

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

A DESIGN FOR SENSING THE BOOT TYPE OF A
TRUSTED PLATFORM MODULE ENABLED COMPUTER

by

Richard C. Vernon

September 2005

 Thesis Advisor: Cynthia E. Irvine
 Second Reader: Timothy E. Levin

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2005

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: A Design for Sensing the Boot Type of a Trusted
Platform Module Enabled Computer

6. AUTHOR(S) Richard C. Vernon

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
Modern network technologies were not designed for high assurance applications. As the DOD moves

towards implementing the Global Information Grid (GIG), hardened networks architectures will be required. The
Monterey Security Architecture (MYSEA) is one such project.

This work addresses the issue of object reuse as it pertains to volatile memory spaces in untrusted
MYSEA clients. When a MYSEA client changes confidentiality levels, it is possible that classified material
remains in volatile system memory. If the system is not power cycled before the next the login, an attacker could
retrieve sensitive information from the previous session. This thesis presents a conceptual design to protect against
such an attack.

A processor may undergo a hard or soft reboot. The proposed design uses a secure coprocessor to sense
the reboot type of the host platform. In addition, a count is kept of the number of hard reboots the host platform
has undergone. Using services provided by the secure coprocessor, the host platform can trustfully attest to a
remote entity that it has undergone a hard reboot. This addresses the MYSEA object reuse problem. The design
was tested using the CPU simulator software SimpleScalar.

15. NUMBER OF
PAGES

68

14. SUBJECT TERMS Information Assurance, Monterey Security Architecture, Object Reuse,
Trusted Platform Module

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

A DESIGN FOR SENSING THE BOOT TYPE OF A TRUSTED PLATFORM
MODULE ENABLED COMPUTER

Richard C. Vernon

Civilian, Naval Postgraduate School
B.S., University of Arkansas - Fayetteville, 2003

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
Month Year

Author: Richard C. Vernon

Approved by: Cynthia E. Irvine, Ph.D.

Thesis Advisor

Timothy E. Levin
Second Reader/Co-Advisor

Peter J. Denning, Ph.D.
Chairman, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Modern network technologies were not designed for high assurance applications.

As the DOD moves towards implementing the Global Information Grid (GIG), hardened

networks architectures will be required. The Monterey Security Architecture (MYSEA) is

one such project.

This work addresses the issue of object reuse as it pertains to volatile memory

spaces in untrusted MYSEA clients. When a MYSEA client changes confidentiality

levels, it is possible that classified material remains in volatile system memory. If the

system is not power cycled before the next the login, an attacker could retrieve sensitive

information from the previous session. This thesis presents a conceptual design to protect

against such an attack.

A processor may undergo a hard or soft reboot. The proposed design uses a secure

coprocessor to sense the reboot type of the host platform. In addition, a count is kept of

the number of hard reboots the host platform has undergone. Using services provided by

the secure coprocessor, the host platform can trustfully attest to a remote entity that it has

undergone a hard reboot. This addresses the MYSEA object reuse problem. The design

was tested using the CPU simulator software SimpleScalar.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION .. 1

II. BACKGROUND ... 3
A. MYSEA PROJECT OVERVIEW... 3

1. Trusted Path Extension... 4
2. Object Re-use Considerations... 5

B. REMOTE ATTESTATION... 6
1. Attestation and Trusted Computing... 6
2. Attestation Research ... 9

C. SEALED STORAGE ... 9
D. HARDWARE SIMULATION... 10

1. SimpleScalar.. 11
E. MYSEA & THE BOOT ODOMETER CONCEPT...................................... 11

III. CONCEPTUAL DESIGN ... 13
A. CONCEPT OF OPERATION... 13
B. HIGH LEVEL SYSTEM REQUIREMENTS... 13
C. HARDWARE REQUIREMENTS .. 16
D. SOFTWARE DESIGN .. 20
E. USE CASES.. 21

IV. IMPLEMENTATION ... 23
A. CODING .. 23

1. Concept of Operation.. 23
2. Instruction Addition.. 24
3. Register Bank .. 25
4. Sim-bor.. 25
5. Protected Storage .. 25
6. Cross Compiling & Op Code Insertion .. 25

B. TESTING ... 26
1. Test Plan.. 26

a. Interactive Testing Procedure .. 26
b. Scripted Testing Procedure .. 27

2. Test Results ... 28
a. Interactive Test Results .. 28
b. Scripted Test Results .. 28

V. SECURITY ANALYSIS ... 31
A. COVERT CHANNEL ANALYSIS ... 31
B. INSTRUCTION PRIVILEGE... 31
C. DENIAL OF SERVICE... 31

VI. CONCLUSION .. 33

 viii

APPENDIX A.. 35
A. SIMPLESCALAR SETUP ON FEDORA CORE 2[19]............................... 35
B. SIMPLESCALAR DEVELOPMENT ENVIRONMENT 36

1. Binary Utilities .. 36
2. Cross Compiling.. 36
3. Simulation.. 37
4. Debugger ... 37

APPENDIX B.. 39
A. SIMPLESCALAR DIFFS.. 39
B. SIMPLESCALAR TEST SCRIPT.. 44

LIST OF REFERENCES ... 47

INITIAL DISTRIBUTION LIST ... 51

 ix

LIST OF FIGURES

Figure 1. MYCEA Architectural Overview taken from [1] ... 4
Figure 2. Generic description of the TPM Remote Attestation process taken from .[2] 7
Figure 3. Simple Attestation Layout... 16
Figure 4. Logical component architecture of the TPM secure co-processor taken from

[2].. 17
Figure 5. Behavior of TPM_Startup when signaled with the TPM_ST_CLEAR flag

after [15].. 19
Figure 6. Logical Architecture of Enhancements to SimpleScalar Simulator 24
Figure 7. Example of partial source disassembly using the SimpleScalar DLite!

debugger. ... 27

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

ACKNOWLEDGMENTS

I would like to thank my advisors Dr. Irvine and Prof. Levin for their

contributions of time, patience, and expertise without which this thesis would be possible.

I would further like to thank Dr. Irvine and the National Science Foundation for

providing the CyberCorp Scholarship under which I which I have studied at the Naval

Postgraduate School.

This material is based upon work supported by the National Science Foundation

under Grant No. DUE-0114018 and Grant No. CNS-0430566. Any opinions, findings,

and conclusions or recommendations expressed in this material are those of the author

and do not necessarily reflect the views of the National Science Foundation.

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

Many modern network architectures were created with inadequate regard to

security concerns. Currently, many of these technologies have been deployed in

situations with high information assurance requirements. As the DOD moves to

implement its Global Information Grid (GIG) initiative, new networked security

architectures will need to be developed. One such project is the Monterey Security

Architecture (MYSEA).[1] The MYSEA project leverages existing COTS products to

implement multilevel networks over which secure information services can be provided.

This project addresses a specific security issue within the MYSEA framework. If

a client computer has been rebooted without being power cycled, it is believed that

sensitive information may remain within volatile memory components of the system.

This includes main system RAM. This information is then vulnerable to retrieval by

malicious programs or users.

To address this issue, this thesis hypothesizes a design that enhances a client

workstation so that it senses the type of reboot it underwent. This design is based on the

Trusted Computing Group’s Trusted Platform Module.[2] The Trusted Platform Module

(TPM) is a secure coprocessor providing security and encryption services to the host

platform. A modified TPM is used to sense the type of reboot a computer has undergone.

This functionality will be shown to be correct using the validation properties of a

Reference Monitor, which are that is understandable, cannot be bypassed, and cannot be

modified.[3] Furthermore, the design allows the TPM to keep a count, the Boot Odometer

Value, which tracks the number hard reboots the host platform has undergone. Used in

accordance with remote attestation, the computer can then trustfully prove to a remote

entity the type of reboot it has undergone. In addition, this thesis presents a proof of

concept simulation of the design using the CPU hardware simulation software

SimpleScalar.

This thesis first provides background information, in the second chapter, on the

MYSEA project, remote attestation, sealed storage, and hardware emulation. The third

chapter presents the design of the system used to sense the boot type of the host platform.

2

Software requirements for utilizing the new design mechanism are also included. At the

end of the third chapter is a short section on possible applications of the design. The

fourth chapter describes the development and testing of the simulation used to

demonstrate certain properties of the design. The fifth chapter provides analysis of

implications associated with hypothesized design. The sixth chapter concludes this

document with a discussion of further work and summary.

3

II. BACKGROUND

The goal of this thesis is to address the object reuse problem of MYSEA and

similar architectures by using remote attestation based on a new hardware primitive, and

to develop a proof of concept of such a product using hardware simulation. Background

concepts supporting this goal are discussed in this chapter.

A. MYSEA PROJECT OVERVIEW

The MYSEA (Monterey Security Architecture) Project is a trusted, network-based

architecture designed for securely sharing information in dynamic, multi-domain

environments. The MYSEA framework provides a full featured multilevel secure LAN

that can interact with single security level legacy networks (NIPRNET, SIPRNET, etc.).

It is based on commercial off-the-shelf (COTS) components allowing the DOD to

leverage existing hardware and software, helping to preserve its investment in such

products. The MYSEA Project relies on high assurance design and development methods

to ensure the integrity and trust of the system.[4]

At the core of the MYSEA framework are the MYSEA Server and the Trusted

Path Extension (TPE). The MYSEA server operates as both a multilevel security (MLS)

policy enforcement mechanism and platform on which information services can be

delivered and consumed via standard web-enabled tools. The MYSEA design allows

confederated servers to distribute the load of multiple network services. The base

MYSEA server is currently implemented on a DigitalNet XTS-400. The XTS-400 is a

high assurance hardware/OS platform that enforces an MLS security policy through the

use of labeled subjects and objects. The TPE is a handheld computing device running a

lightweight security kernel. It provides an unspoofable link from the user to the MYSEA

Server over which a variety of security services can be delivered. In addition, the TPE

mediates access from the users workstation to the server.[5] Figure 1 displays the

working model for the MYSEA. The trusted channel modules provide label integrity for

entire single security level legacy networks. They provide the network an unspoofable

link to the MYSEA server over which authentication and other security services can be

delivered. Furthermore, Figure 1 shows high assurance link encryptors than can be

integrated if required.[1]

4

1. Trusted Path Extension

The Trusted Path Extension (TPE) is the basis for providing security services

from the MYSEA Server to the client user. Through this link the MYSEA Server

provides a variety of security critical operations. These include a secure attestation key,

trusted path services, controlled LAN access, communications and cryptographic

services, negotiated session services, and control of security critical activities. The TPE is

based on a high assurance separation kernel running on a dual NIC PDA. The TPE

protects itself from malicious software operating on the client computer. This is done via

the physically separated execution environment and the high assurance kernel that

prevents network vector exploits. Furthermore, the MYSEA architecture does not depend

on the trustworthy behavior by the client machine. All trust is derived from the

relationship between the TPE and the MYSEA Server.[4]

Figure 1. MYCEA Architectural Overview taken from [1]

5

2. Object Re-use Considerations

Object reuse must be addressed in secure systems to prevent unintentional access

to information by processes, and ultimately users, with different security attributes.

Object reuse ensures that when storage resources are allocated to a process, they have

been purged of any residual information that may be remnant from a previous process.[6]

In multi-user systems that implement Discretionary Access Control (DAC) policies,

mechanisms that address object reuse prevent information from being leaked between

processes that do not wish to share information. Unfortunately, many modern operating

systems with DAC policies fail to fully address object reuse. Multilevel Security (MLS)

systems operating under Mandatory Access Control (MAC) policies must implement

strict mechanisms for ensuring correct object reuse. Because both high and low

sensitivity objects exist within the same system, the possibility exists that a low process

may be able read residual high information if an allocated resource is not properly

purged.

For example, suppose a process operating at a high security level in an MLS

system “deleted1” information from a hard drive and released the space back to the

operating system. Now suppose a second process running at a lower security level

requests space on the hard drive from the operating system and receives space formerly

allocated to the high level process. If the high level information wasn’t properly removed

from the hard drive, the lower level process might be able to retrieve the higher level

information retained on the hard drive.

The main RAM and other volatile memory locations on the main circuit board of

MYSEA clients present possible vectors through which object reuse weaknesses could be

exploited. The MYSEA client OS is not trusted to separate information at different

security levels. Because the MYSEA client hardware does not clear RAM after a soft

reboot, sensitive information could possibly be retained in memory. A malicious user

could exploit this situation if only a soft reboot was permitted. The user could log in at a

1 In this case, we assume deletion doesn’t destroy a file. It merely marks the space occupied by the file

as available for reallocation by the OS.

6

lower classification level and then use administrative tools to access RAM as a raw

device. It would then be possible to reconstruct sensitive information left over from a

previous higher sensitivity session.

B. REMOTE ATTESTATION

Most modern, networked software applications implicitly trust the integrity of

other systems they communicate with over a network. Even if the software application is

trusted, there is no way to verify the integrity of the operating environment of a remote

host. When queried for such state information, a malicious host can lie with impunity.

For example, in peer-to-peer (P2P) file trading networks, copyright holders frequently

flood the network with garbage files that have metadata that matches more valuable files.

The distribution of such files is achieved through the use of non-standard clients that act

maliciously on the network. Unfortunately, legitimate clients cannot differentiate

between trusted and malicious peers. Users waste resources downloading garbage files.

This reduces the overall utility of the network.

Secure coprocessors provide methods for a computer to trustfully attest to a

remote host. Trusted remote attestation is the process by which a host can provide high

integrity evidence of its current operating environment. This can include the status of

hardware, operating systems, and running software. Using this information, remote hosts

can make decisions as to whether or not to provide services and data to the attesting host.

In the case of a P2P networks, non-standard clients could be effectively disallowed

through the use of trusted attestation. Every time a host wished to join the network, a peer

would force the joining host to attest to its current operating state. Only systems with the

ability to reliably attest would be able to join the network. Non-standard and malicious

clients would be excluded, to the extent that the integrity of the secure coprocessors and

their integrity infrastructure remains intact.[7]

1. Attestation and Trusted Computing

The Trusted Computing Group’s Trusted Platform Module (TCG TPM) is a

secure coprocessor that provides essential security services such as key storage and fast

hardware encryption to the host devices in which it is embedded.[8] One such service is

trusted remote attestation. To provide trusted remote attestation to the host platform, the

TPM uses a combination of system integrity measurements and public key cryptography.

7

Figure 2. Generic description of the TPM Remote Attestation process taken from .[2]

Before the attestation process begins, a client must first make a request to a server

for information or services. If the server wishes to validate the operating environment of

the client, it challenges the client to perform a TPM-based trusted attestation. Because the

complete attestation object is made up of several pieces of information, multiple steps are

required to complete the process.

In Figure 2, the server is referred to as the Challenger. It begins the attestation

process by requesting an attestation from the client, which is labeled Platform Agent in

Figure 2. This is shown with the command RequestPlatformConfiguration(). The client,

in response to the challenge being sent, begins a set of operations that generate the

attestation response.

In the second step in Figure 2, the client retrieves information from the Stored

Measurement Log (SML) using the command GetEventLog(). The SML is an event log

that records sequences of references to measurement values and measurement digests.

Measurement values are representations of system data or stored programs. Measurement

digests are cryptographic hashes of the measured values. Measuring a value is equivalent

to generating a hash of the value. Sequences of measurements can be generated using

8

measurement extension. The current digest is concatenated with the value to be

measured. The concatenated object is then hashed and stored. This allows arbitrarily long

measurement sequences to be stored in a limited amount of space.[9] By storing

references to the measured objects and the storage locations, the SML can generate a

digest at any point in the measurement sequence.

The third step shows the Platform Agent performing the request GetSignedPCR().

A Platform Control Register (PCR) is a volatile register inside the TPM where it stores

measurement digests generated with the SHA-1 algorithm. The first eight PCR registers

are used to store the measurements of system initialization components such as the BIOS,

expansion ROM’s, and boot sector.[10] The other PCR’s are used to store other

measurements of system code and firmware as required. These measurements are referred

to as the state of the system. The PCR values represent the most currently measured state

of the host platform. By retrieving a signed PCR from the TPM, the Platform Agent can

trustfully attest to the state of the host platform. At any given time, the SML can be used

to verify the value currently occupying a PCR.

In the fourth step, the TPM performs the function SignPCRValue(). This is the

first place where trust is derived in the attestation process. The TPM uses keys that are

protected from the host platform to sign its PCR. Key signing is performed on a processor

embedded in the TPM that is separate from the host platform’s CPU. By protecting the

signing keys from the host platform, the Challenger can assume that any measurements

signed by the TPM are valid. Without access to the signing keys, there is no way for the

host platform to maliciously lie to the Challenger about its operating state.

The fifth step allows the TPM to request that a third party vouch for the

authenticity of its public key. This validation is required because the TPM may use many

such keys in the process of attesting to different remote entities. The third party is labeled

the Repository in Figure 2. Each TPM is loaded at the factory with a key pair that is

unique to it. The Repository encrypts information with the TPM’s public key such that

only an individual TPM can decrypt it with its corresponding private key. In this way, the

repository can sign a TPM’s public attestation keys and return them encrypted so that

only that TPM can decrypt them. When a TPM uses those attestation keys, it can pass

9

along the signed public keys vouched for by the Repository. The Challenger can then

trust the public keys used to authenticate the signed attestation information.

The final step is for the Challenger to verify all the information provided to it by

the Platform Agent.

2. Attestation Research

The attestation procedure above has a privacy flaw whereby the Challenger can

obtain the unique identify of the TPM that attests to it. The Challenger must collude with

the Repository to accomplish this. When the Challenger receives the attestation package

from the Platform Agent, it simply has to ask the colluding Repository to provide it with

the identity of the TPM that previously submitted the attestation key for verification.

Direct Anonymous Attestation (DAA) can be used to combat the issue of

collusion. Described in a paper by Brickell, et al, DAA is a complicated protocol that

utilizes resource intensive cryptographic procedures. It is currently being integrated into

the newest version of the TPM specification.[11]

C. SEALED STORAGE

In general, if data must be stored on a hard drive with high integrity and high

secrecy, the data might be encrypted with a key known only to authorized entities.

However, in a general-purpose computer, the program has no way of truly knowing if

malicious programs are sniffing input from the user. If this were the case, even

encryption would not protect the data because the malicious program would have the

encryption key. However, using the TPM as a way to encrypt data and store keys that are

protected from untrusted parts of the system, data can be securely stored on the hard

drive.

Sealed Storage is the tool that programs will use to securely store large

information blocks that need to be protected from malicious software that may be running

on the host platform. While the TPM interface is large and complicated, it is generally

expected that applications will access TPM functionality through a TPM library that

presents high-level function calls. In this way, the application developer will be shielded

from many of the subtle TPM intricacies. Simply put, Sealed Storage works by

depending on the TPM to accurately measure the state of the machine. From the TPM’s

10

perspective, the state of the machine is based on measurements of system components

and stored software applications. The measurements are stored in PCR registers. The

collection of values in the PCR registers make up the TPM’s concept of host platform

state. The TPM generates a session key based on the state of the machine. Only if the

machine matches the state of the machine when the data was encrypted will it generate

the correct decryption key. This means an attacker can’t remove the hard drive and use a

machine he controls to extract secret data from the drive.

D. HARDWARE SIMULATION

Hardware simulation is the ability to represent the operation of a discrete

hardware device in software. The software-based simulator keeps track of the operating

states of the target hardware as it executes. Studying the empirical data generated from

running the simulator can validate or disprove hardware design assumptions.

Hardware simulation provides a useful, flexible development environment for

both software and hardware designers. Software designers are able to do meaningful

development and testing for platforms that may not yet exist as hardware. Hardware

designers have the ability to test and tweak their designs before going through a costly

fabrication process. While a plethora of simulators may exist for a given hardware

platform, each will have relative merits depending on the requirements of the user.

The three main characteristics of a hardware simulator are performance,

flexibility and detail.[12] Maximizing one characteristic requires a tradeoff in the utility

of another. Because host hardware may have little in common with the hardware being

simulated, the performance characteristic is often the first addressed. By focusing on

performance, simulator developers can decrease the required computing resources for

useful development. For those developing new hardware designs, the ease with which a

simulator can be changed to incorporate new designs or instructions is often the key

characteristic of interest, but this may affect the performance or level of detail the

simulator is able to achieve. For those doing computation research with simulators, the

granularity, or detail characteristic, of the simulation is often of great importance.

However, the more that the simulator reproduces the entire design and keeps track of

machine state variables as it executes, the more performance and flexibility may suffer.

11

There are two distinctive paradigms for simulator construction – trace-driven or

execution-driven. Trace driven simulators use program traces to drive a simulation

engine. A trace is a recording of the complete operation of a program as it executed. All

instructions, inputs, and outputs are recorded. Traces allow a hardware designer to

recreate the same test environment for multiple hardware designs. Design changes can be

closely scrutinized for performance issues.

An execution-driven simulator uses program binaries to drive the execution

engine. Complete program behavior is not known a priori. Programs that require external

input will produce varying execution statistics depending on the input.

1. SimpleScalar

SimpleScalar is an open-source, execution-driven CPU simulator. It is built on a

highly flexible code base that makes it easy to implement changes to the underlying

hardware descriptions of the target platforms. Support for several CPU instruction set

architectures is currently available. These include Alpha, MIPS, PowerPC, and x86.

Included in the SimpleScalar suite are a variety of simulators covering a range of

complexity.[13] There are simulators optimized for speed that provided serialized, in-

order execution. There is a cache hierarchy simulator. The most complex simulator

includes a micro-architecture with branch prediction and out of order execution. Each

simulator focuses on a functional characteristic of either performance or detail. Each

simulator collects a wide array of information and statistics about executed processes that

detail the operating characteristics of the simulate hardware.

E. MYSEA & THE BOOT ODOMETER CONCEPT

The overall MYSEA architecture operates in such a way as to mitigate the risk

caused by an untrusted client. While the TPE can provide security services directly

between the user and the MYSEA Server, neither has any way of validating a hard reboot

of the client computer. Without a hard reboot, there remains a potential object reuse that

could provide an exploitable vulnerability to a determined adversary. This occurs when

the client workstation is not rebooted to clear memory between a high confidentiality

session and a low one. Currently, procedural policy requires that users hard reboot the

system when switching between session levels. Because users may not always follow

12

expected procedures, it is possible that a malicious program could retrieve sensitive

information from memory after a user failed to hard reboot the client machine.

To alleviate the vulnerability, this thesis proposes a method by which changes to a

secure coprocessor, the TCG TPM, are used to detect the type of reboot the host (i.e. the

client) platform underwent and to keep a count of the number of times the host platform

has undergone a hard reboot. An instruction is added to the TPM that allows local

programs to query for the current number of hard reboots that have been observed. These

changes are augmented by remote attestation, which allows the MYSEA Server to query

the host regarding the number of hard boots that the host has undertaken to date. These

changes are made to the TPM firmware and have been evaluated using SimpleScalar.

There are several reasons why the attestation on the reboot status is done between

the client and the MYSEA Server instead of between the client and the TPE. First, the

TPE is a PDA style device with limited resources in the areas of processing and main

memory. Attestation requires intensive computations for the public key cryptography

system. This would further stress the TPE and take away resources needed to establish

secure communications with the MYSEA server. Second, adding attestation-checking

abilities to the TPE would increase its complexity. Added complexity reduces the

assurance that the designers can prove the correctness of the design and operation of the

TPE. Third, the TPE is not integrated into the client computer main board. Consequently,

there is no way for the TPE to directly observe if the client has cycled through a hard

reboot. Although integration of the TPE and the client computer has been considered, the

system would demand a much more complex trusted computing base than the relatively

simple separation kernel currently under development. [14]

This chapter provided a brief overview of the topics referred to in this thesis

including attestation, hardware simulation, and the MYSEA. It also discussed the

relevance of the main thesis topic to the MYSEA project. The next chapter will elaborate

the conceptual design that addresses the object reuse problem. The next chapter also

briefly explains several scenarios in which the conceptual design can be used.

13

III. CONCEPTUAL DESIGN

A. CONCEPT OF OPERATION

The Boot Odometer concept arises from the need to reliably attest to a remote

entity that a local computer has been hard rebooted (i.e. power cycled) as opposed to soft

rebooted (i.e. software initiated reboot). A hard reboot indicates to a remote entity that

certain board level components such as memory have been cleared due to power loss.

To achieve this, a secure coprocessor is added to the main system board. A secure

coprocessor provides a highly trustworthy execution environment for the storage of

security-critical information and for security-critical computation. The secure

coprocessor stores a high integrity number known as the Boot Odometer Value. This

value keeps track of the number of times the computer has been hard rebooted. Every

time the computer hard reboots, the secure coprocessor causes the Boot Odometer Value

to increment by one. The secure coprocessor does not increment the Boot Odometer

Value in the case of soft reboots.

A host equipped with a secure coprocessor performs a trusted remote attestation

to prove to a remote entity that it has undergone a hard reboot. The host requests to its

secure coprocessor that it sign the Boot Odometer Value using a private key known only

to the secure coprocessor. The host then packages the signed value and sends it to the

remote entity. The remote entity uses the corresponding public key to validate the Boot

Odometer Value. In addition, the remote entity believes that the host’s secure coprocessor

protects its private signing keys from tampering or observation by the host. This allows

the remote entity to trust with high assurance that the Boot Odometer Value is authentic

because without the signing key, there is no way for the host to forge the signature. By

comparing the current Boot Odometer Value to previously known values, the remote

entity can confirm the hard reboot attested to by the host.

B. HIGH LEVEL SYSTEM REQUIREMENTS

The purpose of the Boot Odometer Value is to ensure the computer has been

powered cycled. This entails several high level requirements for correct action. These are

listed below.

14

• The Boot Odometer Value (BOV) must increment every time a full power cycle-

boot sequence completes.

• The Boot Odometer Value must not increment during a software reboot or at any

other time except for a hard reboot.

• The Boot Odometer Value must be protected when the system is in a power off

state. This includes accidental and malicious tampering.

• The Boot Odometer Value must be protected from software tampering during

normal host computer operation.

• The increment operation must be atomic. It should not be interruptible by power

cycles initiated during the boot sequence.

• The secure coprocessor must be able to detect exceptions in the Boot Odometer

mechanism.

• The secure coprocessor must be able to handle exceptions in the Boot Odometer

mechanism.

• The secure coprocessor must be able to attest to the Boot Odometer Value.

Each of these requirements is discussed below.

The Boot Odometer Value must increment every time a power cycle-boot

sequence occurs. The requirement fulfills the overall goal of being able to ensure that the

computer was power cycled. No requirement is made regarding the value of the

increment; however, an increment of one is preferred to minimize the number of rollover

events.

The increment operation must be atomic. This is to prevent the machine from

entering an ambiguous state. Since the operation of the Boot Odometer is security

relevant, it must execute fully or not at all.

The Boot Odometer Value must be protected in non-volatile storage, since the

value of the Boot Odometer must be retained without power. The storage must be

resistant to both physical and software-based attacks.

15

The Boot Odometer Value must be protected from changes during normal host

computer operations. The host computer that houses the secure coprocessor will use the

coprocessor for a variety of operations. Access to the secure coprocessor is negotiated via

software calls. It must not be possible to use any combination of software calls to the

secure coprocessor to change the Boot Odometer Value.

The secure coprocessor must be able to detect exceptions in the Boot Odometer

mechanism. Because the Boot Odometer mechanism is part of the system boot routine,

exceptions in its operations can affect system security by corrupting the boot process. By

detecting exceptions, the system can take appropriate action to ensure system

confidentiality or integrity.

The secure coprocessor must be able to handle exceptions in the Boot Odometer

mechanism. Exception handling must be well defined and not leave the computer in an

insecure state.

The secure coprocessor must be able to attest the status of Boot Odometer Value.

This is a requirement for operating in high assurance networks.

The Boot Odometer Value must not change during a software reboot. A software

reboot does not ensure power loss to the machine.

The Boot Odometer operates in the following manner. If the platform has

undergone a hard reboot, power to the TPM will have been interrupted causing the PCR

registers inside the TPM to initialize to a known value. For simplicity, it is assumed that

the initialization value is all zeros. If the platform has undergone a soft reboot, the

contents of the PCR registers will not have been reset. During its initialization phase, the

TPM inspects the PCR where it had previously placed the Boot Status Indicator. If the

Indicator appears inside the specified PCR, rather than the initialization value, then the

TPM assumes that it has undergone a soft reboot and the TPM is disabled. In the case

where computer underwent a hard reboot, the TPM first updates the contents of the

specified PCR with the Boot Status Indicator, then fetches the Boot Odometer Value,

increments it, and finally places it back into the long-term storage of the TPM. The initial

16

 value of the Boot Odometer Value is zero. This value is initialized during factory

production of the TPM platform. The non-volatile memory and the PCR in which the

Boot Status Indicator is stored are untouchable by the host platform CPU. This protects

them against malicious alteration.

Figure 3. Simple Attestation Layout

A remote entity has two choices when requesting trusted attestation regarding the

type of reboot a host underwent. First, the remote entity can store a previously known

value of the Boot Odometer Value. It can then request the current Boot Odometer Value.

If the current value is larger than the stored value, then the remote entity can assume that

the host has undergone a hard reboot. Secondly, it can ask the host to directly attest to the

fact that it has undergone a hard reboot more recently than a soft reboot. In this case, the

TPM would inspect itself and if it were not disabled, then it would provide a positive

attestation of the fact. In the design presented here, a soft reboot will disable the TPM.

Thus, the fact the TPM is enabled is evidence that the most recent boot that platform has

undergone is a hard reboot. Figure 3 shows a simple division between the TPM and the

Host CPU. The Remote Server trusts the TPM to the degree that it has been evaluated to

shield its cryptographic secrets and computations from the host platform. Using the

underlying cryptographic services, the TPM can trustfully attest to its environment.

C. HARDWARE REQUIREMENTS

The Boot Odometer mechanism is implemented by making changes to the

initialization firmware within the Trusted Computing Group’s Trusted Platform Module

(TCG TPM)[2]. The TPM is an open, industry-developed standard for the creation of

secure co-processors in diverse computing platforms. A logical overview of the

components inside the TPM can be seen in Figure 4.

17

Figure 4. Logical component architecture of the TPM secure co-processor taken from [2]

Currently, many computer manufacturers are in the process of adding TPM’s to

their consumer and business model PC’s. The changes required for the BOV will affect a

target software function that exists within the TPM firmware. The name of the function is

TPM_Startup. TPM_Startup executes every time the TPM goes through an initialization

cycle. This makes it an ideal candidate for housing the Boot Odometer functionality.

The TPM_Startup function call is part of the TPM initialization phase.[15] At the

beginning of every boot cycle, the TPM undergoes a transition function called TPM_Init.

TPM_Init transitions the TPM into its first stage of initialization. This function behaves

identically whether the system underwent a hard or soft reboot. TPM_Init places the TPM

in a state where it waits for the command to execute TPM_Startup. Platform initialization

code must inform the TPM what type of initialization it is currently undergoing. The

TPM_Startup function behaves differently based on one of three flags that signal its

intended operation. The TPM_ST_CLEAR flag signals the TPM to reset volatile TPM

variables back to their default states. The TPM_ST_SAVE flag signals the TPM to

restore volatile variables back to their previously known values. This occurs when the

computer starts from a hibernation related state. The TPM_ST_DEACTIVATED flag

signals the TPM to enter into a deactivated state.[15] Because we are only interested in

the situation were the computer boots into fully operation mode from a power-off state,

we only consider the case were TPM_Startup is called with the TPM_ST_CLEAR flag.

18

The TPM Specification requires that all system boots must first start with a

system wide reset. This includes physically signaling system components that a system

boot is happening. This requirement prevents the TPM from being maliciously reset

without the rest of the platform also being reset. If this were to occur, the TPM would be

in a state where it would be vulnerable to certain masquerade attacks.[15]

The required actions taken by the TPM when executing TPM_Startup with the

TPM_ST_CLEAR flag are laid out in a standard format in the TPM specification

document.[15] These actions are listed below as found in the specification document.

Steps marked in bold indicate changes made to accommodate the Boot Odometer

mechanism. The entire TPM_Startup specification can be found in the TPM Specification

series of documents. It is assumed that as a result of a hard reboot that all PCR’s will be

set to known initial values.

2. If stType = TPM_ST_CLEAR

a. Inspect the contents of PCR[8].

i. If the Boot Status Indicator is found, disable the TPM

b. Ensure that sessions associated with resources

TPM_RT_CONTEXT, TPM_RT_AUTH and TPM_RT_TRANS

are invalidated

c. Reset PCR values to each correct default value

d. Set the contents PCR[8] to the Boot Status Indicator

e. Increment the Boot Odometer Value by 1

f. Set the following TPM_STCLEAR_FLAGS to their default state

i. PhysicalPresence

ii. PhysicalPresenceLock

iii. disableForceClear

g. The TPM MAY initialize auditDigest to NULL

19

i. If not initialized to NULL the TPM SHALL ensure that

auditDigest contains a valid value

ii. If initialization fails the TPM SHALL set auditDigest to

NULL and SHALL set the internal TPM state so that the TPM

returns TPM_FAILED_SELFTEST to all subsequent commands.

h. The TPM SHALL set TPM_STCLEAR_FLAGS -> deactivated to

the same state as TPM_PERMANENT_FLAGS-> deactivated

i. The TPM MUST set the TPM_STANY_DATA fields to:

j. TPM_STANY_DATA->contextNonceSession is set to NULLS

ii. TPM_STANY_DATA->contextCount is set to 0

iii. TPM_STANY_DATA->contextList is set to 0

k. The TPM MUST set TPM_STCLEAR_DATA fields to:

i. Invalidate contextNonceKey

ii. countID to NULL

iii. bGlobalLock to FALSE

l. Determine which keys should remain in the TPM

m. For each key that has a valid preserved value in the TPM

(1) if parentPCRStatus is TRUE then call

TPM_FlushSpecific(keyHandle)

(2) if IsVolatile is TRUE then call

TPM_FlushSpecifid(keyHandle)

Figure 5. Behavior of TPM_Startup when signaled with the TPM_ST_CLEAR flag after
[15]

The test for the Boot Status Indicator occurs at step a directly before the PCR’s

are cleared. This is because PCR[8] is used as the container for the Boot Status Indicator.

The Boot Status Indicator is an arbitrary binary string that is no larger than a PCR. It is

always the same. If the Boot Status Indicator is discovered inside PCR[8], it is assumed

20

that the computer did not undergo a hard reboot. This assumption is made because if the

computer was hard rebooted, power would be cut to the TPM and register contents would

be cleared. If a soft reboot is found to have occurred, the TPM is disabled. This disabling

does not prevent the host platform from accessing the hardware accelerated encryption

algorithms provided by the TPM.[8] It merely prevents the host platform from accessing

services that are associated with TPM protected encryption keys. The TPM is not re-

enabled until the computer is hard rebooted. If the computer is running in a TPM enabled

state, any programs can implicitly assume the computer was started with a hard reboot.

In the case where the Boot Status Indicator is not found, it is assumed that the

computer underwent a hard reboot. This is assumed because immediately after power-on,

the initial default state of the PCR is a known default value of all 0’s.[16] Since the

contents of PCR[8] are cleared at step c, the Boot Status Indicator is re-entered into

PCR[8] at step d to ready it for the next reboot event. At step e the Boot Odometer Value

is incremented to keep track of the number of times the computer has been hard rebooted.

No count is kept for the number of soft reboots. Justifications for the Boot Odometer

Value functionality can be found in the section labeled Use Cases.

The Boot Odometer Value must be stored in the TPM’s long-term (i.e. non-

volatile) storage. Because the choice of physical components used to provide non-volatile

storage is left to individual TPM implementers, we do not concern ourselves with the

requirements for dealing with those components. It is sufficient to note that space must be

allocated in the TPM’s non-volatile storage for the Boot Odometer Value and that the

Value’s integrity must be assured by the TPM. The tamper resistance properties of the

TPM determine the integrity of the Boot Odometer Value. Tamper resistances

requirements are outlined in the TPM specification.[10]

D. SOFTWARE DESIGN

A fully operational TPM is evidence that a host has undergone a hard reboot. This

is because a platform that has not undergone a hard reboot will have its TPM disabled.

Therefore, any local program wishing to verify that the computer has undergone a hard

reboot can query the TPM to ensure that it is enabled. However, the converse is not true.

A TPM maybe disabled for several reasons. A program cannot assume that a disabled

TPM indicates a soft reboot.

21

To obtain the current Boot Odometer Value, software on the CPU will need to

query the TPM using a new instruction. Because the Boot Odometer functionality does

not currently exist in the TPM, a new instruction must be added to the TPM interface.

This instruction returns the current Boot Odometer Value, such that it is

cryptographically signed by the TPM if requested. In addition, this instruction will be

used internally by the TPM during the process of generating attestation responses

concerning the current Boot Odometer Value. Since the manufacturers’ TPM modules

will vary due to implementation differences allowed in the TPM specification, no

implementation details of the instruction are included. It is sufficient to describe the new

instruction’s operation and note that it must exist for the Boot Odometer mechanism to

operate completely.Software on the remote server that requests the Boot Odometer Value

attestation must be capable of several things. First, it must be able to securely store

previously attested Boot Odometer Values. This is a not a concern on high-security, high

integrity-systems as secure storage is a defining property of such systems. Less trusted

systems equipped with TPM’s could utilize the Sealed Storage service provided by a

TPM. Second, the remote server must be able to reliably compare the currently attested

Boot Odometer Value with the previously attested Boot Odometer Value to ensure that

the Boot Odometer Value on the client has increased. Last, the server must be able to

validate an attestation response from a client.

E. USE CASES

Besides the object reuse problem discussed in the background chapter, there are

several scenarios in which the Boot Odometer Value could be useful, if the mechanism is

modified to log soft boots as well as hard. Consider a client PC in corporate network.

Policy dictates that computers should only be used for work purposes. No other software

should be installed or used. However, it is believed that some users are using bootable

CD’s to boot into other operating systems to bypass client enforced policy settings. This

could be detected by observing that the Boot Odometer Value has been incremented more

than expected between concurrent attestations. This would not be conclusive evidence

that policy has been violated. The Boot Odometer Value could also be incremented if the

system is undergoing reboots because of a malfunction. However, either situation would

warrant further investigation.

22

Further situations arise in which it must be ensured that a host has undergone a

reboot regardless of what type. One such scenario is the application of security patches to

system software. It is often the case that a system must undergo a reboot after applying

relevant security patches. If a remote observer wished to ensure compliance with this

procedure, it could request an attestation that a reboot has occurred.

Another scenario is relevant to managers of large data centers. Consider a

situation in which a data center loses partial power. Machines may be rebooted, but need

some manual intervention to come back to full operational status. A system administrator

could request that all remote hosts attest to their current Boot Odometer Values. By

comparing the current values to the previous values, the system administrator could

determine which machines had lost power and need further attention.

This chapter gave a high level explanation of the how the Boot Odometer

mechanism operates. It also detailed the necessary changes to a TPM needed to

implement the Boot Odometer mechanism. Software considerations for interacting with

new functionality were also discussed. The next chapter discusses the hardware

simulations used to demonstrate and test Boot Odometer functionality.

23

IV. IMPLEMENTATION

A. CODING

The prototype feasibility demonstration for this project was generated using

Version 3 of the SimpleScalar software package. This prototype was based on the

SimpleScalar/PISA target architecture. This architecture extends the MIPS processor

described by Patterson and Hennessy in “Computer Organization and Design”[17] with

instructions from the MIPS-IV ISA and RS-6000 instruction set definitions.[18] This

simulator does not support privileged processor instructions. Therefore, only user level

code can be executed and the prototype is limited in its functionality. The prototype

functionality includes a new instruction added to the SimpleScalar/PISA target, a new

register, and the simulation of the persistent memory used to store protected information.

The PISA target is assumed to be a generic representation of the TPM module.

Although currently lacking the major cryptographic services provided by the TPM, the

PISA target is assumed to logically simulate the general-purpose computation carried out

within the TPM.

1. Concept of Operation

The prototype implementation operates differently from the conceptual design.

This is due to limitations within the SimpleScalar software; it does not currently support

full system simulation. It only executes non-privileged instructions. Furthermore, it does

not support the concept of a boot up process. This prototype implements the instruction

for retrieving the value from the Boot Odometer Value from a PCR. Because a full PCR

register bank was not implemented, a single register called the Boot Odometer Register

was implemented instead. The Boot Odometer Register is separated from the other

registers so that it cannot be addressed by instructions that access general purpose

registers. The Boot Odometer load process and the Boot Odometer Value store and

increment procedures are implemented as software procedures within the simulator. The

simulator does not include functionality for a secure coprocessor such as the TCP TPM.

The simulation operates in the following manner. The simulator begins by

retrieving the current Boot Odometer Value from a file that represents the non-volatile

24

storage of the TPM. It then increments the Boot Odometer Value and writes it back to the

file representing the non-volatile storage. Next, it copies the Boot Odometer Value into

the Boot Odometer Register. At this point, the simulator starts execution of a binary

program. The program is used to test the operation of the sst instruction and Boot

Odometer Register. The binary program inspects the value present in the Boot Odometer

Register and copies it to a general-purpose register using the sst instruction. The sst

instruction was implemented as part of the sim-bor simulator. The program then copies

the register value, which is now the Boot Odometer Value, to a variable in memory. The

variable is then printed to the standard output for inspection.

Figure 6. Logical Architecture of Enhancements to SimpleScalar Simulator

2. Instruction Addition

All instructions for a SimpleScalar supported ISA are defined in a DEF file

associated with that ISA.[19] The DEF file includes all the semantics of the instruction as

well as a functional implementation that describes the behavior of the instruction. These

behavioral descriptions are written in C with well-defined macros for accessing processor

state. The instruction added for this project has been named “sst” for SimpleScalar Test.

This instruction copies the value of the Boot Odometer Register to a general-purpose

register specified in the instruction. The Boot Odometer Value can then be accessed from

the designated general-purpose register. This indirect access is required since the Boot

25

Odometer Register cannot be addressed by instructions that access general purpose

registers.

To access the processor state for the BOR, two new C instruction macros were

added to the simulator. These macros read from and write to the processor. The macros

implement code that directly access the state variables associated with the simulated

TPM.

3. Register Bank

In this implementation, the SimpleScalar simulation architecture was extended to

include the new Boot Odometer Register. SimpleScalar utilizes a shared register

construction for all ISA implementations currently supported by the version used. The

register file includes 32 general-purpose registers, 32 floating-point registers, Hi/Low

result registers, a floating-point control register, program counter register and a next

program counter register. The register bank is represented in memory with a C structure

that contains each of the registers. The simulator stores the Boot Odometer Value as an

unsigned integer.

4. Sim-bor

Sim-bor is an extended version of sim-safe that implements functionality to be

used in conjunction Boot Odometer Register modeling. Sim-safe is an in-order sequential

instruction processor simulator in the SimpleScalar toolset. The sim-bor extension

includes a small piece of code that accesses the file that represents the “protected store”

and copies the value in the file directly to the variable that represents the Boot Odometer

Register. The value is then incremented by one and written back to the file. At this point,

the Boot Odometer Register appears to be loaded previous to the any action taken by the

program being run on the processor.

5. Protected Storage

A file represents the protected storage. Since a trusted co-processor simulator is

not available, this part of the system was not fully included in the SimpleScalar

implementation of the Boot Odometer.

6. Cross Compiling & Op Code Insertion

To generate code to run on a SimpleScalar processor emulator, a cross compiler is

required. A cross compiler executes on a processor with a given ISA but generates code

26

for a different processor with a different ISA. The GNU C compiler was configured to act

as the cross compiler.

Since there are no C instructions or PISA assembler instructions for the new sst

instruction, the binary op code to execute the instruction must be crafted by hand and

inserted into the execution stream of a program. Instead of writing the entire program in

assembler to control register access, the op code was inserted using in-line assembler that

can be handled by gcc. This allowed the rest of the program to be easily written in C.

B. TESTING

1. Test Plan

The implementation in SimpleScalar can be tested both interactively and using

scripts. For testing this prototype, correct operation is defined in the following manner.

After the emulator starts, but before code execution begins within the emulator, the

emulator loads the Boot Odometer Register from the file representing the protected store.

The value is then incremented by the emulator and written back to the protected store.

The software execution begins and the sst instruction to access the Boot Odometer

Register is called. The Boot Odometer Value is copied to a general-purpose register

specified by the calling instruction. The Boot Odometer Value can then be examined

arbitrarily. Correct execution is assumed if the value within in the specified general-

purpose register has increased by the increment amount in relation to the previously

stored value. In this implementation, the increment amount is one.

a. Interactive Testing Procedure

The SimpleScalar toolset includes a debugger named DeLite. This is a

simple debugger with basic functionality such as setting break points, code disassembly,

and memory inspection. This tool can be used to inspect programs running on the

emulated Simple Scalar processors to examine internal processor state. A sample screen

shot of DeLite can be seen Figure 7. By examining the state of the processor when testing

the Boot Odometer Register, correct execution can be confirmed by ensuring the that the

Boot Odometer Register value matches the value read in from the protected storage.

Interactive testing required a test program that used the instruction that

accesses Boot Odometer Register to query its current value. The program then displayed

the value found in the register.

27

The first time the processor was inspected took place directly after the

SimpleScalar sim-bor simulator loaded the program. At this point, it can be confirmed

that the simulator properly read the Boot Odometer Value from the file that acts as the

protected store for the simulator. The second time the processor will be inspected is

directly before the sst instruction is executed. At this point, it can be confirmed that the

program has not altered the Boot Odometer Value currently stored. Confirming the

integrity of the Boot Odometer Value ensures that the following step occurred correctly.

Directly after the sst instruction is called, the destination register is checked to ensure the

Boot Odometer Value has been transferred correctly. The value inside the destination

register specified by the sst instruction will be printed to the screen using a function call

to printf().

Figure 7. Example of partial source disassembly using the SimpleScalar DLite! debugger.

b. Scripted Testing Procedure

Because the interactive testing can only reasonably inspect a limited range

of values during operation, scripted testing was included. However, full value ranges

28

cannot be tested exhaustively using automated test procedures. Therefore, the range

4,294,767,295 - 4,294,967,295 was tested. These values represent the 200,000 integer

values directly preceding the overflow value of a 32-bit unsigned integer. In addition, the

overflow condition was tested immediately following the testing of this block. The

expected behavior is that register should roll over to zero and continue functioning

without interruption.

Automated testing was done using a Python script that repeatedly executes

the Boot Odometer simulator. The simulator ran a small program that executes the sst

instruction implemented within the simulator. The script parsed the output from both the

simulator and the program being run by the simulator. The script compared two values.

The first is the value of the simulated TPM non-volatile storage. This was obtained as

debugging information provided by the simulator. The second was the value returned by

the execution of the sst instruction. The script tested the two values to ensure that they

were equal. If they were not, the script would exit. This check ensures that the sst

instruction correctly retrieved the correct value from the Boot Odometer Register. The

script also checks to ensure that the Boot Odometer Value is exactly one higher than the

value in the previous test cycle. This ensures that the Boot Odometer only increases by a

value of one.

2. Test Results

a. Interactive Test Results

The interactive testing did not show any unpredicted behavior.

b. Scripted Test Results

The scripted test results did not show any unpredicted behavior.

This chapter discussed the operation of the simulation used to demonstrate and

test the operation of the Boot Odometer mechanism. The SimpleScalar simulator suite

was modified to simulate the functionality of the Boot Odometer mechanism. The

simulation software was shown to be flexible in its ability handle changes incorporated

for the this thesis. Further, the tests showed that the changes operated as intended.

29

The next chapter discusses security issues concerning the implementation of the

Boot Odometer mechanism. The topics covered are covert channel analysis, instruction

privilege, and denial of service.

30

THIS PAGE INTENTIONALLY LEFT BLANK

31

V. SECURITY ANALYSIS

A. COVERT CHANNEL ANALYSIS

It is not possible to exploit the Boot Odometer Value as a useful covert channel.

Because the Boot Odometer Value only increments in cases where the computer is hard

rebooted and there is no way for a software program to initiate a hard reboot, a malicious

program cannot influence the Boot Odometer Value for use as a covert channel.

While a person could attempt to create a covert channel by manually selecting a

software or hardware reboot, he could only signal to an observing program a single bit of

sensitive information at a time. Assuming a relatively fast boot process of 15 seconds, a

user could signal approximately four bits a minute. However, since the user already has

access to the sensitive information, he does not need the computer (and covert channel) to

help him compromise the information (this is why cover channel analysis focuses on the

actions of programs rather than users.).

B. INSTRUCTION PRIVILEGE

The section titled “Software”, in Chapter III, discussed the need for an additional

instruction to be added to the TPM that would return the current Boot Odometer Value. It

is reasoned here that there is no need for this instruction to be constrained only to

privileged processes. The first reason is that there are no logically feasible covert

channels to be exploited in conjunction with the Boot Odometer Value. Second, the TPM

protects the integrity of the Boot Odometer Value. There is no way for untrusted

processes to affect the Boot Odometer Value through the use of the instruction.

Therefore, the instruction used to retrieve the Boot Odometer Value from the TPM does

not need to be privileged.

C. DENIAL OF SERVICE

Because the function call for accessing of the Boot Odometer Value is accessible

to unprivileged users, it is possible that a malicious user may attempt to perform a denial

of service attack on the TPM by flooding it with requests to perform the function. This is

no different than any other non-privileged TPM call. The Trusted Software Stack (TSS)

32

mitigates a denial of service attack. The TSS is an API that allows applications a high

level interface to the TPM functionality and prevents raw access to the TPM by untrusted

applications.[9] By acting as a gatekeeper to the TPM, the TSS prevents it from being

overwhelmed.

33

VI. CONCLUSION

The ability to sense the reboot type by modifying the Trusted Platform Module is

feasible as demonstrated by the explanation of both the conceptual design and the

hardware simulations. The TPM provides trusted remote attestation that allows the

MYSEA client to prove to the MYSEA Server that it has undergone a hard reboot. This

ensures the MYSEA Server that sensitive information is not leaked to lower level process

through volatile memory, such as main system RAM, when a MYSEA client switches to

a lower or non-comparable classification level.

Through analysis, the conceptual design has been shown to be correct because it

is understandable, cannot be bypassed, and cannot by modified. The design can be

considered understandable because of its simplicity. It included only four new

requirements to the TPM_Startup function. The behavior of each change as well as their

combined behavior is easily understood. The new operations cannot be bypassed because

they are part of TPM function TPM_Startup. This function occurs during every system

boot cycle and is specified in TPM design documents. The added functionality is non-

modifiable because it is protected by the TPM.

 The simulation of the TPM functionality as related to the Boot Odometer concept

shows that the operation of such a concept is feasible. The simulation allowed for a low

cost, flexible, and testable design. Further, we were able to show that the Boot Odometer

concept had uses outside of the MYSEA project and could be easily used in any situation

where a reboot needs to be confirmed.

Given further resources, several avenues of research can be used to extend the

work done here. First, a full specification of a commercially produced TPM would need

to be obtained. Using that specification, a feasibility study on the integration of the Boot

Odometer concept could be completed. If a developer’s model of a TPM was available

and its firmware was upgradeable, the changes could be integrated into a working TPM

and tested. Second, using commercially available TPM-enabled computers, work on

integrating attestation into the MYSEA framework could be done. While the Boot

34

Odometer mechanism would not be available, other attestation scenarios in which

attestation would be beneficial could be tested.

In conclusion, the Boot Odometer concept is a useful design with functionality

relevant to the MYSEA project. Furthermore, it is shown the conceptual design and

simulation testing demonstrates the feasibility of an implementation of this concept.

35

APPENDIX A

A. SIMPLESCALAR SETUP ON FEDORA CORE 2[19]

1. Download the following tarballs at the SimpleScalar website - simpleutils-
990811.tar.gz, simplesim-3v0d.tgz, gcc-2.7.2.3.ss.tar.gz, and simpletools-
2v0.tgz. (The direct URL is http://simplescalar.com/tools.html.)

2. Create a directory for installation referred to here as $IDIR. Move the
downloaded files into $IDIR and extract each tarball.

3. Execute the following commands for installation of the Build Utils.
export IDIR=/(chosen installation directory)
cd $IDIR/simpleutils-990811
./configure --host=i386-*-linux --target=sslittle-na-sstrix --with-gnu-as
--with-gnu-ld --prefix=$IDIR

4. Execute the following commands to install SimpleScalar v3.0
cd $IDIR/simplesim-3.0
make config-pisa
make
make sim-tests

5. Due to unknown problems in the source distributions of this version of gcc,
several of the files must be modified for compilation to complete successfully.
cd $IDIR/gcc-2.7.2.3
export PATH=$PATH:$IDIR/sslittle-na-sstrix/bin
./configure --host=i386-*-linux --target=sslittle-na-sstrix --with-gnu-as --with-
gnu-ld --prefix=$IDIR --enable-languages=c,c++
make

6. At some point, the make will fail due to an error and stop compilation. The
followings changes should cause the make to complete successfully.
1. Open insn-output.c in a text editor. Ensure that all multi-line quotes that

are broken over several lines are properly escaped using the correct escape
character. In this case – “\”.

2. Replace the $IDIR/sslittle-na-sstrix/include/sys/cdefs.h file with the
cdefs.h file found in the directory named “patched”

3. On line 35 of obj/sendmsg.c, add the following –
“#define STRUCT_VALUE 0”

4. One line 60 of protoize.c, replace the “#include <varargs.h>” with
“#include <stdarg.h>.”

7. At this point, the compilation should be able to continue successfully.
make
make enquire
../simplesim-3.0/sime-safe ./enquire –f > floah.h-cross
make install

8. Building glibs is not necessary. A working version exists in $IDIR/sslittle-na-
sstrix/lib/libc.a

36

B. SIMPLESCALAR DEVELOPMENT ENVIRONMENT

1. Binary Utilities

When working with SimpleScalar, it is highly probable that the host system

architecture is different than that of the processor architecture being simulated by

SimpleScalar. The ISA of the emulated processor may not exist physically or a system

with the processor type may not be available to the researcher. In this case, the host

architecture must be relied on to host the utilities to work with programs that are

complied to run on the SimpleScalar emulated processors. SimpleScalar deals with this

problem by including the source for basic utilities needed for working with binary files

such as objdump, strings, and strip. These utilities have been ported to work on binaries

that are not compiled for the host system. After following the installation instructions,

these utilities can be found in the $IDIR/bin directory.

2. Cross Compiling

Instructions for building gcc as a cross compiler were included in the installation

directions. However, since binaries cannot link against host system libraries for C library

function calls, the needed code from the libraries is statically compiled into the binary.

For unknown reasons, the compiler links in all functions defined by the included header

file and not just the functions utilized by the compiled binary. The cross compiler version

of gcc is found in the $IDIR/bin directory.

Cross compiling requires that several other hurdles be overcome in the

SimpleScalar environment. First, instructions may need to be used in target architecture

binaries that are not supported by either the compiler or the assembler. Second,

attempting to hand craft op codes and insert them into compiler-generated assembly code

may overwrite register contents. Thus, there needs to be a way for the compiler to choose

the registers used by any new instructions used in binaries. Both of these problems can be

addressed with the use of inline assembly code. Inline assembly code is supported by the

gcc compiler and allows assembly code to be placed inline with C code in a source file.

Furthermore, this allows the compiler to choose the registers needed for binary

optimization. Since the assembler won’t support any new instructions, hand crafted op

codes are used to include them. Two methods are suggested by SimpleScalar

documentation.[20] The first is illustrated below.

37

int multiply_int32(int a, int b)
{

int c;

asm(“.long ((0x01 << 25) | (0x00 << 23) |
((XXX%0) << 9) | ((XXX%1) << 4) | (XXX%2))” :
“=r” (c) : “r” (a) , “r” (b));

return c;

}[20]

This method displays the inline assembler imbedded in a function call. Another form is to

embed the op code in a macro function.

#define __multiply_int32(a,b)({ int c; asm(“.long
((0x01 << 25) | (0x00 << 23) | ((XXX%0) << 9) |
((XXX%1) << 4) | (XXX%2))” : “=r” (c) : “r” (a) , “r”
(b)); c;})[20]

Several more steps are required to finish cross compiling a binary that includes inline

assembler following these examples.

sslittle-na-sstrix-gcc –O –S main.c
sed “s/XXX//g” main.s > main_fix.s
sslittle-na-sstrix-ggc –O –c main_fix.s

If wanted, the sslittle-na-sstrix-objdump utility can be used to examine the binary for the

correct inclusion of the op code.

3. Simulation

The SimpleScalar toolset contains a suite of processor simulators. This project

utilizes a variant of the sim-safe simulator, called sim-bor, that has been adapted for use

in the Boot Odometer prototype. Sim-bor is a functional simulator that uses serial

execution of instructions. Sim-bor runs from the command line. It takes several

arguments. The final argument is the name of binary to be executed using the simulator.

Included with the name of the binary are any arguments it takes. When execution of the

binary has been completed, sim-bor outputs statistics related to the execution of the

binary.

4. Debugger

Running sim-bor with the –i argument causes the target binary to be run in the

DLite! debugger. The DLite! debugger allows the programmer to step through the target

binary by setting and running breakpoints. Also, the debugger supports commands that

38

access value of memory address and registers. It also allows for access to simulator

statistics during execution.

39

APPENDIX B

A. SIMPLESCALAR DIFFS

The standard Unix diff utility was used to create a listing if the changes made to

the SimpleScalar source code when implementing this thesis. The output of the diff utility

is listed before. The output can be combined with a fresh install of the SimpleScalar

source to reconstruct the changes made for this thesis.

Only in simplesim-3.1: boot_mem
Only in simplesim-3.1: dlite.o
Only in simplesim-3.1: eio.o
Only in simplesim-3.1: endian.o
Only in simplesim-3.1: eval.o
Only in simplesim-3.1/libexo: exolex.o
Only in simplesim-3.1/libexo: libexo.a
Only in simplesim-3.1/libexo: libexo.o
Only in simplesim-3.1: loader.o
diff -r simplesim-3.0/machine.c simplesim-3.1/machine.c
105a106
> "fu-BO-boot",
282a284,286
>
> /* Boot Odometer */
> { "$bo", rt_bor, 0 },
285a290
>
421a427,438
>
> /* New Stuff added by me*/
> case rt_bor:
> if(!is_write)
> {
> val->type = et_uint;
> val->value.as_uint = regs->regs_B;
> }
> else
> regs->regs_B = eval_as_uint(*val);
> break;
> /* ----------------------*/
diff -r simplesim-3.0/machine.def simplesim-3.1/machine.def
1225a1226,1260
> /*
> * Boot Odometer DEFINST and Implementation

40

> * The "sst" instruction writes the value in the boot
odometer register
> * to the general purpose register defined in rd register
field.
> * The macros BOR and SET_BOR are specially defined for
this project.
> * They must be defined in each individual simulator in
which they are
> * to be used. This project only makes use of the sim-
safe simulator.
> */
> #define SST_IMPL
\
> {
\
> SET_GPR(RD,BOR); \
> printf("BOR...%u\n", BOR);
 \
> }
> /*
> * 1. This is the name of the instruction. It is used
for instruction
> * decoding in the machine.def file.
> * 2. 0xbb is the hex value of the opcode.
> * 3. "sst" is the name of the opcode. this field is used
by the debugger
> * 4. This section describes the rest of the fields in
the instruction
> * to the debugger. Here we see that the instruction
is described as
> * using the rd output register field.
> * 5. BootOD is a machine resource descriptor on which
the instruction
> * depends. It has been added for this project.
> * 6. This section describes the flags set by the
instruction. F_CTRL is
> * the control register.
> * 7. These are the output register dependencies for
advanced simulators.
> * 8. These are the input register dependencies for
advanced simulators.
> */
> DEFINST(SST,/*1*/ 0xbb,/*2*/
> "sst",/*3*/ "d",/*4*/
> BootOD,/*5*/ F_CTRL,/*6*/
> DGPR(RD), DNA,/*7*/ DNA, DNA, DNA)/*8*/
>
>

41

>
2186a2222
> #undef SST_IMPL
Only in simplesim-3.1: machine.def.new
Only in simplesim-3.1: machine.def.old
Only in simplesim-3.1: machine.def.old.2
diff -r simplesim-3.0/machine.h simplesim-3.1/machine.h
140a141,143
> /* New Stuff ... */
> #define MD_NUM_BREGS 1
>
143c146,149
< (/*int*/32 + /*fp*/32 + /*misc*/3 + /*tmp*/1 + /*mem*/1
+ /*ctrl*/1)

> (/*int*/32 + /*fp*/32 + /*misc*/3 + /*tmp*/1 + /*mem*/1
+ /*ctrl*/1 + /*boot*/1)
>
> /* boot odometer register file entry type */
> typedef sword_t md_bor_t;
265a272
> BootOD, /* Boot Odometer */
596c603,604
< rt_NUM

> rt_NUM,
> rt_bor /* boot odometer register */
Only in simplesim-3.1: machine.o
Only in simplesim-3.1: main.o
diff -r simplesim-3.0/Makefile simplesim-3.1/Makefile
374a375,377
> sim-bo$(EEXT): sysprobe$(EEXT) sim-bo.$(OEXT) $(OBJS)
libexo/libexo.$(LEXT)
> $(CC) -o sim-bo$(EEXT) $(CFLAGS) sim-bo.$(OEXT)
$(OBJS) libexo/libexo.$(LEXT) $(MLIBS)
>
476a480,481
> sim-bo.$(OEXT): host.h misc.h machine.h machine.def
regs.h memory.h
> sim-bo.$(OEXT): options.h stats.h eval.h loader.h
syscall.h dlite.h sim.h
Only in simplesim-3.1: Makefile.old
Only in simplesim-3.1: memory.o
Only in simplesim-3.1: misc.o
Only in simplesim-3.1: options.o
Only in simplesim-3.1: range.o
diff -r simplesim-3.0/regs.c simplesim-3.1/regs.c
161a162,164

42

> /* boot odometer */
> SS_WORD_TYPE regs_B;
>
diff -r simplesim-3.0/regs.h simplesim-3.1/regs.h
105a106
> md_bor_t regs_B; /* boot odometer register
file */
Only in simplesim-3.1: .regs.h.swp
Only in simplesim-3.1: regs.o
Only in simplesim-3.1: sim-bo
Only in simplesim-3.1: sim-bo.c
Only in simplesim-3.1: sim-bo.o
Only in simplesim-3.1: sim-fast
diff -r simplesim-3.0/sim-fast.c simplesim-3.1/sim-fast.c
253a254,255
> #define BOR (regs.regs_B)
> #define SET_BOR(EXPR) (regs.regs_B = (EXPR))
Only in simplesim-3.1: sim-fast.o
Only in simplesim-3.1: sim-safe
diff -r simplesim-3.0/sim-safe.c simplesim-3.1/sim-safe.c
216a217,218
> #define BOR (regs.regs_B)
> #define SET_BOR(EXPR) (regs.regs_B = (EXPR))
Only in simplesim-3.1: sim-safe.o
Only in simplesim-3.1: stats.o
Only in simplesim-3.1: symbol.o
Only in simplesim-3.1: syscall.o
Only in simplesim-3.1: sysprobe
diff -r simplesim-3.0/target-pisa/pisa.c simplesim-
3.1/target-pisa/pisa.c
105a106
> "fu-BO-boot",
282a284,286
>
> /* Boot Odometer */
> { "$bo", rt_bor, 0 },
285a290
>
421a427,438
>
> /* New Stuff added by me*/
> case rt_bor:
> if(!is_write)
> {
> val->type = et_uint;
> val->value.as_uint = regs->regs_B;
> }
> else

43

> regs->regs_B = eval_as_uint(*val);
> break;
> /* ----------------------*/
Only in simplesim-3.1/target-pisa: pisa.c.old
Only in simplesim-3.1/target-pisa: .pisa.c.swp
diff -r simplesim-3.0/target-pisa/pisa.def simplesim-
3.1/target-pisa/pisa.def
1225a1226,1260
> /*
> * Boot Odometer DEFINST and Implementation
> * The "sst" instruction writes the value in the boot
odometer register
> * to the general purpose register defined in rd register
field.
> * The macros BOR and SET_BOR are specially defined for
this project.
> * They must be defined in each individual simulator in
which they are
> * to be used. This project only makes use of the sim-
safe simulator.
> */
> #define SST_IMPL
\
> {
\
> SET_GPR(RD,BOR); \
> printf("BOR...%u\n", BOR);
 \
> }
> /*
> * 1. This is the name of the instruction. It is used
for instruction
> * decoding in the machine.def file.
> * 2. 0xbb is the hex value of the opcode.
> * 3. "sst" is the name of the opcode. this field is used
by the debugger
> * 4. This section describes the rest of the fields in
the instruction
> * to the debugger. Here we see that the instruction
is described as
> * using the rd output register field.
> * 5. BootOD is a machine resource descriptor on which
the instruction
> * depends. It has been added for this project.
> * 6. This section describes the flags set by the
instruction. F_CTRL is
> * the control register.

44

> * 7. These are the output register dependencies for
advanced simulators.
> * 8. These are the input register dependencies for
advanced simulators.
> */
> DEFINST(SST,/*1*/ 0xbb,/*2*/
> "sst",/*3*/ "d",/*4*/
> BootOD,/*5*/ F_CTRL,/*6*/
> DGPR(RD), DNA,/*7*/ DNA, DNA, DNA)/*8*/
>
>
>
2186a2222
> #undef SST_IMPL
diff -r simplesim-3.0/target-pisa/pisa.h simplesim-
3.1/target-pisa/pisa.h
140a141,143
> /* New Stuff ... */
> #define MD_NUM_BREGS 1
>
143c146,149
< (/*int*/32 + /*fp*/32 + /*misc*/3 + /*tmp*/1 + /*mem*/1
+ /*ctrl*/1)

> (/*int*/32 + /*fp*/32 + /*misc*/3 + /*tmp*/1 + /*mem*/1
+ /*ctrl*/1 + /*boot*/1)
>
> /* boot odometer register file entry type */
> typedef sword_t md_bor_t;
265a272
> BootOD, /* Boot Odometer */
596c603,604
< rt_NUM

> rt_NUM,
> rt_bor /* boot odometer register */

B. SIMPLESCALAR TEST SCRIPT

This script was used for automated testing of SimpleScalar changes made in

support of this thesis.

#The sst instruction copies the value of the boot odometer
register to
#a general purpose register. From here, the Boot Odometer
Value can
#be inspected by no privileged processes.

45

import os
import re

#Since the Boot Odometer Value is a 32-bit unsigned int,
every value
#cannot be tested. We will test a 200000 value block before
the integer
#rollover point. The rollover point will also be done to
test the
#boundry behavior.

high = pow(2,32)
low = high - 200000

l = low - 2
j = low - 2

for i in range(low, high):

 if (i%1000) == 0:
 print "."

 #Store the values from the previous loop iterations.
Compare them
 #to the new values to make sure the value has been
incremented by
 #one
 l_prev = l
 j_prev = j

 #This runs the simulator and stores the output in the a
object
 a = os.popen3("/home/nexus/SimpleScalar/simplesim-
3.1/sim-bo /home/nexus/SimpleScalar/test/test2", "r")

 #The output we want comes on stdout. It's been specially
added
 #the simulator code.
 out = a[1]

 #SimpleScalar simulators output their debugging messages
to stderr
 #We're not interested in that info so it will be
ignored.
 #err = a[2]

 #Extract the string data from the programs stdout

46

 z = out.read()

 #Generate the regular expressions matching patterns
 p = re.compile('BOR...([0-9]*)')
 q = re.compile('sst...([0-9]*)')

 #Search the strings for the regex patterns
 m = p.search(z)
 n = q.search(z)

 #Extract the Boot Odometer values that we're interested
in.
 val_bor = m.group(1)
 val_reg = n.group(1)

 #Convert the string representations of the observed
register values
 #into integers
 l = int(val_bor)
 j = int(val_reg)

 #make sure the value read directly from the register
memory file
 #and the value obtained by executing the sst instruction
are the
 #same. If they are not the same, print the values and
exit.
 if l != j:
 print "Value mismatch detected!!!\n"
 os.exit(0)

 #Ensure the the Boot Odometer Value has been
monotomically
 #incremented for both values
 if (l_prev + 1) != l:
 print "Value did not increment correctly...", l_prev,
l, "\n"
 os.exit()
 if (j_prev + 1) != j:
 print "Value did not increment correctly\n"
 os.exit()

47

LIST OF REFERENCES

[1] Nguyen, T. D., Levin, T. E., Irvine, C. E., "MYSEA Testbed," Proceedings from

the 6th IEEE Systems, Man and Cybernetics Information Assurance Workshop,

West Point, NY, June 2005, pp. 438-439.

[2] TCG Specification Architecture Overview, Rev. 1.2. Available:

https://www.trustedcomputinggroup.org/downloads/TCG_1_0_Architecture_Over

view.pdf. Accessed: August 2005

[3] Anderson, J. P., Computer Security Technology Planning Study. Technical Report

ESDTR-73-51, Air Force Electronic Systems Division, Hanscom AFB, Bedford,

MA, 1972.

[4] Irvine, C. E., Shifflett, D. J., Clark, P. C., Levin, T. E., and Dinolt, G. W.,

"MYSEA Technology Demonstration", DARPA DISCEX Conference, April

2003.

[5] Irvine, C. E., Levin, T. E., Nguyen, T. D., Shifflett, D. J., Khosalim, J., Clark, P.

C., Wong, A., Afinidad, F., Bibighaus, D., and Sears, J., "Overview of a High

Assurance Architecture for Distributed Multilevel Security", Proceedings of the

2004 IEEE Systems, Man and Cybernetics Information Assurance Workshop,

West Point, NY, June 2004.

[6] A Guide to Understanding Object Reuse in Trusted Systems, Report No. NCSC

TG-018, National Computer Security Center, Ft. George G. Meade, MD, 1 July

1991.

[7] Schecter, S.E., Greenstadt, R.A., and Smith, M.D., “Trusted Computing, Peer-to-

Peer Distribution, and the Economics of Pirated Entertainment,” presented at the

2nd Annual Workshop on Economics and Information Security, College Park,

MD, May, 2003.

 [8] TPM Main Part 1 Design Principles, Specification Version 1.2, Rev. 85.

Available:https://www.trustedcomputinggroup.org/downloads/specifications/main

P1DP_rev85.zip. Accessed: August 2005

48

[9] Barret, M.F., “Towards an Open Trusted Computing Framework,” Master’s

thesis, University of Auckland, Auckland, New Zealand, 2005.

[10] TCG PC Specific Implementation Specification, Version 1.1. Available:

https://www.trustedcomputinggroup.org/downloads/TCG_PCSpecificSpecificatio

n_v1_1.pdf. Accessed: August 2005

[11] Brickell, E., Camenisch, J., and Chen, L., “Direct Anonymous Attestation,”

Technical Report HPL-2004-93, Hewlett-Packard Company, Bristol, June 2004.

[12] Austin, T., Larson, E., and Ernst, D., “SimpleScalar: An infrastructure for

computer system modeling.” IEEE Computer, vol. 35, no. 2, pp. 59--67, Feb.

2002.

[13] Burger, D.C. and Austin, D.C., "The SimpleScalar tool set, version 2.0,"

Technical Report CS-TR-97-1342, University of Wisconsin, Madison, June 1997.
 [14] Nguyen, T. D., Levin, T. E., and Irvine, C. E., "TCX Project: High Assurance for

Secure Embedded Systems", 11th IEEE Real-Time and Embedded Technology

and Applications Symposium Work-In-Progress Session, San Francisco, CA,

March 2005.

[15] TPM Main Part 3 Commands, Specification Version 1.2, Level 2 Rev. 85.

Available:https://www.trustedcomputinggroup.org/downloads/specifications/main

P1DP_rev85.zip. Accessed: August 2005

[16] TCG PC Client Specific TPM Interface Specification (TIS) Version 1.2.

Available:https://www.trustedcomputinggroup.org/downloads//downloads/specifi

cations/pcclient/TCG_PCClientTPMSpecification_120_100_FINAL.pdf.

Accessed: August 2005

[17] J.L. Hennessy, D.A. Patterson, Computer Organization and Design: The

Hardware/Software Interface, 2nd edition, Morgan Kaufmann, 1997.

[18] Austin, T., “SimpleScalar 3.0 Release [Announcement].” Available:

http://www.simplescalar.com/docs/ANNOUNCE-3.0d.txt

49

[19] Pan, Y., “SimpleScalar Installation Guide”. Available:

http://www.comp.nus.edu.sg/~panyu/simplesim.htm. Accessed: September 2005

[20] Austin, T. “SimpleScalar DEF File Format Overview.” December 2003.

Available: http://www.simplescalar.com/docs/README-def.txt Accessed:

September 2005

50

THIS PAGE INTENTIONALLY LEFT BLANK

51

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, VA

2. Dudley Knox Library
Naval Postgraduate School
Monterey, CA

3. Hugo A. Badillo
NSA
Fort Meade, MD

4. George Bieber
OSD
Washington, DC

5. RADM Joseph Burns

Fort George Meade, MD

6. John Campbell

National Security Agency
Fort Meade, MD

7. Deborah Cooper
DC Associates, LLC
Roslyn, VA

8. CDR Daniel L. Currie
PMW 161
San Diego, CA

9. Louise Davidson
National Geospatial Agency
Bethesda, MD

10. Vincent J. DiMaria
National Security Agency
Fort Meade, MD

11. LCDR James Downey
NAVSEA
Washington, DC

52

12. Dr. Diana Gant
National Science Foundation

13. Jennifer Guild
SPAWAR
Charleston, SC

14. Richard Hale
DISA
Falls Church, VA

15. LCDR Scott D. Heller

SPAWAR
San Diego, CA

16. Wiley Jones
OSD
Washington, DC

17. Russell Jones
 N641

Arlington, VA

18. David Ladd
Microsoft Corporation
Redmond, WA

19. Dr. Carl Landwehr
 National Science Foundation

Arlington, VA

20. Steve LaFountain
 NSA

Fort Meade, MD

21. Dr. Greg Larson
IDA
Alexandria, VA

22. Penny Lehtola
NSA
Fort Meade, MD

23. Ernest Lucier
Federal Aviation Administration
Washington, DC

53

24. CAPT Deborah McGhee
Headquarters U.S. Navy
Arlington, VA

25. Dr. Vic Maconachy

NSA
Fort Meade, MD

26. Doug Maughan

Department of Homeland Security
Washington, DC

27. Dr. John Monastra
Aerospace Corporation
Chantilly, VA

28. John Mildner
SPAWAR
Charleston, SC

29. Jim Roberts

Central Intelligence Agency
Reston, VA

30. Charles Sherupski
Sherassoc
Round Hill, VA

31. Dr. Ralph Wachter
ONR
Arlington, VA

32. David Wirth
N641
Arlington, VA

33. Daniel Wolf
 NSA

Fort Meade, MD

34. Jim Yerovi
NRO
Chantilly, VA

35. CAPT Robert Zellmann

54

CNO Staff N614
Arlington, VA

36. Dr. Cynthia E. Irvine
Naval Postgraduate School
Monterey, CA

37. Thuy D. Nguyen

Naval Postgraduate School
Monterey, CA

38. Paul C. Clark
Naval Postgraduate School
Monterey, CA

39. Timothy E. Levin
Naval Postgraduate School
Monterey, CA

40. Richard C. Vernon
Civilian, Naval Postgraduate School
Monterey, CA

