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ABSTRACT 
 
 

This thesis presents the use of a field programmable 

gate array (FPGA) to implement a non-coherent binary-

frequency-shift-keyed receiver-transmitter (BFSK-RT) that 

simulates the modulation of the SINCGARS radio, the RT-

1523C.  An FPGA successfully, and with very few resources, 

implemented the desired modulation and demodulation.  Top-

ics covered include FPGA history, the hardware and software 

utilized, a summary of the SINCGARS RT-1523C characteris-

tics, the BFSK-RT on FPGA design procedure and the design 

results.   
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EXECUTIVE SUMMARY 
 
 
 

The goal of this thesis was to implement a receiver-

transmitter that simulates the modulation and demodulation 

of the SINCGARS RT-1523C.  The RT was implemented on an Al-

tera® StratixTM Edition DSP development board with an on-

board Stratix FPGA.  The designed RT was a non-coherent 

BFSK-RT.   

Descriptions of the FPGA and development board capa-

bilities are presented, to include a brief history of 

FPGAs.  The hardware descriptions are followed by a design 

flow discussion that describes the possible ways to design 

systems for implementation on the DSP board used in this 

thesis.  Other background topics include a discussion of 

the SINCGARS RT-1523C, to include its characteristics and 

most recent upgrades. 

A thorough explanation of how the design was ap-

proached is presented.  This document describes the proce-

dures taken, including the observed problems and solutions 

to ensure the design functioned properly.  The design soft-

ware tools used throughout the thesis are MATLAB®’s Simu-

link®, the Altera DSP Builder and the Quartus II programmer. 

Next, the system was implemented onto hardware and 

tested for software and hardware functionality.  The soft-

ware simulation was conducted in Simulink and the hardware 

simulation was conducted on the DSP board, using an oscil-

loscope to observe the transmitted and received waveforms 

and bit streams.
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I. INTRODUCTION  

The single channel ground and airborne radio system 

(SINCGARS) is currently widely used throughout the United 

States Marine Corps and Army for terrestrial tactical voice 

and data communications [1].  The last several years have 

continued the shift in military operations away from plat-

form-centric operations (PCOs) to network-centric opera-

tions (NCOs) [2].  NCOs rely heavily on data communica-

tions, and therefore the SINCGARS has been used increas-

ingly for data communications [2].  Unfortunately, the 

SINCGARS has often not been able to adequately support 

these NCO data communications demands.  The author, while 

assigned to the U.S. Marine Corps operational forces, has 

observed that this problem has become much more evident 

when utilizing the SINCGARS manpack variant.  The problem 

can be traced back to the power and antenna differences be-

tween vehicle and manpack variants.  Vehicle variants in-

clude one or two amplifiers and antennas in excess of 6 

feet.  The manpack variant has no power amplification and 

has PRC-77 legacy antennas that are intended for short 

range transmissions.  Therefore, the SINCGARS manpack radio 

has been found inadequate in providing dismounted troops 

with satisfactory data traffic capabilities as required by 

current doctrine.  

The use of design software which interfaces with hard-

ware to create a software-defined design has become a more 

commonplace technique for creating system solutions.  One 

such solution is the use of field programmable gate arrays 

(FPGAs) which can be programmed using software to perform 

hardware operations.  This solution can allow designers to 



 

2 

examine, change, implement and test systems without working 

with circuit boards, chips or other electronic parts. [3] 

This thesis addresses the use of an FPGA to model, 

simulate and implement the modulation of the SINCGARS ra-

dio, a binary-frequency-shift-keying receiver-transmitter 

(BFSK-RT).  The results of this research can be used to 

analyze, modify and test BFSK-RT radio designs in order to 

identify modifications that can improve the performance of 

the SINCGARS radios, in particular the SINCGARS manpack.  

A. SINGLE CHANNEL GROUND AND AIRBORNE RADIO SYSTEM 
(SINCGARS) 

NCOs involve the coordination of diverse combat units 

to assemble a military capability that is greater than the 

capability of any one unit.  This involves sharing of in-

telligence, reconnaissance, and surveillance information, 

collaborative planning, and command and control alignment — 

all of which require networked communications across the 

force. Therefore, the greatest demands for military radio 

capabilities are in effective data transfer as part of the 

greater network.  At this junction in time, the military 

owns equipment capable of sharing situational-awareness in-

formation and administrative reports that keep the com-

mander informed of each subordinate unit’s position and 

disposition.  In order to employ this equipment to its full 

capability, adequate communications means are required.  

Currently, the main terrestrial communications system that 

is employed by the United States military for this task is 

the SINCGARS. [1] 

The SINCGARS has been employed in the United States 

military since 1987 when it was contracted from ITT Indus-

tries.  The SINCGARS was purchased to replace the aging 
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PRC-77 single-channel plain-text radio set, and it was to 

provide the U.S. Armed Forces with an improved reliable 

means of voice communications in the battlefield.  As needs 

changed through the years, so did the system.  The current 

SINCGARS, fielded in 1998, is capable of providing single-

channel and frequency-hopping communications for voice and 

data, and it comes equipped with an integrated communica-

tions security (COMSEC) device [4].  Test of the SINCGARS 

show that it is capable of providing communications in ex-

cess of 20 kilometers in a stationary position with an ade-

quate antenna [5].  However, the range of the manpack 

SINCGARS receiver-transmitter unit, the RT-1523C, is re-

duced to less than one kilometer when transmitting data 

[6].  This reduced range limits the ability of the radio to 

effectively support data transfer in the digital battle-

field.  It is due to this fact that the Marine Corps Tacti-

cal Systems Support Activity (MCTSSA) requested this thesis 

explore the implementation of the radio system in an FPGA, 

in order to facilitate modifications in the radio hardware 

design that can improve the performance of the RT-1523C re-

ceiver-transmitter radio set.  MCTSSA provided an Altera® 

StratixTM Professional Edition DSP Development Kit for this 

task. 

B. ALTERA® DIGITAL SIGNALS PROCESSING (DSP) DEVELOPMENT 
KIT, STRATIXTM PROFESSIONAL EDITION 

The increased capabilities of technology and the con-

stant improvement of semiconductors continue to provide 

programmable logic devices that facilitate the design and 

implementation process for system solutions that require 

flexible design methods.  These devices allow designers to 

have flexible hardware solutions, based on programmable 

logic.  The Altera DSP Development Kit, Stratix Edition, is 
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one such hardware solution for the communications industry.  

The DSP development kit provides the necessary hardware to 

develop complete system-on-a-programmable-chip (SOPC) solu-

tions using the Stratix FPGA. [3] 

1. Stratix FPGA  

The Stratix FPGA is the Altera Corporation solution to 

requirements for faster and more powerful designs.  The 

SINCGARS RT-1523C has 23 application-specific integrated-

circuits (ASICs) [4].  This technology requires redesign 

and manufacture of an entire ASIC to upgrade that part of 

the system.  In contrast, FPGA-based systems can be updated 

by re-programming the logic in the FPGA.  Through the use 

of reprogrammable FPGAs, a designer can implement and pro-

gram the design onto an FPGA, test it and proceed to large-

scale production once the testing is concluded satisfacto-

rily.  At this point, the FPGA can be added to the radio.  

Since FPGAs are reprogrammable, the design can be changed 

or improved at any time after fielding.  It is this charac-

teristic that makes FPGAs a good tool to examine the RT-

1523C and make changes to it without having to implement 

and manufacture any ASICs.  The use of FPGAs in the RT-

1523C will allow the military to use commercial-off-the-

shelf (COTS) technology, an advantageous alternative due to 

the large knowledge base available in the programmable 

logic industry, and reduced costs of COTS acquisition and 

life cycle logistical support. 

C. SINCGARS HARDWARE RADIO 

The RT-1523C SINCGARS radio is a non-coherent binary-

frequency-shift-keying (BFSK) hard-decision receiver [5].  

The receiver performance has very little recorded analysis 

in the dismounted variation and because of its ASIC-based 

design, changes to the radio are difficult and variation in 
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testing is limited.  Using an FPGA-based DSP board, the de-

signer can make changes to the radio architecture based on 

operating conditions, therefore creating improved perform-

ance in different environments. 

D. GOALS 

The U.S. military has already established a program to 

provide a replacement for the SINCGARS with software de-

fined radios (SDRs), which comprise the new Joint Tactical 

Radio System (JTRS).  Unfortunately the JTRS manpack con-

tract, cluster five of the JTRS program, was started on 

July 16, 2004 and is currently in the design and develop-

ment phase with full production planned to start in late 

2009 [7].  This leaves a capability gap in manpack radios 

because the JTRS is not expected to reach the operating 

forces until 2010.  This assumption does not account for 

possible program delays and the additional time required 

for full fielding, typically a few years’ time span. 

SDRs take advantage of programmable logic technology 

to make the radios reconfigurable [7].  This same technol-

ogy can easily be used to improve the RT-1523C while the 

military awaits the complete fielding of the JTRS manpack. 

The purpose of this thesis is to design a non-coherent 

BFSK receiver, program the FPGA with the design, test the 

design, and compare the data with the experimental data of 

the actual SINCGARS manpack.  In conjunction with the the-

sis, “Modeling and Simulation of the Physical Layer of the 

Single Channel Ground and Airborne Radio System 

(SINCGARS),” by Captain Richard Paradise, USMC, MCTSSA can 

use this design to evaluate any possible modifications to 

the physical layer of the SINCGARS [8]. 
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E. METHOD AND STRUCTURE 

The focus of this thesis is implementing a non-

coherent BFSK radio using an FPGA, and improving the design 

to implement the SINCGARS characteristics as much as possi-

ble. 

The design process was started by first implementing 

an on-off keying (OOK) transmitter.  After the OOK trans-

mitter was designed, a BFSK transmitter was implemented and 

a non-coherent receiver was created.  The radio was de-

signed using the MathWorks Simulink® software, which inter-

faces with the Altera Quartus® II design software to program 

the FPGA. 

Chapter II gives a brief history of FPGAs, discusses 

the Stratix FPGA and its characteristics, describes the Al-

tera DSP Development Board and its characteristics, the de-

sign software, the design flow and briefly discusses the 

RT-1523C SINCGARS receiver-transmitter set. 

Chapter III describes the steps taken to create the 

design and program the FPGA.  The chapter provides an in-

depth look at the use of the software necessary to go from 

concept to testing of the BFSK system using an FPGA.  The 

tools discussed in this chapter include Simulink, Altera 

MegaCore® and OpenCore® Plus functions, the MegaCore Com-

piler, the SignalCompiler box and the DSP Builder. 

Chapter IV presents the results of the Simulink and 

hardware simulations and comparisons of simulated results 

with the known performance of the SINCGARS. 

Chapter V presents a summary of the thesis, conclu-

sions regarding the DSP board and FPGA utility and recom-

mendations regarding the options that may be added to the 
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SINCGARS design and testing efforts when an FPGA solution 

is implemented.  Emphasis is placed in the suggestions for 

further research and testing, as well as possible implemen-

tation alternatives and possible modifications to the pro-

posed design. 

Two appendices are included, Appendix A discusses er-

rors encountered and lessons learned and Appendix B in-

cludes all the Simulink models that were created in order 

to implement the FPGA-RT.  
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II. BACKGROUND 

This chapter discusses FPGAs, the Altera DSP develop-

ment kit, design software, design implementation and the 

SINCGARS RT-1523C. 

A. FPGA OVERVIEW 

The history of FPGAs began with the implementation of 

integrated circuits (IC) that could have their logic pro-

grammed after the ICs were manufactured. [9]   

The first such IC was the programmable logic array 

(PLA), which had a two-level structure of AND and OR gates 

with programmable connections.  As the programmable device 

industry grew, PLAs were modified and programmable array 

logic (PAL) devices were introduced; PALs also have a two-

level structure but only the AND array is programmable and 

the OR array is fixed.  PALs and PLAs are called programma-

ble logic devices (PLDs).  As IC capabilities increased, 

programmable logic vendors introduced complex programmable 

logic devices (CPLD).  CPLDs implement multiple PLDs onto a 

single chip with programmable interconnections, called a 

switch matrix, thereby increasing the scale of logic possi-

ble from the IC. [9]  

When CPLDs were being invented, FPGAs were developed 

with a different approach to achieving a large amount of 

programmable logic.  FPGAs have a large number of individ-

ual logic blocks that are smaller than PLDs and a large and 

programmable connection network that is distributed 

throughout the chip.  This approach allows the designer to 

maximize the use of the logic elements (LEs) available and 

does not restrict use of any part of the chip.  This is not 

the case with CPLDs. [9] 
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In general, the differences between CPLDs and FPGAs 

are architectural.  As previously mentioned, CPLDs are made 

of PLDs with programmable interconnections called a switch 

matrix.  However, a CPLD switch matrix is not capable of 

achieving all possible connections, thereby reducing the 

chances of 100% utilization of all on-board logic [10].  By 

contrast, FPGA architecture is specifically designed to 

maximize the use of all on-board logic through the use of 

the fully programmable interconnections that comprise the 

majority of the FPGA area.  Other major differences include 

the amount of on-board logic and chip size, both in favor 

of FPGAs as they are larger and contain more logic ele-

ments.  Neither is universally more effective than the 

other, and the fact that the two leading vendors in pro-

grammable logic devices, Altera and XILINX®, sell CPLDs and 

FPGAs show that consumers have applications for both de-

vices. [11] [12] 

Altera and XILINX have different approaches to pro-

grammable logic products.  Altera focuses on design solu-

tions.  Altera Corporation not only provides customers with 

devices and support which includes design software and ser-

vices, but they also provide development products that al-

low the designer to implement and test designs [3].  By 

contrast, XILINX focuses on devices and support.  Like Al-

tera, they provide solutions to certain ‘End Markets’, but 

XILINX does not provide testing platforms [11].  This means 

XILINX-based solutions are designed and created by the de-

signer, to include the implementation and testing platform.  

Therefore, given an inexperienced designer or the need for 

a fast design solution, Altera is a good option.  However, 

if the desired effect is the most effective use of a de-



 

vice, then XILINX provides a better option because of their 

robust and varied devices with extensive support [11].  Due 

to resources provided by the requesting activity, MCTSSA, 

an Altera FPGA was used.     

1. Altera Stratix FPGA 

Current FPGA design makes FPGAs an excellent choice 

for DSP solutions.  In 2002, ALTERA introduced to the pro-

grammable device market their high-density Stratix FPGA, 

shown in Figure 1.  The Stratix FPGA provides high band-

width, on-board memory, a high density of logic elements, 

DSP blocks and high performance input/output (I/O) capa-

bilities. [13] 

 

 
Figure 1.   Stratix FPGA. 

 

The Stratix device achieves these qualities through 

its “two-dimensional row- and column-based architecture” 

[14].  The device’s internal logic array blocks (LABs), 

memory blocks and DSP blocks are arranged in rows and col-

umns.  Each LAB has 10 logic elements (LEs).  The device 

has three different types of memory with parity: M512 Ran-

dom Access Memory (RAM) blocks (576-bit dual-port memory 
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RAM), M4K RAM blocks (4,608-bit true dual-port RAM), and M-

RAM blocks (589,824-bit true dual-port RAM).  These memory 

blocks are located throughout the device logic array, as 

shown in Figure 2.  Also within the device array are two 

columns of DSP blocks which can implement eight 9 X 9-bit 

full-precision multipliers that can implement four 18 X 18-

bit multipliers or one 36 X 36-bit full-precision multi-

plier.  The outer edges of the device have input/output 

elements (IOEs) that feed I/O pins.  The IOEs contain bidi-

rectional I/O buffers and registers for input, output and 

output-enable signals.  These features allow the device to 

support numerous I/O standards and provide an interface for 

external memory devices.  Figure 2 shows a subsection of a 

Stratix FPGA block diagram and how each block is distrib-

uted throughout the device. [14] 

 

 
Figure 2.   Stratix Device Block Diagram (from [14]). 
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The device that was used for this thesis was the 

EP1S80B956-C6, the most powerful of the Stratix devices, 

which is included in the EP1S80 DSP development board that 

was provided by MCTSSA.  The EP1S80 Stratix FPGA character-

istics are summarized in Table 1. [15] 

 
Table 1.   EP1S80 Overview (from [15]). 

 
 
 
B. ALTERA STRATIX DSP DEVELOPMENT BOARD 

The Altera Stratix DSP development board, shown in 

Figure 3, facilitates design work.  The major components 

include the Stratix FPGA, analog inputs and outputs run by 

analog-to-digital and digital-to-analog converters, a mem-

ory subsystem, a PLD for configuration options, an 80-MHz 

on-board oscillator and various input and output inter-

faces.  The input components include three pushbuttons, 

eight dipswitches, and the output components include a dual 

seven-segment display and two light emitting diodes (LEDs). 

[15] 
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Figure 3.   Altera DSP Development Board. 

 
1. Analog I/O 

The analog input and output consists of two 12-bit 

analog-to-digital converters (ADC) and two 14-bit digital-

to-analog converters (DAC).  The ADCs can sample at a maxi-

mum rate of 125 mega-samples-per-second (MSPS) and the DACs 

convert 1 14-bit number to an analog signal every 6.06 ns.  

Each ADC input circuit is DC-coupled and its output to the 

FPGA is in two’s-complement format.  The D/A converter box 

in Figure 4.  It is best modeled as an ideal current source 

with output 0-20 mA, proportional to the 14-bit unsigned 

binary value received from the FPGA.  This current is fil-

tered by the two capacitors and resistor to pass a fre 
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quency range of approximately 16 kHz to 230 MHz.  The out-

put signal maximum is 0.5 V when a 50 ohm antenna is at-

tached to the output. [15] 

 

 
Figure 4.   Circuitry after DAC (from [15]). 

 
2. Memory Subsystem 

The DSP board embedded memory capabilities consist of  

2 megabytes of 7.5 ns synchronous 256 X 36 static random 

access memory (SRAM) configured as two independent 36-bit 

wide buses and a single 64-megabit flash memory device 

[15].  Flash memory, or electrically erasable programmable 

read-only memory (EEPROM), is a non-volatile memory that 

does not require power to hold data; this kind of technol-

ogy can be re-programmed a limited number of times.  There-

fore it is normally used for data that does not change [9].  

By contrast, SRAM is a fast read/write memory that holds 

the stored values until the memory is re-written or the 

system is powered down.  The arrangement of the SRAM allows 

the board to support high data rates and concurrent proc-

essing by using the 36-bit buses independently. [15] 

3. Configuration Options 

The flash memory device allows the board to store an 

on-board configuration when used in combination with the 

Altera EPM7064 PLD.  Since the Stratix FPGA is SRAM-based 
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device, configuration is required each time the system is 

powered.  The PLD and flash memory combination allows a de-

sign to be stored on-board.  As soon as the board is turned 

on, the PLD will configure the FPGA using the data stored 

in the flash memory.  This is called a non-volatile con-

figuration scheme.  The PLD can hold two different configu-

rations, a preset factory-configuration and a user-defined 

configuration.  The factory-configuration is a test that 

allows the user to ensure the board is working properly.  

Once the user configuration has been programmed on the PLD, 

the use of jumper JP18 selects the user-defined configura-

tion. [15] 

4. I/O Interfaces 

The majority of the DSP board is dominated by multiple 

I/O headers and various connectors that can be used to add 

expansion devices and analytical devices.  The I/O inter-

faces are: 90 digital evaluation I/O pins, two Mictor-type 

connectors for logic analyzer debugging, a Texas Instrument 

board expansion interface, two 40-pin I/O headers for Ana-

log Devices Corporation converters and a prototyping area 

that allows other devices to be added to the board.  All of 

these interfaces are directly connected to FPGA pins, and 

can be used to extract signals out of the FPGA for analysis 

or debugging; specific assignments can be found in the 

EP1S80 development board data sheet. [15]  

C. DESIGN SOFTWARE TOOLS 

Given the complexity of PLDs and FPGAs, it is neces-

sary to discuss the software necessary to program these de-

vices with a design.  For this purpose, in the mid-1980s, 

the Institute of Electrical and Electronics Engineers 

(IEEE) sponsored the development of a hardware description 

language (HDL) that could document and model a system in a 



 

hierarchical manner.  The HDL that was created was the Very 

High Speed Integrated Circuit (VHSIC) HDL, also known as 

VHDL.  As mentioned earlier, VHDL was initially intended to 

be a “documentation and modeling language” [9], but after 

the creation of VHDL synthesis tools by various commercial 

vendors, VHDL surpassed its initial purpose.  These synthe-

sis tools use VHDL files to create a database that the fit-

ter in turn uses to map the circuit design onto the spe-

cific FPGA, or other target device.  The components created 

depend on the device that needs to be programmed and most 

synthesis tools allow the user to provide information re-

garding the device that will be used. [9] 

The tool that makes the transition from software de-

signs to hardware implementations are device fitters.  A 

fitter performs what is known as place-and-route, it maps 

the database from the synthesis onto the device that will 

hold the design.  The device map can then be analyzed for 

timing, thereby completing the design flow.  This is the 

basic idea behind HDL design flow, and Figure 5 shows a 

simplified block diagram of a HDL design flow. [9] 

 

 
Figure 5.   Simplified HDL Design Flow (from [9]). 

 

The Quartus II software is the Altera Corporation tool 

that takes a design from concept to hardware implementa-

tion; it includes tools that range from design entry to 

programming tools.  Altera also has the DSP Builder which 

links the Quartus II software to the MathWorks 

MATLAB®/Simulink software to create a DSP Builder design 

flow.  The DSP Builder allows designers to implement a de-
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sign in a user friendly graphical environment in Simulink 

[16].  Figure 6 shows the design flow used in this thesis. 

 

 
Figure 6.   Thesis Design Flow. 

 
1. Design Entry: Simulink 

Simulink is a design program that allows users to im-

plement designs graphically.  In this thesis, it was used 

for design entry and simulation.  Simulink uses block li-

braries that contain graphical representations of systems 

that model controls, signal processing, communications and 
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other time-varying systems.  The DSP blocks from the DSP 

Builder can be used in the Simulink environment to create a 

model of the desired design, which can then be used to con-

tinue the design flow. [17] 

Simulink also allows the creation of hierarchical de-

signs.  This is done by creating subsystems within the sys-

tem model.  The use of subsystems simplifies the design be-

cause a system solution can then be broken down into sub-

system solutions that can be implemented several times into 

the same model.  This feature allows the designer to create 

more complicated designs that are organized using subsys-

tems within a model. [16] 

Simulink’s simulation abilities allow the designer to 

troubleshoot designs and ensure the system functions prop-

erly before implementation.  It is this property that makes 

Simulink a good design entry choice for DSP designs.  Since 

Altera blocks are used in Simulink models, the design can 

be designed, simulated, troubleshot and validated before 

implementing it in hardware. [17] 

2. DSP Builder 

The Simulink block libraries contain many predefined 

configurable blocks that can be used to create a wide vari-

ety of system designs.  The Altera DSP Builder is a tool 

that is installed into Simulink, using the MATLAB console, 

which adds the Altera DSP Builder library to the Simulink 

libraries; the DSP Builder is necessary because it acts as 

a link between the Simulink and Quartus II software.  The 

DSP Builder library consists of many blocks ranging from 

arithmetic operations to the Altera MegaCore functions.  

These blocks must be used in designs that are intended for 

hardware implementation because the DSP Builder cannot con-
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vert Simulink blocks into VHDL, only DSP Builder blocks.  

The usage of DSP Builder blocks allows the design to be 

simulated and tested in Simulink to ensure proper system 

behavior. [17] 

The DSP Builder can perform all design implementation 

tasks from the Simulink environment using the Quartus II 

software in the background.  The DSP Builder does this 

through the SignalCompiler block which must be used in all 

DSP Builder models.  The steps taken by the SignalCompiler 

in order to program the DSP board with a model are: 1 – 

convert model to VHDL, 2 – synthesis, 3 – fit system to 

Quartus II and 4 – board programming.  This design flow al-

lows programming of the device before doing any analysis of 

the system, which is done in Simulink, not Quartus II.  Un-

fortunately, the use of the MegaCore functions does not al-

low the SignalCompiler to perform board programming because 

of MegaCore usage limitations. [17] 

The Altera MegaCore functions are called intellectual 

property (IP) blocks.  IPs provide the designer with com-

plex, ready-to-use functions that have been optimized for 

implementation on Altera devices.  Using IPs improves sys-

tem development time and enhances the performance of the 

system because IPs are made for use on Altera devices. 

Since IPs are copyrighted functions, to use IPs a designer 

must obtain an evaluation license.  When evaluation IPs are 

used, the designer can implement, evaluate, and test the 

design in software and hardware.  However, there are re-

strictions to IP use if a full license is not purchased. 

[19]   

In order to use IPs with an evaluation license, the 

hardware has to maintain a connection to the Quartus II 
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software via a joint actions test group cable.  This is 

called the tethered mode.  An IP implementation in hardware 

will run indefinitely if the hardware and the Quartus II 

software maintain communications.  If the hardware imple-

mentation is not linked to the Quartus II software 

(untethered mode), the IP will only function for a limited 

time, after which it will be deactivated and the device 

will have to be programmed again.  Therefore, the board 

programming must be performed from by the Quartus II in 

tethered mode programmer and not by the SignalCompiler pro-

grammer. [19]   

a. Convert Model to VHDL 

In order to begin the DSP Builder part of the de-

sign flow, the SignalCompiler block shown in Figure 6, must 

be used.  Once the SignalCompiler block is double clicked 

the compiler is started.  The compiler automatically checks 

the accuracy of the model and is ready to begin the model 

to VHDL conversion.  VHDL conversion is necessary because 

the Quartus II synthesis tools cannot perform synthesis on 

a model file; the synthesis tool requires VHDL to perform 

synthesis. [9] 

b. Synthesis 

The Synthesis part of the design flow is actually 

performed by the Quartus II software via the DSP Builder, 

so it is performed from the Simulink environment.  Synthe-

sis is the conversion of the VHDL into components that can 

be assembled in the desired hardware [9].  In the Quartus 

II software, the synthesis step in the design flow “builds 

a single project database that integrates all the design 

files in a design entity or project hierarchy” [18].  The 

software uses the database throughout the rest of the syn-

thesis and is updated until the database contains the opti-
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mized project which is then used for the rest of the design 

flow.  As the database is updated and modified, the soft-

ware checks for syntax and flow errors.  The Quartus II 

synthesis also ensures the project is efficient by creating 

assignments of resources on the device being used and mini-

mizing gate count.  During synthesis, the project is also 

evaluated for timing requirements and modified to meet 

them. [18] 

c. Fitter 

The Quartus II Fitter performs place-and-route 

using the database developed during synthesis, matching 

logic and timing requirements with the resources available 

onboard the target device.  After the logic is assigned to 

a particular cell, the fitter selects the best path and pin 

connection assignments to make within the device.  The fit-

ter does this using the parameters established by the user, 

and then optimizes the design.  If the design is not feasi-

ble an error message is produced and the designer must re-

design. [18]   

The Quartus II Timing Analyzer runs by default 

and reports various timing data.  This data can then be 

used to validate the timing parameters for the design [9]. 

3. Quartus II Programmer 

The design flow is completed when the project is com-

piled and downloaded onto the Altera device.  This is done 

by the Quartus II Programmer.  After the Quartus II Fitter 

step of the DSP Builder design flow is completed, the com-

piler creates a programming file that the Quartus II Pro-

grammer uses to program a device.  At this point, the hard-

ware has been programmed with the developed design and is 

ready for real-time testing in a physical environment. [18] 



 

D. SINCGARS RT-1523C 

The SINCGARS RT-1523C, shown in Figure 7, has been in 

service in the U.S. military since the late 1990s and was 

upgraded by the RT-1523E, a version that has not been fully 

fielded yet.  The RT-1523C is currently the main communica-

tions asset for the U.S. Marine Corps, therefore it was se-

lected as the SINCGARS radio variant to examine. [1] 

 

 
Figure 7.   SINCGARS RT-1523C. 

 

The RT-1523C is a non-coherent binary-frequency-shift-

keying receiver-transmitter (BFSK-RT) that is capable of 

performing data and voice communications [5].  The RT has 

many important characteristics, shown in Table 2, but the 

most relevant properties to this thesis are the modulation 

and bandwidth (channel spacing) [20]. 
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Table 2.   RT-1523C Performance Data (from [20]). 

 
 

ITT implemented improvements to the waveform to im-

prove data-throughput.  In order to satisfy backward com-

patibility, the new waveform is the enhanced data mode 

(EDM) that is used in combination with the old SINCGARS 

data mode (SDM).  The modification to the waveform made the 

EDM distinct from the SDM and causes a radio operating in 

EDM to reject an SDM message and vice versa.  As Figure 8.   

shows, the throughput was drastically improved from 1.5 

seconds to 0.432 seconds per data-waveform. [5] 
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Figure 8.   SINCGARS Waveforms (from [5]). 

  

The characteristics of the RT-1523C make it a good 

tool for voice communications, but weak for data communica-

tions.  Unfortunately, most if not all of the experimenta-

tion that has been performed on the radio has been con-

ducted on units using vehicle mounts or the OE-254 antenna, 

an impedance matched antenna designed to operate in the 30-

88 MHz range in a frequency-hopping mode [5] [6].  Both op-

tions provide long ranges and facilitate testing and im-

prove results by maximizing range.  The standard manpack 

radio is the AN/PRC-119C which consists of the RT-1523C, 

the 10-foot AS-4266/PRC (pole collapsed or extended) an-

tenna and the 3-foot AS-3683/PRC (tape collapsed or ex-

tended) antenna [20].  This particular configuration of the 

SINCGARS has very little published test data regarding data 

communications.  
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In August 2004, MCTSSA conducted a field study of the 

AN/PRC-119C performance using the standard manpack equip-

ment.  Communications with a probability of bit error of 

greater than 10-4 was considered unreliable and communica-

tions with a probability of bit error of less than 10-4 was 

considered reliable.  Both the pole and tape antennas were 

tested in a collapsed and extended variation with the RT-

1523C at medium and high power.  Table 3 summarizes the re-

sult and recommendations in the report. [6] 

 
Table 3.   Manpack Performance Results (from [6]). 

 
 

As can be noted from Table 3, the data shows that the 

AN/PRC-119C manpack needs better range.  The most effective 

configuration was with the 10-foot antenna fully extended 

transmitting at full power.  This option is not acceptable 

because of the cumbersomeness of conducting foot-mobile op-

erations with a 10-foot antenna on the RT and because oper-

ating the RT at full power makes it easier for the enemy to 

conduct signals intelligence. [1] 

26 



 

27 

After reviewing the results of the MCTSSA tests, it is 

obvious that the current version of the SINCGARS is incapa-

ble of adequately supporting data transfer for foot-mobile 

units.  It is the low range of the AN/PRC-119C manpack that 

this thesis hopes to assist in solving.  With the develop-

ment of a BFSK-RT FPGA, MCTSSA can further their research 

efforts and have a way to test possible modulation varia-

tions of the RT-1523C. 

This chapter presented a brief FPGA and DSP board 

overview, the design software tools are described and the 

RT-1523C is presented.  This information will serve as a 

basis for understanding the design flow discussed in the 

following chapter. 
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III. DESIGN FLOW 

This chapter describes the design steps taken to im-

plement a BFSK-RT into an FPGA. 

A. APPROACH 

In order to properly model the SINCGARS, some research 

was done to identify the actual type of receiver the RT-

1523C implements.  The RT-1523C receiver was determined to 

be a non-coherent BFSK receiver after reading Hamilton’s 

“SINCGARS System Improvement Program (SIP) specific radio 

improvements” article. [4]  
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Further research on the RT was performed to determine 

the bit-rate  and operating frequencies ( bR ( )1 0,f f .  The U

Marine Corps Technical Manual, Intermediate and Depot Main-

tenance, SINCGARS states that the RT-1523C operates at an 

intermediate frequency of 12.5 MHz, and transmits data at 

16,000 bits per second (bps). [20] Assuming the RT-1523C 

performs orthogonal signaling, then the operating frequen-

cies are .  The throughput 

is less than this in EDR mode due to the need to transmit 

parity symbols, but the bit rate (including data and parity 

bits) is always 16 kbps [20]. 

.S. 

= =0 112.492 MHz and 12.508 MHzf f

To simplify understanding and visualization of a suc-

cessful implementation, this design was constructed with 

sufficient bandwidth to identify the waveforms on an oscil-

loscope, but note should be taken of the discrepancy in 

bandwidth availability in the RT-1523C.  Figure 9 shows a 

basic block diagram of the digital communication system 

that was designed. 

 



 

 
Figure 9.   FPGA-RT block diagram. 

 

It is important to note that the design of the RT does 

not include any filtering, except for that inherent in the 

receiver’s correlator.  The initial request from MCTSSA was 

to program the DSP board with the hardware behavior of the 

RT-1523C.  Figure 9 shows the suggested FPGA-RT block dia-

gram.  The channel in the FPGA-RT is a coaxial cable.  The 

filtering inherent in the receiver is ideal for the AWGN 

case.  Non-AWGN environments (e.g. with interferers) might 

motivate inclusion of additional filtering.  Such addi-

tional filtering was not addressed in this design.   

The design of the FPGA-RT model was approached in a 

stair-step manner.  The first step was to determine the de-

sign parameters.  Certain design decisions were made based 

on software restrictions, but most of the parameters were 

set to facilitate visual analysis and understanding of the 

system.  These parameters are shown in Table 4.  For exam-

ple, assuming the SINCGARS performs orthogonal signaling, 

then  and = 16 kbpsbR ∆ = 16 kHzf . Therefore the two inter-

mediate frequency (IF) symbol frequencies are 
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=0 12.492 MHzf  and =1 12.508 MHzf .  If these relatively 

close frequencies were used, then the visual identification 

of either waveform would have been difficult.  The FPGA in-

cludes an 80 MHz crystal oscillator, therefore, this was 

chosen as the clock frequency [15]. In order to achieve 

better visual identification of the two IF symbol frequen-

cies, a data frequency of 1.25 Mbps was chosen.    

 
Table 4.   Major BFSK-RT Design Parameters. 

clockf  80 MHz 

0f  5 MHz 

1f  10 MHz 

bT  800 ns 

bR  1.25 Mbps 

2n nBW  7.5 MHz 
 

The second step was to create a transmitter, using the 

given parameters.  To simplify the design, a square wave 

was designed to simulate an alternating input bit-stream of 

0s and 1s.  As mentioned before, the Altera DSP Builder can 

only convert Altera Simulink blocks into VHDL, not Math-

Works Simulink blocks.  Therefore only Altera Simulink 

blocks can be implemented in hardware.  In the Simulink en-

vironment, creating an OOK, FSK or BFSK transmitter is very 

simple because Simulink has modulation blocks that can per-

form these tasks.  Since the Mathworks Simulink blocks can-

not be used and Altera Simulink blocks do not include these 

functions, the BFSK transmitter had to be created from 

scratch.  The first step taken to create the BFSK transmit-

ter, in order to improve the designer’s understanding of 

the receiver-transmitter (RT) system, was to build an OOK 

transmitter. [16] [17] 
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Once the OOK transmitter was built, it was modified to 

add two OOK signals at different symbol frequencies to pro-

duce a BFSK signal, completing the transmitter portion of 

the RT design. 

The implemented receiver is a non-coherent BFSK quad-

rature receiver.  This was designed via a basic Simulink 

model of a non-coherent BFSK receiver-transmitter that mod-

els the RT-1523C modulation using Altera Simulink blocks. 

At this point, the Simulink model was input to the DSP 

Builder design flow using the SignalCompiler.  The Signal-

Compiler then performed three steps: converted the design 

model to VHDL, synthesized the VHDL and fit the design into 

the FPGA using Quartus II.  The SignalCompiler has a fourth 

step that programs the DSP board but since the design used 

an IP, the device programming had to be done from the Quar-

tus II software.  After the model was used to create a 

hardware programming file, the Quartus II software was used 

to program the FPGA using the tethered OpenCore feature.  

Once the design was programmed onto the FPGA, hardware 

testing and evaluation was conducted. [17] [19] 

B. ON-OFF KEYING (OOK) TRANSMITTER 

One of the basic waveforms used in digital communica-

tions is the on-off keying (OOK) waveform.  The name is a 

description of what the signal represents.  The presence 

and absence of a sinusoid pulse denotes a binary one or 

zero respectively, as shown in Figure 10; thus the ‘on-off’ 

name.  The keying part of the name is a carryover from the 

days when teletype required a key to send dots and dashes.  

Since the OOK waveform is easy to create and can easily be  

 

 



 

converted into a BFSK waveform, it makes sense to create a 

working OOK generator that can be modified to create a BFSK 

transmitter. [22] 

 

 
Figure 10.   OOK Waveform. 

 
1. Design 

An OOK waveform is the product of a sinusoid and the 

waveform ( )d t  where  and 

.  The OOK transmitter was constructed 

using the Altera numerically-controlled oscillator (NCO) 

MegaCore which creates a sinusoid, an Altera increment 

block, an Altera extract bit block and an Altera NOT block, 

which create a square wave, and an Altera product block 

[17].  Figure 11 shows the model of the OOK dual transmit-

ter that produces complementary OOK signals at 5 MHz and 10 

MHz.  The signal at point 1 in Figure 11 is a  si-

nusoid produced by the Altera NCO MegaCore version 2.2.2; 

the inputs to the NCO are the clock enable, reset and a 

frequency dependent phase increment constant which the NCO 

uses to create the desired sinusoid.  The signal at point 2 

is 

( ) ( ), {0,n n
n

d t b p t nT b
+∞

= −∞

= − ∈∑ 1}

( )
≤ <⎧

= ⎨
⎩

1 if 0

0 otherwise 

t T
p t

=0 5 MHzf

( )1 d t− .  The signal at point 3 is ( )( ) ( )01 cos 2A d t fπ− t .  

33 



 

The signal at point 4 is ( )( ) ( )01 cos 2A d t ftπ A− + .  Simi-

larly, the signal at point 5 is ( ) ( )1cos 2Ad t ft Aπ +  where 

.  The OOK transmitter was designed this way to 

facilitate the transition to a BFSK transmitter. 

=1 10 MHzf

 

34 



 

2

1

3

4

5

Figure 11.   Dual freque
 

ncy OOK transm

35 
i

Adders
 
tter Model. 



 

36 

One of the key ideas to be noted in Figure 11 is the 

signed- to unsigned-number conversion done by the adders 

after the square wave and sinusoid multiplication.  This 

was necessary because of the DSP board DACs.  They cannot 

convert signed numbers to analog [15].  The DAC inputs must 

be non-negative [15].  Given this restriction, it is neces-

sary to convert the signed values to unsigned values and 

then reduced in order to successfully transmit a waveform.  

The signal reduction is performed by 18- to 14-bit busses 

that remove four bits from the 18-bit signal.  This is done 

by creating an 18- to 14-bit buss that extracts the seven 

most significant bits (MSBs) and the seven least signifi-

cant bits (LSBs) from the 18-bit signal and the 14 bits are 

combined to make a 14-bit signal.  Figure 12 shows the 18- 

to 14-bit model.  This approach was selected because remov-

ing either the most or least significant bits cause the 

system to truncate the waveform and produced peaks at the 

points of discontinuity in the waveform.  Removing the bits 

in the middle of the signal removed these peaks and allowed 

for smooth sinusoidal signals to be routed to the output. 

Another noteworthy feature is the data-ready output 

(pin 1 in upper right of Figure 11).  The NCOs require a 

certain amount of clock cycles for start-up, and the data-

ready signal is asserted once the NCOs are ready to trans-

mit the sinusoids [23].  The data-ready output (pin 1) can 

be used to debug timing errors. 

 



 

 
Figure 12.   Bus18to14 Model.  

 
a. Numerically Controlled Oscillator 

The Altera NCO is an Altera IP which is included 

with the Altera software [17].  If the designer finds it 

useful, a license maybe purchased from the Altera website 

and the MegaCore can be used in hardware implementations 

and products.  The NCO requires the use of the Altera Sig-

nalCompiler block in order to create, compile, and operate 

the oscillator.  Once the SignalCompiler has been added to 

the top-level of the model, any of the Altera MegaCores can 

be used in the model. [19]   
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The NCO parameters are established using the Al-

tera NCO Compiler, a graphic user interface (GUI) that al-

lows parameters to be set for the NCO.  The Parameterize 

window has three tabs: Parameters, Implementation and Re-

source Estimate.  The Parameters and Implementation tabs 

are the most important because they determine the specific 

behavior of the NCO.  The Resource Estimate tab allows the 

designer to note how many of the FPGA resources the NCO may 

use.  Figure 13 shows the Parameters tab of the NCO com-

piler. [23] 

 

 
Figure 13.   NCO Compiler.  
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The most important part of the compiler is the 

Generated Output Frequency Parameters section in the Pa-

rameters tab (see Figure 13).  In this section the Clock 

Rate and Desired Output Frequency are set. [23]  

b. Square Wave Implementation 

The technique used to create the bit stream was 

to implement a square wave with a period equal to twice the 

bit duration.  Each square wave period represents two bits, 

a 0 and a 1.  Since the Altera blockset does not contain a 

square wave generator, one was created by using an incre-

ment block and an extract bit block [17].  The increment 

block is a counter.  The extract bit block extracts the 

counter’s MSB.  

The increment block was used due to timing is-

sues.  The design uses a global sampling time.  This was 

done to reduce the chances of timing errors or delays that 

in turn could cause synthesis errors.  This issue is dis-

cussed more in depth in Appendix A.  

The square wave was implemented by extracting the 

MSB of an up counter.  This caused the square wave to 

change from 0 to 1 once the counter reached half its maxi-

mum value.  Given this, the bit rate was determined by the 

size of the counter.  In Figure 14, the increment block 

acts as a 7-bit counter that can count up to 128 therefore 

the bit rate (Rb) is 1 bit per 64 clock cycles or 1.25 MHz. 
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Figure 14.   Square Wave Source. 
 



 

In order for a Simulink model design to be con-

verted to VHDL, the model has to establish the input and 

output signals using input and output busses.  The input 

and output ports, i.e., the ovals with numbers inside them 

seen in Figure 14, allow models to be made into subsystems 

that can be used a part of a larger model.  In order to use 

a subsystem in the Signal Compiler, the subsystem has to 

have a “SubSystem AlteraBlockSet” mask.  Figure 15 shows 

the OOK dual transmitter top level model, including a modu-

lator mask representing the subsystem of Figure 11. [17] 

 

 
Figure 15.     Top Level OOK Transmitter Model. 

 
C. BINARY-FREQUENCY-SHIFT-KEYING (BFSK) TRANSMITTER 

A binary-frequency-shift-keying (BFSK) signal is a 

representation of 1s and 0s using sinusoidal pulses at two 

different frequencies as represented in Figure 16 [22].  

Given this fact, the conclusion can be drawn that the com-
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bination of two complimentary OOK signals with distinct 

tone frequencies creates a BFSK signal.   

 

 
Figure 16.   BFSK Signal.   

 

By examination, it is intuitive to simply add the two 

waveforms to create a BFSK waveform.  Figure 17 shows the 

model of the BFSK transmitter.  The signals at points A and 

B are the complementary OOK signals.  The sum signal at C 

is the BFSK signal.  The signal at D is the unipolar BFSK 

signal.     
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Figure 17.   BFSK Transmitter Model. 



 

D. NON-COHERENT BFSK-RT 

The purpose of a non-coherent receiver is to evaluate 

which sinusoid is stronger at the receiver at a given time 

without using the carrier phase to detect the signals.  The 

two most common non-coherent BFSK receiver designs are the 

energy detector, also known as the quadrature receiver, and 

the envelope detector.  For this thesis, the quadrature re-

ceiver was implemented because of its simplicity and low 

cost. [21] 

The BFSK quadrature receiver can be implemented as 

seen in Figure 18 and operation of a BFSK quadrature re-

ceiver is discussed in more detail in Reference 21. 

   

 
Figure 18.   Non-coherent BFSK Receiver (from [21]). 

 
1. Design 

The conceptual block diagram was implemented using Al-

tera Simulink blocks to make sinusoidal pulse detectors as 

seen in Figure 19.  Two instances of the sinusoidal pulse 

detector were used to make the non-coherent BFSK receiver.   
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Figure 19.   Sinusoidal Pulse Detector. 
 



 

 
Figure 20.   Non-coherent BFSK Receiver. 

 

The last step of the design was to combine the trans-

mitter and receiver into one BFSK-RT design.  The action of 

 

combining the models was a simple cut and paste operation 

that combined the models from Figure 20 and Figure 17 to 

create Figure 21.  In software simulation, this designed 

worked properly and displayed no problems.  This was not 

the case in hardware, and will be discussed in the BFSK-RT

sub-section of the HARDWARE IMPLEMENTATION section.   
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Figure 21.   BFSK-RT Model. 

  
F. HARDWARE IMPLEMENTATION 

The hardware implementation became the most challeng-

ing step of the design process, mostly due to lack of 

knowledge of software and IP intricacies.  Every design was 

implemented into hardware, mostly as a troubleshooting 

technique, to validate the design.  The observations from 

each of the hardware implementations will be presented in 

the Results chapter.  The following sections will discuss 

the steps taken to implement the designs.  Errors and les-

sons learned can be found in Appendix A. 

1. Required Altera Blocks 

It was stated earlier that in order to use any of the 

IPs, it is necessary to include a SignalCompiler block in 

the top-level model.  Similarly, to program the DSP board, 
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the DSP-Board block has to be added to the top-level model.  

The Altera DSP-Board library also includes multiple blocks 

that represent the features available on the DSP board.  

For example, in Figure 21, there are two gold circles that 

represent the ADC and DAC and two EVALIO OUT blocks that 

assign certain signals to IO pins on the board. [17]  

Some of these blocks were observed to have no func-

tionality in the Simulink simulator, like the push buttons 

and the dip switches, but they are necessary in the design 

in order to power and control the system in hardware.  

Other blocks were observed to have effects on the simula-

tion, for example the ADC and DAC blocks modify the signal 

if the signal routed through them is not in the proper for-

mat. 

The most important block for programming the system 

onto the board is the board block.  When the block is dou-

ble clicked the board configuration window is displayed, 

Figure 22, which allows the designer to set certain board 

parameters.  If this window is not modified, the default 

configuration will be used.  The default configuration does 

not set a clock for the DACs, therefore the DACs will not 

transmit any signals out of the board.  An additional pa-

rameter that can be set from the board configuration window 

is the global reset pin.  If the global reset is not set, 

Quartus II selects any free pin and the system cannot be 

reset by the user.  In this implementation, the global re-

set used was pin AK13 which is push button 1.  This allowed 

for user control of the system reset during hardware 

evaluation. [17] 

 



 

 
Figure 22.   Board Configuration Window. 

 
2. DSP Board Programming 

Once the necessary blocks were in place to convert the 

model to VHDL, the programming of the board was started.  

The programming started with a counter implementation to 

ensure the input and output ports were working properly, 

and to verify that the timing of the system was as ex-

pected.  Once a working model was programmed and the func-

tionality and use of the board was established, the three 

designs were implemented: the OOK transmitter, the BFSK 

transmitter and the BFSK-RT.  Figure 23 shows a picture of 

the hardware set-up. 
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Figure 23.   DSP Board Set-Up. 
 

a. 8-Bit Counter 

The first design to be programmed onto the board 

was an 8-bit counter.  This exercise provided an example of 

how the board uses the clock to determine frequencies.  Us-

ing equation: = =
80 MHz

2 2
clock

counter N

f
f

N
, from Appendix A, 

yields a frequency of 312.5 kHz for the 8-bit counter be-

cause it uses the onboard crystal oscillator which operates 

at 80 MHz.  When the MSB is extracted from an 8-bit 

counter, the extracted bit output creates a square wave 

with a frequency of 312.5 kHz, the same frequency as the 

counter.  The counter operation displayed the expected fre-

quency output, and ensured the parameters of the design 

were correct.  The output oscilloscope screen capture can 

be seen in Figure 24 below.  Although the oscilloscope 



 

measured frequency for the counter output, top waveform, is 

incorrect, the correct frequency can be calculated from the 

period using the equation 
1

f
T

= , where 3.2T sµ=  [22]. 

 

 
Figure 24.   8-bit Counter Oscilloscope Output. 

 
b. OOK Transmitter 

Once the board was determined to be working prop-

erly, the OOK transmitter design as shown in Figure 11 was 

implemented into hardware.  The OOK implementation provided 

some good learning points regarding the use of the dip 

switches and the push buttons.  All the board switch inputs 

are low-asserted, therefore they drive a logic-0 when on 

and a logic-1 when off [15].  Using these characteristics, 

a control arrangement was established and used through out 

the design.  Since the push buttons drive a logic 0 only 

when pressed, push button one (SW1) in combination with a 

NOT block was used as the system reset.  The dip switch was 
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used as the system enable, which allows the system to be 

turned on and off at any given time. 

c. BFSK Transmitter 

After the OOK transmitter was implemented and 

tested, the BFSK transmitter was implemented as a trouble-

shooting step.  This implementation was completed without 

any errors, since the only difference between the BFSK and 

OOK transmitters is the rearrangement of the adders to add 

the high- and low-frequency signals onto the same waveform 

and then convert them into unsigned-integer values.  

d. BFSK-RT 

The BFSK-RT hardware implementation proved to be 

one of the most challenging implementations due to design 

structure.  The design approach was to use each design to 

build the next design.  In software, this approach was able 

to simulate without any problems.  The hardware implementa-

tion did not encounter any problems until the transmitter 

and receiver models were combined.  In software simulation, 

Simulink does not give an error when two sources have the 

same exact parameters in one design.  This is not the case 

in hardware.  The SignalCompiler would not compile two NCOs 

with the same parameters.  Therefore, the design was al-

tered to include two NCOs instead of four, as pictured in 

Figure 21, thereby eliminating redundant NCOs.   

This chapter discussed the design steps taken to im-

plement a BFSK-RT into an FPGA.  The observed results are 

presented in the following chapter.  
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IV. RESULTS 

This chapter provides a summary of the results of the 

simulations and the hardware implementations throughout the 

design process.  The chapter is broken down into two main 

sections, and each section discusses a major design task 

and the results of the software and hardware implementa-

tions.  

A. SOFTWARE IMPLEMENTATION 

Throughout the entire design process, simulations and 

evaluation of the design were made to ensure the steps 

taken were correct and would lead to a working BFSK-RT.  

This section discusses the observed behavior of the OOK 

transmitter, the BFSK transmitter and the BFSK receiver and 

how the intermediate observations affected the final de-

sign.  

Although the Altera software contains multiple analy-

sis tools, the only software analysis tool that was used 

was the Simulink simulator.  The Simulink simulator and its 

scope block provided the most basic and easy-to-understand 

analysis method that could be performed without having to 

switch software or incorporate hardware for testing. [24] 

Since a receiver-transmitter radio set must first be 

able to send and receive a waveform, the analysis of the 

output waveform was the method used to ensure the design 

worked properly.  This was done by using the Simulink scope 

block.  The scope block receives a signal and plots it 

against the time index.  The output of the scope is what 

would be expected on the screen of an oscilloscope if it 

where to be used to acquire a single sweep of a waveform.  

The only difference is that in the Simulink environment, 



 

54 

the single sequence size is set by the user as the total 

simulation time.  Using this voltage-against-time plot, the 

design could be inspected to ensure the system was operat-

ing as expected.  Table 5 lists the parameters used for all 

the software simulations. [24] 

 
Table 5.   Simulation Parameters.  

fclock 80 MHz 
f0 5 MHz 
f1 10 MHz 
Simulation Time 0 to 350 
Sample Time 1 sample (12.5 ns) 
Symbol Time (Ts) 64 samples 
Symbol Rate (Rs) 1.25 MSPS 
BWn2n 7.5 MHz 
NCO Phase Dithering Level 4 
NCO implementation Small ROM 

 
1. OOK Transmitter 

Upon completion of the OOK transmitter, an analysis of 

the waveform was performed.  As mentioned before, an OOK 

transmitter performs modulation by transmitting a signal to 

represent a binary one and no signal to represent a binary 

zero [22].  Figure 25 shows the system output waveforms and 

the transmitted bit stream of the created OOK transmitter. 

 



 

 
Figure 25.   OOK Transmitter Simulation Results. 

 

By simple visual comparison, it can be noted that the 

waveforms behave properly, the 10 MHz signal is present 

only during transmitted ones and the 5 MHz signal is pre-

sent when the data transmitted is a zero [22].  Another 

significant observation is the frequency of the waveforms.  

The 10 MHz waveform has twice as many cycles as the 5 MHz 

waveform, as would be expected.  It was during this step in 

the design process that the NCO parameters were explored 

and tested.  The results of these iterations led to the de-

cision to use the 5 and 10 MHz frequencies with a clock 

frequency of 80 MHz.  These parameters provided clear and 

identifiable waveforms.  Additional parameters including 

phase dithering and implementation algorithm were also 

tested and examined and it was determined that the phase 

dithering affects the frequency response of the waveform 

and the implementation algorithm affects the amount and 
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type of resources used by the FPGA.  The small ROM method 

uses the least logic elements, but the most memory re-

sources.  Further details on resource usage based on imple-

mentation algorithm may be found in the Stratix Device 

Handbook, Reference 14. [23] 

2. BFSK Transmitter 

The BFSK transmitter simulation produced a distinct 

binary waveform that alternated the 5 MHz and 10 MHz wave-

forms into one signal.  Figure 26 displays the resulting 

BFSK waveform, along with the corresponding bit stream. 

 

 
Figure 26.   BFSK Transmitter Simulation Results. 

 

It was during this simulation that the effects of 

pipelining, adding a memory element to the output of a 

function to reduce timing errors, were noticed.  The imple-

mented transmitter design incorporates pipelining after all 

major arithmetic functions; the NCOs, the multipliers after 

the NCOs, the adder that combines the signals and the adder 
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that converts the AC waveform into a DC waveform.  The 

pipelining incorporates an overall delay of four clock cy-

cles, which was noted when comparing the transmitted bit 

stream and received bit stream in Figure 27.  The transmit-

ted waveform has been shifted by four samples, as would be 

expected since each level of pipelining adds a delay to the 

data. 

3. BFSK-RT 

The BFSK-RT implementation provided satisfactory re-

sults when simulated.  The transmitted waveform was the 

same as seen in Figure 26, and the behavior of the BFSK-RT 

can be seen in Figure 27. 

 

 
Figure 27.   BFSK Receiver Simulation Results. 

 

By visual examination of Figure 27, it can be noted 

that the receiver has a one bit delay, 64 samples, creating 

a shifted received waveform.  This behavior is expected be-
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cause the integrators in the detection stage of the re-

ceiver integrate over a bit period.  At system start-up, 

the integrators have no data to determine the data received 

until a bit period has passed.  After the first bit period 

has passed, the integrators determine what data was re-

ceived and the receiver can then detect the value of the 

received signal.  This configuration forces the transmitted 

and received waveforms to be shifted by Tb, or one bit.   

One of the most interesting observations of the BFSK-

RT simulation was the received signal appearance.  As can 

be noted from Figure 27, the receiver system input from the 

ADC is not a BFSK waveform.  The waveform should be a 

two’s-complement sinusoid with an amplitude of , or 2048, 

because the MSB is the sign bit.  The ADC should not detect 

a value, but rather a waveform which it converts to a 12-

bit digital value.  Instead, the ADC block acts as a 12-bit 

signed integer bus that causes the ADC to truncate the in-

put to 12 bits, therefore the signal is improperly dis-

played in the scope.   This discrepancy was examined in the 

hardware to determine if the block implementation in the 

Altera library was incorrect or if the ADC actually input 

the observed waveform into the receiver, and it was deter-

mined that the system received the proper waveform. 
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B. HARDWARE IMPLEMENTATION 

Upon successfully designing the BFSK-RT, the task of 

programming the design onto the FPGA was started.  In order 

to get familiar with the board and the programmer, each de-

sign was implemented and tested on the FPGA.  The following 

sections discuss the observations made during the hardware 

testing.  The analysis was done using the Tektronix 

TDS3012B two-channel color digital phosphor oscilloscope. 

58 



 

1. OOK Transmitter 

Figure 28 below shows the oscilloscope capture of the 

OOK waveform and the transmitted bit stream.  It can be 

noted that the OOK signal behaves exactly as expected, with 

a sinusoid present when a binary-1 is transmitted and no 

sinusoid present when a binary-0 is transmitted. 

   

 
Figure 28.   OOK Waveform and Bit Stream. 

 

One noteworthy evaluation tool implemented in the OOK 

transmitter and used through out the hardware implementa-

tions was the use of the DSP board IO pins.  Since the DACs 

convert 14-bit data to analog signals, a one-bit output 

contained insignificant power and was lost in the noise.  

To alleviate that, the IO pins were used to analyze the bit 

streams and not waste the DACs on one-bit outputs.  The IO 
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pin output is 3.3 V for a “1” and 0 V for a “1”, which is 

easily read on an oscilloscope. [15] 

2. BFSK Transmitter 

Since the OOK transmitter hardware implementation was 

uneventful, the BFSK transmitter implementation was easily 

programmed and evaluated.  Figure 29 below shows the ob-

served waveforms.   

 

 
Figure 29.   BFSK Waveform and Bit Stream. 

 

As expected, the waveform has a 10 MHz symbol when a 

binary-1 is transmitted and a 5 MHz symbol when a binary-0 

is transmitted.  This is also the first time a distinct 

time delay can be noticed in the waveform.  The actual de-

lay in the transmitter system is approximately 62.5 ns 

which is attributed to the pipelining which adds 4 samples 
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or 5  to the transmitter delay and electromagnetic 

propagation.  This was validated when the oscilloscope cap-

ture is zoomed to a 40 ns scale and the waveform and bit 

stream time differences were compared. [21] 

0 ns

3. BFSK Receiver-Transmitter 

The overall design of the BFSK-RT is a resource inex-

pensive design, as Table 6 shows.  Important benchmarks are 

the LE use at 2%, memory bits at 7%, M4Ks at 37%, and DSP 

block use at 22%, which means the device still has plenty 

of resources to incorporate more functions to the BFSK-RT 

so it can be modified to more effectively simulate the RT-

1523C. [14] 

 
Table 6.   Quartus II Fitter Report. 

Total logic elements 1,721 / 79,040 ( 2 % ) 
Total LABs 209 / 7,904 ( 2 % ) 
Logic elements in carry chains 617 
User inserted logic elements 0 
Virtual pins 0 
I/O pins 57 / 692 ( 8 % ) 
Clock pins 1 / 20 ( 5 % ) 
Global signals 13  
M512s 0 / 767 ( 0 % ) 
M4Ks 136 / 364 ( 37 % ) 
M-RAMs 0 / 9 ( 0 % ) 
Total memory bits 557,056 / 7,427,520 ( 7 % ) 
Total RAM block bits 626,688 / 7,427,520 ( 8 % ) 
DSP block 9-bit elements 40 / 176 ( 22 % ) 
Regional clocks 0 / 16 ( 0 % ) 
Fast regional clocks 0 / 32 ( 0 % ) 
SERDES transmitters 0 / 152 ( 0 % ) 
SERDES receivers 0 / 152 ( 0 % ) 
Maximum fan-out node clock 
Maximum fan-out 1110 
Total fan-out 10537 
Average fan-out 5.40 
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The final design consists of a transmitter that sends 

a continuous stream of alternating ones and zeroes that are 

then transmitted from the DAC via a SMA cable to the ADC, 

the receiver input.  The received waveform is then proc-

essed through the non-coherent quadrature receiver and the 



 

system output is the received bit stream.  Figure 30 shows 

the sent and the received BFSK waveforms.  

 

 
Figure 30.   BFSK-RT Transmitted and Received Waveforms.  
 

Since the sent and received signals are essentially 

the same signal just observed at the output of the trans-

mitter and the input of the receiver, the delay is negligi-

ble.  When observed in the oscilloscope at a scale of 10 

ns, the delay from sent to received waveform is approxi-

mately 15 ns.  This delay can be attributed to electromag-

netic propagation.  Figure 31 below shows the oscilloscope 

display of the sent and received bit streams.   
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Figure 31.   BFSK-RT Transmitted and Received bit streams. 
 

As expected, the bit streams have the same data rate 

of 1.25 MHz and the received bit delay is one full , 

, as Figure 31 shows.   

bT

800 ns

C. COMPARISONS 

Due to the distinct difference between software and 

hardware evaluation, it is worthwhile to annotate any dif-

ferences between the two analyses.  The software simula-

tions were used for design evaluation and assistance in de-

termining the expected behavior of the system.  After the 

system behavior was determined, it facilitated identifying 

possible problems in hardware implementation.  This ap-

proach allowed for the successful implementation of all the 

designs and for the identification of various errors which 

are discussed in Appendix A.   
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The major difference in the two simulation methods was 

the BFSK waveform appearance at the receiver/ADC.  The 

hardware showed that the sent and received BFSK waveforms 

had the same appearance and frequencies, whereas the soft-

ware simulation resulted in a received waveform that was a 

truncated signal and not a sinusoid.  After software exami-

nation, it was determined that the problem was not the 

hardware ADC, but rather the software Altera ADC block.  In 

software the signal needs to be routed through the Altera 

DAC and ADC blocks.  The ADC block expects the signal 

routed through it be a 12-bit signed integer or an 11-bit 

unsigned integer, it cannot take a waveform (a signal that 

is analog in real systems) and convert it to a 12-bit two’s 

complement digital value.  Instead, the ADC acts as a 12-

bit bus.  This behavior causes the received signal to have 

the incorrect appearance, although the ADC and DAC perform 

the proper operations in hardware. [15] 

The two analysis methods in combination provided a 

good way to create and analyze the FPGA BFSK-RT, and pro-

vided various possibilities for continued work and further 

analysis as will be discussed in the next chapter. 
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V. CONCLUSION 

This chapter provides a summary of the thesis and 

draws conclusions regarding the BFSK transmitter-receiver 

implemented in an FPGA.  Suggestions and recommendations 

are given regarding further research and changes to the de-

sign created. 

A. SUMMARY 

The goal of this thesis was to provide the first step 

towards developing a solution to the data transfer problem 

in the current manpack version of the SINCGARS.  MCTSSA ap-

proached NPS with a request to create and implement the 

current manpack radio, the RT-1523C in an FPGA.  In re-

sponse, this thesis has implemented a non-coherent BFSK re-

ceiver-transmitter system in an FPGA.  

This thesis gives a thorough description of FPGAs, the 

Altera DSP development board which has an Altera Stratix 

FPGA, and how the FPGA design software works.  Once the ba-

sis for FPGA design was presented, the task of designing 

the RT was described step by step including noted software 

and hardware issues that affected the design process.  The 

system was then simulated and analyzed both in software and 

hardware to ensure proper functionality.  The results are 

presented in the Results chapter. 

B. CONCLUSIONS 

The most significant conclusion is that the Altera de-

velopment board is a very capable design tool that can suc-

cessfully be used to implement a non-coherent BFSK system.  

The free-trial method of using the Altera IPs allows de-

signers to program devices and test them in hardware at no  
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additional cost.  Also noteworthy is the large amount of 

design, testing, and debugging options available on the 

board.   

The fact that the board was able to hold the design 

with small resource usage means that the board can be used 

to implement much more than the modulation.  The only re-

source that was more than 10% used was the M4K memory 

blocks at 37%.  The board can easily hold the coding and 

even the frequency-hopping circuit.  This makes the devel-

opment board an excellent tool to attempt to improve the 

performance of the SINCGARS, perhaps including size and 

weight reduction. 

C. RECOMMENDATIONS 

There are many possibilities for follow-on work.  

MCTSSA would like to improve the RT-1523C operating range 

when using the standard 3- and 10-foot antennas.  This the-

sis did not examine any other hardware possibilities save 

the wire connection from the transmit to receive ports.   

One option is to change the design parameters of this 

design to send and receive SINCGARS signals.  The FPGA-RT 

can then be evaluated for bit error rate performance and 

range.  The results can then be compared to the RT-1523C 

performance and range.  

Another possible continuation of this thesis would be 

to conduct error analysis on the performance of this imple-

mentation using the standard RT-1523C antennas.  Depending 

on performance, modifications can be done to the design to 

determine the most efficient use of the antennas to support 

the desired results from the RT. 
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A third option is to conduct bit error analysis on 

this design and modify it to reduce errors and as a culmi-

nation, compare the FPGA performance to the RT-1523C re-

corded performance.  The efficiency and usefulness of this 

option can further be enhanced by including the use of the 

3- and 10-foot RT-1523C antennas. 

Lastly, additional work can be done in the actual de-

sign of the receiver-transmitter implementation.  The 

SINCGARS can perform frequency-hopping, RS coding and de-

coding.  None of these properties were implemented in the 

current design and further work can be done to incorporat-

ing these functions onto the current design. 
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APPENDIX A. ERRORS ENCOUNTERED AND LESSONS LEARNED  

This appendix discusses the errors made and lessons 

learned during the design process. 

A. DESIGN FLOW 

Although the design flow displayed in Figure 6 was 

predominantly used, there were also two other designs flows 

that were used but found ineffective.  One of these design 

flows was using Simulink for design entry and the DSP 

Builder for model to VHDL conversion, and then performing 

all the synthesis, fitting and programming in the Quartus 

II software; this was not used often because two different 

programs had to be used and the Quartus II electronic de-

sign automation (EDA) tool does not convert the VHDL to 

schematic files for design modifications.  The other possi-

ble design flow was the DSP Builder design flow.  The main 

reason the DSP Builder design flow was not used was because 

the DSP Builder cannot program a device with files that 

contain intellectual property (IP) in the design.  The dif-

ference between the DSP Builder design flow and the design 

flow used is that the design flow used can program using 

IPs via the use of the Quartus II programmer from the Quar-

tus II software. [17][18]  

B. TIMING 

The timing errors encountered in this design were 

mostly due to lack of understanding of the Altera blockset.  

The SignalCompiler does not allow the use of multiple sam-

ple times.  If the design contained sample times discrepan-

cies, an error was displayed during compilation.  This 

problem was corrected by using a global sample time, and 

using the Altera increment/decrement block to create dif-



 

ferent frequencies that are multiples of the system clock 

frequency.  The counter frequency can be determined using 

the equation: = =
80 MHz

2 2
clock

counter N

f
f N

, where N is the number 

of bits. [17]  

C. SUBSYSTEM 

The subsystem feature of Simulink, which permits hier-

archical designs, is also used by the DSP Builder.  To fa-

cilitate this option, the DSP Builder library has an HDL 

subsystem block that allows the designer to create an Al-

tera subsystem.  One of the difficulties is that the HDL 

subsystem block is linked to the library, so in order to 

modify the block, it must be unlinked from the library.  

When the prompt to unlink is displayed, shown in Figure 32, 

it seems as if an error has been made.  But that is not the 

case.  The designer must disable the link in order to mod-

ify the block and use it in the design.  Once the subsystem 

has been created using the HDL subsystem block, it must not 

be re-linked to the library.  If the new subsystem is re-

linked it changes the HDL subsystem in the library, which 

is not desired. [17] [24]  
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Figure 32.   “Disable Link” Message. 
 

Another option is to create a subsystem by selecting 

the part of the model that will be a subsystem, right 

clicking in the selected area and selecting the “Create 

subsystem” option.  Once the subsystem has been created, 

the Altera subsystem mask can be added and the SignalCom-



 

piler will recognize the subsystem.  If this option is 

used, care should be taken to use the Altera busses and 

ports so the subsystem can be converted to VHDL by the com-

piler, otherwise the design will not be able to compile. 

[17] [24] 

D. BIT MANIPULATION  
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1

The design of the transmitters had one particular is-

sue of concern, the output signal format.  In order to 

transmit the created signal, the DSP board requires that 

the signal be unsigned.  The solution used was to add the 

value  to the signal, N  being the number of bits, in 

order to convert the signed integer to an unsigned integer.  

Next, the new signal that was one bit larger than the pre-

vious signal was reduced to the 14 bits required by the 

DAC.  This was done by removing the middle bits, thereby 

keeping the smoothness of the curve at the extremities. [9] 

[15]    

− −12N

E. SIGNAL ROUTING TAGS 

A significant design event was the discovery of the 

DSP Builder compatibility with the Simulink GOTO and FROM 

signal routing tags [17].  The GOTO and FROM tags are sig-

nal routing blocks that permit signals used in a design to 

simplify the schematic [24].  They proved to be very useful 

because they reduced the amount of lines in the design mak-

ing it less cluttered and easier to examine. 

F. IP USAGE 

As mentioned in the DESIGN FLOW chapter, the combina-

tion of the transmitter and receiver designs caused prob-

lems during hardware implementation and required the re-

moval of redundant NCOs. This issue brings up an important 

point in IP use in designs; if the IP is a source that can 

be used for multiple purposes, as is the NCO, do not imple-



 

ment the same IP multiple times in a design.  This causes 

compilation problems, errors, and prevents device program-

ming.  Since most IPs are coders, decoders, filters and 

transforms this issue is not a problem with most IPs, but 

in case errors occur at compilation, the problem may be the 

use of redundant IPs. [17] 

1. Altera NCO Problems 

The first iteration of the BFSK-RT contained a total 

of four NCOs, two in the transmitter and two in the re-

ceiver.  The NCOs were actually two pairs of 5 MHz and 

 oscillators, one pair to create the transmitted 

waveform and the other to correlate the received waveform.  

This design created hierarchy errors when compiling the de-

sign.  The cause is the method Quartus II uses to fit de-

signs into hardware.  Since two NCOs have the same exact 

parameters, the fitter attempts to merge them.  The error 

occurs because of the location of the NCOs in the design; 

they are in different branches of the hierarchy.  Since the 

fitter first merges the NCOs and then attempts to route the 

signals, the compilation has errors trying to determine 

where to place the new combined hierarchy and the compila-

tion fails. [17] 

10 MHz

G. IMPLEMENTATION ISSUES 

Most of the implementation errors and concerns were 

derived from IP use in the design.  Since the NCO IP was 

used to create and detect the BFSK signal, several problems 

were encountered when trying to implement the design into 

hardware because of software compatibility and DSP Builder 

programming limitations.  
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1. Software Compatibility 

The problem came from the NCO IP and the compatibility 

of the IP with the Quartus II version that was included 

with the DSP development kit.  When IPs were initially cre-

ated, they were designed to evaluate design in software 

only.  To use IPs in hardware testing, a license had to be 

requested from Altera.  After the system testing was com-

pleted, the license had to be purchased to implement the 

design in stand alone solutions.  Last year, all the IPs 

and Quartus II were updated to take out a licensing step, 

and allow designers to perform software and hardware test-

ing with the same license.  In order to take advantage of 

these properties, Quartus II version 4.2 and DSP Builder 

version 2.2 are required.  The DSP development kit was pur-

chased with Quartus II version 3.1 and DSP Builder version 

1.2, a combination that is not capable of performing hard-

ware testing.  These problems were solved by upgrading both 

the DSP Builder and the Quartus II software, with some help 

from the Altera helpdesk. [19] 

2. Programming with IPs 

Once the IP compatibility issue was solved, the next 

issue that was addressed was actually programming the FPGA.  

The SignalCompiler runs from within the Simulink software 

and has the ability to compile, synthesize, fit and program 

the design onto the DSP board.  This capability is limited 

to non-IP designs though.  In order to program designs that 

contain IPs, it is necessary to program the board using the 

Quartus II programmer so the FPGA can be operated in the 

OpenCore tethered mode.  Once this limitation was deter-

mined, the solution was to compile the design usinjg the 

SignalCompiler and then program the FPGA using the Quartus 

II programmer. [19] 
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This Appendix discussed the errors encountered and 

lessons learned during the design flow.  Appendix B dis-

plays the models that comprise the FPGA BFSK-RT.   

 



 

APPENDIX B. BFSK-RT SIMULINK MODELS 

This appendix contains all the Simulink models for the 

BFSK-RT.  Although all the majority of these models are in 

the body of the thesis, this appendix provides all the mod-

els that were used in the design in one place for easy ref-

erence. 

 
Figure 33.   BFSK-RT Top-level Model. 
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Figure 34.   BFSK Transmitter Model. 



 

 
Figure 35.   BFSK Receiver Model. 
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Figure 36.   Detect-0 Model. 
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Figure 37.   Integrator Model. 
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Figure 38.   Bit to 14-bit Buss Model. 
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Figure 39.   18-bit to 14-bit Buss Model. 
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