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ABSTRACT 
 
 
 
Modern network technologies were not designed for high assurance applications. 

As the DOD moves towards implementing the Global Information Grid (GIG), hardened 

networks architectures will be required. The Monterey Security Architecture (MYSEA) is 

one such project. 

This work addresses the issue of object reuse as it pertains to volatile memory 

spaces in untrusted MYSEA clients. When a MYSEA client changes confidentiality 

levels, it is possible that classified material remains in volatile system memory. If the 

system is not power cycled before the next the login, an attacker could retrieve sensitive 

information from the previous session. This thesis presents a conceptual design to protect 

against such an attack. 

A processor may undergo a hard or soft reboot. The proposed design uses a secure 

coprocessor to sense the reboot type of the host platform. In addition, a count is kept of 

the number of hard reboots the host platform has undergone. Using services provided by 

the secure coprocessor, the host platform can trustfully attest to a remote entity that it has 

undergone a hard reboot. This addresses the MYSEA object reuse problem. The design 

was tested using the CPU simulator software SimpleScalar.  
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I. INTRODUCTION 

Many modern network architectures were created with inadequate regard to 

security concerns. Currently, many of these technologies have been deployed in 

situations with high information assurance requirements. As the DOD moves to 

implement its Global Information Grid (GIG) initiative, new networked security 

architectures will need to be developed. One such project is the Monterey Security 

Architecture (MYSEA).[1] The MYSEA project leverages existing COTS products to 

implement multilevel networks over which secure information services can be provided. 

This project addresses a specific security issue within the MYSEA framework. If 

a client computer has been rebooted without being power cycled, it is believed that 

sensitive information may remain within volatile memory components of the system. 

This includes main system RAM. This information is then vulnerable to retrieval by 

malicious programs or users. 

To address this issue, this thesis hypothesizes a design that enhances a client 

workstation so that it senses the type of reboot it underwent. This design is based on the 

Trusted Computing Group’s Trusted Platform Module.[2] The Trusted Platform Module 

(TPM) is a secure coprocessor providing security and encryption services to the host 

platform. A modified TPM is used to sense the type of reboot a computer has undergone. 

This functionality will be shown to be correct using the validation properties of a 

Reference Monitor, which are that is understandable, cannot be bypassed, and cannot be 

modified.[3] Furthermore, the design allows the TPM to keep a count, the Boot Odometer 

Value, which tracks the number hard reboots the host platform has undergone. Used in 

accordance with remote attestation, the computer can then trustfully prove to a remote 

entity the type of reboot it has undergone. In addition, this thesis presents a proof of 

concept simulation of the design using the CPU hardware simulation software 

SimpleScalar. 

This thesis first provides background information, in the second chapter, on the 

MYSEA project, remote attestation, sealed storage, and hardware emulation. The third 

chapter presents the design of the system used to sense the boot type of the host platform. 
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Software requirements for utilizing the new design mechanism are also included. At the 

end of the third chapter is a short section on possible applications of the design. The 

fourth chapter describes the development and testing of the simulation used to 

demonstrate certain properties of the design. The fifth chapter provides analysis of 

implications associated with hypothesized design. The sixth chapter concludes this 

document with a discussion of further work and summary. 
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II. BACKGROUND 

The goal of this thesis is to address the object reuse problem of MYSEA and 

similar architectures by using remote attestation based on a new hardware primitive, and 

to develop a proof of concept of such a product using hardware simulation. Background 

concepts supporting this goal are discussed in this chapter. 

A. MYSEA PROJECT OVERVIEW 

The MYSEA (Monterey Security Architecture) Project is a trusted, network-based 

architecture designed for securely sharing information in dynamic, multi-domain 

environments. The MYSEA framework provides a full featured multilevel secure LAN 

that can interact with single security level legacy networks (NIPRNET, SIPRNET, etc.). 

It is based on commercial off-the-shelf (COTS) components allowing the DOD to 

leverage existing hardware and software, helping to preserve its investment in such 

products. The MYSEA Project relies on high assurance design and development methods 

to ensure the integrity and trust of the system.[4] 

At the core of the MYSEA framework are the MYSEA Server and the Trusted 

Path Extension (TPE). The MYSEA server operates as both a multilevel security (MLS) 

policy enforcement mechanism and platform on which information services can be 

delivered and consumed via standard web-enabled tools. The MYSEA design allows 

confederated servers to distribute the load of multiple network services. The base 

MYSEA server is currently implemented on a DigitalNet XTS-400. The XTS-400 is a 

high assurance hardware/OS platform that enforces an MLS security policy through the 

use of labeled subjects and objects. The TPE is a handheld computing device running a 

lightweight security kernel. It provides an unspoofable link from the user to the MYSEA 

Server over which a variety of security services can be delivered. In addition, the TPE 

mediates access from the users workstation to the server.[5] Figure 1 displays the 

working model for the MYSEA. The trusted channel modules provide label integrity for 

entire single security level legacy networks. They provide the network an unspoofable 

link to the MYSEA server over which authentication and other security services can be 

delivered. Furthermore, Figure 1 shows high assurance link encryptors than can be 

integrated if required.[1] 
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1. Trusted Path Extension 

The Trusted Path Extension (TPE) is the basis for providing security services 

from the MYSEA Server to the client user. Through this link the MYSEA Server 

provides a variety of security critical operations. These include a secure attestation key, 

trusted path services, controlled LAN access, communications and cryptographic 

services, negotiated session services, and control of security critical activities. The TPE is 

based on a high assurance separation kernel running on a dual NIC PDA. The TPE 

protects itself from malicious software operating on the client computer. This is done via 

the physically separated execution environment and the high assurance kernel that 

prevents network vector exploits. Furthermore, the MYSEA architecture does not depend 

on the trustworthy behavior by the client machine. All trust is derived from the 

relationship between the TPE and the MYSEA Server.[4] 

 

Figure 1.   MYCEA Architectural Overview taken from [1] 
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2. Object Re-use Considerations 

Object reuse must be addressed in secure systems to prevent unintentional access 

to information by processes, and ultimately users, with different security attributes. 

Object reuse ensures that when storage resources are allocated to a process, they have 

been purged of any residual information that may be remnant from a previous process.[6] 

In multi-user systems that implement Discretionary Access Control (DAC) policies, 

mechanisms that address object reuse prevent information from being leaked between 

processes that do not wish to share information. Unfortunately, many modern operating 

systems with DAC policies fail to fully address object reuse. Multilevel Security (MLS) 

systems operating under Mandatory Access Control (MAC) policies must implement 

strict mechanisms for ensuring correct object reuse. Because both high and low 

sensitivity objects exist within the same system, the possibility exists that a low process 

may be able read residual high information if an allocated resource is not properly 

purged. 

For example, suppose a process operating at a high security level in an MLS 

system “deleted1” information from a hard drive and released the space back to the 

operating system. Now suppose a second process running at a lower security level 

requests space on the hard drive from the operating system and receives space formerly 

allocated to the high level process. If the high level information wasn’t properly removed 

from the hard drive, the lower level process might be able to retrieve the higher level 

information retained on the hard drive. 

The main RAM and other volatile memory locations on the main circuit board of 

MYSEA clients present possible vectors through which object reuse weaknesses could be 

exploited. The MYSEA client OS is not trusted to separate information at different 

security levels. Because the MYSEA client hardware does not clear RAM after a soft 

reboot, sensitive information could possibly be retained in memory. A malicious user 

could exploit this situation if only a soft reboot was permitted. The user could log in at a  

 

 

                                                
1 In this case, we assume deletion doesn’t destroy a file. It merely marks the space occupied by the file 

as available for reallocation by the OS. 
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lower classification level and then use administrative tools to access RAM as a raw 

device. It would then be possible to reconstruct sensitive information left over from a 

previous higher sensitivity session. 

B. REMOTE ATTESTATION 

Most modern, networked software applications implicitly trust the integrity of 

other systems they communicate with over a network. Even if the software application is 

trusted, there is no way to verify the integrity of the operating environment of a remote 

host. When queried for such state information, a malicious host can lie with impunity. 

For example, in peer-to-peer (P2P) file trading networks, copyright holders frequently 

flood the network with garbage files that have metadata that matches more valuable files. 

The distribution of such files is achieved through the use of non-standard clients that act 

maliciously on the network. Unfortunately, legitimate clients cannot differentiate 

between trusted and malicious peers. Users waste resources downloading garbage files. 

This reduces the overall utility of the network. 

Secure coprocessors provide methods for a computer to trustfully attest to a 

remote host. Trusted remote attestation is the process by which a host can provide high 

integrity evidence of its current operating environment. This can include the status of 

hardware, operating systems, and running software. Using this information, remote hosts 

can make decisions as to whether or not to provide services and data to the attesting host. 

In the case of a P2P networks, non-standard clients could be effectively disallowed 

through the use of trusted attestation. Every time a host wished to join the network, a peer 

would force the joining host to attest to its current operating state. Only systems with the 

ability to reliably attest would be able to join the network. Non-standard and malicious 

clients would be excluded, to the extent that the integrity of the secure coprocessors and 

their integrity infrastructure remains intact.[7] 

1. Attestation and Trusted Computing 

The Trusted Computing Group’s Trusted Platform Module (TCG TPM) is a 

secure coprocessor that provides essential security services such as key storage and fast 

hardware encryption to the host devices in which it is embedded.[8] One such service is 

trusted remote attestation. To provide trusted remote attestation to the host platform, the 

TPM uses a combination of system integrity measurements and public key cryptography. 
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Figure 2.   Generic description of the TPM Remote Attestation process taken from .[2] 
 

Before the attestation process begins, a client must first make a request to a server 

for information or services. If the server wishes to validate the operating environment of 

the client, it challenges the client to perform a TPM-based trusted attestation. Because the 

complete attestation object is made up of several pieces of information, multiple steps are 

required to complete the process.  

In Figure 2, the server is referred to as the Challenger. It begins the attestation 

process by requesting an attestation from the client, which is labeled Platform Agent in 

Figure 2. This is shown with the command RequestPlatformConfiguration(). The client, 

in response to the challenge being sent, begins a set of operations that generate the 

attestation response.  

In the second step in Figure 2, the client retrieves information from the Stored 

Measurement Log (SML) using the command GetEventLog(). The SML is an event log 

that records sequences of references to measurement values and measurement digests. 

Measurement values are representations of system data or stored programs. Measurement 

digests are cryptographic hashes of the measured values. Measuring a value is equivalent 

to generating a hash of the value. Sequences of measurements can be generated using 
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measurement extension. The current digest is concatenated with the value to be 

measured. The concatenated object is then hashed and stored. This allows arbitrarily long 

measurement sequences to be stored in a limited amount of space.[9] By storing 

references to the measured objects and the storage locations, the SML can generate a 

digest at any point in the measurement sequence.  

The third step shows the Platform Agent performing the request GetSignedPCR(). 

A Platform Control Register (PCR) is a volatile register inside the TPM where it stores 

measurement digests generated with the SHA-1 algorithm. The first eight PCR registers 

are used to store the measurements of system initialization components such as the BIOS, 

expansion ROM’s, and boot sector.[10] The other PCR’s are used to store other 

measurements of system code and firmware as required. These measurements are referred 

to as the state of the system. The PCR values represent the most currently measured state 

of the host platform. By retrieving a signed PCR from the TPM, the Platform Agent can 

trustfully attest to the state of the host platform. At any given time, the SML can be used 

to verify the value currently occupying a PCR. 

In the fourth step, the TPM performs the function SignPCRValue(). This is the 

first place where trust is derived in the attestation process. The TPM uses keys that are 

protected from the host platform to sign its PCR. Key signing is performed on a processor 

embedded in the TPM that is separate from the host platform’s CPU. By protecting the 

signing keys from the host platform, the Challenger can assume that any measurements 

signed by the TPM are valid. Without access to the signing keys, there is no way for the 

host platform to maliciously lie to the Challenger about its operating state. 

The fifth step allows the TPM to request that a third party vouch for the 

authenticity of its public key. This validation is required because the TPM may use many 

such keys in the process of attesting to different remote entities. The third party is labeled 

the Repository in Figure 2. Each TPM is loaded at the factory with a key pair that is 

unique to it. The Repository encrypts information with the TPM’s public key such that 

only an individual TPM can decrypt it with its corresponding private key. In this way, the 

repository can sign a TPM’s public attestation keys and return them encrypted so that 

only that TPM can decrypt them. When a TPM uses those attestation keys, it can pass 
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along the signed public keys vouched for by the Repository. The Challenger can then 

trust the public keys used to authenticate the signed attestation information. 

The final step is for the Challenger to verify all the information provided to it by 

the Platform Agent.  

2. Attestation Research 

The attestation procedure above has a privacy flaw whereby the Challenger can 

obtain the unique identify of the TPM that attests to it. The Challenger must collude with 

the Repository to accomplish this. When the Challenger receives the attestation package 

from the Platform Agent, it simply has to ask the colluding Repository to provide it with 

the identity of the TPM that previously submitted the attestation key for verification. 

Direct Anonymous Attestation (DAA) can be used to combat the issue of 

collusion. Described in a paper by Brickell, et al, DAA is a complicated protocol that 

utilizes resource intensive cryptographic procedures. It is currently being integrated into 

the newest version of the TPM specification.[11] 

C. SEALED STORAGE 

In general, if data must be stored on a hard drive with high integrity and high 

secrecy, the data might be encrypted with a key known only to authorized entities. 

However, in a general-purpose computer, the program has no way of truly knowing if 

malicious programs are sniffing input from the user. If this were the case, even 

encryption would not protect the data because the malicious program would have the 

encryption key. However, using the TPM as a way to encrypt data and store keys that are 

protected from untrusted parts of the system, data can be securely stored on the hard 

drive. 

Sealed Storage is the tool that programs will use to securely store large 

information blocks that need to be protected from malicious software that may be running 

on the host platform. While the TPM interface is large and complicated, it is generally 

expected that applications will access TPM functionality through a TPM library that 

presents high-level function calls. In this way, the application developer will be shielded 

from many of the subtle TPM intricacies. Simply put, Sealed Storage works by 

depending on the TPM to accurately measure the state of the machine. From the TPM’s 
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perspective, the state of the machine is based on measurements of system components 

and stored software applications. The measurements are stored in PCR registers. The 

collection of values in the PCR registers make up the TPM’s concept of host platform 

state. The TPM generates a session key based on the state of the machine. Only if the 

machine matches the state of the machine when the data was encrypted will it generate 

the correct decryption key. This means an attacker can’t remove the hard drive and use a 

machine he controls to extract secret data from the drive. 

D. HARDWARE SIMULATION 

Hardware simulation is the ability to represent the operation of a discrete 

hardware device in software. The software-based simulator keeps track of the operating 

states of the target hardware as it executes. Studying the empirical data generated from 

running the simulator can validate or disprove hardware design assumptions. 

Hardware simulation provides a useful, flexible development environment for 

both software and hardware designers. Software designers are able to do meaningful 

development and testing for platforms that may not yet exist as hardware. Hardware 

designers have the ability to test and tweak their designs before going through a costly 

fabrication process. While a plethora of simulators may exist for a given hardware 

platform, each will have relative merits depending on the requirements of the user. 

The three main characteristics of a hardware simulator are performance, 

flexibility and detail.[12] Maximizing one characteristic requires a tradeoff in the utility 

of another. Because host hardware may have little in common with the hardware being 

simulated, the performance characteristic is often the first addressed. By focusing on 

performance, simulator developers can decrease the required computing resources for 

useful development. For those developing new hardware designs, the ease with which a 

simulator can be changed to incorporate new designs or instructions is often the key 

characteristic of interest, but this may affect the performance or level of detail the 

simulator is able to achieve. For those doing computation research with simulators, the 

granularity, or detail characteristic, of the simulation is often of great importance. 

However, the more that the simulator reproduces the entire design and keeps track of 

machine state variables as it executes, the more performance and flexibility may suffer. 
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There are two distinctive paradigms for simulator construction – trace-driven or 

execution-driven. Trace driven simulators use program traces to drive a simulation 

engine. A trace is a recording of the complete operation of a program as it executed. All 

instructions, inputs, and outputs are recorded. Traces allow a hardware designer to 

recreate the same test environment for multiple hardware designs. Design changes can be 

closely scrutinized for performance issues. 

An execution-driven simulator uses program binaries to drive the execution 

engine. Complete program behavior is not known a priori. Programs that require external 

input will produce varying execution statistics depending on the input.  

1. SimpleScalar 

SimpleScalar is an open-source, execution-driven CPU simulator. It is built on a 

highly flexible code base that makes it easy to implement changes to the underlying 

hardware descriptions of the target platforms. Support for several CPU instruction set 

architectures is currently available. These include Alpha, MIPS, PowerPC, and x86.  

Included in the SimpleScalar suite are a variety of simulators covering a range of 

complexity.[13] There are simulators optimized for speed that provided serialized, in-

order execution. There is a cache hierarchy simulator. The most complex simulator 

includes a micro-architecture with branch prediction and out of order execution. Each 

simulator focuses on a functional characteristic of either performance or detail. Each 

simulator collects a wide array of information and statistics about executed processes that 

detail the operating characteristics of the simulate hardware. 

E. MYSEA & THE BOOT ODOMETER CONCEPT 

The overall MYSEA architecture operates in such a way as to mitigate the risk 

caused by an untrusted client. While the TPE can provide security services directly 

between the user and the MYSEA Server, neither has any way of validating a hard reboot 

of the client computer. Without a hard reboot, there remains a potential object reuse that 

could provide an exploitable vulnerability to a determined adversary. This occurs when 

the client workstation is not rebooted to clear memory between a high confidentiality 

session and a low one. Currently, procedural policy requires that users hard reboot the 

system when switching between session levels. Because users may not always follow 
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expected procedures, it is possible that a malicious program could retrieve sensitive 

information from memory after a user failed to hard reboot the client machine. 

To alleviate the vulnerability, this thesis proposes a method by which changes to a 

secure coprocessor, the TCG TPM, are used to detect the type of reboot the host (i.e. the 

client) platform underwent and to keep a count of the number of times the host platform 

has undergone a hard reboot. An instruction is added to the TPM that allows local 

programs to query for the current number of hard reboots that have been observed. These 

changes are augmented by remote attestation, which allows the MYSEA Server to query 

the host regarding the number of hard boots that the host has undertaken to date. These 

changes are made to the TPM firmware and have been evaluated using SimpleScalar. 

There are several reasons why the attestation on the reboot status is done between 

the client and the MYSEA Server instead of between the client and the TPE. First, the 

TPE is a PDA style device with limited resources in the areas of processing and main 

memory. Attestation requires intensive computations for the public key cryptography 

system. This would further stress the TPE and take away resources needed to establish 

secure communications with the MYSEA server. Second, adding attestation-checking 

abilities to the TPE would increase its complexity. Added complexity reduces the 

assurance that the designers can prove the correctness of the design and operation of the 

TPE. Third, the TPE is not integrated into the client computer main board. Consequently, 

there is no way for the TPE to directly observe if the client has cycled through a hard 

reboot. Although integration of the TPE and the client computer has been considered, the 

system would demand a much more complex trusted computing base than the relatively 

simple separation kernel currently under development. [14] 

This chapter provided a brief overview of the topics referred to in this thesis 

including attestation, hardware simulation, and the MYSEA. It also discussed the 

relevance of the main thesis topic to the MYSEA project. The next chapter will elaborate 

the conceptual design that addresses the object reuse problem. The next chapter also 

briefly explains several scenarios in which the conceptual design can be used. 
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III. CONCEPTUAL DESIGN 

A. CONCEPT OF OPERATION 

The Boot Odometer concept arises from the need to reliably attest to a remote 

entity that a local computer has been hard rebooted (i.e. power cycled) as opposed to soft 

rebooted (i.e. software initiated reboot). A hard reboot indicates to a remote entity that 

certain board level components such as memory have been cleared due to power loss. 

To achieve this, a secure coprocessor is added to the main system board. A secure 

coprocessor provides a highly trustworthy execution environment for the storage of 

security-critical information and for security-critical computation. The secure 

coprocessor stores a high integrity number known as the Boot Odometer Value. This 

value keeps track of the number of times the computer has been hard rebooted. Every 

time the computer hard reboots, the secure coprocessor causes the Boot Odometer Value 

to increment by one. The secure coprocessor does not increment the Boot Odometer 

Value in the case of soft reboots.  

A host equipped with a secure coprocessor performs a trusted remote attestation 

to prove to a remote entity that it has undergone a hard reboot. The host requests to its 

secure coprocessor that it sign the Boot Odometer Value using a private key known only 

to the secure coprocessor. The host then packages the signed value and sends it to the 

remote entity. The remote entity uses the corresponding public key to validate the Boot 

Odometer Value. In addition, the remote entity believes that the host’s secure coprocessor 

protects its private signing keys from tampering or observation by the host. This allows 

the remote entity to trust with high assurance that the Boot Odometer Value is authentic 

because without the signing key, there is no way for the host to forge the signature. By 

comparing the current Boot Odometer Value to previously known values, the remote 

entity can confirm the hard reboot attested to by the host. 

B. HIGH LEVEL SYSTEM REQUIREMENTS 

The purpose of the Boot Odometer Value is to ensure the computer has been 

powered cycled. This entails several high level requirements for correct action. These are 

listed below. 
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• The Boot Odometer Value (BOV) must increment every time a full power cycle-

boot sequence completes.  

• The Boot Odometer Value must not increment during a software reboot or at any 

other time except for a hard reboot. 

• The Boot Odometer Value must be protected when the system is in a power off 

state. This includes accidental and malicious tampering. 

• The Boot Odometer Value must be protected from software tampering during 

normal host computer operation. 

• The increment operation must be atomic. It should not be interruptible by power 

cycles initiated during the boot sequence.  

• The secure coprocessor must be able to detect exceptions in the Boot Odometer 

mechanism. 

• The secure coprocessor must be able to handle exceptions in the Boot Odometer 

mechanism. 

• The secure coprocessor must be able to attest to the Boot Odometer Value. 

Each of these requirements is discussed below. 

The Boot Odometer Value must increment every time a power cycle-boot 

sequence occurs. The requirement fulfills the overall goal of being able to ensure that the 

computer was power cycled. No requirement is made regarding the value of the 

increment; however, an increment of one is preferred to minimize the number of rollover 

events.  

The increment operation must be atomic. This is to prevent the machine from 

entering an ambiguous state. Since the operation of the Boot Odometer is security 

relevant, it must execute fully or not at all. 

The Boot Odometer Value must be protected in non-volatile storage, since the 

value of the Boot Odometer must be retained without power. The storage must be 

resistant to both physical and software-based attacks.  
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The Boot Odometer Value must be protected from changes during normal host 

computer operations. The host computer that houses the secure coprocessor will use the 

coprocessor for a variety of operations. Access to the secure coprocessor is negotiated via 

software calls. It must not be possible to use any combination of software calls to the 

secure coprocessor to change the Boot Odometer Value. 

The secure coprocessor must be able to detect exceptions in the Boot Odometer 

mechanism. Because the Boot Odometer mechanism is part of the system boot routine, 

exceptions in its operations can affect system security by corrupting the boot process. By 

detecting exceptions, the system can take appropriate action to ensure system 

confidentiality or integrity. 

The secure coprocessor must be able to handle exceptions in the Boot Odometer 

mechanism. Exception handling must be well defined and not leave the computer in an 

insecure state. 

The secure coprocessor must be able to attest the status of Boot Odometer Value. 

This is a requirement for operating in high assurance networks. 

The Boot Odometer Value must not change during a software reboot. A software 

reboot does not ensure power loss to the machine. 

The Boot Odometer operates in the following manner. If the platform has 

undergone a hard reboot, power to the TPM will have been interrupted causing the PCR 

registers inside the TPM to initialize to a known value. For simplicity, it is assumed that 

the initialization value is all zeros. If the platform has undergone a soft reboot, the 

contents of the PCR registers will not have been reset. During its initialization phase, the 

TPM inspects the PCR where it had previously placed the Boot Status Indicator. If the 

Indicator appears inside the specified PCR, rather than the initialization value, then the 

TPM assumes that it has undergone a soft reboot and the TPM is disabled. In the case 

where computer underwent a hard reboot, the TPM first updates the contents of the 

specified PCR with the Boot Status Indicator, then fetches the Boot Odometer Value, 

increments it, and finally places it back into the long-term storage of the TPM. The initial 
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 value of the Boot Odometer Value is zero. This value is initialized during factory 

production of the TPM platform. The non-volatile memory and the PCR in which the 

Boot Status Indicator is stored are untouchable by the host platform CPU. This protects 

them against malicious alteration.  

 

Figure 3.   Simple Attestation Layout 
 

A remote entity has two choices when requesting trusted attestation regarding the 

type of reboot a host underwent. First, the remote entity can store a previously known 

value of the Boot Odometer Value. It can then request the current Boot Odometer Value. 

If the current value is larger than the stored value, then the remote entity can assume that 

the host has undergone a hard reboot. Secondly, it can ask the host to directly attest to the 

fact that it has undergone a hard reboot more recently than a soft reboot. In this case, the 

TPM would inspect itself and if it were not disabled, then it would provide a positive 

attestation of the fact. In the design presented here, a soft reboot will disable the TPM. 

Thus, the fact the TPM is enabled is evidence that the most recent boot that platform has 

undergone is a hard reboot. Figure 3 shows a simple division between the TPM and the 

Host CPU. The Remote Server trusts the TPM to the degree that it has been evaluated to 

shield its cryptographic secrets and computations from the host platform. Using the 

underlying cryptographic services, the TPM can trustfully attest to its environment. 

C. HARDWARE REQUIREMENTS 

The Boot Odometer mechanism is implemented by making changes to the 

initialization firmware within the Trusted Computing Group’s Trusted Platform Module 

(TCG TPM)[2]. The TPM is an open, industry-developed standard for the creation of 

secure co-processors in diverse computing platforms. A logical overview of the 

components inside the TPM can be seen in Figure 4.  
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Figure 4.   Logical component architecture of the TPM secure co-processor taken from [2] 
 

Currently, many computer manufacturers are in the process of adding TPM’s to 

their consumer and business model PC’s. The changes required for the BOV will affect a 

target software function that exists within the TPM firmware. The name of the function is 

TPM_Startup. TPM_Startup executes every time the TPM goes through an initialization 

cycle. This makes it an ideal candidate for housing the Boot Odometer functionality. 

The TPM_Startup function call is part of the TPM initialization phase.[15] At the 

beginning of every boot cycle, the TPM undergoes a transition function called TPM_Init. 

TPM_Init transitions the TPM into its first stage of initialization. This function behaves 

identically whether the system underwent a hard or soft reboot. TPM_Init places the TPM 

in a state where it waits for the command to execute TPM_Startup. Platform initialization 

code must inform the TPM what type of initialization it is currently undergoing. The 

TPM_Startup function behaves differently based on one of three flags that signal its 

intended operation. The TPM_ST_CLEAR flag signals the TPM to reset volatile TPM 

variables back to their default states. The TPM_ST_SAVE flag signals the TPM to 

restore volatile variables back to their previously known values. This occurs when the 

computer starts from a hibernation related state. The TPM_ST_DEACTIVATED flag 

signals the TPM to enter into a deactivated state.[15] Because we are only interested in 

the situation were the computer boots into fully operation mode from a power-off state, 

we only consider the case were TPM_Startup is called with the TPM_ST_CLEAR flag. 



18 

The TPM Specification requires that all system boots must first start with a 

system wide reset. This includes physically signaling system components that a system 

boot is happening. This requirement prevents the TPM from being maliciously reset 

without the rest of the platform also being reset. If this were to occur, the TPM would be 

in a state where it would be vulnerable to certain masquerade attacks.[15] 

The required actions taken by the TPM when executing TPM_Startup with the 

TPM_ST_CLEAR flag are laid out in a standard format in the TPM specification 

document.[15] These actions are listed below as found in the specification document. 

Steps marked in bold indicate changes made to accommodate the Boot Odometer 

mechanism. The entire TPM_Startup specification can be found in the TPM Specification 

series of documents. It is assumed that as a result of a hard reboot that all PCR’s will be 

set to known initial values. 

2. If stType = TPM_ST_CLEAR 

a. Inspect the contents of PCR[8].  

i. If the Boot Status Indicator is found, disable the TPM 

b. Ensure that sessions associated with resources 

TPM_RT_CONTEXT, TPM_RT_AUTH and TPM_RT_TRANS 

are invalidated 

c. Reset PCR values to each correct default value 

d. Set the contents PCR[8] to the Boot Status Indicator 

e. Increment the Boot Odometer Value by 1 

f. Set the following TPM_STCLEAR_FLAGS to their default state 

i. PhysicalPresence 

ii. PhysicalPresenceLock 

iii. disableForceClear 

g. The TPM MAY initialize auditDigest to NULL 
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i. If not initialized to NULL the TPM SHALL ensure that 

auditDigest contains a valid value 

ii. If initialization fails the TPM SHALL set auditDigest to 

NULL and SHALL set the internal TPM state so that the TPM 

returns TPM_FAILED_SELFTEST to all subsequent commands. 

h. The TPM SHALL set TPM_STCLEAR_FLAGS -> deactivated to 

the same state as TPM_PERMANENT_FLAGS-> deactivated 

i. The TPM MUST set the TPM_STANY_DATA fields to: 

j. TPM_STANY_DATA->contextNonceSession is set to NULLS 

ii. TPM_STANY_DATA->contextCount is set to 0 

iii. TPM_STANY_DATA->contextList is set to 0 

k. The TPM MUST set TPM_STCLEAR_DATA fields to: 

i. Invalidate contextNonceKey 

ii. countID to NULL 

iii. bGlobalLock to FALSE 

l. Determine which keys should remain in the TPM 

m. For each key that has a valid preserved value in the TPM 

(1) if parentPCRStatus is TRUE then call 

TPM_FlushSpecific(keyHandle) 

(2) if IsVolatile is TRUE then call 

TPM_FlushSpecifid(keyHandle) 

Figure 5.   Behavior of TPM_Startup when signaled with the TPM_ST_CLEAR flag after 
[15] 

 

The test for the Boot Status Indicator occurs at step a directly before the PCR’s 

are cleared. This is because PCR[8] is used as the container for the Boot Status Indicator. 

The Boot Status Indicator is an arbitrary binary string that is no larger than a PCR. It is 

always the same. If the Boot Status Indicator is discovered inside PCR[8], it is assumed 
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that the computer did not undergo a hard reboot. This assumption is made because if the 

computer was hard rebooted, power would be cut to the TPM and register contents would 

be cleared. If a soft reboot is found to have occurred, the TPM is disabled. This disabling 

does not prevent the host platform from accessing the hardware accelerated encryption 

algorithms provided by the TPM.[8] It merely prevents the host platform from accessing 

services that are associated with TPM protected encryption keys. The TPM is not re-

enabled until the computer is hard rebooted. If the computer is running in a TPM enabled 

state, any programs can implicitly assume the computer was started with a hard reboot. 

In the case where the Boot Status Indicator is not found, it is assumed that the 

computer underwent a hard reboot. This is assumed because immediately after power-on, 

the initial default state of the PCR is a known default value of all 0’s.[16] Since the 

contents of PCR[8] are cleared at step c, the Boot Status Indicator is re-entered into 

PCR[8] at step d to ready it for the next reboot event. At step e the Boot Odometer Value 

is incremented to keep track of the number of times the computer has been hard rebooted. 

No count is kept for the number of soft reboots. Justifications for the Boot Odometer 

Value functionality can be found in the section labeled Use Cases. 

The Boot Odometer Value must be stored in the TPM’s long-term (i.e. non-

volatile) storage. Because the choice of physical components used to provide non-volatile 

storage is left to individual TPM implementers, we do not concern ourselves with the 

requirements for dealing with those components. It is sufficient to note that space must be 

allocated in the TPM’s non-volatile storage for the Boot Odometer Value and that the 

Value’s integrity must be assured by the TPM. The tamper resistance properties of the 

TPM determine the integrity of the Boot Odometer Value. Tamper resistances 

requirements are outlined in the TPM specification.[10]  

D. SOFTWARE DESIGN 

A fully operational TPM is evidence that a host has undergone a hard reboot. This 

is because a platform that has not undergone a hard reboot will have its TPM disabled. 

Therefore, any local program wishing to verify that the computer has undergone a hard 

reboot can query the TPM to ensure that it is enabled. However, the converse is not true. 

A TPM maybe disabled for several reasons. A program cannot assume that a disabled 

TPM indicates a soft reboot. 
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To obtain the current Boot Odometer Value, software on the CPU will need to 

query the TPM using a new instruction. Because the Boot Odometer functionality does 

not currently exist in the TPM, a new instruction must be added to the TPM interface. 

This instruction returns the current Boot Odometer Value, such that it is 

cryptographically signed by the TPM if requested. In addition, this instruction will be 

used internally by the TPM during the process of generating attestation responses 

concerning the current Boot Odometer Value. Since the manufacturers’ TPM modules 

will vary due to implementation differences allowed in the TPM specification, no 

implementation details of the instruction are included. It is sufficient to describe the new 

instruction’s operation and note that it must exist for the Boot Odometer mechanism to 

operate completely.Software on the remote server that requests the Boot Odometer Value 

attestation must be capable of several things. First, it must be able to securely store 

previously attested Boot Odometer Values. This is a not a concern on high-security, high 

integrity-systems as secure storage is a defining property of such systems. Less trusted 

systems equipped with TPM’s could utilize the Sealed Storage service provided by a 

TPM. Second, the remote server must be able to reliably compare the currently attested 

Boot Odometer Value with the previously attested Boot Odometer Value to ensure that 

the Boot Odometer Value on the client has increased. Last, the server must be able to 

validate an attestation response from a client. 

E. USE CASES 

Besides the object reuse problem discussed in the background chapter, there are 

several scenarios in which the Boot Odometer Value could be useful, if the mechanism is 

modified to log soft boots as well as hard. Consider a client PC in corporate network. 

Policy dictates that computers should only be used for work purposes. No other software 

should be installed or used. However, it is believed that some users are using bootable 

CD’s to boot into other operating systems to bypass client enforced policy settings. This 

could be detected by observing that the Boot Odometer Value has been incremented more 

than expected between concurrent attestations. This would not be conclusive evidence 

that policy has been violated. The Boot Odometer Value could also be incremented if the 

system is undergoing reboots because of a malfunction. However, either situation would 

warrant further investigation. 
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Further situations arise in which it must be ensured that a host has undergone a 

reboot regardless of what type. One such scenario is the application of security patches to 

system software. It is often the case that a system must undergo a reboot after applying 

relevant security patches. If a remote observer wished to ensure compliance with this 

procedure, it could request an attestation that a reboot has occurred.  

Another scenario is relevant to managers of large data centers. Consider a 

situation in which a data center loses partial power. Machines may be rebooted, but need 

some manual intervention to come back to full operational status. A system administrator 

could request that all remote hosts attest to their current Boot Odometer Values. By 

comparing the current values to the previous values, the system administrator could 

determine which machines had lost power and need further attention. 

This chapter gave a high level explanation of the how the Boot Odometer 

mechanism operates. It also detailed the necessary changes to a TPM needed to 

implement the Boot Odometer mechanism. Software considerations for interacting with 

new functionality were also discussed. The next chapter discusses the hardware 

simulations used to demonstrate and test Boot Odometer functionality. 
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IV. IMPLEMENTATION 

A. CODING 

The prototype feasibility demonstration for this project was generated using 

Version 3 of the SimpleScalar software package. This prototype was based on the 

SimpleScalar/PISA target architecture. This architecture extends the MIPS processor 

described by Patterson and Hennessy in “Computer Organization and Design”[17] with 

instructions from the MIPS-IV ISA and RS-6000 instruction set definitions.[18] This 

simulator does not support privileged processor instructions. Therefore, only user level 

code can be executed and the prototype is limited in its functionality. The prototype 

functionality includes a new instruction added to the SimpleScalar/PISA target, a new 

register, and the simulation of the persistent memory used to store protected information. 

The PISA target is assumed to be a generic representation of the TPM module. 

Although currently lacking the major cryptographic services provided by the TPM, the 

PISA target is assumed to logically simulate the general-purpose computation carried out 

within the TPM. 

1. Concept of Operation 

The prototype implementation operates differently from the conceptual design.  

This is due to limitations within the SimpleScalar software; it does not currently support 

full system simulation. It only executes non-privileged instructions. Furthermore, it does 

not support the concept of a boot up process. This prototype implements the instruction 

for retrieving the value from the Boot Odometer Value from a PCR. Because a full PCR 

register bank was not implemented, a single register called the Boot Odometer Register 

was implemented instead. The Boot Odometer Register is separated from the other 

registers so that it cannot be addressed by instructions that access general purpose 

registers. The Boot Odometer load process and the Boot Odometer Value store and 

increment procedures are implemented as software procedures within the simulator. The 

simulator does not include functionality for a secure coprocessor such as the TCP TPM. 

The simulation operates in the following manner. The simulator begins by 

retrieving the current Boot Odometer Value from a file that represents the non-volatile 



24 

storage of the TPM. It then increments the Boot Odometer Value and writes it back to the 

file representing the non-volatile storage. Next, it copies the Boot Odometer Value into 

the Boot Odometer Register. At this point, the simulator starts execution of a binary 

program. The program is used to test the operation of the sst instruction and Boot 

Odometer Register. The binary program inspects the value present in the Boot Odometer 

Register and copies it to a general-purpose register using the sst instruction. The sst 

instruction was implemented as part of the sim-bor simulator. The program then copies 

the register value, which is now the Boot Odometer Value, to a variable in memory. The 

variable is then printed to the standard output for inspection. 

 

Figure 6.   Logical Architecture of Enhancements to SimpleScalar Simulator 
 
2. Instruction Addition 

All instructions for a SimpleScalar supported ISA are defined in a DEF file 

associated with that ISA.[19] The DEF file includes all the semantics of the instruction as 

well as a functional implementation that describes the behavior of the instruction. These 

behavioral descriptions are written in C with well-defined macros for accessing processor 

state. The instruction added for this project has been named “sst” for SimpleScalar Test.  

This instruction copies the value of the Boot Odometer Register to a general-purpose 

register specified in the instruction. The Boot Odometer Value can then be accessed from 

the designated general-purpose register. This indirect access is required since the Boot 
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Odometer Register cannot be addressed by instructions that access general purpose 

registers.  

To access the processor state for the BOR, two new C instruction macros were 

added to the simulator.  These macros read from and write to the processor. The macros 

implement code that directly access the state variables associated with the simulated 

TPM. 

3. Register Bank 

In this implementation, the SimpleScalar simulation architecture was extended to 

include the new Boot Odometer Register. SimpleScalar utilizes a shared register 

construction for all ISA implementations currently supported by the version used.  The 

register file includes 32 general-purpose registers, 32 floating-point registers, Hi/Low 

result registers, a floating-point control register, program counter register and a next 

program counter register. The register bank is represented in memory with a C structure 

that contains each of the registers. The simulator stores the Boot Odometer Value as an 

unsigned integer. 

4. Sim-bor 

Sim-bor is an extended version of sim-safe that implements functionality to be 

used in conjunction Boot Odometer Register modeling. Sim-safe is an in-order sequential 

instruction processor simulator in the SimpleScalar toolset. The sim-bor extension 

includes a small piece of code that accesses the file that represents the “protected store” 

and copies the value in the file directly to the variable that represents the Boot Odometer 

Register. The value is then incremented by one and written back to the file. At this point, 

the Boot Odometer Register appears to be loaded previous to the any action taken by the 

program being run on the processor. 

5. Protected Storage 

A file represents the protected storage. Since a trusted co-processor simulator is 

not available, this part of the system was not fully included in the SimpleScalar 

implementation of the Boot Odometer. 

6. Cross Compiling & Op Code Insertion 

To generate code to run on a SimpleScalar processor emulator, a cross compiler is 

required. A cross compiler executes on a processor with a given ISA but generates code 
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for a different processor with a different ISA. The GNU C compiler was configured to act 

as the cross compiler.  

Since there are no C instructions or PISA assembler instructions for the new sst 

instruction, the binary op code to execute the instruction must be crafted by hand and 

inserted into the execution stream of a program. Instead of writing the entire program in 

assembler to control register access, the op code was inserted using in-line assembler that 

can be handled by gcc. This allowed the rest of the program to be easily written in C. 

B. TESTING 

1. Test Plan 

The implementation in SimpleScalar can be tested both interactively and using 

scripts. For testing this prototype, correct operation is defined in the following manner. 

After the emulator starts, but before code execution begins within the emulator, the 

emulator loads the Boot Odometer Register from the file representing the protected store. 

The value is then incremented by the emulator and written back to the protected store. 

The software execution begins and the sst instruction to access the Boot Odometer 

Register is called. The Boot Odometer Value is copied to a general-purpose register 

specified by the calling instruction. The Boot Odometer Value can then be examined 

arbitrarily. Correct execution is assumed if the value within in the specified general-

purpose register has increased by the increment amount in relation to the previously 

stored value. In this implementation, the increment amount is one. 

a. Interactive Testing Procedure 

The SimpleScalar toolset includes a debugger named DeLite. This is a 

simple debugger with basic functionality such as setting break points, code disassembly, 

and memory inspection. This tool can be used to inspect programs running on the 

emulated Simple Scalar processors to examine internal processor state. A sample screen 

shot of DeLite can be seen Figure 7. By examining the state of the processor when testing 

the Boot Odometer Register, correct execution can be confirmed by ensuring the that the 

Boot Odometer Register value matches the value read in from the protected storage.  

Interactive testing required a test program that used the instruction that 

accesses Boot Odometer Register to query its current value. The program then displayed 

the value found in the register. 
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The first time the processor was inspected took place directly after the 

SimpleScalar sim-bor simulator loaded the program. At this point, it can be confirmed 

that the simulator properly read the Boot Odometer Value from the file that acts as the 

protected store for the simulator. The second time the processor will be inspected is 

directly before the sst instruction is executed. At this point, it can be confirmed that the 

program has not altered the Boot Odometer Value currently stored. Confirming the 

integrity of the Boot Odometer Value ensures that the following step occurred correctly. 

Directly after the sst instruction is called, the destination register is checked to ensure the 

Boot Odometer Value has been transferred correctly. The value inside the destination 

register specified by the sst instruction will be printed to the screen using a function call 

to printf().  

 

Figure 7.   Example of partial source disassembly using the SimpleScalar DLite! debugger. 
 

b. Scripted Testing Procedure 

Because the interactive testing can only reasonably inspect a limited range 

of values during operation, scripted testing was included. However, full value ranges 
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cannot be tested exhaustively using automated test procedures. Therefore, the range 

4,294,767,295 - 4,294,967,295 was tested. These values represent the 200,000 integer 

values directly preceding the overflow value of a 32-bit unsigned integer. In addition, the 

overflow condition was tested immediately following the testing of this block. The 

expected behavior is that register should roll over to zero and continue functioning 

without interruption. 

Automated testing was done using a Python script that repeatedly executes 

the Boot Odometer simulator. The simulator ran a small program that executes the sst 

instruction implemented within the simulator. The script parsed the output from both the 

simulator and the program being run by the simulator. The script compared two values. 

The first is the value of the simulated TPM non-volatile storage. This was obtained as 

debugging information provided by the simulator. The second was the value returned by 

the execution of the sst instruction. The script tested the two values to ensure that they 

were equal. If they were not, the script would exit. This check ensures that the sst 

instruction correctly retrieved the correct value from the Boot Odometer Register. The 

script also checks to ensure that the Boot Odometer Value is exactly one higher than the 

value in the previous test cycle. This ensures that the Boot Odometer only increases by a 

value of one. 

2. Test Results 

a. Interactive Test Results 

The interactive testing did not show any unpredicted behavior. 

b. Scripted Test Results 

The scripted test results did not show any unpredicted behavior. 

This chapter discussed the operation of the simulation used to demonstrate and 

test the operation of the Boot Odometer mechanism. The SimpleScalar simulator suite 

was modified to simulate the functionality of the Boot Odometer mechanism. The 

simulation software was shown to be flexible in its ability handle changes incorporated 

for the this thesis. Further, the tests showed that the changes operated as intended. 
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The next chapter discusses security issues concerning the implementation of the 

Boot Odometer mechanism. The topics covered are covert channel analysis, instruction 

privilege, and denial of service. 
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V. SECURITY ANALYSIS 

A. COVERT CHANNEL ANALYSIS 

It is not possible to exploit the Boot Odometer Value as a useful covert channel. 

Because the Boot Odometer Value only increments in cases where the computer is hard 

rebooted and there is no way for a software program to initiate a hard reboot, a malicious 

program cannot influence the Boot Odometer Value for use as a covert channel. 

While a person could attempt to create a covert channel by manually selecting a 

software or hardware reboot, he could only signal to an observing program a single bit of 

sensitive information at a time. Assuming a relatively fast boot process of 15 seconds, a 

user could signal approximately four bits a minute. However, since the user already has 

access to the sensitive information, he does not need the computer (and covert channel) to 

help him compromise the information (this is why cover channel analysis focuses on the 

actions of programs rather than users.). 

B. INSTRUCTION PRIVILEGE 

The section titled “Software”, in Chapter III, discussed the need for an additional 

instruction to be added to the TPM that would return the current Boot Odometer Value. It 

is reasoned here that there is no need for this instruction to be constrained only to 

privileged processes. The first reason is that there are no logically feasible covert 

channels to be exploited in conjunction with the Boot Odometer Value. Second, the TPM 

protects the integrity of the Boot Odometer Value. There is no way for untrusted 

processes to affect the Boot Odometer Value through the use of the instruction. 

Therefore, the instruction used to retrieve the Boot Odometer Value from the TPM does 

not need to be privileged. 

C. DENIAL OF SERVICE 

Because the function call for accessing of the Boot Odometer Value is accessible 

to unprivileged users, it is possible that a malicious user may attempt to perform a denial 

of service attack on the TPM by flooding it with requests to perform the function. This is 

no different than any other non-privileged TPM call. The Trusted Software Stack (TSS)  
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mitigates a denial of service attack. The TSS is an API that allows applications a high 

level interface to the TPM functionality and prevents raw access to the TPM by untrusted 

applications.[9] By acting as a gatekeeper to the TPM, the TSS prevents it from being 

overwhelmed. 
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VI. CONCLUSION 

The ability to sense the reboot type by modifying the Trusted Platform Module is 

feasible as demonstrated by the explanation of both the conceptual design and the 

hardware simulations. The TPM provides trusted remote attestation that allows the 

MYSEA client to prove to the MYSEA Server that it has undergone a hard reboot. This 

ensures the MYSEA Server that sensitive information is not leaked to lower level process 

through volatile memory, such as main system RAM, when a MYSEA client switches to 

a lower or non-comparable classification level.  

Through analysis, the conceptual design has been shown to be correct because it 

is understandable, cannot be bypassed, and cannot by modified. The design can be 

considered understandable because of its simplicity. It included only four new 

requirements to the TPM_Startup function. The behavior of each change as well as their 

combined behavior is easily understood. The new operations cannot be bypassed because 

they are part of TPM function TPM_Startup. This function occurs during every system 

boot cycle and is specified in TPM design documents. The added functionality is non-

modifiable because it is protected by the TPM. 

 The simulation of the TPM functionality as related to the Boot Odometer concept 

shows that the operation of such a concept is feasible. The simulation allowed for a low 

cost, flexible, and testable design. Further, we were able to show that the Boot Odometer 

concept had uses outside of the MYSEA project and could be easily used in any situation 

where a reboot needs to be confirmed.  

Given further resources, several avenues of research can be used to extend the 

work done here. First, a full specification of a commercially produced TPM would need 

to be obtained. Using that specification, a feasibility study on the integration of the Boot 

Odometer concept could be completed. If a developer’s model of a TPM was available 

and its firmware was upgradeable, the changes could be integrated into a working TPM 

and tested. Second, using commercially available TPM-enabled computers, work on 

integrating attestation into the MYSEA framework could be done. While the Boot 
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Odometer mechanism would not be available, other attestation scenarios in which 

attestation would be beneficial could be tested. 

In conclusion, the Boot Odometer concept is a useful design with functionality 

relevant to the MYSEA project. Furthermore, it is shown the conceptual design and 

simulation testing demonstrates the feasibility of an implementation of this concept.  
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APPENDIX A 

A. SIMPLESCALAR SETUP ON FEDORA CORE 2[19] 

1. Download the following tarballs at the SimpleScalar website - simpleutils-
990811.tar.gz, simplesim-3v0d.tgz, gcc-2.7.2.3.ss.tar.gz, and simpletools-
2v0.tgz. (The direct URL is http://simplescalar.com/tools.html.) 

2. Create a directory for installation referred to here as $IDIR. Move the 
downloaded files into $IDIR and extract each tarball. 

3. Execute the following commands for installation of the Build Utils. 
export IDIR=/(chosen installation directory) 
cd $IDIR/simpleutils-990811 
./configure --host=i386-*-linux --target=sslittle-na-sstrix --with-gnu-as  
--with-gnu-ld --prefix=$IDIR 

4. Execute the following commands to install SimpleScalar v3.0 
cd $IDIR/simplesim-3.0 
make config-pisa 
make 
make sim-tests 

5. Due to unknown problems in the source distributions of this version of gcc, 
several of the files must be modified for compilation to complete successfully. 
cd $IDIR/gcc-2.7.2.3 
export PATH=$PATH:$IDIR/sslittle-na-sstrix/bin 
./configure --host=i386-*-linux --target=sslittle-na-sstrix --with-gnu-as --with-
gnu-ld --prefix=$IDIR --enable-languages=c,c++ 
make 

6. At some point, the make will fail due to an error and stop compilation. The 
followings changes should cause the make to complete successfully. 
1. Open insn-output.c in a text editor. Ensure that all multi-line quotes that 

are broken over several lines are properly escaped using the correct escape 
character. In this case – “\”. 

2. Replace the $IDIR/sslittle-na-sstrix/include/sys/cdefs.h file with the 
cdefs.h file found in the directory named “patched” 

3. On line 35 of obj/sendmsg.c, add the following –  
“#define STRUCT_VALUE 0” 

4. One line 60 of protoize.c, replace the “#include <varargs.h>” with 
“#include <stdarg.h>.” 

7. At this point, the compilation should be able to continue successfully. 
make 
make enquire 
../simplesim-3.0/sime-safe ./enquire –f > floah.h-cross 
make install 

8. Building glibs is not necessary. A working version exists in $IDIR/sslittle-na-
sstrix/lib/libc.a 
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B. SIMPLESCALAR DEVELOPMENT ENVIRONMENT 

1. Binary Utilities 

When working with SimpleScalar, it is highly probable that the host system 

architecture is different than that of the processor architecture being simulated by 

SimpleScalar. The ISA of the emulated processor may not exist physically or a system 

with the processor type may not be available to the researcher. In this case, the host 

architecture must be relied on to host the utilities to work with programs that are 

complied to run on the SimpleScalar emulated processors. SimpleScalar deals with this 

problem by including the source for basic utilities needed for working with binary files 

such as objdump, strings, and strip. These utilities have been ported to work on binaries 

that are not compiled for the host system. After following the installation instructions, 

these utilities can be found in the $IDIR/bin directory. 

2. Cross Compiling 

Instructions for building gcc as a cross compiler were included in the installation 

directions. However, since binaries cannot link against host system libraries for C library 

function calls, the needed code from the libraries is statically compiled into the binary. 

For unknown reasons, the compiler links in all functions defined by the included header 

file and not just the functions utilized by the compiled binary. The cross compiler version 

of gcc is found in the $IDIR/bin directory. 

Cross compiling requires that several other hurdles be overcome in the 

SimpleScalar environment.  First, instructions may need to be used in target architecture 

binaries that are not supported by either the compiler or the assembler. Second, 

attempting to hand craft op codes and insert them into compiler-generated assembly code 

may overwrite register contents. Thus, there needs to be a way for the compiler to choose 

the registers used by any new instructions used in binaries. Both of these problems can be 

addressed with the use of inline assembly code. Inline assembly code is supported by the 

gcc compiler and allows assembly code to be placed inline with C code in a source file. 

Furthermore, this allows the compiler to choose the registers needed for binary 

optimization. Since the assembler won’t support any new instructions, hand crafted op 

codes are used to include them. Two methods are suggested by SimpleScalar 

documentation.[20] The first is illustrated below. 
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int multiply_int32(int a, int b) 
{ 

int c; 
 
asm(“.long ((0x01 << 25) | (0x00 << 23) | 
((XXX%0) << 9) | ((XXX%1) << 4) | (XXX%2))” : 
“=r” (c) : “r” (a) , “r” (b)); 
 
return c; 

}[20] 

This method displays the inline assembler imbedded in a function call. Another form is to 

embed the op code in a macro function. 

#define __multiply_int32(a,b)({ int c; asm(“.long 
((0x01 << 25) | (0x00 << 23) | ((XXX%0) << 9) | 
((XXX%1) << 4) | (XXX%2))” : “=r” (c) : “r” (a) , “r” 
(b)); c;})[20] 

Several more steps are required to finish cross compiling a binary that includes inline 

assembler following these examples. 

sslittle-na-sstrix-gcc –O –S main.c 
sed “s/XXX//g” main.s > main_fix.s 
sslittle-na-sstrix-ggc –O –c main_fix.s 

If wanted, the sslittle-na-sstrix-objdump utility can be used to examine the binary for the 

correct inclusion of the op code. 

3. Simulation 

The SimpleScalar toolset contains a suite of processor simulators. This project 

utilizes a variant of the sim-safe simulator, called sim-bor, that has been adapted for use 

in the Boot Odometer prototype. Sim-bor is a functional simulator that uses serial 

execution of instructions. Sim-bor runs from the command line. It takes several 

arguments. The final argument is the name of binary to be executed using the simulator. 

Included with the name of the binary are any arguments it takes. When execution of the 

binary has been completed, sim-bor outputs statistics related to the execution of the 

binary. 

4. Debugger 

Running sim-bor with the –i argument causes the target binary to be run in the 

DLite! debugger. The DLite! debugger allows the programmer to step through the target 

binary by setting and running breakpoints. Also, the debugger supports commands that 



38 

access value of memory address and registers. It also allows for access to simulator 

statistics during execution. 
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APPENDIX B 

A. SIMPLESCALAR DIFFS 

The standard Unix diff utility was used to create a listing if the changes made to 

the SimpleScalar source code when implementing this thesis. The output of the diff utility 

is listed before. The output can be combined with a fresh install of the SimpleScalar 

source to reconstruct the changes made for this thesis. 

 
Only in simplesim-3.1: boot_mem 
Only in simplesim-3.1: dlite.o 
Only in simplesim-3.1: eio.o 
Only in simplesim-3.1: endian.o 
Only in simplesim-3.1: eval.o 
Only in simplesim-3.1/libexo: exolex.o 
Only in simplesim-3.1/libexo: libexo.a 
Only in simplesim-3.1/libexo: libexo.o 
Only in simplesim-3.1: loader.o 
diff -r simplesim-3.0/machine.c simplesim-3.1/machine.c 
105a106 
>   "fu-BO-boot", 
282a284,286 
>    
>   /* Boot Odometer */ 
>   { "$bo",  rt_bor,  0 }, 
285a290 
>  
421a427,438 
>        
>  /* New Stuff added by me*/      
>     case rt_bor: 
>       if(!is_write) 
>         { 
>  val->type = et_uint; 
>  val->value.as_uint = regs->regs_B; 
>  } 
>       else 
>         regs->regs_B = eval_as_uint(*val); 
>       break; 
> /* ----------------------*/ 
diff -r simplesim-3.0/machine.def simplesim-3.1/machine.def 
1225a1226,1260 
> /* 
>  * Boot Odometer DEFINST and Implementation 
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>  * The "sst" instruction writes the value in the boot 
odometer register 
>  * to the general purpose register defined in rd register 
field. 
>  * The macros BOR and SET_BOR are specially defined for 
this project. 
>  * They must be defined in each individual simulator in 
which they are 
>  * to be used.  This project only makes use of the sim-
safe simulator. 
>  */ 
> #define SST_IMPL                                                        
\ 
>   {                                                                     
\ 
>     SET_GPR(RD,BOR);       \ 
>     printf("BOR...%u\n", BOR);     
 \ 
>   } 
> /* 
>  * 1. This is the name of the instruction.  It is used 
for instruction 
>  *    decoding in the machine.def file. 
>  * 2. 0xbb is the hex value of the opcode. 
>  * 3. "sst" is the name of the opcode. this field is used 
by the debugger 
>  * 4. This section describes the rest of the fields in 
the instruction 
>  *    to the debugger.  Here we see that the instruction 
is described as 
>  *    using the rd output register field. 
>  * 5. BootOD is a machine resource descriptor on which 
the instruction 
>  *    depends.  It has been added for this project. 
>  * 6. This section describes the flags set by the 
instruction.  F_CTRL is 
>  *    the control register. 
>  * 7. These are the output register dependencies for 
advanced simulators. 
>  * 8. These are the input register dependencies for 
advanced simulators. 
>  */   
> DEFINST(SST,/*1*/  0xbb,/*2*/ 
>         "sst",/*3*/         "d",/*4*/ 
>         BootOD,/*5*/            F_CTRL,/*6*/ 
>         DGPR(RD), DNA,/*7*/     DNA, DNA, DNA)/*8*/ 
>  
>  
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>  
2186a2222 
> #undef SST_IMPL 
Only in simplesim-3.1: machine.def.new 
Only in simplesim-3.1: machine.def.old 
Only in simplesim-3.1: machine.def.old.2 
diff -r simplesim-3.0/machine.h simplesim-3.1/machine.h 
140a141,143 
> /* New Stuff ... */ 
> #define MD_NUM_BREGS  1 
>  
143c146,149 
<   (/*int*/32 + /*fp*/32 + /*misc*/3 + /*tmp*/1 + /*mem*/1 
+ /*ctrl*/1) 
--- 
>   (/*int*/32 + /*fp*/32 + /*misc*/3 + /*tmp*/1 + /*mem*/1 
+ /*ctrl*/1 + /*boot*/1) 
>  
> /* boot odometer register file entry type */ 
> typedef sword_t md_bor_t; 
265a272 
>   BootOD,  /* Boot Odometer */ 
596c603,604 
<   rt_NUM 
--- 
>   rt_NUM, 
>   rt_bor  /* boot odometer register */ 
Only in simplesim-3.1: machine.o 
Only in simplesim-3.1: main.o 
diff -r simplesim-3.0/Makefile simplesim-3.1/Makefile 
374a375,377 
> sim-bo$(EEXT): sysprobe$(EEXT) sim-bo.$(OEXT) $(OBJS) 
libexo/libexo.$(LEXT) 
>  $(CC) -o sim-bo$(EEXT) $(CFLAGS) sim-bo.$(OEXT) 
$(OBJS) libexo/libexo.$(LEXT) $(MLIBS) 
>  
476a480,481 
> sim-bo.$(OEXT): host.h misc.h machine.h machine.def 
regs.h memory.h 
> sim-bo.$(OEXT): options.h stats.h eval.h loader.h 
syscall.h dlite.h sim.h 
Only in simplesim-3.1: Makefile.old 
Only in simplesim-3.1: memory.o 
Only in simplesim-3.1: misc.o 
Only in simplesim-3.1: options.o 
Only in simplesim-3.1: range.o 
diff -r simplesim-3.0/regs.c simplesim-3.1/regs.c 
161a162,164 
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> /* boot odometer */ 
> SS_WORD_TYPE regs_B; 
>  
diff -r simplesim-3.0/regs.h simplesim-3.1/regs.h 
105a106 
>   md_bor_t regs_B;  /* boot odometer register 
file */ 
Only in simplesim-3.1: .regs.h.swp 
Only in simplesim-3.1: regs.o 
Only in simplesim-3.1: sim-bo 
Only in simplesim-3.1: sim-bo.c 
Only in simplesim-3.1: sim-bo.o 
Only in simplesim-3.1: sim-fast 
diff -r simplesim-3.0/sim-fast.c simplesim-3.1/sim-fast.c 
253a254,255 
> #define BOR   (regs.regs_B) 
> #define SET_BOR(EXPR)  (regs.regs_B = (EXPR)) 
Only in simplesim-3.1: sim-fast.o 
Only in simplesim-3.1: sim-safe 
diff -r simplesim-3.0/sim-safe.c simplesim-3.1/sim-safe.c 
216a217,218 
> #define BOR   (regs.regs_B) 
> #define SET_BOR(EXPR)  (regs.regs_B = (EXPR)) 
Only in simplesim-3.1: sim-safe.o 
Only in simplesim-3.1: stats.o 
Only in simplesim-3.1: symbol.o 
Only in simplesim-3.1: syscall.o 
Only in simplesim-3.1: sysprobe 
diff -r simplesim-3.0/target-pisa/pisa.c simplesim-
3.1/target-pisa/pisa.c 
105a106 
>   "fu-BO-boot", 
282a284,286 
>    
>   /* Boot Odometer */ 
>   { "$bo",  rt_bor,  0 }, 
285a290 
>  
421a427,438 
>        
>  /* New Stuff added by me*/      
>     case rt_bor: 
>       if(!is_write) 
>         { 
>  val->type = et_uint; 
>  val->value.as_uint = regs->regs_B; 
>  } 
>       else 
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>         regs->regs_B = eval_as_uint(*val); 
>       break; 
> /* ----------------------*/ 
Only in simplesim-3.1/target-pisa: pisa.c.old 
Only in simplesim-3.1/target-pisa: .pisa.c.swp 
diff -r simplesim-3.0/target-pisa/pisa.def simplesim-
3.1/target-pisa/pisa.def 
1225a1226,1260 
> /* 
>  * Boot Odometer DEFINST and Implementation 
>  * The "sst" instruction writes the value in the boot 
odometer register 
>  * to the general purpose register defined in rd register 
field. 
>  * The macros BOR and SET_BOR are specially defined for 
this project. 
>  * They must be defined in each individual simulator in 
which they are 
>  * to be used.  This project only makes use of the sim-
safe simulator. 
>  */ 
> #define SST_IMPL                                                        
\ 
>   {                                                                     
\ 
>     SET_GPR(RD,BOR);       \ 
>     printf("BOR...%u\n", BOR);     
 \ 
>   } 
> /* 
>  * 1. This is the name of the instruction.  It is used 
for instruction 
>  *    decoding in the machine.def file. 
>  * 2. 0xbb is the hex value of the opcode. 
>  * 3. "sst" is the name of the opcode. this field is used 
by the debugger 
>  * 4. This section describes the rest of the fields in 
the instruction 
>  *    to the debugger.  Here we see that the instruction 
is described as 
>  *    using the rd output register field. 
>  * 5. BootOD is a machine resource descriptor on which 
the instruction 
>  *    depends.  It has been added for this project. 
>  * 6. This section describes the flags set by the 
instruction.  F_CTRL is 
>  *    the control register. 



44 

>  * 7. These are the output register dependencies for 
advanced simulators. 
>  * 8. These are the input register dependencies for 
advanced simulators. 
>  */   
> DEFINST(SST,/*1*/  0xbb,/*2*/ 
>         "sst",/*3*/         "d",/*4*/ 
>         BootOD,/*5*/            F_CTRL,/*6*/ 
>         DGPR(RD), DNA,/*7*/     DNA, DNA, DNA)/*8*/ 
>  
>  
>  
2186a2222 
> #undef SST_IMPL 
diff -r simplesim-3.0/target-pisa/pisa.h simplesim-
3.1/target-pisa/pisa.h 
140a141,143 
> /* New Stuff ... */ 
> #define MD_NUM_BREGS  1 
>  
143c146,149 
<   (/*int*/32 + /*fp*/32 + /*misc*/3 + /*tmp*/1 + /*mem*/1 
+ /*ctrl*/1) 
--- 
>   (/*int*/32 + /*fp*/32 + /*misc*/3 + /*tmp*/1 + /*mem*/1 
+ /*ctrl*/1 + /*boot*/1) 
>  
> /* boot odometer register file entry type */ 
> typedef sword_t md_bor_t; 
265a272 
>   BootOD,  /* Boot Odometer */ 
596c603,604 
<   rt_NUM 
--- 
>   rt_NUM, 
>   rt_bor  /* boot odometer register */ 

 
B. SIMPLESCALAR TEST SCRIPT 

This script was used for automated testing of SimpleScalar changes made in 

support of this thesis. 

 

#The sst instruction copies the value of the boot odometer 
register to 
#a general purpose register. From here, the Boot Odometer 
Value can 
#be inspected by no privileged processes. 
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import os 
import re 
 
#Since the Boot Odometer Value is a 32-bit unsigned int, 
every value 
#cannot be tested. We will test a 200000 value block before 
the integer 
#rollover point. The rollover point will also be done to 
test the 
#boundry behavior. 
 
high = pow(2,32) 
low = high - 200000 
 
l = low - 2 
j = low - 2 
 
for i in range(low, high): 
 
   if (i%1000) == 0: 
      print "." 
    
   #Store the values from the previous loop iterations. 
Compare them 
   #to the new values to make sure the value has been 
incremented by 
   #one 
   l_prev = l 
   j_prev = j 
    
   #This runs the simulator and stores the output in the a 
object 
   a = os.popen3("/home/nexus/SimpleScalar/simplesim-
3.1/sim-bo /home/nexus/SimpleScalar/test/test2", "r") 
    
   #The output we want comes on stdout. It's been specially 
added 
   #the simulator code. 
   out = a[1] 
     
   #SimpleScalar simulators output their debugging messages 
to stderr 
   #We're not interested in that info so it will be 
ignored. 
   #err = a[2] 
 
   #Extract the string data from the programs stdout 
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   z = out.read() 
    
   #Generate the regular expressions matching patterns 
   p = re.compile('BOR...([0-9]*)') 
   q = re.compile('sst...([0-9]*)') 
    
   #Search the strings for the regex patterns 
   m = p.search(z) 
   n = q.search(z) 
    
   #Extract the Boot Odometer values that we're interested 
in. 
   val_bor = m.group(1) 
   val_reg = n.group(1) 
    
   #Convert the string representations of the observed 
register values 
   #into integers 
   l = int(val_bor) 
   j = int(val_reg) 
 
   #make sure the value read directly from the register 
memory file 
   #and the value obtained by executing the sst instruction 
are the 
   #same. If they are not the same, print the values and 
exit. 
   if l != j: 
      print "Value mismatch detected!!!\n" 
      os.exit(0) 
 
   #Ensure the the Boot Odometer Value has been 
monotomically 
   #incremented for both values 
   if (l_prev + 1) != l: 
      print "Value did not increment correctly...", l_prev, 
l, "\n" 
      os.exit() 
   if (j_prev + 1) != j: 
      print "Value did not increment correctly\n" 
      os.exit() 
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