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ABSTRACT

Assessing the security of large enterprise networks is complex and labor intensive. Current security
analysis tools typically examine only individual firewalls, routers, or hosts separately and do not
comprehensively analyze overall network security. We present a new approach that uses configuration
information on firewalls and vulnerability information on all network devices to build attack graphs that
show how far inside and outside attackers can progress through a network by successively compromising
exposed and vulnerable hosts. In addition, attack graphs are automatically analyzed to produce a small set
of prioritized recommendations to enhance network security. Field trials on networks with up to 3,400
hosts demonstrate the ability to accurately identify a small number of critical stepping-stone hosts that
need to be patched to protect against external attackers. Simulation studies on complex networks with
more than 40,000 hosts demonstrate good scaling. This analysis can be used for many purposes, including
identifying critical stepping-stone hosts to patch or protect with a firewall, comparing the security of
alternative network designs, determining the security risk caused by proposed changes in firewall rules or
new vulnerabilities, and identifying the most critical hosts to patch when a new vulnerability is
announced. Unique aspects of this work are new attack graph generation algorithms that scale to
enterprise networks with thousands of hosts, efficient approaches to determine what other hosts and ports
in large networks are reachable from each individual host, automatic data importation from network
vulnerability scanners and firewalls, and automatic attack graph analyses to generate recommendations.
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1. INTRODUCTION

It is difficult to secure large enterprise networks. Such networks are vulnerable to physical attacks
on network components, social engineering attacks where users are coerced into revealing sensitive
information, and cyber attacks where malicious attackers achieve higher levels of access privilege than
should be allowed over network connections. This paper focuses on cyber attacks. These include attacks
launched by malicious outsiders on the Internet and malicious insiders directly connected to internal
networks. Both types of attackers can take advantage of vulnerabilities in network protocols and in
systems such as servers, desktops, routers, gateways, and firewalls. Analysis of cyber attacks is difficult
because compromising one system often provides a stepping-stone that can be used to launch further
attacks. An attacker can often jump from system to system, eventually achieving a goal such as
compromising an essential mail or file server.

Attackers may obtain different privilege levels on compromised systems. One important goal is to
obtain the privilege of a system administrator (e.g., root on UNIX systems or administrator on Windows
systems). Attackers also seek the lower privilege of a user or server, gather information (e.g., a user
account name, a list of files, the contents of a file, or access to a database or other server), or disable a
system or server by performing a Denial of Service (DoS) attack.

An essential type of analysis for security assessment is to determine the level of compromise
possible for important hosts in a network from a given attacker starting location. This is a complex task.

The answer depends on the network topology, on the security policy in the network as expressed by the
placement of firewalls, routers, switches, and the rule sets used in these devices, and on vulnerabilities in
systems and protocols. This type of analysis is often performed by a “red team” of computer security
professionals who actively probe a network and often run exploits that compromise systems. Red team
exercises can be very effective in locating weaknesses in a network, but they are labor intensive and time-
consuming, and can disrupt system operations. This paper presents an alternative approach that automates
basic red-team analyses, does not interfere with network operations, and requires no additional network
traffic other than that used to perform normal host vulnerability scans.
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Figure 1. Example of a simple network (a) and a partial attack graph for this network (b). Each node in the attack
graph represents a state of the network and attacker; arcs represent specific exploits or attacks; and the attacker
starts at the black node representing the attacker host.

Database Server

Our approach uses attack graphs as an underlying analysis tool. The left-hand side of Figure 1
shows a simple network with a firewall, two internal servers, and an internal user desktop. The right side
of this figure shows a partial attack graph for an attacker located outside the firewall. In this graph, each
node represents the state of the network and attacker privileges obtained so far. Each edge represents a
specific attacker action, exploit, or attack component used to directly or indirectly gain additional
privileges. This attack graph shows that an outside attacker can first use a remotely exploitable
vulnerability Al that is exposed by the firewall and allows the attacker to achieve administrator-level
privileges on the web server, a type of vulnerability we call remote-to-admin. The database server can
then be compromised first at user level by remote-to-user exploit A2 from the web server, and this
privilege can be raised to administrator level by local-to-admin exploits A3 or A4. Other sequences of
exploits are also possible, as indicated by the unlabeled part of this graph.

A single attack graph includes all the hosts that can be compromised in a network and the level of
privilege obtained by the attacker on these hosts. This type of graph is more comprehensive than those
used in previous studies (e.g., [1, 2]) that only determine how an attacker can reach a single goal from a
starting point. Instead of building separate graphs for each potential attacker target, only one attack graph
needs to be constructed. Paths to hosts in the attack graph represent the sequences of attacks that achieve
the level of compromise shown. To simplify the graphical presentation, multiple attacks that achieve the
same level of privilege (e.g., A3 and A4 in Figure 1) may connect the same two nodes. Each edge that
connects two attack graph nodes represents one attacker action, but the physical path used may be
complex and pass through multiple routers, communications channels, and firewalls. An edge indicates
that the destination node has a vulnerability that the attacker can successfully exploit, either by contacting
the machine remotely if the vulnerability is remotely exploitable or by previously obtaining user
privileges on the machine if the vulnerability is only locally exploitable.




We have recently developed approaches that made it feasible to create attack graphs for large
networks. This required (1) the availability and widespread use of automated vulnerability scanning tools
such as Nessus to collect data, (2) new types of attack graphs and construction algorithms, (3) efficient
approaches to determine reachability between hosts, and (4) automated tools to analyze large enterprise-
network attack graphs to make recommendations based on these graphs. The remainder of this paper
provides an overview of the most recent version of a system named NetSPA (Network Security Planning
Architecture) that generates attack graphs and uses them to make recommendations concerning network
security. The paper describes requirements for any tool that generates attack graphs, the types of data that
must be imported, how reachability analyses can be performed efficiently, how large graphs for enterprise
networks can be built efficiently, and the types of graph analyses that can be performed to provide useful
recommendations. It also provides examples of how this type of analysis can improve security on
different networks, presents the results of simulation studies, and discusses other work in this area.




2. SYSTEM REQUIREMENTS

Our initial attack graph research focused on algorithm development. We soon discovered, however,
that system administrators would not allow us to test or even use tools unless they satisfied some practical
requirements. First, because attack graphs provide a blueprint for malicious users, they need to be
generated on site in a physically protected area and preferably on a computer not connected to any
network. Second, because networks are large and complex and system administrators have limited time,
only small amounts of information should be entered by hand. Vulnerability information on hosts must be
imported from scanners such as Nessus [3] that are already in use. Firewall and router information as well
as details concerning recent vulnerabilities and attacks must also be imported automatically from
configuration files. Finally, because analyses often have to be performed on site using existing computers,
computations should be performed on relatively inexpensive but capable commodity hardware. It should
be possible to analyze networks with thousands of hosts in minutes on such hardware.

Figure 2 shows a block diagram of an off-line system that can perform multiple analyses on a
network and is designed to meet these requirements. Preprocessing software on the left automatically
imports information required to generate attack graphs. The structured relational database shown in the
middle is used to support multiple runs and analyses. The database supports the analyses shown on the
right of the graph: reachability analysis, attack graph generation, and attack graph analysis.

Data
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Scanners —» >
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Vulnerability Database Attack Graph

Information ——» Analysis Recommendations
(ICAT, CVE, .)) and Results
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Attack Loss Values, > and Reachability Analysis
Gateways, ...

Figure 2. Block diagram of the NetSPA tool.




Reachability analysis determines how hosts communicate. It takes firewall rules and the network
topology into account to determine whether any two hosts can communicate using a given TCP or UDP
destination port. Attack graph construction uses reachability information and data on prerequisites and
effects of per-host attacks to construct attack graphs given specific attacker starting locations. Each attack
graph shows all hosts that can be compromised from one or more attacker starting locations. A final
attack graph analysis examines attack graphs to make recommendations and provide details on network
security.

Automated analyses are required because attack graphs are complex to understand and interpret for
even moderately sized networks. Although initial NetSPA prototypes performed these three analyses
sequentially, the current system integrates reachability and attack graph construction and performs often
expensive reachability computations only on demand when required to construct attack graphs. The
following four sections of this paper first describe details concerning information required to construct
attack graphs and then the three types of analyses.




3. INFORMATION REQUIRED TO BUILD ATTACK GRAPHS

A major effort was made when designing NetSPA to automatically import as much of the data
required to build attack graphs as possible and to minimize hand data entry. Table 1 shows information
used to construct attack graphs, how this information is obtained, and whether it is required or optional.
The first two columns list the types of data and the sources of the data. The third column indicates
whether the data is extracted automatically from the source; the fourth indicates if the data is required or
optional; and the last column specifies actions that must be taken to obtain the desired data. For example,
in the first row, one vulnerability scan is required for each subnet to determine the presence of hosts and
vulnerabilities on hosts in a subnet, and each scan is imported. Here and throughout the report, a subnet is
defined as a collection of hosts and network devices with interfaces that share the same IPv4 address
space and are connected by devices that do not perform filtering. A network is a collection of subnets and
network devices that connect these subnets. In the second row of Table 1, the complete NIST ICAT
database [4], the CVE vulnerability dictionary [5], and other information is imported. Only network
topology information must be entered by hand in order for NetSPA to perform an analysis.

TABLE 1
Data Sources Used to Create Attack Graphs

Information Source Automatic | Required Actions

Vulnerability and | Network Vulnerability Perform a vulnerability scan
Yes Yes
Host Presence Scanner for each subnet
Vulrierabilit ICAT Database, Scanner Import ICAT database, scanner
Prore uisitgs . Data, CVE Dictionary, and Yes Yes data, CVE dictionary, and
9 optional Security Expert optional configuration file with
Effects
Analyses expert analyses
Firewall Rules Configuration Files Yes Yes Import rules for each firewall
Catewa Provide network topology
Informat):on System Administrator No Yes (gateway and subnet
interconnections)

ﬁgrsrlmlstratlve System Administrator No No Indicate administrative hosts
Asset Values System Administrator No No Specify asset values for all hosts

3.1

A WORST-CASE ASSUMPTION FOR VULNERABILITIES

The first two rows of Table 1 describe how information about vulnerabilities is obtained. Different

types of security analyses require different levels of detail concerning vulnerabilities. After examining
available vulnerability databases and finding inconsistencies, missing information, and no standard
terminology or taxonomy, we decided that vulnerabilities should be characterized using only limited




information and few low-level details. Because accurate low-level requirements for exploiting
vulnerabilities could not be easily obtained, we decided to follow a worst-case approach. This approach is
similar to Swiler’s [2] use of default values for missing information, but we assume worst-case default
values. We assume that if there is a vulnerability, it will be exploited as long as the attacker can reach the
vulnerable machine over the protocol or service required to exploit the vulnerability. Details concerning
the exploit code used, where it is stored, how it is hidden, the attacker motivation or skills, other steps
required to compromise a host, or the difficulty of the exploit are irrelevant for this worst-case analysis.
These details may be useful for forensic analysis or to predict exploitation frequency, but they are
difficult to obtain, often highly dynamic and variable over time, and not required to analyze the worst-
case security of a network. For this purpose it is sufficient to know what vulnerabilities exist, how they
can be accessed over the network, and the access or privilege level they provide.

A worst-case approach is supported by vulnerability and exploit analyses reported in [6]. Their
analysis found that the vast majority (roughly 70%) of vulnerabilities announced in the first half of 2004
are easy to exploit because exploit code is either available or unnecessary. When exploit code was
developed after the announcement of a vulnerability, the average time to publish the code was only six
days. This means that malicious attackers with limited skills could almost always exploit new
vulnerabilities within a few days of their announcement. The same study found that in many instances
exploit code was rapidly incorporated into automatic self-propagating worms and bot-networks (remotely
controlled systems used to launch new attacks), and it was not unusual for automatic agents to include
exploits for multiple vulnerabilities. Automated worms were surprisingly effective, and it was found that
worm traffic originated from IP spaces controlled by more than 40% of Fortune 100 companies. This
suggests that automated worms have compromised a large fraction of presumably well-secured networks.
The worst-case assumption is also supported by the 2004 E-Crime Watch Survey [7] in which roughly
70% of the responding organizations reported one or more e-crimes or intrusions and by the Computer
Crime and Security Survey [8] in which more than half of the respondents reported unauthorized use of
computer systems in the past year. These reports of intrusions are likely to be low because many
companies don’t want to admit that their networks have been compromised. The intrusions that are
reported suggest that malicious attackers and automated agents are actively exploiting exposed
vulnerabilities and that exploitation can rapidly follow announcements of a new vulnerability.

3.2 FINDING VULNERABILITIES

The first row of Table 1 indicates that the existence of vulnerabilities and hosts is currently
determined using network vulnerability scanners such as the Nessus network scanner [3]. Network scans
are becoming common practice and they provide a listing of all networked devices and lists of
vulnerabilities found on each device. Open-source scanners such as Nessus are kept up to date by a
dedicated user community and are often updated to detect new vulnerabilities within a few days of or
simultaneous with vulnerability announcements (e.g., [9]). We performed a validation of the Nessus
scanner results on a Windows 2000 and Solaris host using a host-based scanner and found that it
accurately detects vulnerabilities that can be exploited remotely, except that it is overly pessimistic. In
some cases, it reports vulnerabilities in servers such as IIS when a vulnerability may occur, but is not




ruled out by the server version number. These “false alarms™ can occur when system administrators
follow the common practice of allowing scanners only to execute non-damaging vulnerability scans that
rely primarily on server software version numbers extracted by the scanner.

If the most recent patch dates of network devices are known, the information can be used to
eliminate some vulnerability scanner “false alarms.” This involves first determining the last date each
host was fully patched. When the patch release date for a vulnerability is before the last host patch date,
then it is often reasonable to assume that that vulnerability has been patched and that the vulnerability is a
“false alarm.” System administrators frequently know these dates because they patch systems manually or
use automated patching tools. At sites where hosts are centrally managed and patched frequently, there
are few vulnerabilities, and it is practical for system administrators to confirm the existence of all or a few
critical vulnerabilities by hand. If patch management tools and host-based vulnerability scanners become
standardized and enjoy widespread use, it should become possible to obtain more accurate information
about host vulnerabilities from these tools.

3.3 ASSIGNING PORTS AND PROTOCOLS TO VULNERABILITIES

Some vulnerability scanners such as Nessus provide extra information, including TCP/UDP ports
used to connect to a system when exploiting vulnerabilities, open ports where servers are running, and
CVE identifiers for discovered vulnerabilities. This information makes our attack graph generation more
accurate. Information on TCP/UDP ports used to exploit vulnerabilities is the most important. It is
required during reachability analysis and attack graph generation to determine if filtering devices such as
firewalls or routers prevent an attacker from exploiting a vulnerability by blocking necessary ports or
protocols. CVE numbers make it possible to cross-reference information in vulnerability databases. They
make it easier to determine prerequisites and effects of attacks that exploit vulnerabilities. Finally,
information concerning open ports is used to identify hosts running services that use clear-text passwords
that can be sniffed and also to identify hosts running special services used by administrator hosts for
remote access and control.

3.4 ATTACK PREREQUISITES AND EFFECTS

As shown in the second row of Table 1, prerequisites and effects of attacks that exploit
vulnerabilities found in the network need to be known. Prerequisites specify necessary conditions to
launch attacks and effects specify capabilities an attacker obtains by exploiting vulnerabilities. Initially
we thought that vulnerability details would be easy to obtain, given the many online vulnerability
databases and the common use of CVE vulnerability numbers. However, an analysis of vulnerability
databases and listings (e.g., [3-5, 10, 11]), demonstrated that detailed information on vulnerabilities and
CVE cross-reference numbers are often missing. Information across vulnerability websites is also
sometimes inconsistent, especially lists of affected software and version numbers. This suggested that
attack models would only be accurate if we rely on limited basic vulnerability information that can be
easily obtained and verified.




Vulnerability scanners identify the presence of vulnerabilities, but do not provide the two types of
additional information required to construct attack graphs that are shown in Table 2. Table 2a on the left
defines the locality of an attack. This differentiates between remote attacks launched from a different host
and local attacks launched from and against the same host. Remote attacks allow an attacker to progress
to a new host while local attacks allow an attacker to achieve a higher level of privilege on the same host.
Table 2b on the right defines the effect of an attack. This specifies the level of privilege gained by the
attacker. For simplicity and because more detailed information is difficult to obtain, we use the following
four levels shown in Table 2b: (1) User, (2) Administrator, (3) Denial of Service (DoS), and (4) Other.
The user level models a typical user. The administrator level models the administrator on Windows or
root user on UNIX who has access to the entire system. The DoS level models attacks that can disable a
service but cannot gain access. It is assumed that an attacker who achieves administrator privilege can
also launch a DoS attack. Finally, the other category includes attacks that provide information about a
host, make it possible to read files, or provide only limited access to a printer or database on a system. We
write our evaluation of a vulnerability as locality-to-effect. For example, a vulnerability that is remotely
exploitable and yields administrator access when exploited is a remote-to-administrator, or more simply
remote-to-admin or r2a, attack.

TABLE 2
Vulnerabilities Are Characterized Using Two Categories That Specify Locality (a)
and Four Categories That Specify the Effect of Exploitation (b)

(a) Locality (b) Effect
1. Remote (Launch from remote 1. User (User privilege)
host) 2. Administrator (Administrator or root privilege)
2. Local (Launch from local 3. Denial of Service (DoS)
host) 4. Other (read/write file, limited access to database, ...)

Two approaches are used to determine the locality and effect of attacks. The first and most accurate
approach is to have a security expert determine this information by hand. We found that roughly 90-100
vulnerabilities can be analyzed per day when extracting only this information for vulnerabilities found
using the Nessus vulnerability scanner on a typical network. This high rate of analysis assumes the use of
a custom tool that extracts critical text from Nessus plugin descriptions, the ICAT database, the CVE
dictionary, and the Bugtraq vulnerability database. Manual analysis is practical when there are only 10’s
or 100’s of new non-analyzed vulnerabilities on a network. It can also be performed incrementally as new
vulnerabilities are announced. To support this hand analysis we store the resulting locality and effect
analyses in a configuration file, import this information into NetSPA, and rely on it exclusively when
available. One expert can thus provide vulnerability information for NetSPA analyses performed at many
sites. This hand analysis needs to be revisited as new exploits for a given vulnerability are developed or
knowledge about the vulnerability develops. For example, many buffer overflow vulnerabilities that are
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originally labeled DoS eventually become remote-to-admin vulnerabilities as more advanced exploits are
developed.

For general security analyses on large networks where thousands of vulnerabilities may occur, we
developed an automated pattern classifier that determines locality and effect for all vulnerabilities that can
be found by Nessus. A pattern classifier was used to provide accurate decisions with missing and
inconsistent information and to integrate information across multiple data sources including free-text
descriptions. A block diagram of this classifier is shown in Figure 3. As shown on the left, it relies on
information from (1) the Nessus vulnerability scanner, (2) the ICAT database, and (3) the CVE
vulnerability dictionary. We use information extracted from all these sources as input features for two
pattern classifiers contained in the right block of Figure 3. One determines locality and the other
determines effect. The Nessus scanner shown at the top left of the figure provides a single text description
for all vulnerabilities included in each Nessus plugin. It also categorizes vulnerabilities into different
types. We use the following three Nessus types that are relevant to determining the attack effect: (1) Gain
a shell remotely, (2) Gain root remotely, (3) Denial of Service. We also use the Nessus rating of severity
that ranges from “low” to “critical” in five levels. The ICAT database shown at the bottom left provides a
binary “attack range” category that specifies locality as local or remote that we use. It also provides six
binary valued “loss types” that can be set independently and that we use. These are (1) Obtain superuser
privilege, (2) Obtain user privilege, (3) Obtain other privilege, (4) Loss of availability, (5) Loss of
confidentiality, and (6) Loss of integrity. Finally, we use text descriptions of vulnerabilities provided by
the CVE dictionary (e.g., “Stack-based buffer overflow in AppleFileServer for Mac OS X 10.3.3 and
earlier allows remote attackers to execute arbitrary code via ...”).

The CVE dictionary and ICAT database can only be used if the Nessus vulnerability scanner
provides a CVE number for the detected vulnerability. This is indicated by the dotted lines in Figure 3. If
a CVE number is not provided, then the classifier uses only the text description and categorical values
provided by Nessus. If a CVE number is provided, then the classifier also uses categorical database fields
from the ICAT database when they are available as well as text descriptions from the CVE dictionary.
The upper two and bottom two arrows into the right-hand box of Figure 3 represent binary input features
that indicate whether a corresponding categorical feature was selected. There is one input per category,
and the input is one if the category is selected and zero otherwise. The middle binary inputs from the box
labeled “Text Analysis” indicate whether common generic phrases used in human-readable text that often
indicate categorical values occur in text descriptions. Phrases are collected into groups for each category.
For example, the administrator privilege category can be indicated by phrases including “execute arbitrary
code” and “gain system privileges.” The remote locality category can be indicated by phrases including
“remote host” and “remotely.” There are four binary inputs for each of the arrows labeled “effect” and
two for each of the arrows labeled “locality” that represent the categorical values shown in Table 2. These
binary inputs are one if any one of the phrases in a corresponding phrase group are found and zero if they
are not. All types of binary inputs are also zero if categorical inputs are missing or if no phrases are found
by the text analysis. Multiple features that represent locality and effect are provided to the classifier to
compensate for missing and inconsistent information across the three data sources.
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Figure 3. Block diagram of classifiers that determine the effect and locality of vulnerabilities found using the
Nessus vulnerability scanner. Dotted lines indicate information only available if the CVE number is provided by
the Nessus plugin.

Different types of classifiers were evaluated using the LNKnet pattern classification software
package [12]. It was found that a logistic regression classifier performed as well as more complex
decision trees and support vector machine classifiers. A logistic regression classifier was developed using
215 hand-analyzed vulnerabilities found by Nessus. Ten-fold cross-validation testing on this data
demonstrated that the overall accuracy is nearly 100% correct for locality and better than 90% correct for
effect. The small number of effect errors was caused primarily by missing values in the ICAT category
fields and ambiguous text descriptions. Although there are still a few errors for effect, this classifier
makes it possible to perform security analyses for large networks using the most recent version of Nessus
that searches for the most up-to-date vulnerabilities. An execution of NetSPA’s data preprocessing stage
requires importing the most recent NIST ICAT database and the CVE dictionary and re-running the
automatic vulnerability classifier. To reduce the effect of errors, the hand analysis described above
overrides the classifier output. In addition, NetSPA makes recommendations that usually involve a small
number of critical vulnerabilities. These few vulnerabilities can be hand verified after recommendations
are provided to detect classification errors and improve the overall recommendations. Any corrections in
the effect and locality of a vulnerability can then be added to the configuration file to prevent the same
error from occurring in future analyses.

Our hand analysis suggested some useful extensions to our approach of alert characterization that
could be added in the future. One is to add more attack effects and extend the other category to
differentiate between confidentiality loss and integrity loss. Confidentiality loss includes data exfiltration
attacks, such as reading a password file or the user’s email box. Integrity loss includes data corruption
attacks, such as modifying cost fields on a vendor’s database. Another extension is to extend the concept
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of locality to include client-side attacks in which a user accesses a malicious server with a vulnerable
client (e.g., a vulnerable web browser), allowing the server to attack the client software. Client-side
attacks would require information on host client software that is usually not available from network
vulnerability scans but may be provided by automated patching systems, network management systems,
or host-based vulnerability scanners. Information on the other category might be provided by specialized
vulnerability scanners designed to assess database and web servers or by similar patch or network
management tools.

It would also be useful to provide more fine-grained analysis of effects. In some cases a separate
analysis for loss of confidentiality, integrity, and availability might be desired. We currently can perform
such an analysis to determine how an attacker can affect availability of services by including
vulnerabilities in which the effect is DoS or administrator. An analysis to determine if an attacker can
affect integrity and confidentiality can include vulnerabilities in which the effect is user or administrator.
It is difficult, however, to analyze the effect on confidentiality, integrity, and availability when an attacker
exploits a vulnerability and the effect is other. More detailed analyses of the other category would make
this possible because the other category currently implies loss of confidentiality and/or integrity for
specific programs or data. Because this detailed analysis is difficult to perform with the available data, it
was not included in the current version of NetSPA.

3.5 FIREWALL CONFIGURATION FILES

The third row of Table 1 shows that configuration files for firewalls that perform traffic filtering are
required to determine reachability between hosts. For firewalls, configuration files contain rule sets or
access control lists (ACLs) for traffic filtering and network address translation (NAT). Rule sets must be
considered because a firewall can prevent outside access to a vulnerability if the protocol or the TCP/UDP
port required to exploit it is blocked. Although similar types of filtering can be performed by routers, we
currently do not read in router configuration files. This is planned for a future version of NetSPA. The
current system imports configuration files from Sidewinder and Checkpoint firewalls. Router and firewall
rules are necessary to determine the reachability between hosts. Some past systems (e.g., [1]) assumed
that reachability can be determined using information from vulnerability scanners. Such data is
incomplete because firewalls frequently allow connections only from specific source IP addresses or
ports. A vulnerability scanner will not find ACLs that create holes in firewalls by permitting traffic only
from specific IP addresses. It will only find the potentially limited connections that are allowed from the
IP address of the host running the vulnerability scanner. Even if the vulnerability scanner were to exercise
the filtering rules properly, it is still prohibitive to scan the entire network from each network segment as
the network size grows. This is also a weakness of port and IP scanners such as NMAP [13]. Only an
analysis of firewall and router rules can determine complete reachability through these and other devices
that perform traffic filtering.
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3.6 GATEWAYS AND ADMINISTRATION HOSTS

Information in the last three rows of Table 1 is provided by a system administrator. The names of
gateway hosts, filtering and routing devices, and the subnets they interconnect make it possible to
determine the overall network topology and combine data from vulnerability scans of separate subnets.
This data indicates how to interconnect separate subnets. The names of administration hosts and a list of
network services used for remote administration make it possible to add vulnerabilities associated with
system administration. In particular, if any administrator host is compromised, it can be assumed that all
remotely-administered hosts that have an open port for the service used for remote administration (e.g.,
SSH or VNC) are also compromised.

3.7 HOST ASSET VALUES

Providing host asset values listed in the last row of Table 1 makes it easier to generate
recommendations following construction of attack graphs. Each host is assigned an asset value
representing the importance of the host and loss to the network if that host is compromised. After
generating an attack graph, host asset values are used to determine a value called the Network
Compromised Percentage (NCP) as shown in Equation 1.

>, Host Asset Value

Compromised
Network Compromised Percentage =100 x ——== (1
Y. Host Asset Value
All Hosts

The NCP is the percentage of the total assets across all hosts that have been captured by the attacker. It is
the sum of host asset values across all compromised hosts determined by adding the asset values for all
hosts on the attack graph divided by the sum of the host asset values across all hosts in the network. This
fraction is then multiplied by 100 to convert it to a percentage. A value of zero indicates that no hosts
have been compromised, and a value of 100 indicates that all hosts have been compromised and all assets
have been captured. This metric is used to compare alternative approaches to improving network security.
Any measure that reduces the NCP is assumed to improve overall network security.

Our current default analysis counts a host as compromised in Equation 1 and considers it as
captured by the attacker when the effect of any exploited vulnerability used to compromise the host is
user, administrator, or DoS. It is also possible to prevent vulnerabilities with an effect of other or DoS
from being counted as compromised in Equation 1. Such an analysis considers a host to be captured only
if it is compromised at user or administrator privilege levels.

For simplicity, the asset value should represent the worst-case loss incurred by either loss of
confidentiality, integrity, or availability. Useful recommendations can be made if the asset value is
categorical and takes on one of three to five values as suggested in [14]. For example, in a network where
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confidentiality and availability are most important, user desktops can have the lowest and default asset
value (e.g., 100), switches that support traffic to multiple desktops may have higher values (e.g., 1000)
and file servers required by all workstations may have the highest value (e.g., 5000). In most cases, values
selected for categories are roughly proportional to the sum of the assets of the systems that are affected by
a host compromise. For example, compromising a switch used by ten hosts with asset values of 100 each
causes a loss of 1,000 due to loss of availability. The switch should thus have an asset value of 1,000.
Compromising a file server for 50 hosts with asset values of 100 each causes a total loss of 5,000 due to
all three loss types. The file server should thus have an asset value of 5,000. The current NetSPA tool has
no easy method of inferring asset values of shared network infrastructure devices because information on
dependencies is difficult to obtain. System administrators thus need to provide asset values for all hosts.
We have found that system administrators can easily understand the concept of a host asset value. They
are able to assign these values to hosts in large networks because only a few servers and other special
hosts need to be assigned higher asset values and all other hosts can be assigned the lowest default asset
value.

The standard in [14] suggests using three categories or values for host asset values (low, moderate,
and high adverse effect). We have only limited experience with the sensitivity of final recommendations
to asset values and the numbers of categories used. In many network analyses, a group of stepping-stone
hosts is discovered that allows compromise of many other machines by an attacker starting from outside a
perimeter firewall. The most important resulting recommendation is to patch or block the vulnerabilities
that allow this group of hosts to be compromised. This recommendation will remain the most important,
even for widely different host asset values. In other networks with inside attackers, asset values will
directly influence recommendations and the highest priority recommendations will be to eliminate
vulnerabilities in the hosts with the highest asset values. It is not computationally expensive to explore the
effect of varying host asset values on recommendations. Since the attack graph is not affected by asset
values and only the order of recommendations is affected, many different asset values could potentially be
explored to analyze how the order of recommendations varies with asset values.

3.8 AUTOMATIC IMPORT UTILITIES

Each data source described above has a corresponding import utility customized for the specific
formats and semantics of that source. These utilities extract necessary fields from the source, map the
information into the schema of the NetSPA database, and generate SQL scripts to populate the database.
Import utilities for vulnerability scanners input scanner results and populate the network, vulnerability,
and attacker action tables in the database. The vulnerability classifier shown in Figure 3 and described in
Section 3.4 is implemented in the scanner import utility. The classifier determines the locality and effect
for each vulnerability found by a vulnerability scanner unless this information is already available in a
human-generated configuration file also read in by the import utility.

Other studies used software names and versions to determine whether servers are vulnerable instead
of vulnerability scanner outputs (e.g., [15, 16]). We did not follow this approach because an analysis of
version numbers reported by Nessus on one of our class C subnets suggested that using software versions

15




to find vulnerabilities is error prone and unreliable. This analysis revealed three major problems with
using software names and versions. First, version numbers are often not reported by Nessus (they were
available for only roughly 30% of all open ports). Second, software version numbers often remain the
same even across many patches and vulnerabilities and thus do not differentiate between patched and
unpatched software. Third, databases such as ICAT do not provide complete listings of all vulnerable
software versions.

Import utilities for firewall configuration files read configuration files and populate firewall policy
tables in the database. The firewall import utilities map firewall-specific constructs into a generic
structure in the database. For some firewalls and rules this mapping is very straightforward; in other cases
the mapping is complex and multiple rules may be generated for a single rule in the data source.

Import utilities for configuration files read a comma-delimited file and update the database. The
required gateway information file allows the import utilities to connect the subnets together properly and
to identify hosts with multiple interfaces. This is especially important for firewalls.

Optional configuration files provide information on hand-analyzed attacks, asset values, and
administration hosts. Information provided in configuration files may add information to the database,
update existing information, or delete information. Host names and IP addresses in configuration files are
disambiguated by providing a subnet identifier, which associates a host name or IP address with a specific
subnet. Disambiguation of IP addresses is necessary when a network contains enclaves using overlapping
IP address space.

3.9 THE NETSPA DATABASE

The NetSPA relational database contains all the information required to generate and analyze attack
graphs. The database is populated by import utilities as described in the preceding section. It is then read
at the beginning of each experiment to load data into memory and does not need to be accessed when
generating and analyzing attack graphs. The database includes four types of tables: (1) vulnerability, (2)
attacker actions, (3) network description, and 4) firewall policy. Vulnerability tables contain information
concerning vulnerabilities and remote access services discovered by the vulnerability scanner. A
vulnerability is linked directly to the TCP/UDP port where it was detected. This linkage from ports to
vulnerabilities enables efficient attack graph generation because once reachability is found to a port, a list
of vulnerabilities is immediately available that can be used to extend the attack graph. Vulnerability tables
also contain server software names and versions when they are provided by the vulnerability scanner.
These are stored only to provide further detailed information in the NetSPA system’s final reports.

Unlike other approaches that use complex formal languages to describe exploits and actions that
attackers can take (e.g., [1, 17]), we describe attacks using the simple locality and effect values shown in
Table 2. Attacker action database tables contain values of locality and effect for all vulnerabilities found.
Attacker actions are constrained by these values, reachability, and the location of vulnerable ports on
hosts. An attacker on one host can use a vulnerability to compromise a different victim host by exploiting
a vulnerability only if the vulnerability locality is remote, if the victim has that vulnerability on a port, and
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if the victim’s port is reachable from the attacker. The access gained on the victim host is specified by the
effect of the vulnerability. An attacker with user privilege on a host can elevate this privilege by
exploiting a vulnerability only if the locality of the vulnerability is local, the host has the vulnerability,
and the effect of the vulnerability is to provide administrator privilege.

Network description tables contain the network topology, including all the hosts in the network,
interfaces on the hosts, ports open on the interfaces, network addresses the interfaces respond to, and
DNS names associated with the addresses. Network description tables also specify hosts in subnets and
how subnets are interconnected to form a network. A network is the unit of work for NetSPA. All
processing is performed within the context of a network.

Firewall policy tables contain filtering and network address translation (NAT) rules. Rule tables
contain a full description of each rule, including relationships to the host enforcing the rule, the source
and destination host interfaces, the source and destination network objects, filtering and address
translation rules, and any time restrictions governing when the rule is in effect. In these tables, a network
object is one of several types, including an IP address, an address range, a Domain Name Server (DNS)
host name, a DNS domain name, or a group of other network objects. We currently support two options
for handling time restrictions on rules. The default behavior is a worst-case assumption. All “open™ or
“allow” rules activated only during specified time intervals are changed to be permanently open and all
“block” rules activated only at specified time intervals are eliminated. This models an attacker who waits
for “open” rules to activate and for “block” rules to deactivate. It is also possible to specify a start time
when NetSPA begins and to use the firewall rules that apply at this start time.
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4. REACHABILITY ANALYSIS

Critical to generating attack graphs is an analysis that determines which hosts are reachable from an
already compromised host and which TCP/UDP ports can be used to connect to and compromise new
vulnerable hosts. A basic reachability analysis creates a matrix, with rows as outbound interfaces on all
hosts and columns as all active inbound ports on all hosts. The analysis evaluates each entry in this matrix
with respect to the network’s topology, routing, and filtering policies to determine if a logical connection
is possible. Our current analysis supports end-point or personal firewalls, boundary firewalls, gateways,
and subnets and assumes stateful firewalls. The most common usages of source and destination NAT
rules are also supported. We plan to improve the handling of destination NAT (DNAT) rules in the next
version of NetSPA to support more complex DNAT situations that can occur when traversing multiple
firewalls.

The reachability matrix representation has been used for the simple hand-generated networks
analyzed in [18]. Although this is complete and correct in principle, it rapidly becomes a performance
bottleneck as the size of the network increases. If H is the number of hosts in a network and P is the
maximum number of inbound TCP and UDP ports or services per host, then the size of the matrix is
bounded by H*P . In a network with 1000 hosts with 20 TCP ports maximum, this can require 20 million
complex reachability analyses. Each analysis involves an examination of firewall or router rules, and if
there are R total rules across all filtering devices, the computation required is bounded

by H’PRoperations. Complex cases which offer multiple physical paths between two hosts and
degenerate cases which loop traffic back through filtering devices multiple times may perform even worse
than HPR; in both cases, rules may be considered multiple times for a given reachability calculation.

4.1 REACHABILITY DOMAINS

Over the past year, we have developed two major improvements to the basic reachability matrix
approach that dramatically improve performance by allowing us to avoid computing some of the matrix.
The first improvement involves grouping hosts with similar reachability matrix entries. We do this by
separating the traditional reachability matrix into multiple submatrices for traffic within an individual
subnet and traffic that crosses between subnets. Figure 4a shows a reachability matrix for a small
hypothetical network with two subnets separated by a firewall. Each row in the matrix indicates a source
interface, and each column indicates a destination port. Each cell of the matrix potentially holds a
Boolean value, indicating whether or not reachability exists between the source interface and the
destination port. In this case, we list interfaces and ports in the first subnet before interfaces and ports in
the second. This allows us to visualize the matrix more easily. The upper left and lower right submatrices
represent intra-subnet reachability, and the remaining two submatrices are inter-subnet reachability.

Hosts that are fully interconnected without any intervening filtering are placed in unfiltered
reachability domains. For example, our system forms unfiltered reachability domains for all hosts in a
subnet when there is no filtering between these hosts. Hosts in two subnets connected by a router that
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performs no filtering are also placed in the same unfiltered reachability domain. This method allows us to
treat submatrices of the reachability matrix as individual rows without losing information, as shown in
Figure 4b. This method effectively reduces each unfiltered submatrix of dimensions M xN to a row of
length M . Unfiltered reachability domains are created before reachability is computed. Each subnet is
first identified and forms a separate unfiltered reachability domain. These unfiltered reachability domains
are then analyzed, and those that are interconnected with gateways that perform no filtering are coalesced
into larger unfiltered reachability domains by combining all hosts in the coalesced domains.
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Figure 4a. Example reachability matrix with overlays. Unfiltered
boxes indicate reachability that does not cross a firewall (intra-
subnet). Filtered boxes represent reachability that is computed across
the firewall. A traditional reachability system would need to compute
and store reachability information for each cell in the matrix.

Figure 4b. Example reachability matrix with overlays. Unfiltered
reachability is the same for all interfaces within each unfiltered
reachability group. We, therefore, compute reachability within the
group for one source interface and do not need to compute it for the
other interfaces.

Figure 4c. Example reachability matrix with overlays. Filtered
reachability is the same for all interfaces within each filtered
reachability group. We, therefore, compute reachability within each
group for one source interface and do not need to compute it for the
other interfaces.

Hosts that are in the same subnet and are treated identically by all filtering rules are coalesced into
filtered reachability domains. These hosts have identical reachability to destinations outside of their
unfiltered reachability domains. This method also allows us to treat additional submatrices of the
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reachability matrix as individual rows, as shown in Figure 4c. For each set of interfaces in a filtered
reachability domain, we need to calculate reachability for only one interface of the set (one row of the
submatrix), and all other members of the set share that reachability information. In this example, we show
a single filtered reachability domain in subnet one, and three filtered reachability domains in subnet two.
Two of those three domains are singletons and apply to only one host. Filtered reachability domains are
constructed on demand, as described below.

In most networks, the two types of reachability domains reduce the computation and storage
requirements substantially. It is possible to construct a synthetic degenerate network that has firewall
rules specific to each host and that thwarts these simplification efforts, but we do not expect such
networks to exist in practice. Assigning interfaces to reachability domains requires a comparatively small
amount of computation to analyze firewall and router filtering rules and subnets. Our experience is that in
many networks this approach reduces computation and memory requirements required to compute
reachability by two orders of magnitude, making attack graph generation on large networks practical. For
example, in the two-subnet matrix in Figure 4, if the subnets each contain 200 hosts and each host has one
open port, the number of unique entries starts at 400 x 400 = 160,000 without reachability domains, and
could drop as low as 800 with reachability domains.

4.2 ON-DEMAND REACHABILITY AND REACHABILITY DOMAINS

A second improvement to the reachability matrix approach is to compute reachability only on
demand as needed to generate attack graphs. Most prior approaches (e.g., [1, 2, 18]) assume reachability

between all host pairs is available prior to creating attack graphs. This may waste memory and
computation because reachability is only required from hosts that are actually compromised, and in a
well-protected network significantly fewer than the H hosts in a network will be compromised.

Unfiltered reachability domains are easy to construct on demand by finding hosts that are either on
fully connected subnets or on subnets connected without filtering. Filtered reachability domains are more
complex to construct on demand. This process begins when previously uncomputed reachability is
required from a source interface X. If reachability has not been computed for any other source interface in
X’s unfiltered reachability domain, then it is computed and interface X becomes the first member of a
new filtered reachability domain. If reachability has been computed for other interfaces in X’s unfiltered
reachability domain, then there are already filtered reachability domains which X could potentially join.
The algorithm examines all of the IP addresses and address ranges in the network’s filtering rules. If all of
these IP addresses and address ranges treat connections from interface X and connections from another
interface Y in X’s unfiltered reachability domain identically, then X joins Y’s existing filtered
reachability domain and uses the domain’s pre-computed reachability. Computing this relationship
between X and Y is somewhat expensive, but is much simpler than recomputing the underlying
reachability; we effectively consider the ruleset R once for each attempted match between Y and a filtered
domain, whereas computing reachability from Y would require considering the ruleset R for every
potential destination. If no matching filtered reachability domain is found, then X begins its own filtered
reachability domain and calculates its own reachability.




4.3 ADDRESS SELECTION FOR REACHABILITY ANALYSIS

Network address translation (NAT) must be handled carefully. Destination NAT makes it possible
to create a network such that a given source interface cannot reach a target interface using the target
interface’s address. Instead, an address present only in a translation rule must be used. Figure 5 illustrates
the problem. In order for the attacker host to reach the database server, the attacker host must attempt to
contact address 192.168.0.3. However, that address is only present in the address translation rule set of
the firewall; it does not appear on any actual host on the network, including the database server. We say
that the database server’s interface is occluded from the point of view of the attacker host.
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allow all to 192.168.0.3, 10.0.0.3
DNAT to 10.0.0.3.
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Figure 5. Example of simple network with destination network address translation (NAT). The attacker host is able
to contact the database server by trying to connect to the virtual address 192.168.0.3 because this address is
translated using firewall NAT rules to the actual address of the Database Server, 10.0.0.3. To make this happen
when evaluating connectivity, the NAT address 192.168.0.3 is used as an address on a virtual target host.

We address this issue by fabricating a single virtual host on each subnet in the network. Importer
utilities described in section 3.8 generate one virtual host for each NetSPA subnet. A virtual host has no
vulnerabilities and no IP address of its own. Each of these hosts then listens on a set of addresses assigned
by the address selection algorithm discussed in the next paragraph. We then discover reachability to an
occluded interface as a side effect. Attempting to reach a virtual host using the destination address in the
rule set will cause the reachability algorithm to exercise the translation rule and reach the occluded
interface instead. Figure 5 shows the virtual host holding the necessary address 192.168.0.3. When the
attacker host attempts to reach the virtual host via this address, the firewall’s translation rule redirects the
attacker host to the database server, finding that this server is reachable.
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We initially added an exhaustive set of addresses in each virtual host as a simple approach to
guarantee that every occluded interface is discovered. This set of virtual addresses included one address
from each subnet and one from each address or range of addresses in each filtering, translation, and
routing rule. We choose the addresses using an algorithm that selects the specific addresses referenced by
the rules and a representative address for each address range referenced by the rules and for each address
range used by a subnet. This algorithm first collects all addresses in filtering and NAT rules and all subnet
address spaces. These include completely specified 32-bit IP addresses and address ranges. It then sorts
these addresses, placing the more specific (e.g., completely specified 32-bit IP addresses) first and the
more general (e.g., subnets with more bits masked off) last. The list is then traversed from the more
specific to the less specific objects fabricating at most one new virtual address for each list entry. When a
completely specified IP address is encountered, it is used as a new virtual address unless this virtual
address already exists. When an address range is encountered, a new virtual address within this range is
created that does not duplicate any previously selected address.

The addresses selected for the virtual hosts can also be used to the attacker’s benefit. The attacker
starting location can be an actual host on one of the scanned subnets, or it can be one of the virtual hosts.
We refer to a virtual host used as an attacker starting location as a virtual attacker host, and a virtual host
not used for this purpose as a virtual destination host. If a virtual host is chosen as the attacker starting
location, NetSPA uses all of the virtual host’s addresses as potential source addresses for the attacker. In
other words, NetSPA assumes the attacker is able to spoof any source IP address to bypass as many
network restrictions as possible. A worst-case analysis of network vulnerability should use a virtual host
as the attacker starting location. As an option, it is also possible for the attacker starting address to be a
single pre-specified IP address. This can reduce computation time when this type of analysis is desired or
when IP address spoofing is prevented and incoming connections can only originate from specific IP
addresses.

We discovered during testing with simulated networks that the additional computation required by
placing all the addresses in virtual hosts can be excessive if there are hundreds or thousands of firewall
rules. Each new address in a firewall rule set adds a new source address for the virtual attacker host and a
new destination address for the virtual destination hosts. If there are many more virtual host IP addresses
than actual hosts, then the number of reachability queries increases as R’. Each reachability query
requires exploration of at most R rules; hence, the computation for every new firewall rule that includes a
new IP address grows as R'. When R is large, this growth in computation can slow down attack graph
generation excessively.

We recently modified the address selection algorithm to reduce the impact of using many firewall
rules. Instead of using all unique IP addresses and destination NAT addresses found in firewall rules in
both virtual attacker and virtual destination hosts, these addresses are split up. Virtual attacker hosts only
include unique IP addresses from firewall filtering rules. Virtual destination hosts only include IP
addresses from destination NAT firewall rules. This refinement reduces both the number of source
addresses for virtual attacker hosts and the number of destination addresses for virtual destination hosts.
In many networks the number of real hosts is far greater than the number of NAT firewall rules and extra
IP addresses added in virtual destination hosts. The extra IP addresses in virtual destination hosts thus
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affect scaling little. These modifications thus lead to reachability computation that scales roughly as R’
with many firewall rules. It may also be possible to reduce computation further by not extracting IP
addresses from firewall rules that deny instead of accept connections.




5. ATTACK GRAPH GENERATION

To our knowledge, no prior paper has demonstrated the ability to generate attack graphs in
networks with more than 100 hosts. Many past approaches require extensive human analysis and data
entry and appear to scale poorly even though practical use of attack graphs requires analyses on large
enterprise networks with many thousands of hosts. This section describes how algorithms were developed
that can compute in minutes attack graphs in networks with tens of thousands of hosts. We first describe
the types of attack graphs that are created and the purpose of these graphs. Details of the graph-generation
procedure are presented in this section. Actual and simulation scaling results on large networks are
presented in the following two sections.

5.1 DIFFERENT ATTACK GRAPHS FOR DIFFERENT PURPOSES

As noted above, and shown in Figure 1, we generate attack graphs that show hosts in a network that
can be compromised by an attacker starting at a specific location. For example, consider the simple flat
network shown in Figure 6. It consists of one host serving as the attacker’s starting location (A), a system
administrator host (X), and three user desktop workstations (B, C, D). The system administrator host and
all workstations have the same remote-to-admin vulnerability (vulnerability 1) that can be exploited
directly by the attacker. The desktop workstations have a second remote-to-admin vulnerability
(vulnerability 2) that can be exploited only from the system administrator host. For example, this could be
an SSH connection only allowed from the administrator host. The three basic types of attack graphs
shown in Figure 7 all accomplish the goal of determining hosts that can be compromised on this network,
but they have different uses and different scaling properties. We discuss each of the three graphs and
present simplified graph-generation pseudocode for each. We simplify the pseudocode by assuming that
every vulnerability present in the network is a remote-to-admin vulnerability.

(=
A X B D

Attacker System User User User
Administrator Desktop Desktop Desktop

Figure 6. Example of simple network with one attacker host, an administrator host, and three user desktops. Each
non-attack host (X, B, C, D) has one remote-to-administrator vulnerability that can be exploited from any other
host, and the user desktops (B, C, D) have a different remote-to-administrator vulnerability that can only be
exploited from the system administrator (X).
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Figure 7. Three types of attack graphs are (a) Full, (b) Predictive, and (c) Host-Compromised. All attack graphs are
for the network in Figure 4, and they start on the left with the attacker as an administrator on the attacker host
labeled A. Labels for nodes and edges in the full attack graph are provided only for the upper and lower two
complete paths for clarity.

5.1.1  Full Attack Graphs

The full attack graph shown on the left of Figure 7 shows all possible paths or sequences of
compromised hosts and vulnerabilities that an attacker can use to compromise all hosts in this network.
Nodes represent hosts and edges (numbered lines) represent vulnerabilities used to compromise hosts.
The attacker starts on the left at the attacker host (node A), and the paths shown represent all possible
sequences of attacker actions that compromise as many hosts as possible. This occurs in three levels
where the number of hosts at each level exhibits factorial growth from 4 to 12 to 24. The upper two and
bottom two paths in Figure 7 are completely labeled to show the sequences of hosts in single attacker
paths that compromise all hosts. For example, along the upper path the attacker compromises host X
using vulnerability 1, then host B using either vulnerability 2 or 1, then host C using vulnerability 1, and
host D using vulnerability 1. The next path is the same except the order of the last two hosts is
interchanged and the path is X, B, D, C. Whenever there are multiple vulnerabilities that can be used to
compromise a host, a separate line is drawn for each vulnerability. There are thus two edges in the upper
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path from host X because the other hosts can be compromised with two different vulnerabilities
(vulnerabilities 1 and 2). These additional lines simplify the presentation and formally create a graph
instead of a tree.

1 Add NewNode (attacker starting location) to Queue

2 WHILE (Queue is not empty)

3 sourcenode <- pop Queue

4 sourcehost <- the host represented by sourcenode

5 FOREACH targetport reachable from sourcehost

6 FOREACH vulnerability on targetport

7/ targethost <- the host that contains targetport

8 IF no node representing targethost exists on the path

9 from the root of the graph to sourcenode

10 THEN

11 IF an edge connects sourcenode to a node

12 representing targethost

13 THEN

14 targetnode <- existing node representing targethost
15 add NewEdge (sourcenode, targetnode, vulnerability) to graph
16 ELSE

17 targetnode <- NewNode (targethost)

18 add targetnode to Queue

19 add NewEdge (sourcenode, targetnode, vulnerability) to graph
20 END

21 END

22 END

23 END

24 END

Figure 8. Simplified pseudocode to generate a full attack graph.

Simplified pseudocode to generate a full attack graph is shown in Figure 8. The full graph is
generated by a breadth-first approach in this pseudocode, but it could also be built depth first. Nodes in
the attack graph representing compromised hosts are inserted onto the end of a queue as they are
discovered and nodes are taken off the beginning of the queue and used as stepping-stones to try to
compromise other hosts. The algorithm begins by placing a node representing the attacker’s starting
location into the attack graph as the root node and adding that node to the end of the queue (line 1). Nodes
are then removed from the beginning of the queue, one at a time (line 3). For each node, reachability is
computed to ports on all other hosts (line 5). Whenever a host is reachable via a port, an attempt is made
to compromise it using every available vulnerability on the port (lines 5-6). If a vulnerability is
exploitable, and the targeted host is not contained in a node on the path from the attack graph root to the
current node, then the exploit is added to the graph (lines 8-10).

If a node representing the targeted host is already connected to the current node by an edge, then we
add an additional edge representing the additional usable vulnerability (lines 14-15). We otherwise create
a new node representing the target first (lines 17 and 19) and also add this new node to the end of the
queue for further processing (line 18). This allows the algorithm to attempt further compromise of the
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network from that new node when it is removed from the beginning of the queue. The algorithm
terminates when the queue becomes empty (line 2).

On a flat network similar to that shown in Figure 7 where there are no filtering devices between
hosts and each host has one or more remotely exploitable vulnerabilities, the computation required by this
algorithm grows as a factorial of the number of hosts. This occurs because each compromised host at
level L in the graph (L edges from the attacker node) can compromise H-L other hosts.

A full attack graph has been generated in many previous studies (e.g., [2, 16, 18-21]). A small
segment of a full attack graph could be used to perform computer forensics and determine how a host
could have been compromised, given alerts from intrusion detection systems as suggested in [22, 23]. In
such a situation, the attacker might have used a long inefficient path to compromise a target host and a
full graph might be necessary to find such a path. Unfortunately, it is impractical to generate a full graph
even for small networks. For the simple network shown with only two vulnerabilities, the number of
nodes in the full graph and the computation grows as H !, where H is the number of non-attacker hosts
in the network. For example, in subnet with only 10 hosts, the attack graph would already include more
than three million nodes. With 10 hosts in the network, one additional host increases the attack graph size
and computation requirements by an order of magnitude.

A full attack graph is intractable for almost all real networks, even with only a few vulnerabilities,
because it provides more information than is required to determine the security of enterprise networks.
Not all paths to compromised hosts are required for this purpose. The minimal information required is
whether hosts can be compromised and the privilege level gained by the attacker. This can be provided by
a host compromised attack graph.

5.1.2 Host-Compromised Attack Graphs

The right-hand side of Figure 7 shows a host-compromised attack graph for the network of Figure 6.
Nodes in a host-compromised graph indicate all hosts that can be compromised by the attacker and the
level of privilege gained. Edges indicate one of possibly many sequences of vulnerabilities that can lead
to the compromise.

Simplified pseudocode to generate a host-compromised graph is shown in Figure 9. This
pseudocode is similar to that used to generate a full graph but simpler. It uses a breadth-first search but
adds new edges only once to each node (line 12) and only to hosts that are not already on the graph (line
8).
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1 Add NewNode (attacker starting location) to Queue

2 WHILE (Queue is not empty)

3 sourcenode <- pop Queue

4 sourcehost <- the host represented by sourcenode
5 FOREACH targetport reachable from sourcehost

6 targethost <- the host that contains targetport
7 FOREACH vulnerability on targetport

8 IF no node in the graph represents targethost

9 THEN
10 targetnode <- NewNode (targethost)
13 add targetnode to Queue
12 add NewEdge (sourcenode, targetnode, vulnerability) to graph
13 END
14 END
15 END
16 END

Figure 9. Simplified pseudocode to generate a host-compromised attack graph.

The maximum number of nodes on a host-compromised graph with only remote-to-admin attacks is
the number of hosts in the network. An upper bound on the computation required to generate a host-
compromised graph assuming reachability has already been computed between all host pairs is O(H o3
This follows from the maximum number of hosts in the graph, H, times the maximum number of hosts
that are reachable, H . The computation required to search the current graph and determine if a host is
already on the graph (line 8 of Figure 9) can be performed in constant time using a lookup table with a bit
for each host indicating whether it is or is not already on the graph.

It is straightforward to extend the host-compromised pseudocode in Figure 9 to include attacks with
all the locality and effect categories shown in Table 2. Line 8 of Figure 9 needs to test for the target host
existence on the graph but at the privilege level of the vulnerability on the target port (e.g., user,
administrator, DoS, or other). In addition, an attacker can proceed forward and a new host is put on the
queue on line 11 only if the effect of a vulnerability is to provide user or administrator privilege.
Vulnerabilities where the effect is “DoS” or “Other” cannot be used as stepping-stones. They lead to
single-host compromises that form one-edge stubs on the graph. Finally, user privilege on a host is a
prerequisite for local-to-admin vulnerabilities on the same host.

The host-compromised graph only finds the hosts that can be compromised and one path to achieve
the compromise. A single host-compromised graph cannot be used to determine whether eliminating a
vulnerability on an edge prevents compromise or whether there are other ways to compromise hosts.
Testing any single hypothesis requires rebuilding the entire host-compromised graph.

5.1.3 Predictive Attack Graphs

A host-compromised attack graph provides little insight into networks because it only shows a
shortest path to each host. Determining the effect of patching vulnerabilities or adding firewall rules
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requires regenerating the graph because there may be many paths to hosts. A full attack graph provides
more information about the effect of vulnerabilities, but it provides too much information and is
impractical for all but the smallest networks. After exploring a number of alternative graph types and
generative algorithms, we developed a graph with two critical properties. First, it determines all hosts that
can be compromised for an attacker from a given starting location. Second, without regenerating the
graph, it correctly predicts the effect of patching vulnerabilities and adding firewall rules that block
specific TCP/UDP ports. Each edge in an attack graph corresponds to a specific vulnerability and network
path, and each node corresponds to a host. The effect of removing vulnerabilities and blocking ports can
be determined using a predictive graph by removing the associated nodes and edges from that graph.
Because this does not involve regenerating the graph, but simply editing the graph, we call a graph that
correctly predicts the effect of patching and blocking ports a predictive graph. A predictive graph must
make correct predictions when any combination of edges is removed.

The center graph in Figure 7 shows a predictive attack graph for the network of Figure 6. As in the
full graph, nodes represent hosts in the network which the attacker has compromised, and edges represent
vulnerabilities the attacker could use to achieve the compromise. However, all of the redundant paths
have been removed. The remaining structure fulfills the predictive requirement. For example, consider an
analysis of the network in Figure 6 to determine the effect of patching vulnerability 1 on host B.
Designate this edge/host pair as E(1, B) where, more generally, E(v, h) is the edge with vulnerability v
terminating on host h. If every E(1, B) edge/host pair is removed from the predictive graph, then the
graph correctly shows that B is still vulnerable due to the path A-E(1, X) — E(2, B) starting from the
attacking host. The full graph could also be used to make this prediction by also removing all E(1, B)
edge/host pairs from this graph. Unfortunately, it is infeasible to create full graphs for all but the smallest
networks.

Simplified pseudocode to generate a predictive graph is shown in Figure 10. The only difference
between this code and the code for a full graph, shown in Figure 8, is the dynamic pruning performed on
lines 11-13. In a full graph, a new edge/host pair is added to a source node already on the graph only if no
node representing the new host already exists on the path from the root of the graph to the current source
node. In a predictive graph, there is an additional requirement. A new edge/host pair is added only if this
pair is not already attached to the root of the graph or to any node along the path from the root to the
current source node. This requirement means that an attacker starting at the root of the graph and
following the path to the current source node has not yet used the vulnerability under consideration
against the new host. Dynamic pruning makes it possible to remove redundant structure by not
duplicating compromises that the attacker has already performed earlier in the attack graph.
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1 Add NewNode (attacker starting location) to Queue
2 WHILE (Queue is not empty)
3 sourcenode <- pop Queue
4 sourcehost <- the host represented by sourcenode
5 FOREACH targetport reachable from sourcehost
6 targethost <- the host that contains targetport
7 FOREACH vulnerability on targetport
8 IF no node representing targethost exists on the path
9 from the root of the graph to sourcenode
10 AND
11 no node on the path from the root of the graph
12 to sourcenode successfully uses vulnerability to attack
13 targethost
14 THEN
15 IF an edge connects sourcenode to a node
16 representing targethost
17 THEN
18 targetnode <- existing node representing targethost
19 add NewEdge (sourcenode, targetnode, vulnerability) to graph
20 ELSE
21 targetnode <- NewNode (targethost)
22 add targetnode to Queue
23 add NewEdge (sourcenode, targetnode, vulnerability) to graph
24 END
25 END
26 END
27 END
28 END

Figure 10. Simplified pseudocode to generate a predictive attack graph.

The effect of dynamic pruning is best illustrated by example. Consider a partially constructed full
graph of Figure 7A where hosts X, B, C, and D have already been compromised from host A. The
predictive graph will construct the same structure as the full graph up to level 1 because dynamic pruning
and full graph conditions for adding an edge/host pair are identical from the root node. When adding
structure to level 1, a predictive graph examines the same edge/host pairs as were added to the full graph
but does not add all the structure shown in Figure 7A. For example, consider the three edge/host pairs
E(1, X), E(1, B), and E(1, C) attached to the node labeled D at the bottom of Level 1 of the full graph.
These edge/host pairs are not added to the predictive graph because they already are attached to the root
node of the graph. Similarily, the edge/host pairs attached to nodes B and C on Level 1 of the full graph
are not attached to the predictive graph. The three edge/host pairs E(2, B), E(2, C) and E(2, D) are
attached to node X at the top of level 1 of the predictive graph because these edge/host pairs are not
attached to the root node. The additional edge/host pairs attached to these three on levels 3 and 4 of the
full graph are not added to the predictive graph because they already are attached to the root node of the
predictive graph.
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Dynamic pruning constructs true predictive graphs only for vulnerabilities which yield the same
effect regardless of when an attack is carried out. Without loss of generality, predictive graphs model
attackers who exploit vulnerabilities as soon as possible. Predictive graphs do not need to show every
possible order in which attackers could compromise networks. They only need to show necessary
prerequisites for available exploits.

We can, therefore, safely prune redundant structure without losing content. If an attacker is able to
successfully use a given exploit E(v, h) from a particular node in the graph, there is no need for any child
of that node to use the same exploit E(v, h) again. The earliest possible use of E(v, h) on a given path
from the root to a leaf will enable at least the same additional exploits as any later use of E(v, h) would.
We can therefore omit all uses of E(v, h) from a given node in the graph if any ancestor has already used
E(v, h). This type of pruning results in graphs that correctly predict the effect of removing one or more
vulnerabilities, which corresponds to removing one or more graph edges. These graphs retain enough
information to capture the dependencies an attacker faces when attempting to compromise a network. A
full graph clearly satisfies this condition by representing every possible attack from every possible
location. A predictive graph does the same by only removing structure that is not necessary for the
representation of prerequisites. A node N will have edge E(v, h) dynamically pruned if an ancestor of N
has already used E(v, h) because that ancestor is able to effect the compromise with the same set of
prerequisites or less.

It is this prerequisite requirement which leads us to prune only when an ancestor has used the
attack, not when any arbitrary node has used the attack. If node N is about to add E(v, h) to the graph, and
the only other node M which has used this attack is not an ancestor of N, the edge is not pruned. The
prerequisites necessary to reach M may not be a subset of the prerequisites necessary to reach N. If we
were to prune in this case, we would be building a graph similar to a host-compromised graph, and host-
compromised graphs are not predictive.

For example, in the full graph of Figure 7a consider the subgraphs that extend from the right of the
node labeled D at the bottom of level 1. There are three subgraphs starting from that node, beginning with
E(1, X), E(1, B), and E(1, C). Each of these subgraphs is contained in the corresponding subgraphs that
begin earlier from node A on the left of the graph and start with the same edge/host pairs. For example,
the subgraph starting at level 1 from node D on edge E(1, C) contains a subset of the subgraph starting
from node A on edge E(1, C). This smaller later subgraph includes only two nodes (X and B) after its first
link while its corresponding larger, earlier graph contains three nodes (X, B, D). Furthermore, the nodes
in common to these subgraphs (X and B) are compromised using the same vulnerabilities. Eliminating
any edge/host pair in the earlier and larger subgraph prevents access to the same hosts as eliminating the
same edge/host pair in the smaller, later subgraph. The later subgraph is eliminated in a predictive graph.
The rules used to build full graphs guarantee that later subgraphs following the same edge/host pair in an
attack graph are identical to or contained in earlier subgraphs because these rules can only eliminate
nodes in later subgraphs and not add nodes.

Dynamic pruning is made possible by the simple method used to model vulnerabilities in NetSPA.
This fact, in combination with dynamic pruning rules, make predictive graphs efficient to compute in
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NetSPA. As described below, more complex and less common vulnerabilities might require more
complex pruning rules to build predictive graphs.

As with a host-compromised graph, it is possible to extend the predictive-graph pseudocode in
Figure 10 to include attacks with all the locality and effect categories shown in Table 2. Line 8 of Figure
10 needs to test for the target host, but at the privilege level of the vulnerability on the target port (e.g.,
user, administrator, DoS, or other). In addition, an attacker can proceed forward and a new host is put on
the queue on line 22 only if the effect of a vulnerability is to provide user or administrator privilege. As
with the extended host-compromised graph, vulnerabilities in which the effect is “DoS” or “Other” cannot
be used as stepping-stones, and user privilege on a host is a prerequisite for local-to-admin vulnerabilities
on the same host.

Most attacks used on real networks satisfy assumptions required to construct predictive graphs and
have the same effect whether they occur before or after other attacks. There are a few important
exceptions. First, DoS attacks affect following attacks because they disable services on hosts. These
attacks reduce the subgraph following a host compromise by preventing further compromises. The effect
of such attacks is modeled correctly by predictive graphs because they reduce and do not extend
subgraphs. Second, some types of information-gathering attacks affect following attacks. In one type of
information-gathering attack, an attacker compromises one primary host and steals and then decrypts
passwords that provide access to other secondary hosts. If all secondary hosts are directly reachable from
the primary host containing the passwords, then these attacks are also correctly modeled by the predictive
graph algorithm. The subgraph extending from the primary host contains at most all the secondary hosts
independent of where in the graph the compromise occurs. This is not true for information-gathering
attacks in which secondary hosts are not reachable from the primary host containing passwords. NetSPA
does not currently model these types of attacks. We are exploring future approaches to handle this
situation using predictive graphs when and if this information becomes available. A final class of attacks
that affects following attacks are those against network filtering devices including routers, firewalls, and
intrusion-prevention systems. Attacks that make filtering more restrictive can be modeled by predictive
graphs in the same way as can denial-of-service attacks by adding the attack as a dead-end edge that leads
nowhere. Some attacks that make filtering less restrictive and make new hosts reachable from hosts
already on an attack graph are not currently modeled by predictive graphs. For example, an attacker may
add a new firewall rule to allow access from a normally blocked outside IP address. We are exploring
future approaches to handle these types of attacks with predictive graphs.

It is difficult to create computation bounds for predictive graphs because the graph size depends on
the network topology. On a flat network, where all hosts are interconnected with no filtering devices, the
computation required to compute a predictive graph is O(H”log, H), where H is the number of hosts.
This is larger than the general bound for a host-compromised graph because the search indicated in lines
10 to 14 of Figure 10 is bounded by O(log, H ). The time required to compute a host-compromised graph
on a flat network also depends on the number of hosts that can be compromised. If only a fixed number of
hosts can be compromised, then the computation grows linearly in N. Section 8.3 discusses flat networks
in greater depth. The next section describes a situation in which the computations required for a predictive
graph with filtering devices can become much larger than this.
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Host-compromised graphs are a potential alternative to predictive graphs. As noted above, they are
generally not useful for making predictions because they include only one of possibly many paths to
compromise each host, requiring the system to rebuild the graph from scratch to test any one
hypothesized change to the network. With a limited number of edge/host pairs to explore, this would be
practical because the computation required for a host-compromised graph grows only as O(H”). It
becomes impractical when searching for combinations of edge/host pairs to patch in large networks with
many vulnerabilities when the goal is to find a set that provides the greatest protection but requires
patching the fewest hosts. With V vulnerabilities and N nodes, exploring combinations of all edge/host
pairs in the worst case would require generating a number of host-compromised graphs that grows
combinatorially as NV . Such an approach is clearly impractical.

5.1.4 Node-Predictive Attack Graphs

Predictive graphs occasionally produce large amounts of seemingly redundant structure. As an
example, consider the simple network on the left of Figure 11, consisting of an Attacker Host (A), a
firewall, a Web Server (W), a Database Server (D), and 200 User Desktop hosts (U). Every host behind
the firewall has a single remote-to-admin vulnerability. The firewall allows the attacker to directly
compromise the web server and the database server, but not the user desktops. This scenario's predictive
attack graph is shown in the middle of Figure 11.
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Figure 11. Example of simple network used to compute attack graphs (a). The predictive graph (b) has repeated
structure. The attack on the 200 user desktops is shown from both the web server and the database server. The node-
predictive tree (c) simplifies this topology. The web server and the database server are collapsed into a single host
group labeled W&D, and all user desktops are collapsed into a single host group labeled U.
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This predictive graph is accurate. It correctly predicts the effect of patching or protecting either the
web server or the database server independently. It also correctly predicts the effect of patching other
hosts. Unfortunately, there are now 400 nodes on the attack graph representing the user desktop hosts
instead of 200, and the subgraphs below nodes W and D are duplicated. Firewall filtering has caused
redundant subgraphs in the predictive graph by breaking the attacker's action into two stages. First, a
direct-compromise stage compromises hosts directly reachable through the firewall. Second, an indirect-
compromise stage uses directly compromised hosts to attack the rest of the vulnerable hosts behind the
firewall. To remain predictive, the subgraph that represents indirect compromises must be duplicated.

It can be shown that the number of nodes in a predictive graph is greatest with one firewall if the
number of directly and indirectly compromised hosts is equal. Consider a network similar in structure to
the network of Figure 11 with H vulnerable hosts where DC hosts can be directly compromised through
the firewall and thus H — DC hosts are indirectly compromised. The number of nodes in the attack graph
(excluding the root node) is DC(H —DC) because each of the directly compromised hosts compromises
the remaining H —DC hosts. This equation is maximized when DC = H /2 and there are (H /2)” nodes.
Even a subnet with 200 hosts could produce a graph with 10,000 nodes if 100 hosts can be compromised
directly through the firewall.

If there are multiple firewalls or filtering devices between an outside attacker and an internal
protected subnet, the graph size can increase in a similar fashion after each filtering device. For example,
Figure 12 shows an example with two firewalls between an outside attacker and protected hosts on
internal subnet B. This two-firewall topology occurs at many sites that put external servers in a DMZ
(demilitarized zone) and internal hosts in a more protected subnet. Although this usually is accomplished
using one physical firewall with three network interfaces, two firewalls are shown to illustrate locations
where network filtering occurs. Each subnet in Figure 12 contains three hosts that can be directly
compromised through each firewall from hosts on the left of the firewall and three that can be indirectly
compromised. To reach hosts on the innermost subnet B, an outside attacker must pass through firewall
A, compromise stepping-stone hosts in subnet A, and then pass through firewall B. Only the three
indirectly compromised hosts in subnet A are allowed to connect through firewall B to subnet B. The left
of Figure 13 shows a predictive attack graph for this network. It can be seen that the number of nodes is
multiplied by 9 after each firewall. The left node in this graph is the attacker host, the first column of
three nodes represents the directly compromised hosts in subnet A, the next column of 9 nodes represents
the three indirectly compromised hosts in subnet A being compromised three times each. Each of these 9
nodes then directly compromises three hosts each in subnet B through firewall B and each of these
compromises three hosts indirectly. In this worst-case topology, a network with only 12 nodes creates an
attack graph with 120 nodes.
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Figure 12. A network designed to create the largest firewall explosion possible with 12 hosts. Two subnets contain
three hosts that can be directly compromised through each firewall from hosts on the left and three that can be
indirectly compromised from these hosts. To reach hosts in the innermost subnet B, an outside attacker must pass
through firewall A, compromise hosts in subnet A, and pass through firewall B. Only the three indirectly
compromised hosts in subnet A are allowed to connect through firewall B to subnet B.

The above analysis can be extended to more than two filtering devices. If L is the number of levels
or number of filtering devices in a network, and each subnet contains the same number of nodes ( H /L),
then predictive graph size is maximum when L=H/2e¢ and DC=H/2L, where L and DC must be
rounded to a nearest integer. When these equations are satisfied, then the number of nodes in the graph
grows exponentially in H and is bounded by O(e” ). Most networks include at most one to three filtering
devices in series and not the large numbers required to achieve exponential graph growth. Even with two
filtering devices, however, the size of a predictive graph grows as a fourth power of the number of hosts.
This type of growth is impractical to model for large networks when many hosts can be compromised.
Further examples of this phenomenon, which we call a firewall explosion, are provided in Section 8.
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Figure 13. The predictive attack graph (a) is for the network in Figure 9, and it illustrates the effect of two levels of
firewall explosion. Each firewall multiplies the number of paths in this graph by 9, leading to a total of 120 nodes.
This expansion could continue if there were more subnets and firewalls. The left-most node in the attack graph
represents the attacker host; the next two columns of nodes represent hosts in subnet A and the first level of the
firewall expansion; and the next two columns of nodes represent hosts in subnet B and the second level of firewall
expansion. A node-predictive attack graph (b) is much simpler. Nodes on this graph from left to right represent the
attacker host, directly compromised hosts in subnet A, indirectly compromised hosts in subnet A, directly
compromised hosts in subnet B, and indirectly compromised hosts in subnet B.

A variant of a predictive graph, called the node-predictive graph, prevents attack graph size from
growing exponentially. A node-predictive graph accurately predicts the effect of completely patching any
combination of nodes, where nodes represent either individual hosts or groups of hosts. It also predicts
the effect of patching individual vulnerabilities on all hosts except for a select set of hosts that are
grouped together using a technique called Dynamic Host Collapse (DHC). Node predictive graphs are
built using the predictive graph pseudocode but after incorporating DHC. DHC places hosts into host
groups when they have equivalent inbound compromisability. In other words, if two hosts can be
compromised at the same level (user, administrator, other, DoS) from every host the attacker has already
compromised, then the hosts are equivalent from the point of view of the attack graph. This also means
that if you can compromise one of the hosts in a host group, then you can compromise all of them.
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A host group is treated like a single host by the attack graph generator. Host groups are consistent
across the graph as well. If hosts A, B, and C are in host group G, for example, then every occurrence of
G in the graph represents A, B, and C. Additionally, none of the three hosts A, B, and C appear in any
other group. Singleton groups are also possible.

An example of a node-predictive graph for the network in the left of Figure 11 is shown at the far
right of Figure 11. This graph shows the attacker directly compromising a host group labeled W&D
containing both the web server and the database server. From there, the attacker compromises all 200 user
desktops shown as a single host group labeled U. The redundant subgraphs shown in the predictive graph
in the middle of Figure 11 don’t occur in the node-predictive graph, and hosts have been placed into two
groups. The right side of Figure 13 shows a node-predictive graph for the network of Figure 12. This
graph is also much smaller than a predictive graph and contains the attacker host and four host groups.
Two hosts groups contain three directly compromised hosts from subnets A and B and two contain three
indirectly compromised hosts from these subnets. The dramatic reduction in graph size provided by node-
predictive graphs comes at the expense of losing some details concerning attacker actions. The graph no
longer differentiates between attack paths that compromise the web or database servers or which hosts in
a host group enable further compromise. As a result, we can no longer make recommendations based on
the removal of arbitrary edges in the attack graph. We can only make recommendations based on removal
of nodes that represent host groups, of edges that do not terminate on host groups, and of other nodes that
represent single hosts.

Node-predictive graph generation is begun by placing hosts into the largest possible host groups,
assuming the groups are correct, and then splitting groups when the attack graph discovers
counterexamples. All of the hosts in an unfiltered reachability domain join the same host group, with a
few exceptions designed to ease implementation. For example, gateways between subnets are placed in
singleton groups. Graph generation is the same as with a predictive graph but with several modifications
as shown in the simplified pseudocode of Figure 14. We will discuss the modifications out of order,
illustrating the basic technique first, followed by the other necessary adjustments.

The attack graph generator operates normally, originating attacks from a source node to ports on
individual hosts and producing graph nodes and edges to represent successful attacks. However, these
resulting nodes are not placed directly into the graph or into the queue. Instead, the DHC algorithm
evaluates them for counterexamples—cases in which some, but not all, of the hosts in a given host group
are compromised. If no counterexamples are found, the algorithm replaces all of the target nodes with
nodes for the appropriate host groups instead. Each edge, instead of pointing to a node representing the
target host, points to the node representing the target host group. These host group nodes are then added
to the end of the queue and the algorithm proceeds normally.

Notice that nodes representing host groups are placed on the queue, as ordinary attack graph nodes.
When reachability is evaluated for such a node (line 5), the reachability algorithm computes the
reachability for every host in the host group and presents the graph-generation algorithm with the union of
that reachability. The graph generator then attacks hosts reachable from the host group, without knowing
which host or hosts within the group make each particular attack possible.




1 Add NewNode (attacker starting location) to PriorityQueue
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WHILE (PriorityQueue is not empty)
sourcenode <- pop PriorityQueue
sourcehostgroup <- the host group represented by sourcenode
FOREACH targetport reachable from sourcehostgroup
targethost <- the host that contains targetport
FOREACH vulnerability on targetport
IF no node representing targethost exists on the path
from the root of the graph to sourcenode
THEN
IF
no node on the path from the root of the graph
to sourcenode successfully uses vulnerability to attack
targethost
THEN
IF an edge connects sourcenode to a node
representing targethost
THEN
targetnode <- existing node representing targethost
add NewEdge (sourcenode, targetnode, vulnerability) to graph
ELSE
targetnode <- NewNode (targethost)
add NewEdge (sourcenode, targetnode, vulnerability) to graph
END
ELSE
record the attack as a "potential attack"
END
END
END
evaluate the new targetnodes to see if there are any
counterexamples to our host groups
IF there are incorrect host group(s)
THEN
FOREACH incorrect host group
FOREACH occurrence of the host group in the graph
grpnode <- attack node which represents the host group
DELETE all edges inbound to grpnode
put grpnode's parent onto the PriorityQueue
DELETE grpnode and any graph structure beneath it
END
create the correct host group(s) and remove the incorrect one
END
ELSE
replace the targetnodes with nodes representing host groups
put the targetnodes into the PriorityQueue
END
END

Figure 14. Simplified pseudocode to generate a node-predictive attack graph.
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The algorithm becomes complicated when a counterexample is found (lines 30-32). Imagine, for
example, that there is a host group containing hosts A, B, and C. If a source node in the attack graph is able
to compromise hosts A and B at the administrator level, but cannot compromise C, this shows that the host
group is incorrect. The group must be split into two new host groups, one containing A and B (both
compromisable at the administrator level), and the other containing only C (not compromisable). We must
also make sure the group is split everywhere it has already been used; there may be nodes elsewhere in the
attack graph which already use the original group. The algorithm, therefore, walks the attack graph, looking
for nodes representing the original group (lines 34-35). Whenever such a node is found, it is destroyed,
along with all inbound edges and all of the graph structure beneath it (lines 36-37, 39). The node's parent is
then entered into the priority queue (line 38) and the subgraph is rebuilt using the new groups.

Support for subgraph deletion and reconstruction requires a priority queue. Nodes within the queue
are prioritized by depth in the graph. This does not change the breadth-first nature of the graph
generation. The priority queue allows the algorithm to easily rebuild the deleted section or sections
breadth-first only to the depth of the rest of the graph. It then proceeds breadth-first on the entire graph
from that point on.

A final alteration is necessary to prevent erroneous splits. The predictive graph’s pruning algorithm
prevents child nodes from using attacks already used by the parent node. However, this can cause
problems with DHC. Imagine again the host group containing A, B, C. Now imagine host D is able to
compromise all three at the administrator level via vulnerability 1, as well as host E. Next, host E is able
to compromise B via vulnerability 2 and can still compromise A and C via vulnerability 1. The pruning
algorithm would keep only E’s compromise of B via vulnerability 2; the attacks on A and C are redundant
because the parent node (representing host D) has already successfully used those attacks. This gives the
grouping algorithm incorrect information; according to the graph, E can compromise B, but not A or C.
This would force an incorrect group split. We therefore track “potential attacks” which would normally be
removed by the predictive pruning algorithm (line 26 in Figure 10). The DHC algorithm is then able to
track all of E’s potential attacks and correctly see that the group containing A, B, and C should remain
intact (and, furthermore, the attack graph should show E attacking a node representing that group). The
node-predictive pseudocode can be extended to support all of the attack types shown in Table 2 in much
the same way as the predictive graph pseudocode. Additionally, the code must be able to split one group
into as many as three groups. Separate groups are required for members that cannot be compromised,
those that can be compromised at user level, and those that can be compromised at admin level.

The node-predictive algorithm is very complex and has many opportunities to underperform.
Splitting groups is a very complicated and involved process, and the optimistic nature of the algorithm all
but guarantees that splits will be necessary. However, we have found this algorithm performs well in
practice. Further examples of the dramatic reduction in graph size and graph-building time provided by
this approach compared to predictive graphs are presented in Section 8 on simulations. The primary
disadvantage to the algorithm’s node-predictive graph is the loss of granularity; the graph can no longer
be used to make recommendations concerning individual hosts in a host group. We have some ideas for
increasing the analytic value of a node-predictive graph by tracking additional information during its
construction, and intend to pursue this in future work.
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6. AUTOMATED RECOMMENDATIONS

Attack graphs quickly become too large for hand analysis even though a predictive graph is much smaller
than a typical full graph. We have developed an analysis system that automatically extracts information
from the graph and presents it to an administrator as an easily understood, prioritized list of recommended
changes to the network. This allows an administrator to first apply patches that provide the greatest
reduction in the NCP or network compromised percentage described in Section 3.7.

The analysis system hypothesizes patches to hosts and evaluates their effects on the network’s security.
Each hypothetical patch or group of patches is called a recommendation. We make our recommendations
host-based, rather than vulnerability-based, in order to offer recommendations that are easy for an
administrator to understand and implement. A recommendation to patch three vulnerable services on Host
A, for example, is usually more practical than a recommendation to patch vulnerability X everywhere it
occurs in the target network.

Each recommendation has an associated NCP value. Whenever possible, we compute a
recommendation’s value using the predictive graph. If a predictive graph is too large and cannot be
generated, we use a node-predictive graph. With a node-predictive graph, we use the same algorithm
except each host group is treated as a host. We first remove the edges that target the host or hosts the
recommendation suggests patching. Once the edges are removed from the predictive graph, we can again
compute the total asset percentage obtained by the attacker. The predictive graph allows us to hypothesize
a set of changes to the network’s vulnerabilities and predict the results of those changes without
rebuilding the graph. The recommendation’s value is the difference between the original and new NCPs.

We first formulate recommendations for individual hosts, examining each host one at a time.
Recommendations are ordered by determining the impact of patching each host compromised in an attack
graph. The algorithm recommends patching only the vulnerabilities the attacker could exploit on the
given host, which are not necessarily every vulnerability on the host. We compute this list of exploitable
vulnerabilities by walking the attack graph and recording all edges that the attacker can use to
compromise the target host. We do not explore subgraphs beneath a compromise of the target host.

The individual host recommendations are often valuable because they reduce the list of
vulnerabilities that must be patched by focusing only on vulnerabilities which exist and are exploitable
from the attacker’s starting location. In many networks, however, the impact of patching two or more
hosts is much greater than that of patching any single host because the attacker must go through a
bottleneck. This bottleneck is often a small set of hosts that can be accessed directly through a border
firewall as in the network of Figure 11. An attacker can use this small set of stepping-stone hosts to
compromise the rest of the hosts behind the firewall. Patching an individual host in the small set of
stepping-stones does not protect the rest of the hosts. We need to be able to formulate and offer a
recommendation which calls for the administrator to patch the entire group of stepping-stone hosts.
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We, therefore, additionally formulate group recommendations, each representing the impact of
patching several hosts at once. We begin at the attacker’s starting node. For each child node (each
representing a host the attacker could compromise directly), we compute the set of all hosts compromised
below the child node. We then collect the child nodes into groups. A child node C joins group G if the
group already contains a node D such that the set of hosts compromised below C has a non-null
intersection with the set of hosts compromised below D. The algorithm thus forms groups of hosts which
are stepping-stones to some common subset of additional hosts. We recursively explore any singleton
groups; the single node in the group is treated as the attacker’s starting node and the algorithm runs again.
The two types of recommendations allow us to find and report both single-host and multiple-host
stepping-stones in the attack graph.

The NetSPA system generates its attack graphs and its recommendations in roughly the same
amount of time. This is acceptable, but we have some directions for future work which should improve
the performance of the recommendation algorithm and increase its fidelity as well.

Because the above system results in at least one recommendation per compromised host, we must
present the recommendations to the administrator carefully; we have still generated a large amount of
data. The algorithm sorts the collection of recommendations by value and presents them as an ordered list.
This presents the recommendations in order of effectiveness; the recommendation which reduces the NCP
value the most is displayed first. Only the most effective recommendations are presented. This prevents
the system from overwhelming the administrator with every possible recommendation. We present
examples of these recommendations in Section 8, in which simulation results are presented.
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7. FIELD TRIALS ON THREE ACTUAL NETWORKS

NetSPA has been evaluated on three networks under the guidance and cooperation of system
administrators of these networks. One network was at a military site and two were at MIT Lincoln
Laboratory. They contained from 200 to 3,400 computers and two contained perimeter firewalls that we
were permitted to analyze. Analyses were performed on site on a computer provided by the host
organization and not connected to any network to insure the privacy and security of the analysis. We
imported firewall configuration files and the results of Nessus or ISS vulnerability scans provided by the
host organizations. Agreements with these organizations prevent us from providing analysis details that
might compromise the security of these networks. The following two paragraphs summarize the results in
a manner that has been accepted for open publication.

For all networks, the analysis required only a few minutes. The initial vulnerability scans typically
found vulnerabilities on hundreds of computers. When firewall information was available, NetSPA was
able to identify hosts that can be directly compromised through the firewall. Recommendations NetSPA
produced successfully reported a small number of “stepping-stone” or “bottleneck™ hosts in which
vulnerabilities found by the scanner, if present, would enable attackers to penetrate the network. Only
these few hosts had to be carefully examined by hand to confirm the presence of the vulnerabilities found
by the network scanner. The NetSPA analysis usually reduced the number of hosts that needed to be hand
examined from the many hundreds found by the vulnerability scanner to the fewer than ten critical

“stepping-stone” hosts. Hand examination discovered incorrect firewall rules, servers that needed to be
patched, and false positives from the vulnerability scanner.

In summary, NetSPA successfully imported vulnerability scanner and firewall configuration
information and was able to produce attack graphs and make recommendations in only a few minutes for
three actual networks with 200 to 3,400 computers. When firewall information was available,
recommendations allowed systems administrators to focus on a few critical “stepping-stone” hosts to
confirm the presence of vulnerabilities or to focus on a few firewall rules that enabled attackers to
penetrate networks from outside a perimeter firewall. After careful review by local analysts of these few
hosts, either networks were made secure from outside attacks or it was determined that networks were
secure. The ability to focus resources was found to be very valuable, and future tests are planned.




8. SIMULATION STUDIES AND SCALING

This section describes simulation studies designed to explore the performance of NetSPA on
medium and large networks with hundreds to thousands of hosts. A rationale for the studies and a detailed
description of the simulator is presented, along with seven experiments. Results and analyses accompany
each experiment. Experiments demonstrate scaling performance discussed in prior sections of this report
and complement results obtained on real networks described in the previous section.

Simulation studies were performed for three main reasons. First, it is easier to create and validate
simulated networks than acquire and analyze actual network data. Simulated networks and their
characteristics are predefined and can be easily verified. Characteristics of large, complex real networks
are difficult to determine, and the dynamic nature of large networks makes verification difficult. Second,
real data are sensitive and reveal network weaknesses valuable to an attacker. As noted above, most
system administrators require us to perform analyses of real networks on site in a physically protected
area and preferably on a computer not connected to any network. They also do not permit release of
attack graphs for real networks. None of these restrictions apply to simulated networks. Finally,
simulation studies allow analytical evaluation of system performance, including the effects of scaling to
very large networks containing tens of thousands of hosts. By generating data, we can selectively examine
how computation times vary with changes in the network topology and important network parameters
such as the number of hosts and firewall rules.

Two methods could have been used to create simulation data for NetSPA. First, network scans (e.g.,
from Nessus or ISS), firewall configuration files, and user-supplied text files could be generated by the
simulator and imported with the NetSPA importers. Second, as imported data are first written to a
database from which the NetSPA binary creates the in-memory model, simulation data could be written
directly to the database without attempting to re-create several complex file formats. The second method
was chosen for the simulation generators, largely because it avoids the necessity of reproducing Nessus
and/or ISS scan files, firewall configuration files, and our own user-information files.

8.1 NETWORK MODELS

Three simplified network models were developed for these studies: (1) a simple collection of fully
connected hosts co-located on a single segment, called a flat network, (2) an enclave defined by a security
perimeter protecting several subnets and associated assets, and (3) an enterprise comprising two or more
enclaves. These models represent a range of network topologies similar to those encountered on real
networks. Network parameters such as the numbers of hosts and firewall rules can be varied in these
models to explore performance for larger networks. A fourth customized enterprise model is also used. It
demonstrates NetSPA’s ability to discover multistep attack paths where a single vulnerability in one
enclave results in the compromise of two other protected enclaves.
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Network database entries for each model are created with a Perl script. The script takes a simple set
of command-line arguments that define the characteristics of the network model being created. These
allow the user to specify the number of enclaves, subnets, fenants (a subnet with a firewall between its
hosts and the rest of the enclave), hosts, firewalls, and firewall rules, as well as the number of ports and
vulnerabilities per host.

8.1.1 Flat Network

A flat network contains only H fully connected hosts as shown in Figure 15. Each host has P open
ports, and each port permits access to a single remote-to-other vulnerability. Port numbers are chosen
serially from 1 to P. Host addresses are chosen serially from a private class A IPv4 space starting at
10.0.0.1/8. The total host count for the flat network ignores a single virtual host used as an attacker
starting location. In addition to the number of hosts and the number of ports, the percentage of
compromisable hosts can be specified. Hosts in this compromisable group have their remote-to-other
vulnerability on port 1 replaced with a remote-to-admin vulnerability.

eannmmen BURITR ] )

... Host H

Figure 15. Flat network block diagram.

Since there are no firewalls, only a single subnet, a single attacker, and a simple distribution of
vulnerabilities across the network’s hosts, this model provides an easy way to explore how computation
time scales as the number of hosts and as the percentage of compromisable hosts increases.
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8.1.2 Enclave Network

The flat network model is simple and does not contain many of the topological features
characteristic of real networks. The enclave model, shown in Figure 16, was developed to represent a
network at a single corporate or government site. The enclave introduces a security perimeter defined by a
perimeter firewall. Internal hosts are separated into a minimum of five subnets via the firewall and an
internal router. This model represents a general topology seen at single enclave installations ranging from
home office to medium-sized college or corporate networks.

% Perimeter Firewall

Figure 16. Enclave network block diagram.

In the minimal configuration, an enclave model includes five subnets and two “infrastructure™
devices. The first subnet is “The Internet,” and uses addresses from the IPv4 space 172.16.0.0/12. The
Internet subnet contains a virtual host and nothing else. The enclave perimeter firewall has three
interfaces; the first is on “The Internet” subnet, with address 172.16.0.1. The perimeter firewall’s second
interface is on its own “DMZ” subnet and has address 192.168.0.1, and its third (192.168.0.9) is on a




dummy subnet which connects the perimeter firewall to the internal router. This subnet is required to
create a point-to-point link between the firewall and router because NetSPA's run-time network model
does not yet include such links.

The internal router connects, at minimum, two subnets per enclave, known as “Subnet Zero” and
“Subnet Safe.” Subnet zero (Sy) has between zero and 254 hosts using addresses taken serially from the
IPv4 space 10.0.0.0/24. The internal router’s interface on S, uses the first address, 10.0.0.1, on that
subnet. Subnet Safe (Sy¢) contains between zero and 254 hosts which never contain any vulnerabilities.
Sqafe hosts use the IPv4 address space 10.0.1.0/24, with the internal router using the first address.

Up to 253 additional subnets can be added and up to 30 of these can be tenants. Each of the S
normal subnets is denoted as S, (1<i<253) and each of the 7 tenants is denoted as 7,, (1< j<30). As
noted above, a tenant subnet is one in which there is an additional firewall separating the members of the
tenant from the other subnets connected to the internal router. The number of normal subnets § and
tenants 7 can be specified independently. All hosts in subnet and tenant groups are configured alike. The
number of hosts, the number of open ports per host, and the number of vulnerabilities per host can be
specified separately for tenants and normal subnets. The number of inbound, port-specific “allow”
firewall rules can also be specified for each tenant firewall.

The number of hosts, ports-per-host, and vulnerabilities-per-host on both the DMZ and S, subnets
are independently configurable. For each configured subnet (DMZ, Sy, Sqe., Si, 7)), the user specifies P,
the number of ports per host on that subnet. Port numbers are assigned serially from 1 to P as in the flat
network.

Four vulnerability types are available: remote-to-admin, remote-to-user, remote-to-other, and local-
to-admin. These vulnerabilities are associated with one or more ports on each host, as specified by
command-line arguments, and can be set independently for the configured subnets that contain vulnerable
hosts (DMZ, Sy, S;, T)). For explanatory purposes, NetSPA currently associates vulnerabilities with
software versions. For completeness, in the simulation there are exactly four software versions which
directly correspond to the four vulnerability types.

Tenant subnets are provided to measure the impact of network partitioning. A tenant contains a
dummy subnet representing a point-to-point connection from the internal router to the tenant firewall
(external interface), a firewall with exactly two interfaces, and a set of up to 253 hosts. IP addresses in
tenant Tj are assigned the addresses 10.0.(S + /).0/24, where S is the number of normal subnets and j is
the index for the tenant subnet. Tenant firewall rules include only user configured, inbound, port-specific
allow rules. Each of these rules specifies a single port number as acceptable from the firewall’s external
zone to the internal zone. Ports are chosen from 1 to P, where P is the number of allow rules specified in
the configuration.

Tenant firewalls are simplified and include only port-specific rules while perimeter firewalls
include IP-specific firewall rules. This has important implications concerning the extra complexity
created by adding rules to the two types of firewalls. The additional computational cost for attack graph
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generation when adding a new IP-specific rule is significantly higher than the cost of adding a new port-
specific rule. New IP-specific rules in the perimeter firewall add another source address for each virtual
attacker host, as described in Section 4.3 and also another firewall rule to process. New port-specific rules
in tenant firewalls only add another firewall rule to process and do not add new virtual source addresses.

8.1.3 Enterprise Network

The enterprise network model, shown in Figure 17, is a direct extension of the enclave network
model. An enterprise contains E identical enclaves. There can be up to 256 enclaves containing up to
16,582,656 total hosts (256 enclaves * ((255 subnets * 254 hosts) + 6 DMZ hosts)). The total host count
shown in figures and tables for enclave and enterprise networks includes hosts that are requested by
command-line parameters to populate subnets as well as perimeter firewalls, enclave internal routers,
tenant firewalls, and virtual hosts that are automatically added and depend on the network topology.
These additional virtual and infrastructure hosts account for the unusual total host numbers that are all
slightly larger than expected, given the requested number of hosts.

The Intemet

| Perimeter Firewall

Perimeter Firewall

(=5 Internal Router

Figure 17. Enterprise network block diagram.
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8.1.4 Characteristics of Simulated Networks

Many simulation parameters are varied across experiments and some are set to default values for
most studies to reduce the number of simulation runs required. When possible, these default values were
selected to be similar to values found in real networks. Table 3 lists important network parameters. It
shows whether parameters are fixed at default values or varied across experiments and describes the
impact we expect the parameter to have on results.




TABLE 3
Values and the Expected Impact on Results of Important Simulation Parameters

Pa;‘aal:\n:ter Explanation ‘l’fl‘:: Values and Expected Impact on Results
Hosts Total hosts including 285— This will have a direct and substantial impact on
infrastructure 128,000 | computation time and is, therefore, varied substantially.
The asset value to an attacker The exact value makes no difference and it is only
Host asset values | obtained by compromising a 10 important that all hosts have the same value. This has
host only a small effect on graph analysis times.
This percentage is varied to explore the effect of patching
hosts to reduce the number of compromisable hosts. It is
Egsr?senwtiat‘r??e?;ote- ggr? g:tg:\t:r%i‘?;:;:ttst:;at 5% for initial flat-network experiments, varies for one flat
: — 0-100% | network experiment, and is 50% for other experiments. A
to-admin administrator level by remote hi s -
sulrarabilifies T igh percentage will increase the size of the attac}( grgph
(because more hosts are compromisable), and this will
increase computation time.
Firewall filtering This will have a direct and substantial impact on
and address ;rei,:ﬂ?ﬂe{hg r?;ltsvsolr]lf od by 0-2,000 | reachability computation time and is, therefore, varied
translation rules substantially.
: NetSPA’s reachability time is strongly affected by this
Th(ej/nurSB%r of unique TCP value. Many Windows hosts have roughly 10 ports open
Ports per host Al pors cpen ona 10-40 per host and this is used as a default value. Some
particular host and accepting " s
conralions gxperln}ents _for enterprise networks explore the effect of
increasing this value to 40.
The number of software NetSPA’s graph-generation and analysis algorithms are
Software versions | version instances on a 2 unaffected. Load times from the database will be
per host particular host. The versions artificially shortened. The analysis file may be written
may or may not be unique more quickly.
Adding subnets increases the number of source IP
; addresses in source and destination virtual hosts,
Subnets :zmg;r otfe':;irt';al subnets 1-160 increasing reachability computation time. It also may
9 increase the complexity of reachability computations. The
number of subnets is varied across experiments.
NetSPA'’s core algorithms are unaffected by this number
The number of unique TCP except where firewall rules specifically refer to port
Unique ports and/or UDP port numbers in 10 numbers, and in that case the impact on performance is
use on the network very minor (influencing only how often the rule engine hits
an ALLOW or DENY condition on the port-specifying rule).
Unique software The number of unique NetSPA'’s graph generation and analysis aIg.orithmsvaA\n.a
versiona software versions present in 5 unaffected. Load times from the database will be artificially
the network shortened. The analysis file may be written more quickly.
The number of unique
Unique ::mf:(b"llznaishfstﬂiggﬂi?y NetSPA’s graph generation and analysis algorithms are
s - : 5 unaffected. Load times from the database will be
vulnerabilities may occur on multiple artificially shortened
vulnerable hosts within the '
same network
Vulnerabilities per I:;fa?‘zz:ﬁ:‘c: ;:Irtr}?:L?::hrt\)(l)st Underestimating this value will reduce the number of
g ~10 edges generated in the graph, lowering attack graph

host

The vulnerabilities may or may
not be unique

generation and analysis times.




As can be seen from this table, the parameters that are set to one default value are not expected to
have a major effect on computation time. The most important parameters that do have a major effect (total
hosts, percentage of hosts with remote-to-admin vulnerabilities, number of firewall rules, ports per host,
and the number of subnets) are varied across experiments.

8.2 EXPERIMENTS

Four sets of experiments were performed to illustrate NetSPA’s capabilities, ranging from a simple
demonstration of scaling to discovery of complex interrelations on enterprise networks. The first
experiment, “Flat Network Scaling,” shows that computation for the core attack graph generation and
analysis algorithms grows as the square of the number of hosts present. The second, “Enclave Network,”
demonstrates a baseline capability to analyze hosts at a single enclave with subnets and a perimeter
firewall. It shows that the attack graph accurately corresponds to the expected attack vectors and the
automated analysis correctly recommends patching hosts that protect the greatest number of other
vulnerable hosts. It elaborates on the firewall explosion in the analysis and shows the effectiveness of our
mitigation technique. We build off the understanding created by the firewall explosion results to show
how the system is affected by the number of firewall rules present. The third set of experiments,
“Enterprise Network Scaling,” demonstrates the ability to handle large, highly structured networks. The
final experiment, “Customized Enterprise Network,” is a hand-modified enterprise network model
experiment which demonstrates that NetSPA can discover complex interrelations.

All of the experiments were run on a single processor Pentium 4 1.80-GHz machine with 1024 MB
PC133 SDRAM, running Microsoft XP. The following software was installed and running at the time of
experimentation: ActiveState Perl 5.6.1-638; MySQL Ver 12.22 Distrib 4.0.20a; Cygwin (Setup version)
2.427, MS Windows taskmanager.

All times reported in the following results are taken directly from instrumentation built into
NetSPA. The instrumentation is based on calls to GetProcessTimes, which reports times in 100-
nanosecond units. An initial call is made, and at each subsequent call a difference is calculated and the
elapsed time is attributed to the current subprocess. We use GetProcessTimes to record the user and
kernel times for each NetSPA subprocess. All times reported here are the total of those for each reported
timing statistic. Total memory usage required by NetSPA is not reported individually for the following
experiments because memory usage never exceeded 250 MB. This is a relatively small requirement and is
equivalent to running a few large applications on a Windows workstation.

8.3 EXPERIMENT 1: FLAT NETWORK SCALING

In section 5.1.3 of this report, analysis showed that computation time for the attack graph
generation algorithm grows as O(H” log H) for a flat network with H hosts. Experiment la substantiates
this prediction, and Experiment 1b shows that the attack graph generation time grows linearly as a
function of the percentage of compromised hosts.
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8.3.1 Experiment la.

This experiment uses the flat network model with between 500 and 128,000 hosts. In all nine runs,
there are 10 ports per host and one vulnerability per port. All vulnerabilities are remote-to-other, except in
the first 5% of hosts, where the first remote-to-other vulnerability has been replaced with a remote-to-
admin vulnerability. These networks have no filtering rules and are similar to fairly secure local area
networks in which only five percent of all hosts can be compromised.

Table 4 shows the experimental parameters and the data gathered from the instrumentation in
NetSPA. Each row in the table represents the recorded data from one run and contains run-time
configuration information, as well as data recorded by NetSPA instrumentation. The first column, “%
Rootable,” shows the percentage of the hosts with remote-to-admin vulnerabilities. The second column,
“Total Hosts,” shows the number of hosts in the network ignoring the single virtual attacker host. The
third, fourth, and fifth columns show times taken from the instrumentation in NetSPA, listed in seconds.
The “Overall Time” is an aggregation of the times reported by NetSPA for database interaction (load),
attacker address selection, reachability computation, attack graph generation, attack graph analysis, attack
graph file write, and full analysis report file write. Load, address selection, and file write times are not
included in the table to focus on attack graph generation and analysis times. The column labeled
“Reachability and AG Generation” shows the time for both attack graph generation and reachability
computation. The column labeled “AG Analysis” shows the time to produce human-readable
recommendations from the graph.

TABLE 4
Simulation Times for a Flat Network as the Number of Hosts Varies

% Rootable Total Hosts Overall Time | Reachability and AG Generation | AG Analysis

5.00 500 3.41 0.02 0

5.00 1,000 6.58 0.09 0.05
5.00 2,000 13.25 0.3 0.16
5.00 4,000 28.28 1.16 0.63
5.00 8,000 60.05 4.55 2.47
5.00 16,000 145.34 18.25 9.83
5.00 32,000 383.8 73.06 44.67
5.00 64,000 1163.45 292 216.17
5.00 128,000 3877.16 1165.77 834.28

Figure 18 displays the computation time for attack graph generation and analysis versus the number
of hosts on a log-log plot. This plot shows that, on a flat network, the computation for both tasks grows as
roughly the square of the number of hosts. Recall our predicted runtime in this scenario is O(H’ log H).
The observed slope of the plot is roughly two, corresponding to O(H?). The factor of log H is not visible
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on the graph. The attack graph generation algorithm grows as the square of the number of hosts. On the
first pass of the predictive graph algorithm, the attacker’s starting location attempts to compromise all H
hosts in the network. On the second pass, each of those compromised hosts (H,) needs to attempt to
compromise the (H — 1) other hosts resulting in H + H.(H — 1) operations, which is O(H?*) when H, is
proportional to H as it is in this experiment.

Computation Time as the Number of Hosts (Flat Network)

' = Reachability and |

AG Generation
+— AG Analysis

Seconds

O W S WY 1 S W L T

10,000 100,000 1,000,000
Total Hosts

Figure 18. Attack graph generation and analysis times for a flat network as the number of hosts varies.

The attack graph analysis algorithm must consider the removal of each compromised host in turn
(H,), and then evaluate the impact of that removal on the remainder (H,. — 1) resulting in H.(H. - 1)
operations, again O(H*)when H. is proportional to H as it is in this experiment.

8.3.2 Experiment 1b.

This experiment uses flat networks with 10,000 hosts and varies the percentage of compromisable
hosts from 1% to 100%. Table 5 contains the data for this experiment in the same format as previously
described and Figure 19 shows the time required for attack graph generation and analysis. As can be seen,
attack graph generation times grow linearly as the fraction of compromisable hosts, P, increases as
predicted in Section 5.1.3. From above, the predictive graph computation requires on the order of
H + H _(H —1) operations. Substituting H_= PH , yields H + PH(H —1)operations which are linear
in P as found when the number of hosts is constant as in these experiments.




Simulation Times for a Flat Network as the Percentage of Compromisable Hosts Varies

TABLE 5

% Rootable | Total Hosts | Overall Time | Reachability and AG Generation AG Analysis
1.00 10,000 68.61 1.45 0.53
2.50 10,000 72.14 3.53 1.56
5.00 10,000 77.48 714 3.80
10.00 10,000 92.70 14.64 10.59

25.00 10,000 175.14 39.81 70.45
50.00 10,000 374.84 90.30 216.42
100.00 10,000 1360.77 224.86 1068.70
Computation Time as the Percentage of Compromisable Hosts
(Flat Network)
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Figure 19. Antack graph generation and analysis times for a flat network as the percentage of
compromisable hosts varies.

Attack graph analysis growth is not linear. Figure 19 shows that the analysis time is less than
quadratic when fewer than 10% of the hosts are compromised and becomes quadratic when 10% to 100%
of the hosts are compromised. From above, the number of operations required for attack graph analysis of
flat networks grows as H_(H_—1). Substituting H_ = PH and simplifying yields P>H? — PH operations
which grow quadratically in P. The apparent change in growth is probably due to fixed computation
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requirements that do not depend on P. When P is small, and the run time is less than a few seconds, these
additional computations flatten the lower end of the curve and make the growth appear more linear. When
P is large, the effect of these constants is negligible and attack graph generation times grow quadratically
with P.

8.4 EXPERIMENT 2: ENCLAVE NETWORK

A second set of experiments demonstrates that NetSPA can correctly analyze enclave networks
with perimeter firewalls, multiple subnets, and tenant subnets separated from other subnets by firewalls.
Experiment 2a shows that NetSPA can process an enclave network and correctly predict network ingress
routes based on vulnerability information and firewall rules. Experiment 2b presents a detailed description
of a “firewall explosion” and demonstrates our technique for limiting the computational complexity it
introduces. Experiment 2¢ shows that reachability computation time grows as the square of the number of
[P-specific firewall rules while attack graph generation and analysis times remain constant.

Figure 16 shows a model enclave network used in Experiments 2a, 2b, and 2c. The single-attacker
virtual host starting location is outside the security perimeter, simulating an attacker originating from the
Internet. In all three experiments, 50% of the hosts in subnets one through five are compromisable via a
remote-to-admin vulnerability on port 1. All hosts on the DMZ, Tenant 1, and in S, are compromisable
via a remote-to-root vulnerability on port 1. There are five fully patched hosts on Sy. The perimeter
firewall has one rule allowing traffic from the external zone to one host in the DMZ, one rule allowing
traffic from the DMZ to one host in Sy, and ten inbound, IP-specific block rules. This represents an
enclave that is poorly protected and open to attack. Half of the hosts on the interior subnets can be
compromised, and although the firewall has only one inbound rule, it allows an outside attacker to
compromise a stepping-stone host that provides access to interior subnets.

8.4.1 Experiment 2a: Enclave Network, Host Growth

The attacker’s sole path into the protected network is via a single remote-to-admin vulnerability on
one machine in the DMZ. From there, the attacker can exploit a single remote-to-admin vulnerability on
one machine in Sy. Once access to a machine in S is established, the attacker can directly compromise the
remaining vulnerable machines in the network. Table 6 illustrates the impact of varying the number of
hosts on the inside of the network. There are two new columns which were not present in Tables 4 and 5.
The new columns, “Reachability” and “AG Generation,” indicate the computation time required to
compute the reachability information needed for attack graph generation and the computation time
required to compute the attack graph itself, respectively. Figure 20 shows run times for computing
reachability and for attack graph generation and analysis as the number of hosts increases. The number of
subnets in these experiments is 80, except for the two highest host values (30,017 and 40,017) for which
the number of subnets increases to 120 and 160 to accommodate the large number of hosts.
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TABLE 6
Simulation Times for an Enclave Network as the Number of Hosts Varies

Total Overall AG AG
Hosts Time Reachability | Generation Analysis

417 5.67 2.92 0.13 07

4017 105.84 33.83 16.31 32.45
8017 329.91 66.89 64.92 147.92
12017 765.30 101.41 146.92 437.66

16017 1077.89 133.64 261.22 569.64

20017 1763.53 170.69 409.31 1038.67
30017 3684.81 354.13 920.31 2153.58
40017 8165.11 1256.91 1642.20 4885.73

Computation Time as the Number of Hosts
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Figure 20. Simulation times for an enclave network as the number of hosts varies.




The observed slope of attack graph generation is roughly two, corresponding to quadratic growth.
Attack graph analysis grows similarly. Reachability analysis, on the other hand, exhibits a slope of nearly
one because the number of subnets (and thus the number of reachability domains) remains constant as the
number of hosts varies. Once reachability domains are formed, reachability computation is linear in the
number of hosts. The exception is the highest two values, for which the number of subnets increased,
causing a “bump” in the reachability computation required. Adding subnets increases the computation
because each new subnet adds another virtual host to the network and also adds a new address to the
address-selection algorithm. The attack graph generation and analysis time curves have slopes that are
similar to those observed in Experiment 1. The attack graph itself has two stepping-stones leading to the
internal network, at which point the attack behaves as a flat-network attack. The overall run times for the
enclave network are much greater than for the flat network. For example, overall run times with roughly
16,000 hosts are 145 seconds for the flat network and 1,078 seconds for the enclave network. This
increase is primarily caused by the increase in hosts with remote-to-admin vulnerabilities and the
corresponding increase in the number of hosts compromised and size of the attack graph. The percentage
of hosts with remote-to-admin vulnerabilities increased from 5% for the flat network to 50% for the
enclave network and run times increased roughly by the same order of magnitude.

8.4.2 Experiment 2b: Enclave Network, Firewall Explosion

Attack graphs become more complicated when there is more than one potential path into the
network. Experiment 2b introduces additional vulnerable hosts to subnet S, but holds all other variables
constant. After compromising the one vulnerable host in the DMZ, the attacker can compromise all of the
vulnerable hosts in Sy. The attacker then proceeds to compromise the rest of the internal network from all
of the compromised hosts in S,. Each additional vulnerable host in S, creates duplicate child subgraphs.
The overall graph size and attack graph computation is roughly multiplied by the number of vulnerable
hosts when compared to the baseline Experiment 2a with only one vulnerable host.

TABLE 7
Simulation Times for an Enclave Network as the Degree of
a Single-Level Firewall Explosion Varies

g:gl';:;:: :I-:;:L Ntr::s o‘l",ifnr:" Reachability Gen:rc:tion An:I(y;sis
1 1017 513 11.03 2.38 1.05 1.73
4 1020 2046 18.78 2.41 4.08 6.77
9 1025 4601 31.16 2.39 9.20 13.39
16 1032 8178 48.44 2.39 16.52 23.25
25 1041 12777 71.61 2.41 26.03 36.72
36 1052 18398 107.97 2.50 37.89 60.92
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Computation Time for Single Level Firewall Explosion
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Figure 21. Simulation times for an enclave network as the degree of a single-level firewall explosion varies.

Experiment 2b illustrates this phenomenon. An enclave network was used with 10 subnets and
roughly 1,000 hosts, and then hosts with remote-to-admin vulnerabilities were added to Sy. Figure 21
illustrates how computation time grows roughly linearly as vulnerable hosts are added to S,. This is a
firewall explosion, as defined in Section 5.1.4. Table 7 shows how run times and the attack graph size
vary as the “Degree of Explosion,” equal to the number of vulnerable hosts in Sy, varies.

Section 5.1.4 predicts that firewall explosions in series are multiplicative. This implies that a degree
C explosion followed by a degree D explosion has an impact equivalent to a single degree CD explosion.
We verify this relationship with the following two-stage firewall explosion. First, C vulnerable hosts are
placed in the DMZ. Then D vulnerable hosts are placed in S,. This creates a two-stage explosion with a
predicted degree of CD. For illustrative purposes, we set C = D. The results in Figure 22 verify the
prediction; the performance of the algorithm is nearly identical to that in Figure 21. This experiment
utilizes two firewall explosions in series, but is otherwise identical to the former experiment. In the two-
level case, we use an explosion of degree C followed by another of degree C, and in the single-level case
it is an explosion of degree C°. Table 8 contains the full experimental results for the two-stage case and
indicates the two-level makeup of the network. The first column, “Degree of First Explosion,” indicates
the number of hosts placed in the DMZ. The second, “Degree of Second Explosion,” indicates the number
of hosts placed in Sy. The third column, “Product of Degrees,” shows the overall multiplicative degree of
the explosion, allowing easy comparison to corresponding rows from Table 7. The result demonstrates
that firewall explosions are multiplicative as predicted.

59




TABLE 8
Simulation Times for an Enclave Network as the Product of the Degrees
of Two Firewall Explosions Varies

Degirre:‘ ol Dseeg;: :f Product of Total Tree Overall Reachability AG : AG ;i
Explosion Explosion Degrees Hosts Nodes Time Generation Analysis
1 1 1 1017 513 10.77 242 1.03 1.73
2 2 4 1019 2047 18.83 2.41 4.09 6.61
3 3 9 1021 4603 30.53 2.39 9.19 13.00
4 4 16 1023 8181 48.06 2.41 16.41 23.16
5 5 25 1025 12781 73.89 2.38 25.73 39.28
6 6 36 1027 18403 96.48 2.38 36.75 50.84

Computation Time for Double Level Firewall Explosion
100.00 e EmRa = !
{ :/ ‘ —e— Reachability

10.00 ’ it | |G Ganaion
- |+ AGAnalysis |

Seconds

1 10 100

Product of Degrees of Explosions

Figure 22. Simulation times for an enclave network as the product of the degrees of two firewall explosions varies.

Real networks may create this phenomenon. Each pass through a filtering device can potentially
introduce an explosion, and a network with many separated segments could introduce several explosions.
Even a handful of low-degree explosions, when combined, can cause a very large overall degree and
substantially degrade performance or render a modestly sized network’s attack graph intractably large.
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We developed the dynamic host collapse (DHC) graph to mitigate the impact of firewall
explosions. DHC is discussed in Section 5.1.4. When the two-level firewall explosion experiment is re-
run using DHC, the runtimes drop dramatically, as seen in Table 9 and Figure 23. Note that the scales are
different in Figures 22 and 23, and the times for attack graph generation and analysis with DHC are so
small that they wouldn’t even show up on Figure 22. DHC has reduced the size of the graph from more
than 18,000 nodes to only 5 nodes and made attack graph generation and analysis times insignificant.
DHC can also reduce run times substantially even in networks without a firewall explosion because it
reduces the number of graph nodes and, therefore, reduces the overall number of outbound edges the
graph algorithm must consider and discard. A DHC graph presents the administrator with less information
than a normal predictive graph, but in some networks with a high-degree firewall explosion, it may be
computationally infeasible to build a normal predictive graph instead.

TABLE 9
Simulation Times for an Enclave Network as the Product of the Degrees of
Two Firewall Explosions Varies, Using Dynamic Host Collapse

THR L AR et S T oRan | o M| 0
Explosion | Explosion
1 1 1 1017 5 7.91 2.36 0.08 0.02
2 2 4 1019 5 8.1 2.39 0.05 0.01
3 3 9 1021 S 8.1 2.39 0.06 0.02
4 4 16 1023 5 8.08 2.38 0.06 0.02
5 5 25 1025 5 8.00 2.38 0.05 0.02
6 6 36 1027 5 8.02 2.36 0.09 0.02
Computation Time for Double Level Firewall Explosion
with DHC
1000 ———— =
§ 1.00 —+— Reachability
9 i —=— AG Generation \
S o0 il i |+ AGAnalsis |
F————— —s
:r- ) ) s 3 L A A
Qi Le—epe
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Product of Degrees of Explosions

Figure 23. Simulation times for an enclave network as the product of the degrees of two firewall explosions
varies, using dynamic host collapse.
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8.4.3 Experiment 2c: Firewall Rules

Experiment 2c explores the effect of adding IP-specific rules to the perimeter firewall in an enclave.
In this experiment, the network structure (517 hosts, 10 subnets) is constant and similar to that used in
Experiment 2a. Only the number of IP-specific blocking firewall rules on the perimeter firewall is varied.
Each blocking rule blocks one unique source IP address. This has no impact on the actual graph because
the attacker will simply choose the original unblocked source IP address, but it does illustrate the
expected performance impact. Similar results would be obtained if accept or pass rules were added using
IP addresses of patched or nonexistent hosts; in both cases, only one host can be reached through the
firewall and serve as a stepping-stone.

Table 10 and Figure 24 illustrate the impact of firewall rule set size. Figure 24 shows that attack
graph generation and analysis times remain low and unchanged as the number of firewall rules change.
This was expected because blocking rules do not change the attack graph. Only the time required for
reachability computations increases as firewall rules are added. Initially this increase grows slowly with
fewer than 100 firewall rules, and it then grows quadratically with more than 100 firewall rules. Quadratic
growth occurs because, as noted above, each new rule adds a new starting [P address to the attacker
virtual host and each new rule increases the complexity of processing required every time the firewall is
traversed to compute reachability from the new virtual IP address. We are pursuing alternative approaches
to reachability computation with complexity that may grow less than quadratically.

TABLE 10
Simulation Times for an Enclave Network as the Number of
IP-Specific Firewall Filtering Rules Varies

II:sttasl FII;:‘I::" 9":::: 3 LoRd Asechatniity Gen:r(:tion Amg)?sis
517 1 4.39 3.00 0.69 0.25 0.42
517 10 4.61 2.92 1.02 0.27 0.38
517 100 9.77 2.94 6.14 0.25 0.41
517 1000 1164.22 4.81 1158.59 0.28 0.45
ST 2000 5388.05 5.77 5381.41 0.25 0.47
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Computation Time as the Number of Firewall Rules
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Figure 24. Simulation times for an enclave network as the number of IP-specific firewall filtering rules varies.

8.5 EXPERIMENT 3: ENTERPRISE NETWORK SCALING

A model network that emulates a multi-enclave enterprise is shown in Figure 17. Experiments were
performed using an enterprise model with five enclaves to create a high level of topological complexity.
Experimental parameters were adjusted to represent a simple and a complex network. The simple network
has 10 open ports per host and 10 IP-specific filtering rules per perimeter firewall for a total of 50 rules in
all firewalls. The complex network has 30 open ports per host and 400 IP-specific rules per perimeter
firewall for a total of 2,000 rules in all firewalls. Other parameters are as in Experiment 2a.

Experiments for the simple enterprise network were performed with 2,000 to 40,000 hosts. Results
in Figure 25 and Table 11 demonstrate that attack graphs can be generated for large enterprise networks
in short, practical computation times. Total computation times are roughly one minute for 2,000 hosts, 10
minutes for 10,000 hosts, and a half hour for 20,000 hosts. Reachability and attack graph analysis times
dominate in these experiments, and attack graph generation is relatively fast. These times would be less if
the attack graph only considered an attacker starting from one fixed IP address instead of trying all IP
addresses used in firewall rules and included in the virtual attacker host. Alternatively, run times would
increase if there were more firewall rules and thus more addresses for the virtual attacker host to use.
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TABLE 11
Simulation Times for a Simple Enterprise Network as the Number of Hosts Varies

Toial Overall W A 3 s g
Hosts Time Reachability | Generation Analysis
2085 70.92 48.94 0.86 8.64
8085 407.31 215.58 13.16 127.78
14085 888.14 357.83 39.52 393.23
20085 1758.77 684.09 80.67 844.95
26085 | 2713.92 911.41 136.36 1452.55
32085 | 3539.00 986.59 207.27 2070.61
40085 5785.70 1642.80 324.78 3428.44

Computation Time as the Number of Hosts
(Enterprise Network)
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Figure 25. Simulation times for a simple enterprise network as the number of hosts varies.

64




The effects of these two changes are shown in Figure 26. The lowest curve in Figure 26 shows the
total computation time for an attacker starting from one specific external IP address for the simple
enterprise network. This can be compared to the next higher curve in this figure, which is the total
computation time for the simple enterprise network using the default external virtual attacker host that
includes all IP addresses that occur in any firewall rule. The total computational time is smaller with only
a single starting IP address because reachability from the attacker’s starting location has to be computed
only from one IP address instead of from many IP addresses used in firewall rules. Table 12 shows the
run times for the simple enterprise network using only a single-attacker IP address. Comparing Tables 11
and 12 indicates that using a single IP address dramatically reduces reachability computations. In this
case, this reduces the total run time only slightly because the attack graph analysis time is almost
unchanged and dominates the total run time. An attack graph that includes only one IP starting address
might be of interest if attackers could not assume or “spoof” arbitrary external IP addresses but were

forced to use one or more fixed starting addresses.

TABLE 12
Simulation Times for a Simple, Single-Source IP Enterprise
Network as the Number of Hosts Varies

Overall = AG AG
Time Fanchiability Generation Analysis

29.86 7.30 0.89 8.77

226.47 29.70 13.27 130.70
590.22 50.98 40.09 402.80
1127.08 74.03 82.17 822.92
1954.05 94.61 138.69 1507.39
2948.66 121.89 210.31 2338.34
4781.56 156.86 329.89 3929.75

TABLE 13
Simulation Times for a Complex Enterprise Network as the Number of Hosts Varies

Total Overall S AG AG
Hosts Time Py Generation Analysis

285 277.08 270.34 0.02 0.02

885 824 .45 809.00 0.34 1.70
1485 1396.63 1370.55 1.00 3.59
2085 2083.14 2043.02 2.28 8.97
5085 5534.66 5407.50 12.11 49.30
8085 8849.95 8569.53 32.67 135.30
10085 10443.22 10043.61 50.95 210.64




Growth as the Number of Hosts (Enterprise Network)

10000.00
1000.00 ¢ 4 Complex Network (Overall)
2 ‘
§ | —— Simple Network (Overall)
o —=— Simple, Single Source-IP |
100.00 NeEV{OFK (Overall)
10.00
1000 10000 100000

Total Hosts

Figure 26. Simulation times for simple, complex, and simple single-source IP enterprise networks as the
number of hosts varies.

The upper curve in Figure 26 and Table 13 shows the overall run time for the complex enterprise
network with 30 open ports and 400 IP-specific rules in each perimeter firewall. This complex enterprise
network has a total of 2,000 IP-specific firewall rules instead of the total of 50 IP-specific rules in the
simple enterprise network. The overall run time with 10,000 hosts increases to roughly three hours for the
complex network, instead of 10 minutes with the simple network. With 1,000 hosts, the overall run time
is roughly 15 minutes. As noted above, the increase in run times is caused by the additional starting
addresses for the virtual attacker host, the additional firewall rules that need to be analyzed, and the
additional target ports that must be considered when computing reachability. We are exploring
approaches that should reduce computation time substantially for situations in which there are many
firewall rules, as with this complex enterprise network.

8.6 EXPERIMENT 4: CUSTOMIZED ENTERPRISE NETWORK

A final experiment demonstrates that NetSPA can find long multi-hop paths through a vulnerable
network. This experiment uses an enterprise model with three enclaves connected via the Internet,
representing a large corporate network with three business locations. The network is similar in structure to
the network used in Experiment 3, but host parameters are selected at random. Each of the 3,000 hosts has
a varying number of open ports and vulnerabilities. The average number of open ports is 13, and the
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average number of vulnerabilities per host is four. Additionally, the firewall rules are altered to allow only
the following connections:

1. The attacker can only directly compromise two vulnerable machines on the first enclave’s
DMZ

A Virtual Private Network (VPN) tunnel exists from the first enclave’s internal network to
the second enclave’s internal network

A second VPN tunnel exists from the second enclave’s internal network to the third
enclave’s internal network

The shortest path from an attacker on the Internet to the third enclave’s DMZ has many stepping-
stone hosts. The attacker must compromise the following hosts, in order:

1. One of two vulnerable hosts on the first enclave’s DMZ
Any vulnerable host within the first enclave’s internal subnet
The host in the first enclave with VPN privileges to a host on the second enclave
The host in the second enclave on the opposite end of the VPN connection
The host in the second enclave with VPN privileges to a host on the third enclave
The host in the third enclave on the opposite end of the VPN connection
A host in the third enclave’s DMZ

The NetSPA system successfully produced an attack graph for the above scenario in roughly an
hour, using an attacker starting location with a single fixed IP address. The resulting graph is far too large
to view. We have instead presented a visually simplified portion of the graph in Figure 27. In the original
graph, an edge is labeled with the single vulnerability it represents, and a node is labeled with the host and
access level it represents. In the simplified graph, multiple edges between two nodes are collapsed
together and, therefore, may represent multiple vulnerabilities, and leaf nodes are collapsed to a single
node and are labeled with the number of hosts they represent. Additionally, two-stage attacks against the
same host (remote-to-user followed by local-to-admin) are collapsed into a single node.

Each node corresponding to one of the seven stepping-stones outlined above is indicated by
number. The attacker starting location is not shown, but an edge from this starting location to one of the
two vulnerable hosts in the first enclave’s DMZ, labeled as step 1, is shown. Note that the graph also
captures the attacker’s ability to compromise other hosts at each level. For example, consider the node
labeled as step 2, representing one of the vulnerable hosts in the first enclave’s internal subnet. In addition
to compromising the host representing step 3, this host is also able to compromise the remainder of the
vulnerable machines in the first enclave. These additional compromises are represented by the three
additional nodes—one for hosts compromised directly at administrator level, one for direct compromise at
user level, and one for direct compromise at user level followed by a local-to-admin attack. A similar
structure appears at step 4, where the rest of the second enclave can be compromised, and at step 6, where
the rest of the third enclave can be compromised.
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Figure 27. Simplified segment of an attack graph generated for the customized enterprise network.

Because attack graphs are large and difficult to interpret by hand, recommendations are
automatically generated from the graph as described in Section 6. Figure 28 shows the first three
recommendations generated for the customized enterprise network scenario. These recommendations are
those that produce the largest reduction in NCP. The first line of a recommendation indicates the
suggested action, the second line shows the reduction in the NCP score if that single action is followed,
and the third line shows the number of hosts in a host group if the recommendation applies to a group.
The following lines identify the hosts, the ports used to access the vulnerability, and the vulnerabilities
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that must be patched. The vulnerabilities listed are only those critical to an attacker’s progress and do not
necessarily include every known vulnerability on a host. The first recommendation in Figure 28
corresponds to the attacker’s first action in Figure 27 and recommends patching the two vulnerable hosts
in the DMZ of the first enclave. The second recommendation corresponds to the third action in Figure 27
and suggests patching the host at the end of the VPN in the first enclave. The third recommendation
corresponds to the fourth action in Figure 27 and suggests patching the host at the end of the same VPN
in the second enclave. Note that the reduction in NCP is greatest for the first recommendation, and then
the reduction becomes less for the other recommendations. For this attack path, it would be desirable that
the second recommendation correspond to step 2 in the attack graph of Figure 27 because this reduces the
NCP more than the second recommendation shown in Figure 28. This doesn’t occur with our current
recommendation algorithms, and we have designed a new algorithm for a future version of NetSPA
designed to correct this limitation. The current algorithm does find the single best recommendation that
provides the greatest reduction in NCP, but the second and following recommendations may not be those
that would be found by following the first recommendation, recomputing the attack graph, and generating
the first recommendation again for the revised attack graph.

Vulnerability score change: -19.1
Hosts in group (2 total)
Host 1 of 2: Site 0 External Web Server on 192.168.0.8/29
Port: 80 a software version 0.0
FAK-2004-WEB (MT2) r2u port 80 vuln
Host 2 of 2: Site 0 External Mail Relay on 192.168.0.8/29
Port: 25 a software version 0.00
FAK-2004-MAIL (MT2) r2u port 25 vuln

a Recommendation: Patch software on group of hosts or block ports at gateway(s)

Vulnerability score change: -18.7
Host: host 49 on 10.2.10.0/24
Port: 25 a software version 0.2
FAK-2004-092 (MT3) synthetic vulnerability
Port: 445 a software version 0.57
445 a software version 0.10
FAK-2004-045 (MT3) synthetic vulnerability
FAK-2004-055 (MT3) synthetic vulnerability
Port: 515 a software version 0.21
515 a software version 0.21
FAK-2004-060 (MT2) synthetic r2u vulnerability
Port: 1103 a software version 0.33
FAK-2004-055 (MT3) synthetic r2r vulnerability

e Recommendation: Patch software on host or block ports at gateway(s)

Vulnerability score change: -17.8
Host: host 31 on 10.1.2.0/24
Port: 540 a software version 0.3
540 a software version 0.90
FAK-2004-013 (MT3) synthetic r2r vulnerability
Port: 8081 a software version 0.5
FAK-2004-020 (MT3) synthetic r2r vulnerability

e Recommendation: Patch software on host or block ports at gateway(s)

Figure 28. Excerpt of the recommendations generated by the customized enterprise network.

69




8.7 SIMULATION EXPERIMENTS SUMMARY

The above experiments confirm NetSPA’s ability to handle complex network topologies and
firewalls with many filtering rules. They demonstrate that the predictive graph and node-predictive graph
techniques outlined in Sections 5.1.3 and 5.1.4 scale well even with large enterprise networks with 10,000
and more hosts. Total times to compute reachability, generate attack graphs, and analyze graphs to
produce recommendations depend on network complexity but can be less than 10 minutes even for
networks with 10,000 hosts. Run times increase as the number of IP-specific rules in firewalls increases,
as the number of open ports per host increases, and as the number of hosts that can be compromised at
administration level increases. These simulation studies also demonstrate that the time required to
compute attack graphs is often much less than the time required to compute reachability and analyze
attack graphs to make recommendations. They suggest that future work should explore approaches to
reduce the computation time required for these two tasks.
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9. RELATED WORK

A comprehensive annotated review of past research on attack graphs is provided in [24]. This
review demonstrates that although research has made significant progress, no past system has analyzed
networks with more than 20 hosts, and computation for most approaches scales poorly and would be
impractical for networks with more than even a few hundred hosts. It also shows that past approaches are
limited because many require extensive and difficult-to-obtain details on attacks, many assume that host-
to-host reachability information between all hosts is already available, and many produce an attack graph
but do not automatically generate recommendations from that graph.

The most recent version of NetSPA described in this report greatly extends the initial NetSPA
system developed by Artz [19] that is also reviewed in [24]. This new version of NetSPA incorporates
efficient approaches to computing reachability, generating predictive and node-predictive graphs, and
automatically making recommendations. It also includes tools to automatically import firewall and
vulnerability information and has been applied to real networks with more than 3,000 hosts and simulated
networks with more than 40,000 hosts.

Solutions to problems of scaling, modeling attacks, computing reachability, and formulating
recommendations incorporated in the most recent version of the NetSPA system were often motivated by
approaches followed by other researchers. The most important problem addressed by our work is that of
scaling to large enterprise networks. The most capable past systems were the Topological Vulnerability
Analysis (TVA) tool developed at George Mason University [1, 15, 25-27] and the initial NetSPA tool
developed at MIT Lincoln Laboratory [19]. Both systems could construct attack graphs for small 17-host
networks that were simulations of actual networks, and scaling for both systems was poor. Computation
required for the TVA tool described in [25] is bounded by H ® where H represents the number of hosts
in a network. Although this is not combinatorial and is the best upper bound reported to date, as stated in
[25], this approach will only scale to networks with at most “tens or hundreds of hosts.”

Timing measurements and an algorithmic analysis demonstrate that scaling for the initial NetSPA
tool [19] was also poor. This approach is more complete than that described in [25] because instead of
assuming that reachability between all hosts is provided, it computes the reachability between all hosts
before generating attack graphs. It also simultaneously builds an attack graph that shows how all targets
in a network can be compromised by an attacker from a given starting location. A small 17-host network
was analyzed in less than 90 seconds (including reachability computations), but scaling to larger networks
was poor because this approach constructs a full attack graph whose size grows combinatorically as the
number of hosts increases. Attack graph generation in this first version of NetSPA scaled as poorly as
other systems that also used full attack graphs [2, 16, 20, 21]. Initial collaborative experiments [18]
demonstrated that model checking also exhibits similar poor scaling for large networks.

In practice it is desirable to compute attack graphs for enterprise networks with 10,000 to 100,000
hosts. Past studies suggest a few approaches to improve scaling. One approach followed by [25] is to
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produce a restricted graph that is designed solely to answer questions required to analyze network security
and that restricts attack types to those that do not disable prerequisites for other future attacks. Our
predictive graphs are designed solely to determine hosts that can be compromised and the vulnerabilities
required to exploit them. We also require that attacks do not disable prerequisites for other future attacks
and model attacks using only information on locality (remote, local) and effect (remote-to-admin, remote-
to-user, local-to-admin, DoS, and other). This has been adequate to model most important vulnerabilities
that can be detected with a network vulnerability scanner. It also leads to a graph-building algorithm that
scales roughly as H *on many real and simulated networks.

Another approach suggested to improve scaling is to group or aggregate similar hosts together. This
reduces H by replacing many individual hosts by representative hosts. Aggregation was suggested in [2]
for this purpose and in [27] to simplify the visual presentation of attack graphs. We perform three
important types of aggregation. First, when computing reachability, hosts in one or more fully connected
subnets are grouped into unfiltered reachability domains. Second, hosts that have the same reachability to
all other hosts external to a subnet are grouped into filtered reachability domains. On many real networks,
these two types of grouping reduce the computation required to compute reachability by one or two orders
of magnitude. A third type of grouping is used when computing node-predictive graphs. Here, all hosts
with equivalent inbound compromisability are formed into host groups. This often prevents the “firewall
explosions” described in Section 5.1.4 and can dramatically reduce computation required to compute
attack graphs and the graph size. Finally, we have explored approaches to group similar hosts on a subnet
that have the same operating systems and are maintained together and thus have the same vulnerabilities.
This has proved relatively ineffective in reducing computation because too few hosts in networks we have
analyzed are similar enough to permit this type of grouping. In addition, much of the computational
savings that would be gained by this type of similar host grouping is already provided by the three other
types of grouping described above.

A second major problem addressed by our work concerns obtaining information on prerequisites
and post-conditions for exploits. Many past studies required extensive attack details (e.g., [1, 17]) that
could only be obtained by hand. To solve this problem, we require only limited information concerning
attacks and fill in unknown attack and vulnerability details with reasonable default values as suggested in
[2]. We also automatically import vulnerability information from vulnerability scanners and the ICAT
database and use pattern classification approaches to automatically determine attack characteristics from
multiple sources. In many cases we find that attack graph analysis identifies a small set of critical
vulnerabilities on a few stepping-stone hosts that enable an outside attacker to progress to internal targets.
This small set of critical vulnerabilities can be verified by hand. This is much more tractable than hand
verifying the analysis of all vulnerabilities.

A third major problem addressed by our work is performing reachability computations to determine
which other hosts in a network can be reached from a given host by modeling the effect of gateways and
firewalls. A weakness of many past approaches is the assumption that reachability information is
available prior to computing attack graphs (e.g., [18]) or that it can be obtained using a vulnerability
scanner from each subnet in the analysis (e.g., [1]). Determining reachability between all hosts in large
networks with many firewalls is a computationally complex task. It is almost impossible to determine
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reachability using vulnerability scanners, and this approach can severely underestimate reachability.
Firewalls can contain hundreds to thousands of access control rules, network address translation (NAT)
rules, and network objects that represent groups of IP addresses (e.g., [28]). A single scan from one IP
address will only exercise a few of these rules. Such scans will miss rules that apply to other source IP
addresses or to destination [P addresses not included in the scan. It is difficult, in general, to know which
source and destination addresses will be treated differently by a firewall due to NAT rules and the
complexity of other rules. In addition, a single scan will not discover the effect of time-dependent firewall
rules. To accurately determine the reachability between hosts in separate subnets, we download and
analyze configuration files for firewalls and the output of network vulnerability scanners. Simulation
studies and experiments on actual networks have demonstrated that computing reachability is often more
computationally intensive than constructing attack graphs. Much of our effort has focused on reducing
reachability computations by grouping hosts into filtered and unfiltered reachability domains, computing
reachability on demand, and using efficient data structures and algorithms. Scaling for our current
reachability algorithms depends on the complexity of the network topology and the number and
complexity of firewall rules. For many simple networks, computation grows only quadratically as hosts
and firewall rules are added. Reachability algorithms have been applied successfully to networks with
thousands of firewall rules and thousands of hosts and completed in minutes on general-purpose
computing hardware.

A final problem addressed by our work is the generation of recommendations from attack graphs.
Past studies have demonstrated that attack graphs can become large and complex even for networks with
fewer than 20 hosts (e.g., [1, 19]). Such large graphs, once generated, can be difficult to analyze and

understand. An alternative approach is to not only generate attack graphs, but to also automatically
analyze attack graphs to address security issues and make recommendations to improve security.
Recommendations could, for example, suggest changes in the network architecture or patches for
installed software that protect important hosts but result in few changes. One past study [26] developed
approaches to make such recommendations, but it is not clear that this approach would scale well to large
networks. We developed an approach that uses predictive or node-predictive graphs to make
recommendations concerning patching a single host or groups of hosts. This algorithm has been applied
to large networks with more than 10,000 hosts and typically requires computation that is equivalent to
that of our graph-building algorithms.




10. SUMMARY

A new version of a tool named NetSPA (Network Security Planning Architecture) has been
developed to assess the security of large enterprise networks. Firewall configuration files, data from
network vulnerability scanners, and attack descriptions from vulnerability databases are automatically
imported and used to build attack graphs that show how far inside and outside attackers can progress
through a network by successively compromising exposed and vulnerable hosts. This analysis can be used
for many purposes including comparing the security of alternative network designs, identifying patches or
firewall configuration changes that strengthen security, determining the security risk caused by new
vulnerabilities or proposed changes in firewall rules, and identifying the most critical hosts to patch first
when a new vulnerability is announced.

Extensive simulation experiments and field trials on actual networks demonstrate the practicality
and utility of our approach. During field trials, NetSPA successfully imported vulnerability scanner and
firewall configuration information and was able to produce attack graphs and make recommendations in
only a few minutes for three actual networks with 200 to 3,400 computers. When firewall information
was available, recommendations allowed systems administrators to focus on a few critical “stepping-
stone” hosts to confirm the presence of vulnerabilities or to focus on a few firewall rules that enabled
attackers to penetrate networks from outside a perimeter firewall. After careful review by local analysts of
these few hosts, either networks were made secure from outside attacks or it was determined that
networks were secure. Simulation studies were used to benchmark the performance of algorithms used to
compute reachability, to generate graphs, and to formulate recommendations. These studies led to many
algorithmic improvements. The current system has successfully analyzed simulated networks with more
than 10,000 hosts that are similar in topology to large enterprise networks. Performance on many
simulated networks scales roughly quadratically in both the number of hosts and firewall rules. This is
much better than previous systems. Theoretical analyses of two other recent attack graph algorithms
suggest scaling on the order of H°® [1, 25] or H* [29]. On networks with thousands of hosts, our
approach requires many orders of magnitude less computation than these approaches.

Simulation studies also demonstrate that computing reachability is often more computationally
intensive than constructing attack graphs. Although many past studies assume reachability information is
available, much of our effort has focused on making reachability computations more efficient by grouping
hosts into filtered and unfiltered reachability domains, computing reachability on demand, and using
efficient data structures and algorithms. Scaling for our current reachability algorithms depends on the
complexity of the network topology and the number and complexity of firewall rules. For many simple
networks, reachability computations grow only linearly as hosts are added and quadratically as firewall
rules are added. Reachability algorithms have been applied successfully to networks with thousands of
firewall rules and thousands of hosts and complete in minutes on general-purpose computing hardware.

Field trials, simulation studies, and an analysis of attack and network design trends suggest new
directions for future research to improve the current NetSPA system. A first new direction is to extend
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graph generation to model additional types of attacks. These include attacks against network filtering
devices, including routers and firewalls that make filtering less restrictive and make new hosts reachable
from hosts already on an attack graph. For example, an attacker may add a new firewall rule to allow
access from a normally blocked outside IP address. It would also be useful to extend the “Other” effects
category to more accurately model attacks that provide limited privileges on database servers, web
servers, and other networked software. Client-side attacks in which a client (e.g., web browser) is lured to
or uses a malicious server to enable an attack from the server could also be modeled. Client-side attacks
would require information on host client software that is not available from network vulnerability scans
but may be provided by automated patch systems, network management systems, or host-based
vulnerability scanners. Finally, sniffing attacks and other attacks in which information such as a password
or certificate is obtained and then used later could be modeled more accurately by changing our modeling
of prerequisites.

A second new direction for future work is to model the filtering performed by other network
devices, such as routers. Both routers and firewalls affect traffic flow, and we need to import router
configuration files to model this correctly. A third direction is to improve the analytic value of node-
predictive paths by storing additional information during graph construction. This extra information
could, for example, identify which host in a host group was permitted to communicate through a firewall
to enable an attacker to compromise hosts in a separate subnet. A fourth direction is to improve the
efficiency of the recommendation algorithms. A final direction is to obtain and use more information on
network infrastructure devices, including switches, hubs, and virtual private network (VPN) devices.
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GLOSSARY OF TERMS

Administrator Privilege The privilege level of an administrator or root user on a single computer.
This is provided by a remote-to-administrator attack on a host.

Attack Graph A graph that shows the hosts that can be affected by one or more attackers starting from
one or more network locations, the level of privilege obtained on each host, and the sequences of actions
taken to obtain these privilege levels. Nodes represent the state of network hosts (including infrastructure
and user hosts) and attacker privilege levels on hosts. Edges represent specific attacker actions, exploits,
or attack components used to gain additional privileges.

DoS (Denial of Service)  The effect of an attack when the attack disables a host or service running on
that host.

Dynamic Host Collapse (DHC)  An approach to simplify attack graph construction that groups hosts
with equivalent inbound compromisability into host groups. DHC places hosts into host groups when they
have equivalent inbound compromisability. In other words, if two hosts can be compromised at the same
level (user, administrator, other, DoS) from every host the attacker has already compromised, then the
hosts are equivalent from the point of view of the attack graph. A host group is treated like a single host
by the attack graph generator.

Edge An edge between nodes in an attack graph that represents specific attacker actions, exploits, or
attack components used to gain additional privileges. It usually represents using a specific vulnerability to
compromise a host.

Filtered Reachability Domain A group of hosts is said to compose a filtered reachability domain
when the hosts’ reachability to all other hosts accessed through traffic filtering devices is identical.

Full Attack Graph An attack graph that shows all possible paths an attacker can use to compromise
all hosts from a specific location.

Host Asset Value The value of a host to an attacker. It represents the value captured or gained by an
attacker who compromises a host, including loss of confidentiality, availability, and integrity.

Host-Compromised Attack Graph  An attack graph that contains all hosts that can be compromised
by an attacker from a specific location. Hosts are compromised using the shortest sequence of
vulnerabilities and stepping-stone hosts.

Host Group  In a node-predictive graph, hosts are grouped together into host groups when they have
equivalent inbound compromisability. In other words, if two hosts can be compromised at the same level
(user, administrator, other, DoS) from every host the attacker has already compromised, then the hosts are
equivalent from the point of view of the attack graph.
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Local An attack launched from one already compromised host against the same host, often to increase
the privilege level of an attacker.

Local-to-admin  An exploit in which an attacker on a machine with the privilege of a user elevates
privilege to that of an administrator or root user.

NetSPA A system described in this report that computes attack graphs and makes recommendations to
improve network cyber security. The term stands for Network Security Planning Architecture.

Network A collection of subnets and network devices, such as routers and gateways, that connect them.

Network Address Translation (NAT) A type of network traffic manipulation in which the source
address, destination address, or both are changed as the traffic passes through a firewall or other device.
For example, a packet with source address 1.2.3.4 and destination 5.6.7.8 may be changed by a border
firewall to source address 12.0.0.1 and destination address 24.0.0.2. The originator of the traffic, 1.2.3.4,
need not know that the destination has been changed. The recipient of the traffic, 24.0.0.2, does not know
that the traffic came from 1.2.3.4. The translation from 1.2.3.4 to 12.0.0.1 is called Source NAT and is
commonly used to conceal many machines behind a single outward-facing IP address. The translation
from 5.6.7.8 to 24.0.0.2 is called Destination NAT and is commonly used to redirect incoming
connections to a specific machine designated to handle the traffic.

Network Compromised Percentage (NCP)  The percentage of the total host asset values across a
network that is captured by an attacker. It is the sum of the host asset values across hosts on an attack
graph divided by the sum of all host asset values in a network converted to a percentage.

Node-Predictive Attack Graph A variant of predictive attack graphs that prevents the attack graph
size from growing exponentially as more filtering devices are added. A node-predictive graph accurately
predicts the effect of completely patching any combination of nodes. It also predicts the effect of patching
individual vulnerabilities on all hosts except for those that have been combined into host groups.

Occluded IP Address The IP address of a destination host on one side of a firewall is occluded from a
source host on the other side of a firewall when the firewall blocks the actual IP address of the destination
host, but translates a different destination IP address to that of the destination host.

Other Privilege  The effect of an attack that doesn’t provide user or administrator privileges or
perform a DoS against a victim host, but that provides some information about the host or limited access
to the host.

Predictive Attack Graph An attack graph with two critical properties. First, it determines all hosts that
can be compromised for an attacker from a given starting location. Second, without regenerating the
graph, it correctly predicts the effect of patching vulnerabilities and adding firewall rules that block
specific TCP/UDP ports by removing the associated nodes or edges from the graph.
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Reachability A property between two interfaces on hosts or network devices attached to a network that
indicates when it is possible to communicate over the network between these interfaces. An analysis that
determines reachability takes into account the network topology, traffic filtering devices such as firewalls,
and the TCP/UDP ports used for the communication.

Reachability Matrix A matrix with rows as outbound interfaces on hosts and columns as all active
inbound ports on all hosts. Each entry in the matrix indicates whether the network’s topology, routing,
and filtering policies permit a connection between the corresponding row interface and column inbound
port.

Remote  An attack launched from one already compromised host to a different target host.

Remote-to-admin (r2a)  An exploit in which an attacker on a remote machine achieves the privilege
of an administrator or root user on a target victim machine.

Remote-to-user (r2u) An exploit in which an attacker on a remote machine achieves the privilege of a
normal user on a target victim machine.

Subnet A collection of hosts and network devices with interfaces that share the same IPv4 address
space and are connected by devices which do not perform filtering. For example, a subnet of hosts using
the IPv4 address space 10.0.0.0/24 can use up to 256 addresses including 10.0.0.0, 10.0.0.1, ...
10.0.0.254, 10.0.0.255. The lowest and highest addresses (10.0.0.0 and 10.0.0.255) are typically not used
for hosts and this leaves 254 addresses.

Tenant Subnet A subnet in which all hosts in the subnet are behind a firewall. The firewall separates
all hosts in the subnet from other external subnets and networks.

Unfiltered Reachability Domain A group of hosts is said to compose an unfiltered reachability
domain when they are fully connected and there is no traffic filtering between any two hosts in the
domain. The hosts can be on one subnet or on multiple subnets as long as there is no traffic filtering
between subnets.

User Privilege The privilege level of a normal user on a single computer. This is provided by a remote-
to-user attack on a host.

Virtual Attacker Host A host added to the network under analysis in the subnet where the attacker
is located. It contains all the [P addresses that occur in any filtering device and tries to reach all other
hosts from these different IP addresses to penetrate as deeply into the network as possible. It is not created
when the attacker starting location is a specific IP address.

Virtual Destination Host A host added to every subnet in a network under analysis. It contains all the
IP addresses in Destination Network Address Translation (DNAT) firewall rules. When attack graphs are
generated, each address in the virtual destination host is treated as a host on the network with a unique IP
address to exercise DNAT firewall rules.

Virtual Host A Virtual Attacker or Virtual Destination host as defined above.
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