynomial f . However, in general, there exist no closed form expressions

for functions gi, hij, or ψ, even if we have a formula for f . Moreover, for our

purposes, the Morse function f may be known only at discrete points on a grid.

Thus, we always apply Equation (4.92) to our computations. 2
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It is worth noting that not every function ψ satisfying (4.88) is smooth, a

condition required for a function to be a valid change of coordinates. Consider the

following example.

Example 4.4.18 Let ψ be a function on U such that

z = ψ−1(x) =


√
f(x)

‖ x ‖

 x x ∈ U (4.113)

Then ψ satisfies (4.103) with E = 1In. However, the first derivative of ψ−1 does

not exist at 0. The function ψ is not smooth and thus is not a valid change of

coordinates. 2

Remark 4.4.19 Observe that the proof of Theorem 4.4.7 also uses a square root

operation, but avoids any associated pitfalls by ensuring that the square root operand

remains close to the identity. 2

4.4.3 Algorithm

We present here, somewhat loosely, an algorithm for numerical implementation of

Theorem 4.4.7 and Corollary 4.4.8. The algorithm is presented more rigorously in

Section 4.5.4 once the computational framework has been introduced. The algo-

rithm takes a Morse function f and returns a neighborhood U , Morse coordinate

transformation φ, and invertible symmetric matrix A under which f takes the

desired form (4.86) on U . An additional algorithm takes φ, A, and U and re-

turns a coordinate transformation ξ under which f takes the spherical quadratic

form (4.87).

The algorithms are based primarily on calculations appearing in the proofs in

Section 4.4.1. The main building blocks are as follows.
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smooth function decomposition Given smooth real-valued function f , return

smooth functions gi, i ∈ n, such that Equation (4.89) holds. This is accom-

plished via the integration in Equation (4.92).

1. Compute approximate partial derivatives
∂f

∂xi
, i ∈ n.

2. For each point x in the domain of definition of f , compute approximate

integrals gi(x) =
∫ 1

0

∂f

∂xi
(tx) dt, i ∈ n.

Morse function decomposition Given Morse function f , i.e., f has non-degen-

erate critical point at 0, return smooth functions hij , i, j ∈ n such that

Equation (4.93) holds. This is accomplished via n + 1 smooth function de-

compositions.

1. Apply the smooth function decomposition to f yielding gi, i ∈ n.

2. Apply the smooth function decomposition to each of the gi yielding hij ,

i, j ∈ n.

matrix square root Given matrix B close to the identity, return its square root

C, i.e., B = C2. The matrix B must satisfy

‖ 1I−B ‖ < 1 (4.114)

In that case, the following algorithm converges to a fixed point corresponding

to the desired matrix C = B1/2.

Ck+1 = Ck +
1

2

(
B − C2

k

)
k = 0, 1, . . . (4.115)

C0 = 1I

The convergence of the sequence {Ck} to the fixed point B1/2 can be shown

to be a consequence of the contraction mapping principle.
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Morse-Palais transformation Given Morse function f , return neighborhood U ,

coordinate transformation φ, and invertible symmetric matrix A such that

Equation (4.86) holds.

1. Apply the Morse function decomposition to f yielding hij , i, j ∈ n. Let

H (x) = [hij (x)] and A = H (0).

2. For each point x in the domain of definition of f :

(a) Compute the solution B of the matrix equation AB = H (x).

(b) If ‖ 1I−B ‖ < 1 then:

i. Apply the matrix square root algorithm to compute C = B1/2.

ii. Let φ (x) = C x.

iii. Include the point x in the neighborhood U .

(c) Otherwise, the point x is not in the neighborhood U and no further

calculations apply.

This procedure provides an estimate of the neighborhood U for which the

function can be transformed to the canonical quadratic form. It is possible

that the maximal neighborhood is larger.

spherical transformation Given transformation φ and invertible symmetric ma-

trix A such that Equation (4.86) holds, return index r and coordinate trans-

formation ψ such that Equation (4.88) holds.

1. Compute the spectral decomposition of matrix A, i.e., A = V ΛV T.

2. Let E = diag (|λ1| , . . . , |λn|).

3. Let r equal the number of λi such that λi < 0.

4. Let R = E V T.
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5. For each point x in the domain of definition of f , let ψ (x) = Rφ (x).

Remark 4.4.20 The terminology “Morse function decomposition” is somewhat

misleading since the decomposition (4.93) merely requires a critical point that is

not necessarily non-degenerate. However, we adopt the terminology for lack of a

better name and because we are applying the decomposition to Morse functions. 2

4.5 Computing the Balancing Transformation

A realization (f, g, h) for a nonlinear system is transformed to balanced form in

the Scherpen procedure by composing several local coordinate transformations as

illustrated in Figure 4.2. The transformations are, in general, nonlinear, and result

from manipulations on the controllability and observability energy functions. Each

transformation is a local generalization of a corresponding linear transformation

in the procedure for balancing LTI systems.

U

M

U
∧

∼
UU

− η

υ

ΦM

ΦIΦB

Figure 4.2: Overview of coordinate transformations for nonlinear balancing.

We use the following terminology and notation in describing the required trans-

formations. Applying the Morse-Palais lemma to the controllability function gives
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the Morse coordinate transformation, denoted ΦM : Û → U , where U and Û are

neighborhoods of 0. We also define local transformations which bring the realiza-

tion to forms analogous to input-normal and balanced, denoted ν : Û → Ũ and

η : Ũ → Ū , respectively, where Ũ and Ū are neighborhoods of 0. The transforma-

tions are written

x = ΦM(x̂) x ∈ U, x̂ ∈ Û (4.116)

x̃ = ν(x̂) x̂ ∈ Û , x̃ ∈ Ũ (4.117)

x̄ = η(x̃) x̃ ∈ Ũ , x̄ ∈ Ū (4.118)

Composing ΦM with ν−1 results in the input-normal coordinate transformation

ΦI , i.e.,

x = ΦI(x̃) = ΦM (ν−1(x̃)) x ∈ U, x̃ ∈ Ũ (4.119)

Composing ΦM with ν−1 and η−1 results in the balancing transformation ΦB, i.e.,

x = ΦB(x̄) = ΦM(ν−1(η−1(x̄)) x ∈ U, x̄ ∈ Ū (4.120)

The balanced realization
(
f̄ , ḡ, h̄

)
is given by

f̄(x̄) = [DΦB(z)]−1 f (ΦB(z))

ḡi(x̄) = [DΦB(z)]−1
gi (ΦB(z)) i ∈ m

h̄(x̄) = h (ΦB(z))

Remark 4.5.1 There is an equivalent dual procedure (see [140]), in which the

Morse-Palais lemma is applied to the observability energy function, and the in-

termediate step takes the realization to output-normal (instead of input-normal)

form. Its use in an appropriately revised balancing procedure results in an equiv-

alent balanced realization. The computational methods are essentially identical.

2
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In this section, we provide the mathematical and computational frameworks

for performing the individual steps and combining them into the overall balancing

procedure.

4.5.1 Morse-Palais Form

The Morse-Palais lemma is applied in the Scherpen balancing procedure by ob-

serving that the controllability function Lc has a non-degenerate critical point at

0. Therefore, there exists a Morse coordinate transformation under which Lc is

quadratic on a neighborhood of 0. Equation 4.88 leads directly to the following

result.

Corollary 4.5.2 (Morse Coordinate Transformation for Lc Around 0)

There exist neighborhoods U and Û of 0 and a local coordinate transformation

ΦM : Û → U , x̂→ x = ΦM (x̂) , ΦM(0) = 0 (4.121)

such that

L̂c(x̂)
4
= Lc(ΦM (x̂)) =

1

2
x̂T x̂ x̂ ∈ Û (4.122)

where U = ΦM (Û). 2

Example 4.5.3 Consider the case of a LTI system with controllability Gramian

Wc and controllability function Lc(x) = 1
2
xTWc

−1 x. Let Wc = LLT be the

Cholesky decomposition for the symmetric positive-definite matrix Wc. Then the

Morse coordinate transformation for Lc around 0 is given by

x = ΦM (x̂) = L x̂ (4.123)

resulting in L̂c(x) = 1
2
x̂T x̂. 2
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4.5.2 Input-Normal Form

Recall the input-normal form for a stable minimal linear system realization

(A,B,C), i.e., Gramians take the form Wc = 1I and Wo = Σ2 = diag (σ2
1, . . . , σ

2
n).

Consequently, the corresponding energy functions are given by

Lc (x) =
1

2
xT x (4.124)

Lo (x) =
1

2
xTΣ2 x (4.125)

We seek a local coordinate transformation under which the nonlinear system real-

ization (f, g, h) and corresponding energy functions Lc and Lo take an analogous

form in a neighborhood of 0.

Assume that we already have applied the Morse coordinate transformation ΦM

guaranteed by Corollary 4.5.2. Let the energy functions in the new coordinates be

denoted L̂c and L̂o. The transformed controllability function L̂c is of the desired

form (4.124). We need an additional change of coordinates under which L̂o takes

a form analogous to (4.125) while preserving the form of L̂c. The following is a

direct result of Lemma 4.4.12 applied to L̂o.

Corollary 4.5.4 For each x̂ ∈ Û there exists a matrix M(x̂) such that

L̂o(x̂)
4
= Lo(ΦM (x̂)) =

1

2
x̂T M(x̂) x̂. (4.126)

Moreover, M(x̂) is symmetric everywhere on Û and

M (0) = D2L̂o (0) (4.127)

2

To complete the input-normal analogy we must diagonalize M throughout Û

while preserving the form of L̂c. The following result from Kato [77] provides

conditions for the existence of such a transformation.
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Lemma 4.5.5 (Kato [77]) If the number of distinct eigenvalues of M(x̂) is con-

stant on a neighborhood Û of 0, then the eigenvalues and eigenvectors of M(x̂) are

smooth functions of x̂ ∈ Û . 2

Henceforth, we assume that M(x̂) always has a constant number of distinct

eigenvalues on Û . Since M(0) is symmetric and positive-definite, it is diago-

nalizable. Thus, our assumption together with Lemma 4.5.5 implies that M(x̂)

is smoothly diagonalizable throughout Û , i.e., there exist smooth matrix-valued

functions T and Λ such that

M(x̂) = T (x̂) Λ(x̂)T (x̂)T x̂ ∈ Û (4.128)

where T (x̂) is orthogonal for each x̂ ∈ Û and Λ(x̂) takes the form

Λ(x̂) = diag (λ1(x̂), . . . λn(x̂)) x̂ ∈ Û (4.129)

with λ1(x̂) ≥ · · · ≥ λn(x̂) ≥ 0 by convention.

To construct the input-normal coordinate transformation, we define the change

of coordinates

ν : Û → Ũ , x̂→ x̃ = ν(x̂) , ν(0) = 0 (4.130)

by

x̃ = ν(x̂)
4
= T (x̂)T x̂ x̂ ∈ Û (4.131)

where Ũ = ν(Û). Observe that ν is linear and orthogonal for each fixed x̂. Com-

posing ν−1 with ΦM yields the input-normal coordinate transformation

x = ΦI(x̃)
4
= ΦM(ν−1(x̃)) x̃ ∈ Ũ (4.132)

where U = ΦI(Ũ). This is summarized in the following.

161



Lemma 4.5.6 (Input-Normal Form) There exist neighborhoods U and Ũ of 0

and a local change of coordinates

ΦI : Ũ → U , x̃→ x = ΦI(x̃) , ΦI(0) = 0 (4.133)

such that

L̃c(x̃)
4
= Lc(ΦI(x̃)) =

1

2
x̃T x̃ (4.134)

L̃o(x̃)
4
= Lo(ΦI(x̃)) =

1

2
x̃T W̃ (x̃) x̃ (4.135)

where

W̃ (x̃)
4
= diag (µ1(x̃), . . . , µn(x̃)) (4.136)

µi(x̃)
4
= λi(ν

−1(x̃)) i ∈ n (4.137)

Example 4.5.7 We continue with the LTI system of Example 4.5.3. Let the sys-

tem have observability Gramian Wo and observability function Lo(x) = 1
2
xTWo x.

Let Wo = TΣ2TT be the spectral decomposition for the symmetric positive-definite

matrix Wo. Then the input-normal transformation is given by

x̃ = ν(x̂) = TT x̂ (4.138)

x = ΦI (x̃) = LT x̃ (4.139)

resulting in L̃c(x̃) = 1
2
x̃T x̃ and L̃o(x̃) = 1

2
x̃TΣ2 x̃. 2

4.5.3 Balanced Form

Recall the balanced form for a stable minimal linear system realization (A,B,C),

i.e., Gramians are such that Ŵc = Σ = Ŵo. Consequently, the corresponding

energy functions are given by

Lc (x) =
1

2
xTΣ−1 x (4.140)

L̂o(x̂) =
1

2
xTΣx (4.141)
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We seek a local coordinate transformation under which the nonlinear system real-

ization (f, g, h) and corresponding energy functions Lc and Lo take an analogous

form in a neighborhood of 0.

Assume that we already have computed the objects defined in Lemma 4.5.6.

Define the change of coordinates (point-dependent scaling)

η : Ũ → Ū , x̃→ x̄ = η(x̃) , η(0) = 0 (4.142)

by

x̄ = η(x̃)
4
= Γ(x̃) x̃ x̃ ∈ Ũ (4.143)

where Ū = η(Ũ) and

Γ(x̃)
4
= diag

(
µ1(x̃)

1
4 , . . . , µn(x̃)

1
4

)
(4.144)

Observe that η is linear and diagonal for each fixed x̃. Composing η−1 with ΦI

yields the the balancing coordinate transformation

ΦB(x̄)
4
= ΦI(η

−1(x̄)) = ΦM (ν−1(η−1(x̄))) x̄ ∈ Ū (4.145)

where U = ΦB(Ū). This is summarized in the following.

Lemma 4.5.8 (Balanced Form) There exist neighborhoods U and Ū of 0 and a

local change of coordinates

ΦB : Ū → U , x̄→ x = ΦB(x̄) , ΦB(0) = 0 (4.146)

such that

L̄c(x̄)
4
= Lc(ΦB(x̄)) =

1

2
x̄T W̄−1(x̄) x̄ (4.147)

L̄o(x̄)
4
= Lo(ΦB(x̄)) =

1

2
x̄T W̄ (x̄) x̄ (4.148)
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where

W̄ (x̄)
4
= diag (σ1(x̄), . . . , σn(x̄)) (4.149)

σi(x̄)
4
= µi(η

−1(x̄))
1
2 i ∈ n (4.150)

Definition 4.5.9 The functions {σ1(·), . . . , σn(·)} are called the singular value

functions of the affine nonlinear system. 2

Remark 4.5.10 The terminology “singular value functions” was coined by Scher-

pen in [140, 141], where they were defined, somewhat differently, as

σi(x̄) = µi
(
0, . . . , 0, η−1(x̄i), 0, . . . , 0

)1/2
(4.151)

The difference is that the square root of µi is evaluated at points on the i-th

coordinate axis. This convention facilitates some of the subsequent calculations

in [140, 141], but is inconsequential for our purposes here. 2

Remark 4.5.11 In contrast to the LTI case, the singular value functions are not

invariant under coordinate transformation. However, for a LTI system they spe-

cialize to the constant Hankel singular values. 2

Example 4.5.12 We continue with the LTI system of Example 4.5.7. The bal-

ancing transformation is given by

x̄ = η(x̃) = Σ1/2 x̃ (4.152)

x = ΦB (x̄) = LT Σ−1/2 x̄ (4.153)

resulting in L̄c(x̄) = 1
2
x̄TΣ−1 x̄ and L̄o(x̄) = 1

2
x̄TΣ x̄. 2

The singular value functions σ1, . . . , σn and the balancing transformation ΦB

are not unique for a given realization (f, g, h). This can be argued as a consequence
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of the non-uniqueness of the Morse coordinate transformation. Thus, there exists

a family of transformations ΦB, each producing a balanced realization
(
f̄ , ḡ, h̄

)
from among a family of such balanced realizations.

The model reduction properties of nonlinear balancing, as with the LTI case,

reside in a ranking of the singular value functions, i.e., the magnitude of σi(x̄)

relative to the others is an indication of the degree to which the i-th state compo-

nent contributes to the input-to-output energy gain of the system. Since, in the

nonlinear setting, the σi are functions of the state x̄, we must be concerned with

the neighborhood of 0 in which the functions do not intersect, i.e., switch places

in the ranking. Furthermore, since they are not unique, there is the question of

whether different collections of σi for (f, g, h) will result in different orderings by

magnitude. We are not aware of any results addressing these issues.

4.5.4 Computation

In order to implement the nonlinear balancing procedure, we compute discretized

approximations of the various functions and local coordinate transformations as

described in the previous sections. Figure 4.3 illustrates the computational pro-

cedure. The inputs are the smooth functions f , g, and h in realization (f, g, h)

and a suitable state-space grid X . The outputs are discretized approximations

of the functions f̄ , ḡ, and h̄ in balanced realization
(
f̄ , ḡ, h̄

)
and neighborhoods

of grid points U and Ū representing the neighborhoods on which the balancing

transformation is defined. In this section we present the computational framework

and the main algorithms for performing the required computations.
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Figure 4.3: Overview of computational procedure for nonlinear balancing.
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Computational Setting

In the computational setting, functions are evaluated at a pre-determined set of

points on a state-space grid, i.e., they are discretized approximations. A neigh-

borhood of 0 corresponds to a set of discrete grid points containing the point

representing the origin. We do not address the problem of determining an ap-

propriate discretization of the state-space. Rather, we assume that a grid, i.e., a

collection of points denoted X , of sufficient resolution has been constructed. Sup-

pose that we have discretized the state-space in such a way that there are p evenly

spaced grid points along each of the n dimensions. This means that there are pn

total discrete points in the state-space grid.

It is normally the case that the basic computational primitives of an algorithm

are elementary operations such as floating point additions, multiplications, and so

forth. Such a low-level viewpoint is unsuitable for our purposes here. Instead, we

consider the primitives to be

• standard matrix-vector operations such as matrix multiplication, matrix in-

version, matrix transposition, and spectral decomposition; and

• standard operations on a function of a real variable such as definite integra-

tion, partial differentiation, and multi-dimensional interpolation.

There exist standard algorithms for performing the above operations, each of

which has an associated computational complexity (e.g., o(m3) elementary oper-

ations for multiplication of m × m matrices). However, for the balancing algo-

rithms, the overall computational complexity is dominated by the system dimen-

sion as manifested in the grid resolution, i.e., the number of grid points at which

computations are performed. For example, we use an algorithm called Spectral-
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Decomp that takes a matrix-valued function, and returns the eigenvalues and

eigenvectors (performs a spectral decomposition) at each point in the state-space

grid. Thus, if the spectral decomposition algorithm has complexity o(s(m)), the

algorithm Spectral-Decomp has complexity o(s(m) pn), i.e., is exponential in

n. Point dependency dominates the computational complexity of the nonlinear

balancing algorithms.

We adopt a point-wise data structure for storage of the objects of interest (e.g.,

grid points, controllability function). Although we do not program the balancing

procedure using a database per se, it is a useful model for illustration. Consider

a database, i.e., a collection of data records, each of which corresponds to a single

point in the state-space grid. Each data record contains the value of each of the

objects of interest at one particular grid point. Thus, a function is represented by

one field of the entire database. The database structure is given in Table 4.1.

It is useful to define the inverses of the coordinate transformations ΦM , ΦI ,

and ΦB by

ΨM = ΦM
−1 ΨI = ΦI

−1 ΨB = ΦB
−1 (4.154)

on ΦM(U), ΦB(U), and ΦB(U), respectively. The inverse transformations are

represented in the data structure, respectively, by the x̂, x̃, and x̄ data elements

corresponding to grid point x.

Balanced Realization

The algorithm for computing a balanced realization is as follows.

Algorithm 4.5.13 (Balanced Realization)

Balance(f, g, h,X )
1 Y ← Sde-Sim(f, g,X )
2 Lc ← Ctrb-Fn-Monte-Carlo(Y,X )
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Data Record Structure

x Lc Lo x̂ U Û M T λ1 . . . λn x̃ Ũ Γ x̄ Ū σ1 . . . σn

Data Fields
Data Element Description Type

x Grid Point in Standard Coordinates n-vector
Lc Value of Controllability Function scalar
Lo Value of Observability Function scalar
x̂ Grid Point in Morse Coordinates for Lc n-vector
U Neighborhood Membership Indicator boolean

Û Neighborhood Membership Indicator boolean
M Intermediate Matrix for Lo n× n matrix
T Eigenvector Matrix for M n× n matrix
λ1 Largest Eigenvalue for M scalar
. . . . . . . . .
λn Smallest Eigenvalue for M scalar
x̃ Grid Point in Input-Normal Coordinates n-vector

Ũ Neighborhood Membership Indicator boolean
Γ Scaling Matrix n× n matrix
x̄ Grid Point in Balanced Coordinates n-vector
Ū Neighborhood Membership Indicator boolean
σ1 Largest Singular Value scalar
. . . . . . . . .
σn Smallest Singular Value scalar

Table 4.1: Database structure containing data elements for nonlinear balancing
computational procedure. For a state-space grid with pn points, there are pn data
records, each corresponding to a grid point.
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3 Lo ← Obsv-Fn(f, h,X )

4
(
φ,A, U, Û

)
← Morse-Palais(Lc,X )

5 ΨM ← Spherical(φ,A, U)
6 L̂o ← Transform(Lo,ΨM , U)

7 M ← Morse-Fn-Decomp
(
L̂o, Û

)
8 (T,Λ)← Spectral-Decomp

(
M, Û

)
9

(
ΨI , Ũ

)
← Input-Normal-Trans(T,ΨM , U)

10
(
ΨB, Ū

)
← Balancing-Trans(Λ,ΨI , U)

11
(
f̄ , ḡ, h̄

)
← Transform(f, g, h,ΨB, U)

12 Return f̄ , ḡ, h̄, Ū 2

We now present the computational methods and algorithms corresponding to

the individual steps of Algorithm 4.5.13. Some of these have been addressed pre-

viously, although not within the framework of our computational setting.

Controllability Function

Methods for computing the controllability function have been described in Sec-

tions 4.2 and 4.3. In cases where we can derive an exact expression for Lc, e.g., via

Theorem 4.3.14, the task is completed by discretizing the resulting function Lc.

Otherwise, we use the Monte-Carlo approach, yielding the approximation (4.39),

which improves as the number of experiments increases. We have developed ver-

sions of Sde-Sim and Ctrb-Fn-Monte-Carlo, respectively, for numerical inte-

gration of SDEs and computation of the controllability function from the Monte-

Carlo data. Numerical schemes for simulation of SDEs appear in Appendix C. We

developed and used various multidimensional histogramming utilities to implement

the Monte-Carlo approach.
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Observability Function

We have not addressed computation of the observability function in detail. We

implement Obsv-Fn to compute the observability function via numerical integra-

tion of the natural response of the system and numerical integration of the output

energy. The procedure is performed for each point on the state-space grid.

Algorithm 4.5.14 (Observability Function)

Obsv-Fn(f, h,X )
1 for each point x in the state-space grid X
2 x0 ← x
3 u← 0
4 z ← Ode-Sim(f, u, x0)
5 y ← Compose(h, z)
6 T ← a number large enough so that the natural response of the stable
system is nearly zero for t > T
7 Lo[x]← Integral(y, 0, T )
8 Return Lo 2

Morse Coordinate Transformation

The algorithms forMorse-Palais andMatrix-Square-Root are based on the

computational procedures presented in Section 4.4.3.

Algorithm 4.5.15 (Morse Coordinate Transformation)

Morse-Palais(f,X )
1 H ← Morse-Fn-Decomp(f,X )
2 A← Origin-Select(H,X )
3 for each point x in the state-space grid X
4 B ← A \ H[x]
5 if Matrix-Norm(1I−B) < 1
6 C ← Matrix-Square-Root(B)
7 z ← C ∗ x
8 φ[x]← z
9 add x to the list of points in neighborhood U
10 add z to the list of points in neighborhood Û
11 Return φ,A, U, Û 2
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Remark 4.5.16 The expression B ← A \ H[x] is equivalent to solving H(x) =

AB for B. 2

The algorithm for Matrix-Square-Root is as follows.

Algorithm 4.5.17 (Matrix Square Root)

Matrix-Square-Root(B)
1 if Matrix-Norm(1I−B) < 1
2 C ← Cprev ← 1I
3 δ ← ε+ 1
4 while δ ≥ ε
5 C ← C + 0.5 ∗ (B − C2)
6 δ ← Matrix-Norm(C − Cprev)
7 Cprev ← C
8 else
9 error: algorithm will not converge
10 Return C 2

Remark 4.5.18 The parameter ε represents an error tolerance. It would be set

as a global constant or in some other appropriate manner. 2

Algorithm 4.5.15 returns discretized versions of the objects that appear in The-

orem 4.4.7, i.e., the coordinate transformation φ, the invertible symmetric matrix

A, and the neighborhoods U and Û of 0. Computation of ΨM from φ and A

requires several additional straightforward steps including a standard spectral de-

composition of A.

Algorithm 4.5.19 (Spherical Quadratic Form)

Spherical(φ,A, U)
1 (V,Λ)← Eig(A)
2 E ← Abs(Λ)
3 R← E ∗Transpose (V )
4 r ← the number of negative entries on the diagonal of Λ
5 for each point x in the collection of grid points U
6 ψ[x]← R ∗ φ[x]
7 Return ψ, r 2
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Remark 4.5.20 When dealing with positive functions such as Lc and Lo, the index

r is always zero so we ignore that parameter in the balancing procedure. 2

Function Decompositions

Algorithms 4.5.13 and 4.5.15 use the following algorithms for approximating the

decompositions (4.89) and (4.93). Also, the decomposition L̂o = x̂TM(x̂) x̂ ap-

pears in the overall balancing procedure.

Algorithm 4.5.21 (Smooth Function Decomposition)

Smooth-Fn-Decomp(f, U)
1 for i = 1 to n
2 partialf [i]← Partial-Deriv(f, i, U)
3 for each point x in the collection of grid points U
4 for i = 1 to n
5 g[i][x]← Integral(partialf [i], 0, x)
6 G← Vector(g[1], . . . , g[n])
7 Return G 2

Algorithm 4.5.22 (Morse Function Decomposition)

Morse-Fn-Decomp(f, U)
1 G← Smooth-Fn-Decomp(f, U)
2 for i = 1 to n
3 F [i]← Smooth-Fn-Decomp(G[i], U)
4 for j = 1 to n
5 h[i, j]← F [i][j]
6 H ← Matrix(h[1, 1], . . . , h[n, n])
7 Return H 2

Input-Normal and Balancing Coordinate Transformations

The algorithms for computing discretized approximations of the input-normal and

balancing transformations are based on the computational procedures described in

Sections 4.5.2 and 4.5.3.
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Algorithm 4.5.23 (Input-Normal Coordinate Transformation)

Input-Normal-Trans(T, ξ, U)
1 for each point x in the collection of grid points U
2 y ← ξ[x]
3 z ← Transpose(T [y]) ∗ y
4 ψ[x]← z
5 add z to the list of points in neighborhood Ũ
6 Return ψ, Ũ 2

Algorithm 4.5.24 (Balancing Coordinate Transformation)

Balancing-Trans(Λ, ξ, U)
1 for each point x in the collection of grid points U
2 y ← ξ[x]
3 Σ← Square-Root(Λ, U)
4 Γ← Square-Root(Σ, U)
5 z ← Γ[y] ∗ y
6 ψ[x]← z
7 add z to the list of points in neighborhood Ū
8 Return ψ, Ū
2

MATLAB Toolbox

We have implemented the algorithms described in this section using the MAT-

LAB [102] programming environment. The resulting collection of programs and

utilities for performing various operations on multidimensional discretized func-

tions, referred to as the nonlinear balancing toolbox, was used as the computational

tool to apply nonlinear balancing to the examples in Section 4.6.

We performed simulations on a Sun Sparc Ultra-10 running the UNIX operating

system. Running times for the various programs depend on grid resolution and

system dimension. Roughly, the time required to compute a Morse transformation

for systems of dimension 2, 3, and 4 is on the order of, respectively, seconds

to minutes, minutes to hours, and hours to days. Computations for systems of
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dimension 5 and higher are currently infeasible.

It is possible to increase the speed of computation by converting the MATLAB

code to C, using a faster processor, and taking advantage of opportunities for

parallelization and other economies. However, we did not pursue these options,

since it is unlikely that the feasible dimension would increase significantly. Rather,

we believe that new algorithms will be required for working with higher dimensional

systems.

Utilities

The algorithms presented in this section use various utilities for performing com-

putations with multidimensional discretized functions, standard vector-matrix op-

erations, operations on a function of a real variable, and so forth. We briefly

describe their purposes here so that the previous algorithms can be understood.

The actual implementations in the nonlinear balancing toolbox do not necessarily

reflect exactly the descriptions given below, nor is this list a complete compilation

of toolbox utilities (e.g., Transform and Integral require the use of additional

multidimensional interpolation utilities). Versions of some of these utilities are

included as standard functionality in MATLAB. By a point-dependent matrix we

mean a matrix-valued function on a grid.

Spectral-Decomp returns the point-dependent eigenvectors and eigenvalues of

a point-dependent matrix

Square-Root returns a point-dependent matrix whose entries are the square

roots of the respective entries of a point-dependent matrix.

Transform takes one or more discretized mappings and returns its (their) values

at the grid points after a coordinate transformation.
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Integral returns the approximate definite integral of a discretized function.

Ode-Sim returns the sampled time evolution of a forced ODE given initial condi-

tions and sampled input signal.

Partial-Deriv returns an approximation to the i-th partial derivative of a dis-

cretized function.

Compose returns a discretized function that represents the composition of two

other discretized functions.

Origin-Select returns the indices of the grid point that represents the origin in

state-space.

Eig returns the eigenvalues and unit eigenvectors of an invertible matrix.

Matrix-Norm returns the largest singular value of a matrix.

Abs returns a matrix whose entries are the absolute values of the entries of the

original matrix.

Transpose returns the transpose of a matrix.

Vector assembles a collection of numbers or discretized functions into a vector.

Matrix assembles a collection of numbers or discretized functions into a matrix.

4.6 Applications

In this section we illustrate the methods and algorithms presented in this Chapter

by applying them to two examples of rigid link mechanical systems. We compute a

balanced realization for a forced damped pendulum system, and take steps toward
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balancing a forced damped double pendulum system. The material in this section

relies heavily on the mathematical framework for mechanical systems as presented

in Section 2.7.

4.6.1 A Balanced Realization for the Forced Damped Pen-

dulum

The first example that we consider is a simple pendulum system as illustrated

in Figure 4.4. The system incorporates linear torsional damping, linear torsional

stiffness, and a torque input at the rotary joint. We assume that the shaft is

massless and that the pendulum moves only in the plane. We consider two cases

for the system output: where the joint angle is measured (position read-out) and

where the joint angular velocity is measured (velocity read-out). Figure 4.4 also

provides values for each of the physical parameters that we use in numerical studies.

Simulations were performed using routines from the nonlinear balancing toolbox

described in Section 4.5.4.

It is beneficial to study the pendulum as an example because

• it is nearly linear, so we can use the LTI theory to obtain a good estimate of

the correct results for comparison; and

• in previous sections we have studied second-order mechanical systems and

obtained an exact formula for the controllability function.

State-Space Realization

We obtain a state-space realization (f, g, h) for the pendulum system via the Euler-

Lagrangian mechanics outlined in Section 2.7. Let the generalized position q and
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θ

m

L

τ
b,k

mg

θ joint angle (between shaft and vertical)
τ torque applied at rotary joint
m 1/40 mass attached to end of shaft
b 2 torsional damping coefficient (friction)
k 1 torsional stiffness coefficient (spring constant)
L 20 length of shaft
G 10 gravitational acceleration

Figure 4.4: Planar pendulum system with massless shaft, linear torsional damping,
linear torsional stiffness, and torque input applied at the rotary joint. Values of
parameters are provided for the numerical studies that we conducted.

velocity q̇ correspond to the joint angle θ and angular velocity θ̇, respectively. Let

the generalized force F represent the applied joint torque τ . The kinetic, potential,

and dissipation energies are given, respectively, by

K (q, q̇) =
1

2
mL2 q̇2 (4.155)

U (q, q̇) =
1

2
k q2 −mGL cos (q) (4.156)

R (q, q̇) =
1

2
b q̇2 (4.157)

The Lagrangian L is given by

L (q, q̇) = K (q, q̇)− U (q, q̇)

=
1

2
mL2 q̇2 −

1

2
k q2 +mGL cos (q) (4.158)
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We apply the Euler-Lagrange equation of motion (2.113), i.e.,

d

dt

∂L

∂q̇
−
∂L

∂q
= F −

∂R

∂q̇
(4.159)

to obtain the equation of motion for the pendulum system, given by

mL2 q̈ + k q +mGL sin (q) = F − b q̇ (4.160)

The affine nonlinear control system is realized in coordinates x = (x1, x2) =

(q, q̇) by

f (x) =


x2

−
G

L
sin (x1)−

k

mL2
x1 −

b

mL2
x2

 g (x) =


0

1

mL2

 (4.161)

and either h (x) = x1 or h (x) = x2 depending on whether we measure angular

position or velocity.

Remark 4.6.1 We need not explicitly realize the system in Hamiltonian coordi-

nates (generalized positions and momenta). The results in Section 4.3.2 still apply,

taking into account the different coordinates. 2

System Properties

The linearization (A,B,C) of (f, g, h) is given by

A =


0 1

−
G

L
−

k

mL2
−

b

mL2

 B =


0

1

mL2

 (4.162)

and either C = [1 0] for position read-out or C = [0 1] for velocity read-out.

Observe that the linearization is asymptotically stable since

spec (A) =
{

1

2mL2

(
−b±

√
b2 − 4m2 L3G− 4mL2 k

)}
∈ IC− (4.163)
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Furthermore, the linearization is controllable and observable in both output cases

since

rank [B AB] = rank


0

1

mL2

1

mL2

−b

m2 L4

 = 2 (4.164)

and either

rank

 C

CA

 = rank

 1 0

0 1

 = 2 (4.165)

or

rank

 C

CA

 = rank


0 1

−
G

L
−

k

mL2

−b

mL2

 = 2 (4.166)

Controllability and observability of the linearization, together with asymptotic

stability, are sufficient to guarantee local asymptotic reachability and zero-state

observability of the nonlinear system (see, e.g., [121]). Therefore, we can conclude

that the controllability and observability functions exist in a neighborhood of 0

and are non-degenerate.

Substituting the values of the parameters given in Figure 4.4 gives the linearized

realization

A =

 0 1

−0.6 −0.2

 B =

 0

0.1

 (4.167)

and either C = [1 0] or C = [0 1]. The Gramians and Hankel singular values

are given, for the position and velocity output cases, respectively, by

Wc =

 0.0417 0.0000

0.0000 0.0250

 Wo =

 1.5000 0.0000

0.0000 2.5000

 (4.168)
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σ1 = 0.3671 and σ2 = 0.2838; and

Wc =

 0.0417 0.0000

0.0000 0.0250

 Wo =

 0.3671 0.0000

0.0000 0.2838

 (4.169)

σ1 = 0.2500 and σ2 = 0.2500.

Controllability Function

The Hamiltonian H for the pendulum system is given by

H (x) = K (x) + U (x)

=
1

2
mL2 x2

2 +
1

2
k x2

1 −mGL cos (x1) (4.170)

Furthermore, the equipartition of energy condition (4.65) is satisfied trivially for

the 1-DOF system with ratio ` = b. Applying Theorem 4.3.14, the controllability

function Lc is given, exactly, by

Lc (x) = −2 bmGL cos (x1) + b k x2
1 + bmL2 x2

2 + 2 bmGL (4.171)

and with substituted values by

Lc (x) = −20 cos (x1) + 2 x2
1 + 20 x2

2 + 20 (4.172)

Since we have an exact formula for Lc, we can study the performance of the

Monte-Carlo approach by comparing Lc with an approximation computed via

Equation (4.39) using an approximate stationary density. To this end, we sim-

ulated 50,000 sample paths for the pendulum system with approximate Gaussian

white noise injected as the torque input. We assumed that steady-state was reached

after 60 time units, 6 times the largest time constant of the system.

The results of the Monte-Carlo experiments are presented in Figure 4.5. We

generated histograms for two grid resolutions: ∆x = 0.1 (coarse) and ∆x = 0.05
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(fine). The accuracy of computations such as approximate differentiation and in-

terpolation improves as grid resolution increases, i.e., becomes finer. However, it

is crucial to obtain an approximation of Lc that is reasonably smooth and con-

sequently has no local minima or maxima other than at 0. Smoothness of the

approximation improves as the grid resolution becomes coarser. In this case, we

use the coarse grid, which is roughly the highest resolution that provides a smooth

approximation. By generating additional sample paths, we can increase the grid

resolution while maintaining a smooth approximation.

We investigate the performance of the Monte-Carlo approach by comparing

the approximate Lc with the exact Lc given by (4.171). Moreover, we check to

see if Lc and the approximation satisfy the HJB equation (4.14). This is done by

computing and plotting the HJB residual, i.e., the right hand side of (4.14), given

by

ρc (x) =
∂Lc
∂x

(x) f (x) +
1

2

∂Lc
∂x

(x) g (x) gT (x)

[
∂Lc
∂x

(x)

]T
(4.173)

The results are shown, for low and high resolution grids, respectively, in Figures 4.6

and 4.7. The large fluctuations in the residuals at the edges of the grid are due

to numerical errors in computing derivatives at the edges and should be ignored.

The residual is exactly zero everywhere on the grid for the exact controllability

function, thus confirming that it exactly satisfies the HJB equation. The residual

for the approximate controllability function fluctuates somewhat (more on the finer

grid) but remains relatively close to zero at all grid points. The approximation is

better at points close to the origin, since a region close to the origin contains most

of the Monte-Carlo data. The performance of the Monte-Carlo approach and its

numerical implementation in the nonlinear balancing toolbox appear to be good

for this example.

182



−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
0

1

2

3

4

5

x
1

Stochastically Excited Pendulum: Stationary Density

x
2

p ∞
(x

)

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
0

2

4

6

8

10

x
1

Pendulum: Approximate Controllability Function

x
2

L c(x
)

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
0

1

2

3

4

5

6

x
1

Stochastically Excited Pendulum: Stationary Density

x
2

p ∞
(x

)

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
0

2

4

6

8

10

x
1

Pendulum: Approximate Controllability Function

x
2

L c(x
)

Figure 4.5: The stationary density and derived approximate controllability func-
tion for the pendulum system. Monte-Carlo approach used 50,000 sample paths
for white noise driven system. Top left: approximate stationary density (coarse
grid); Top right: approximate controllability function (coarse grid); Bottom left:
approximate stationary density (fine grid); Bottom right: approximate controlla-
bility function (fine grid).
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Figure 4.6: The controllability function and HJB residual for the pendulum system
(low resolution grid). Top: Approximate controllability function (Monte-Carlo)
and HJB residual; Bottom: Exact controllability function and HJB residual.
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Figure 4.7: The controllability function and HJB residual for the pendulum system
(high resolution grid). Top: Approximate controllability function (Monte-Carlo)
and HJB residual; Bottom: Exact controllability function and HJB residual.
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Observability Function

In the case where we measure angular velocity, i.e., h(x) = x2, we can easily solve

the Lyapunov-type PDE (4.15) satisfied by Lo to give an exact formula for the

observability function. We obtain an expression for Lo, given by

Lo (x) = −
mGL

2 b
cos (x1) +

k

4 b
x2

1 +
mL2

4 b
x2

2 +
mGL

2 b
(4.174)

and with substituted values by

Lo (x) = −1.25 cos (x1) + 0.125 x2
1 + 1.25 x2

2 + 1.25 (4.175)

In the case where we measure the joint angle, i.e., h(x) = x1, we cannot obtain

a closed form solution of (4.15). Instead, we use Algorithm 4.5.14 to compute an

approximation. In addition, to study the performance of the algorithm, we also

use Algorithm 4.5.14 to compute an approximation in the case where h(x) = x2.

Again, for purposes of simulation, we assumed that steady-state was reached after

60 time units, 6 times the largest time constant of the system.

We investigate the performance of the algorithm by comparing the approximate

Lo with the exact Lo (velocity output case) given by (4.174). Moreover, we compute

and plot the Lyapunov residual, i.e., the right hand side of (4.15), given by

ρo (x) =
∂Lo
∂x

(x) f (x) +
1

2
hT (x) h (x) (4.176)

The results are shown for the cases of velocity and position read-out, respec-

tively, in Figures 4.8 and 4.9. As before, the large fluctuations in the residuals

at the edges of the grid are due to numerical errors in computing derivatives at

the edges and should be ignored. All residuals are zero or nearly zero at all grid

points. Moreover, there is negligible difference between the exact observability
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Figure 4.8: The observability function and Lyapunov residual for the pendulum
system with velocity output. Top: Approximate observability function; Bottom:
Exact observability function.

function computed via (4.174) and the approximate observability function com-

puted using Algorithm 4.5.14. The performance of the algorithm and its numeri-

cal implementation in the nonlinear balancing toolbox appear to be good for this

example.

Balanced Realization

We now use the previously computed Lc and Lo, and the algorithms presented

in Section 4.5.4 and implemented in the nonlinear balancing toolbox, to compute
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Figure 4.9: The observability function and Lyapunov residual for the pendulum
system with position output.

balanced realizations for both pendulum systems, i.e., with position and velocity

read-outs.

As a minor digression, we note that it is possible to calculate an expression to

approximate the inverse Morse coordinate transformation of

Lc (x) = −20 cos (x1) + 2 x2
1 + 20 x2

2 + 20 (4.177)

around its non-degenerate critical point at 0. Expanding the cosine function yields

Lc (x) = 12 x2
1 −

10

6
x4

1 + o(x6
1) + 20 x2

2 = xTH(x) x (4.178)

where

H(x) =

 12−
10

6
x2

1 + o(x4
1) 0

0 20

 (4.179)

Thus, the inverse Morse coordinate transformation is given, for

|(10/72) x2
1 + o(x4

1)| < 1, by

ΨM (x) =


√

12
(

1−
10

72
x2

1 + o(x4
1)
)1/2

x1

√
20x2

 (4.180)
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Although we have calculated an expression to approximate the inverse Morse

coordinate transformation, and an expression for its region of validity, we use

Algorithm 4.5.15 within the overall balancing procedure to compute a balanced

realization. Applying the remainder of the steps in Algorithm 4.5.13 produces

discretized approximations of the singular value functions σ1(x) and σ2(x) and the

functions f̄ , ḡ, and h̄ in the balanced realization
(
f̄ , ḡ, h̄

)
.

The computed singular value functions for the pendulum systems with position

and velocity outputs, respectively, are shown in Figures 4.10 and 4.11. Because

the pendulum system is nearly linear, we expect the singular value functions to

be nearly constant at the value of the corresponding Hankel singular values of the

linearized system. This is reflected in the computations.

In the case of measured joint angle, the singular value functions are nearly

constant at grid points close to the origin, taking values close to 0.367 and 0.284.

This closely matches the Hankel singular values of the linearized system. One state

is roughly 1.3 times as important to the input-to-output behavior of the system.

In the case of measured angular velocity, the singular value functions are again

nearly constant at grid points close to the origin. Here, the two functions are

nearly equal, taking values close to 0.252 and 0.248. This closely matches the

Hankel singular values of the linearized system. Both states are equally important

to the input-to-output behavior of the system. This is expected from a physical

standpoint, since there is a duality between the torque input and angular velocity

output.

Remark 4.6.2 Because this example system has only two states, we do not delete

any states in order to produce a reduced model. Such a reduction would be dubious,

since a system with only one state is qualitatively different from a two state model,
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Figure 4.10: The singular value functions for the pendulum system with position
output. Left: σ1(x) nearly constant 0.367; Right: σ2(x) nearly constant 0.284.
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Figure 4.11: The singular value functions for the pendulum system with velocity
output. Left: σ1(x) nearly constant 0.252; Right: σ2(x) nearly constant 0.248.

i.e., cannot exhibit the same behaviors, e.g., oscillation. 2

Algorithm 4.5.13 produces discretized approximations to the functions f̄ , ḡ,

and h̄, i.e., gives their values at the grid points. In order to simulate the balanced

system, we need explicit expressions for evaluating these functions anywhere in

a region of 0. Therefore, we approximate the discretized functions with degree-4

polynomials using a linear least squares approximation scheme.

We computed balanced realizations for the pendulum systems with position
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and velocity outputs in two ways: using the exact controllability function given

by (4.171) and the approximate controllability function derived from Monte-Carlo

data. We then simulated the eight systems (original and balanced coordinates;

exact and approximate controllability function; position and velocity read-outs)

using two input signals: u ≡ 0 (natural response) and u(t) = 0.5 sin (t/π). The

output responses are shown, for the pendulum system with measured joint angle

and angular velocity, respectively, in Figures 4.12 and 4.13.

Theoretically, the output responses of the original and balanced systems should

be identical, since they are merely different representations of the same physical

system. However, the computations introduce numerical error. We observe that

by using the exact controllability function, the output responses of the original and

balanced systems are virtually identical. Thus, the algorithms for computing the

Morse, input-normal, and balancing transformations introduced negligible error.

On the other hand, when using the approximate controllability function generated

using Monte-Carlo data, the output responses of the original and balanced systems

deviate somewhat. Thus, a better approximation may be desirable, which can be

achieved by generating additional Monte-Carlo data.

4.6.2 Toward a Balanced Realization for the Double Pen-

dulum

We now consider a double pendulum system as illustrated in Figure 4.14. As with

the pendulum system of Section 4.6.1, the system incorporates linear torsional

damping, linear torsional stiffness, and torque inputs at the rotary joints. We

assume that the shafts are massless and that the pendulum moves only in the

plane. We measure the horizontal position of the end-effector as the system output
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Figure 4.12: Output response for the pendulum system with position read-out:
original coordinates (solid) vs. balanced coordinates (dashed). Top left: zero
input, exact Lc; Top right: sinusoidal input, exact Lc; Bottom left: zero input,
approximate Lc; Bottom right: sinusoidal input, approximate Lc.
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Figure 4.13: Output response for the pendulum system with velocity read-out:
original coordinates (solid) vs. balanced coordinates (dashed). Top left: zero
input, exact Lc; Top right: sinusoidal input, exact Lc; Bottom left: zero input,
approximate Lc; Bottom right: sinusoidal input, approximate Lc.
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(a nonlinear function of the state variables).

θ1

m1

L1

τ1
b1,k1

m1g
m2

m2g

θ2

τ2b2,k2

L2

θ1 joint 1 angle θ2 joint 2 angle
τ1 joint 1 applied torque τ2 joint 2 applied torque
m1 1 end mass 1 m2 1 end mass 2
b1 1 joint 1 tor. damping coeff. b2 1 joint 2 tor. damping coeff.
k1 1 joint 1 tor. stiffness coeff. k2 1 joint 2 tor. stiffness coeff.
L1 1 length of shaft 1 L2 1 length of shaft 2
G 10 gravitational acceleration

Figure 4.14: Planar double pendulum system with massless shafts, linear torsional
damping, linear torsional stiffness, and torque input applied at the rotary joints.
Values of parameters are provided for the numerical studies that we conducted.

State-Space Realization

As before, we obtain a state-space realization (f, g, h) for the pendulum system via

the Euler-Lagrangian mechanics outlined in Section 2.7. Let q = (θ1, θ2) and q̇ =(
θ̇1, θ̇2

)
denote the generalized positions and velocities corresponding, respectively,

to joint angles and angular velocities. Let the generalized forces be given by the

applied joint torques, i.e., F = (τ1 − τ2, τ2). The kinetic, potential, and dissipation

energies are given, respectively, by
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K (q, q̇) =
1

2
m1 L

2
1 q̇

2
1 +

1

2
m2 L

2
1 q̇

2
1

+
1

2
m2 L

2
2 (q̇1 + q̇2)2 +m2 L1 L2 cos (q2) q̇1 (q̇1 + q̇2) (4.181)

U (q, q̇) =
1

2
k1 q

2
1 +

1

2
k2 q

2
2

− (m1 +m2) GL1 cos (q1)−m2 GL2 cos (q1 + q2) (4.182)

R (q, q̇) =
1

2
b1 q̇

2
1 +

1

2
b2 q̇

2
2 (4.183)

We apply the Euler-Lagrange equation of motion (2.113), i.e.,

d

dt

∂L

∂q̇
−
∂L

∂q
= F −

∂R

∂q̇
(4.184)

for L = K −U to obtain the equation of motion for the double pendulum system,

given by

M (q) q̈ + C (q, q̇) +N (q, q̇) = F (4.185)

where

M (q) (4.186)

=

 (m1 +m2) L2
1 +m2 L

2
2 + 2m2 L1 L2 cos (q2) m2 L

2
2 +m2 L1 L2 cos (q2)

m2 L
2
2 +m2 L1 L2 cos (q2) m2 L

2
2



C (q, q̇) =

 −m2 L1 L2 sin (q2) (2 q̇1 q̇2 + q̇2
2)

m2 L1 L2 sin (q2) q̇2
1

 (4.187)

N (q, q̇) =

 (m1 +m2) GL1 sin (q1) +m2 GL2 sin (q1 + q2) + k1 q1 + b1 q̇1

m2 GL2 sin (q1 + q2) + k2 q2 + b2 q̇2


(4.188)

The affine nonlinear control system is realized in coordinates
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x = (x1, x2, x3, x4) = (q1, q2, q̇1, q̇2) by

f (x) =

 q̇

−M−1 (q) (C (q, q̇) +N (q, q̇))

 g (x) =

 0

M−1 (q)

 (4.189)

and h (x) = L1 sin (q1) + L2 sin (q1 + q2).

System Properties

We have verified local accessibility and local observability of the system via calcu-

lations performed using the symbolic computation capabilities of MATLAB. The

expressions for the various brackets, accessibility algebra, and observability codis-

tribution are too lengthy and complicated to include here. The system is locally

accessible at 0 since

dim (span {g1, [f, g1] , [f, [f, g1]] , [f, [f, [f, g1]]]} |x=0) = 4 (4.190)

Furthermore, the system is locally observable at 0 since

dim
(
span

{
dh, dLfh, dL[f,[g1,[f,g1]]]h, dL[f,[g1,[g1,[f,[f,f ]]]]]h

}
|x=0

)
= 4 (4.191)

Finally, we note that the system is asymptotically stable, since, for A =
∂f

∂x
(0),

spec (A) ∈ IC−.

The linearization about 0 is given by

A =



0 0 1 0

0 0 0 1

−11 12 −1 2

12 −35 2 −5


B =



0 0

0 0

1 −3

−2 7


(4.192)

and C = [2 1 0 0]. The Hankel singular values of the linearization are 0.5029,

0.4702, 0.0249, and 0.0106.
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Controllability Function

The double pendulum system is not integrable and does not, in general, satisfy

the equipartition of energy condition. However, in the special case where b1 = b =

b2 the equipartition of energy condition is satisfied with ratio ` = b. Applying

Theorem 4.3.14, the controllability function for the double pendulum system is

given, exactly, by

Lc(x) = (4.193)

b (m1 +m2)L2
1 x

2
3 + bm2 L

2
2 (x3 + x4)2 + 2 bm2 L1 L2 cos (x2) x3 (x3 + x4) +

b k1 x
2
1 + k2 x

2
2 − 2 b (m1 +m2) GL1 cos (x1)− 2 bm2GL2 cos (x1 + x2) +

2 bG ((m1 +m2) L1 +m2 L2) (4.194)

and after substitution of the parameter values given in Figure 4.14 by

Lc(x) = 2 x2
3 + (x3 + x4)2 + 2 cos (x2) x3 (x3 + x4) + x2

1 + x2
2

−40 cos (x1)− 20 cos (x1 + x2) + 60 (4.195)

The controllability function Lc for the double pendulum system is shown in

Figure 4.15.

Observability Function

We use Algorithm 4.5.14 to compute an approximation of the observability function

Lo, for the double pendulum system, shown in Figure 4.16.

Balanced Realization

Figure 4.17 shows a 2-dimensional slice of each singular value function for the dou-

ble pendulum system. At the origin, the singular value functions take the values,
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respectively, 0.487, 0.444, 0.135, and 0.050. These values are reasonable close to

what we expect from the Hankel singular values of the linearization. Two states

of the balanced realization have considerably greater input-to-output importance

than the other two states. We also observe that numerical errors are more promi-

nent for the singular value functions of small magnitude, i.e., the oscillations that

they display are likely caused by numerical error rather than being an accurate

reflection of their actual behavior.

4.7 Remarks

We have presented methods and algorithms to compute the energy functions and

coordinate transformations involved in the Scherpen theory and procedure for non-

linear balancing. We have shown that, under certain conditions, an exact formula

for the controllability energy function can be derived. We applied our result to

compute the controllability function for a 4-dimensional mechanical system. For

other situations, we offer a Monte-Carlo approach for approximating the controlla-

bility function. For a 2-dimensional mechanical system, the Monte-Carlo approach

yielded a good approximation.

We have presented an algorithm for a numerical implementation of the Morse-

Palais lemma, which produces a local coordinate transformation under which a

real-valued function with a non-degenerate critical point is quadratic on a neigh-

borhood of the critical point. Application of the algorithm to the controllability

function plays a key role in computing the balanced representation.

We have applied our methods and algorithms to derive balanced realizations for

nonlinear state-space models of two example mechanical systems. Simulation re-

sults demonstrate that the algorithms produce accurate and useful approximations
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to the energy functions and transformations involved in the nonlinear balancing

procedure. For a 2-dimensional system, the approximate balanced realization pro-

duced input-to-output behavior that is nearly equivalent to that generated by the

original, physically derived, realization. Thus, it serves as an equivalent represen-

tation, with the benefit that it provides a meaningful ranking of state components

for purposes of model reduction.

The algorithms are currently too computationally intensive to be practical for

high-order systems. It is likely that new algorithms will be required in order for the

Scherpen procedure to become genuinely useful for model reduction of nonlinear

systems.
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Figure 4.15: Controllability function for double pendulum (6 planes). Top left:
x3 = 0 = x4; Top right: x2 = 0 = x4; Mid left: x2 = 0 = x3; Mid right:
x1 = 0 = x4; Bottom left: x1 = 0 = x3; Bottom right: x1 = 0 = x2.
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Figure 4.16: Observability function for double pendulum (6 planes). Top left:
x3 = 0 = x4; Top right: x2 = 0 = x4; Mid left: x2 = 0 = x3; Mid right:
x1 = 0 = x4; Bottom left: x1 = 0 = x3; Bottom right: x1 = 0 = x2.
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Figure 4.17: Singular value functions for double pendulum (x3-x4 plane). Top left:
σ1(x); Top right: σ2(x); Bottom left: σ3(x); Bottom right: σ4(x).
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Chapter 5

Modeling and Optimization for

Silicon Growth via RTCVD

5.1 Introduction

This chapter addresses the problem of developing high-fidelity physical-chemical

models for predicting the behavior and output of a commercial rapid thermal

CVD reactor used for depositing thin films of Si and Si-Ge on silicon wafers.

The problem is studied within the context of a joint project between the ISR of

the University of Maryland, College Park, and Northrop Grumman ESSS (NG-

ESSS), for modeling and optimization of epitaxial growth in the ASM Epsilon-1

rapid thermal CVD reactor [115, 116, 117]. The Epsilon-1 is a single-wafer lamp-

heated CVD reactor manufactured by ASM America, Inc., Phoenix, AZ. It is used

by NG-ESSS to deposit layers of epitaxial Si-Ge, epitaxial silicon (epi-Si), and

polycrystalline silicon (poly-Si) on a silicon wafer.

The modeling of fundamental aspects of CVD involves both chemical kinet-

ics and transport phenomena. Depending on the specific process and operating
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conditions, it is often assumed that one or more factors has significantly more in-

fluence than all others over deposition product. In those cases, the factors that

are considered less important are often completely or mostly neglected. This type

of simplification has been adopted frequently in order to formulate relatively sim-

ple models describing specific components of the CVD process (e.g., heat transfer

within and among solids) under a limited range of operating conditions (e.g., low-

temperature regime) for a specific purpose (e.g., temperature control).

For example, NG-ESSS is interested in models that focus on low temperature

silicon epitaxy. In the low temperature regime, growth rate is limited by surface

reaction phenomena rather than by mass transport phenomena. Furthermore,

surface reaction phenomena such as adsorption and desorption of reactant species

are strongly dependent on temperature. For this reason, the low temperature

regime is said to be thermally driven (kinetically limited). These simplifications

motivate an approach in which physical-chemical models consist only of a simplified

conjugate heat transfer model for thermal dynamics together with an Arrhenius law

for growth rate in terms of temperature. In this approach, dynamics of transport

phenomena are neglected, inlet conditions for gas phase species concentrations and

temperature are assumed to hold throughout the process chamber, and chamber

geometry plays no role.

However, as we show in this chapter, these simplifications seriously compromise

the utility of such models for purposes of studying uniformity issues for thin film

growth in the Epsilon-1. We demonstrate that chamber geometry and a variety

of complex phenomena are essential elements, including depletion of reactants,

non-uniform gas heating, gas phase chemistry, thermal diffusion, and gas flow pat-

terns. This necessitates the incorporation of detailed models for three-dimensional
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effects of gas flow, gas phase heat transfer, and transport of chemical species, in

addition to the previously mentioned heat transfer phenomena. Furthermore, a

more comprehensive model for surface reaction chemical kinetics is required to in-

corporate reactive intermediaries produced in the gas phase. Finally, it is crucial

that the models reflect the coupling among these various phenomena in the process

chamber.

We address these problems via development of a process-equipment model

which accounts for the mechanisms and factors described above. The model is

capable of predicting gas flow, heat transfer, species transport, and chemical mech-

anisms in the reactor given a process recipe for temperature, pressure, and flow

rate set-points. It provides a platform for studying the effect of equipment set-

tings and a relatively broad range of process conditions on deposition product

characteristics, e.g., deposition rate and thickness uniformity.

The modeling effort includes development of physical and chemical models for

fundamental CVD phenomena, experimental determination of growth parameters,

and experimental validation of model predictions. Simulations are used as tools to

predict deposition results, study the factors that affect deposition uniformity, and

determine operating parameters for improved performance and product quality.

Specific applications include prediction and control of deposition rate and thick-

ness uniformity; studying sensitivity of deposition rate to process settings such as

temperature, pressure, and flow rates; and reducing the use of consumables via

purge flow optimization. The implications of various simulation results are dis-

cussed in terms of how they can be used to reduce costs and improve product

quality, e.g., thickness uniformity of thin films. We demonstrate that achieving

deposition uniformity requires some degree of temperature non-uniformity to com-
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pensate for the effects of other phenomena such as reactant depletion, gas heating

and gas phase reactions, thermal diffusion of species, and flow patterns.

The semiconductor manufacturing environment in which this research was con-

ducted is described in Section 5.2, including manufacturing objectives, equipment

and materials involved, and a typical manufacturing situation of interest. The

procedure and results of poly-Si growth experiments for studying equipment oper-

ation and deposition characteristics are given in Section 5.3. The overall process-

equipment model for silicon growth in the Epsilon-1 is detailed in Section 5.4,

including various components for prediction of the relevant transport phenomena

and chemical mechanisms. In Section 5.5, we apply the model, via simulation,

to study the factors that influence deposition rate and uniformity, and present

the results and analysis. We summarize and make some additional remarks in

Section 5.6.

5.2 Semiconductor Manufacturing Environment

The modeling and analysis presented in this chapter pertains specifically to the

semiconductor manufacturing environment at NG-ESSS, e.g., silicon epitaxy us-

ing the Epsilon-1 reactor, and is motivated specifically by problems encountered

within that environment. In this section we state the manufacturing objectives

that motivated the modeling effort, provide relevant details about the equipment

and processes, and offer some perspective and additional motivation through a

case study describing a typical manufacturing situation of interest.
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5.2.1 Manufacturing Objectives

The overall objective of this research is to improve manufacturing effectiveness for

epitaxial growth of silicon and Si-Ge thin films on a silicon wafer in the Epsilon-1

reactor, a production tool currently in use at NG-ESSS. Improvement in product

quality, increased flexibility of operation, and reduction of manufacturing costs are

integral to achieving the overall objective. We provide specific details in the follow-

ing explanations and descriptions, based on discussions with and demonstrations

by NG-ESSS personnel [128].

Within the scope of this research, product quality is determined solely by depo-

sition thickness uniformity. Other factors, such as film composition and resistivity

uniformity, are important quality measures but are not considered here. Thickness

variations of 5% are currently acceptable for most applications, although there is

no guarantee that such a specification will remain stable. Currently, variations in

the range of 2% are routinely achieved with the Epsilon-1. Improved results are

always desirable.

The Epsilon-1 is capable of operation in several regimes for pressure, temper-

ature, and flow rates, and deposition via injection of several types of precursor

and carrier gases. Prediction of deposition rates and other film characteristics for

a given combination of process conditions is key to taking advantage of the ma-

chine’s flexibility. The manufacturer provides some predictive guidance and data.

However, there is the desire for manufacturing “off-the-curve,” i.e., operating in

regimes and producing films with characteristics that do not appear in manufac-

turer provided information.

Performance of devices at high frequency is difficult to predict based on proper-

ties of the product and manufacturing parameters. To achieve a product with the
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desired properties, NG-ESSS operates with a three to four month manufacturing

cycle followed by a long testing cycle. It can take up to two years to converge

on the desired product. Each manufacturing cycle requires an initial period of

experimentation in which the necessary equipment settings and process conditions

are determined. Once parameters are determined, and the customer is satisfied,

the process is certified, and parameters are usually not changed for several years in

order to provide the customer with a consistent product. It is possible, however,

for drift of equipment characteristics over time to cause degradation, necessitating

additional experimentation. In addition, the chamber tube is periodically cleaned

and replaced, requiring a re-calibration of process settings. The result is that the

various trial-and-error steps have a significant impact on time-to-manufacture and

other production costs.

Additional cost concerns include operational integrity and “down-time” of equip-

ment, and the use of consumables such as process gases. It is clear that reductions

in experimental steps, equipment failure, and gas consumption will have a benefi-

cial impact on manufacturing costs.

In light of manufacturing objectives, the modeling effort described in this chap-

ter seeks to gain an understanding of the processes and equipment via physical and

mathematical modeling, and use the resulting validated models for optimization

of process conditions and equipment settings.

5.2.2 Equipment and Materials

The Epsilon-1 reactor is a radiantly heated, gas injected, single wafer processing

system for CVD of doped or undoped epitaxial and polycrystalline layers on a

150 mm (6 in) diameter semiconductor wafer. In this section we provide some
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descriptive background material necessary for model development, including char-

acteristics of the process chamber and deposited and consumed materials; and

an overview of reactor operation including typical processing recipes, operating

conditions, equipment settings, and overall system structure.

Process Chamber

The process chamber is situated within the Epsilon-1 reactor system, accessible by

the wafer handling system and between the parts of the lamp assembly, as shown

in Figure 5.1. Also shown is a cross-sectional front view of the process chamber

and wafer rotation apparatus. A cross-sectional side view of the process chamber

and lamp assembly, and a top-down view of the wafer level apparatus, are shown,

respectively, in Figures 5.2 and 5.3. The inlet and outlet sides of the reactor are

referred to as the front (upstream) and rear (downstream), respectively.

Figure 5.1: Epsilon-1 reactor system (left) and cross-section (front view) of the
process chamber and wafer rotation apparatus (right). Source: ASM Epsilon-1
Reactor Manual.

Deposition takes place in the process chamber, which is a horizontally oriented

quartz tube of lenticular shape, i.e., a cross-sectional view looking into the chamber

front shows a flat bottom, short vertical sides, and curved top. The quartz shelves
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Figure 5.2: Cross-section (side view) of the Epsilon-1 process chamber and lamp
assembly. Source: ASM Epsilon-1 Reactor Manual.

Gap Susceptor RingWafer

Thermocouples

Front Rear

Quartz Shelf

Figure 5.3: Overhead view of the Epsilon-1 at wafer level including thermocouple
locations.

are connected to the quartz chamber walls to form a contiguous solid body.

The 150 mm (6 in) diameter wafer rests on small quartz pins attached to the

pocket of a rotating susceptor that is surrounded by the susceptor ring. The

susceptor and ring are constructed of graphite coated with silicon-carbide. The

susceptor ring fits into a space within the quartz structure, leaving a thin gap

between ring and shelf on all sides. The susceptor fits into the ring structure, and

is supported and rotated by special apparatus located through and under the lower

chamber section. There is also a gap, although much smaller, between the ring
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and susceptor.

Process gases are pumped into the chamber through the inlet flange, flow hori-

zontally through the chamber over the wafer surface, and are pumped out through

the exhaust flange via pneumatic actuators. An optional flow guide can be used

to force the inlet flow away from the chamber roof and toward the wafer. The

inlet flange is designed to create a specialized sonic flow with possible swirling and

mixing properties as the gas enters the process chamber. It has been observed by

the manufacturer that the inlet flange design aids in achieving deposition unifor-

mity [106].

The chamber is divided by the susceptor, ring, and a quartz shelf into upper

and lower sections. Process gases enter and flow through the upper section; purge

gases enter into the lower section. Thin gaps between the quartz shelf and the

ring, and between the ring and susceptor, allow gas to flow between upper and

lower chamber sections. In addition, diffusion of species from upper to lower and

visa-versa can occur due to concentration and thermal gradients. For this reason,

purge gases are pumped into the lower region through the susceptor rotation shaft

and a purge inlet in the front wall. The purge flow prevents the process gases

from escaping to the lower section, which can result in unwanted deposition on the

back-side of the susceptor.

The wafer and chamber are heated by upper and lower arrays of linear tungsten-

halogen lamps, and four spot lamps directed at the center of the susceptor (see

Section 6.3 for details and analysis). The upper and lower lamp arrays illuminate,

respectively, the top surface of the wafer and the bottom of the susceptor. Heat

radiation is intensified by gold coated reflectors surrounding the process chamber

on all sides. Four thermocouples measure the temperature at the center, front,
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rear, and side of the susceptor. We note that while the center thermocouple is

located in contact with the center of the susceptor, the other three thermocouples

are located at the front, rear, and side of the ring that surrounds the susceptor.

Thus, susceptor temperature is measured only approximately at points other than

the center.

The quartz chamber and lamp-house are cooled by air flow. All components

are contained in a stainless steel enclosure.

Product and Consumables

NG-ESSS uses the Epsilon-1 reactor to deposit thin films of epitaxial Si-Ge, epi-

Si, and poly-Si. Epitaxial growth, or epitaxy, (see, e.g., [134, 162]) refers to the

deposition of a thin layer of material onto the surface of a single-crystal substrate

in such a manner that the layer is also single-crystal and has a fixed and predeter-

mined crystallographic orientation with respect to the substrate. Epitaxial layers

are deposited on silicon wafers that are either bare or covered with a patterned

layer of silicon dioxide (SiO2). Poly-Si is deposited on a layer of silicon dioxide.

The major source gases used to deposit epi-Si layers commercially are (see,

e.g., [134, 156])

• silane (SiH4) at low temperatures (< 1000 C); and

• silicon tetrachloride (SiCl4), dichlorosilane (SiH2Cl2), and trichlorosilane

(SiHCl3) at higher temperatures.

This research deals with low temperature growth, for which NG-ESSS uses silane

as the source gas. Germane (GeH4) is added to the mixture for growth of Si-Ge.

The carrier gas is either hydrogen (H2) or nitrogen (N2). Dopant precursors such

as arsine (ArH3) can also be added to the mixture.
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There is a direct relationship between growth of poly-Si and epi-Si. The pro-

cessing steps are identical, and growth rates are virtually identical [128]. Experi-

ments are performed at NG-ESSS by depositing poly-Si rather than epi-Si, because

they have tools for measuring poly-Si films (e.g., nanospec, ellipsometer) but not

for epi-Si (e.g., SIMS). (It is the presence of the oxide boundary that allows for

easier measurement of poly-Si.) Thus, poly-Si experiments allow for rapid process

evaluation. For this reason, NG-ESSS sometimes performs epi-Si and poly-Si ex-

periments in parallel, with measurements taken for the poly-Si films. In light of

this, we performed experiments and simulations for growth of poly-Si. The pro-

cess gases we used were a mixture of 2% SiH4 diluted in H2 as the silicon source,

together with 20 slm H2 as the carrier, except as noted otherwise.

Specifications for the final product (thin film) include characteristics such as

chemical composition, film thickness, dopant concentration, crystal structure, re-

sistivity, and possibly other factors. Both aggregate and spatially distributed quan-

tities are important. Usually, spatial uniformity is specified by a variation tolerance

across the wafer surface, e.g., 5% allowable non-uniformity.

In general, aggregate characteristics such as average growth rate are determined

by process conditions for temperature, pressure, and flow rates as set by the user in

process recipes. The spatial distributions of the various properties, and hence uni-

formity, are mainly controlled by equipment settings such as thermocouple offsets

and injector opening sizes. These two methods of equipment and process control

are described below.
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Process Conditions and Recipes

In order to achieve the desired aggregate characteristics, the process engineer de-

signs step-by-step recipes. Each step performs a particular task such as etch, bake,

purge, or deposit, for a specified amount of time. We consider only the deposition

steps here. The process engineer specifies, for each deposition step, the choice

of source, carrier, and purge gases, set-points for temperature, pressure, and flow

rates, and time duration. We refer to these specifications as recipe inputs. They

are programmed into the Epsilon-1 microprocessor and controlled automatically in-

situ. For example, PID controllers and mass flow controllers (MFCs) regulate the

thermocouple temperatures and inlet flow rates around their respective set-points.

Si-Ge films are deposited at a temperature of 675 C. This falls within the

low temperature regime which is roughly 600–800 C. At low temperature, surface

reactions are thermally activated and controlled by deposition kinetics. NG-ESSS

also deposits some films in the high temperature regime which is roughly 900–1100

C. At high temperature, surface reactions are mass transport controlled. However,

temperature regulation is still important, as it determines layer resistivity, and

large temperature gradients can cause slip, i.e., mechanical damage to the wafer.

All growth data in this study is restricted to the low temperature regime.

The Epsilon-1 reactor is capable of growth at atmospheric pressure (AP) and

reduced pressure (RP) which is roughly 10–100 Torr. For this research, we per-

formed deposition in the RP regime at 20 Torr and 40 Torr. The flow rate for each

individual process and purge gas used is specified in standard liters per minute

(slm) or standard cubic centimeters per minute (sccm). The process gases, e.g.,

hydrogen carrier and silane source, are mixed prior to injection into the chamber.

The purge flow rate is set to prevent mixing between upper and lower chamber
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sections, and is generally the same for each recipe. Since its impact is on equip-

ment integrity rather than product characteristics, we treat it separately from the

other recipe inputs.

Equipment Settings

Reactor operation can be adjusted ex-situ via several mechanisms that are included

in certain components of the reactor. The process engineer can set the size of

gas injector openings in the inlet flange, the relative power setting for each lamp

group, PID feedback gains, susceptor rotation rate, and thermocouple offsets. We

refer to these as equipment settings. In contrast to recipe inputs, the equipment

settings are semi-permanent, i.e., they are not changed, in general, for each different

process recipe. Rather, once an equipment setting is adjusted so that the reactor

yields acceptable films, it remains fixed from run to run until process drift or tube

replacement necessitates an adjustment. The equipment settings play a key role in

achieving spatial uniformity of deposition thickness in the Epsilon-1. We elaborate

on some of these settings here.

As stated earlier, wafer temperature is set as a recipe input. However, this

one setting does not provide the capability to adjust the temperature distribution

across the wafer surface. The necessary additional degrees of freedom are provided

by the thermocouple offsets. There are three offsets, one each for thermocouples

at the front, rear, and side of the susceptor. The center thermocouple has no

offset, and its temperature is regulated about the recipe temperature set-point.

The temperatures of the other thermocouples are regulated about the sum of the

temperature set-point and the corresponding offset. For example, suppose the

temperature set-point is given in the recipe as 700 C, and the front offset is given
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as -20 C. Then the center temperature is regulated about 700 C and the front

temperature is regulated about 680 C. Use of the offsets has the effect of creating

four separate temperature set-points. However, even with the additional degrees of

freedom, the authority to control the entire susceptor temperature profile is limited.

The profile can be set only roughly at points other than at the thermocouple

locations. Offsets are currently set via trial-and-error and heuristic methods.

In the inlet flange currently installed in the Epsilon-1 at NG-ESSS, there is a

set of three gas injector slits with adjustable widths. These are used for adjusting

the flow profile at the inlet to the process chamber. We note that the manual

adjustment of slit widths is difficult, and the widths can be measured only approx-

imately. In the future, this equipment will be replaced by a set of five injector

port orifices with adjustable diameters. The new gas supply equipment will allow

for tighter control and more degrees of freedom in determining the inlet flow pro-

file. Either way, however, the authority to control the flow characteristics is once

again limited. The manner in which the size of gas injector openings affect the

flow profile is known only roughly. The size of gas injector openings are currently

determined via trial-and-error and heuristic methods.

Wafer rotation is used to smooth non-uniform heating and other effects. It is

typically set at 35 rpm for most, if not all, production runs.

Operating Structure

An overview of the general operating structure of the Epsilon-1 reactor, from the

viewpoint of how recipe inputs and equipment settings affect reactor operation,

is presented in Figure 5.4. Note that the internal details of individual blocks are

not included here. They will be discussed whenever relevant later in this report.
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Of particular interest is the process chamber block, which contains physical and

chemical mechanisms for film growth.
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Figure 5.4: Overview of general operating structure of Epsilon-1 reactor, from the
viewpoint of how recipe inputs and equipment settings affect reactor operation.
Numbers in parentheses refer to the number of distinct signals in the associated
path.

5.2.3 Uniformity Case Study

An essential purpose of the process-equipment model is to predict the steady state

deposition rate with emphasis on the spatial distribution of film thickness. It

is crucial, then, to identify those phenomena that are important to determining

growth rate, and include the effects of those phenomena in the model. It is also

necessary to identify and include relevant features of the reactor geometry and

operation, and to incorporate sufficient spatial resolution and dimensionality.
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For thermally activated thin film growth, it is usually assumed or implied in the

literature that achieving deposition uniformity is tantamount to achieving temper-

ature uniformity across the wafer surface. Optimization and control strategies are

then designed to achieve the temperature uniformity objective via manipulation

of lamp power settings, so that deposition uniformity is achieved via automatic

lamp control. Examples of such studies are found in [28, 30, 63, 139, 151, 152].

Sometimes the assumption is justified by stating that wafer rotation will average

out all other factors.

However, the assumption of equivalence between temperature uniformity and

deposition uniformity does not necessarily hold, even for thermally driven processes

and processes in which the wafer is rotating. For example, consider the experience

of NG-ESSS with deposition of epi-Si or Si-Ge in the thermally driven regime

(approximately 600–800 degrees C) in the Epsilon-1 reactor. The process engineer

achieves thickness variations of less than 1.5% (considered acceptable uniformity)

for a non-rotating wafer by setting thermocouple offsets at -25, -60, and -35 for

front, rear, and side, respectively [128]. These values were determined via trial-and-

error growth experiments. If growth rate were affected only by temperature and no

other factors, then the 1.5% thickness variation that is achieved with those offsets

would correspond to a 0.075% temperature variation across the wafer surface, or

roughly 0.5 degrees C. However, for a recipe temperature set-point of 700 C, the

corresponding thermocouple set-points are center at 700 C, front at 675 C, rear

at 640 C, and side at 665 C, for a maximum deviation of 8.5%, as illustrated

in Figure 5.5. Thus, the non-uniformity imposed by the offsets appears to be

significantly greater than that indicated by actual growth rates.

The set-up of the reactor apparatus may partially explain the smaller variation
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Figure 5.5: An example of how thermocouple offsets (front -25 C, rear -60 C, side -
35 C) influence the temperature set-points around which the four thermocouples
are regulated by PID controllers.

in actual growth rates. Recall that the front, rear, and side thermocouples are

located in the ring surrounding the susceptor, rather than in the susceptor itself.

Furthermore, the 150 mm (6 in) diameter wafer is resting on quartz pins at the

center of the 225 mm (8.85 in) diameter susceptor. Therefore, it is reasonable to

assume that the temperature variation across the wafer surface will be less than

the variation across the entire susceptor. However, by similar reasoning, it is also

intuitive that this could not entirely account for the thickness uniformity. For

example, the front, rear, and side thermocouples are all the same distance from

the center. But the offsets are not equal. The apparatus symmetry is not mirrored

by the temperature set-points. Some other phenomena must be playing a role.

A quantifiable relationship between the offsets and the actual temperature field

on the wafer surface is unknown. This is because there exists no reliable method for

measuring temperature on the wafer surface. Poly–silicon growth rates are often

used as a sensitive thermometer. While this method may be useful for measuring

aggregate temperature, we argue here that it is flawed for measuring a tempera-

ture distribution across a surface, unless one can guarantee that other conditions

across the surface (e.g., reactant concentrations) are perfectly uniform. The other

alternative is to use an instrumented wafer, i.e., a wafer with attached thermocou-
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ples. However, ASM America and NG-ESSS consider measurements taken using

the instrumented wafer to be unreliable, especially while operating at process con-

ditions for growth [106, 128]. Nevertheless, we report that experiments using an

instrumented wafer indicate maximum temperature variations of 5 degrees C or

0.7% [128]. This non-uniformity is less than that predicted by considering just the

offsets and more than that found by measuring growth rates. In that respect, it

appears to fall in the correct range.

Finally, we note that wafer rotation reduces the growth rate variation from

1.5% to less than 1% and temperature variations as recorded by the instrumented

wafer from 5 C to 1 C. Therefore, we may conclude that wafer rotation does have

the intended flattening effect, but does not compensate entirely for temperature

non-uniformity.

We have demonstrated anecdotally that thickness and growth rate uniformity

in the thermally activated regime is achieved by setting three thermocouple offsets

so that the temperature distribution across the susceptor is intentionally non-

uniform. The actual relationships among offsets, temperature, and growth rate,

and the other factors that affect them, are left to be determined.

5.3 Growth Experiments

In this section we describe silicon growth experiments performed to study the

relationship between deposition rate and operating conditions such as temperature

and flow rates. The experimental data is used later as a basis of comparison to

validate the modeling results.

The experiments were conducted by the author and Mr. Paul Brabant of NG-

ESSS using the Epsilon-1 reactor on site at NG-ESSS. In each experiment, we
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deposited poly-Si on a silicon wafer coated with a layer of silicon-dioxide. These

experiments are suitable for determining growth rates of both poly-Si and epi-

Si, due to the fact that their growth rates are identical (see Section 5.2.2). The

process gases used were a mixture of 2% SiH4 diluted in H2 as the silicon source,

together with 20 slm H2 as the carrier. Measurements of film thickness were taken

using the available nanospec (Nanometrics 210 XP Scanning UV Nanospec/DUV

Microspectrophotometer).

The main objective was to determine the relationship between growth rate

and operating conditions such as temperature and flow rates, including finding the

unknown parameters (e.g., activation energy) of an assumed Arrhenius relationship

between wafer temperature and deposition rate. The relationships were studied

under a range of typical operating conditions. The established relationship is

used later for validation of process-equipment simulations (Section 5.5) and lamp

heating models (Section 6.3).

Experimental Procedure

Thin films of polycrystalline silicon were deposited from the silane precursor over

a five minute period at a pressure of 20 Torr. Deposition was performed under a

combination of operating conditions consisting of four different wafer temperatures

and three different silane flow rates (and hence three different silane mole fractions).

Temperatures were set in the surface-reaction controlled regime so that growth

would be thermally activated. This regime is roughly from 600 C to 800 C for

deposition of silicon from silane gas. We chose the following wafer temperatures

at which to deposit silicon: 650 C, 700 C, 725 C, and 750 C.

Three different flow rates were used for the 2% silane in hydrogen precursor:
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1.5 slm, 2.5 slm, and 3.5 slm. Considering the 2% dilution, these three flow rates

correspond to 30 sccm, 50 sccm, and 70 sccm of silane, respectively. The silane-

hydrogen precursor was again diluted in 20 slm of the carrier hydrogen (H2) gas.

Thus, the three flow rates correspond to three mole fractions 1.4 ×10−3, 2.2 ×10−3,

and 3.0 ×10−3, respectively.

The reactor was operated in its usual, automatic mode (i.e., using PID control

loops for temperature regulation and wafer rotation for uniformity), using pre-

programmed recipes. Recipes were programmed to set chamber pressure at 20 Torr

and to deposit silicon from silane precursor for five minutes onto the bare silicon

wafers. Film thicknesses were measured later using the nanospec.

Experimental Results

We attempted twelve deposition experiments - one for each combination of the

four wafer temperatures (650, 700, 725, 750 C) and three silane flow rates (30, 50,

70 sccm). Each of the twelve depositions was performed on a different wafer. At

650 C, there was no appreciable deposition for any of the flow rates. Thus, these

three wafers provided no data for analysis. At 700 C and above, enough silicon was

deposited so that measurements could be taken. Thickness was measured using

the nanospec at five different points on the wafer surface (see [117] for the raw

data). In the case where temperature was 700 C and silane flow rate was 30 sccm,

deposited film thickness was less than 100 Angstroms over the five minute period,

the minimum readable by the nanospec. Hence, growth rate was recorded as less

than 20 A/min. The data is presented in Table 5.1.

A model that is useful for describing deposition kinetics in the thermally acti-
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Poly-silicon Deposition Rate
As Function Of Temperature and Silane Flow Rate

Process Conditions
Chamber Pressure 20 Torr
Carrier Gas 20 slm H2

Source Gas 2% SiH4 in H2

Purge Gas 7 slm H2

Growth Rate (A/min)
Wafer Silane Flow Rate

Temperature 30 sccm 50 sccm 70 sccm

700 C < 20.00 65.68 80.08
725 C 73.12 106.60 138.72
750 C 118.28 171.32 216.68

Table 5.1: Measured deposition rate (Angstroms per minute): Five minute depo-
sition; three wafer temperatures; three silane flow rates.

vated regime is the Arrhenius relationship

RSi = k0 exp

(
−Ea
Rg Tw

)
XSiH4 (5.1)

where RSi denotes deposition rate, k0 denotes the pre-exponential constant, Ea

denotes the activation energy, Rg denotes the gas constant, Tw denotes the wafer

temperature, and XSiH4 denotes the silane mole fraction. We call a plot of the

logarithm of deposition rate versus inverse temperature an Arrhenius plot. The

Arrhenius plots associated with the data we collected are shown in Figure 5.6.

According to equation (5.1), the slope of an Arrhenius plot gives the activation

energy Ea while the intercept (along with knowledge of the silane mole fraction)

gives the pre-exponential constant k0. Computed parameters are given in Table 5.2.

The activation energies calculated from the Arrhenius plots range from 1.57 eV

to 1.69 eV depending on silane mole fraction. This range is very close to the

activation energy of 1.82 eV determined experimentally by the manufacturer, ASM
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Figure 5.6: Arrhenius plots for silicon deposition from silane gas: each plot repre-
sents log of deposition rate (microns per minute) versus inverse absolute temper-
ature for one of the three silane flow rates used.

America [105]. In addition, the pre-exponential constants range from 3.8 × 108

to 1.85 × 109, a range which includes the value of 7.9 × 108 predicted by the

manufacturer.

5.4 Process-Equipment Model

This section motivates and describes the process-equipment model that we devel-

oped to predict process behavior (transient and steady-state) and product char-

acteristics. We loosely describe the model as comprehensive because it accounts

for a wide range of physical and chemical mechanisms, reactor geometry, mate-

rial properties, and the effects of process conditions (pressure, temperature, flow

rates, and gas composition) and equipment settings (injector sizes, thermocouple

offsets). This does not imply that the model represents a complete description

of process-equipment dynamics (if such a model is actually possible). Rather, we
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Parameters For Arrhenius Relationship Describing Silicon Deposition
Kinetics

Assumed Relationship

RSi = k0 exp

(
−Ea
RgTw

)
XSiH4

Symbol Description Data

Vmix Silane/Hydrogen Mixture Flow Rate (slm) 1.5 2.5 3.5
VSiH4 Silane Flow Rate (sccm) 30 50 70
XSiH4 Silane Mole Fraction (×10−3) 1.4 2.2 3.0
Ea Activation Energy (eV) 1.69 1.67 1.57

Activation Energy (J/mol) (×105) 1.63 1.61 1.51
Ea/Rg Ratio (K) (×104) 1.96 1.94 1.82
k0 Pre-exponential Constant (um/min) (×109) 1.85 1.30 0.38
k0 Pre-exponential Constant (cm/sec) (×103) 3.08 2.16 6.54

Table 5.2: Parameters calculated by fitting experimental data to an assumed Ar-
rhenius relationship for poly-Si growth rate as a function of temperature.

made choices so that the importance of a particular effect would be reflected in

the model fidelity.

5.4.1 Modeling Approach

Models for silicon growth that cannot be coupled to gas phase transport phenom-

ena and that use a simplified chemical kinetics model are inadequate for describ-

ing the essential physics and chemistry. For example, initial models for silicon

growth in the Epsilon-1 presented in [117] considered the process-equipment state

to be completely determined by a 1-dimensional (radial) wafer temperature pro-

file. Growth rate was related to wafer temperature by a single nonlinear Arrhenius

law. As stated earlier, this approach appears often in the literature (motivated by

temperature control problems), but is inadequate for our purposes here.

225



Models incorporating more complete descriptions of transport phenomena, chem-

ical mechanisms, couplings, 2-dimensional or 3-dimensional spatial effects, and

non-symmetric geometries have been appearing recently in the literature. Authors

have approached the modeling problem based on their specific objectives, process,

and equipment, resulting in models with varying levels of detail and breadth of

scope.

In [98] a dynamic simulator is presented which predicts the time–dependent

behavior of equipment, process, sensors, and control systems for RTCVD of poly-

Si from silane. This simulator is comprehensive in the respect that it provides

the capability to predict aggregate values for deposition rate, film thickness, tem-

perature, and gas flow, as well as cycle time, consumables volume, and reactant

utilization. However, prediction of deposition uniformity requires high spatial res-

olution, rather than aggregate quantities, so their approach is not suitable here.

Axisymmetric cylindrical vertically oriented reactors are considered in [24, 49].

They incorporate coupled effects of 2-dimensional gas flow, mass transport, and

heat transfer effects. In addition, [49] includes thermal diffusion and the effect of

susceptor rotation on the gas flow. These models consider a relatively broad scope

of effects for reactors with simple geometries that can be analyzed and simulated at

high resolution in two spatial dimensions. They do not include models of chemical

mechanisms for growth.

Models for reactors with non-symmetric geometries that require consideration

of 3-dimensional effects are scarce. This is mainly due to the significant additional

complexity of equations, boundary conditions, and solution techniques, along with

burdensome computational demands. One strategy is to restrict the effort to one

particular effect of interest. Two such models for commercial RTCVD chambers,
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that are limited to heat transfer only, including complicated surface-to-surface

radiation, are presented in [78, 85].

Another strategy is to use commercially available general purpose computa-

tional fluid dynamics (CFD) codes and software packages. These packages pro-

vide the necessary tools for modeling of transport phenomena coupled with some

chemical mechanisms, including efficient numerical integration schemes and 3-

dimensional grid generation for irregular geometries. The CFD approach provides

a comprehensive and general process-equipment state description.

However, there are drawbacks to using general purpose CFD packages. There is

an interface layer in the software that separates the user from the underlying com-

puter code and variables. This is advantageous for setting up problems but makes

it difficult to use CFD code in control loops or other specialized applications. The

general purpose nature of the software results in some built-in limitations to the

level of accuracy and detail that can be achieved in modeling specific aspects of a

particular piece of equipment. It is unclear how to channel computational resources

to areas in accordance with their importance, or to deal efficiently with phenom-

ena that occur at vastly different spatial and temporal scales. CVD applications

present special challenges, including modeling for transport of mass and momen-

tum in a multicomponent gas mixture, heat radiation with spectral dependence,

and surface chemistry.

Some of the above problems related to CVD applications were addressed by

the ESPRIT ACCESS-CVD project funded by the European Commission to de-

velop and implement a CFD code specifically designed for use in modeling CVD

processes. The project resulted in a commercial code, PHOENICS-CVD, which

makes it practical to include many of the important effects associated with CVD
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processes. It consists of coupled dynamic sub-models for fluid flow, heat trans-

fer, and multicomponent species transport in the gas phase, integrated with a

model for conjugate heat transfer among lamps and other solid surfaces, databases

and models for gas phase and surface chemistry for a large number of reactions,

and databases and models for determining the time-varying, parameter dependent

transport, thermodynamic, and optical properties of the involved materials.

The PHOENICS-CVD software was used to model a variety of CVD reactors in

a semiconductor development line for 0.3 µm CMOS devices as presented in [163].

Most importantly for our purposes, the authors demonstrated the capability of

PHOENICS-CVD as a tool for investigating uniformity issues in reactors with

non-symmetric geometries.

Given manufacturing objectives, and in light of the complicated geometry and

operation of the Epsilon-1 reactor, we implemented Epsilon-1 reactor simulations

using PHOENICS-CVD. Figure 5.7 shows a general overview of the modeling

framework. For a detailed exposition on the various aspects of this type of model

see [82]. The idea is to produce a model that predicts the behavior of the process

chamber block shown previously in Figure 5.4. Process recipe inputs and equip-

ment settings enter the model via material parameters, boundary conditions on

transport variables, and geometric construction of the solution grid. We note that

even using the powerful PHOENICS-CVD tool, high-fidelity models that include

most or all of the desired features previously described is an immensely time con-

suming undertaking. For this reason, various simplifications are still employed,

which are described in the sequel as they are encountered.
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Figure 5.7: Overview of modeling framework. Process-equipment state compo-
nents (gas flow, heat transfer, species transport) are coupled to each other, material
properties, and chemical mechanisms.

5.4.2 Process-Equipment State

It has become apparent that spatial uniformity of deposition rate and film thick-

ness is influenced by several variables, not limited to wafer temperature, even for

thermally driven processes. These variables are included in what we refer to as

the process-equipment state, which is the time-varying spatial distribution of flow

velocity, temperature, and species concentrations throughout relevant portions of

the reactor. Table 5.3 lists the essential variables. The time evolution and steady

behavior of the process-equipment state is determined by the physical and chemi-

cal mechanisms of the CVD process, reactor geometry, material properties, recipe

inputs, and equipment settings. The components of the process-equipment state

interact with each other, the recipe inputs, and the equipment settings in a complex

manner.

The process-equipment state is manifested in certain macroscopic phenomena

that we believe have a significant influence on deposition uniformity. This is mainly

due to the fact that they contribute to non-uniformity of reactant concentration

profiles at or near the wafer surface. We wish to study these phenomena using the
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Essential Variables Comprising Process-Equipment State

Symbol Description

Gas Phase Transport Variables
v Velocity Vector of Gas Mixture
P Pressure
Tg Temperature of Gas Mixture
ωi Mass Fraction of i-th Species in Gas Mixture
j
i

Total Diffusive Mass Flux Vector of i-th Species in Gas Mixture

Gas Phase Thermal Properties
ρ Density of Gas Mixture
cp Specific Heat Capacity of Gas Mixture
kc Thermal Conductivity of Gas Mixture

Conjugate Heat Transfer Variables
Tw Temperature of Wafer
Twall Temperature of Chamber Wall

Thermal Properties of Solids
ρw Density of Wafer
cpw Specific Heat Capacity of Wafer
kw Thermal Conductivity of Wafer

Table 5.3: Variables and material parameters comprising the process-equipment
state. Dependencies on space and time have been suppressed.
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process-equipment model. Here we describe some of the important effects that we

focused on in the modeling effort.

Reactant Depletion

As precursor gases flow across the wafer surface, reactants are deposited, causing

a gradual downstream reduction in their gas phase concentration. Thus, down-

stream portions of the wafer may be subject to lower concentrations of impinging

reactants, and hence the growth rate may be lower there. The magnitude of the

depletion effect varies depending upon process conditions. The degree to which

wafer rotation compensates for reactant depletion is not accurately known.

Nonuniform Gas Heating and Gas Phase Reactions

Based on experimental data, gas phase reactions appear to be important in CVD

processes, except for those under very low pressure (see [82] pp. 134). For example,

at atmospheric pressure, growth rate of silicon from silane is strongly influenced

by dissociative deposition of intermediate species formed in the gas phase. Fur-

thermore, gas phase reaction rates can be strongly dependent on temperature.

Typically, the gases heat up as they pass over the susceptor and wafer in the pro-

cess chamber. This may cause a gradual downstream increase in gas phase reaction

rates. Thus, downstream portions of the wafer may be subject to higher concen-

trations of impinging reactants. The overall effect depends on the gas composition

and process conditions.
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Thermal Diffusion of Species

The gas species in an initially homogeneous gas mixture will separate under the

influence of a temperature gradient (see [82] pp. 110). Large, heavy molecules

(e.g., silane) diffuse toward colder regions, whereas small, light molecules (e.g.,

hydrogen) diffuse toward hotter regions. Usually, the effect is small compared

with ordinary concentration driven diffusion. However, due to the large thermal

gradients in the cold-wall Epsilon-1 (e.g., 300 C difference between wafer and walls),

thermal diffusion may have a significant effect. Thus, reactant concentration may

be higher where the gas is cooler, e.g., upstream or in the lower section of the

chamber. Reduction in growth rate by 20% to 30% caused by thermal diffusion

has been observed in RTCVD chambers (see [82] pp. 164). Thermal diffusion is

sometimes referred to as the Soret effect.

Flow Patterns

Calculations in [117] indicate a Reynolds number of approximately 27 for gas flow

in the Epsilon-1. Thus, the flow is laminar, except possibly in and very close to the

injector nozzles. Nevertheless, the flow may have some interesting characteristics

that have an impact on deposition uniformity. Recirculation cells due to buoyancy

effects are believed to occur in virtually all rapid thermal CVD (RTCVD) cham-

bers due to the large thermal gradients present (see [23] pp. 339). Furthermore,

three types of natural convection rolls are typically observed in horizontal CVD

chambers: steady longitudinal, unsteady transversal, and steady transversal at the

leading edge of the heated susceptor (see [82] pp. 162).

Remark 5.4.1 For each of the above effects, the relationship between it, the process-

equipment state, recipe inputs, equipment settings, and thickness uniformity is not
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well understood. Moreover, it is not well understood how to compensate for non-

uniformity in species concentrations caused by these effects. The setting of gas

injector opening sizes and thermocouple offsets to minimize these effects and to

produce uniform thickness is done iteratively, usually requiring approximately five

test recipes. This modeling effort is a first step toward understanding these rela-

tionships and developing a model-based systematic compensation method. 2

5.4.3 Reactor Geometry and Finite Volume Mesh

The non-symmetric geometry of the Epsilon-1 necessitates genuine 3-dimensional

modeling of transport phenomena in the process chamber. We adopt a Cartesian

(x-y-z) coordinate system, since the lenticular chamber can be modeled roughly

as long thin box with polygonal or curved sides.

We refer to the direction of flow from front to rear as the z direction, the

bottom to top direction (perpendicular to the wafer) as the y direction, and the

left side to right side direction (looking in through front) as the x direction. These

coordinates are natural and convenient for chamber modeling but not for modeling

the cylindrical wafer and susceptor, whose geometries must then be approximated.

PHOENICS uses a finite-volume mesh as the discretization of the spatial do-

main. Figure 5.8 shows a view of the overall mesh we developed for modeling the

Epsilon-1 process chamber. The mesh is body-fitted and has dimensions of 25 by

27 by 52 volume elements in the x, y, and z directions, respectively.

The Epsilon-1 apparatus set-up and gas flows are not symmetric in the y- and

z-directions. Although the exterior geometry appears to be y-symmetric, there are

significant differences between upper and lower chamber sections. The chamber

does have x-symmetry, with the center y-z plane serving as a symmetry plane
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Figure 5.8: Overall body-fitted 25× 27× 52 finite volume mesh for modeling the
Epsilon-1 lenticular chamber. Solid cut-away figure at right is a viewing aide to
show the full geometry of the chamber, but not part of the mesh. Inlet side faces
viewer.

about which the geometry and values for all variables are mirrored exactly. The

shaded portion on the right side of Figure 5.8 is not part of the actual mesh, but

rather a viewing aide to show a portion of the overall chamber geometry. Only the

left half of the chamber is modeled.

Figure 5.9 shows a top view of the x-z mid-plane level with the wafer surface.

The surface geometry of the wafer, susceptor, and ring have been approximated by

rectangular sections. It is possible to approximate the curved surfaces more accu-

rately, either with additional rectangular volume elements arranged appropriately,

or with irregularly shaped volume elements. However, irregularly shaped volume

elements caused computational difficulties, and construction of the disk shape from

regular elements required a large number of additional mesh elements in areas that
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were not of particular interest. These drawbacks offset any advantages gained from

improving the geometrical accuracy of the wafer.

Figure 5.10 shows a side view of the center y-z plane. The upper and lower

chamber sections can be identified, respectively, above and below the wafer. Gases

can flow and species can diffuse between the upper and lower chamber sections

through thin gaps between the quartz shelf and the ring, and between the ring and

susceptor. We model only the shelf-ring gap since it is significantly wider than the

ring-susceptor gap, and assume that it accounts for all interaction between upper

and lower sections.

Wafer Suscep Ring

Gap

Rear ShelfFront Shelf
X

Y Z

Figure 5.9: Top view of finite volume mesh at x-z mid-plane level with wafer
surface.

Wafer Suscep Ring
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Rear ShelfFront Shelf

Upper Chamber

Lower Chamber
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Y

Z

Figure 5.10: Side view of finite volume mesh at y-z mid-plane which serves as a
symmetry plane.

In addition to the chamber model, we have also developed a simplified 3-
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dimensional finite-volume mesh for the inlet flange. This mesh uses three thin

gaps in a solid surface to model the three injector slits. The gas mixture flows

vertically downward from an inlet opening through the slits until it reaches the

bottom surface of the inlet flange, at which point it is forced to make a perpen-

dicular change of direction toward the chamber entrance. The idea is to simulate

the effects that the injector slits and the injector flange geometry has on the flow.

For example, we are interested in seeing how the forced change of direction creates

possible swirling effects, and how varying injector slit widths affects the flow pro-

file as gases enter and flow through the chamber. This model is separate from the

chamber model, which assumes a uniform flow profile at the inlet to the chamber.

5.4.4 Transport Phenomena

The process-equipment state is determined by the transport of mass, momentum,

and heat energy in the process and purge gases, and heat energy in and among the

solids that comprise the chamber walls, shelves, ring, susceptor, and wafer. The

various effects are coupled through transport equations, state dependent material

parameters, and boundary conditions. We provide here a brief overview of the

main assumptions and equations used in the PHOENICS-CVD transport models

and that we used in particular for modeling silicon growth in the Epsilon-1. Further

details can be found in [82, 83].

Assumptions

The basic assumptions regarding the gas mixture are that it behaves as a contin-

uum, is an ideal gas, and is transparent to infrared heat radiation. In addition, the

flow is assumed to be laminar and the effects of viscous heating and pressure varia-
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tions on the gas temperature is neglected. These assumptions are widely applicable

to CVD systems and in particular are not limiting for modeling the Epsilon-1.

We also made assumptions regarding boundary conditions that are specific to

modeling the Epsilon-1. The flow profile at the entrance to the chamber is assumed

to be a uniform flow velocity in the direction normal to the entrance. All solids

in the chamber are considered isothermal, i.e., constant temperature within each

individual piece of apparatus and throughout the entire wafer. Chamber walls are

assumed to be no-slip and stationary, even though in reality there are moving parts

in the process chamber. We assume that the top surface of the wafer is the only

surface on which chemical reactions occur. These assumptions can limit the scope

of the predictive capability of the model. However, we believe that they do not

seriously degrade model fidelity regarding prediction of steady-state phenomena,

so long as they are accounted for in any investigation of the factors that influence

uniformity. The assumptions are discussed further in Section 5.4.6.

Gas Phase Transport

We now give the basic transport equations for an N-component reacting gas mix-

ture with K gas phase reactions. Gas flow in the reactor is governed by the familiar

conservation equations for mass and momentum, i.e., the continuity equation

∂ρ

∂t
= ∇ · (ρ v) (5.2)

and the Navier-Stokes equation

∂(ρ v)

∂t︸ ︷︷ ︸
transient

= −∇ · (ρ v v)︸ ︷︷ ︸
inertial

+∇ · τ︸ ︷︷ ︸
viscous

− ∇P︸ ︷︷ ︸
pressure

+ ρ g︸︷︷︸
gravity

(5.3)

where ρ is the gas density, v is the gas velocity, P is the pressure, and g is gravity.

The viscous stress tensor τ for a Newtonian fluid such as the gas mixture in a CVD
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reactor takes the form

τ = µ
(
∇ v + (∇ v)T

)
−

2

3
µ (∇ · v) · 1I (5.4)

where µ is the dynamic viscosity of the gas. For CVD applications, the density ρ

and viscosity µ are strongly dependent on the temperature, pressure, and mixture

composition. For this reason, the gas flow equations are strongly coupled to the

equations for transport of heat energy and species concentrations. In particular,

temperature and concentration gradients cause variations in gas mixture density

which are manifested in buoyancy effects.

Transport of heat energy in the reactor is governed by the familiar heat equa-

tion, with additional terms to account for effects that occur in chemically reacting

multicomponent gases. In particular, heat is generated and consumed by the inter-

diffusion of different species and by the various gas phase chemical reactions. Also,

heat can flow due to the presence of a concentration gradient, which is referred to

as the Dufour effect. The conservation equation for gas temperature is given by

cp
∂(ρ Tg)

∂t︸ ︷︷ ︸
transient

= ∇ · (kc∇Tg)︸ ︷︷ ︸
conduction

+ cp∇ · (ρ v Tg)︸ ︷︷ ︸
convection

+∇ ·

(
Rg Tg

N∑
i=1

DT
i

mi

∇ (lnfi)

)
︸ ︷︷ ︸

Dufour

+

N∑
i=1

Hi

mi

∇ · j
i︸ ︷︷ ︸

inter-diffusion

−
N∑
i=1

K∑
k=1

Hi νik
(
Rg
k −R

g
−k

)
︸ ︷︷ ︸

reactions

(5.5)

where cp is the specific heat capacity per unit mass of the gas, Tg is the gas tem-

perature, kc is the gas thermal conductivity, and Rg is the universal gas constant.

Associated with the i-th gas species is the mole fraction fi, molar mass mi, ther-

mal diffusion coefficient DT
i , molar enthalpy Hi, and total diffusive mass flux j

i
.

The stoichiometric coefficient of the i-th species in the k-th gas phase reaction is

denoted νik with forward reaction rate Rg
k and reverse reaction rate Rg

−k.
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PHOENICS-CVD ignores the Dufour effect since it has been found to be very

small in CVD systems. The density, viscosity, thermal conductivity, specific heat

capacity, and thermal diffusion coefficient are dependent on temperature and gas

mixture composition. For this reason, the heat transfer equation is strongly coupled

to the gas flow and species concentration equations.

Gas species transport in the reactor is governed by a familiar diffusion-convection

equation with an additional source term to account for the creation and destruc-

tion of species due to K reversible chemical reactions. The balance equation for

the concentration of the i-th gas species is given by

∂(ρωi)

∂t︸ ︷︷ ︸
transient

= −∇ · (ρ v ωi)︸ ︷︷ ︸
convection

−∇ · j
i︸ ︷︷ ︸

diffusion

+mi

K∑
k=1

νik
(
Rg
k −R

g
−k

)
︸ ︷︷ ︸

reactions

. (5.6)

In the above, the concentration of the i-th gas species is a dimensionless mass

fraction

ωi =
ρi
ρ

(5.7)

There are N − 1 independent species concentration equations of the form (5.6)

since the mass fractions must sum to 1, i.e.,

N∑
i=1

ωi = 1 (5.8)

The diffusive mass fluxes are defined by

j
i

= ρωi (vi − v) (5.9)

with respect to the mass averaged velocity

v =
N∑
i=1

ωivi (5.10)

and satisfy
N∑
i=1

j
i

= 0 (5.11)
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again leaving N − 1 independent variables.

Gas species diffusion is caused by concentration gradients, which we refer to

as ordinary diffusion, and by temperature gradients, which we refer to as thermal

diffusion, or the Soret effect. It is expressed as the sum of these two components

j
i

= jC
i

+ jT
i

(5.12)

where jC
i

and jT
i

denote the concentration driven and thermally driven diffusive

fluxes, respectively. The ordinary diffusive mass fluxes can be computed via Fick’s

law, the Wilke approximation, or the full Stefan-Maxwell equations, depending

upon the properties of the gas mixture, the desired degree of fidelity, and the

available computational resources. The Stefan-Maxwell formulation is given by

∇ωi + ωi∇ (lnm) =
m

ρ

N∑
j=1

1

mjDij

(
ωi j

C

j
− ωj j

C
i

)
(5.13)

with m the average mole mass of the mixture. The diffusive mass fluxes due to

thermal diffusion are given by

jT
i

= −DT
i ∇ (lnTg) (5.14)

where the thermal diffusion coefficient DT
i for each species is a function of temper-

ature and gas mixture composition. In general DT
i > 0 for large, heavy molecules

and DT
i < 0 for small, light molecules, resulting in the observed separation of

species due to thermal gradients.

The last term in the species concentration equation (5.6) represents the creation

and destruction of the i-th species due to homogeneous gas phase reactions. The

forward and reverse reaction rates are given by

Rg
k = kg(P, T )

∏
reactants

(
P fi

Rg T

)|νik|
(5.15)

Rg
−k = k−g(P, T )

∏
products

(
P fi
Rg T

)|νik|
(5.16)
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where kg and k−g are the forward and reverse reaction rate constants, and P the

total pressure.

Boundary Conditions

For each of the gas phase transport equations there is an associated set of boundary

conditions, which prescribe the state (or associated flux) at the inlet, outlet, cham-

ber walls, and chamber apparatus including susceptor and wafer. The boundary

conditions for temperature and species concentrations are responsible for coupling

the gas phase transport phenomena to heat transfer in the solids and wafer surface

chemical reactions, respectively. We elaborate further below.

For each inlet boundary (process and purge), we prescribe the inflow velocity

of the gas mixture normal to the inflow opening, and the mass fraction for each

of the gaseous species (e.g., silane and hydrogen). The values are set according to

the process recipe we wish to simulate. The temperature of the gas mixture at the

inlet is set to room temperature. There is no species diffusion through the inlet.

These conditions are given by

n · v = vin , n× v = 0 , T = Troom , ωi = ωi,in , n · j
i

= 0 (5.17)

where n is the unit vector normal to the inlet opening.

For the outlet boundary, we impose zero gradient conditions for all variables.

These conditions are given by

n · (∇ (ρ v)) = 0 , n× v = 0 , n · (kc∇Tg) = 0 , n · j
i

= 0 (5.18)

where n is the unit vector normal to the outlet opening.

Boundary conditions at the solid-gas interfaces can be more complicated, mainly

due to chemically reacting surfaces and heat transfer in the solids. First we consider
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non-reacting surfaces, e.g., chamber walls, quartz shelves, ring, and susceptor. At

these surfaces, the no-slip and impermeability conditions apply, i.e., flow velocities

are set to zero. Also, the total mass flux normal to each non-reacting surface must

be zero for each of the species. Note, however, that due to thermal diffusion, the

concentration gradients normal to the surface will generally not be zero. These

conditions are given by

v = 0 , n · j
i

= 0 (5.19)

where n is the unit vector normal to the non-reacting surface.

For a reacting surface, which in our case refers only to the top side of the

wafer, there is a net mass production rate for each gaseous species. The velocity

component normal to the surface is proportional to this rate, while the tangential

component is zero. Furthermore, the total mass flux normal to the reacting surface

is set equal to the production rate. These conditions for a process with L surface

reactions are given by

n · v =
1

ρ

N∑
i=1

mi

L∑
l=1

σilR
s
l , n× v = 0 , n ·

(
ρωi v + j

i

)
= mi

L∑
l=1

σilR
s
l (5.20)

where n is the unit vector normal to the reacting surface, σil is the stoichiometric

coefficient for the i-th gas species in the l-th surface reaction, and Rs
l is the reaction

rate for the l-th surface reaction. The surface reaction rate is equal to the product

of the collision rate of molecules with the wafer surface and the reaction probability,

called the reactive sticking coefficient (RSC).

Thermal boundary conditions at the solid-gas interfaces can be complex due

to heat transfer within and among the various solids in the reactor. This includes

the effects of conduction within the solids, convective losses to the gas phase, and

radiative transfer among the various surfaces. Heat radiation supplied by the lamps

is especially important.
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PHOENICS-CVD provides the capability for modeling heat transfer in the

solids and coupling these effects to the gas phase transport phenomena via bound-

ary conditions. Surface-to-surface radiation is modeled using viewfactor methods.

However, due to the extremely complicated geometry of the Epsilon-1 lamp-house

and reflector apparatus, and the very large number of solid surfaces with varying

optical properties in the process chamber, we found the PHOENICS-CVD radia-

tion modeling tool to be impractical for our purposes. This is discussed further in

Section 5.4.6.

Instead of modeling heat transfer in the solids, we assumed that the wafer

and susceptor were at a constant uniform temperature, and used anecdotal and

experimental data from the manufacturer to estimate the temperature on other

surfaces. The boundary conditions are given by

Tg = Tsurf (5.21)

for the case where the gas-solid interface is a isothermal surface and

n · ∇Tg = 0 (5.22)

when there is an adiabatic surface.

Specific values for the boundary conditions were set according to the process

recipes that we were simulating. Values are provided as simulations are described

in Section 5.5.

Material Properties

Models for describing the dependence of material properties on the

process-equipment state are presented in [82, 83] and included in the PHOENICS-

CVD software. Furthermore, PHOENICS-CVD provides databases containing any
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necessary parameters for determining the transport, thermodynamic, and optical

properties of most materials commonly used in CVD processes.

Transport properties of the gases include viscosity, thermal conductivity, and

ordinary and thermal diffusion coefficients. Their dependence on temperature,

pressure, and gas mixture composition is determined using the Lennard-Jones po-

tential and kinetic theory. Lennard-Jones parameters for the individual gases are

provided in a database. Properties of the gas mixture are calculated from the

individual gas properties. For example, a semi-empirical relationship is employed

for determining mixture viscosity.

Thermodynamic properties of the gases include specific heat capacity, standard

heat of formation, and standard entropy. These properties are given as functions

of temperature via polynomial approximations, with a different polynomial for

each of three temperature ranges. Polynomial coefficients for individual gases are

provided in a database. Again, properties of the gas mixture are calculated from

the individual gas properties. For example, density is defined in terms of the mean

molecular mass and specific heat is defined as the mass averaged value.

Optical properties of the solids include refractive indices and absorption coef-

ficients. The temperature dependence of these properties in each of 60 spectral

intervals is provided in a database. However, as stated earlier, we did not use the

PHOENICS-CVD surface-to-surface radiation model, so the optical properties of

the solids, e.g., quartz, do not play a role in our simulations.
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5.4.5 Chemical Mechanisms for Growth

In Section 5.3 we presented the results of growth experiments and showed that,

for a range of operating conditions, a simple Arrhenius law given by

RSi = k0 exp

(
−Ea
Rg Tw

)
XSiH4 (5.23)

provides an accurate model for predicting growth rate as a function of wafer tem-

perature. Parameters such as activation energy were calculated by fitting the

experimental data to the model.

There are several assumptions and simplifications, both explicit and implicit,

in the above Arrhenius model. It assumes that silicon growth is almost completely

due to the heterogeneous decomposition of silane into silicon and hydrogen on the

wafer surface. Thus, it models only a single surface reaction step. Furthermore, it

is implicitly assumed that inlet conditions for silane mole fraction hold constant

throughout the process chamber. This allows for a separation of the factor mul-

tiplying the exponential term into a mole fraction variable and a pre-exponential

constant. The result is that growth rate is assumed to be dependent entirely on

two process recipe inputs: wafer temperature set-point and silane mole fraction

at the inlet; and two process dependent physical-chemical parameters: activation

energy and pre-exponential constant.

The above approach takes the view that surface reactions are dominant and gas

phase reactions are negligible. However, it was demonstrated by Coltrin and co-

workers [31] that as chamber pressure increases, gas phase reactions play a greater

role. They showed that at atmospheric pressure, silicon growth may be almost

completely due to reactive intermediaries formed in the gas phase.

Kleijn develops a model for gas phase and surface chemistry in [81] for tem-

peratures and pressures in an intermediate range, near the conditions at which
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NG-ESSS deposits silicon in the Epsilon-1. It is a relatively closed subsystem of

the full kinetic model that was used by Coltrin and co-workers. The key reaction

is the homogeneous decomposition of silane which leads to the formation of sily-

lene (SiH2), and hydrogen. Further reactions produce disilane (Si2H6), trisilane

(Si3H8), and silylsylene (Si2H4). The five step gas phase reaction mechanism is

given by

SiH4
←
→ SiH2 + H2 (5.24)

Si2H6
←
→ SiH4 + SiH2 (5.25)

Si3H8
←
→ Si2H6 + SiH2 (5.26)

Si2H4
←
→ SiH2 + SiH2 (5.27)

Si2H6
←
→ Si2H4 + H2 (5.28)

each of which has an associated forward and reverse reaction rate constant, re-

spectively, kg and k−g. For silicon growth at the wafer surface from silane and the

reactive intermediaries, Kleijn uses a set of five surface reactions given by

SiH4(g)→ Si(s) + 2H2(g) (5.29)

SiH2(g)→ Si(s) + H2(g) (5.30)

Si2H6(g)→ 2Si(s) + 3H2(g) (5.31)

Si3H8(g)→ 3Si(s) + 4H2(g) (5.32)

Si2H4(g)→ 2Si(s) + 2H2(g) (5.33)

each of which has an associated RSC. We refer to the reaction schemes (5.24)-(5.28)

together with (5.29)-(5.33) as the Kleijn model for poly-Si deposition.

The reaction rate constants and RSCs in the Kleijn model are derived from

studies by various investigators. The gas phase forward and reverse reaction rate
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constants are, in general, temperature and pressure dependent, given by the ex-

pression

kg = AP κ exp

(
−Ea
Rg Tg

)
(5.34)

where parameters A and Ea were fitted to experimental data for temperatures from

300-1100 K and pressures from 10–100 Torr. Furthermore, each RSC is given by

a different complicated function of wafer and gas temperature. Thus, the reaction

scheme includes a complicated temperature dependence and is a function of a

large number of physical-chemical parameters, e.g., multiple activation energies

and multiple sticking coefficients.

PHOENICS-CVD provides the necessary tools to implement the Kleijn model,

including a database of experimentally determined kinetics parameters. Thus,

we used the Kleijn model to describe poly-Si chemical reaction kinetics in the

Epsilon-1. In contrast to the initial simplified Arrhenius models, the chemistry

model is coupled to the gas phase transport model, since gas phase reactions play

an important role. Furthermore, no assumptions are made regarding the spatial

distribution of temperature and reactant concentrations in the chamber.

5.4.6 Unmodeled Phenomena and Equipment

As stated earlier, even with powerful tools at our disposal, development of a com-

prehensive model that incorporates every relevant feature of the Epsilon-1 reactor

is not practical. Here, we discuss some of the unmodeled features, phenomena, and

processes that are relevant to growth in the Epsilon-1 but were not implemented

in our models.
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Si-Ge growth chemistry

Although reaction schemes including gas phase and surface reactions for growth of

Si-Ge from silane and germane precursors have appeared recently in the literature,

experimentally determined physical-chemical parameter values for such schemes

are proprietary information and in general not widely available. We have con-

tacted researchers at a government laboratory [107] regarding future experiments

to determine rate constants and sticking coefficients for Si-Ge growth.

Development of models for Si-Ge growth is particularly complicated due to

the large number of phenomena involved and the manner in which the deposited

film depends on the process-equipment state. For example, epitaxial Si-Ge layers

are deposited using either dichlorosilane, silane, or disilane, along with germane.

Deposition rate and germanium content have been observed to be dependent on

the choice of precursor gas [74] and germane concentration [73]. Furthermore,

both of these effects have been observed to be temperature dependent [38]. Thus,

uniformity may be affected in different ways by non-uniform concentrations of

different reactants at various temperatures.

Radiative heat transfer, lamp-house, and reflectors

Radiative heat transfer modeling is implemented in PHOENICS-CVD via view-

factor methods. This requires a discretization of the solid surfaces in the chamber

into a large number of smaller surfaces that are considered isothermal and of con-

stant optical properties. The predictive capability of the method depends on the

number and size of the individual surfaces, which we refer to as the discretization

resolution, as well as the accuracy of the chamber geometry implemented in the

model.
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Although the finite volume mesh used to model the chamber geometry is ef-

fective for capturing relevant gas phase transport phenomena, it neglects various

features of the equipment which would have a significant effect on radiative heat

transfer. Such features include apparatus containing wafer rotation machinery

within the lower chamber section and the complicated lamp-house and reflector

equipment. In the Epsilon-1, there are a variety of reflector designs, including

both diffuse and specular, and some of a special parabolic shape. Also, certain

parameters are known only roughly, such as the power supplied by the lamps, or

equivalently the temperature of the filaments when they are turned on to 100%

power. It is simply not practical to include the geometry and properties of these

pieces of equipment in the finite volume reactor model.

Furthermore, in the Epsilon-1, there exist many transitions from one material

to another, gaps between different pieces of the equipment, and a non-symmetric

lenticular shape. This necessitates an extremely high discretization resolution for

viewfactor modeling. For all of the above reasons, we believe that modeling of

radiative heat transfer in the Epsilon-1 using the PHOENICS-CVD framework is

too unwieldy and computationally expensive to be practical.

Currently, solid surfaces are modeled as isothermal, i.e., constant temperature

within each individual piece of apparatus and throughout the entire wafer. Tem-

perature values are set according to empirical data supplied by the manufacturer.

In reality, temperature gradients exist within individual pieces of equipment, and

the average steady-state temperature of any part of the reactor is known only

roughly. However, it is not likely that implementation of a radiative heat trans-

fer model using the PHOENICS-CVD framework would produce more accurate

surface temperatures than manufacturer supplied empirical data.
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A separate model restricted only to heat transfer within and among the solids

in the Epsilon-1, and implemented using a more flexible programming environ-

ment, is presented in Chapter 6. It is desirable to incorporate a more compre-

hensive conjugate heat transfer model to reflect the relevant geometrical features

at sufficiently high resolution to provide an accurate picture of the temperature

distribution in the Epsilon-1 solids. Steady-state temperature values could then

be used as boundary conditions in a refined process-equipment model.

Wafer rotation

The actual mechanical rotation of the wafer is not accounted for in the models.

CFD software routines for modeling of rotating objects in a flow environment are

available, but require axisymmetry of the entire domain. Therefore, a separate

effort would be required to investigate the effect of mechanical wafer rotation on

the chamber flow immediately surrounding the wafer. The effect of wafer rota-

tion on growth can be studied, partially, by performing averaging calculations on

simulation results, i.e., averaging deposition rates around the wafer surface.

Rotation shaft purge

There is an additional purge gas inlet through the wafer rotation shaft. Purge

gases injected through the rotation shaft enter the chamber directly underneath

the center of the wafer. Recall that the wafer rests on small pins attached to

the top of the susceptor. The purpose of the shaft purge is to prevent the source

gases from flowing between the wafer and susceptor which could result in back-side

deposition. Typically, the shaft purge is set to 3 slm H2. This may have an effect

on the chamber flow in the vicinity of the wafer. In addition, the presence of the
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rotation shaft would affect the chamber flow in the lower chamber section. The

rotation shaft and related apparatus are not included in the process-equipment

model.

Deposition on chamber walls

The process-equipment model treats all surfaces other than the top surface of the

wafer as non-reacting. However, deposition on other surfaces does occur in the

Epsilon-1. A build-up of such films is prevented by preceding the deposition step

with a HCl etch clean. In Section 5.5.4, we slightly modify the process-equipment

model so that the back-side of the susceptor becomes a reacting surface. This

limited study could be expanded to study deposition on other chamber surfaces as

well.

Chamber wall cooling

The quartz chamber and lamp-house are cooled by air flow. There is little data

regarding characteristics of the air flow and convective losses from the outer wall

of the chamber. These effects are not modeled. Instead, a constant temperature

is set for each of the chamber walls.

5.5 Results and Applications

In this section we present results from poly-Si growth simulations using the Epsilon-

1 process-equipment model. We use the simulation results to study various char-

acteristics of the thin films and reactor operation that impact on manufacturing

effectiveness. We show that the model can be used to predict growth rate and

uniformity and to better understand the factors that influence these measures of
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performance. We also present simulation results that provide guidance toward

improved setting of purge gas flow rates.

Because deposition times are typically much longer than initial transients in

radiative heating and gas phase transport in the Epsilon-1, it is reasonable to

assume that all growth occurs during steady-state operation. For this reason, all

simulations described in this section predict steady-state values of growth rate and

other variables.

The PHOENICS input code, called a Q1 file, used for simulating poly-Si growth

at 750 C temperature, 30 sccm silane flow rate, and 20 Torr chamber pressure, is

presented in Appendix I. The PHOENICS code for the other simulations that we

conducted is similar.

5.5.1 Deposition Rate Prediction

We have performed poly-Si growth simulations using the Epsilon-1 process-equip-

ment model to study the relationship between growth rate and the various process

recipe inputs. Prediction of growth rate given process conditions is important for

taking advantage of the flexibility of the Epsilon-1. The manufacturer provides

some predictive guidance and data, but the process-equipment model can allow

for prediction of growth rates “off-the-curve” and also provide a tool for perform-

ing multiple trial-and-error steps and for understanding the factors that influence

growth rate and uniformity.

Wafer Temperature Sensitivity

Here we investigate the relationship between silicon growth rate and wafer temper-

ature in the Epsilon-1. We have already studied this relationship in Section 5.3,
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where poly-Si growth rates were measured experimentally for a range of wafer tem-

peratures (700, 725, 750 C) and silane flow rates (30, 50, 70 sccm) with pressure

fixed at 20 Torr. It was shown that for the given range of operating conditions,

a simple Arrhenius law provides an accurate model for predicting growth rate as

a function of wafer temperature. Arrhenius model parameters such as activation

energy were then calculated to fit the experimental data.

In contrast, the process-equipment model adopts the more complicated multi-

step Kleijn model for silicon deposition. This growth model includes both gas phase

and surface reactions, involves multiple reactive intermediaries, and is coupled to

transport models. Because of the model’s complicated nature, it is reasonable to

expect difficulty in isolating the effect of wafer temperature on simulated growth

rate. However, using reactor simulations, we show below that, like the experi-

mentally determined growth rates, simulated growth rates can also be fitted to

a simple Arrhenius law relating growth rate to wafer temperature. Furthermore,

the single activation energy in the Arrhenius law fitted to simulated growth rates

is nearly the same as that which was fitted to experimentally determined growth

rates. Thus, there appears to be an underlying dominant chemical mechanism that

obscures the effect of gas phase phenomena.

The predictive capability of the process-equipment model was tested by sim-

ulating poly-Si growth using operating conditions for pressure, temperature, and

flow rate that are duplicates of conditions used for experiments presented in [117].

The boundary conditions used for the simulations are given in Table 5.4. The sim-

ulation results are presented in Table 5.5 together with corresponding experimental

results from [117].

In order to test the fit of simulated growth rates to an Arrhenius law, we plot
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Boundary Conditions Used In Epsilon-1 Reactor Simulations

Process Inlet Conditions
Carrier Gas H2

Source Gas 2% SiH4 in H2

Condition Values

Flow Rate of Carrier (slm) 20 20 20
Flow Rate of Source (slm) 1.5 2.5 3.5
Flow Rate of Silane (sccm) 30 50 70
Mole Fraction of Silane (×10−3) 1.40 2.22 2.98
Molar Mass of Silane (g/gmol) 32.12 32.12 32.12
Molar Mass of Gas Mixture (g/gmol) 2.06 2.08 2.11
Mass Fraction of Silane (×10−2) 2.18 3.43 4.54
Density of Gas Mixture (kg/m3 × 10−3) 2.25 2.28 2.30
Velocity of Gas Mixture (m/sec) 1.40 1.47 1.53
Temperature of Gas Mixture (C) 20 20 20

Purge Inlet Conditions
Purge Gas H2

Condition Value

Flow Rate of Purge Gas (slm) 7
Velocity of Purge Gas (m/sec) 0.45
Temperature of Purge Gas (C) 20

Solid-Gas Interface Conditions

Condition Values

Temperature of Wafer (C) 700 725 750
Temperature of Susceptor (C) 700 725 750
Temperature of Ring (C) Conductive Solid
Temperature of Front Quartz Shelf (C) Conductive Solid
Temperature of Rear Quartz Shelf (C) Conductive Solid
Temperature of Upper Chamber Wall (C) 400 425 450
Temperature of Lower Chamber Wall (C) 400 425 450

Table 5.4: Boundary conditions for process gas inlet, purge gas inlet, and solid
surfaces used in simulations of poly-Si growth in the Epsilon-1 reactor.
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Process-Equipment Model Predictive Capability
Growth Rate Temperature Dependence

Process Conditions
Chamber Pressure 20 Torr
Carrier Gas 20 slm H2

Source Gas 2% SiH4 in H2

Purge Gas 7 slm H2

Growth Rate (A/min) Vs. Wafer Temperature and Silane Flow Rate
Experiment Simulation

Wafer Silane Flow Rate (sccm) Silane Flow Rate (sccm)
Temperature (C) 30 50 70 30 50 70

700 65.68 80.08 141.00 202.60 254.90
725 73.12 106.60 138.72 233.00 336.30 423.90
750 118.28 171.32 216.68 337.30 512.50 658.50

Ratio: Simulation / Experiment
Wafer Silane Flow Rate (sccm)

Temperature (C) 30 50 70

700 3.08 3.18
725 3.19 3.15 3.06
750 2.85 2.99 3.04

Mean 3.07
Standard Deviation 0.11

Note: Poly-silicon thickness for 750 C and 30 sccm was too small to be measured
with available equipment.

Table 5.5: Results comparing poly-Si growth experiments with simulations.
Growth rates are averaged over wafer surface.
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the logarithm of growth rate as a function of inverse temperature, for each of

the three flow rates used. The plots are shown, along with corresponding plots

of experimental data, in Figure 5.11. We can fit the simulation data to a simple

Arrhenius law, where the slope of each plot is proportional to the activation energy.

More importantly, the slopes of all plots are consistent over the range of flow rates,

for both simulation and experimental data. This means that the activation energy

for simulated growth is nearly identical to the activation energy measured for actual

growth in the Epsilon-1. Calculated Arrhenius parameters for experimental and

simulation data are presented in Table 5.6.

We note that the calculated activation energies fall within the range of pub-

lished activation energies for deposition of silicon from silane for the given range

of process conditions (see, e.g., [92]). In particular, they lie between the activation

energy for silane adsorption (125 kJ/mol), which is associated with with temper-

atures above 700 C, and hydrogen desorption (192 kJ/mol), which is associated

with temperatures below 700 C. Thus, it is likely that these are the dominant

activating mechanisms for both actual and simulated growth.

However, other phenomena also play a role, resulting in the consistent upward

shift from experimentally determined to simulated growth rates observed in the

Arrhenius plots. By a consistent upward shift, we mean that the ratio of simulated

to experimentally determined growth rates is a constant over the given range of

operating conditions. We calculated this constant offset factor relating simulation

and experimental data to have mean value 3.07 with standard deviation 0.11, as

indicated in Table 5.5. Thus, the process-equipment model, using the Kleijn model

for poly-Si growth chemistry, predicts growth rates that are roughly three times

greater than actual growth rates. More importantly, this factor is constant over
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the selected range of temperatures and silane flow rates.

0.97 0.98 0.99 1 1.01 1.02 1.03 1.04
10

1

10
2

10
3

30 sccm

50 sccm

70 sccm

30 sccm

50 sccm

70 sccm

700 C725 C750 C

EXPERIMENT

SIMULATION

Arrhenius Plot: Simulation vs. Experiment

1000/T (1/K)

D
ep

os
iti

on
 R

at
e 

(A
/m

in
)

Figure 5.11: Plots illustrating Arrhenius relationship between poly-Si growth rate
and wafer temperature in the Epsilon-1. Experimental and simulation data is taken
for three silane flow rates (30, 50, and 70 sccm) and three temperatures (700, 725,
750 C) at 20 Torr. Simulated growth rates (top three plots) are a factor of 3.07
times greater than experimentally determined growth rates (bottom three plots)
consistently over the given range of temperatures and flow rates.

We now offer some ideas toward a qualitative explanation of the presence of the

offset factor. The Kleijn model is semi-empirical, i.e., it is based on phenomeno-

logical models and empirical data from growth experiments performed by various

investigators. It is well known that rate constants and sticking coefficients for

gas phase and surface reactions are difficult to measure, and reaction rates un-

der nominally identical process conditions will vary among different reactors [128].

For example, Kleijn’s study [81] used a cylindrical cold-wall chamber, which is

very different from the lenticular hot-wall chamber in the Epsilon-1. Moreover,

the process conditions used in the Kleijn study do not completely match those of

our own. For example, Kleijn used pressures in the 1–10 Torr range (compared to

our 20 Torr) and total flow rates on the order of 1 slm (compared to our > 20 slm).
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Parameters of Arrhenius Relationship Fitted to Data
Experiment vs. Simulation

Assumed Relationship

RSi = C exp
(
−Ea
RgTw

)
Process Conditions
Chamber Pressure 20 Torr
Carrier Gas 20 slm H2

Source Gas 2% SiH4 in H2

Purge Gas 7 slm H2

Symbol Description Experiment

FSiH4 Silane Flow Rate (sccm) 30 50 70
Ea Activation Energy (eV) 1.69 1.67 1.57

Activation Energy (J/mol) (×105) 1.63 1.61 1.51
Ea/Rg Ratio (K) (×104) 1.96 1.94 1.82
C Pre-exponential Constant (A/min) (×1010) 7.94 8.90 3.52

Simulation

FSiH4 Silane Flow Rate (sccm) 30 50 70
Ea Activation Energy (eV) 1.30 1.48 1.55

Activation Energy (J/mol) (×105) 1.26 1.43 1.49
Ea/Rg Ratio (K) (×104) 1.51 1.72 1.80
C Pre-exponential Constant (A/min) (×1010) 0.08 1.01 2.81

Table 5.6: Parameters calculated by fitting experimental and simulation data for
poly-Si growth rates to an assumed Arrhenius relationship.
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The temperature ranges do coincide.

On the other hand, the consistency of the offset factor over a range of temper-

atures and silane flow rates indicates the likelihood that activation energies and

sticking coefficients in the Kleijn model are close to those we would find by per-

forming similar experiments in the Epsilon-1. It appears likely that the offset is

due more to approximations and neglected effects in the process-equipment model.

For example, discrepancies between actual and simulated gas phase flow, tempera-

ture, and species concentration distributions could alter the relative significance of

each of the different reactive intermediaries. Thus, even if sticking coefficients for

the five separate surface reactions are accurate, total growth rate would be shifted.

Beyond that, the coupling of gas phase reactions and transport phenomena

with surface chemistry in the process-equipment model blurs any specific cause

and effect relationships. It must also be emphasized that the model makes a

number of approximations and assumptions whose cumulative effect is difficult to

pinpoint. For example, the wafer geometry is approximated, so that the area of

the wafer consuming reactants may not be modeled accurately.

By taking the offset factor of 3.07 into account, the model as it currently stands

can be used to accurately predict silicon growth rate in the Epsilon-1 over a range of

temperatures and silane flow rates typically used by NG-ESSS. However, it would

be preferable to improve the transport component of the model, and to conduct a

more extensive experimental study, similar to Kleijn’s, in which chemical kinetics

parameters for growth in the Epsilon-1 are measured over a wide range of operating

conditions.
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Chamber Pressure Sensitivity

Here we investigate the relationship between silicon growth rate and chamber pres-

sure in the Epsilon-1. Actual growth rate is expected to increase as total pressure

rises due to the increased number of molecular collisions on the wafer surface and

the increased reaction rates of gas phase reactions. Simulation results presented

below reflect this phenomenon.

We performed poly-Si growth simulations at a chamber pressure of 40 Torr

using the same temperature and silane flow rate conditions as experiments and

simulations performed at 20 Torr. However, due to time limitations, only two flow

rates were used (50, 70 sccm). The simulation results for 20 Torr and 40 Torr are

presented together in Table 5.7.

As before, we produced Arrhenius plots and calculated Arrhenius parameters

in order to see how pressure affects growth rate. The results are presented in

Figure 5.12 and Table 5.8. We see that growth rate increases by a factor of 1.26

as pressure increases from 20 Torr to 40 Torr. This offset factor is constant over

the given range of operating conditions. This result is consistent with a study by

Kleijn [81] in which growth rate increases as the logarithm (base 10) of pressure.

Furthermore, activation energies for 40 Torr are slightly higher than those for

20 Torr but still within the expected range.

Flow Rate Sensitivity

We have studied the influence of silane flow rate on growth rate using the exper-

imental and simulation data already presented. The recipe setting for silane flow

rate directly affects two process variables concerning the gas mixture at the inlet,

namely, silane mole fraction and overall gas velocity. As silane mole fraction in-
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Growth Rate Pressure Dependence
Epsilon-1 Simulation

Process Conditions
Carrier Gas 20 slm H2

Source Gas 2% SiH4 in H2

Purge Gas 7 slm H2

Simulated Growth Rate (A/min) Vs.
Wafer Temperature and Silane Flow Rate
Chamber Pressure 20 Torr 40 Torr

Wafer Silane Flow Rate (sccm) Silane Flow Rate (sccm)
Temperature (C) 50 70 50 70

700 202.60 254.90 270.00 315.40
725 336.30 423.90 423.40 510.00
750 512.50 658.50 651.90 820.90

Ratio: 40 Torr / 20 Torr
Wafer Silane Flow Rate (sccm)

Temperature (C) 50 70

700 1.33 1.24
725 1.26 1.20
750 1.27 1.25

Mean 1.26
Standard Deviation 0.04

Table 5.7: Results from poly-Si growth simulations comparing growth rates at
20 Torr pressure with growth rates at 40 Torr pressure. Growth rates are averaged
over wafer surface.
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Parameters of Arrhenius Relationship Fitted to Simulation Data
Pressure Dependence

Assumed Relationship

RSi = C exp
(
−Ea
RgTw

)
Process Conditions
Carrier Gas 20 slm H2

Source Gas 2% SiH4 in H2

Purge Gas 7 slm H2

Symbol Description 20 Torr 40 Torr

FSiH4 Silane Flow Rate (sccm) 50 70 50 70
Ea Activation Energy (eV) 1.48 1.55 1.52 1.68

Activation Energy (J/mol) (×105) 1.43 1.49 1.47 1.62
Ea/Rg Ratio (K) (×104) 1.72 1.80 1.77 1.95
C Pre-exponential Constant (A/min) (×1010) 1.01 2.81 1.98 14.77

Table 5.8: Parameters calculated by fitting simulation data for poly-Si growth
rates to an assumed Arrhenius relationship.

creases, the contribution of gas phase reactions to the overall deposition process

will be enhanced [81]. We now briefly discuss the relationship between flow velocity

and deposition rate.

It is typically assumed that the gas stream can be divided into two regions. In

the region away from the wafer surface, the gas stream is assumed to flow with

relatively constant velocity, while in the region next to the wafer surface, there

exists a stagnant boundary layer where the flow velocity is zero. In this model,

mass transfer of the reactant species through the stagnant layer is dominated by a

diffusion process. The mass flux Ψ impinging upon the wafer surface is proportional

to the diffusion coefficient D and the difference between the reactant concentration

in the full flow Cg and at the surface Cs, and inversely proportional to the thickness
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Figure 5.12: Plots illustrating Arrhenius relationship between poly-Si growth rate
and wafer temperature in the Epsilon-1. Simulation data is taken for two silane
flow rates (50, 70 sccm), three temperatures (700, 725, 750 C), and two chamber
pressures (20, 40 Torr) . Growth rates for 40 Torr pressure are a factor of 1.26
times greater than growth rates for 20 Torr pressure consistently over the given
range of temperatures and flow rates.

of the boundary layer δ, i.e.,

Ψ =
D (Cg − Cs)

δ
. (5.35)

Furthermore, the average boundary layer thickness δ is inversely proportional to

the square root of the flow velocity V , i.e.,

δ = C1 V
−1/2 (5.36)

The result is that the impinging flux of reactants Ψ is proportional to the square

root of flow velocity, i.e.,

Ψ = C2 V
1/2 (5.37)

We express the relationship between deposition rate and flow velocity as a power

law

RSi = C3 V
1/2. (5.38)
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If the power law (5.38) provides an accurate model of the relationship between

growth rate and flow velocity in the Epsilon-1, then the slope of a plot of the loga-

rithm of growth rate versus the logarithm of flow velocity should be approximately

0.5. This does not hold true (or come anywhere close) for our experimental and

simulation data. However, we were able to determine an interesting relationship,

by substituting silane flow rate FSiH4 for flow velocity V in (5.38) and letting the

power law exponent vary, i.e.,

RSi = C Fα
SiH4

(5.39)

where α denotes the power law exponent, found by calculating the slope of log RSi

versus log FSiH4 . The log-log plots for experimental and simulation data over the

range of temperatures we used are presented in Figure 5.13. The resulting values

for α are given in Table 5.9. We see that the power law exponent α in (5.39) is

roughly 0.7.

We also note that as the gas mixture flows through the process chamber, it

heats up and consequently its density decreases and its velocity increases (see

Section 5.5.3). This may partially account for the exponent being greater than

0.5.

Based on Equation (5.35), we also expect growth rate to be proportional to

silane concentration and hence silane flow rate at the inlet. As shown in Fig-

ure 5.14, this relationship holds, with a temperature dependent proportionality

constant, reflecting the fact that the process is thermally driven. This is in contrast

to the temperature independent nature of the power law exponent. We emphasize

that the power law is a purely mass transport controlled phenomenon.
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Figure 5.13: Plots illustrating power law relationship between poly-Si growth rate
and silane flow rate in the Epsilon-1. Simulation and experimental data is taken
for three silane flow rates (30, 50, 70 sccm) and three wafer temperatures (700, 725,
750 C). The power law exponent (slope of plots) is approximately 0.7, consistently
over the given range of temperatures. The temperature independence of the power
law exponent indicates a completely mass transport controlled phenomenon.

Carrier Gas Sensitivity

A preliminary investigation of the relationship between growth rate and carrier

gas was conducted by simulating poly-Si growth using N2 carrier gas instead of H2

carrier gas. Wafer temperature was set at 750 C and silane flow rate was set at

70 sccm. The resulting growth rate was 1661 A/min which is a factor of 2.5 times

greater than the corresponding simulated growth rate using H2 carrier.

These simulation results are in accordance with a study by Kleijn [81]. There,

use of nitrogen results in an increase in buoyancy effects which causes an increase

in the average residency time of gases in the reactor. Thus, gases are heated for a

longer period of time and the contribution of gas phase reactions becomes greater.
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Relationship Between Growth Rate and Silane Flow Rate
Experiment vs. Simulation

Assumed Relationship
RSi = C Fα

SiH4

Process Conditions
Chamber Pressure 20 Torr
Carrier Gas 20 slm H2

Source Gas 2% SiH4 in H2

Purge Gas 7 slm H2

Symbol Description Experiment Simulation

Tw Wafer Temperature (C) 700 725 750 700 725 750
α Power Law Exponent 0.76 0.71 0.70 0.71 0.79

Table 5.9: Power law exponent calculated by fitting experimental and simulation
data for poly-Si growth rate to an assumed power law relationship between growth
rate and silane flow rate.

Also, thermal diffusion effects are weaker in nitrogen than in hydrogen. Both of

these phenomena cause a larger growth rate in nitrogen than in hydrogen.

5.5.2 Deposition Uniformity Prediction

In Section 5.2.3, we presented an argument, based on anecdotal evidence, that

temperature uniformity does not produce deposition thickness uniformity in the

Epsilon-1 reactor, even for thermally activated processes. On the contrary, ther-

mocouple offsets are set so that the temperature distribution on the wafer surface

is intentionally non-uniform. This occurs because of the various transport phe-

nomena that couple with thermally activated chemical mechanisms to influence

silicon deposition rate in the Epsilon-1.

In this section we use simulation results to illustrate the phenomenon. We

simulated poly-Si growth using 20 Torr chamber pressure, 750 C wafer tempera-

ture, 70 sccm silane flow rate, 20 slm H2 carrier, and 7 slm H2 purge. The 750 C
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Figure 5.14: Plots illustrating linear relationship between poly-Si growth rate and
silane flow rate in the Epsilon-1. Simulation and experimental data is taken for
three silane flow rates (30, 50, 70 sccm) and three wafer temperatures (700, 725,
750 C). Slope of plots are temperature dependent, reflecting the fact that the
process is thermally driven.

temperature is uniform across the entire surface of the wafer. Figure 5.15 shows a

contour plot of the resulting steady-state growth rate on the wafer surface.

Simulated growth rate varies from a minimum of 628 A/min at the downstream

side to a maximum of 681 A/min at the upstream outer edge. This represents an

8.4% maximum variation in growth rate across the wafer surface. If thermal activa-

tion were the sole contributor to growth rate, then the 8.4% growth rate variation

would correspond to a 0.42% maximum variation in temperature. However, we

know this is not the case, since we have imposed a perfectly uniform tempera-

ture profile on the wafer. The existence of other contributing factors is apparent.

On the other hand, this does show that compensation for the other factors may

be achievable with much smaller thermocouples offsets than those currently used,

which create a maximum temperature variation of 8.5% between thermocouple
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Figure 5.15: Spatial distribution of steady-state deposition rate (A/min) on wafer
surface resulting from poly-Si growth with 750 C uniform temperature. The pic-
ture shows a non-uniform deposition rate despite the uniform temperature profile.
Process conditions are 20 Torr pressure and 70 sccm silane flow rate. Gas flow is
from bottom of picture (front/upstream) to top of picture (rear/downstream).

locations. The advantage to this would be reduced mechanical stress and a higher

average temperature resulting in higher growth rates.

It is also worthwhile to examine the spatial distribution of the simulated growth

rate non-uniformity. Growth rate appears to increase from wafer center to edges,

and from front (upstream) side to rear (downstream) side. Thus, the expected

depletion effect appears in poly-Si growth simulations. Non-uniformities in gas

heating, resulting in non-uniform gas phase reactions and thermal diffusion may

also be responsible for growth rate variations. Further simulations will be required

to isolate those effects.

Thermocouple offset values described in Section 5.2.3 and used by NG-ESSS
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to produce uniform growth create a temperature distribution that is hotter at the

front (upstream) than the rear (downstream), and hotter at the center than at

the side. The latter seems to match what we would expect given our simulation

results, i.e., cool the side to reduce growth rate there. On the other hand, it is

difficult to explain the former, since it would exacerbate any reactant depletion

effect. Perhaps the simulation understates the effect of downstream gas phase

reactions.

We emphasize that in actual operation, the wafer is rotating, so that growth

rate variations are averaged, and the significance of front-to-rear variations be-

comes unclear. We cannot draw any further conclusions at this time. A further

experimental study of the effect of thermocouple offsets on uniformity is necessary.

5.5.3 Process Chamber Transport Phenomena Prediction

In this section we study the gas phase transport phenomena in the process cham-

ber of the Epsilon-1. As stated earlier, these effects play an important role in

determining deposition rate and uniformity for silicon growth. In particular, we

want to observe and analyze gas flow patterns and non-uniformities in the spatial

distribution of reactant species.

Simulation results described in this section are for poly-Si growth at 20 Torr

pressure, 750 C uniform wafer temperature, 450 C chamber wall temperature,

70 sccm inlet silane flow rate, 20 slm hydrogen carrier flow rate, and 7 slm hydrogen

purge flow rate.

We first examine the flow field in the process chamber. Gases are pumped into

the Epsilon-1 process chamber from two inlets: the process gas inlet in the upper

chamber section and the purge gas inlet in the lower chamber section. They are
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pumped out from the process chamber through one outlet located in the upper

chamber section. Depending on process and purge inlet flow settings, it is possible

for gases to flow from upper to lower chamber sections and visa-versa.

Figure 5.16 shows a view of the simulated flow field in the Epsilon-1 process

chamber. Several features are of interest. We observe that there is no gas flow

from the upper chamber through gaps to the lower chamber. Thus, the purge

flow is effective in this regard. Also, gases from the lower chamber enter the upper

chamber mainly through the gap toward the rear of the chamber and also somewhat

through the gap near the side chamber wall. This causes the flow in the vicinity of

the wafer to be directed from the side wall toward the center line of the chamber.

In the y-direction, the flow takes a parabolic profile, i.e., slightly faster at the top

of the chamber than near the wafer.

The contours in Figure 5.16 correspond to the flow speed in the z-direction, i.e.,

from front to rear. We observe that the gas velocity increases from front to rear.

This is due to the fact that the gas heats up as it passes by the hot chamber walls

and wafer level apparatus, causing the density of the gas mixture to decrease.

However, differences in density do not cause any buoyancy driven recirculation

cells in this simulation. This is because the flow velocity is relatively high and the

temperature gradients in the hot wall chamber are not severe.

The heating of the gases is observed in Figure 5.17, which shows a contour plot

of simulated temperature distribution in the Epsilon-1 process chamber. In the

vicinity of the wafer the temperature increases from side to center and from wafer

to chamber top wall, creating a highly non-uniform temperature field in the gas

phase. We note that because the solid surfaces in the lower chamber section are

also hot, the purge gas flowing up through the rear and side gaps does not cause
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Figure 5.16: Steady state flow pattern of gases in the Epsilon-1 process chamber.
Process conditions are 20 slm hydrogen carrier, 70 sccm silane source, 750 C wafer
temperature, 450 C chamber wall temperature, and 20 Torr pressure.

a flow of cool gas to enter the upper chamber.

We now study the spatial distribution of the concentrations of the various

reactant gases in the Epsilon-1. Silane enters the process chamber through the

process inlet in the upper chamber section. It is also produced by one of the five

gas phase reactions in the Kleijn model. The gas phase reactions also produce the

reactive intermediaries: disilane, trisilane, silylsylene, and silylene. All of these

gases are eventually diluted in the hydrogen carrier and hydrogen purge gas.

Figure 5.18 shows a contour plot of simulated silane mass fraction distribution.

Silane mass fraction is a maximum at the inlet and becomes depleted by gas phase
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Figure 5.17: Cross-sectional view of the steady-state gas phase temperature dis-
tribution in the Epsilon-1 process chamber during growth of poly-Si. Process
conditions are 750 C wafer temperature, 450 C chamber wall temperature, 20 slm
hydrogen carrier, 70 sccm silane source, and 20 Torr pressure .

and surface reactions as the gas passes over the heated susceptor and wafer. It is

at a minimum in locations where the hydrogen purge gas is flowing most heavily

into the upper chamber section, in particular, at the side and rear of the ring.

The concentration distributions of the other reactive intermediaries are illus-

trated by contour plots in Figure 5.19. Because they do not enter at the inlet,

these species appear in the flow only once the gas is hot enough for them to be

produced, in this case at the front edge of the susceptor ring. Like silane, these

species are depleted by surface reactions at the wafer surface. In fact, we observe
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Figure 5.18: Steady-state silane mass fraction distribution in the Epsilon-1 process
chamber during poly-Si growth. Process conditions are 750 C wafer temperature,
450 C chamber wall temperature, 20 slm hydrogen carrier, 70 sccm silane source,
and 20 Torr pressure.

that silylene, silylsylene, and trisilane are almost completely consumed by surface

reactions. On the other hand, some disilane remains just above the wafer surface,

although it is at a maximum in areas surrounding the wafer perimeter.

It is clear that the spatial distribution of reactant species concentrations is

strongly influenced by the flow field, the gas phase temperature distribution, and

surface reactions. We suggested earlier in this report that thermal diffusion may

also play a role. This effect is more difficult to isolate and identify.

Figure 5.20 shows two contour plots: the top plot is for silane mass fraction
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and the bottom plot is for gas phase temperature. Both plots are snapshots of

the x − z plane approximately 2 mm above the wafer surface. In the area just

above the wafer and susceptor, it is not possible to isolate any effect thermal

diffusion may have, i.e., separate it from the depletion effect caused by gas phase

and surface reactions. However, if we restrict attention to the area between the

side ring-shelf gap and the side chamber wall, we observe a silane mass fraction

gradient that may be due to the Soret effect. In particular, silane mass fraction

increases steadily along the chamber side wall and side ring-shelf gap from front to

rear. It is possible that the relatively heavy silane molecules have diffused toward

the cooler area near the chamber side wall at the front ring-shelf gap and away

from the hotter area toward the rear. Again, we emphasize that this speculation

needs to be confirmed by conducting additional simulations and possibly actual

experiments.

We also note that simulation results show no diffusion of silane or other reactive

intermediaries into the lower chamber section. Evidently, the convective forces of

the gas flow dominate through the gaps so that any heavy molecules diffusing

toward the lower chamber are immediately swept back into the upper chamber.

5.5.4 Purge Flow Optimization

As we observed in Section 5.5.3, the 7 slm H2 purge flow is effective in preventing

any source gases from entering the lower chamber section. In particular, the mass

fractions of silane and other reactive intermediaries in the lower chamber were

zero for those simulations. This motivates an examination of the relationship

between purge flow rate, reactant concentrations in the lower chamber, and possible

deposition on the back-side of the susceptor. The objective is to optimize purge flow
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rate, where the cost to be minimized is proportional to the amount of consumed

H2, and any back-side deposition is unacceptable.

Figure 5.21 shows contours of silane mass fraction and flow streamlines resulting

from two simulations, each using a different H2 purge flow rate. The top and

bottom figures correspond to 7 slm and 2 slm H2 purge flow rates, respectively.

We observe that purge flow rate has an effect on both the flow pattern in the

process chamber and the distribution of reactant concentrations. For the 7 slm

simulation, steady-state silane concentration in the lower chamber is zero, and

streamlines indicate a regular smooth flow from inlets to outlet, with purge gases

entering the upper chamber mainly through the rear ring-shelf gap. For the 2 slm

simulation, silane concentration in the lower chamber is nonzero, and the flow

field becomes irregular, including mixing between upper and lower chambers and

recirculation cells in the lower chamber.

For the above simulations, we modeled both the front-side of the wafer and

the back-side of the susceptor as reacting surfaces. We note that the wafer and

susceptor have different material properties, but we modeled the back-side of the

susceptor as if it were the back-side of a silicon wafer. Process conditions were set

to 20 Torr pressure, 750 C wafer temperature, and 70 sccm silane flow rate at the

upper chamber inlet. For the 7 slm purge flow simulation, no back-side deposition

occurred, and average front-side deposition rate was 687 A/min. For the 2 slm

purge flow simulation, back-side deposition rate varied from 205 to 359 A/min

across the susceptor back-side surface, and average front-side deposition rate was

719 A/min. Apparently, the different flow pattern resulting from a reduction in

purge flow rate also causes the front-side deposition rate to increase.

For purposes of optimization we performed one additional simulation with a
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5 slm H2 purge flow. Results qualitatively matched those for the 7 slm purge

simulation, i.e., no back-side deposition and zero silane concentration in the lower

chamber section. Based on simulation results, we can reduce the flow rate of

H2 purge from 7 slm to 5 slm, thus reducing the use of consumable gases while

still maintaining purge effectiveness. However, a reduction to 2 slm is too much

and results in unacceptable back-side deposition. The optimum purge flow rate is

somewhere between 2 slm and 5 slm. We did not proceed further with this study.

5.6 Remarks

We have presented strong anecdotal evidence, based on thermocouple offsets used

by NG-ESSS to produce uniform silicon growth in the Epsilon-1 reactor, that gas

phase transport phenomena play an important role in determining deposition uni-

formity, even for thermally activated growth. This conjecture is in agreement with

a study by Kleijn [81] using simulation and experimental data for silicon growth in

a cold-wall cylindrical reactor. Models for silicon growth that cannot be coupled to

gas phase transport phenomena and that use a simplified chemical kinetics model

are inadequate for describing the essential physics and chemistry. This motivated

the development of a 3-dimensional comprehensive process-equipment model for

silicon growth in the Epsilon-1, incorporating as many relevant transport effects

and chemical mechanisms as was feasible from a practical standpoint.

The process-equipment model provides a tool for prediction of deposition rate

and other process variables, i.e., the process-equipment state, for a given set of

recipe inputs (process conditions) and equipment settings. The predictive capabil-

ity of the model was tested by comparing results of poly-Si growth simulations to

experimental data. Simulations predict growth rates that are roughly three times
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greater than actual growth rates, consistently over the given range of operating

conditions.

Using the process-equipment model, we performed simulations in order to study

the factors that influence deposition rate and uniformity for silicon growth in the

Epsilon-1. The relationship between poly-Si growth rate and wafer temperature,

chamber pressure, silane flow rate, and hydrogen carrier flow rate were investi-

gated. Although we used a complicated model for poly-Si growth mechanisms

developed by Kleijn [81], growth rate temperature sensitivity can be simplified to

an Arrhenius relationship. Simulation results indicate that growth rate increases

with the logarithm (base 10) of chamber pressure, in agreement with known rela-

tionships. We found a power law relationship connecting poly-Si growth rate with

silane flow rate at the inlet, with power law exponent roughly 0.7. Finally, we

demonstrated that substitution of nitrogen for hydrogen as the carrier gas results

in a significantly increased deposition rate.

Simulation results showed that temperature uniformity does not guarantee de-

position uniformity in the Epsilon-1. Simulations using a uniform wafer temper-

ature in the thermally activated regime produced growth rates that were non-

uniform across the wafer surface. Thus, it is apparent that achieving deposition

uniformity requires some degree of temperature non-uniformity to compensate for

the effects of other phenomena including reactant depletion, gas heating and gas

phase reactions, thermal diffusion of species, and flow patterns.

We have taken steps toward achieving manufacturing objectives. Model predic-

tions allow NG-ESSS to simulate growth experiments in advance, narrow parame-

ter choices, and perform fewer actual experiments. Conditions and settings can be

optimized off-line, taking into account simulation results and sensitivity analysis
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for pressure, temperature, and flow rates. The effect of adjustments to wafer tem-

perature set-point, chamber pressure, source gas flow rate, thermocouple offsets,

and injector settings can be predicted and tuned off-line. Simulation results show

that consumption of process gases can be reduced by decreasing the purge gas flow

from 7 slm to 5 slm and possibly further without compromising the ability of the

purge gas to prevent back-side deposition.

278



Wafer

SiH2 Mass Fraction

1.26E-05
1.21E-05
1.17E-05
1.13E-05
1.09E-05
1.05E-05
1.00E-05
9.63E-06
9.21E-06
8.79E-06
8.37E-06
7.95E-06
7.53E-06
7.12E-06
6.70E-06
6.28E-06
5.86E-06
5.44E-06
5.02E-06
4.60E-06
4.19E-06
3.77E-06
3.35E-06
2.93E-06
2.51E-06
2.09E-06
1.67E-06
1.26E-06
8.37E-07
4.19E-07

Wafer

Si2H4 Mass Fraction

1.21E-05
1.17E-05
1.13E-05
1.09E-05
1.05E-05
1.01E-05
9.69E-06
9.29E-06
8.89E-06
8.48E-06
8.08E-06
7.67E-06
7.27E-06
6.87E-06
6.46E-06
6.06E-06
5.65E-06
5.25E-06
4.85E-06
4.44E-06
4.04E-06
3.63E-06
3.23E-06
2.83E-06
2.42E-06
2.02E-06
1.62E-06
1.21E-06
8.08E-07
4.04E-07

Wafer

Si2H6 Mass Fraction

3.54E-05
3.42E-05
3.30E-05
3.18E-05
3.07E-05
2.95E-05
2.83E-05
2.71E-05
2.59E-05
2.48E-05
2.36E-05
2.24E-05
2.12E-05
2.00E-05
1.89E-05
1.77E-05
1.65E-05
1.53E-05
1.41E-05
1.30E-05
1.18E-05
1.06E-05
9.43E-06
8.25E-06
7.07E-06
5.90E-06
4.72E-06
3.54E-06
2.36E-06
1.18E-06

Wafer

Si3H8 Mass Fraction

1.21E-07
1.17E-07
1.13E-07
1.09E-07
1.05E-07
1.01E-07
9.69E-08
9.29E-08
8.88E-08
8.48E-08
8.08E-08
7.67E-08
7.27E-08
6.86E-08
6.46E-08
6.06E-08
5.65E-08
5.25E-08
4.85E-08
4.44E-08
4.04E-08
3.63E-08
3.23E-08
2.83E-08
2.42E-08
2.02E-08
1.62E-08
1.21E-08
8.08E-09
4.04E-09

Figure 5.19: Steady-state mass fraction distribution for reactive intermediaries
during poly-Si growth: silylene (top-left), silylsylene (top-right), disilane (bottom-
left), trisilane (bottom-right). Process conditions are 750 C wafer temperature,
450 C chamber wall temperature, 20 slm hydrogen carrier, 70 sccm silane source,
and 20 Torr pressure .
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Figure 5.20: Illustration of thermal diffusion (Soret effect) in the Epsilon-1 process
chamber. Contours of steady-state silane mass fraction (top) and temperature
(bottom) for the x− z plane approximately 2 mm above the wafer surface.
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Figure 5.21: Comparison of flow streamlines and steady-state silane mass fraction
contours for hydrogen purge flow rates of 7 slm (top) and 2 slm (bottom). The
higher purge flow rate results in zero silane concentration in the lower chamber
section, no back-side deposition, and regular flow from inlets to outlet. The lower
purge flow rate is ineffective, producing non-zero silane concentration in the lower
chamber section and some back-side deposition.
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Chapter 6

Modeling and Reduction for RTP

Heat Transfer

6.1 Introduction

This chapter addresses the problem of deriving low-order models for RTP control

systems. We focus on one particular aspect of the overall process-equipment model

for the Epsilon-1 reactor: heat transfer within the solid wafer and among the

wafer, heat lamps, chamber walls, and flowing gases. A physical model of the

wafer thermal dynamics is formulated in Section 6.2, accounting for conductive,

radiative, and convective effects.

Control of the temperature distribution on the wafer surface is achieved through

several independent lamp zone actuators, each of which causes a different set of

tungsten-halogen lamps to irradiate the wafer. The lamp heating component of

the heat transfer model is derived in Section 6.3, based on several simplifying

assumptions and a detailed view factor analysis of the Epsilon-1 geometry and

lamp system characteristics. We also present the results of growth experiments
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that provide a degree of empirical validation for portions of the view factor analysis.

Although contact measurements do not occur during an actual deposition run, we

incorporate a set of thermocouples into the model to play the role of temperature

sensors.

Given the RTP heat transfer model, we derive low-order approximations of

the evolution equations via application of the reduction approaches detailed in

Chapter 3, i.e., POD and balanced truncation. A comparative study is presented

in Section 6.4, in which the effectiveness of the two approaches is examined through

numerical simulations of the full and reduced RTP control system models. We

summarize and make some additional remarks in Section 6.5.

6.2 Wafer Heat Transfer Model

The model for wafer heat transfer is a modified version of models presented in

[2, 28, 97, 138, 139]. It is based on an energy balance for a heat conducting solid

which emits and absorbs heat radiation at its boundary surfaces. The model takes

into account simplified effects of conductive, radiative (including lamp heating),

and convective heat transfer. Both a continuum model and a discretized version

are presented here, based on identical principles of energy balance. Although the

wafer is a continuous solid body, a discretized model is required for purposes of

numerical solution.

Wafer Characteristics

We assume that the wafer shape is perfectly cylindrical. Its geometry is illustrated

in Figure 6.1. The heat transfer model will be formulated in cylindrical coordinates

with radial variable r, azimuthal variable θ, and axial variable z. The wafer radius
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Figure 6.1: Wafer geometry used in the heat transfer model.

is denoted Rw and the wafer thickness is denoted ∆z, so that the top surface of

the wafer has z-coordinate ∆z and the bottom surface has z-coordinate 0. Note

that for purposes of this study, the wafer and susceptor have been combined into

a single homogeneous solid body.

We assume that the wafer is pure silicon, and ignore, e.g., the layer of silicon

dioxide on which poly-silicon is deposited. Thus, we use thermal and optical

properties for pure silicon. The physical constants are given in Appendix G.

Continuum Model

The temperature field in the solid wafer is denoted Tw = Tw(t, r, θ, z) where t

represents time. Time evolution of Tw is governed by a PDE (usually referred to

as the heat equation) which models heat conduction within the wafer, together

with boundary conditions (BCs) which model net heat flow to and from the wafer

boundary surfaces (top, bottom, and edge). The PDE is given in cylindrical coor-

dinates, for t > 0, 0 < r < Rw, 0 ≤ θ < 2 π, and 0 < z < ∆z, by

ρw Cpw
∂Tw

∂t
=

1

r

∂

∂r

(
kw r

∂Tw

∂r

)
+

1

r2

∂

∂θ

(
kw

∂Tw

∂θ

)
+

∂

∂z

(
kw

∂Tw

∂z

)
(6.1)

where ρw is the mass density of the wafer, Cpw is the heat capacity of the wafer

(the product Mw = ρw Cpw is often referred to as the wafer thermal mass), and kw
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is the thermal conductivity of the wafer. The associated BCs are given by

∂Tw

∂r
= 0 , r = 0 (6.2)

kw
∂Tw

∂r
= qedge(θ, z) , r = Rw (6.3)

kw
∂Tw

∂z
= −qbottom(r, θ) , z = 0 (6.4)

kw
∂Tw
∂z

= qtop(r, θ) , z = ∆z (6.5)

where the BC (6.2) results from symmetry about the wafer center, and qedge, qbottom,

and qtop represent the net heat flow per unit surface area to and from the wafer

edge, bottom, and top boundary surfaces, respectively, and will be described in

more detail later.

For purposes of modeling film growth, we focus our attention on the top surface

of the wafer where reactions take place. Invoking the assumption of azimuthal

symmetry, so that no temperature gradients exist in the azimuthal direction (i.e.,

∂Tw/∂θ = 0), time evolution of Tw at the wafer top surface is governed, for t > 0,

0 < r < Rw, and z = ∆z, by

ρw Cpw
∂Tw
∂t

=
1

r

∂

∂r

(
kw r

∂Tw
∂r

)
+

∂

∂z

(
kw

∂Tw
∂z

)
(6.6)

with BCs remaining the same as before except qedge = qedge(z), qbottom = qbottom(r),

and qtop = qtop(r). We also assume that the wafer thickness is sufficiently small

so that no thermal gradients exist in the axial direction within the wafer interior.

Therefore, we approximate the axial gradient term at the top surface by

∂

∂z

(
kw

∂Tw
∂z

)
'

1

∆z

(
kw

∂Tw
∂z
|z=∆z −kw

∂Tw
∂z
|z=0

)

=
1

∆z

(qtop + qbottom) (6.7)

where we have made substitutions using BCs (6.4) and (6.5). The resulting PDE

governs the evolution of the wafer top surface temperature field as a function of
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time and radial position,

ρw Cpw
∂Tw

∂t
=

1

r

∂

∂r

(
kw r

∂Tw

∂r

)
+

1

∆z

(qtop + qbottom) (6.8)

with BCs

∂Tw

∂r
= 0 , r = 0 (6.9)

kw
∂Tw
∂r

= qedge(∆z) , r = Rw (6.10)

Now, we must find expressions for qtop and qbottom, the net heat flow into the top

and bottom surfaces of the wafer. For this study, we assume that the top and

bottom surfaces are subject to identical heat transfer mechanisms, and let

qtop + qbottom = qem + qab + qconv + qchem (6.11)

where the terms on the right hand side of (6.11) represent the flow of thermal

energy to and from the wafer and are dependent on time, position, and wafer

temperature. In particular, qem is radiative energy emitted, qab is radiative energy

absorbed, qconv denotes energy losses due to convective heat transfer, and qchem is

energy transfer due to the heat generated by chemical reactions. For this study,

we do not include the heat of chemical reactions and consequently ignore qchem.

The term qem represents radiative losses from the wafer. We assume qab depends

on radiant heat flux from a uniform ambient, in this case the chamber walls, and

radiant heat flux from the lamps, but without reflections or other effects. The

individual terms are given by

qem = −2 εw σb T
4
w (6.12)

qab = 2αw σb T
4
c + αw

10∑
i=1

Qi ui (6.13)

where σb denotes the Boltzmann constant, εw denotes the wafer emissivity, αw

denotes the wafer absorptivity, Tc denotes the uniform ambient temperature of

286



the chamber walls, Qi = Qi(r) is a function of position describing the heat flux

intensity incident on the wafer due to the i–th lamp group, and ui = ui(t) is the

time-varying actuated power level of the i-th lamp group.

The convective term is given by

qconv = −hv (Tw − Tg) (6.14)

where hv denotes the convective heat transfer coefficient and Tg denotes the tem-

perature of the gas flowing past the wafer. Note that we have assumed a constant

uniform gas temperature. In order to estimate hv, we assume that flow in the pro-

cess chamber is a laminar flow along a flat plate. The mean heat transfer coefficient

is given in [124] (pp. 233-235) as

hv = 2

[
0.332 kg Pr

1/3

(
Re1/2

L

)]
(6.15)

where kg denotes the gas thermal conductivity, Pr denotes the gas Prandtl number,

Re denotes the gas Reynolds number, and L denotes the length of the chamber.

We have computed the Reynolds number Re to be approximately 27 for the flow

in the ASM Epsilon-1 during a typical deposition run, thus confirming the lam-

inar assumption. The calculated value of hv was then validated using flow and

temperature data from a corresponding CFD simulation.

Remark 6.2.1 It is sometimes convenient to assume that the wafer is a graybody,

so that εw = αw for all relevant wavelengths of radiation and wafer temperatures.

However, we do not make this assumption here, and use different values for emis-

sivity and absorptivity. 2

Remark 6.2.2 The parameters ρw, Cpw, and kw in general have a nonlinear de-

pendence on temperature, and can be modeled as polynomial functions of Tw. Like-
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wise, the parameters εw and αw in general have a nonlinear dependence on tem-

perature and deposition thickness. However, we invoke the assumption that mass

density, heat capacity, thermal conductivity, emissivity, and absorptivity are con-

stant, i.e., no variation with temperature, film thickness, position, or time. 2

Given these simplifying assumptions, the PDE model specializes to

∂Tw

∂t
=

kw

ρw Cpw

1

r

∂

∂r

(
r
∂Tw

∂r

)
+

hv

ρw Cpw ∆z

(Tg − Tw) +
2 σb εw

ρw Cpw ∆z

(
T 4
c − T

4
w

)
(6.16)

+
αw

ρw Cpw ∆z

10∑
i=1

Qi ui

where we recall that Tw = Tw(t, r), Qi = Qi(r), and ui = ui(t).

Since the guard ring insulates the wafer from radiation directed at its edge

boundary surface, we assume zero heat transfer at the wafer edge so that

qedge = 0 (6.17)

giving the BCs

∂Tw
∂r

= 0 , r = 0 (6.18)

∂Tw
∂r

= 0 , r = Rw (6.19)

Discretized Model

The continuum model as given by the above PDE and BCs can be discretized

using a suitable scheme, e.g., finite differences or finite elements. However, for our

simplified model it is easier to formulate a discretization by applying the energy

balance principles directly to individual annular elements of the wafer. The general

idea, which divides the wafer into annular regions, is illustrated in Figure 6.2.

Annular regions are numbered from 1 to n with element 1 being the innermost disk
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Figure 6.2: Heat transfer mechanisms affecting annular region of wafer.

and element n being the outermost annular region. The i-th element has mean

radius r(i), and is bounded by an outer cylinder of radius rout, inner cylinder of

radius rin, top surface at z = ∆z, and bottom surface at z = 0. The discretization

is uniform so that

∆r = r(i)− r(j) i, j ∈ n (6.20)

is constant for all regions.

The usual symmetry assumptions are invoked so that temperature depends on

radial position and time only. The discretized wafer temperature field is given by

the n-vector Tw(t), where the i-th entry of Tw(t) represents the temperature at

radial position r(i) and time t.

The wafer heat transfer model is then given by the ODE

Ṫw = Ac Tw +Ar T
4
w +Av Tw + Γ +B P (6.21)

where Ac, Ar, and Av are n × n matrices representing the effects of, respectively,

conductive, radiative, and convective heat transfer mechanisms, Γ is a constant n-

vector that accounts for the gas and chamber wall temperature, B is a n×m matrix

derived from discretized lamp zone radiant intensity profiles, and P = P (t) is a

m-vector of control inputs corresponding to lamp zone power levels. We present

the details of the ODE model below.
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The top surface area, volume, and mass of annular region i are given, respec-

tively, by

S(i) = π (rout(i)
2 − rin(i)2)

V (i) = S(i) ∆z (6.22)

m(i) = ρw V (i)

The matrix representing conductive heat transfer is then represented by the

tridiagonal matrix given by the entries, for i = 2, . . . n− 1,

Ac(i, i) =
−2 kw

ρw Cpw ∆r

rout(i) + rin(i)

r2
out(i)− r

2
in(i)

Ac(i, i+ 1) =
2 kw

ρw Cpw ∆r

rout(i)

r2
out(i)− r

2
in(i)

(6.23)

Ac(i, i− 1) =
2 kw

ρw Cpw ∆r

rin(i)

r2
out(i)− r

2
in(i)

and for the other other indices

Ac(1, 1) =
−2 kw

ρw Cpw ∆r

1

rout(1)

Ac(1, 2) =
2 kw

ρw Cpw ∆r

1

rout(1)
(6.24)

Ac(n, n) =
−2 kw

ρw Cpw ∆r

rin(n)

r2
out(n)− r2

in(n)

Ac(n, n− 1) =
2 kw

ρw Cpw ∆r

rin(n)

r2
out(n)− r2

in(n)

where we note that zero heat flux BCs have been incorporated into the model via

boundary elements of matrix Ac.

The matrices representing radiative transfer from wafer surface to chamber

walls and convective heat transfer from the process gases to wafer are given, re-

spectively, by

Ar = diag

(
−σb εw

ρw Cpw ∆z

, . . . ,
−σb εw

ρw Cpw ∆z

)
(6.25)
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and

Av = diag

(
−hv

ρw Cpw ∆z

, . . . ,
−hv

ρw Cpw ∆z

)
(6.26)

where we note that Ar and Av take a diagonal form as a result of the simplifications

made in our model.

The effect of radiation from chamber wall to wafer and convective transfer from

gas to wafer are incorporated into the constant vectors Γr and Γv whose entries

are given by

Γr(i) =
εc σb αw
ρw Cpw ∆z

T 4
c i ∈ n (6.27)

Γv(i) =
hv

ρw Cpw ∆z

Tg i ∈ n (6.28)

where εc is the emissivity of the quartz chamber walls. These effects are combined

by summing into one constant vector

Γ = Γr + Γv (6.29)

The lamp heating component is modeled by the term BP , where the matrixB is

referred to as the influence matrix and P is the control input vector corresponding

to lamp zone power levels. The influence matrix B is derived from the heat flux

intensity profiles Qi(r), i = 1, . . . ,m associated with each of the independently

actuated lamp zones. The details of these flux profiles, or influence functions, are

given in Section 6.3.

The Epsilon-1 is equipped with four independently actuated lamp zones. How-

ever, the analysis in Section 6.3 (based on some simplifying assumptions) yields

only three independent controls, i.e., two of the lamp zones produce identical flux

profiles. Thus, we have m = 3 control inputs in our model. The flux profiles are

suitably discretized and arranged in a matrix Q. They are then incorporated into
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the influence matrix B given by

B =
αw

ρw Cpw ∆z

Q (6.30)

Computation

To avoid problems of scaling in computational work, we normalize variables and

parameters so that all units cancel, i.e. write the model in dimensionless form.

It is customary to adopt a notation for the dimensionless variables, e.g. Tw be-

comes T̃w. Instead, we denote the dimensionless variables by the same symbol as

their dimensional counterparts and caution the reader to keep this in mind. The

conversions are

Tw →
Tw
Tc

, Qi →
Qi

Qref

, t→
t

τ
, r →

r

Rw

(6.31)

It has been observed in the ASM reactor that Tc, the chamber wall tempera-

ture, is approximately 300 K less than wafer temperature [105] during a typical

processing run. As reference values we select a wafer temperature of 1000 K and

chamber wall temperature of 700 K. The reference thickness href of 1.0 micron

was selected because it is on the order of the thickness of films we are interested

in growing. The reference heat flux Qref of 29.24 W/cm2 was computed using the

lamp power specification of 6 kW radiating over one-half of a spherical surface area

of radius 57.15 mm (2.25 in).

Using the dimensionless variables as given above, the parameters (matrices and

vectors) in equation (6.21) become

Ac →
τ

R2
w

Ac , Ar → τ T 3
c Ar , Av → τ Av ,

Γr →
τ

Tc
Γr , Γv →

τ

Tc
Γv , B →

τ

Tc
B

(6.32)

to yield a dimensionless ODE model equivalent to (6.21).
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Given an initial temperature profile, Tw0 = Tw(0), the temperature distribution

on the wafer surface can be determined as a function of time and radial position by

numerically integrating the ODE (6.21). Typically, the initial condition is a uni-

form temperature field set to ambient, i.e., Tw0 = [700 . . . 700]T. We used a fourth

order Runge-Kutta integration scheme to perform the numerical integrations. The

discretization resolution was typically set at n = 101.

See Appendix G for values of all physical constants and parameters used in our

simulations.

6.3 Lamp Heating Model

In this section we present the lamp heating component of the wafer heat transfer

model presented in Section 6.2. This component enters as the control input term in

the evolution equation (6.21) for wafer temperature. We describe additional details

of the physical set-up of the Epsilon-1 lamp apparatus, derive the relationship

between lamp power settings and heat flux incident on the wafer surface, and

validate the analysis using experimental data.

Lamp Equipment

The Epsilon-1 reactor is equipped with 21 tungsten-halogen lamps for heating the

wafer. There are 17 linear lamps (long, thin tubes) with a maximum power output

of 6.0 kW and four spot lamps (spherical bulbs) with a maximum power output

of 1.0 kW. The linear lamps are organized into two arrays, referred to as upper

and lower. The layout is illustrated in Figure 6.3. The upper and lower lamp

arrays are located outside the process chamber, respectively, above and below the

top and bottom quartz walls. They illuminate, respectively, the top surface of the
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Figure 6.3: Organization (top view) of upper and lower lamp arrays and spot
lamps: individual lamps are assigned to lamp groups and heat zones as shown.

wafer and the bottom surface of the susceptor. The upper lamps are arranged

perpendicular to the lower lamps. The spot lamps are located directly below, and

illuminate, the bottom of the center of the susceptor.

The power to individual lamps cannot be controlled in the Epsilon-1. Rather,

the lamps are combined into groups, which are further combined into zones. The

organization into groups and zones is also illustrated in Figure 6.3. The power to

each of the four lamp heat zones is controlled independently via four PID feedback

loops. In addition, the power to each of the ten lamp groups can be independently

controlled but only via manual settings. However, it is the four lamp heat zones

that normally serve as the actuators in the Epsilon-1 heating system. The time-

varying percentages of full power Pi supplied to the respective zones are the four

control inputs. The zone name roughly corresponds to the area of the wafer that

receives the most intense illumination from the particular zone, e.g. center, front

(upstream), rear (downstream), and side.
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Flux Profiles

Each individual lamp creates a heat flux profile, i.e., a spatially distributed radiant

intensity, that is incident across the wafer surface. We refer to these spatial profiles

as influence functions, the value of which at a given point on the wafer surface is

the heat flux intensity, measured in Watts per unit area, irradiated onto the given

point.

For purposes of this study, we assume that the shape of the flux profile for a

given lamp is determined solely by the geometry of the lamp and wafer appara-

tus. Other factors that play a role, but are unmodeled here, include the effect of

reflectors, chamber walls, and any apparatus within the chamber enclosure that

either reflects or absorbs heat radiation. The magnitude of a lamp’s flux profile is

determined completely by the maximum power output of the lamp, i.e., 6.0 kW

for the linear lamps and 1.0 kW for the spot lamps.

We use view factor analysis to compute the flux profiles Qi(r, θ), as a function of

radial position r and azimuthal position θ, for the individual lamps in the Epsilon-

1. For purposes of this analysis, we ignore the apparent symmetry breaking as

described in Chapter 5, and assume that wafer rotation causes azimuthal symmetry

of lamp radiation. Azimuthal averaging accounts for wafer rotation and results in

profiles Qi(r) as functions of r only. The view factor calculations are lengthy, so

we present the details and results of this procedure in Appendix H.

The individual flux profiles are combined using superposition, in accordance

with the previously described organization of lamps into groups and zones, to

produce four influence functions, each corresponding to one of the independently

actuated lamp heat zones. They are shown in Figure 6.4. Each profile Qi(r) is

modulated by a corresponding power setting Pi(t) (control input), i.e., the pro-
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Figure 6.4: Heat flux intensity profiles for ASM Epsilon–1 heat zones: flux intensity
(W/cm2) versus radial position for the four heat zones.

portion of full power applied. The flux profiles Qi and power settings Pi are then

incorporated into the evolution equation (6.21) for wafer temperature as described

in Section 6.2.

Remark 6.3.1 As shown in Figure 6.4, the view factor analysis yields identical

flux profiles for the front and rear zones. This is due to the geometry of the front

and rear zones with respect to the wafer, wafer rotation, and the other simplifying

assumptions invoked in the model development. Thus, we use only three indepen-

dent lamp zone control inputs in our control system model for the Epsilon-1 RTP

system. 2

Remark 6.3.2 We note that, given accurate flux intensity or temperature mea-

surements, one might be able to experimentally measure the flux profile for a given

lamp zone. However, it has been the experience of both Northrop Grumman and
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ASM that an instrumented wafer used to take such measurements is unreliable.

Moreover, the instrumented wafer that is available for these purposes is capable of

measuring temperature at only nine points on the wafer surface, which is insuffi-

cient resolution for purposes of model development. Another alternative is to infer

wafer temperature from growth rate of poly-silicon. However, this method is still

impractical, since a prohibitively large number of measurements for wafer location

and film thickness are required to achieve sufficiently high resolution. 2

Experimental Validation

We do, however, use an experimental approach for purposes of a comparative

validation of the flux profiles that were determined using view factor analysis. The

procedure was as follows:

(i) We deposited poly-silicon on a non-rotating wafer for a fixed period of time τ

with lamp group i manually set to power setting P . Thickness measurements

were taken to give a thickness profile h(i,P,τ)(r, θ) and growth rate distribution

R(i,P )(r, θ) = h/τ . We then averaged azimuthally to give growth rate in terms

of radial position for a rotating wafer, i.e., R(i,P )(r).

(ii) The Arrhenius law for growth rate (5.1) was inverted to determine temper-

ature as a function of radial position, i.e.,

T(i,P )(r) =
Ea

Rg

[
ln (k0XSiH4)− ln

(
R(i,P )(r))

)]−1
(6.33)

(iii) The temperature field T(i,P )(r) was substituted into the evolution equation

for temperature (6.21) in the wafer heat transfer model. Applying the steady-

state condition Ṫ = 0, we can solve

0 = Ac T +Ar T
4 +Av T + Γ +Bi P (6.34)
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for the discretized influence function Bi(r).

Isolation of the individual lamp groups was achieved by operating the reactor

in manual mode, i.e., with the automatic control loops for temperature regulation

turned off. In manual mode, the lamp groups are no longer organized into four

zones for the purpose of temperature control. Instead, each of the ten groups can

be toggled on and off individually, and the power setting of each (between 0% and

100%) can be set manually. To isolate a particular lamp group, all others were

turned off, while the power setting for the lamp group being tested is set manually

to an appropriate level.

The wafer was heated with an individual lamp group, whose power setting was

adjusted manually until at least one of the thermocouple readings reached the

range where deposition would occur, which was approximately 700 C. The exact

temperature readings were not important because in the next step temperature

would be inferred from thickness data. Then, flow of silane in hydrogen carrier

was started. Silicon was deposited for five minutes. Wafer rotation was turned off

so that effects of asymmetry would appear in the resulting deposition.

This procedure was followed to test four of the lamp groups: 1, 8, 9, and 10.

Lamp group 1 is in the upper lamp array and radiates directly toward the top

center of the wafer. Using lamp group 1 alone, we were able to heat the wafer to a

temperature sufficiently high for deposition to occur and to record sufficient data

for analysis. Lamp groups 8, 9, and 10 are in the lower lamp array and radiate

toward the bottom of the susceptor. Due to conduction and losses throughout

the susceptor, it was more difficult to heat the wafer using each of these lamp

groups alone. Of the lamp groups we isolated in the lower array, only lamp group

8 provided enough radiant energy to heat the wafer to a temperature sufficiently
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high for deposition to occur. However, wafer temperature oscillated and was highly

nonuniform in this case, causing the data to be unreliable. We focus now on the

experiment that tested lamp group 1 from which reliable data was obtained.

Lamp group 1 was isolated and set to 45% of full power which brought the

center thermocouple reading to 740 C, sufficiently high for deposition to occur.

Silane flow rate was set at 30 sccm. After a five minute deposition period, the

wafer was removed and thickness measurements were taken at 100 points on the

wafer surface.

Figure 6.5 shows two views of the resulting polysilicon film thickness profile.

Thermally activated growth using the isolated lamp group 1 produces a “hill” of

polysilicon. The deposition pattern reaches a maximum in a line across the wafer

center parallel to the lamps in lamp group 1, and decreases toward the wafer edges.

Qualitatively, this result is what we would expect given the geometry of lamp group

1 with respect to the wafer.

The thickness data is then used to compute an empirically determined heat

flux intensity profile for lamp group 1 as outlined previously. Figure 6.6 shows the

result along with the analytically determined profile for purposes of comparison.

The result indicates a reasonable agreement between the analytical model and

experimental data.

6.4 Model Reduction: A Comparative Study

In this section, we apply the POD and balanced truncation approaches to derive

low-order approximations from the RTP heat transfer control system model. We

compare the effectiveness of the two approaches via numerical simulations using

the full and reduced RTP control system models.
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Figure 6.5: Two views of polysilicon film thickness profile resulting from 5 minute
deposition using lamp group 1 at 45% power and silane flow rate of 30 sccm.
Top figure shows contour map where colors/shades represent thicknesses. Bottom
figure shows 3-dimensional view (“hill”).
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6.4.1 RTP Control System

Recall that in Section 6.2 the evolution of the temperature field on the wafer surface

was given by the ODE

Ṫw = Ac Tw +Ar T
4
w +Av Tw + Γ +B P (6.35)

To model the measurement of temperature at discrete points on the wafer surface

via thermocouples, we augment the nonlinear state equation (6.35) with the linear

output equation

Ttc = C Tw (6.36)

where Ttc is a p-vector of thermocouple measurements, and C is a p × n matrix

with entries corresponding to thermocouple locations.

Under our modeling assumptions, there are m = 3 independent lamp zone

control inputs. Although contact measurement does not occur during an actual
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deposition run, we incorporate into the model a set of thermocouple sensors in

contact with the wafer, by assuming that there are thermocouples in contact with

p = 3 locations on the wafer surface: center, edge, and midpoint between center

and edge. We ignore the actual placement of thermocouple sensors in the Epsilon-1

susceptor ring.

In Section 6.4.3, we will use a linearized version of (6.35). To linearize, first

observe that

ẋ = Ac x+Ar (x+ Γ)4 −Ar Γ4 +Av x+B u (6.37)

has an equilibrium point at x = 0 and is equivalent to (6.35) under the changes of

variable x = Tw − Γ and u = P − Pss, where Pss is the control input that results

in a steady state temperature field of Tw = Γ. Linearizing (6.37) about the origin

gives

ẋ = Ax+Bu (6.38)

with

A = Ac +Av + 4F (6.39)

where

[F ]ij = [Ar]ij Γ3
j (6.40)

and x and u are translations of Tw and P , respectively. The output equation for

the linearized control system is given by

y = C x (6.41)

6.4.2 POD Approach

We follow the procedure for deriving reduced models via the POD method as de-

tailed in Section 3.2.3. To generate empirical time series data, i.e., snapshots of the
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wafer temperature field, the nonlinear control system (6.35)-(6.36) was simulated

using two different types of control input recipes. (A recipe refers to a function

giving the lamp power setting for each of the three lamp zones at each instance

of time.) They are referred to as Ramp-Soak-Cool (RSC) and Perturbation-Of-

Constant (POC).

Control Input Recipe - Ramp-Soak-Cool

The RSC recipe mimics a typical processing recipe in which a lamp zone power

setting is gradually ramped up from zero to full power, maintained at full power

for a specified period of time, and then gradually ramped down from full to zero

power, as shown in Figure 6.7. This recipe is applied to one of the lamp zones

individually, while the other two zones are held at zero power. The RSC simulation

is then repeated for each of the other two lamp zones. In this manner, the system

response to excitation from an RSC recipe for each of the three lamp zones will

appear in the time series data. The time series state-response data is shown in

Figure 6.8.

The entire ensemble (three sets) of time series data is combined and arranged

into a data matrix, each column of which represents one “snapshot” of the wafer

temperature field. The POD basis elements and associated eigenvalues, or relative

energy values, are then computed via SVD and ranked according to magnitude of

relative energy. The basis elements with the four largest eigenvalues are shown in

Figure 6.9. Corresponding relative energy values are compared with those from

applying the balancing method in Table 6.2.
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Figure 6.7: Lamp power settings for RSC recipe.
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Figure 6.8: Snapshots of wafer temperature field with RSC input and uniform
initial temperature.
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Figure 6.9: Basis elements computed using POD from RSC empirical data.

Control Input Recipe - Perturbation Of Constant

The POC recipe applies small perturbations of a pre-determined set of constant

power settings which, if left unperturbed, would result in a uniform steady state

temperature field of 1000K. The perturbations are achieved by adjusting the power

setting of each lamp zone, one at a time, first to 110% and then to 90%, of the

original setting. This results in 6 different control recipes, as shown in Table 6.1.

Note that if the nominal constant power settings are used, then the wafer tem-

perature field will evolve as a uniform field for all time. Thus, the perturbations

are used to elicit a response that would be characterstic of the system behavior in

response to certain types of disturbances.

The system response to excitation from each of the six POC recipes is sampled

and combined as the time series data for computing POD basis elements. Time

series snapshots are shown in Figure 6.10. Once again, POD basis elements are
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Lamp Power Settings for POC Recipe

Note: Settings are constant for all time.

Recipe Zone 1 Zone 2 Zone 3

Punif 0.0798 0.4265 0.1965

P (1) 0.0718 0.4265 0.1965
P (2) 0.0878 0.4265 0.1965
P (3) 0.0798 0.3838 0.1965

P (4) 0.0798 0.4691 0.1965
P (5) 0.0798 0.4265 0.1768

P (6) 0.0798 0.4265 0.2161

Table 6.1: Lamp power settings for POC recipe.

computed and ranked by corresponding relative energy value. The basis elements

with the four largest eigenvalues are shown in Figure 6.9. Corresponding relative

energy values are given in Table 6.2.

6.4.3 Balancing Approach

We apply the balanced truncation procedure as detailed in Section 3.3.3 to the

linearized control system model (6.38) and (6.41). We note that the realization

(A,B,C) is nearly non-minimal, i.e., the condition numbers of the Gramians and

their product are

cond(Wc) = 3.2× 1018 (6.42)

cond(Wo) = 3.8× 1018 (6.43)

cond(WcWo) = 9.4× 1018 (6.44)

Remark 6.4.1 The near non-minimality of the RTP control system is expected,

since lamp influence functions and initial wafer temperature profiles are always

smooth and relatively uniform. Hence, any non-smooth or spatially fluctuating
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Figure 6.10: Snapshots of wafer temperature field with POC input and uniform
initial temperature.
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Figure 6.11: Basis elements computed using POD from POC empirical data.
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Figure 6.12: Left basis elements for balancing transformation.

temperature profiles are almost impossible to generate using the available control

inputs, and likewise, to measure using three thermocouple sensors. 2

Thus, it is necessary to use the Schur method of Safonov and Chiang (see

Appendix E) in order to alleviate the numerical difficulties. Using this method,

we derive a k-th order reduced model that is not necessarily balanced, but has

transfer function Ĝ(s) which is exactly the same as that for any k-th order balanced

realization, thus enjoying the same attractive error bound.

Application of the Schur method to (A,B,C) yields left and right basis elements

for a coordinate transformation, shown in Figures 6.12 and 6.13. Corresponding

relative energy values are compared with those from the POD approach in Ta-

ble 6.2. We note that the condition numbers for all of the matrices used in the

Schur procedure are less than 1000.
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Figure 6.13: Right basis elements for balancing transformation.

6.4.4 Reduced Model Simulations

Validation of the predictive capability of the reduced models is accomplished by

comparing simulation results using the original nth-order model with simulation

results using reduced kth-order approximations for various values of the reduced

model order k. In particular, the maximum deviation of the output signals, i.e.,

thermocouple readings, between the original and reduced models, are computed

for each of the model reduction approaches we have previously described.

The test simulations use a uniform 700 C initial temperature field, and two

different test recipes as the lamp control inputs. The test recipes are different

from those used to generate the RSC and POC data ensembles.
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Test Recipe 1 P = [0.5 0.5 0.5] t ∈ [0, 1]

Test Recipe 2 P = [1.0 0.0 0.0] t ∈ [0, 0.4)

P = [0.0 1.0 0.0] t ∈ [0.4, 0.7)

P = [0.0 0.0 1.0] t ∈ [0.7, 1.0]

The k-th order reduced models for k = 1, 2, 3, 4, and 5 and full n = 101 order

model are numerically integrated using identical control recipes and initial states.

Simulated thermocouple readings are recorded for each simulation. The reduced

model fidelity, i.e., the error between the original and reduced models, is computed

as in (1.1, via

e(k) = ‖Ttc − T̂tc‖max , k = 1, 2, 3, 4, 5 (6.45)

where we define the norm ‖y‖max for time–dependent p–vector y(t) as

‖y‖max = max {yi(t) : 0 ≤ t <∞ , 1 ≤ i ≤ p} (6.46)

where yi(t) corresponds to the temperature reading of thermocouple i at time t.

Thus, (6.45) gives the maximum deviation between actual and estimated thermo-

couple readings over the entire simulated time sequence and over all three thermo-

couples, i.e., a “worst case” error.

Remark 6.4.2 Due to the shape of the lamp heat flux intensity profiles and the

smoothing effect of the diffusion operator, the evolution of the wafer temperature

field does not produce especially interesting behavior, e.g., spatial profiles whose

fluctuations from the mean vary substantially in the mean square sense from the

initial profile, assuming the initial profile is relatively smooth. Thus, we expect

little difficulty in capturing the essence of the input-output behavior of the system

in a low dimensional model. Our results show that this is indeed the case. 2
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Percent Energy Associated With Transformation Basis Elements

Method Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

POD RSC 95.06 4.77 0.14 0.03 0.00
POD POC 93.43 6.25 0.23 0.09 0.01
Balancing 98.02 1.83 0.13 0.02 0.00

Table 6.2: Normalized eigenvalues, i.e., percent energy, corresponding to basis
elements used in model reduction for POD method with RSC data, POD method
with POC data, and balancing approach.

Tables 6.2 and 6.3 give the relative energy values for basis elements, and the

maximum thermocouple temperature deviations for the original and reduced or-

der models. Figures 6.14, 6.15, and 6.16 show simulated thermocouple readings

resulting from simulations with test recipe 1, for the original n = 101 order model,

and reduced models of order k = 1, 2, and 3. Figures 6.17, 6.18, and 6.19 show

simulated thermocouple readings resulting from simulations with test recipe 2.

We observe that the output responses of the full and reduced systems are

similar. In particular, using the test recipes as control inputs, the input-output

behavior of the wafer heat transfer system can be reconstructed using reduced

models of order 4 so that thermocouple readings are within 1 degree C of the

readings using the original model. This holds whether the POD or balancing

method is used, and for whichever set of empirical data was used for computing

the POD transformation. Even reduced models of order 2 produce a reasonable

approximation (but not suitable for control applications) with “worst case” errors

less than 15 degrees C.
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Maximum deviation (degrees C) between outputs of original and
reduced models

Reduction Reduced Model Order
Simulation Method 1 2 3 4 5

Test 1 POD RSC 27.23 2.68 0.58 0.11 0.01
POD POC 26.85 1.26 1.13 0.10 0.05
Balancing 50.68 7.03 0.44 0.08 0.02

Test 2 POD RSC 72.33 5.22 1.48 0.18 0.05
POD POC 72.60 4.79 4.35 0.43 0.10
Balancing 80.81 14.28 1.70 0.12 0.04

Table 6.3: Maximum deviation (degrees C) between outputs of original and re-
duced models for POD method with RSC data, POD method with POC data, and
balancing approach.
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Figure 6.14: Thermocouple readings for original and reduced models with Test
Recipe 1 using transformation from POD RSC.
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Figure 6.15: Thermocouple readings for original and reduced models with Test
Recipe 1 using transformation from POD POC.
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Figure 6.16: Thermocouple readings for original and reduced models with Test
Recipe 1 using balancing transformation.
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Figure 6.17: Thermocouple readings for original and reduced models with Test
Recipe 2 using transformation from POD RSC.
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Figure 6.18: Thermocouple readings for original and reduced models with Test
Recipe 2 using transformation from POD POC.
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Figure 6.19: Thermocouple readings for original and reduced models with Test
Recipe 2 using balancing transformation.

6.5 Remarks

We have presented physics-based and computational models for heat transfer in a

silicon wafer, specifically pertaining to RTP in the Epsilon-1 reactor. The models

account for the effects of conduction within the solid wafer, convective losses to the

gas phase, and radiative losses to the ambient. We model radiative heat transfer

from lamps to wafer by determining spatial profiles of radiant heat flux intensity

for individual lamp groups and lamp zones. These radiant intensity profiles were

computed analytically using view factor methods and then validated using data

from poly-Si growth experiments. The model does not account for the effects of

gas flow patterns, gas phase heat transfer, gas phase chemical reactions, and other

phenomena affecting the rate and spatial distribution of transport of chemical

species to the wafer surface, as detailed in Chapter 5.

The complexity and high computational demands of RTP models motivated
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a study of model reduction techniques to derive low-order approximations. A

comparative study of model reduction approaches examined the POD and bal-

anced truncation methods, which were applied to the RTP control system model.

Numerical simulations demonstrated that both the POD and balancing methods

produced a change of coordinates that allows for a significant reduction in model

dimensionality.

The POD method appears to have performed slightly better than the bal-

ancing method in this study, although both performed well. One reason for this

result is that the balancing transformation was computed for the linearized system,

while the validation tests were performed for the reduced order nonlinear system.

Another reason is the relatively simple input-output behavior of this particular

system, i.e., there is little difficulty in capturing the essential system behavior with

time series state-response data. The empirical eigenfunctions of the flow, and their

efficiency for purposes of representation, are relatively insensitive to the choice of

inputs. However, the results are not decisive in terms of determining which of the

two methods studied was more effective in reducing the order of the RTP control

system.
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Chapter 7

Conclusions and Future Research

We have motivated problems in state-space model reduction with a discussion

and analysis of prominent state-of-the-art approaches, demonstrating the ad-hoc

nature of their application to deriving low-order models for nonlinear systems. In

the process we have emphasized computational issues and potential hazards in the

hope that the exposition may serve as a useful guide.

In light of shortcomings associated with the aforementioned methodologies,

we addressed the problem of computability pertaining to the Scherpen theory

and procedure for balancing of nonlinear systems. We developed useful methods,

tools, and algorithms to compute the associated energy functions and coordinate

transformations. We applied our approach to derive, for the first time, balanced

representations of nonlinear state-space models.

Because of the computational complexity of our algorithms, this research merely

represents a first step toward making the balancing procedure a practical reduction

tool. There is little use for order reduction of state-space models with four or

fewer states. Faster algorithms will be required to balance and truncate high-

order systems of interest to engineers and scientists. Moreover, we have explored
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only a limited class of systems when seeking exact formulas for the controllability

function. Clearly it would be beneficial to find results with broader applicability.

Our research in modeling of RTCVD for silicon growth reflects our focus on

problems of practical interest to our industrial partner. Simulations using the

process-equipment model provide for a certain degree of convergence on a suitable

set of operating conditions for a particular process, thus avoiding some of the costly

experimental trials. Furthermore, there is value in an enhanced understanding of

the factors that influence deposition rate and uniformity. The economic advantages

associated with accurate prediction of processing results and successful implemen-

tation of model-based control in the semiconductor industry will continue to drive

the torrent of research in this area. Of particular interest for Si-Ge epitaxy on

wafers with a pre-deposited oxide pattern, such as that performed by NG-ESSS, is

recent work toward the integration of atomic level models for crystal growth with

macroscale models for gas phase transport phenomena [131].

We have derived low-order models for an RTP heat transfer control system

using ad-hoc versions of the POD and balanced truncation approaches. Although

effective in this case, we believe that ultimately there is much to be gained from de-

velopment of a more systematic methodology. Further research toward the practi-

cal application of balanced truncation for nonlinear systems appears to be a worthy

goal.
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Appendix A

Notation

Definition Remarks

n
4
= {1, . . . , n} set of natural numbers between 1

and positive integer n

∞∑
i=1

ai
4
= lim

N→∞

N∑
i=1

ai infinite series

A = [A]ij
4
= [aij ] matrix with numbers or functions aij

in the i-th row and j-th column

2 end of definitions, theorems, remarks, etc.

end of proofs
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Definition Remarks

ẋ
4
=

d

dt
x time derivative

∂f

∂x

4
=

[
∂f

∂x1
, . . . ,

∂f

∂xn

]
derivative vector

∇ f
4
=

[
∂f

∂x

]T
gradient vector

∇ · f
4
=

n∑
i=1

∂f

∂xi
divergence

4f
4
=

n∑
i=1

∂2f

∂xi2
= ∇ · ∇ f Laplacian

Df
4
= [Df ]ij =

[
∂fi

∂xj

]
derivative matrix (vector)

D2f
4
=
[
D2f

]
ij

=

[
∂2f

∂xi ∂xj

]
second derivative matrix (Hessian)

x(t, t0, x0, ū) solution of ẋ = f(t, x, u)
with x(t0) = x0 and u = ū

x(∞)
4
= lim

t→∞
x(t) steady-state

x(−∞)
4
= lim

t→−∞
x(t) steady-state (reverse-time system)
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Hilbert Spaces

Notation Remarks

L2(a, b) square-integrable functions

`2 square-summable sequences

HX linear operations on second-order random variable X

Norms

Norm Argument Definition

L2(a, b) f ∈ L2(a, b) ‖ f ‖L2(a,b) =
(∫ b
a ‖ f(t) ‖2 dt

)1/2

Hankel G(s) stable ‖G ‖H = supu∈L2(−∞,0)

‖ y ‖L2(0,∞)
‖u ‖L2(−∞,0)

H∞ G(s) stable ‖G ‖∞ = sup
ω∈IR λ1/2

max

(
G(−jω)TG(jω)

)
transfer function

Froebenius A ∈ IRn×m ‖A ‖F =
(∑n

i=1

∑m
j=1 a

2
ij

)1/2
=
(
tr
(
AAT

))1/2
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Appendix B

Manifolds and Coordinates

We assume throughout this thesis that the state-space takes the form of a smooth

manifold. A smooth manifold is a set which locally can be identified with IRn

together with the intrinsic notion of differentiability defined on IRn. In order to

work with systems that evolve on a smooth manifold, we need the concepts of local

coordinates, local representative of a map, and coordinate transformation. These

and other related terminology are defined below.

The material contained in this section is standard. The following exposition

is drawn from texts by Nijmeijer and van der Schaft [121], Isidori [69], and class

notes in Geometric Control presented by Dayawansa [37] and Krishnaprasad [87]

at the University of Maryland.

First we define terminology needed for characterizing functions of several real

variables, i.e., functions defined on IRn.

Definition B.0.1 (Homeomorphism) A function f : A ⊂ IRn → B ⊂ IRn is

said to be a homeomorphism if it is bijective (one-to-one and onto), and both f

and f−1 are continuous. 2
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Definition B.0.2 (Smooth Function) Let A be an open subset of IRn. A func-

tion f : A ⊂ IRn → IRm is said to be Ck or k times continuously differentiable if

all mixed partial derivatives for j ≤ k

∂jf

∂xα11 · · · ∂xαnn
αi ≥ 0 , i ∈ n

n∑
i=1

αi = j ,

exist and are continuous. The function f is said to be C∞ or smooth if f is Ck

for all k. 2

Definition B.0.3 (Diffeomorphism) A function f : A ⊂ IRn → B ⊂ IRn is

said to be a diffeomorphism if f is a homeomorphism of A onto B, and both f and

f−1 are smooth. 2

Definition B.0.4 (Coordinate Function) The function ri : IRn → IR for i ∈ n

defined by

ri(a1, . . . , an) = ai (B.1)

is called the i-th coordinate function or slot function on IRn. 2

The following terminology is related to functions defined on, and systems that

evolve on, a smooth manifold. Some basic elements of point-set topology are

required.

Definition B.0.5 (Topology) Let M be a non-empty set. A collection T of sub-

sets of M is said to be a topology on M if

(i) M and the empty set belong to T ;

(ii) The union of any number of subsets in T belongs to T ;

(iii) The intersection of any two (and hence any finite number) subsets in T be-

longs to T .
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2

The members of T are called T -open sets, or simply open sets, and the pair

(M,T ) is called a topological space. A basis for a topology T on M is a collection

S ⊂ T of open sets in T such that every open set can be wrtiten as a union of

members of S. A neighborhood of a point p in M is any open set which contains p.

Definition B.0.6 (Hausdorff) A topological space (M,T ) is said to be Hausdorff

if any two different points p1 and p2 have disjoint neighborhoods, i.e., there exist

open sets A1, A2 ∈ T such that p1 ∈ A1, p2 ∈ A2, and A1 ∩ A2 is empty. 2

Definition B.0.7 (Continuous Mapping) A mapping F : M1 → M2 between

topological spaces (M1, T1) and (M2, T2) is said to be continuous if F−1(A) ∈ T1

for all A ∈ T2. 2

We redefine the notion of homeomorphism in the context of mappings defined

on a topological space.

Definition B.0.8 (Homeomorphism) A mapping F : M1 → M2 between topo-

logical spaces (M1, T1) and (M2, T2) is said to be a homeomorphism if F is bijective

and both F and F−1 are continuous. 2

Definition B.0.9 (Topological Manifold) A Hausdorff topological space (M,T )

with a countable basis is said to be a topological manifold of dimension n if for

any point p in M there exists a homeomorphism φ from some neighborhood U of

p onto an open subset of IRn. 2

A smooth manifold will be defined as a topological manifold with some addi-

tional properties relating to differentiability. We use the following terminology.
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Definition B.0.10 (Coordinate Chart) Let (M,T ) be a topological manifold

of dimension n. A pair (U, φ) with U ∈ T and φ a homeomorphism from U onto

an open subset of IRn is called a coordinate chart or coordinate neighborhood for

(M,T ). 2

Definition B.0.11 (Local Coordinates) Let (U, φ) be a coordinate chart for a

topological manifold (M,T ) of dimension n. The functions defined by

xi = ri ◦ φ i ∈ n (B.2)

are called local coordinate functions for (U, φ). For a point p ∈ M , the values

x1(p), . . . , xn(p) are called the local coordinates of p. 2

Definition B.0.12 (Local Representative) Let (U, φ) be a coordinate chart for

a topological manifold (M,T ) of dimension n. Let f : M → IR be a map. The

function f̂ : φ(U) ⊂ IRn → IR defined by

f̂ = f ◦ φ−1 (B.3)

is called the local representative of f . 2

Remark B.0.13 By the definition of the local representative for f , we have

f(p) = f̂ (x1(p), . . . , xn(p)) (B.4)

for a point p ∈ U . We use the shorthand notation f(x1, . . . , xn) to denote both of

the above functions, omitting the caret and suppressing the point-dependence. 2

Definition B.0.14 (Coordinate Transformation) Let (U, φ) and (V, ψ) be co-

ordinate charts for a topological manifold (M,T ) of dimension n such that U ∩ V
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is not empty, i.e., the coordinate charts overlap. Let xi = ri ◦ φ and zi = ri ◦ ψ be

the corresponding coordinate functions. The map S defined by

S = ψ ◦ φ−1 : φ(U ∩ V )→ ψ(U ∩ V ) (B.5)

is called the coordinate transformation from local coordinates (x1, . . . , xn) to local

coordinates (z1, . . . , zn) on U ∩ V . 2

Definition B.0.15 (C∞-Compatible) Two coordinate charts (U, φ) and (V, ψ)

are said to be C∞-compatible if either U ∩ V is empty or the coordinate transfor-

mation S = φ ◦ ψ−1 and the inverse coordinate transformation S−1 = ψ ◦ φ−1 are

both smooth. 2

Remark B.0.16 The previous condition on (U, φ) and (V, ψ) is referred to as the

transition property. 2

Definition B.0.17 (C∞-Atlas) Let (M,T ) be a topological manifold of dimen-

sion n. An indexed collection of pairwise C∞-compatible coordinate charts D =

{Uα, φα}α∈A is said to be a C∞-atlas on M if ∪α∈A Uα = M . 2

Remark B.0.18 The previous condition on D is referred to as the covering prop-

erty. 2

Definition B.0.19 (Maximal C∞-Atlas) Let (M,T ) be a topological manifold

of dimension n. A C∞-atlas on M is said to be maximal if any coordinate chart

(V, ψ) which is C∞-compatible with every (Uα, φα) ∈ D is also in D. 2

Remark B.0.20 The previous condition on D is referred to as the maximality

property. 2
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Definition B.0.21 (Smooth Manifold) A topological manifold (M,T ) is said

to be a smooth manifold if there exists a maximal C∞-atlas on M . 2

Remark B.0.22 Thus, a smooth manifold possesses the properties of covering,

transition, and maximality. 2

Finally, we redefine the notions of a smooth mapping and a diffeomorphism in

the context of mappings defined on a smooth manifold.

Definition B.0.23 (Smooth Mapping) Let M1 and M2 be smooth manifolds of

dimension n1 and n2, respectively. A map F : M1 → M2 is said to be smooth if

for each p ∈ M1 there exist coordinate charts (U, φ) of M1 about p and (V, ψ) of

M2 about F (p), such that the local representative F̂ = ψ ◦F ◦φ−1 is smooth (as in

Definition B.0.2) from φ(U) ⊂ IRn1 into ψ(V ) ⊂ IRn2. 2

Definition B.0.24 (Diffeomorphism) Let M1 and M2 be smooth manifolds,

both of dimension n. A map F : M1 → M2 is said to be a diffeomorphism if

F is a homeomorphism (as in Definition B.0.8) and both F and F−1 are smooth

(as in Definition B.0.23). 2
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Appendix C

Numerical Simulation of

Stochastic Differential Equations

In this appendix we present a numerical scheme used for simulation of the system

modeled by the white noise driven differential equation

d

dt
Xt = f (t,Xt) +

m∑
i=1

gi (t,Xt) (ζt)i (C.1)

and discrete time approximation of white noise signals. This method appears

in [94] and is based on results in [164, 165].

As stated earlier, in order to simulate (C.1) we numerically integrate the SDE

(dXt)i =

fi (t,Xt) +
1

2

n∑
j=1

m∑
k=1

∂gik (t,Xt)

∂Xj

gjk (t,Xt)

 dt
+

m∑
i=1

gi (t,Xt) (dWt)i i ∈ n (C.2)

The justification for (C.2) leads to a computational method for numerical integra-

tion.

For simplicity, we consider the time-invariant, single-input (m = 1) case. The

results extend without difficulty to the general case. Consider a sequence of Gaus-
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sian processes
{
ζ

(n)
t , t ∈ IR+

}
which converges in some suitable sense to a white

noise, and such that, for each n, the process has a well behaved sample path. Then,

for each n, the initial value problem

d

dt
X

(n)
t = f

(
X

(n)
t

)
+ g

(
X

(n)
t

)
ζ

(n)
t X

(n)
0 = x0 (C.3)

can be solved, resulting in a sequence of processes
{
X

(n)
t , t ∈ IR+

}
. If the sequence

X
(n)
t converges to Xt then it is natural to say that Xt is the solution of (C.1).

The desired sequences are derived as follows. Consider a partition 0 = t0 <

t1 < · · · < tr of the interval of integration, with maximum step size

∆ = max (ti+1 − ti) (C.4)

For each integration step, define a polygonal approximation of Wt

W∆
t = W∆

ti
+
W∆
ti+1
−W∆

ti

ti+1 − ti
(t− ti) ti ≤ t ≤ ti+1 (C.5)

and a corresponding approximation to dWt

dW∆
t = W∆

ti
−W∆

ti+1
ti ≤ t ≤ ti+1 (C.6)

Then, since the polygonal approximation is piecewise differentiable with probabil-

ity 1, the equation

dX∆
t = f

(
X∆
t

)
dt+ g

(
X∆
t

)
dW∆

t (C.7)

is an ODE for the sample function X∆
t . It is shown by Wong and Zakai [164, 165]

that, under certain conditions,

lim
∆→0

in q.m.X∆
t = Xt (C.8)

where Xt is the unique solution of the SDE (C.2).

With the above justification in hand, we proceed to show how we can approx-

imate a white noise process by a discrete-time signal, i.e., a sequence of random
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numbers, for purposes of numerical integration. The key detail is in choosing the

statistics of the random numbers in a manner consistent with the approximation

scheme.

Consider the discrete-time approximation to a continuous-time white noise pro-

cess

ζ∆
t =

d

dt
W∆
t = lim

h→0

W∆
t+h −W

∆
t

h
≈
W∆
ti+1
−W∆

ti

∆
ti ≤ t ≤ ti+1 (C.9)

If ∆ is sufficiently small then ζ∆
t is Gaussian with zero mean and variance 1

∆
. To

see this, observe that, by definition of a Wiener process

E [Wti ] = 0 E
[
WtiWti+1

]
= ti E

[
Wti+1Wti+1

]
= ti+1 i = 1, 2, . . .

(C.10)

Thus Var
(
Wti+1 −Wti

)
= ∆ and

Var

(
W∆
ti+1
−W∆

ti

∆

)
=

1

∆
i = 1, 2, . . . (C.11)

The desired discrete time signal is a sequence of Gaussian random variables with

zero mean and variance 1
∆

.

It is typical that one has access to a random number generator that can generate

a sequence of zero mean unit variance Gaussian random variables {Zk, k = 1, 2, . . .}.

In this case, we set

dWk =
(

1

∆

)1/2

Zk k = 1, 2, . . . (C.12)

as a discrete time approximation to dWt within a suitable scheme for numerical

integration of (C.2). A comparative study of numerical integration schemes for

SDEs appears in [167]. We used a 4th-order Runge-Kutta scheme to integrate (C.2)

with appropriately chosen time step ∆. For random number generation, we used

the built-in linear congruential generator of MATLAB. According to the MATLAB
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manual, it can generate all floating point numbers in the range [2−53, 253] and

produce 21492 values before repeating. This was easily sufficient for our purposes.
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Appendix D

Proof of the Proper Orthogonal

Decomposition Theorem

Continuous Parameter POD (Theorem 3.2.5)

Proof For simplicity we assume without loss of generality that the process

{Xt, t ∈ [a, b]} is scalar-valued. Suppose that the functions {φ1, φ2, . . .} satisfy

the integral equation (3.10) and that the random variables {a1, a2, . . .} are defined

by (3.11) so that the orthonormality condition (3.8) holds. Define for each N =

1, 2, . . .

SN(t)
4
=

N∑
i=1

√
λi ai φi(t) (D.1)

The POD (3.7) is equivalent to the statement

lim
N→∞

‖Xt − SN(t) ‖2
HX

4
= lim

N→∞
E
[
|Xt − SN (t)|2

]
≡ 0 (D.2)

Observe that

E
[
|Xt − SN(t)|2

]
= E

[
|Xt|

2
]

+ E
[
|SN(t)|2

]
− 2E [Xt SN (t) ] (D.3)
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Computing the terms in (D.3) we get

E
[
|Xt|

2
]

= R(t, t) (D.4)

E
[
|SN(t)|2

]
= E

 N∑
i=1

√
λi ai φi(t)

N∑
j=1

√
λjajφj(t)


=

N∑
i=1

N∑
j=1

√
λi
√
λj E [ ai aj ] φi(t)φj(t)

=
N∑
i=1

N∑
j=1

√
λi
√
λj φi(t)φj(t) δij

=
N∑
i=1

λi |φi(t)|
2 (D.5)

E [Xt SN(t) ] = E

[
Xt

N∑
i=1

√
λi ai φi(t)

]

=
N∑
i=1

√
λi φi(t)E [Xt ai ]

=
N∑
i=1

√
λi φi(t)E

[
Xt

(√
λi

)−1 ∫ b

a
φi(s)Xs ds

]

=
N∑
i=1

φi(t)
∫ b

a
φi(s)E [XtXs ] ds

=
N∑
i=1

φi(t)
∫ b

a
R(t, s)φi(s) ds

=
N∑
i=1

φi(t) (λi φi(t))

=
N∑
i=1

λi |φi(t)|
2 (D.6)

Substituting evaluated terms into equation (D.3) yields

E
[
|Xt − SN(t)|2

]
= R(t, t) +

N∑
i=1

λi |φi(t)|
2 − 2

N∑
i=1

λi |φi(t)|
2

= R(t, t)−
N∑
i=1

λi |φi(t)|
2 (D.7)

The covariance function R(·, ·) is Hermitian symmetric and nonnegative definite

by Propositions (2.5.19) and (2.5.20). It is also continuous on [a, b] × [a, b] by
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q.m. continuity of {Xt, t ∈ [a, b]}. Therefore, the hypotheses of Mercer’s theorem

hold and the spectral decomposition exists, given by R(t, s) =
∑∞
i=1 λiφi(t)φi(s).

Consequently

R(t, t) =
∞∑
i=1

λi |φi(t)|
2 (D.8)

where convergence is uniform for t ∈ [a, b]. Equations (D.7) and (D.8) together

imply the desired result, i.e., limN→∞E[|Xt − SN (t)|2] = 0.

Conversely, suppose {Xt, t ∈ [a, b]} has the stated expansion. Then,

R(t, s) = E [XtXs ]

= E

 ∞∑
i=1

√
λi ai φi(t)

∞∑
j=1

√
λj aj φj(t)


=

∞∑
i=1

∞∑
j=1

√
λi
√
λj E [ ai aj ] φi(t)φj(t)

=
∞∑
i=1

∞∑
j=1

√
λi
√
λj φi(t)φj(t) δij

=
∞∑
i=1

λi φi(t)φi(s) (D.9)

Therefore, ∫ b

a
R(t, s)φi(s) ds =

∫ b

a

 ∞∑
j=1

λj φj(t)φj(s)

 φi(s) ds

=
∞∑
j=1

λj φj(t)
∫ b

a
φj(s)φi(s) ds

=
∞∑
j=1

λj φj(t) δji

= λi φi(t) (D.10)

Discrete Parameter POD (Theorem 3.2.16)

The POD theorem can be proved in the discrete parameter case in a similar fashion

to the proof in the continuous parameter case, where the spectral theorem is used

334



instead of Mercer’s theorem. However, we offer the following, simpler approach.

Proof Observe that the sampled data POD is written compactly in equa-

tion (3.29). Substitution of (3.30) together with orthogonality of Φ yields the

desired identity.
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Appendix E

Algorithms for Linear Balancing

Given a minimal realization (A,B,C) with A stable, a balanced realization(
Sbal

−1ASbal, Sbal
−1B,C Sbal

)
such that (3.89) holds can be obtained through the

following standard algorithm:

Algorithm E.0.25 (Laub [90])

(L1) Compute Wc and Wo (solve Lyapunov equations (3.83) and (3.84) via the

Bartels-Stewart algorithm [14]).

(L2) Compute a matrix Lc such that Wc = Lc Lc
T (Cholesky decomposition).

(L3) Form the matrix Lc
TWo Lc (matrix multiplications).

(L4) Compute an orthogonal matrix U and a diagonal matrix Σ such that

Lc
TWo Lc = U Σ2 UT (spectral decomposition).

(L5) Form the matrices Sbal = Lc U Σ−1/2 and S−1
bal = Σ1/2 UT Lc

−1 (matrix multi-

plications, matrix inversion).
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(L6) Form the balanced state-space matrices
(
Sbal

−1ASbal, Sbal
−1B,C Sbal

)
(ma-

trix multiplications).

2

Remark E.0.26 An algorithm presented by Moore [109] is essentially the same

except that a spectral decomposition replaces the Cholesky decomposition in step

(L2). 2

The following improvement to the standard algorithm is more elegant numer-

ically in that it computes the Cholesky factors without actually solving the Lya-

punov equations for the Gramians, and computes the SVD of a product of Cholesky

factors without explicitly forming their product. This is important in computing

small singular values accurately.

Algorithm E.0.27 (Laub, et.al. [91])

(LH1) Compute matrices Lc and Lo such that Wc = Lc Lc
T and Wo = Lo Lo

T. The

Cholesky decompositions are performed without ever forming the Gramians

via the algorithm of Hammarling [64].

(LH2) Compute orthogonal matrices U, V and a diagonal matrix Σ2 such that

Lo
TLr = U Σ2 V T. The SVD is performed without ever forming the product

Lo
TLr via the algorithm of Heath, et.al. [65].

(LH3) Form the matrices Sbal = Lc V Σ−1/2 and S−1
bal = Σ−1/2 UT Lo

T (matrix mul-

tiplications).

(LH4) Form the balanced state-space matrices (matrix multiplications).

2
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Remark E.0.28 The computational complexity of these algorithms are roughly

the same, i.e., O (n3) with pre-multiplier in the 40-50 range. 2

Nearly Non-Minimal Systems

We now present an algorithm for dealing with nearly non-minimal systems.

Algorithm E.0.29 (Safonov and Chiang [136])

(SC1) Compute n × k matrices Vr,big and Vl,big whose columns form bases for the

respective right and left eigenspaces of WcWo associated with the “big” eigen-

values σ2
1, . . . , σ

2
k. This is done via the ordered Schur decomposition of WcWo

as follows.

(a) Compute Wc and Wo.

(b) Compute an orthogonal matrix V such that V WcWo V
T is upper trian-

gular, i.e., put WcWo into Schur form. The fact that Wc and Wo are

real and symmetric ensures the existence of a real Schur transformation

matrix V .

(c) Compute orthogonal transformations Va and Vd which order the Schur

forms in ascending and descending order, respectively,

V T
a WcWoVa = diag (λa,n, . . . , λa,1) + Ta (E.1)

V T
d WcWoVd = diag (λd,1, . . . , λd,n) + Td (E.2)

where Ta and Td are strictly upper triangular and such that

{λa,1, . . . , λa,k} = {λd,1, . . . , λd,k} = {σ2
1 , . . . , σ

2
k} (E.3)

{λa,k+1, . . . , λa,n} = {λd,k+1, . . . , λd,n} = {σ2
k+1, . . . , σ

2
n} (E.4)
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(d) Partition Va and Vd as

Va =

 n−k︷ ︸︸ ︷
Vr,small |

k︷ ︸︸ ︷
Vl,big

 (E.5)

Vd =

 k︷ ︸︸ ︷
Vr,big |

n−k︷ ︸︸ ︷
Vl,small

 (E.6)

(SC2) Form Ebig = V T
l,big Vr,big and compute the SVD

Ebig = UE,bigΣE,bigV
T

E,big (E.7)

(SC3) The not necessarily balancing transformations are

Sl,big = Vl,bigUE,bigΣ
−1/2
E,big (E.8)

Sr,big = Vr,bigVE,bigΣ
−1/2
E,big (E.9)

(SC4) The reduced model is given by

(Â, B̂, Ĉ) = (STl,bigASr,big, S
T
l,bigB,CSr,big) (E.10)

2

Gradient Flow Methods

Finally, we briefly describe the gradient flow method of Helmke and Moore [66].

Consider the usual linear transformation x = S z and let T = S−1 so that z = T x.

To get a quantitative measure of how the Gramians change under the transforma-

tion, the authors use the cost function

φ (T ) = tr
(
T WcT

T +
(
TT
)−1

WoT
−1
)

(E.11)

which corresponds to the sum of the eigenvalues of the transformed Gramians.

Define the symmetric matrix P = TT T so that the cost function

ψ (P ) = tr
(
Wc P +Wo P

−1
)

(E.12)
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is equivalent to the cost function φ. The authors show that the cost function ψ

has compact sublevel sets therefore ensuring the existence of a unique minimizing

positive definite symmetric matrix P∞, given by

P∞ = W−1/2
c

(
W 1/2
c WoW

1/2
c

)1/2
W−1/2
c (E.13)

Then T∞ = P 1/2
∞ , and S∞ = T∞

−1 is the unique symmetric positive definite bal-

ancing transformation for (A,B,C). The gradient flow Ṗ (t) = −∇ψ (P (t)) on the

class of symmetric positive definite matrices is given by

Ṗ = P−1Wo P
−1 −Wc P (0) = P0 (E.14)

For every initial condition P0 = P0
T > 0, P (t) exists for all t ≥ 0 and converges

exponentially fast to P∞ as t→∞.
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Appendix F

Proof of Theorem 4.2.15

Our proof for Theorem 4.2.15 is based on the framework of continuous time optimal

control. Consider the dynamical system

ẋ(t) = f(x(t), u(t)) , t0 ≤ t ≤ T (F.1)

x(t0) = x0 (F.2)

where u(·) ∈ U and

U = {u : [0, T ]→ IRm : u(·) is measurable } (F.3)

is the set of admissible controls. Define the cost function

Jx0,t0(u(·)) =
∫ T

t0
β(x(t), u(t)) dt+ γ(x(T )) (F.4)

and the value function

V (x0, t0) = inf
u(·)∈U

Jx0,t0(u(·)) (F.5)

We use the following result presented by Evans [45] which states that the value

function V satisfies a nonlinear Hamilton-Jacobi-Bellman PDE.
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Theorem F.0.30 (Evans [45]) The value function V is a weak solution of the

Hamilton-Jacobi-Bellman PDE

∂ V

∂ t
(x, t) +H

(
∂ V

∂ x
(x, t), x

)
= 0 (F.6)

with boundary condition

V (x(T ), T ) = γ(x(T )) (F.7)

where the Hamiltonian H is given by

H(p, x) = min
u∈U
{f(x, u) · p+ β(x, u)} (F.8)

Theorem 4.2.15 (Scherpen)

Proof

To derive (4.14), fix t0 = 0 and let T → −∞. Then in the framework of Evans,

Lc(x0) corresponds to V (xo, 0),

Jx0,0(u(·)) = −
∫ −∞

0

1

2
uT (t) u(t) dt (F.9)

β(x, u) = −
1

2
uT u (F.10)

γ(x(T )) = 0 (F.11)

and

H(p, x) = min
u∈U

{
pT (f + gu)−

1

2
uTu

}
(F.12)

where pT corresponds to ∂ Lc/∂ x (x). The expression for H is minimized when

u = gT p so that

H(p, x) = pT f +
1

2
pT g gT p. (F.13)

Also, for u = gT p we have

ẋ = f(x) + g(x) gT (x)
∂T Lc

∂ x
(x). (F.14)
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Using the hypothesis that 0 is an asymptotically stable equilibrium of −(f +

g gT ∂TLc/∂x) we get x→ 0 as t→ −∞. Finally, since t0 is fixed we have

∂Lc
∂t

(x, t) = 0 (F.15)

and (F.6) becomes

∂Lc
∂x

(x) f(x) +
1

2

∂Lc
∂x

(x) g(x) gT (x)
∂TLc
∂x

(x) = 0 (F.16)

with boundary condition

Lc(0) = 0 (F.17)

which is the desired equation.

To derive (4.15) we restrict the admissible controls to the singleton set U1 =

{u : u = 0 , 0 ≤ t ≤ ∞}. This would not be interesting for a real optimal control

problem and is merely a device so that we can use the Evans framework. The

observability function can then be written as

Lo(x0) = min
{∫ ∞

0
hT (x(t))h(x(t)) dt , : u ∈ U1 , x(0) = x0

}
(F.18)

Now fix t0 = 0 and let T → −∞. In the Evans framework Lo(x0) corresponds to

V (xo, 0),

Jx0,0(u(·)) =
∫ −∞

0

1

2
hT (t)h(t) dt (F.19)

β(x, u) = −
1

2
hT h (F.20)

γ(x(T )) = 0 (F.21)

and

H(p, x) = min
u∈U1

{
pT (f + gu) +

1

2
hTh

}
(F.22)

where pT corresponds to ∂ Lo/∂ x (x). Since U1 is trivial the minimization is trivial

resulting in

H(p, x) = pT f +
1

2
hT h. (F.23)
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Using the hypothesis that 0 is an asymptotically stable equilibrium for ẋ = f(x)

we have x→ 0 as t→∞. Finally, since t0 is fixed (F.6) becomes

∂ Lo
∂ x

(x) f(x) +
1

2
hT (x)h(x) = 0 (F.24)

with boundary condition

Lo(0) = 0 (F.25)

which is the desired equation.
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Appendix G

Physical Constants

Listed here are the physical constants used in the models. The units have been

selected for convenience and consistency. Properties of the wafer are those of pure

silicon. Chamber wall properties are those of quartz. Properties of the process

gases are those of hydrogen at 1000 K and 1 ATM. Chemical kinetics parameters

are those experimentally determined from reactions involving thermally activated

deposition of polysilicon from 30 sccm of 2% silane in hydrogen.

345



Constant Description Value Units

k0 Arrhenius Coefficient 3.0787 × 103 cm sec−1

Ea Activation Energy 1.6330 × 105 J mol−1

Rg Gas Constant 8.314 J mol−1 K−1

href Reference Thickness 1.0 × 10−4 cm

βr Rate Pre–Exponential Constant 1.8472 × 109 dimensionless

βe Rate Exponential Constant 2.8059 × 101 dimensionless

kw Thermal Conductivity of Wafer 0.22 W cm−1 K−1

ρw Mass Density of Wafer 2.3 g cm−3

Cpw Heat Capacity of Wafer 2.3 J g−1 K−1

σb Boltzmann Constant 5.677 × 10−12 W cm−2 K−4

εw Emissivity of Wafer 0.7 dimensionless

αw Absorptivity of Wafer 0.5 dimensionless

Rw Radius of Wafer 7.62 cm

∆z Thickness of Wafer 0.05 cm

hv Convective Heat Transfer Coeff 2.6474 × 10−4 W cm−2 K−1

Re Reynolds Number of Gas Flow 27.2 dimensionless

kg Thermal Conductivity of Gas 4.40 × 10−3 W cm−1 K−1

Pr Prandtl Number of Gas Flow 0.686 dimensionless

L Chamber Length 50.8 cm

Tc Chamber Wall (Ambient) Temp 700 K

εc Emissivity of Chamber Wall 0.37 dimensionless

Tg Gas Temperature 300 K

τ Reference Time 60 seconds

Qref Reference Heat Flux 29.24 W cm−2
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Appendix H

View Factor Analysis for Lamp

Heating in the Epsilon-1

The approach we take to determine the heat flux spatial profiles is based on the

concept of view factor [124, 145] which describes the radiation exchange between

two or more surfaces separated by a non-participating medium that does not ab-

sorb, emit, or scatter radiation. The view factor between two surfaces represents

the fraction of radiative energy leaving one surface that strikes the other surface

directly.

In this method, the geometry of the chamber, including location and shape of

lamps, susceptor, reflectors, and possibly other apparatus, is what determines the

form of the resulting flux profiles. This geometric approach was adopted in [63],

where the authors consider only a 2-dimensional slice of the chamber geometry, and

includes the effect of reflectors behind the lamp banks. There, the 2-dimensional

approach was reasonable, perhaps, since the lamp arrangement in the reactor under

consideration was axisymmetric about the wafer center. This situation is, however,

not the case in the Epsilon-1 reactor. Hence, our analysis is similar to that used
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in [41], where the authors consider the chamber geometry from a 3-dimensional

point of view. However, in that paper, as in this paper, the effect of reflectors is

not included.

Assumptions

In the actual reactor, the internal surface of the chamber lid is gold plated to

reflect infrared rays from the linear lamps, and the spot lamps are placed in gold

plated parabolic reflectors. However, we do not consider the effect of reflections on

the lamp heating of the wafer. In addition, the literature indicates that “virtual

images”, or radiation from the heated wafer to the reflectors and chamber walls

which is reflected back to the wafer, will cause additional radiative effects. These

effects are not included in the analysis here.

We consider all surfaces to be diffuse reflectors and diffuse emitters. Radiant

intensity from the lamps is assumed to be independent of direction and constant

across the length of the lamp. We assume that the quartz walls and the process

gases transmit heat radiation from the lamps perfectly at the wavelengths of in-

terest. Furthermore, we assume that the path from lamps to wafer (or lamps to

susceptor) is completely free of any other obstacles.

Lamp Geometry

Figure H.1 shows a schematic of the upper lamp array superimposed over the

susceptor and wafer, which is based on a description and diagram provided in [9].

For computational purposes, we consider each linear lamp to be a straight line

segment of length 11.5 inches with the array consisting of parallel equally spaced

lamps. The array begins directly above the susceptor edge, 5.0 inches (horizontally)
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Figure H.1: Geometry (top view) of upper lamp array: radial position of each lamp
is given in inches from center; lamps are identified by five uniquely distinguishable
positions, numbered 1 through 5.

from the susceptor center. The distance between neighboring parallel lamps in

the array is 1.25 inches. The vertical distance between wafer and upper lamp

array is 2.25 inches, and the vertical distance between wafer and lower lamp array

is 3.50 inches. We note that the distances given are estimates based on crude

measurements taken on the reactor itself.

There are five lamp positions for the linear lamps that can be uniquely differen-

tiated from the others. This is due to the wafer rotation. For example, two linear

lamps equally distant from the center linear lamp have an identical irradiating ef-

fect on the wafer surface. The five lamp positions are numbered 1 through 5. The

spot lamps have their own unique geometry and are analyzed separately later.

The source of radiation for each lamp is a tungsten filament, which we assume

to be a straight line segment stretching the length of the lamp. Figure H.2 shows

the geometry used to perform the analysis. We assume that for each filament the

radiant intensity is independent of direction and constant across the length of the

filament.

349



w

f

Θ

Filament

Wafer

f1 f2

h

w

dnw

Figure H.2: Geometry for view factor analysis used to calculate heat flux intensity
profiles for linear lamps.

For each point on the wafer, w, there is an irradiance contribution from each

point on the filament, f , depending upon the distance between them, d = ‖w−f‖,

the angle θw formed by the vector w − f and the vector nw normal to the wafer

surface, and the vertical distance, h, from wafer surface to filament. Note that

on the filament diagram the endpoint values are f1 = −5.75 inches and f2 = 5.75

inches, and the vertical distance h is either 2.25 inches for the upper array or 3.50

inches for the lower array.

View Factor Analysis

For the derivation of the expression for heat flux radiant power per unit area on

the wafer surface, we adopt the notation used in [124]. The rate of radiative energy

dQf leaving a differential surface area dAf (containing the point f) on the filament

that strikes a differential surface area dAw (containing the point w) on the wafer

surface is given by

dQf = dAf If cos(θf ) dωfw (H.1)
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where If is the intensity of radiative energy leaving dAf in all directions in hemi-

spherical space (in dimensions of Watts per unit area per steradian), θf is the angle

formed by the vector w − f and a vector normal to dAf , and dωfw is the solid

angle subtended by dAw from f given by

dωfw =
dAw cos(θw)

d2
. (H.2)

Substituting (H.2) into (H.1) yields

dQf = dAf If
cos(θf ) cos(θw) dAw

d2
. (H.3)

Now, the rate of radiation energy Qf leaving the surface element dAf on the

filament in all directions over hemispherical space is [124]

Qf = π If dAf . (H.4)

The elemental view factor dFdAf−dAw is defined as the ratio of the radiative energy

leaving dAf that strikes dAw directly to the radiative energy leaving dAf in all

directions into the hemispherical space. Thus, we divide (H.3) by (H.4) to give the

view factor

dFdAf−dAw =
dQf

Qf

=
cos(θf) cos(θw) dAw

πd2
. (H.5)

Since we are assuming that filament radiant intensity is independent of di-

rection, we take θf = 0 independent of filament position f so that cos(θf) = 1

and

dFdAf−dAw =
cos(θw) dAw

πd2
. (H.6)

We are interested in the radiative energy illuminating a differential area on the

wafer due to the entire filament. To compute the appropriate view factor, Ff−dAw ,

we average (H.6) across the length of the filament

Ff−dAw =
dAw

|f1 − f2|

∫ f2

f1

cos(θw)

π d2
df. (H.7)
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Finally, we observe that

cos(θw) =
h

d

for the given geometry, so that

Ff−dAw =
dAw
|f1 − f2|

∫ f2

f1

h

π d3
df (H.8)

where we recall that d = ‖w − f‖.

To determine the radiant heat flux profile for a given lamp, the view factor

Ff−dAw must be computed for each differential area dAw on the wafer surface.

For practical purposes, we discretize the wafer surface by choosing a cylindrical

grid of wafer points w = (r, φ). We then assume that the differential area, dAw,

is constant for all wafer points w. Thus, (H.8) yields the view factor function

Ff−dAw(r, φ) which gives the fraction of radiative energy leaving the given lamp

filament that strikes the given wafer point w = (r, φ) directly.

Now, we let Pf denote the radiant power supplied by the filament, so that

Pf/dAw gives the radiant heat flux intensity striking the differential area dAw.

The radiant heat flux intensity profile of the illumination due to the lamp filament

is then given by

qf (r, φ) = Ff−dAw(r, φ)
Pf
dAw

(H.9)

=
Pf h

π |f1 − f2|

∫ f2

f1

1

d(r, φ)3
df (H.10)

where the value we use for Pf is provided by the manufacturer. In the case of the

ASM Epsilon–1 reactor, the linear lamps supply 6000 Watts and the spot lamps

supply 1000 Watts.

Since the wafer rotates at a uniform rate, this function is averaged over the

circle (i.e., 0 ≤ φ < 2 π) at each radial position r on the wafer top surface

qf (r) =
Pf

dAw

1

2 π

∫ 2π

0
Ffw(r, φ)dφ (H.11)
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to give the heat flux profile

qf (r) =
Pf h

2 π2 |f1 − f2|

∫ 2π

0

∫ f2

f1

1

d(r, φ)3
df dφ. (H.12)

A similar analysis was performed for the spot lamps, except that each spot

lamp was considered to be a point source of radiant energy, thus simplifying the

analysis significantly.

The computational procedure was performed for each of the five different linear

lamp positions for both upper and lower arrays, and for the spot lamps. Using

the resulting heat flux intensity spatial profiles, we can then compute the desired

profiles for each of the ten lamp groups, and the four heat zones of the Epsilon–1

reactor by appropriately combining the profiles determined from the individual

lamps.

Results

Here we discuss some results of the analysis. Note that in what follows, the term

“wafer surface” may represent the top surface of the wafer and exposed susceptor,

or the bottom surface of the susceptor, depending upon the lamp group being

considered.

Figures H.3 and H.4 show the heat flux irradiated on the wafer surface by lamps

in positions 1, 2, 3, and 4 of the upper and lower array, respectively, and the spot

lamp position. As expected, points on the wafer surface directly under (or over)

the lamp filament receive the most intense illumination, i.e. the maximum flux

value. Intensities are greater in magnitude for lamps in the upper array since it

is physically closer to the wafer than the lower array and spot lamps. Spot lamps

have lower flux intensities than linear lamps due to the smaller supplied power.

To account for wafer rotation, the flux intensity profiles are averaged around
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Figure H.3: Heat flux intensity profiles for linear lamps. Top: upper lamp array;
Bottom: lower lamp array; (flux intensity (W/cm2) versus position in two dimen-
sions. Upper left: Position 1; Upper right: Position 2; Lower Left: Position 3;
Lower right: Position 4).
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Figure H.4: Heat flux intensity profile for spot lamp: flux intensity (W/cm2) versus
position in two dimensions.

360 degrees resulting in profiles that are a function of radial position only. Fig-

ure H.5 shows the heat flux profiles, after averaging, for each of the individual

lamp positions. Observe that as expected the lamp position directly over (or un-

der) the wafer center irradiates the wafer center with greater intensity than the

other positions. Lamp positions closer to the edge irradiate the edge with greater

intensity than they irradiate the center.

Figure H.6 shows the heat flux profiles for each of the ten lamp groups. Fig-

ure H.7 shows the heat flux profiles for the four heating zones - center, front, rear,

and side. The flux intensity for the center zone is significantly greater than for

the others, indicating that it will have the greatest heating effect. Observe that

profiles for front and rear zones are identical due to the symmetry assumptions

and the way in which the individual lamps are organized to form the zones.
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Figure H.5: Heat flux intensity profiles for individual lamps. Top: upper array;

Bottom: lower array; (flux intensity (W/cm2) versus radial position for the five

uniquely distinguishable linear lamp positions and the spot lamp position).
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Figure H.6: Heat flux intensity profiles for ASM Epsilon–1 lamp groups: flux
intensity (W/cm2) versus radial position for the ten lamp groups.

−3 −2 −1 0 1 2 3
0

20

40

60

80

100

120

140

Radial Position (inches)

H
ea

t F
lu

x 
In

te
ns

ity
 (

W
 / 

cm
2 )

Heat Flux Intensity Profiles for ASM Reactor Lamp Zones

Front and Rear Zones

Center Zone

Side Zone

Figure H.7: Heat flux intensity profiles for ASM Epsilon–1 heat zones: flux inten-
sity (W/cm2) versus radial position for the four heat zones.
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Appendix I

PHOENICS Q1 Source File for

Epsilon-1 Poly-Si Growth

Simulation

This appendix contains the input code, called a Q1 file, for the PHOENICS CFD

software package. The file was used to simulate deposition of poly-Si on a silicon

wafer with wafer temperature of 750 C, silane flow rate of 30 sccm, and chamber

pressure of 20 Torr. Input files for simulations with other process conditions are

similar.

************************************************************

CPVNAM=CVD

************************************************************

IRUNN = 1 ;LIBREF = 14

************************************************************

Group 1. Run Title

TEXT(POLY-SI DEP 750 C 30 sccm SiH4 20 Torr )

************************************************************

Group 2. Transience

STEADY = T

************************************************************
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Groups 3, 4, 5 Grid Information

* Overall number of cells, RSET(M,NX,NY,NZ,tolerance)

RSET(M,25,27,52)

* Set overall domain extent:

* xulast yvlast zwlast

name

XSI= 1.651000E-01; YSI= 1.094800E-01; ZSI= 6.068000E-01

RSET(D,EPS1 )

************************************************************

Group 6. Body-Fitted coordinates

BFC=T

* Set points

XPO= 7.6200E-02;YPO=-4.7000E-03;ZPO= 0.0000E+00;GSET(P,PW1 )

XPO= 7.6200E-02;YPO= 4.7000E-03;ZPO= 0.0000E+00;GSET(P,PW2 )

XPO= 0.0000E+00;YPO=-5.4740E-02;ZPO= 0.0000E+00;GSET(P,P00 )

XPO= 0.0000E+00;YPO=-4.8740E-02;ZPO= 0.0000E+00;GSET(P,P01 )

XPO= 0.0000E+00;YPO=-4.7000E-03;ZPO= 0.0000E+00;GSET(P,P02 )

XPO= 0.0000E+00;YPO= 4.7000E-03;ZPO= 0.0000E+00;GSET(P,P03 )

XPO= 0.0000E+00;YPO= 4.8740E-02;ZPO= 0.0000E+00;GSET(P,P04 )

XPO= 0.0000E+00;YPO= 5.4740E-02;ZPO= 0.0000E+00;GSET(P,P05 )

XPO= 1.1125E-01;YPO=-2.9718E-02;ZPO= 0.0000E+00;GSET(P,P10 )

XPO= 1.1125E-01;YPO=-2.3719E-02;ZPO= 0.0000E+00;GSET(P,P11 )

XPO= 1.1125E-01;YPO=-4.7000E-03;ZPO= 0.0000E+00;GSET(P,P12 )

XPO= 1.1125E-01;YPO= 4.7000E-03;ZPO= 0.0000E+00;GSET(P,P13 )

XPO= 1.1125E-01;YPO= 2.3719E-02;ZPO= 0.0000E+00;GSET(P,P14 )

XPO= 1.1125E-01;YPO= 2.9718E-02;ZPO= 0.0000E+00;GSET(P,P15 )

XPO= 1.1240E-01;YPO=-2.9506E-02;ZPO= 0.0000E+00;GSET(P,P20 )

XPO= 1.1240E-01;YPO=-2.3198E-02;ZPO= 0.0000E+00;GSET(P,P21 )

XPO= 1.1240E-01;YPO=-4.7000E-03;ZPO= 0.0000E+00;GSET(P,P22 )

XPO= 1.1240E-01;YPO= 4.7000E-03;ZPO= 0.0000E+00;GSET(P,P23 )

XPO= 1.1240E-01;YPO= 2.3198E-02;ZPO= 0.0000E+00;GSET(P,P24 )

XPO= 1.1240E-01;YPO= 2.9506E-02;ZPO= 0.0000E+00;GSET(P,P25 )

XPO= 1.2581E-01;YPO=-2.7021E-02;ZPO= 0.0000E+00;GSET(P,P30 )

XPO= 1.2581E-01;YPO=-1.7092E-02;ZPO= 0.0000E+00;GSET(P,P31 )

XPO= 1.2581E-01;YPO=-4.7000E-03;ZPO= 0.0000E+00;GSET(P,P32 )

XPO= 1.2581E-01;YPO= 4.7000E-03;ZPO= 0.0000E+00;GSET(P,P33 )

XPO= 1.2581E-01;YPO= 1.7092E-02;ZPO= 0.0000E+00;GSET(P,P34 )

XPO= 1.2581E-01;YPO= 2.7021E-02;ZPO= 0.0000E+00;GSET(P,P35 )

XPO= 1.3030E-01;YPO=-2.6188E-02;ZPO= 0.0000E+00;GSET(P,P40 )

XPO= 1.3030E-01;YPO=-1.5045E-02;ZPO= 0.0000E+00;GSET(P,P41 )

XPO= 1.3030E-01;YPO=-4.7000E-03;ZPO= 0.0000E+00;GSET(P,P42 )

XPO= 1.3030E-01;YPO= 4.7000E-03;ZPO= 0.0000E+00;GSET(P,P43 )

XPO= 1.3030E-01;YPO= 1.5045E-02;ZPO= 0.0000E+00;GSET(P,P44 )

XPO= 1.3030E-01;YPO= 2.6188E-02;ZPO= 0.0000E+00;GSET(P,P45 )

XPO= 1.4605E-01;YPO=-2.3270E-02;ZPO= 0.0000E+00;GSET(P,P50 )
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XPO= 1.4605E-01;YPO=-7.8750E-03;ZPO= 0.0000E+00;GSET(P,P51 )

XPO= 1.4605E-01;YPO=-4.7000E-03;ZPO= 0.0000E+00;GSET(P,P52 )

XPO= 1.4605E-01;YPO= 4.7000E-03;ZPO= 0.0000E+00;GSET(P,P53 )

XPO= 1.4605E-01;YPO= 7.8750E-03;ZPO= 0.0000E+00;GSET(P,P54 )

XPO= 1.4605E-01;YPO= 2.3270E-02;ZPO= 0.0000E+00;GSET(P,P55 )

XPO= 1.6510E-01;YPO=-1.9740E-02;ZPO= 0.0000E+00;GSET(P,P60 )

XPO= 1.6510E-01;YPO=-7.8750E-03;ZPO= 0.0000E+00;GSET(P,P61 )

XPO= 1.6510E-01;YPO=-4.7000E-03;ZPO= 0.0000E+00;GSET(P,P62 )

XPO= 1.6510E-01;YPO= 4.7000E-03;ZPO= 0.0000E+00;GSET(P,P63 )

XPO= 1.6510E-01;YPO= 7.8750E-03;ZPO= 0.0000E+00;GSET(P,P64 )

XPO= 1.6510E-01;YPO= 1.9740E-02;ZPO= 0.0000E+00;GSET(P,P65 )

XPO= 5.0000E-02;YPO=-5.0929E-02;ZPO= 0.0000E+00;GSET(P,PA0 )

XPO= 5.0000E-02;YPO=-4.4929E-02;ZPO= 0.0000E+00;GSET(P,PA1 )

XPO= 5.0000E-02;YPO= 4.4929E-02;ZPO= 0.0000E+00;GSET(P,PA2 )

XPO= 5.0000E-02;YPO= 5.0929E-02;ZPO= 0.0000E+00;GSET(P,PA3 )

* Set lines/arcs

GSET(L,LVW,PW1,PW2,5,1.0)

GSET(L,LV01,P00,P01,1,1.0)

GSET(L,LV02,P01,P02,8,.7)

GSET(L,LV03,P02,P03,5,1)

GSET(L,LV04,P03,P04,12,1.5)

GSET(L,LV05,P04,P05,1,1.0)

GSET(L,LV11,P10,P11,1,1.0)

GSET(L,LV12,P11,P12,8,.7)

GSET(L,LV13,P12,P13,5,1.0)

GSET(L,LV14,P13,P14,12,1.5)

GSET(L,LV15,P14,P15,1,1.0)

GSET(L,LV21,P20,P21,1,1.0)

GSET(L,LV22,P21,P22,8,.7)

GSET(L,LV23,P22,P23,5,1.0)

GSET(L,LV24,P23,P24,12,1.5)

GSET(L,LV25,P24,P25,1,1.0)

GSET(L,LV31,P30,P31,1,1.0)

GSET(L,LV32,P31,P32,8,.7)

GSET(L,LV33,P32,P33,5,1.0)

GSET(L,LV34,P33,P34,12,1.5)

GSET(L,LV35,P34,P35,1,1.0)

GSET(L,LV41,P40,P41,1,1.0)

GSET(L,LV42,P41,P42,8,.7)

GSET(L,LV43,P42,P43,5,1.0)

GSET(L,LV44,P43,P44,12,1.5)

GSET(L,LV45,P44,P45,1,1.0)

GSET(L,LV51,P50,P51,1,1.0)

GSET(L,LV52,P51,P52,8,.7)

GSET(L,LV53,P52,P53,5,1.0)
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GSET(L,LV54,P53,P54,12,1.5)

GSET(L,LV55,P54,P55,1,1.0)

GSET(L,LV61,P60,P61,1,1.0)

GSET(L,LV62,P61,P62,8,.7)

GSET(L,LV63,P62,P63,5,1.0)

GSET(L,LV64,P63,P64,12,1.5)

GSET(L,LV65,P64,P65,1,1.0)

GSET(L,A00,P00,P10,12,1.0,ARC,PA0)

GSET(L,A01,P01,P11,12,1.0,ARC,PA1)

GSET(L,A04,P04,P14,12,1.0,ARC,PA2)

GSET(L,A05,P05,P15,12,1.0,ARC,PA3)

GSET(L,LH01,P02,PW1,8,1.0)

GSET(L,LH02,PW1,P12,4,1.0)

GSET(L,LH03,P03,PW2,8,1.0)

GSET(L,LH04,PW2,P13,4,1.0)

GSET(L,LH10,P10,P20,1,1.0)

GSET(L,LH11,P11,P21,1,1.0)

GSET(L,LH12,P12,P22,1,1.0)

GSET(L,LH13,P13,P23,1,1.0)

GSET(L,LH14,P14,P24,1,1.0)

GSET(L,LH15,P15,P25,1,1.0)

GSET(L,LH20,P20,P30,4,1.0)

GSET(L,LH21,P21,P31,4,1.0)

GSET(L,LH22,P22,P32,4,1.0)

GSET(L,LH23,P23,P33,4,1.0)

GSET(L,LH24,P24,P34,4,1.0)

GSET(L,LH25,P25,P35,4,1.0)

GSET(L,LH30,P30,P40,4,1.0)

GSET(L,LH31,P31,P41,4,1.0)

GSET(L,LH32,P32,P42,4,1.0)

GSET(L,LH33,P33,P43,4,1.0)

GSET(L,LH34,P34,P44,4,1.0)

GSET(L,LH35,P35,P45,4,1.0)

GSET(L,LH40,P40,P50,3,1.0)

GSET(L,LH41,P41,P51,3,1.0)

GSET(L,LH42,P42,P52,3,1.0)

GSET(L,LH43,P43,P53,3,1.0)

GSET(L,LH44,P44,P54,3,1.0)

GSET(L,LH45,P45,P55,3,1.0)

GSET(L,LH50,P50,P60,1,1.0)

GSET(L,LH51,P51,P61,1,1.0)

GSET(L,LH52,P52,P62,1,1.0)

GSET(L,LH53,P53,P63,1,1.0)

GSET(L,LH54,P54,P64,1,1.0)

GSET(L,LH55,P55,P65,1,1.0)
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* Set frames

GSET(F,F01,P00,-,P10,-,P11,-,P01,-)

GSET(F,F02,P01,-,P11,-,P12,PW1,P02,-)

GSET(F,F031,P02,-,PW1,-,PW2,-,P03,-)

GSET(F,F032,PW1,-,P12,-,P13,-,PW2,-)

GSET(F,F04,P03,PW2,P13,-,P14,-,P04,-)

GSET(F,F05,P04,-,P14,-,P15,-,P05,-)

GSET(F,F11,P10,-,P20,-,P21,-,P11,-)

GSET(F,F12,P11,-,P21,-,P22,-,P12,-)

GSET(F,F13,P12,-,P22,-,P23,-,P13,-)

GSET(F,F14,P13,-,P23,-,P24,-,P14,-)

GSET(F,F15,P14,-,P24,-,P25,-,P15,-)

GSET(F,F21,P20,-,P30,-,P31,-,P21,-)

GSET(F,F22,P21,-,P31,-,P32,-,P22,-)

GSET(F,F23,P22,-,P32,-,P33,-,P23,-)

GSET(F,F24,P23,-,P33,-,P34,-,P24,-)

GSET(F,F25,P24,-,P34,-,P35,-,P25,-)

GSET(F,F31,P30,-,P40,-,P41,-,P31,-)

GSET(F,F32,P31,-,P41,-,P42,-,P32,-)

GSET(F,F33,P32,-,P42,-,P43,-,P33,-)

GSET(F,F34,P33,-,P43,-,P44,-,P34,-)

GSET(F,F35,P34,-,P44,-,P45,-,P35,-)

GSET(F,F41,P40,-,P50,-,P51,-,P41,-)

GSET(F,F42,P41,-,P51,-,P52,-,P42,-)

GSET(F,F43,P42,-,P52,-,P53,-,P43,-)

GSET(F,F44,P43,-,P53,-,P54,-,P44,-)

GSET(F,F45,P44,-,P54,-,P55,-,P45,-)

GSET(F,F51,P50,-,P60,-,P61,-,P51,-)

GSET(F,F52,P51,-,P61,-,P62,-,P52,-)

GSET(F,F53,P52,-,P62,-,P63,-,P53,-)

GSET(F,F54,P53,-,P63,-,P64,-,P54,-)

GSET(F,F55,P54,-,P64,-,P65,-,P55,-)

* Match a grid mesh

GSET(M,F01,+I+J,1,1,1,LAP5)

GSET(M,F02,+I+J,1,2,1,LAP5)

GSET(M,F031,+I+J,1,10,1,LAP5)

GSET(M,F032,+I+J,9,10,1,LAP5)

GSET(M,F04,+I+J,1,15,1,LAP5)

GSET(M,F05,+I+J,1,27,1,LAP5)

GSET(M,F11,+I+J,13,1,1,LAP5)

GSET(M,F12,+I+J,13,2,1,LAP5)

GSET(M,F13,+I+J,13,10,1,LAP5)

GSET(M,F14,+I+J,13,15,1,LAP5)

GSET(M,F15,+I+J,13,27,1,LAP5)

GSET(M,F21,+I+J,14,1,1,LAP5)
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GSET(M,F22,+I+J,14,2,1,LAP5)

GSET(M,F23,+I+J,14,10,1,LAP5)

GSET(M,F24,+I+J,14,15,1,LAP5)

GSET(M,F25,+I+J,14,27,1,LAP5)

GSET(M,F31,+I+J,18,1,1,LAP5)

GSET(M,F32,+I+J,18,2,1,LAP5)

GSET(M,F33,+I+J,18,10,1,LAP5)

GSET(M,F34,+I+J,18,15,1,LAP5)

GSET(M,F35,+I+J,18,27,1,LAP5)

GSET(M,F41,+I+J,22,1,1,LAP5)

GSET(M,F42,+I+J,22,2,1,LAP5)

GSET(M,F43,+I+J,22,10,1,LAP5)

GSET(M,F44,+I+J,22,15,1,LAP5)

GSET(M,F45,+I+J,22,27,1,LAP5)

GSET(M,F51,+I+J,25,1,1,LAP5)

GSET(M,F52,+I+J,25,2,1,LAP5)

GSET(M,F53,+I+J,25,10,1,LAP5)

GSET(M,F54,+I+J,25,15,1,LAP5)

GSET(M,F55,+I+J,25,27,1,LAP5)

* Copy/Transfer/Block grid planes

GSET(C,K11,F,K1,1,25,1,27,+,0,0,1.2306E-01,INC,1)

GSET(C,K15,F,K11,1,25,1,27,+,0,0,4.4960E-03,INC,1)

GSET(C,K19,F,K15,1,25,1,27,+,0,0,1.9960E-02,INC,1)

GSET(C,K23,F,K19,1,25,1,27,+,0,0,3.6195E-02,INC,1)

GSET(C,K31,F,K23,1,25,1,27,+,0,0,1.5240E-01,INC,1)

GSET(C,K35,F,K31,1,25,1,27,+,0,0,3.6195E-02,INC,1)

GSET(C,K39,F,K35,1,25,1,27,+,0,0,3.8100E-02,INC,1)

GSET(C,K43,F,K39,1,25,1,27,+,0,0,4.4960E-03,INC,1)

GSET(C,K53,F,K43,1,25,1,27,+,0,0,1.9189E-01,INC,1)

**********

NONORT = T

* X-cyclic boundaries switched

************************************************************

Group 7. Variables: STOREd,SOLVEd,NAMEd

ONEPHS = T

* Non-default variable names

NAME( 16) =S80 ; NAME( 17) =S140

NAME( 18) =S142 ; NAME( 19) =S145

NAME( 20) =S147 ; NAME( 21) =S158

NAME(141) =BLOK ; NAME(142) =WCRT

NAME(143) =VCRT ; NAME(144) =UCRT

NAME(145) =TEM1 ; NAME(146) =DEPO

NAME(147) =PRPS ; NAME(148) =ENUL

NAME(149) =RHO1 ; NAME(150) =EMIS

* Solved variables list
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SOLVE(P1 ,U1 ,V1 ,W1 ,S140,S142,S145,S147)

SOLVE(S158,TEM1)

* Stored variables list

STORE(EMIS,RHO1,ENUL,PRPS,DEPO,UCRT,VCRT,WCRT)

STORE(BLOK,S80 )

* Additional solver options

SOLUTN(P1 ,Y,Y,Y,N,N,Y)

SOLUTN(S140,Y,Y,Y,N,N,Y)

SOLUTN(S142,Y,Y,Y,N,N,Y)

SOLUTN(S145,Y,Y,Y,N,N,Y)

SOLUTN(S147,Y,Y,Y,N,N,Y)

SOLUTN(S158,Y,Y,Y,N,N,Y)

SOLUTN(TEM1,Y,Y,Y,N,N,Y)

IVARBK = -1 ;ISOLBK = 1

************************************************************

Group 8. Terms \& Devices

DIFCUT = 0.000E+00

NEWRH1 = T

NEWENL = T

UDIFNE = T

USOURC = T

ISOLX = 0 ;ISOLY = 0 ;ISOLZ = 0

************************************************************

Group 9. Properties

RHO1 = GRND10

PRESS0 = 2.631E+03

TMP1A = 2.930E+02 ;TMP1B = 0.000E+00 ;TMP1C = 0.000E+00

CP1 = GRND10

ENUL = GRND10 ;ENUT = 0.000E+00

PRNDTL(S140) = -GRND8 ;PRNDTL(S142) = -GRND8

PRNDTL(S145) = -GRND8 ;PRNDTL(S147) = -GRND8

PRNDTL(S158) = -GRND8 ;PRNDTL(TEM1) = -GRND10

TMP1A = 2.930E+02

* List of user-defined materials to be read by EARTH

MATFLG=T;IMAT=1

* Name

*Ind. Dens. Viscos. Spec.heat Conduct. Expans. Compr.

* <GAS\_MIXTURE>

70 GRND8 GRND8 GRND8 GRND8 1.000 0.000

* constants for GRND option no 1

0 0

* constants for GRND option no 2

0 0
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* constants for GRND option no 3

0 0

* constants for GRND option no 4

0 0

************************************************************

Group 10.Inter-Phase Transfer Processes

************************************************************

Group 11.Initialise Var/Porosity Fields

FIINIT(W1 ) = 1.000E+00 ;FIINIT(S140) = 2.185E-02

FIINIT(BLOK) = 1.000E+00 ;FIINIT(TEM1) = 2.980E+02

FIINIT(PRPS) = 7.000E+01

CONPOR(TOP , -1.00,CELL ,-\#1,-\#6,-\#5,-\#5,-\#1,-\#9)

INIT(TOP ,BLOK, 0.000E+00, 2.000E+00)

INIT(TOP ,PRPS, 0.000E+00, 1.060E+02)

CONPOR(BOT , -1.00,CELL ,-\#1,-\#6,-\#1,-\#1,-\#1,-\#9)

INIT(BOT ,BLOK, 0.000E+00, 3.000E+00)

INIT(BOT ,PRPS, 0.000E+00, 1.060E+02)

CONPOR(SIDE , -1.00,CELL ,-\#7,-\#7,-\#1,-\#5,-\#1,-\#9)

INIT(SIDE ,BLOK, 0.000E+00, 4.000E+00)

INIT(SIDE ,PRPS, 0.000E+00, 1.060E+02)

CONPOR(SHF , -1.00,CELL ,-\#1,-\#6,-\#3,-\#3,-\#1,-\#1)

INIT(SHF ,BLOK, 0.000E+00, 5.000E+00)

INIT(SHF ,PRPS, 0.000E+00, 1.060E+02)

CONPOR(SHR , -1.00,CELL ,-\#1,-\#6,-\#3,-\#3,-\#9,-\#9)

INIT(SHR ,BLOK, 0.000E+00, 6.000E+00)

INIT(SHR ,PRPS, 0.000E+00, 1.060E+02)

CONPOR(SHS , -1.00,CELL ,-\#6,-\#6,-\#3,-\#3,-\#2,-\#8)

INIT(SHS ,BLOK, 0.000E+00, 7.000E+00)

INIT(SHS ,PRPS, 0.000E+00, 1.060E+02)

CONPOR(RNGF , -1.00,CELL ,-\#1,-\#4,-\#3,-\#3,-\#3,-\#3)

INIT(RNGF ,BLOK, 0.000E+00, 8.000E+00)

INIT(RNGF ,PRPS, 0.000E+00, 1.110E+02)

CONPOR(RNGR , -1.00,CELL ,-\#1,-\#4,-\#3,-\#3,-\#7,-\#7)

INIT(RNGR ,BLOK, 0.000E+00, 9.000E+00)

INIT(RNGR ,PRPS, 0.000E+00, 1.110E+02)

CONPOR(RNGS , -1.00,CELL ,-\#4,-\#4,-\#3,-\#3,-\#4,-\#6)
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INIT(RNGS ,BLOK, 0.000E+00, 1.000E+01)

INIT(RNGS ,PRPS, 0.000E+00, 1.110E+02)

CONPOR(SUSF , -1.00,CELL ,-\#1,-\#3,-\#3,-\#3,-\#4,-\#4)

INIT(SUSF ,BLOK, 0.000E+00, 1.100E+01)

INIT(SUSF ,PRPS, 0.000E+00, 1.110E+02)

CONPOR(SUSR , -1.00,CELL ,-\#1,-\#3,-\#3,-\#3,-\#6,-\#6)

INIT(SUSR ,BLOK, 0.000E+00, 1.200E+01)

INIT(SUSR ,PRPS, 0.000E+00, 1.110E+02)

CONPOR(SUSS , -1.00,CELL ,-\#2,-\#3,-\#3,-\#3,-\#5,-\#5)

INIT(SUSS ,BLOK, 0.000E+00, 1.300E+01)

INIT(SUSS ,PRPS, 0.000E+00, 1.110E+02)

CONPOR(WAF , -1.00,CELL ,-\#1,-\#1,-\#3,-\#3,-\#5,-\#5)

INIT(WAF ,BLOK, 0.000E+00, 1.400E+01)

INIT(WAF ,PRPS, 0.000E+00, 1.110E+02)

INIADD = F

************************************************************

Group 12. Convection and diffusion adjustments

No PATCHes used for this Group

************************************************************

Group 13. Boundary \& Special Sources

INLET (BFCIN1 ,LOW ,\#1,\#6,\#4,\#4,\#1,\#1,\#1,\#1)

VALUE (BFCIN1 ,P1 , GRND1 )

VALUE (BFCIN1 ,U1 , GRND1 )

VALUE (BFCIN1 ,V1 , GRND1 )

VALUE (BFCIN1 ,W1 , GRND1 )

VALUE (BFCIN1 ,S140, 2.185E-02)

VALUE (BFCIN1 ,WCRT, 1.400E+00)

VALUE (BFCIN1 ,TEM1, 2.980E+02)

INLET (BFCIN2 ,LOW ,\#1,\#6,\#2,\#2,\#1,\#1,\#1,\#1)

VALUE (BFCIN2 ,P1 , GRND1 )

VALUE (BFCIN2 ,U1 , GRND1 )

VALUE (BFCIN2 ,V1 , GRND1 )

VALUE (BFCIN2 ,W1 , GRND1 )

VALUE (BFCIN2 ,WCRT, 4.500E-01)

VALUE (BFCIN2 ,TEM1, 2.980E+02)

PATCH (OU1 ,HIGH ,\#1,\#6,\#4,\#4,\#9,\#9,\#1,\#1)

COVAL (OU1 ,P1 , FIXVAL , 0.000E+00)

366



PATCH (REAR ,HWALL ,\#1,\#6,\#2,\#2,\#9,\#9,\#1,\#1)

COVAL (REAR ,U1 , GRND2 , 0.000E+00)

COVAL (REAR ,V1 , GRND2 , 0.000E+00)

PATCH (SUSFT ,VOLUME,\#1,\#3,\#3,\#3,\#4,\#4,1,1)

COVAL (SUSFT ,TEM1, FIXVAL , 1.023E+03)

PATCH (SUSRT ,VOLUME,\#1,\#3,\#3,\#3,\#6,\#6,1,1)

COVAL (SUSRT ,TEM1, FIXVAL , 1.023E+03)

PATCH (SUSST ,VOLUME,\#2,\#3,\#3,\#3,\#5,\#5,\#1,\#1)

COVAL (SUSST ,TEM1, FIXVAL , 1.023E+03)

PATCH (WAFT ,VOLUME,\#1,\#1,\#3,\#3,\#5,\#5,\#1,\#1)

COVAL (WAFT ,TEM1, FIXVAL , 1.023E+03)

PATCH (TOPT ,SOUTH ,\#1,\#3,\#5,\#5,\#4,\#6,\#1,\#1)

COVAL (TOPT ,TEM1, FIXVAL , 7.230E+02)

PATCH (BOTT ,NORTH ,\#1,\#3,\#1,\#1,\#4,\#6,\#1,\#1)

COVAL (BOTT ,TEM1, FIXVAL , 7.230E+02)

PATCH (SURFWAF ,SOUTH ,1,8,15,15,23,30,\#1,\#1)

COVAL (SURFWAF ,P1 , 1.000E+00, GRND1 )

COVAL (SURFWAF ,S80 , FIXFLU , GRND1 )

COVAL (SURFWAF ,S140, FIXFLU , GRND1 )

COVAL (SURFWAF ,S142, FIXFLU , GRND1 )

COVAL (SURFWAF ,S145, FIXFLU , GRND1 )

COVAL (SURFWAF ,S147, FIXFLU , GRND1 )

COVAL (SURFWAF ,S158, FIXFLU , GRND1 )

COVAL (SURFWAF ,TEM1, FIXFLU , GRND1 )

PATCH (RELT ,PHASEM,1,25,1,27,1,52,1,1)

COVAL (RELT ,S80 , GRND1 , SAME )

COVAL (RELT ,S140, GRND1 , SAME )

COVAL (RELT ,S142, GRND1 , SAME )

COVAL (RELT ,S145, GRND1 , SAME )

COVAL (RELT ,S147, GRND1 , SAME )

COVAL (RELT ,S158, GRND1 , SAME )

PATCH (CHEM ,VOLUME,1,25,1,27,1,52,1,1)

COVAL (CHEM ,S80 , GRND1 , GRND1 )

COVAL (CHEM ,S140, GRND1 , GRND1 )

COVAL (CHEM ,S142, GRND1 , GRND1 )
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COVAL (CHEM ,S145, GRND1 , GRND1 )

COVAL (CHEM ,S147, GRND1 , GRND1 )

COVAL (CHEM ,S158, GRND1 , GRND1 )

COVAL (CHEM ,TEM1, GRND1 , GRND1 )

PATCH (BUOYANCY,PHASEM,\#1,\#NREGX,\#1,\#NREGY,\#1,\#NREGZ,\#1,\#NREGT)

COVAL (BUOYANCY,U1 , FIXFLU , GRND3 )

COVAL (BUOYANCY,V1 , FIXFLU , GRND3 )

COVAL (BUOYANCY,W1 , FIXFLU , GRND3 )

BUOYA = 0.000E+00 ; BUOYB =-9.810E+00 ; BUOYC = 0.000E+00

BUOYD = GRND10

BFCA = 2.171E-03

************************************************************

Group 14. Downstream Pressure For PARAB

************************************************************

Group 15. Terminate Sweeps

LSWEEP = 500

SELREF = T

RESFAC = 1.000E-03

************************************************************

Group 16. Terminate Iterations

************************************************************

Group 17. Relaxation

RELAX(P1 ,LINRLX, 7.000000E-01)

RELAX(U1 ,FALSDT, 2.703210E-02)

RELAX(V1 ,FALSDT, 2.703210E-02)

RELAX(W1 ,FALSDT, 2.703210E-02)

RELAX(S140,FALSDT, 2.703210E+02)

RELAX(S142,FALSDT, 2.703210E+02)

RELAX(S145,FALSDT, 2.703210E+02)

RELAX(S147,FALSDT, 2.703210E+02)

RELAX(S158,FALSDT, 2.703210E+02)

RELAX(TEM1,LINRLX, 3.000000E-01)

************************************************************

Group 18. Limits

VARMAX(U1 ) = 1.000000E+03 ;VARMIN(U1 ) =-1.000000E+03

VARMAX(V1 ) = 1.000000E+03 ;VARMIN(V1 ) =-1.000000E+03

VARMAX(W1 ) = 1.000000E+03 ;VARMIN(W1 ) =-1.000000E+03

VARMAX(S80 ) = 1.000000E+00 ;VARMIN(S80 ) = 1.000000E-20

VARMAX(S140) = 1.000000E+00 ;VARMIN(S140) = 1.000000E-20

VARMAX(S142) = 1.000000E+00 ;VARMIN(S142) = 1.000000E-20

VARMAX(S145) = 1.000000E+00 ;VARMIN(S145) = 1.000000E-20

VARMAX(S147) = 1.000000E+00 ;VARMIN(S147) = 1.000000E-20
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VARMAX(S158) = 1.000000E+00 ;VARMIN(S158) = 1.000000E-20

VARMAX(TEM1) = 3.000000E+03 ;VARMIN(TEM1) = 2.600000E+02

************************************************************

Group 19. EARTH Calls To GROUND Station

NAMGRD =CVD

CSG10 =’Q1’

SPEDAT(SET,CVD,THMDIF,L,T)

SPEDAT(SET,CVD,THMOPT,I,1)

SPEDAT(SET,CVD,THMFRQ,I,1)

SPEDAT(SET,CVD,THMRLX,R,1.00000E+00)

SPEDAT(SET,CVD,MCDOPT,I,2)

SPEDAT(SET,CVD,BINOPT,I,4)

SPEDAT(SET,CVD,MCPROP,I,3)

SPEDAT(SET,CVD,CHMRLX,R,5.00000E-01)

SPEDAT(SET,CVD,NGREAC,I,5)

SPEDAT(SET,CVD,GREAC(1),I,6)

SPEDAT(SET,CVD,GREAC(2),I,7)

SPEDAT(SET,CVD,GREAC(3),I,9)

SPEDAT(SET,CVD,GREAC(4),I,10)

SPEDAT(SET,CVD,GREAC(5),I,16)

SPEDAT(SET,CVD,NSREAC,I,5)

SPEDAT(SET,CVD,SREAC(1),I,11)

SPEDAT(SET,CVD,SREAC(2),I,12)

SPEDAT(SET,CVD,SREAC(3),I,13)

SPEDAT(SET,CVD,SREAC(4),I,14)

SPEDAT(SET,CVD,SREAC(5),I,15)

************************************************************

Group 20. Preliminary Printout

ECHO = T

************************************************************

Group 21. Print-out of Variables

************************************************************

Group 22. Monitor Print-Out

IXMON = 8 ;IYMON = 16 ;IZMON = 27

NPRMNT = 1

TSTSWP = -1

************************************************************

Group 23.Field Print-Out \& Plot Control

No PATCHes used for this Group

************************************************************

Group 24. Dumps For Restarts

m

STOP
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