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ABSTRACT 
 
 
 

This thesis addresses possible improvements in the efficiency (thrust) of surface 

piercing propellers; in particular with respect to the angle of the propeller shaft. 

Preliminary calculations based on the basic pitch/diameter geometry suggest that about 3-

5% efficiency is lost if the shaft is parallel to the flow, compared to skewed a few degrees 

in the "paddlewheel" direction at certain speeds. More accurate calculations based on the 

lift characteristics of each blade, on the angle of attack and the flow of water over each 

blade and given a set of basic assumption on the over all performance of each blade, as 

the blade enters and leaves the water; are used to determine the increase in efficiency. 

Full scale experimental results are also presented in support of the calculations.  
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I. INTRODUCTION  

A. BACKGROUND  
The function of a propeller is to convert engine power output into thrust 

propulsion for a marine vessel. The position, shape and operating environment of the 

propeller on a boat hull has gone through many design changes. One major design change 

is the concept of surface piercing and semi-submerged propellers.  In 1864 US Patient 

Publication Number: 00043522 Mr. O.C. Phelps of New York N.Y. improved the 

location of the propeller to keep it out of harms way by only having it in the water half of 

the time.  The 1985 US Patient Publication Number 757043, Howard Arneson for San 

Rafael CA adapted that old design into a practical racing boat configuration now called 

“Surface Piercing Propellers. This thesis will provide an operating mode for surface 

piercing propellers that prove there is an increase in thrust beyond the performance 

limitations of a fixed pitch propeller. Designers and naval architects have been grappling 

with multiple aspect of the propulsion-by-propeller problem for generations. The Surface 

Piercing Propeller has provided a challenge to even the most sophisticated computer 

simulations. The results have been the evolution of a well known set of standard and 

efficient solutions to numerous Propulsion designs and problems.  

When a new and promising solution to a propulsion problem appears, it's usually 

made possible by advancements in other closely related technology - material science, 

full scale testing, or by added controls and instrumentation devices. In the case of surface 

piercing propellers, the cause of change was to keep up with the advancements of off-

shore racing hull technology combined with engines technology.   

Innovative changes are often a result of hands on experimentation not just 

computational analysis. The Surface-piercing propeller engineering analysis is 

complicated by the mixed media environment of air & water. The fully immersed 

propeller analysis is well understood through principles of fluid dynamics and hydraulics.  

The air media propeller likewise is an integral part of aviation studies and airfoil analysis. 

These analysis techniques are significantly different resulting in very few common 

techniques for the mixed media analysis. At best techniques used are much more complex 
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than simply changing density or using compressibility in a mixed ratio mode. Surface 

Piercing Propeller propulsion is coming close to its performance limits. Surface Piercing 

Propellers require an extremely large computational capability to be understood so it is 

not available to the average innovator or naval architect. So it is understandable that there 

is skepticism with the idea of using surface-piercing propellers on more-or-less 

conventional craft in the boatbuilding community.  

Surface-piercing propellers look and operate much like fully submerged 

propellers at slower speed.  However, they are specially designed to operate only half in 

the water and half out of the water at high speeds.  The surface-piercing mode of the 

propeller, surface propeller or partially submerged propeller is a propeller that is 

positioned so that when the vessel is underway the waterline passes through the 

propeller's hub. Howard Arneson’s innovation was to extend the propeller shaft straight 

through the transom of the vessel and locating the propeller some distance aft of the 

transom. At slower speeds the hull is usually pitched up putting the propeller in a fully 

submerged mode. This configuration lasts until the vessel’s velocity exceeds it’s hull 

speed.  The vessels is now operating horizontally just on the water surface. The propeller 

is now rotated upward to ideally be half in and half out of the water.  The relatively 

flattened water surface that flows out from the transom's bottom edge will provide a 

surface to pierce by each blade for half of each revolution. The An In the case of 

articulated surface drive systems, the propeller shaft is driven through a double universal 

joint inside an oil-tight ball joint, allowing the shaft to rotate for steering and to trim up 

and down for control of propeller submergence. Fixed-shaft surface drives can use 

conventional shafts and stern tube bearings, but require rudders. In many racing 

applications, outboards and outdrive’s can be positioned sufficiently high on the vessel 

for the propellers to operate in a surface-piercing mode.  

The Outboard motor application is much the same, however, the propeller is 

closer to the transom and may need to be raised up out of the water by hydraulic or a 

mechanical lifting mechanism. The hub on an outboard may require that the blade be 

lifted up even higher than an Arneson drive.  The impact is less blade contact with the 

water in a given revolution. The important operating feature is that each propeller blade is 

out of the water for half of each revolution. 
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The reason for skepticism and difficulty applying the Surface piercing mode is 

because of the analytical problem of the mixed media: air & water or both as a variable 

fluid media. A propeller blade foil is easier to optimize if it operates continuously in the 

smoothest most predictable possible flow. The surface piercing mode is the ever 

changing media of splashing through the water surface with each revolution. But nature 

can play tricks on our intuition. Sometimes an unsteady process is actually having more 

efficient potential than its continuous counterpart.  

But to understand the discussion of Surface Piercing propellers, one must 

understand Cavitation. (Fig. 6&7) Cavitation is the formation of partial vacuums in a 

liquid by a swiftly moving solid body (hydrodynamic cavitation) or by high-intensity 

sound waves (acoustic cavitation). A Research study done by Yin Lu Young at UT 

studied and discusses the effect of hydrodynamic cavitation, which occurs when pressure 

drops below the saturated vapor pressure, consequently resulting in the formation of gas 

filled or gas and vapor filled bubbles (or cavities) [Batchelor 1967]. A common 

phenomenon known as boiling also describes the phase change from liquid to vapor. 

Boiling is different from cavitation in that it is driven by increase in temperature, instead 

of decrease in pressure. Cavitation can occur in any hydrodynamic device that operates in 

liquid. Cavities form in areas of low pressure and are often harmless. (Fig. 8)  However, 

serious structural damage and/or decrease in device efficiency may occur when the 

cavities collapse. During the collapse, a long thin jet with velocity between 100 and 200 

m/s develops and directs toward the solid surface it is in contact with [Lauterborn and 

Bolle 1975].  If this action is continuous and has a high frequency, it could even damage 

high quality steel. The effect of cavitation on propellers was first investigated by 

[Reynolds 1873] in the laboratory, and by [Parson 1897] and [Barnaby 1897] using full 

scale trials of the destroyer Daring. They found that the formation of vapor bubbles on 

the blades reduced the power of the propeller. Later investigators also found that 

cavitation can lead to undesirable effects such as blade surface erosion, increased hull 

pressure fluctuations and vibrations, acoustic energy radiation, and blade vibration. Thus, 

in the past, the goal in the design of propellers was to avoid cavitation. However, as 

stated in [Allison 1978], few propellers in practice can operate entirely without cavitation 

due to the non-axisymmetric inflow or unsteady body motion. Furthermore, propellers 
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without cavitation would need to be larger and slower than necessary [Allison 1978]. 

Application of cavitation-resistant propeller materials (e.g. titanium alloys or stainless 

steels) or coatings (e.g. elastomeric covering systems or epoxide formulations) can be 

used to reduce cavitation and erosion damage [Angell et al. 1979; Allison 1978; Foster 

1989]. Nevertheless, the presence of cavitation is difficult to avoid at very high speeds. 

Thus, the development of reliable, versatile, and robust computational tools to predict 

propeller cavitation for general blade geometries is crucial to the design and assessment 

of marine propulsors. (Fig. 10)  [Young Y] 

A type of cavitation that is very common on marine propulsors is sheet cavitation. 

It is characterized by a “continuous” liquid/vapor interface which is “attached” to the 

blade surface. Sheet cavitation is further divided into two main categories: partial 

cavitation and supercavitation. A partial cavity is a cavity that is shorter than the chord 

length of the blade, such as shown in Fig. 1.3. A supercavity, on the other hand, is a 

cavity that is longer than the chord length of the blade, such as shown in Fig. 1.4. Other 

types of cavitation which can also occur include cloud and bubble cavitation. Tip and hub 

vortex cavitation are also very common for propellers. A general description on the 

different types of cavitation can be found in [Kato 1996]. 

 In Yin Lu Young’s study, the cavity on a propeller blade is treated strictly as 

sheet cavitation. She states the pressure inside the sheet cavity is assumed to be constant 

and equal to the vapor pressure. The rationale behind using the sheet cavity model 

includes: It provides a relatively simple mathematical model where potential flow theory 

can be applied.   [Tulin 1980] found that sheet cavity is the first-order contributor to 

dynamically varying blade loads; and other forms of cavitation (such as tip or hub vortex 

cavitation) and other neglected phenomena (such as wake roll-up) can be added as 

refinements to the current models. 

One Main difficulty in the analysis of sheet cavitation is determining the cavity 

surface (i.e., free streamline) where the pressure is prescribed. The problem is nonlinear 

because the extent and thickness of the cavity is unknown. In this work, the cavity 

surface is determined in the framework of a moving mixed boundary value problem. For 

a given cavitation number, the extent and thickness of the cavity surface at a given time 
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step is determined in an iterative manner until both the prescribed pressure and flow 

tangency condition are satisfied. In addition to cavitation, another common phenomena 

for hydrofoils and propellers is ventilation. Ventilation occurs when surface air or 

exhaust gases are drawn into the lifting surface. To help explain the difference between 

cavitation and ventilation, a schematic diagram showing a supercavitating hydrofoil, a 

ventilated hydrofoil1, and a surface-piercing hydrofoil is presented. Notice that the 

pressure on the ventilated surface is constant but equal to a value that is different from the 

vapor pressure. Therefore, the ventilated surface can be modeled like a cavity surface but 

with a different prescribed pressure. Moreover, the same method can be used to 

determine the flow detachment locations, as well as the extent and thickness of the 

ventilated surfaces. [Young Y] 

 

B. THESIS DISCOVERY  
The research for this thesis started back 15 years ago on the Indian River in 

Cocoa, Fl. Working at a local propeller refurbishing shop I learned how to build and 

modify numerous propellers configurations for various hull designs. The different 

propeller designs and blade modifications were used to provide greater thrust but were 

often different and unique for each hull or operators needs. Realizing the shape and size 

of the blade performed differently helping me to understand the basic fundamentals for 

basic propeller design. The learning process was easy, make changes to the propeller 

until you acquire the proper end result or performance was complicated by the trial and 

error process. After modification of many propellers, I started to learn how each change 

made a difference in performance.  

 

C. SURFACE PIERCING PROPELLERS  
Propeller Efficiency: Traditional propeller design and selection is almost always 

an exercise in trading off diameter against several other performance-limiting parameters. 

Basic momentum theory tells us that for a given speed and thrust, the larger the propeller, 

the higher the efficiency. While there are exceptions, most notably the effects of  
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frictional resistance on large, slow-turning propellers, it is generally borne out in practice 

that a larger propeller with a sufficiently deep gear ratio will be more efficient than a 

small one.  

A number of design considerations conspire to limit the maximum feasible 

propeller diameter to something considerably smaller than the optimal size. These include 

blade tip clearance from the hull, maximum vessel draft, shaft angle, and engine location. 

While this may at times make life easy for the designer - the propeller diameter specified 

is simply the maximum that fits - it can also result in a considerable sacrifice of 

propulsive efficiency. And if these geometric limits on propeller diameter are exceeded, 

the result can be excessive vibration and damage due to low tip clearances, or a steep 

shaft angle with severe loss of efficiency and additional parasitic drag, or deep 

navigational draft that restricts operation or requires a protective keel and its associated 

drag. In many cases, the best design solution is to live with a mix of all of the above 

problems to some degree.  

The surface-piercing propeller frees the designer from these limitations. There is 

virtually no limit to the size of propeller that will work. The designer is able to use a 

much deeper reduction ratio, and a larger, lightly-loaded, and more efficient propeller.  

Surface-piercing which can be called partially submerged propeller is a special 

type of supercavitating propeller which operates at partially submerged conditions. 

Surface-piercing propellers are more efficient than submerged supercavitating propellers 

due to the reduction of appendage drag due to shafts, struts, propeller hub, etc. being out 

of the water or flow path. Appendage Drag: Exposed shafts, struts, and propeller hubs all 

contribute to parasitic drag. Inclined the exposed shafts not only produces form and 

frictional drag, but there is also induced drag associated with the magnus-effect lift 

caused by their rotation. There is a surprising amount of power loss resulting from the 

friction of the shaft rotating in the water flow. In fact, for conventional installations a net 

performance increase can often be realized by enclosing submerged shafts in non- 

rotating shrouds, despite the increase in diameter. Also reduction of blade surface friction 

and erosion since cavitation is replaced by ventilation. With each stroke, the propeller 

blade brings a bubble of air into what would otherwise be the vacuum cavity region. The 
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water ram effect that occurs when a vacuum cavity collapses is suppressed, because the 

air entrained in the cavity compresses as the cavity shrinks in size. Although the flow 

over a super ventilating propeller blade bears a superficial resemblance to that over a 

supercavitating blade, most of the vibration, surface erosion, and underwater noise are 

absent. [Young Y] 

In theory there is a slight performance penalty for allowing surface air into the 

low-pressure cavities. Instead of near-zero pressure on the forward side of the blades, 

now there is 14.7 psi pushing backwards. But in practice, this effect is not significant 

considering the total thrust pressures involved in high-speed propellers.  

Note that cavitation can also be associated with sudden loss of thrust and high 

propeller slip, often caused by a sharp maneuver or resistance increase. (Fig. 6) This can 

still occur with surface propellers, although the propeller is ventilating rather than 

cavitating and the result is not as damaging. A comparison of the maximum installed 

efficiency for different propulsors (taken from [Allison 1978]) is shown in (Fig. 7&9) 

According to [Hadler and Hecker1968], the first U.S. patent for a surface-piercing 

propeller was issued in 1869 to C. Sharp of Philadelphia. It was designed for shallow-

draft boat propulsion. As time progressed, surface-piercing propellers were also used for 

hydroplane boats, and later for high-speed surface effect ships [Allison 1978]. In 1976, a 

large scale experiment, U.S. Navy SES-100B, confirmed that partially submerged 

propellers can achieve efficiencies comparable to fully submerged propellers [Allison 

1978]. That experiment involved the use of an 100-ton surface effect ship propelled by 

two partially submerged controllable-pitch propellers at speeds up to 90 knots [Allison 

1978]. Due to the superior propulsive characteristics of surface-piercing propellers, they 

are extensively used today in offshore racing, where speeds often exceed 100 knots 

[Olofsson 1996]. Recently, the commercial marine industries have shown an increased 

interest for large surface-piercing propellers. They are to be used in the next generation 

ferries with service speeds in the range of 70 to 80 knots at shaft powers of about 20 MW 

[Olofsson 2001]. Hence, there is a high demand from the marine industry to develop a 

reliable method that can predict the performance of surface-piercing propellers. In the 

past, the design of surface-piercing propellers often involved trial and error procedures 

using measured performance of test models in free-surface tunnels or towing tanks. 
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However, most of the trial-and-error approaches do not provide information about the 

dynamic blades loads nor the average propeller forces [Olofsson 1996]. Model tests are 

extremely expensive, and often hampered by scaling effects [Shen 1975] [Scherer 1977] 

and influenced by test techniques [Morgan 1966] [Suhrbier and Lecoffre 1986]. 

Numerical methods, on the other hand, were not able to model the real phenomena. 

Difficulties in modeling surface-piercing propellers include:  

- Insufficient understanding of the physical phenomena at the blade’s entry to, 

and exit from, the free surface. 

-Insufficient understanding of the dynamic loads accompanying a propeller 

piercing the water at high speed. 

- The modeling of water jets and associated change in the free surface elevations 

at the time of the blade’s entry to, and exit from, the free surface. 

-The effect of blade vibrations due to the cyclic loading and unloading of the 

blades associated with the blade’s entry to, and exit from, the free surface. 

 

D. OBJECTIVE 

The Objective of this thesis is to address the possible improvements in the 

efficiency (thrust) of surface piercing propellers; in particular with respect to the angle of 

the propeller shaft. Preliminary calculations based on the basic pitch/diameter geometry 

suggest a positive efficiency change if the shaft moves from parallel to the flow to a Yaw 

angle of a few degrees. The further complication of the thesis is that by rotating the drive 

shaft in the "paddlewheel" direction the simplified 2 dimensional analyses and air-foil 

performance processes move become mixed with flat plate flow theory. More accurate 

calculations based on the lift characteristics of each blade, on the angle of attack and the 

flow of water over each blade and given a set of basic assumption on the over all 

performance of each blade, as the blade enters and leaves the water; are used to determine 

the increase in efficiency and thrust . Full scale and computer experimental results are 

also presented in support of the calculations.  
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E.  ORGANIZATION 
This Thesis is organized in to three parts: Introduction (Chapter I), Surface 

Piercing Propellers (Chapter II), and Conclusions (Chapter III). A review of previous 

works, formulation, numerical implementation, convergence and validation studies, and 

results are presented in Chapter II. A systematic 2-D study of surface-piercing propellers 

and partially submerged using the exact free surface boundary conditions is also 

presented in Chapter II. Finally, the overall summary, discussions, conclusions, and 

recommendations for future research are presented in Chapter III. 
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Figure 2.   Nomenclature Latin  
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Figure 3.   Nomenclature Latin  
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Figure 4.   Nomenclature Greek Symbols 
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Figure 5.   Nomenclature  

 

 
 
 
 
 
 
 
 



 

 
 

Figure 6.   Saturated Vapor pressure of Water 
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Figure 7.   Different types of cavitation on marine propellers Taken from [Kinnas 1998] 
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Figure 8.   Graphical illustration of Supercavitating hydrofoil, a ventilated hydrofoil, and a 

surface – piercing hydrofoil. 
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Figure 9.   Approximate Max installed efficiency envelopes for different propellers. Taken 

from [Allison 1978] 
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II. SURFACE PIERCING PROPELLERS 

A. CONVENTIONAL PROPELLER 

1. Flow 

a. Vortex-Lattice Methods 
A VLM was first applied for the analysis of unsteady, fully wetted 

propeller flows by [Kerwin and Lee 1978]. It was later extended to treat partial sheet 

cavitation by [Lee 1979] [Breslin et al. 1982]. The method cannot capture the effect of 

blade thickness on cavities due to the application of the linearized boundary conditions. 

[Kerwin et al. 1986] Implemented the leading edge correction introduced by [Kinnas 

1985, 1991] to the VLM, and named the propeller code PUF-3A. The method placed 

vortex and source lattices on the mean camber surface and applied a robust arrangement 

of singularities and control point spacing to produce accurate results [Kinnas and Fine 

1989]. Recently, the method has been re-named MPUF-3A for its added ability to search 

formidchord cavitation [Griffinet al. 1998] [Kosal 1999] [Lee and Kinnas 2001b]. The 

latest version of MPUF-3A [Lee et al. 2001] also includes the effect of hub, simplified 

wake alignment using circumferentially averaged velocities, arbitrary shaft inclination 

[Kinnas and Pyo 1999], and non-linear thickness-loading coupling [Kinnas 1992]. 

However, flow details at the blade leading edge and tip cannot be captured accurately due 

to the breakdown of either the linear cavity theory or the employed leading edge and 

thickness-loading coupling corrections. In addition, the current version of MPUF- 3A 

does not include the effect of cavity sources in the thickness-loading coupling to correctly 

model the effect of cavitation. [Y.L. Young] 

b. Boundary Element Method 
The potential-based BEM developed by [Kinnas and Fine 1990, 1993] was 

extended to predict mixed cavitation patterns on the back of propeller blades subjected to 

non-axisymmetric inflows [Fine 1992; Kinnas and Fine 1992; Fine and Kinnas 1993]. 

The time-dependent cavities were assumed to detach at the blade leading edge, and a 

wake alignment similar to that of MPUF-3A [Greeley and Kerwin 1982] was applied. 

The method, named PROPCAV, places constant strength panels on the actual blade and 

hub surfaces. Thus, PROPCAV inherently includes the effect of nonlinear thickness-
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loading coupling and provides a more realistic hub model thanMPUF-3A 3. Similar 

BEMs were also developed by [Kim and Lee 1996; Caponnetto and Brizzolara 1995]. 

Recently, [Mueller and Kinnas 1997; Mueller 1998; Mueller and Kinnas 1999] further 

extended PROPCAV to predict midchord cavitation on either the back or the face of 

propeller blades. [Young Y.L.] 

 

2. Face and Back Cavitation 
Most conventional propellers, the dominant type of cavitation is leading edge 

back cavitation. Leading edge back cavitation is the cavity that forms on the suction side 

of the blade and detaches from the leading edge. However, midchord cavitation is the 

cavity that detaches aft of the leading edge and is becoming more and more common in 

recent designs. But it is often due to the designer’s attempt to increase efficiency by 

decreasing cavity thickness [Vorus and Mitchell 1994] or designing sections with nearly 

constant pressure distribution on the suction [Jessup et al. 1994]. Midchord cavitation is 

also possible on conventional propellers when operating at off design conditions.  

PROPCAV has been extended to search for cavity detachments on the back or the 

face of the blade by [Mueller and Kinnas 1997; Mueller 1998; Mueller and Kinnas 1999]. 

The search for cavitation on the face (pressure side) of the blade is also necessary 

because it is common for propellers subjected to off design conditions or non-uniform 

inflows. Propellers are often designed to produce a certain mean thrust. However, part or 

the entire blade may experience smaller loadings at certain angular positions due to the 

non-axisymmetric inflow. As a result, very small or negative angle of attack may occur, 

which in turn leads to face cavitation. However, the search for face or back cavitation 

alone may not be sufficient because these two phenomena can alternate or occur 

simultaneously in a propeller revolution. Alternating or simultaneous face and back 

cavitation is also very common for controllable pitch propellers. In addition, some of the 

latest hydrofoil and propeller design intentionally produce simultaneous face and back 

cavitation to achieve maximum efficiency. Thus, one of the objectives in the modeling of 

fully submerged propellers is to extend PROPCAV to predict face and/or back cavitation 

with search cavity detachment on both sides of the blade section. (Fig 12) [Young Y.L.] 
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B. SUPERCAVITATING PROPELLERS 
After reading and annualizing the experimental evidence from Young’s paper it 

shows that the separated zone behind the thick blade trailing edge forms a closed cavity 

that separates from the practically ideal irrigational flow around a supercavitating blade 

section [Russel 1958]. Furthermore, the pressure within the separated zone (also called 

the base pressure) can be assumed to be uniform [Riabouchinsky 1926; Tulin 1953]. 

However, in high Reynolds number flows, the mean base pressure depends on the 

mechanics of the wake turbulence [Roshko 1955]. This implies that a turbulent 

dissipation model, such as the one used in [Vorus and Chen 1987], is necessary to 

determine the mean base pressure and the extent of the separated zone. These models in 

the prediction of unsteady 3-D cavitating propeller flows are not practical or capable for 

the engineering purposes.  

To simplify the physics, [Kudo and Ukon 1994] assumed the supercavitating 

blade section to be base ventilated (i.e. the mean base pressure equal to the vapor 

pressure), and solved the steady cavitating propeller problem using a 3-D vortexlattice 

lifting surface method. Later, [Kudo and Kinnas 1995] modified the method to allow for 

a variable length separated zone model which determines the mean base pressure. 

However, the length of the separated zone is arbitrarily specified by the user, and has 

found to affect the pressure and cavity length near the blade trailing edge under fully 

wetted and partially cavitating conditions. Furthermore, the method of [Kudo and Kinnas 

1995] cannot be applied in unsteady cavitating analysis since the length of the separated 

zone changes with blade angle. In the present method, the assumption of [Kudo and Ukon 

1994] is used for the analysis of supercavitating propellers subjected to steady and 

unsteady inflow. The base pressure is assumed to be constant and equal to the vapor 

pressure, and the extent of the separated zone at each time step is determined iteratively 

like a cavity problem. The logic behind this assumption are: [Young Y.L.] 

 

 

 



1. The base pressure should equal to the vapor pressure in the case of 

supercavitation. 

2. The separated zone has to communicate with the supercavity in the span-

wise direction in the case of mixed cavitation (i.e. one part of the blade is wetted or 

partially cavitating while another part is supercavitating). 

3. Most supercavitating propellers operate in supercavitating conditions. 

Hence, the present method solves for the separated zone like an additional 

cavitation bubble. However, the “openness” at the blade trailing edge poses a problem for 

the panel method. Thus, a small closing zone, shown in Fig. 10, is introduced. The 

precise geometry of the closing zone is not important, as long as it is inside the separated 

region and its trailing edge lies on the aligned wake sheet. As depicted in Fig. 10, this 

scheme is applicable to fully wetted, partially cavitating, and supercavitating conditions 

in steady and unsteady flows. In addition, the numerical algorithm for the treatment of 

supercavitating propellers is the same as that for conventional cavitating propellers with a 

few modifications to the numerical algorithm. (Fig 11) [Young Y.L.] 

 
Figure 10.   Treatment of Supercavitating blade sections [Young Y.L.] 
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Figure 11.   Pressure integration over a blade section with non-zero trailing edge thickness 

 

 
 

Figure 12.   Cavitation patterns on supercavitating propellers that can be predicted by the 
present method 
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C. PARTIALLY SUBMERED PROPELLERS 
This section determines the performance characteristics of partially submerged 

propellers. The design of partially submerged propellers was often based on experience, 

due to the lack of systematic series data and the lack of reliable theoretical design 

methods. One of the first known experimental studies of partially submerged propellers 

was presented in [Reynolds 1874], where the effect of immersion on skewed propellers 

was studied. Many more experimental investigations have been published and the 

investigation include [Shiba 1953; Hadler and Hecker 1968; Hecker 1973; Rains 1981; 

Rose and Kruppa 1991; Kruppa 1992; Rose et al. 1993; Wang 1995]. The focus of all 

these studies was to determine thrust, torque, bending moment, and transverse forces. The 

influence of blade tip immersion, number of blades, blade pitch, rake, skew, section 

geometry, as well as shaft yaw and inclination angles was studied. This thesis focuses on 

defining the shaft yaw angle and the changes it makes to the other parameters of the 

propeller. More recently, [Olofsson 1996; Miller and Szantyr 1998; Dyson 2000; Dyson 

et al. 2000] also conducted experiments to determine the dynamic performance of 

partially submerged propellers with great performance increase and information. The 

common objective was to study the time dependent hydrodynamic load, and the stresses 

induced on the propeller blades, shaft, and the hull structure in a defined environment and 

laboratory.  

However as many papers have all stated, model tests are extremely expensive, 

difficult, and time consuming to perform and give a consistent out put of usable data. The 

test must be carried out in a variable pressure free-surface tunnel that permits high-speed 

operations in a set environment. The free surface must be clearly defined [Kruppa 1992] 

and consistent with other engineering designers and scientist. A multi-component 

dynamometer is needed to measure primary and secondary forces on the propeller. 

Experimental studies indicated that the transverse hydrodynamic forces are high in both 

directions, which can significantly influence vessel performance and shaft stresses [Rose 

et al. 1993]. Specialized equipment are also needed to simultaneously provide realistic 

conditions for cavitation inception while maintaining constant water density [Olofsson 

1996]. Furthermore, special considerations are needed to address scale issues so that the 

performance of the model scale, including blade vibration characteristics, resembles that 
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of the prototype [Olofsson 1996; Dyson 2000]. Thus, the development of reliable, 

versatile, and robust computational tools to predict propeller performance is crucial to the 

design and application of partially submerged propellers in various applications.  

 

1. Numerical Method 

a.  Lifting Line Methods  
The first effort to model partially submerged propeller was carried out by 

[Oberembt 1968]. He used a lifting line approach to calculate the characteristics of 

partially submerged propellers. [Oberembt 1968] assumed that the propeller is lightly 

loaded such that no natural ventilation of the propeller and its vortex wake occur. 

However, this is often not the case for partially submerged propellers. A lifting-line 

approach which includes the effect of propeller ventilation was developed by Furuya in 

[Furuya 1984, 1985]. He used linearized boundary conditions and applied the image 

method to account for free surface effects. He also assumed the face portion of the blades 

to be fully wetted and the back portion of the blades to be fully ventilated starting from 

the blade leading edge. The blades were reduced to a series of lifting lines, and method 

was combined with a 2-D water entry-and-exit theory developed by [Wang 1977, 1979] 

to determine thrust and torque coefficients. Furuya compared the predicted mean thrust 

and torque coefficients with experimental measurements obtained by [Hadler and Hecker 

1968]. In general, the predicted thrust coefficients were within acceptable range 

compared to measured values. However, there were significant discrepancies with torque 

coefficients. Furuya attributed the discrepancies to the effects of nonlinearity, absence of 

the blade and cavity thickness representation in the induced velocity calculation, and 

uncertainties in interpreting the experimental data. He also stated that the application of 

lifting-line theory is limited due to the relative large induced velocities at low advance 

coefficients. [Young Y.L.] 

b. Lifting Surface Methods 

An unsteady lifting surface method was employed by [Wang et al. 1990b] 

for the analysis of 3-D fully ventilated thin foils entering into initially calm water. The 

method was later extended by [Wang et al. 1990a] and [Wang et al. 1992] to predict the 
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performance of fully ventilated partially submerged propellers with its shaft above the 

water surface. Similar to [Furuya 1984, 1985], the method assumed the flow to separate 

from both the leading edge and trailing edge of the the blade, forming on the suction side 

a cavity that vents to the atmosphere. Discrete line vortices and sources were placed on 

the face portion of the blade to simulate the effect of blade loading and cavity thickness, 

respectively. Line sources were also placed on the cavity surface behind the trailing edge 

of the blade to represent the cavity thickness in the wake. A helical surface with constant 

radius and pitch were used to construct the trailing vortex sheets. The negative image 

method was used to account for the effect of the free surface. The effect of the blade 

thickness was neglected in the computation. Comparisons were presented with both 

experimental measurements by [Hadler and Hecker 1968] and numerical predictions by 

[Furuya 1984, 1985]. The predictions were within reasonable agreement with 

experimental values for propeller MAU4-60 for a limited data range. However, 

substantial discrepancies were observed for propeller 4002 with both experimental values 

and numerical predictions by [Furuya 1984, 1985]. [Young Y.L.] 

The 3-D lifting surface VLM developed by [Kudo and Ukon 1994] and 

[Kudo and Kinnas 1995] for the analysis of supercavitating propellers has also been 

extended for the analysis of surface-piercing propellers in there program. The VLM 

performs all the calculations assuming the propeller is fully submerged, and then 

multiplies the resulting forces with the propeller submergence ratio. This program was 

used in Yin Lu Young paper. As a result, only the mean forces can be predicted while the 

complicated phenomena of blade’s entry to, and exit from, the water surface are 

completely ignored.   

c.  Boundary Element Methods 
A 2-D time-marching BEM was developed by [Savineau and Kinnas 

1995] for the analysis of the flow field around a fully ventilated partially submerged 

hydrofoil. However, this method only accounts for the hydrofoil’s entry to, but not exit 

from, the water surface. At a zero yaw propeller angle. The negative image method was 

used so the effects of water jets and change in free surface elevation were ignored and not 

looked at. [Young Y.L.] 

 



2. Green’s Formula 

Since the propeller is partially submerged, the computational boundary must also 

include the free surface. Hence, the perturbation potential, p, at every point p on the 

combined wetted blade surface SWB(t), ventilated cavity surface SC1(t) [SC2(t) [ SC3(t), 

and free surface SF (t), must satisfy Green’s third identity: 

 

where S(t) _ SWB(t)[SC1(t)[SC2(t)[SC3(t)[SF (t) is the combined surfaced as defined in 

the blade section example shown on Fig. 13. is the unit vector normal to the integration 

surface, with the positive direction pointing into the fluid domain. [Young Y.L.] 

As in the case of fully submerged propellers, the “exact” ventilated cavity 

surfaces, SC1(t) [ SC2(t) [ SC3(t), are unknown and have to be determined as part of the 

solution. Thus, the ventilated cavity surfaces are approximated with the blade surface 

underneath the cavity, SC2(t) ! SCB(t), and the portion of the wake surface which is 

overlapped by the cavity, SC1(t) [ SC3(t) ! SCW(t). The definition of SCB(t) and SCW(t) 

are shown in Fig. 13. [Young Y.L.] 
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Figure 13.   Definition of “exact” and approximated flow boundaries 
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D. VENTILATED CAVITY DETACHMENT SEARCH CRITERION  
Depending on the flow conditions and the blade section geometry, the ventilated 

cavities may detach aft of the blade leading edge. The cavity detachment location on the 

suction side of the blade are searched for in an iterative manner at teach time step until 

the smooth detachment condition is satisfied. In addition, due to the interruption of the 

free surface, the following detachment conditions must also be satisfied for partially 

submerged propellers: (Fig 14) [Young Y.L.] 

a. The ventilated cavities must detach at or prior to the blade trailing edge and 

b. During the exit phase (i.e. when part of the blade is departing the free 

surface), the ventilated cavities must detach at or aft of the intersection 

between the blade section and the free surface. 

A schematic diagram showing different cavity detachment locations for a surface-

piercing blade section is depicted in Fig. 14. It should be noted that the ventilated cavities 

on the pressure side of the blade are always assumed to detach from the blade trailing 

edge. It is possible to also search for cavity detachment locations on the pressure side. 

However, such occurrence is unlikely due to the high-speed operation of partially 

submerged propellers. [Young Y.L.] 

 



 
Figure 14.    Graphic illustration of ventilated cavity patterns that satisfy the cavity 

detachment condition on a partially submerged blade section. In addition, the 
cavities are assumed to vent to the atmosphere. [Young Y.L.] 

 

E. SURFACE-PIERCING 
In order to quantify the added hydrodynamic forces associated with jet sprays 

generated at the blade entry and exit phase, a systematic 2-D study has been initiated in 

this thesis. The exact nonlinear free surface boundary conditions are used and the effect 

of Froude number will be studied. The predicted forces on the wetted part of the 

hydrofoil will be compared to those obtained using the negative image method. The 

planned progression of the 2-D study (Fig. 15): [Young Y.L.] 

1. Vertical water entry of a symmetric wedge. 

2. Oblique water entry of a surface-piercing hydrofoil. 

3. Vertical water exit of a symmetric wedge. 

4. Oblique water exit of a surface-piercing hydrofoil. 

5. Water entry and exit of a surface-piercing hydrofoil. 
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Figure 15.   Planned progression of the 2-D nonlinear study for the water entry and exit 

problem of a surface-piercing hydrofoil. 
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1. Previous Work 
The problem of a 2-D rigid wedge entering the water was first studied by[Von 

Karman 1929] and [Wagner 1932]. They assumed that the velocity field around the 

wetted part of the body can be approximated with the flow field around an infinitely long 

flat plate. Von Karman [Von Karman 1929] assumed that the free surface is flat, while 

Wagner [Wagner 1932] accounted for the deformation of the free surface. The similarity 

method of Wagner [Wagner 1932] reduced the unsteady problem to a steady one. Since 

then, the slamming problem on a 2-D body has been extensively studied by [Makie 1969; 

Cox 1971; Yim 1974]. In particular, [Yim 1974] applied a linearized theory to study the 

water entry and exit of a thin foil and a symmetric wedge with ventilation. All of these 

studies were done at a zero degree yaw angle. But Later, [Wang 1977, 1979] also applied 

linear theory to study the vertical and oblique entry of a fully ventilated foil into a 

horizontal layer of water with arbitrary thickness. This raised the method of [Wang 1977, 

1979] and later extended by [Furuya 1984, 1985] for the performance prediction of 

surface-piercing propellers in a new study and environment. 

 

2. Formulation 
The formulation for surface-piercing (also called partially submerged) propellers, 

are  

  

is the same as that for fully submerged propellers with the following exceptions(Young & 

Kinnas 2001a, Young & Kinnas 2001b): 

1. The dynamic boundary condition requires that the pressure everywhere on 

the free surface , and on the ventilated cavity surface, and to be constant 

and equal to the atmospheric pressure, 

2. The linearized free surface condition is applied: 

where ys are h 
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are the vertical ship-fixed coordinate and the blade tip immersion is 

defined. Respectively R= D/2 is the blade radius. 

3. The assumption of infinite Froude number is applied, which reduces the 

top Eqn.  this implies that the 

“negative” image method can be used to account for the effect of the free 

surface. The assumption that the Froude number grows without bounds is 

valid because surface-piercing propellers usually operate at very high 

speeds. (Shiba 1953) and (Yim 1974) have also concluded that gravity 

effects are negligible for Froude numbers greater than 3. 

4. The source and dipole strengths on the “dry” part of the blades are set 

equal to zero. Thus, the number of unknowns is reduced to the number of 

fully submerged panels. 

5. In order to save computer time, only one iteration is performed at each 

time step (i.e. the method does not iterate to determine the exact thickness 

of the ventilated cavity). This is assumed to be a valid approximation 

since the pressure is set equal to atmospheric on the ventilated portion of 

the blades, and the pressures on the wetted portion of the blades are not 

expected to be significantly affected by small differences in cavity height. 

It should be noted that the method is still in the development stage for the analysis 

of partially submerged propellers. Thus, the effect of partially submerged panels is 

currently ignored. [Kinnas S.A. 2002] 
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III. CONCLUSIONS 

A. CONCLUSIONS 
After months of research there is very little written documentation on for an age 

old propulsion design problem. This thesis addressed multiple methods to predict the 

performance of supercavitating and surface-piercing propellers. In the past, the only way 

to be able to predict the performance was by full scale modeling or estimations based on 

experience. The method I am most familiar with. Using the full scale method I have 

proven a 3% to 5% improvement in the efficiency (thrust) of surface piercing propellers, 

with respect to the angle of the propeller shaft and position. This thesis addresses the 

preliminary calculations based on the basic pitch/diameter geometry suggest that about 3-

5% efficiency is lost if the shaft is parallel to the flow, compared to skewed a few degrees 

in the "paddlewheel" direction at certain speeds. More accurate calculations based on the 

lift characteristics of each blade, on the angle of attack and the flow of water over each 

blade and given a set of basic assumption on the over all performance of each blade, as 

the blade enters and leaves the water; are used to determine the increase in efficiency.  

 

B. FULL SCALE MODEL TESTING 
While working at a Propeller Shop in Florida numerous full scale design and 

modifications were made successful through trial and error calculations. The research for 

this thesis started back 15 years ago on the Indian River in Cocoa, Fl. Working at a local 

propeller refurbishing shop I learned how to build and modify numerous propellers 

configurations for various hull designs. These Calculations were all based on trial and 

error data compiled over numerous years of hands on research and development. The 

different propeller designs and blade modifications were used to provide greater thrust or 

optimum speed and performance. Often different and unique hull forms needed different 

and unique propellers. Realizing the shape and size of the blade performed differently 

helping me to understand the basic fundamentals for basic propeller and surface piercing 

design. The learning processes was make changes to the propeller and test the propeller 

until you acquire the proper end result or performance, by the trial and error process. 

After modifying hundreds of propellers, I started to learn how each little change made a 
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difference in performance. One of the biggest performance gain or modification was the 

location and the angle of the propeller during operation.  

A blade fixture (Fig. 19) consists of a machinist’s micrometer to measure the 

depth, along a detented arm swung in a plane, having 5 degree increments pin locator 

positions. This device provided the mechanism to describe the propeller blades in a radial 

format the resulting plot in 2-D is in (Table 1) using a 14x19 Propeller Blade. This 

propeller was used to document the blade shape and size. This Radial Coordinate System 

is used in most airfoil propeller analysis.  Another Coordinate system used in the NASA 

Material Science Lab at Kennedy Space Center, Florida (figure 20) is the Brown and 

Sharp measurement equipment.  This data provides a X, Y, & Z coordinate system 

description of the blade shape. (Table 6) This data was best used in CFD ACE GOM. 

(Fig 23) The measurements from Ace Geo were made to two existing types of propellers. 

This dimensional analysis is a necessary step to interface known propeller designs with 

Computational Analysis tools.  Knowing the surface contour, a computer can predict the 

water flow across a propeller.  The evaluated propeller designs are: A fully immersed 

design propeller, the “14X 19” (Fig 19) results are in (Table1) for a recreational vessel 

and two Surface Piercing propeller designs; A Masco RE (table 2) and Cleaver propellers 

(table 3), and (Fig 16) Surface Piercing Propeller (Chopper).  

 

C. FACE AND BACK CAVITATION 

The detail description of Face and Back Cavitation in Yin Lu Young paper is 

second to none. She states that alternating face and back cavitation are becoming more 

and more common in recent propeller designs, but I was unable to find experimental 

results proving or validating the method. Systematic comparisons should be made 

between the predicted and measured cavitation patterns and blade forces. Additional 

studies are also needed to test the sensitivity of method to different space and time 

discretizations for a wide range of propeller geometries and operating conditions. In the 

case of unsteady face and back cavitation, the following concerns she addresses should 

also be addressed: [Young Y, L] 

1. The hydro elastic response of the propeller, particularly in the case of 

alternating face and back cavitation.  
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2. A more comprehensive wake model, such as the one presented in [Lee 2002], 

should be incorporated to the current method. At this time, the wake is 

aligned with the circumferentially averaged inflow. However, most 

propellers that exhibit face and back cavitation patterns are subjected to 

inclined inflow. In that case, the time-invariant wake model may be an 

oversimplification. 

 
D.  SUPERCAVITATING PROPELLERS 

For supercavitating propellers, the current method assumes the pressure to be 

constant and equal to the vapor pressure on the separated region behind non-zero 

thickness blade trailing edge sections. Based on this assumption, the method is able to 

predict the extent and thickness of the separated region in steady and unsteady flow 

conditions. However, additional studies are needed to determine the effect of prescribed 

separated region pressure on the predicted blade forces in the case of fully wetted and 

partially cavitating flow. Under the current algorithm, it is actually possible to prescribe a 

different pressure, such as that measured in experiment or computed using viscous flow 

analysis, on the separated region. A more careful study is also needed to predict how the 

pressure changes along the trailing edge when one part of the blade is wetted or partially 

cavitating, and another is supercavitating. Additional validation and convergence are also 

needed before this method can be reliably use for the design and analysis of 

supercavitating propellers. The two concerns previous listed for the prediction of face and 

back cavitation should also be addressed for supercavitating propellers. 

 

E.  SURFACE-PIERCING PROPELLERS 
Although the current performance prediction of surface piercing propellers are in 

reasonable agreement with experiments, considerable research are required before the 

method can be reliably use in the design and analysis of surface-piercing propellers: 

The Modeling of partially submerged panels can be accomplished by using a 

method similar to the split-panel technique used in Professor Kinnas’s and UT’s propeller 

program PROP CAV. 
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Modeling of the jet sprays. Complete the current 2-D nonlinear study of surface-

piercing hydrofoils, and find a simplified approach to incorporate the results into the 3-D 

model. A possible algorithm is provided below by some of the University of Texas 

Engineering program and Prof. S, Kinnas: 

a. Solve the 3-D problem using the negative image method. 

b. Apply the 2-D algorithm to each radial blade section, assuming the incident 

angle is determined by the sectional geometry and global flow velocities (i.e. inflow 

velocity and propeller induced velocities). 

c. Perform the same 2-D calculation using the negative image method. 

d. Calculate the difference between the 2-D fully nonlinear solutions from that 

obtained using the 2-D negative image method. Apply the calculated corrections to the 

sectional lift and drag coefficients in the 3-D model using the assumed incidence angles. 

This can be a fast, but reasonable, approach for the design of surface-piercing propellers. 

3. Modeling of the blade vibration via hydro elastic coupling. A possible 

algorithm is provided below: 

a. Perform the hydrodynamic analysis (using the current 3-D BEM) assuming the 

blade the rigid. 

b. Perform the structural analysis (using a 3-D finite element method) with the 

unsteady pressures obtained from (1) as input. 

c. Perform the hydrodynamic analysis using the deformed blade geometry. Note 

that the distortion on each blade may be different. In addition, the blade deformation at 

each blade angle may also be different. Furthermore, the effect of the unsteady blade 

motion should also be included in the hydrodynamic analysis. This effect can be 

approximated by modifying the kinematics boundary conditions the vertical coordinate of 

the mean-camber line with respect to the nose tail line. 

d. Perform the structural analysis based on the new blade geometry and pressure 

distributions. 
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4. Coupling the method with an unsteady Euler solver to obtain a more realistic 

effective wake velocity. 

5. Include a more realistic wake alignment model, especially for cases with 

nonzero shaft yaw and inclination angle. 

 

F. DISCUSSION AND CALCULATION 
The Measurements obtained by the propeller measuring device (Fig. 19) were 

plotted in (Table 1 & 7) as a Radius vs. depth. Knowing that the propeller has a circular 

flow over the blade at a fixed radius from the hub’s centerline, the ability to change the 

blade angle of attack when the propeller is in motion is dependant on the yaw angle. If 

the yaw angle changes it will produce a circumference to radial flow path change then the 

blade root circumference flow path can be evaluated to a arbitrary radial flow path (Table 

4).  A comparison of this flow path (Table 5) indicates a pitch increase. This will increase 

the total flow and lift vector (2-D) across the propeller blades resulting in an increase in 

thrust. There for a thrust increase will be produced by a yaw angle increase. 

In 1988 Pal Kamen a former employee of Arneson, outdrive INC. suggested that 

about 3-5% efficiency is lost if the shaft is parallel to the flow, compared to skewed few 

degrees in the "paddlewheel" direction. Note, that even the 1860-something original 

patent for a surface-piercing propeller shows a skewed shaft! 

Also note that shafts inclined downward in the vertical plane, behind a high-dead 

rise V hull, intersect the extruded water plane at a skew angle. This is the best 

explanation for why inboard-turning propellers are more efficient than outboard-turning 

(although they don't maneuver as well at low speeds). 

As for basic formulas, if you know the thrust and torque coefficient of the 

propeller you can back out a lift/drag ratio or "drag angle" of the blades and from there 

estimate the effect of shaft skew by integrating these forces around the immersed half-

circle. 

With help provided by Prof. Spyros A. Kinnas and Hanseong Lee from the 

University of Texas we got results from their computer program PropCav. As expected 

the program predicted that the thrust (force along ship direction), increases in the case of 



change in the shaft angle. Most of thrust increase with inclined shaft was due to the side 

force since the side force (Z-direction force) was about the same order of x-direction 

force. There was also an increase in efficiency. 

 

 

 
Figure 16.   Surface Piercing Propeller.(Chopper) 
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Figure 17.   Schematic diagram 
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Figure 18.   Characteristics of  Airfoil section 2-D 
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Figure 19.   Propeller measuring device 
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Figure 20.   Propeller measuring device Kennedy Space Center 
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Figure 21.   PropCav (Version 2.1.1) 
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Figure 22.   Surface Piercing Propellers  
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Figure 23.   CFD-Geom 
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14 X 19 Blade Micrometer scan

0

1

2

3

4

5

6

6.8
97

5

6.76.4
69

6.2
27

6.2
27

5.9
59

5.7
33

5.4
9

5.2
73

5.0
33

4.7
95

4.5
23

4.2
69

4.0
1

3.7
58

3.4
95

3.2
62

3.0
15

2.7
43

Radius ( inches)

D
ep

th
 ( 

in
ch

es
) 

Blade tip

Gear case 
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