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Abstract

Dynamic content generation poses huge resource demands on web servers, creating a scal-

ability problem. WebView Materialization, where web pages are cached and constantly re-

freshed in the background, has been shown to ameliorate the scalability problem without sac-

rificing data freshness. In this work we present an adaptive online algorithm to select which

WebViews to materialize, that realizes the trade-off between Quality of Service and Quality of

Data. Our algorithm performs very close to the static, off-line optimal algorithm, and, under

rapid workload changes, it outperforms the optimal.

1 Introduction

Online services, frequently updated content and personalization make dynamic content ubiquitous

on the Web today. Unfortunately, the high resource demands of the dynamically generated web

�Prepared through collaborative participation in the Advanced Telecommunications/Information Distribution Re-
search Program (ATIRP) Consortiumsponsored by the U.S. Army Research Laboratory under the Federated Laboratory
Program, Cooperative Agreement DAAL01-96-2-0002. In the Proceedings of the Fourth International Workshop on
the Web and Databases (WebDB’2001), Santa Barbara, California, USA - May 24-25, 2001, held in conjunction with
ACM SIGMOD’2001.
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pages create a significant scalability problem. Although web caching was able to address the scala-

bility problem for static web pages, it will not work for dynamic content, since caching cannot pro-

vide any guarantees for the freshness of the served data. Serving user requests fast is of paramount

importance only if the data is fresh. With many data-intensive web servers being used for critical

applications, serving stale data can have catastrophic consequences.

We have showed in [LR00] that web materialization, where web pages are cached and con-

stantly refreshed in the background, is a robust solution to the scalability problem. We use the term

WebView to refer to the HTML fragments that are the unit of materialization. We presented a de-

tailed cost model that can be used in an off-line fashion to select which WebViews to materialize.

However, with the highly dynamic & unpredictable nature of web traffic, an adaptive and online

algorithm is needed to select which WebViews to materialize.

In this work, we present metrics for the Quality of Service (QoS) and the Quality of Data (QoD)

at data-intensive web servers. We focus on the constrained View Materialization problem: given

a limit on the number of WebViews to materialize, select which WebViews to materialize, so that

the overall QoS and QoD are maximized. We describe an adaptive online view materialization al-

gorithm that does not rely on a cost model and briefly present the results of our preliminary exper-

iments.

2 Measuring Quality of Service and Quality of Data

We assume a web server architecture similar to that of Figure 1. The web server is the front-end for

serving user requests. All requests that require dynamically generated data from the DBMS are in-

tercepted by the asynchronous cache and are only forwarded to the DBMS if the data is not cached.

Unlike traditional caches in which cached data is invalidated on updates, in the asynchronous cache

data elements are materialized [LR00] and constantly being refreshed in the background. The view

selection module collects statistics and determines which WebViews should be kept materialized.

All updates in our system must be performed online. A separate module, the update scheduler is
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responsible for scheduling the DBMS updates and the refresh of the WebViews in the asynchronous

cache.

Although our work is motivated by database-backed web servers and materialized WebViews, it

applies to any system that supports online updates. For the rest of the paper, we will use the more

general term views instead of WebViews.

We assume a database schema with N relations, r1,

relation
updates

DBMS

accesses

cache
async

web 
server

update
scheduler

selection
view

Figure 1: System Architecture

r2, : : :, rN and M views, v1, v2, : : :, vM . Views are

derived from relations or from other, previously de-

rived views. We distinguish two types of views: vir-

tual, which are generated on demand, and material-

ized, which are precomputed, stored in the asynchronous

cache and refreshed asynchronously. All user requests

are expressed as view accesses, whereas all incoming updates are applied to relations only and may

trigger view refreshes. Finally, we assume that incoming access requests are served in FIFO order,

incoming relation updates are also performed in FIFO order, whereas materialized view refreshes

can be performed in any order.

2.1 Quality of Service

Typically, Quality of Service (QoS) is measured through the average query response time, which

corresponds to the time required to service an access request at the web server. Although, the aver-

age query response time is an accurate measure for the performance of a system, it lacks portabil-

ity, since we cannot compare average query response times on different systems or with different

workloads. Furthermore, since we want to be able to consider both Quality of Service and Quality

of Data, we need to use intuitive [0,1] metrics, with 0 corresponding to the worst and 1 to the best

possible performance/data quality for our system.

Performance improves when more views are kept materialized. In fact, the higher the num-

ber of requests that can be served by the asynchronous cache, the higher the overall performance.
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Under this premise, we define Quality of Service as the percentage of accesses that are served by

materialized views:

QoS =
number of accesses to materialized views

total number of accesses
(1)

This QoS definition is similar to the hit rate definition for traditional caches. However, unlike tradi-

tional caches, the asynchronous cache refreshes all its stored objects on updates and does not change

its list of objects on cache misses (materialization decisions are made in the background). Finally,

it should be noted that our QoS definition is not equivalent to the percentage of views that are ma-

terialized, as views are not accessed with the same probability.

2.2 Quality of Data

When an update to a relation is received, the relation and all views that are derived from it become

stale. Database objects remain stale until an updated version of them is ready to be served to the

user. We illustrate this definition with the following example.

Assume a database with one relation r and

t 1 t 2 t 3 4t t 5

time

r

r
INCOMING UPDATE STREAM

SCHEDULE
UPDATE

&r
are stale

is stale

vm

vv

mv

Figure 2: Staleness Example

two views: vv which is virtual and vm which

is materialized. Also assume that at time t1

an update for relation r arrives (Figure 2). Re-

lation r will become up to date after it is up-

dated. If the update on r starts at time t2 and

is completed at time t3, then relation r will

have been stale from time t1 until t3. On the

other hand, virtual view vv will become up to date after all of its parent relations/views are updated.

Since relation r was updated at time t3, view vv will have been stale from time t1 until t3. Finally,

materialized view vm will become up to date after it is refreshed. If the refresh of vm starts at time

t4 and is completed at time t5, then view vm will have been stale from time t1 until t5.
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To measure the Quality of Data (QoD) for the data served to the user, we calculate the percent-

age of accesses that are performed on fresh views, i.e. views that are not stale. Specifically, we

consider the freshness status of a view at the start of processing an access request. For the example

in Figure 2, an access request for view vv will be considered fresh if the processing of the request

starts before t1 or after t3. Overall, we define:

QoD =
number of fresh accesses
total number of accesses

(2)

3 Adaptive View Selection Algorithm

Clearly, the choice of views to materialize will have a big impact on QoS and QoD. On the one

extreme, materializing all views will give perfect QoS, but very low QoD (i.e. views will be served

very fast, but will be very stale). On the other hand, keeping all views virtual will give high QoD, but

zero QoS (i.e. views will be as fresh as possible, but the query response time will be high). We refer

to the problem of selecting which views to materialize, so that both QoS and QoD are maximized,

as the View Materialization problem. We will use the term materialization plan to denote which

views are materialized and which are virtual. In this work, we focus on the constrained version

of the View Materialization problem : select the materialization plan that maximizes both QoS and

QoD, when there is a constraint on the number of views that can be materialized. The constraint can

be because of the size of the asynchronous cache (which can fit k materialized views) or because

of the update processing speed of the system which can limit the number of materialized views that

can be refreshed in the background.

Monitoring Materialization Health The objective of the View Materialization Problem is to find

views that are accessed a lot and have relatively few updates. Since we have limited resources (stor-

age space in the asynchronous cache and processing capacity for performing updates), we want to

keep materialized those views that are being “used” a lot after each refresh. The amount of view

“usage” is simply the number of accesses to that view, since it was last refreshed. In other words,
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we want to select for materialization views that have high refresh utilization.

A simple way to measure refresh utilization is to instrument each view with a private counter.

The refresh utilization counter is incremented every time the view is accessed and is set to zero every

time the view is refreshed. If a view is virtual, we reset the counter whenever the virtual view would

have been refreshed, if it were materialized. The higher the value of the refresh utilization counter,

the more “used” the materialized version of the view is/will be, and therefore the bigger the gains

if we keep the view materialized.

The only drawback of the refresh utilization counter is that it does not consider time. For ex-

ample, we can have two views, v1 and v2 with equal refresh utilization counters (assume 5), but v1

receives 100 accesses per second (and therefore roughly 20 refreshes per second), whereas v2 might

only get 5 accesses per second and only 1 refresh per second on average. Obviously, we should be

able to distinguish between the two, and select v1 for materialization, since it improves QoS, while

occupying the same space as v2. For that reason, instead of the refresh utilization counter, we use

the ratio of accesses to refreshes over a period of time, which we refer to as the materialization

health of view vi, or mh(vi). We have that:

mh(vi) =
num accesses

1 + num refreshes
(3)

In Eq. 3, num accesses is the number of accesses to view vi during the observation period. If view

vi is materialized, then num refreshes is the number of refreshes that vi had during the observation

period. If view vi is virtual, then num refreshes is the number of refreshes that vi would have had,

if it were materialized.

The reason for the +1 in the denominator of Eq. 3 is two-fold. First of all, it guarantees a valid

mh() value, even when there are no refresh operations during a certain observation interval. This

prevents getting a lot of views with mh() =1 (which would not allow us to compare these views

with the rest), even if we have a lot of static views. Secondly, the +1 corresponds to the initial

generation query of view vi, since it is already loaded in the asynchronous cache at the beginning
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of the observation period.

Algorithm Based on the concept of materialization “health”, we present the details of our ADap-

tive View Materialization Algorithm (ADVMA). At pre-specified intervals, the current access and

refresh counters are consolidated into mh() values for each view (Figure 3). In order to derive

the materialization plan with the highest QoS+QoD, under a materialization constraint (assume

k), ADVMA selects to materialize the k views with the highest mh() values and make the re-

maining views virtual. After the decision is made, the system concurrently serves access requests

(while maintaining access counters) and updates relations or refreshes materialized views in the

background (while maintaining refresh counters). At pre-specified intervals, the current access and

refresh counters are consolidated again into mh() values and the decision process is repeated.

1. compute mh() for all views
2. materialize k views with highest mh() values

make remaining views virtual
3. initialize counters

4. serve access requests update relations
maintain num accesses refresh materialized views

maintain num refreshes

5. synchronize at pre-specified time intervals
6. goto step 1

Figure 3: Pseudo-code for the Adaptive View Materialization Algorithm

ADVMA has many advantages. First of all it is inherently adaptive. It will “pick up” changes in

the access & update workloads and react accordingly. Secondly, it does not rely on cost estimates,

which makes the algorithm ideal for rapidly changing environments. Thirdly, the algorithm is on-

line: it does not require the entire access and update stream to decide which views to materialize.

Fourthly, it operates in the background, at fixed intervals. This means that a) the selection decision

is not on the critical path of serving access requests (which is the case with traditional cache admis-

sion and replacement algorithms), b) ADVMA imposes little overhead on the system (runs period-

ically and not all the time), and, c) ADVMA has the ability to consolidate statistics and therefore

be tolerant to minor fluctuations. Finally, we can tune how adaptive ADVMA will be by modifying
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the interval at which ADVMA will re-evaluate the current materialization plan periodically.

4 Experiments

In this section we present results from our experiments using a high-level simulator. The database

schema, the update costs for relations, the access and refresh costs for views, the incoming access

request stream, the speed in which accesses can be processed, the incoming update stream and the

speed in which updates can be performed are inputs to the simulator. The simulator runs in two

modes: a) using a specified materialization plan, it can calculate the overall QoS and QoD for the

given parameters, and b) it can use ADVMA to adapt the materialization plan at specified intervals

and calculate the overall QoS and QoD. Access requests and relation updates are scheduled in FIFO

order, whereas view refreshes are scheduled so that QoD is maximized, by scheduling popular or

“inexpensive” refreshes first [LR01].

ADVMA vs optimal for static workloads In the first experiment, we used a database of 16 views

and four relations. We created a synthetic access request stream where the view popularity fol-

lowed the Zipf distribution [BCF+99] and also a synthetic update stream with uniform distribution

of updates over the views. The duration of the streams was 60 seconds or 60,000 milliseconds (our

simulator’s internal clock run at milliseconds). The reason we used such a small database was that

we wanted to enumerate all possible materialization plans and identify the selection of material-

ized views with the highest QoS+QoD value. Assuming a materialization constraint of four views

(=25%) the possible materialization plans are 1820.

Figure 4 presents the QoS, QoD values for all materialization plans that have four materialized

views. The bottom curve is the QoS, the middle curve is the QoD and the top curve is the sum of

QoS and QoD. The plans on the x-axis are listed in “lexicographical” order (first one is 0000 0000

0000 1111, second one is 0000 0000 0001 0111, etc, and the last one is 1111 0000 0000 0000, where

the i
th bit is 1 if vi is materialized). Views were named in order of frequency of access (i.e. v1 is

the most popular view and, in general, first bits correspond to most popular views). Although at
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algorithm QoS + QoD QoS QoD

static-optimal 1.425 0.605 0.820
worst-static 0.998 0.081 0.917

ADVMA-static 1.423 0.624 0.799

ADVMA (10 sec) 1.423 0.624 0.799
ADVMA (5 sec) 1.423 0.624 0.799
ADVMA (3 sec) 1.424 0.623 0.801
ADVMA (2 sec) 1.422 0.619 0.803
ADVMA (1 sec) 1.412 0.603 0.809

Figure 4: All possible materialization plans Table 1: Optimal vs ADVMA

all times we have only four materialized views, they clearly correspond to different access request

volumes (increasing from left to right) and thus the QoS is improving. On the other hand, more

accesses to materialized views means that there is a greater chance for an access to read stale data,

and therefore QoD decreases.

Table 1 compares ADVMA with the static algorithms. For all static algorithms we assume that

we know the entire access & update stream in advance and we have one materialization plan for the

duration of the experiment. On the other hand, our adaptive algorithm, ADVMA, periodically re-

evaluates the materialization plan and can modify it in order to improve the overall QoS and QoD.

We have enumerated all possible materialization plans for this experiment’s workload and ran the

simulator for every plan. The plan which gives the highest QoS+QoD corresponds to the static-

optimal algorithm (Table 1, first row), whereas the plan with the lowest QoS+QoD is the worst-

static plan (Table 1, second row). ADVMA-static is the static version of the ADVMA algorithm,

where we decide the materialization plan once, based on the access/update statistics of the entire

workload, using the mh() function (Table 1, third row). Finally, the remaining rows, correspond

to the fully dynamic version of ADVMA (where knowledge of the future is not required), with

varying intervals1. We can see that ADVMA-static is very close to the optimal static case (equal to

99.86% of the optimal) and therefore could be used for approximating static-optimal. Furthermore,

all dynamic ADVMA cases have given QoS+QoD values that are very close to the static optimal,

1A 5-second interval means that ADVMA will re-evaluate the materialization plan every five seconds
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despite the fact that they do not have knowledge of the future like the static algorithms.

ADVMA vs optimal for semi-static workloads In the second experiment, we kept the same

setup as the first experiment with one variation: we split the access request stream into two segments

(of 30 seconds each). The two segments had identical properties, except for the popularities of two

frequently requested views from the first segment which were decreased in the second segment, to

simulate a shift of interest. Using this “semi-static” workload we aim to expose the inadequacies

of static materialization plans under changing conditions.

algorithm QoS + QoD QoS QoD

static-optimal 1.317 0.523 0.794
worst-static 0.985 0.081 0.904

ADVMA-static 1.314 0.519 0.795

ADVMA (6 sec) 1.325 0.542 0.783
ADVMA (4 sec) 1.332 0.545 0.787
ADVMA (2 sec) 1.322 0.528 0.794

Table 2: Semi-static experiment results

algorithm QoS + QoD QoS QoD

ADVMA-static 1.465 0.470 0.995

ADVMA (30 sec) 1.482 0.487 0.995
ADVMA (20 sec) 1.518 0.524 0.994
ADVMA (10 sec) 1.534 0.540 0.994
ADVMA (5 sec) 1.523 0.528 0.995
ADVMA (2 sec) 1.496 0.502 0.994

Table 3: Results for the dynamic experiment

In Table 2 we compare the static-optimal case with the materialization plans generated by AD-

VMA. As was the case with the previous experiment, ADVMA-static is a good approximation of

the optimal, since it has QoS+QoD that is 99.77% of the static-optimal case (which was generated

by enumerating all possible materialization plans). On the other hand, ADVMA (with 6, 4 and 2-

second intervals) outperforms the static algorithms, including the optimal.

ADVMA with dynamic workloads In the last experiment we increased the size of the database

and generated a highly dynamic workload in order to see how well ADVMA can adapt to changing

conditions. Using a database of 2000 views and 100 relations, we created a 5-minute access stream,

where the popularities of the views changed every minute, to simulate a rapidly changing workload.

We report the QoS and QoD for ADVMA-static and ADVMA with multiple re-evaluation intervals

in Table 3. Although ADVMA-static had knowledge of the future (and in previous experiments was

very close to the static-optimal plan), the highly dynamic nature of this workload dictates using an

adaptive algorithm like ADVMA. ADVMA consistently outperformed the static algorithm for all
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re-evaluation intervals. For example, ADVMA-10 (i.e. ADVMA which re-evaluates the material-

ization plan every 10 seconds) was about 5% better than ADVMA-static, which approximated the

optimal algorithm in previous experiments.

5 Related Work

Existing work on caching dynamic data has focused on providing an infrastructure to support caching

of dynamically generated web pages. The decision of which pages to cache, when to cache them

and when to invalidate or refresh them is left to the application program [CIW+00] or the web site

designer [YFIV00]. In other words, none of the aforementioned papers deals with the selection

problem: identifying which dynamic data to cache and which not to cache. In [LR00], we pro-

vided a detailed cost model to help with the view materialization problem, but did not provide an

online selection algorithm. Finally, the decision whether to materialize a WebView or not, is similar

to the problem of selecting which views to materialize in a data warehouse [KR99], known as the

view selection problem. The most important difference that distinguishes our work from existing

view selection literature is that in the web server case, updates are performed online, whereas data

warehouses are updated in an off-line fashion.

6 Conclusions

We introduced intuitive, normalized Quality of Service (QoS) and Quality of Data (QoD) metrics

for data-intensive web servers. We presented ADVMA, an adaptive online algorithm for selecting

which views to materialize in order to maximize QoS and QoD. ADVMA poses little overhead to

the web server, does not rely on a cost model and is highly adaptive. Through experiments, we

illustrated that ADVMA performs very close to the static-optimal case and even outperforms static

view selection (which is based on knowledge of the future) under rapidly changing workloads.

For our future work, we plan to build an industrial-strength prototype of a database-backed web

server in order to validate the results from our simulation experiments. We also plan to experiment
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with alternative measures of overall QoS and QoD, and consider environments with user-triggered

updates, like the one in TPC-W.
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