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ABSTRACT 
 

The objective of this study is to develop a statistical model to calculate the 

effectiveness of an airborne jammer on analog communication and broadcast receivers, 

such as AM and FM Broadcast Radio and Television receivers. 

During the development the required power margin in dB, or equivalently, the required 

linear ratio, between the jammer power and the carrier power at the target receiver input 

was first determined. Subsequently, using probabilities that the jammer power will 

exceed the target signal’s carrier power,  the required power margin was calculated. 

This power margin was determined by statistical techniques to predict the propagation 

characteristics of communication and broadcast signals, such as Log-Normal Shadowing, 

and Small-Scale Fading.   

 From the model, it was determined that it is difficult to achieve high probabilities 

of exceeding the required jamming margins with a single jammer.   Hence, the use of 

spatial diversity jamming is recommended, that is, using two or more jammers spaced 

sufficiently far apart from each other, such that their jamming signals at the targeted area 

are de-correlated due to the differences in their respective angles of arrival. 
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I. INTRODUCTION 

A. BACKGROUND 
Analog radio is a broadcast technology where anyone within reception range has 

access to the transmitted signal with little effort. Communicating privately with another 

person using two-way radio is the same for commercial radio transmission, only at a 

different frequency. It is inherently a communication medium which is vulnerable to 

interruption. 

Generally, jamming prevents an adversary from using their radar or radio for 

either offensive or defensive purposes, by placing an interfering signal into the enemy 

receiver along with the desired signal.  Jammers usually use a high power transmitter that 

mimics the frequencies and modulation used by an opponent to disrupt their receivers and 

to corrupt the expected information. Jamming can also be used to add spurious signals to 

radar system returns, fooling the receiving radar to think there are more, or fewer, targets 

in an area. In some cases, particularly in depriving a user of radio communication, 

complete transmissions are recorded, altered and retransmitted, making the recipient 

unsure of the quality of the data. [1] 

B. OBJECTIVE 
The objective of this study is to develop a statistical model to calculate the 

effectiveness of an airborne jammer on communications and broadcast receivers. 

This model should: 

• determine the required power margin, M, in dB (or equivalently, the 

required linear ratio) between the jammer power and the carrier power at 

the target receiver input and to 

• calculate the probability that the jammer power will exceed the target 

signal’s carrier power by the required margin, M. 

The following are the target signals: 

• Amplitude Modulated (AM) Broadcast Radio, 

• Frequency Modulated (FM) Broadcast Radio, 

• Frequency Modulated (FM) Communications Radio, and 
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• Broadcast TV. 

C. JAMMING STRATEGY 
The pre-detection measure of signal quality is the carrier-to noise-ratio power 

ratio (CNR). The post-detection measure of signal quality is the signal-to-noise power 

ratio (SNR).  The jamming objective is to degrade the CNR and SNR. The pre-detection 

measure of jammer effectiveness is the carrier-to-jam-plus-noise power ratio, CJR.  The 

composite carrier-to-jam-plus-noise power ratio, CNJR, is given by   

  

    1 1 1
CNJR CJR CNR

= +  .    

This jamming strategy is based on a communication channel as illustrated in     

Figure 1.   The objective is to determine the signal (recovered message) to noise ratio at 

the receiver output, for a known signal-to-noise ratio at the receiver input.   

 
Figure 1.   Communication Channel 

 

The modulated signal is assumed to be corrupted by additive, white Gaussian 

noise (AWGN). The receiver is assumed to be noise-free.  The effect of the receiver noise 

is accounted for by adjusting the input noise power density accordingly.  The receiver 

bandwidth is known.  

The input SNR is defined as the ratio of the received (modulated) signal power to 

the noise power within the receiver bandwidth. The received signal power can be 

calculated from the known transmitter power, transmitter antenna gain, receiver antenna 

gain, and the path loss between the transmitter and the receiver. The input noise power 

can be calculated from the known system temperature and the receiver bandwidth. 
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Figure 2.   Input and Output SNR 

 

In order for the jammer to be effective, its signal must enter the enemy’s receiver 

through the associated antenna, input filters, and processing gates.  This, in turn, depends 

on the jammer power density transmitted in the direction of the receiver and the distance 

and the propagation conditions between the jammer and the receiver.  The Jamming 

Scenario Geometry, shown in Figure 3, illustrates this approach. 

 

 
Figure 3.   Jamming Scenario Geometry 
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The following chapters explain in detail how the objective of this study is met.  It 

contains the development of a statistical model for calculating the effectiveness of an 

airborne jammer on communications and broadcast receivers. 
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II. RADIO PROPAGATION 

This chapter introduces the basic parameters that characterize propagation 

phenomena in the radio environment.  It begins by reviewing the elements of the 

communications channel, radio wave degradation that affects the signal quality as the 

wave propagates through space, and the application of the Friis free-space transmission 

formula which constitutes the basis for the propagation path loss models presented in this 

chapter. 

The Radio propagation models can be divided into two groups, namely, 

theoretical models and empirical models. The theoretical models are usually described by 

means of closed-form expressions, whereas the empirical ones are based on fitting curve-

fitting or analytical expressions that recreate a set of data derived from field 

measurements, taken at different conditions.  In the first case, many approximations are 

carried out, so that the models may not be directly applicable to real situations.  In the 

second case, many parameters are taken into account, and the models very complex.  A 

combination of these groups of models gives rise to a simplified prediction model with 

acceptable results, if high accuracy is not required. The various parameters affecting the 

radio propagation are also discussed and analyzed [2]. 

A. THE COMMUNICATIONS CHANNEL  
The communications channel is the link between two points along a 

communications path.  For radio-frequencies (RF) the primary propagation medium is the 

atmosphere, and wave attenuation is due to geometric spreading, multipath wave 

interference, and absorptive loss in the medium.  Figure 4 illustrates the composition of 

the RF channel [3]:  
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Figure 4.   The Communications Channel (After Ref. [3].) 

 

1. The Propagation Channel 
The propagation channel is the physical medium that supports the electromagnetic 

wave propagation between a transmit and a receive antenna, which is everything that 

influences propagation between two antennas. 

2. The Radio Channel 
The transmitter antenna, propagation channel and receiver antenna viewed 

collectively, constitute the radio channel.  The propagation channel is reciprocal, thus the 

reciprocity of the radio channel depends on the antennas used.  It can be shown that the 

antennas exhibit the same transmit and receive radiation patterns in free space if they are 

bilateral, liner and passive.  Under these circumstances the antennas are reciprocal, and 

therefore, so is the radio channel. 

3. The Modulation Channel 
The modulation channel extends from output of the modulator to the input of the 

demodulator and is composed of the transmitter front-end, receiver front-end, and the 

radio channel.   It represents the complete signal path between the output of the 

modulator and the input to the demodulator [3].   
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B. PATH LOSS 
During propagation between transmitting and receiving antennas, the radio signal 

experiences attenuation due to a number of phenomena, such  as free-space loss, 

refraction, reflection, aperture-medium coupling loss, and absorption. This degradation 

affects the signal quality and can induce errors in received messages that leads to a loss of 

information.  The signal degradation resulting from propagation in the radio channel can 

be classified by type such as multipath, shadowing and ‘large scale effects’.  

1. Multipath is a phenomenon where the transmitted signal arrives at the 

receiver from various directions over a multiplicity of paths due to some obstacles and 

reflections in the propagation channel.   These reflected waves can add to or subtract 

from with the direct wave, which causes significant changes in the received signal. 

2.  Shadowing is a 'medium-scale' effect, which describes the variation of the 

signal power at a constant distance from the transmitter, but in different directions. This 

is caused by variations in building height, size and material, separation between 

buildings, presence of trees, etc. In response to the variations in the nearby obstructions, 

there will be a change in the average value which the rapid fluctuations take place. 

3. The 'large-scale' effects of path losses cause the received power to vary 

gradually due to signal attenuation determined by the geometry of the path profile in its 

entirety. It is concerned with predicting the mean signal strength as a function of 

transmitter-receiver (T-R) separation distance (d) over T-R separations of hundreds, 

thousands, or millions of wavelengths. The most appropriate path loss model depends on 

the location of the receiving antenna as illustrated in Figure 5 [4]: 

a. Location 1: Free space loss is likely to give an accurate estimate of path 

loss.  

b. Location 2:  A strong line-of-sight component is present, but ground 

reflections can significantly influence path loss.   

c. Location 3: Plane earth loss must be corrected for significant diffraction 

losses, such as that caused by trees blocking the direct line of sight.  
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d. Location 4: A simple diffraction model is likely to give an accurate 

estimate of path loss.  

e. Location 5: Loss prediction is fairly difficult and unreliable since 

multiple diffractions are involved.  

 
Figure 5.   Path Loss Model (After Ref. [4].) 

 

C. PROPAGATION PREDICTION MODELS 
The three commonly used propagation models for large-scale path loss prediction 

are: Free-space propagation, Two-Ray propagation, and the Okumura-Hata empirical 

formula.    

1. Free-space Propagation Model 
The primary propagation medium in radiowave propagation is the atmosphere, 

and wave attenuation is due to geometric spreading and absorptive loss in the medium.    

The basic free-space propagation attenuation is due to the geometric spherical 

expansion of the waves, so attenuation is inversely proportional to the distance squared 

and is referred to as the Friis Free Space Equation [5]      

    
t t r

r 2

P G GP =
4π x d
λ

 
 
 

 ,            (2.1) 

or in decibels 

                       ( )10 10r t t rdBW dBm dBi dBi
λP = P +G +G +20 log - 20 log d

4π
 
 
 

,     (2.2) 

where 

• Pr is received power in dBm, 
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• Pt is transmitted power in dBm, 

• Gt is transmit antenna gain (isotropic), 

• Gt is receive antenna gain (isotropic),  

 is wavelength (m), and ג •

• d is Tx-Rx separation in same units as wavelength.  

Free Space Path Loss 

The Free space transmission formula gives an inverse square relationship between 

the received power and the T-R separation distance.  This implies the received power 

decays at a rate of 20 dB/decade with the distance.  

The path loss is defined as the difference between the effective transmitted power 

and the received power and may include the effect of the antenna gains.  It is given in 

decibels as 

    
2

r t r
fs 10 10 2 2

t

P G G λL = -10 log = -10 log
P (4π) d

  
  

   
 ,     (2.3) 

or for direct line of sight paths and no atmospheric absorption [6] 

 ,         

(2.4) 

 

   10 10=32.45+ 20 log (d)+ 20 log (f) , 

 

where d is the T-R separation distance in km and f  is the frequency in MHz. 

Shown in Figure 6 is the propagation path loss using Free Space model at 

different frequencies as a function of distance. 

fs 10 10
4π1000d4πdL =20 log 20 log

λ 228.8/f
   =   

   
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Figure 6.   Free Space Propagation Path 
 

2.  Two-Ray Propagation Model 
Radio propagation between two points that are near the ground involves an 

expanding spherical wave propagating from the source antenna to the target antenna.  

Because of the air-ground boundary, ground currents are induced that then reradiated and 

combine as complex vectors with the source spherical wave.   In this case, the two-ray 

model is commonly used.  As shown in Figure 7, the two-ray model generally applies at 

lower frequencies and altitudes.  
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Figure 7.   Two-Ray Model (After Ref. [5].)  
 

The propagation loss for two-ray propagation is independent of frequency which 

can be approximated as [6] 

   
2 4

2 2
1 2 1 2

two-ray
d dL

h h h h
 

≈ = 
 

,   (2.5) 

or in decibel form, 

 two-ray 10 10 1 2L 120+40 log (d)- 20 log ( h )- 20 log(h )≈ , (2.6) 

where 

• h1 is the height of the transmitter antenna in meters, 

• h2 is the height of the receiver antenna in meters, and 

• d is the link distance in meters. 

Figure 8 indicates the propagation path loss for Two-Ray model at different 

transmitter antenna heights, h1, and receiver antenna height, h2, held constant at two (2) 

meters. 
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Figure 8.   Two-Ray Propagation Path Loss 

 

The key point to this approximation is that for propagation close to earth’s 

surface, the received signal power decays inversely as the 4th power of the T-R distance 

or simply called the pathloss exponent.    

3. Okumura-Hata Empirical Formula 
Propagation in urban and suburban areas is different from the two-ray model in 

that a single specular ground reflection exists.  Several empirical modes have been 

developed that are based on measured data and use curve-fit equations to model 

propagation in areas definable urbanization. A more generalized and hence more 

commonly used empirical model is that of   the Okumura-Hata formula.  This empirical 

formula has been produced by Hata based on the measurements made by Okumura in the 

Tokyo suburbs.   

Okumura’s model is wholly based on measured data and does not provide any 

analytical explanations.  It is inconvenient to use, and formulas have been devised to fit 
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the Okumura curves.  Hata prepared a simple formula representation of Okumura’s 

measurements in the following form [5]: 

• 10 ( )HataL A Blog d for urban areas= + ,       (2.7) 

• 10 ( )HataL A Blog d C for suburban areas= + − , and      (2.8) 

• 10 ( )HataL A Blog d D for open areas= + − ,       (2.9) 

where 

 ) m10 10 bA= 69.55+26.16 log (f)-13.82log (h - a(h ) ,        (2.10)  

 10 )bB = 44.9 -6.55log (h  ,         (2.11) 

 10
fC = 5.4 + 2log

28
 
 
 

, and        (2.12) 

 2
10 10D = 40.94+4.78 log (f) -19.33log (f) .      (2.13) 

The correction factor a(hm) is defined as follows: 

 for Medium or small sized cities: 

10m 10 ma(h )=1.1log (f -0.7)h -  1.56 log (f - 0.8) dB    (2.14) 

where 1m ≤ hm ≤ 10 m 

 for large sized cities: 

10 )m ma(h )=8.29 log (1.54 h -1.1  dB if f 200MHz≤    (2.15) 

or 

         10m ma(h )=3.2 log (11.75 h ) -4.97 dB if f > 400MHz .  (2.16)  

These formulas include the following parameters: 

• f:  frequency (in MHz) between 150 and 1,500 MHz, 

• hb:  height (in meters)  of the base station, between 30 and 300 m, 

• hm:  height (in meters) of the mobile station, between 1 and 20 m, and 

• d:  base station-mobile station distance (in km), between 1 and 20 km. 

The basic principle of the Okumura-Hata formula and its variants first consists of 

calculating the free-space path loss.  An attenuation factor is then added to this 
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component.  Figure 9 describes the propagation path loss using the Okumura-Hata model 

at different sites with hb=50 m, hm=2 m, and f=1 GHz. 

 

 
Figure 9.   Okumura-Hata Propagation Path Loss 

 

In summary, the appropriate model to use for each situation can be made by 

calculating the Fresnel Zone (FZ), as shown in Figure 10.  If the distance between the 

transmitter and the receiver is less than FZ, use the free-space propagation model.  If the 

distance between the transmitter and the receiver is greater than FZ, use the two-ray 

propagation model. .  If the distance between the transmitter and the receiver distance is 

equal to FZ, the two models give the same propagation loss. For urbanized environments, 

use Okumura-Hata empirical formula especially when the height of the antenna is 

relatively low. 
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Figure 10.   Fresnel Zone (FZ) (After Ref. [4].) 

 

The formula for calculating the Fresnel zone distance is [4] 

    t r4π h  hFZ
λ

=       (2.17) 

where 

• FZ is Fresnel Zone distance in meters, 

• ht is the the height of the transmitter in meters, 

• hr is the the height of the transmitter in meters and 

• λ is the wavelength of the transmitted of the transmitted signal in meters. 

  

Alternatively, FZ can be determined by [4] 

    t rh h fFZ =
24,000

     (2.18) 

where FZ is in kilometers, the antenna heights are in meters, and f is the frequency in 

Megahertz. 
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III. RECEIVER INPUT SIGNAL-TO-NOISE RATIO (SNRIN) 

A. RECEIVED INPUT SIGNAL POWER 

This analysis begins by first developing the relationship between transmitted and 

received powers, assuming that the radiator is isotropic and transmits uniformly in all 

directions.  The power density at a distance from the transmitter is related to the 

transmitted power by the following expression  [7] 

 2( )
4

tPp d
dπ

=       (3.1) 

where 

• p(d) = power density in watts per sq. meters, 

• Pt = transmitted power in watts, and 

• d = distance in meters. 

For a distance much greater than the propagation wavelength (known as the far 

field region), the power extracted at the receiver antenna is given as 

 24
t er

r
P AP

dπ
=       (3.2) 

where 

• Pr = received power in watts, and 

• Aer = cross section (effective area) of the receiving antenna in sq. meters. 

The antenna directivity, or the directive gain of an antenna, is the parameter that 

relates the power output (or input) of a real antenna to that of an ideal isotropic antenna 

as a purely geometric ratio.  The effective radiated power (EIRP) by an antenna with 

respect to an isotropic radiator can be defined as 

t tEIRP PG=       (3.3) 

where Gt is the directive gain of transmitting antenna. 

For the more general case in which the transmitter has some antenna gain relative 

to an isotropic antenna, the transmitted power is replaced with EIRP in the expression for 

received power in (3.2) to yield 
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24
er

r
EIRP AP

dπ
= .     (3.4) 

The relationship between directive gain and effective area of antenna is given as 

2

4 eAG π
λ

=   (for Ae >> λ2 )   (3.5) 

where λ is the wavelength in meters. 

Therefore, the received power can also be written as 

( )24
r

r
EIRP GP

dπ λ
=       (3.6) 

where Gr is the directive gain of the receiving antenna or 

r
r

s

EIRP GP
L

=       (3.7) 

where Ls is the collection of terms ( )24 dπ λ  and is called path loss or free space loss.  

 Generally, the path loss is specific for a given scenario (site-specific).  Two 

commonly used models are the free space model and the two-ray path model, described 

earlier. 

B. RECEIVER INPUT NOISE POWER  
The noise which the signal competes with is usually generated within the receiver 

itself.  If the receiver operated in a perfectly noise free environment so that no external 

sources of noise accompany the signal, there would still be noise generated in the 

receiver due to thermal effects, called thermal noise.  Its magnitude is directly 

proportional to the bandwidth and the absolute temperature.  The thermal noise power 

(noise floor) generated at the input of a receiver is given as [8] 

Pth nkTB=       (3.8) 

where 

• Pth = Thermal noise power in watts, 

• k = Boltzmann’s constant (1.38 x 10-23 J/Kelvin), 

• T = system temperature in degrees Kelvin, and 

• Bn = noise bandwidth in Hertz. 
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The noise bandwidth mentioned here is not the same as the more familiar half-

power bandwidth, though the half-power bandwidth is often used as a reasonable 

approximation for noise bandwidth. 

The system noise temperature (T), in equation 3.8, is defined as the effective 

noise temperature of the receiver, including the effects of antenna temperature, and is 

expressed as [8] 

a eT T T= +       (3.9) 

where 

• Ta = antenna temperature, and 

• Te = receiver effective noise temperature. 

Noise Figure, which is the parameter that relates the signal-to-noise ratio at the 

input of a receiver to the signal-to-noise ratio at the output, will be described.  The noise 

figure which indicates the degradation caused by the receiver is described as [7] 

( )
in in in

out in in r

SNR S NF
SNR GS G N N

= =
+

   (3.10) 

where 

• Sin = signal power at the input, 

• Nin = noise power at the input, 

• Nr = receiver noise, and 

• G = receiver gain. 

 

The above equation can be simplified to 

( ) 1in r r

in in

N N NF
N N
+

= = + .    (3.11) 

Rearranging this equation,  

( )1r inN F N= − .     (3.12) 

In equation 3.12, Nr can be replaced with e nkT B  and Nin with o nkT B  giving 

( )1e n o nkT B F kT B= −      (3.13) 
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or 

( )1e oT F T= −       (3.14) 

where To is the standard temperature of 290oK. 

The system noise temperature described in equation 3.9 can therefore be given as 

( )1a oT T F T= + − .     (3.15) 

The thermal noise power described in equation 3.8 is therefore expressed as 

( )1a o nP k T F T B= + −   .    (3.16) 

C. INPUT SIGNAL-TO-NOISE RATIO 
The signal-to-noise ratio at the input of the receiver can now be expressed using 

the signal and noise power expressions described above as 

in
received powerSNR

noisepower
= t t r s

s n

PG G L
kT B

=   (3.17) 

or 

t t r
in

s s n

PG GSNR
L kT B

= .     (3.18) 

Based on the above discussion, the signal-to-noise ratio at the input of the receiver 

is described in Figure 11 through Figure 13 for the free space model and in Figure 14 

through Figure 16 for the two-ray model.  Considering a frequency modulated signal with 

the following parameters: 

• Transmitter Power = 100 watts, 

• Transmitter Gain = 5 dB, 

• Receiver Gain = 2 dB, 

• Frequency = 30 MHz, 

• Transmitter Antenna Height = 10 m, 

• Receiver Antenna Height = 2 m, 

• Receiver Noise Figure = 4, 

• Antenna Temperature = 290o K, and 

•  Bandwidth = 10 KHz. 
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The SNR variations at the input of the receiver for a free space propagation model 

with changing transmitted powers and keeping all the remaining parameters mentioned 

above as constant, can be observed from Figure 11. 

 
 

Figure 11.   SNR at the Input for Free Space Model with Varying Power 

 

Similarly, the SNR variations with change in transmitted frequencies, while 

keeping all the other parameters constant, can be observed from Figure 12. 
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Figure 12.   SNR at the Input for Free Space Model with Varying Transmitted Frequency 

 

Again, for a free space propagation model, the change in SNR with respect to 

changing transmitting antenna gain and remaining parameters being kept constant is 

plotted in Figure 13. 

 
 

Figure 13.   SNR at the Input for Free Space Model with Varying Gain 
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For the two-ray propagation model, the SNR dependence on transmitted power,  

with all other parameters being constant, can be observed from Figure 14. 

 
 

Figure 14.   SNR at the Input for Two Ray Model with Varying Power 

Similarly, SNR with respect to changing antenna gain and other parameters being 

constant is plotted for two ray propagation model in Figure 15. 

 
 

Figure 15.   SNR at the Input for Two Ray Model with Varying Gain 
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Again for the two-ray propagation model, the change in SNR with respect to 

changing antenna height while other parameters being kept constant is plotted in      

Figure 16. 

 
 

Figure 16.   SNR at the Input for Two Ray Model with Varying Antenna Heights 
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IV. RECEIVER OUTPUT SIGNAL-TO-NOISE RATIO (SNROUT) 

The signal-to-noise ratio at the receiver output is an important parameter because 

it indicates the quality of the output signal.  It is defined as the ratio of the average power 

of the demodulated message signal to the average power of the noise, both measured at 

the receiver output [9].  This analysis will be performed under the following analog 

conditions: 

• Amplitude Modulation Coherent Detection, 

• Amplitude Modulation Non-coherent Detection, and 

• Frequency Modulation. 

A.  AMPLITUDE MODULATION – COHERENT DETECTION 
The analysis in this section deals with synchronous (coherent) demodulation of 

signals at the receiver.  In order to demodulate a signal coherently, the local oscillators of 

both the receiver and the transmitter need to be synchronized in frequency and phase [9].  

Furthermore, the noise in this analysis is assumed to be additive, white and Gaussian.  

Three different types of AM systems are considered 

• Double-Sideband Suppressed Carrier (DSB-SC), 

• Single-Sideband Suppressed Carrier (SSB-SC), and 

• Double-Sideband Large Carrier (DSB-LC or AM). 

Although the AM signal is usually demodulated non-coherently, in this research, 

coherent detection is considered for comparison with other systems.  The block diagram 

applicable to all amplitude modulation types mentioned above for coherent demodulation 

is shown in Figure 17. 
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Figure 17.   Block Diagram for Coherent Demodulation 

Noise and signal at the input of the demodulator are first analyzed and 

expressions for their average powers are described.  Assuming noise to be white 

Gaussian, the noise power at the input is [10] 

in oN N B=   for SSB   (4.1) 

and 

2in oN N B=  for AM and DSB-SC,   (4.2) 

where 

• No = average noise power per unit bandwidth, and 

• B = noise bandwidth. 

The SSB, DSB-SC and AM signals at the input of the demodulator are 

summarized as 

( ) ( ) ( ) ( ) ( )cos sinSSB o os t f t t f t tω θ ω θ
∧ = + ± +     

,   (4.3) 

( ) ( ) ( )cosDSB os t f t tω θ= + ,      (4.4) 

( ) ( ) ( )cosAM c os t A f t tω θ= + +   ,     (4.5) 

where 

• f(t) = information signal, 

• ( )f t
∧

 = Hilbert Transform of f(t), and 

• Ac = carrier amplitude. 

The average powers of the above mentioned input signals are  
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( )2
iS f t=    for SSB,    (4.6) 

( )2 2iS f t=    for DSB, and    (4.7) 

( )2 2 2i cS A f t = +    for AM.    (4.8) 

The above signal and noise powers are now used to describe the signal-to-noise 

ratio at the input of the demodulator for SSB, DSB-LC and AM systems as 

( )2

in
o

f t
SNR

N B
=   for SSB,    (4.9) 

( )2 2
2in

o

f t
SNR

N B
=   for DSB-SC, and   (4.10) 

( )2 2 2

2
c

in
o

A f t
SNR

N B

 + =  for AM.    (4.11) 

Now consider the signal and noise at the output of the coherent demodulator.  At 

the output, the superposition principle is applied, that is, signal and noise components 

may be determined from the response of the demodulator acting separately on each 

component.  The output signal response of a coherent demodulator is identical for SSB, 

DSB-SC and AM signals expressed as [10] 

( ) ( ) 2os t f t= .     (4.12) 

The output signal power is therefore  

( )2 4outS f t= .     (4.13) 
 

The noise at the output of the demodulator is  

( ) 4out oN N B=  for SSB,   (4.14) 

and 

( ) 2out oN N B=  for AM and DSB-SC.  (4.15) 

The signal-to-noise ratio at the output of the demodulator can now be described 

by the above mentioned signal and noise expressions for SSB, DSB-SC and AM systems 

as 
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( )
( )

( )
( )

2 24
4out

o o

f t f t
SNR

N B N B
= =

× ×
 for SSB,  (4.16) 

( )
( )

( )
( )

2 24
2 2out

o o

f t f t
SNR

N B N B
= =

× × ×
 for DSB-SC, and (4.17) 

( )
( )

( )
( )

2 24
2 2out

o o

f t f t
SNR

N B N B
= =

× × ×
 for AM.  (4.18) 

These expressions of SNR are also used to express the SNR at the output in terms 

of SNR at the input of the demodulator as [10] 

out inSNR SNR=  for SSB,    (4.19) 
 

2out inSNR SNR=  for DSB-SC, and   (4.20) 

( )
( )

2

2 2
2out in

c

f t
SNR SNR

A f t
=

 + 

 for AM.   (4.21) 

 
B. AMPLITUDE MODULATION – NON-COHERENT DETECTION 

As mentioned earlier, AM signal is typically detected non-coherently using an 

envelope detector or a square-law detector.  Non-coherent detection is a non-linear 

process. A consequence of this non-linearity is the onset of threshold, with distinctly 

different detector performance for the input SNR above and below the threshold. This 

subject is analyzed below.  Two different types of systems, Double-Sideband Large 

Carrier and Vestigial Sideband Large Carrier, are considered for the non-coherent 

analysis. 

Moreover, in calculations for the analysis, either the signal-to-noise ratio (SNR) 

or the carrier-to-noise ratio (CNR) at the receiver input may be used and this SNR-CNR 

relationship is described first. 

The Carrier-to-Noise Ratio (CNR) at the receiver input is 

c
in

in

PCNR
N

= ,      (4.22) 

where Pc is the carrier power.  

The average power in the carrier of an AM signal is given as 
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2 2c cP A= ,      (4.23) 

and the noise power as described in equation 3.8.  

 Therefore, the carrier-to-noise ratio is 
2

2

c

in
s

A

CNR
kT B
σ

=  .     (4.24) 

The average power of AM signal at the input as described in equation 4.8 can also 

be written as 

2 2

2
c mA A

P
 + = , 

   ( ){ }22 1 2c m cA A A = +  
, or 

   ( )2 21 2cA m = +  
,     (4.25) 

where 

• Am = Modulating signal amplitude and the over bar indicates the average 

value, and 

• m = average power of the normalized modulating signal. 

Therefore, signal-to-noise ratio is 

( )2 21 2c

in
s

A m
SNR

kT B

 +  = ,    (4.26) 

or in terms of carrier-to-noise ratio 

( )21in inSNR m CNR= + .    (4.27) 

 

 
1. Double-Sideband Large Carrier (DSB-LC or AM) 
The Amplitude Modulation system will be analyzed for Envelope and Square 

Law detection. 
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a. Envelope Amplitude Modulation Detection 
The most common demodulation method of AM is by using an envelope 

detector in the receiver as shown in Figure 18. 

 

 
Figure 18.   Block Diagram for Envelope AM Detection 

 
Since the band-pass filter bandwidth is twice the information signal 

bandwidth, the signal power and the noise power at the envelope detector input are the 

same as at the input to the demodulator of the coherent detector analyzed earlier and 

described in equations 4.8 & 3.8 respectively [10]. 

Now the signal and noise powers at the output are determined by the 

response of the envelope detector.  Assuming the envelope detector to be linear, the 

output signal and noise are described for low-noise and low-signal cases. 

(1) Low-Noise Case 

If the magnitude of the input signal is large in relation to the input noise 

magnitude, then the signal and noise powers at the output of the detector are [10] 

( )2
outS f t= , and     (4.28) 

out s nN kT B= .      (4.29) 

From the ratios of signal-to-noise at the output and input of the envelope 

detector  

 

( )
( )

2

2 2
2out in

c

f t
SNR SNR

A f t
=

 + 

,   (4.30) 
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( )
( )

2

2
2

1

m c
out in

m c

A A
SNR SNR

A A
=

 +  

,   (4.31) 

or 
2

2
2

1
out in

mSNR SNR
m

=
 + 

 for CNRin >> 1. (4.32) 

  The SNR at the output in terms of CNR therefore is 
22out inSNR m CNR=   for CNRin >> 1. (4.33) 

 

(2) Low-Signal Case 

If the signal magnitude is low compared to the noise magnitude, then the 

SNRout can be approximated as 

( )2

2 2

1.85
2

1 1
in

out in

SNRmSNR SNR
m m

≈
   + +   

.  (4.34) 

For the case of 100% modulation, the above expression     is [3] 
20.925out inSNR SNR≈   for CNRin << 1. (4.35) 

The inspection of the above two cases indicates that there is some value of 

SNRin below which the output SNR degrades much more rapidly than above such values 

[11].  The same effect can be observed in Figure 19. 
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Figure 19.   Envelope Detection Plot (From Ref. [11].)  

 

The transition of behavior is usually called the Threshold Effect and the 

value of SNRin at the transition point is called the Threshold Signal-to-Noise Ratio.  The 

exact expression for the region around the threshold is not available in closed form.  

However, this transition is not abrupt and can be observed in Figure 19. 

b. Square-Law Amplitude Modulation Detection 
For AM detection using full-wave square-law rectification, the results of 

the previous section do not apply [11].  The SNR characteristics for square-law detection 

are discussed below.  As for envelop detection, the output signal and noise are described 

for low-noise and low-signal cases. 

(1) Low-Noise Case 

For low noise case, that is, large carrier-to-noise ratio, the signal-to-noise 

ratio at the output is approximated as [11] 
22out inSNR m CNR≈  CNRin >> 1,   (4.36) 
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or in terms of signal-to-noise ratio, as 
2

2
2

1
out in

mSNR SNR
m

≈
 + 

.    (4.37) 

(2) Low-Signal Case 

For low signal case, that is, low carrier-to-noise ratio, the approximation is 

[11] 
2 28 3out inSNR m CNR≈  for CNRin << 1, (4.38) 

or 

( )
2

2
2

2
8 3

1
out in

mSNR SNR
m

≈
+

.   (4.39) 

The plot of signal-to-noise ratio at the output as a function of signal-to-

noise ratio at the input for the square law detector is given in Figure 20.  Similar to the 

envelope detector case, the threshold effect produced by the non-linear devices can be 

observed. 

 
Figure 20.   Square Law Detection Plot (From Ref. [11].)  
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2. Vestigial Sideband Large Carrier (VSB-LC) 
When removing the unwanted sideband from a DSB signal, a portion of the 

sideband remains because of practical limitations of the filter.  A practical filter can only 

remove the sideband partially, thus producing an asymmetric sideband.  This gives rise to 

the term “vestige.”  This asymmetric sideband results in a spectrum of VSB of about 125 

percent of SSB and about 62 percent of DSB rather than 50 percent due to the 

imperfection [11]. 

VSB modulation is employed in television transmission; therefore, the 

demodulation technique is influenced by the requirement of the receiver to be simple and 

inexpensive [9].  An envelope or square-law detection technique is therefore used for the 

demodulation but this necessitates the addition of a carrier to the VSB signal.  The 

insertion of a carrier allows the VSB modulated signal to be demodulated non-coherently 

with the bandwidth requirement being the only difference between VSB and AM. 

The performance of the envelope and square-law detectors used for VSB 

demodulation is similar to the performance of the same detector for AM after accounting 

for input bandwidth differences.  The receiver bandwidth for the AM signal is twice the 

information bandwidth, whereas the receiver bandwidth for VSB is, in general, 1+ξ, with 

the value of ξ being less than one.  Therefore, the noise power within the receiver 

bandwidth is lower for VSB by a factor of (1+ ξ)/2. 

The expression for AM detector performance thus could also be used for VSB, 

but with the SNR at the input multiplied by 2/(1+ ξ).  The signal-to-noise ratio is 

therefore be analyzed for Envelope and Square Law detection. 

a. Envelope VSB-LC Detection 
For AM detection, the output signal and noise is described for two 

different cases. 

(1) Low-Noise Case 

( )
2

2

4
1 1

out in
mSNR SNR

mξ
=

+  + 

 for CNRin >> 1. (4.40) 

The SNR at the output can also be described in terms of CNR as 
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( )
2 4

1out inSNR m CNR
ξ

=
+

  for CNRin >> 1. (4.41) 

(2) Low-Signal Case 

If the signal magnitude is low as compared to the noise magnitude, then 

the SNRout can be approximated as 

( )
( )2 2

2 2 2

1.8524
1 1 1

in
out in

SNRmSNR SNR
m mξ

×
≈

   + + +   

.  (4.42) 

b. Square-Law VSB-LC Detection 
Again, using the analysis of AM square-law demodulation, the output 

signal-to-noise ratio for VSB-LC for low-noise and low-signal cases is described.  

(1) Low-Noise Case 

For the low noise case, that is, large carrier-to-noise ratio, the signal-to-

noise ratio at the output can be approximated as 

( )
24

1out inSNR m CNR
ξ

≈
+

  for CNRin >> 1, (4.43) 

or in terms of signal-to-noise ratio 

( )
2

2

4
1 1

out in
mSNR SNR

mξ
≈

+  + 

.    (4.44) 

(2) Low-Signal Case 

For the low signal case, that is, low carrier-to-noise ratio, the 

approximation is 

( )

2
2 2

2
28 3

1out inSNR m CNR
ξ

≈
+

 for CNRin << 1, (4.45) 

or 

( ) ( )
2 2

2
2 2

2

28 3
1 1

out in
mSNR SNR
mξ

≈
+ +

.   (4.46) 
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C. FREQUENCY MODULATION 

1. Basic Principles 

Frequency Modulation (FM) is a form of modulation that represents information 

as variations in the instantaneous frequency of a carrier wave. (Contrast this with 

amplitude modulation, in which the amplitude of the carrier is varied while its frequency 

remains constant.) It is a nonlinear process in which the frequency of the carier is varied 

according to the message signal. 

Frequency modulation requires a wider bandwidth than amplitude modulation by 

an equivalent modulating signal, but this also makes the signal more robust against 

interference. Frequency modulation is also more robust against simple signal amplitude 

fading phenomena. Figure 21 is an illustrative FM waveform [12]:  

 
Figure 21.   Illustrative FM Waveform 
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2. Transmission  Bandwidth 
For an arbitrary modulating signal m(t), the bandwidth is virtually impossible to 

determine exactly. For sinusoidal modulation, the bandwidth, B, is theoretically infinite, 

but for practical purposes, it is calculated using Carsons's Formula as [13]  

     mB = 2(β+1)f                 (4.47) 

where B is the bandwidth, ß denotes the modulation index and fm is the highest frequency 

component of the modulating signal.  

The signal-to-noise ratio at the receiver input is calculated as 

 

   
)

t t r t t r
in

p s r p s m

PG G PG GSNR
L kT B L kT (2(β+1)f

= =  .             (4.48) 

 

3. Frequency Modulation Detection 
FM detection is a non-linear process. A consequence of the non-linearity is the 

onset of an input signal-to-noise ratio threshold that delineates the FM detector 

performance. The threshold is typically in the range of 10 to 13 dB. For an arbitrary 

modulating signal, a closed-form expression exists for FM detector performance for the 

low-noise case (input SNR well above threshold).  For the case of arbitrary input SNR 

(around and below threshold) the closed form expression exists only for the case of a 

sinusoidal modulating signal. The expressions to follow apply to both narrowband 

(β<0.5) and wideband FM (β > 0.5). 

4. Input SNR above Threshold 

The output SNR for a given input SNR and an arbitrary modulating signal m(t) is 

given by [14] 

   
2

26 ( 1)out in
peak

mSNR SNR
m

β β
 

= +   
 

    (4.49) 
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where ß is the modulation index and mpeak  is the peak value of the arbitrary modulating 

signal and the over-bar denotes averaging. 

In case of a sinusoidal modulating signal, the average value is ½ and the above 

expression becomes 

 

         2
out inSNR = 3β (β+1)SNR      (4.50) 

 

or in terms of Carrier to Noise Ratio(CNR) [14, 15] 

 

    2
out

3SNR = β CNR
2

.      (4.51) 

By inspection, these results seem to indicate that the performance of the FM 

systems can be increased without limit simply by increasing the modulation index, ß.  

However, as ß increases, the transmission bandwidth increases, and consequently, SNRin 

decreases.  These equations for SNRout are valid only when SNRin >>1 (i.e. input signal 

power is above the threshold), so SNRout  does not increase to an excessively large value 

simply by increasing the FM modulating index.   

For the case of of sinusoidal modulation, the output SNR for an FM discriminator 

without deemphasis is shown to be [13, 14] 

 

   
in

in
out

-SNR
in

3β(β+1)SNRSNR
241+ β(β+1) SNR e
π

=
 
  

.    (4.52) 

 

Figure 22 is the graph showing the quieting threshold for the different modulating 

indices. 
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Figure 22.   Quieting Threshold (After Ref. [13].)   

 

5. Preemphasis and Deemphasis 
The noise suppression ability of FM decreases as the modulating frequency 

increases.  However, in speech and music, the higher frequency components are generally 

the low level components, and they are more prone to the effects of noise. To improve 

this situation, the high frequency components of the audio signal are boosted in amplitude 

relative to the lower frequency components prior to modulation. This results in greater 

deviation at the higher frequencies and better noise suppression. This process is known as 

preemphasis as illustrated in the block diagram of Figure 23 [15].     

 

 
Figure 23.   Preemphasis and Deemphasis Networks in FM Transmission (After Ref. [15].)  
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The output signal power for preemphasis-deemphasis system is the same as that 

when preemphasis-deemphasis is not used because the overall frequency response of the 

system to m(t) is flat over the bandwidth of B hertz. The output SNR is given       by [14] 

 

   
2 2

22 ( 1) m
out in

filter peak

B mSNR SNR
B m

β β
   

= +       
   

,   (4.53) 

where 

• ß is the FM index, 

• Bm is the bandwidth of the baseband, 

• Bfilter is the 3-db bandwidth of the deemphasis filter, 

• mpeak  is the peak value of the arbitrary modulating signal m(t), and 

• (m/mpeak)2 is the square of the rms value of m(t)/mpeak, 

or in equivalent baseband SNR as [14] 

 

         
2 2

2 m
out

filter peak

B mSNR CNR
B m

β
   

=       
   

.    (4.54) 

 

When a sinusoidal test tone is transmitted over this FM system,  (m/ mpeak)2=1/2 

and output SNR becomes [14]  

 

         
2

21
2

m
out

filter

BSNR
B

β
 

=   
 

.          (4.55) 

 

6. Threshold Extension in FM 

FM receiver performance deteriorates rapidly when the input SNR falls below the 

threshold, that is for SNRin < 10 dB.  However, there are several techniques that could 

lower the threshold below that provided by a receiver that uses an FM discriminator, such 

as FM FeedBack (FMFB) and Phase-Locked Loop (PLL) FM receivers.  The expressions 
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presented for FM discriminators are valid for the FMFB and PLL FM receivers, but the 

range of validity of the expressions is extended to lower SNRin. For FMFB receivers, 

typical threshold extensions are on the order of 5 dB (to about 5 dB).  For PLL receivers, 

typical threshold extensions are on the order of 3 dB (to about 7 dB) [13, 14, 15]. 
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V. JAMMING OBJECTIVES FOR TARGETED SIGNALS 

This chapter formulates the jamming objectives for targeted signals based on their 

capabilities and limitations. 

The most uniformly effective interference used in jamming is “broadband noise” 

covering the acoustic range from 20 Hz to about 4 kHz.  Extensive subjective tests have 

established statistical guidelines for SNRs required for various levels of speech 

intelligibility.   

Word articulation expressed in percent is a quantitative measure that refers to the 

percentages of test words correctly identified in an intelligibility test.  For example, 80% 

word articulation requires an SNR of +12 dB, while at SNR = 0 (equal powers of speech 

and voice) the word articulation is just under 40%.  Speech is rendered completely 

unintelligible for an SNR of approximately -9 dB.  This is depicted in Figure 24 [17]. 

                                             
Figure 24.   Effect of Broadband Masking Noise (From Ref. [12].)  

 
Broadband noise, covering the acoustic frequency range from 20 Hz to about 4 

kHz, renders speech completely unintelligible at an SNR of approximately -9 dB.  Ten 

percent intelligibility occurs at an SNR of approximately -6 dB. 
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A. AMPLITUDE MODULATED (AM) BROADCAST RADIO AND 
BROADCAST TV  

For AM radio and TV signals, the jamming objective is to create sufficiently low 

CJNR such that the speech or video is rendered useless to the listener and viewer. 

Statistical SNR thresholds have been established for speech intelligibility and image 

quality. Based on known demodulation properties, these SNR thresholds can be related to 

the CNR/CNJR at the receiver input. Because propagation renders amplitudes for the 

target signal and jamming signals as random variables, this will require calculating the 

probability that, for the given jamming scenario, the CJNR will be below the desired 

threshold. 

B. FREQUENCY MODULATED (FM) BROADCAST RADIO  
For FM radio signals, the objective is to exploit the “FM Station Capture” 

(FMSC) effect.  FMSC refers to the fact that whenever two FM signals share the same 

carrier frequency, an FM receiver will lock onto the stronger signal (station) and suppress 

the reception of the weaker signal (station). For the weaker station to be reliably 

suppressed, the threshold for the FMSC is generally accepted as 3 dB.   

Therefore, for FM broadcast and two-way FM radios, the objective is to create an 

FM jamming signal (an interfering FM “station”) that is at least 3 dB stronger at the 

target receiver than the FM signal being jammed. Since propagation renders signal 

amplitudes as random variables, this will also require determination of the probability 

that the FM jamming signal will exceed the FM signal being jammed by at least 3 dB. 

C. BROADCAST TV (VIDEO) 

A decent TV picture has an SNR exceeding +20 dB.  A TV picture with an SNR 

<3 dB reveals no discernible information, save for the occasional sync bars rolling 

through the image.  Synch signals are peaks in the video signal and synch circuits are 

relatively narrowband, hence the synch is “the last to go.”  TV images versus SNR are 

shown in Figure 25. 
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Figure 25.   Image Quality versus SNR (After Ref. [18].)  

 
D. BROADCAST TV (AUDIO) 

TV uses narrowband FM for its sound.  Narrowband FM is more resilient to noise 

than video.  However, the FM threshold effect occurs for CNR between 8 and 10 dB and 

FM receiver performance deteriorates rapidly for values lower than the threshold.  The 

SNR for VSB (or non-coherent detection) cannot exceed the CNR.  Therefore, at CNRs 

lower than +3 dB, both TV picture and TV sound are rendered useless to the viewer. 

In summary, communications and broadcasting systems are designed to work 

with substantial signal-to-noise ratios.  For example, for FM radio and TV broadcasting, 

the CNR is typically more than 30 dB over the intended coverage region.  Therefore, 

1/CNR is typically a small number (1/1000) and can be approximated conservatively the 

CJNR as  

 

1 1
CJNR CJR

≈ . 
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The above approximation signifies total reliance on jamming, and not on the 

combination of jamming and noise, to render the targeted signal unusable.  

The following tables summarized the Jamming Objectives for Targeted Signals:  

   

Target  
Signal 

Jamming  
Signal 

Modulating  
Signal Threshold 

AM Radio AM Audio Noise CJNR < -12 dB 

FM Radio FM Audio Noise CJR < -3 dB 

TV AM-VSB Video Noise CJNR < +3 dB 

 

Table 1. Threshold 
 
 

Target  
Signal 

Jamming  
Signal 

Modulating  
Signal Jamming Margin 

AM Radio AM Audio Noise MdB  > 12 dB 

FM Radio FM Audio Noise MdB  > 3 dB 

TV AM-VSB Video Noise MdB  > -3 dB 

 
Table 2. Jamming Margin 
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VI. DEVELOPMENT OF THE MODEL  

A.  SITE-SPECIFIC AND STATISTICAL PREDICTIONS 

It is commonly accepted that the propagation of communications and broadcast 

signals has the following three components: 

• Large-Scale Path Loss, 

• Log-Normal Shadowing, and 

• Small-Scale Fading. 

While large-scale propagation can be quantified deterministically, shadowing and 

small-scale fading result in random variables with associated probability density 

functions. Therefore, because of shadowing and small-scale fading, calculation of powers 

at the receiver input requires a probabilistic approach. 

Log-normal shadowing describes the variation of the signal power at a constant 

distance from the transmitter, but in different directions from the transmitter. This is 

caused by variations in building height, size and material, separation between buildings, 

presence of trees, etc. Therefore, the generally accepted model for shadowing is the non-

zero mean normal (Gaussian) distribution for the signal amplitude/power expressed in 

decibels, hence, the name “log-normal shadowing.”  The mean value of the (signal 

power) log-normal random variable is the power (in dB) calculated from the large-scale 

propagation model. The standard deviation for the log-normal shadowing is generally 

accepted to be  6 dB and 12 dB, depending on the environment type (i.e. rural, suburban, 

urban). 

The small-scale fading model accounts for multipath propagation in the vicinity 

of the receiver.  The commonly accepted model for multipath fading is the Rayleigh 

model. 

For a dominant path with a substantially higher signal power than other paths, the 

Rice model is commonly applied. The Rice model may apply to TV reception because of 

the use of directional (moderate gain) antennas, such as Yagi-Uda parasitic arrays (Yagis) 

or Log-Periodic Arrays (LPAs) which are often aimed directly at the transmitter (line-of-
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sight propagation). The Probability Density Function (PDF) for the signal amplitude for 

the Rayleigh model is the Rayleigh PDF. The PDF for the power of the Rayleigh-

distributed signal amplitude is the Exponential PDF.  

Considering the attributes of the three propagation models that were mentioned, 

only large-scale path loss lends itself to site-specific prediction techniques for typical 

jamming scenarios.  Shadowing cannot be predicted using site-specific techniques 

because: 

• exact locations of the receivers are not known in general, 

• receiver surroundings are typically not known in sufficient detail, and 

• even if the above information were available, the computational effort to 

calculate the power at a typically large number of targeted receiver 

locations would be prohibitive. 

Whereas shadowing involves receiver surroundings on the scale of tens to 

thousands of wavelengths, small-scale fading depends on the details of the surroundings 

on the scale of several wavelengths. Therefore, the level of details for site-specific fading 

prediction would be even more demanding than for site-specific shadowing prediction. 

Therefore, the bottom line is to rely on statistical techniques to account for 

shadowing and small-scale fading. While site-specific predictions for the “area mean 

values” are possible, they are dependent on the availability of reliable software, 

computational resources and digital maps of the target area. A number of well-regarded 

and validated models do exist for large-scale path loss prediction.  Eventually, for 

jamming applications, the only realistic choice between site-specific and statistical 

predictions applies to large-scale path loss prediction.  Shadowing and small-scale fading 

have to be, in practice, accounted for by statistical models. 

B. LOG-NORMAL SHADOWING 

Both theoretical and measurement based propagation models indicate that average 

received signal power decreases logarithmically with distance, whether in outdoor or 

indoor radio channels.  Such a model is used extensively and is called Power Law or Log 

Distance Path Loss Model.  This average loss for an arbitrary transmitter and receiver 

separation is expressed as a function of distance by using a path loss exponent as [19] 
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where   

• n = path loss exponent, 

• d = transmitter receiver separation distance, and 

• do = close-in reference distance. 

The path loss exponent indicates the rate at which the path loss increases with 

distance. The close-in reference distance is determined from measurements close to the 

transmitter.  The bar denotes the ensemble average of all possible path loss values for a 

given distance. 

The above mentioned equation, however, does not consider the fact that the 

surrounding environmental clutter may be vastly different at two different locations 

having the same transmitter and receiver separation.  This leads to measured signals that 

are vastly different than the average value predicted by the power law.  Measurements 

indicate that the path loss at a particular location is random and log-normally distributed 

about the mean distance dependent value, and is given as [19] 

(dB) ( ) 10 logo
o

dPL PL d n X
d σ

  
= + +     

  (6.3) 

where Xσ = zero-mean Gaussian distribution random variable with standard deviation of 

σ. 

The log-normal distribution describes the random shadowing effects, which occur 

over a large number of measurement locations that have the same transmitter and receiver 

separation, but have different levels of clutter on the propagation path.  This phenomenon 

is referred to as Log-Normal Shadowing.  In practice, the values of path loss exponent 

and standard deviation are computed from measured data, using linear regression such 

that the difference between the measured and estimated path losses is minimized in a 
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mean square error sense over a wide range of measurement locations and transmitter-

receiver separations. 

C. SMALL SCALE FADING 

Small scale fading is used to describe the rapid fluctuations of the amplitudes, 

phases or multi-path delays of a radio signal over a short period of time or travel distance.  

The fading is caused by wave interference between various multi-path components that 

arrive at the receiver and combine vectorally to give the resultant signal, which can vary 

widely in amplitude and phase.  Many physical factors in the radio propagation channel 

influence small-scale fading, such as [19,  20] 

• transmission bandwidth of the signal, 

• speed of the mobile unit, 

• time delay spread of the received signal, 

• random phase and amplitude, and 

• mobile environment. 

In a mobile radio channel, where either the transmitter or the receiver is immersed 

in cluttered surroundings, the envelope of the received signal typically has a Rayleigh 

distribution.  The Rayleigh distribution has a probability density function given as [20] 
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and 

 
( ) 0p r = ,   for 0r < ,  (6.5) 

 

where σ2 = variance of the received signal. 

The Rayleigh probability density function for signal amplitude in terms of its 

average can also be expressed as 
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and 

 
( ) 0p A = ,   for 0A < ,  (6.7) 

where A = signal amplitude and over-bar denotes the average value. 

The power of a Rayleigh distributed random variable has the exponential 

probability density function given as 

 

1( )
P
Pp P e

P

 − 
 = ,  for 0 P≤ ≤ ∞   (6.8) 

and 

 
   ( ) 0p P = ,   for 0P < ,  (6.9) 

where P = power of the (signal) random variable and the over-bar denotes the average 

value. 

When there is a dominant non-fading signal component present, the small scale 

fading distribution is Ricean, as in the case of line-of-sight propagation.  In these cases, 

random components arriving at different angles are superimposed on a stationary signal   

giving the effect of adding an average value to the random multi-path.  The Ricean 

distribution for such situation is given as [19] 
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and 

( ) 0p r = ,     for ( 0r < ),  (6.11) 

where   
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• A = peak amplitude of the dominant signal, and 

• Io = modified Bassel function of the first kind and zero order. 

 

D. THE PROPOSED STATISTICAL MODEL 

The jamming signal and the targeted signals are two independent random 

variables, that is, they are different signals with different sources and propagation paths.  

The ratio of the powers of two Rayleigh distributed random variables has the following 

probability density function: 

  
( )2( ) Rp R
R R

=
+

,  for 0 R≤ ≤ ∞   (6.12) 

and 

  ( ) 0p R = ,   for 0R < ,  (6.13) 

where R = ratio of jamming and targeted signal powers at the Rx input and the over-bar 

indicates the average value. 

The average value of the power ratio is also a random variable due to log-normal 

shadowing and can be represented in decibels as 
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      ( ) ( )j s10 log P -10 log P=  

      jdB sdBP P= − ,     (6.14) 

where  PjdB = jamming power in dB and PsdB = targeted signal power in dB. 

The power ratio, being the difference between two independent random variables, 

is a random variable with the mean and variance given by 
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( )mean dB dB jdB sdBR R P P= = −    (6.15) 

and 

( ) 2 2 2variance dB Rdb jdB sdBR σ σ σ= = + .   (6.16) 

Also, the probability that the ratio of powers of two independent Rayleigh 

distributed random variables will exceed a non-zero positive threshold is given by 
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where T = threshold value. 

All the values of the power ratio can also be integrated and after simplifying the 

integral through a series of transformations to get the following relationships: 
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here 
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and 

 

1010
dBM

T = ,      (6.22) 

where 

• EIRPjdB = jammer EIRP in dB, 

• EIRPTdB = targeted transmitter EIRP in dB, 

• LTRdB = large scale path loss from the transmitter of the targeted signal to 

the targeted receiver in dB, 

• LjRdB = large scale path loss from the jammer to the targeted receiver in 

dB, 

• GRTdB = receiver antenna gain in the direction of the transmitter in dB, 

• GRjdB = receiver antenna gain in the direction of the jammer in dB, and 

• M = required jamming margin in dB. 

However, the integral in (6.19) can be evaluated by selecting a sufficient number 

of points ‘xn’ (Ns>100) between the integration limits and calculating (if using uniformly 

distributed sampling points) the step ∆x.  The relationship becomes 
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The above formulas can now be used in a given scenario.  For example, given the 

parameters 

• The transmitter EIRP is 10 dB higher than the jammer EIRP, 
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• Jammer-to-receiver path loss is 6 dB lower than the transmitter-to-receiver 

path loss, 

• The receiver antenna gains towards the jammer and transmitter are equal, 

• The standard deviation for the log-normal shadowing is 8 dB for both the 

jammer and transmitter signal,  

• The required jammer margin is 3 dB, then 

• The values of α and β for the above parameters are 

α = 5.012 

β = 2.605. 

Using these formulas, the probability of the jamming signal exceeding the target 

signal by the required margin is 0.304 or 30.4%.   This probability of exceeding the 

jamming margin can also be interpreted as the percentage of the receivers that would be 

jammed within the target area.  Therefore, in the given example, 30.4% of the receivers 

will be jammed. 

However, the implicit assumption here is that the target area radius is small 

compared to the distances between the transmitter and the jammer, such that the powers 

calculated from the large-scale path models apply to all receivers within the target area. 
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VII. CONCLUSIONS 

A. CONCLUSIONS 

The goal of this research was to develop a statistical model to calculate the 

effectiveness of an airborne jammer on communications and broadcast receivers.   

Based on the example and from performing similar calculations for different 

combinations of relevant parameters using the model, it is concluded that it is quite 

difficult to achieve high probabilities of exceeding the typical required jamming margins.  

The main issue is that the EIRP of the transmitter could be substantially higher than the 

EIRP of the jammer, especially when jamming broadcast receivers. It may not always be 

possible to offset this disadvantage by moving the jammer closer to the targeted area. The 

problem could be further aggravated if the targeted receivers are using directional 

antennas pointed towards the transmitter, as may be the case for broadcast TV receivers 

with roof-top antennas. 

B. RECOMMENDATIONS 
The solution may be to use spatial diversity jamming, that is, to use two or more 

jammers spaced sufficiently far apart from each other such that their jamming signals at 

the targeted area are de-correlated due to the differences in their respective angles of 

arrival as shown in Figure 26. 

The jamming signals should be of the same type; for example, if jamming an FM 

target signal, all jamming signals should be FM, at the same carrier frequency, but could 

be independent from each other.   

The probability that two jamming signals be within the threshold at the same time 

will be the product of their respective probabilities, that is, it will be reduced, meaning 

that the probability of at least one signal exceeding the threshold will be increased.   
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Figure 26.   Spatial Diversity Jamming 
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