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Abstract

Motiv ation: Remotehomology detectionbetweenprotein se-
quencesis a central problemin computationalbiology. Supervised
learningalgorithmsbasedonsupportvectormachinesarecurrently
themosteffectivemethodfor remotehomology detection.Theper-
formanceof thesemethodsdependson how the protein sequences
are modeledandon themethodusedto computethekernelfunction
betweenthem.

Results: We introduce new classesof kernel functions that

are constructedby directly combiningautomaticallygeneratedse-

quenceprofileswith new and existing approachesfor determining

thesimilarity betweenpairs ofproteinsequences,which employef-

fectiveschemesfor scoring the aligned profile positions. Experi-

mentswith remotehomology detectionand fold recognition prob-

lemsshowthat thesekernelsare capableof producingresultsthat

are substantiallybetter than thoseproducedby all of the existing

state-of-the-artSVM-basedmethods.In addition, the experiments

showthat thesekernels,evenwhenusedin theabsenceof profiles,

produceresultsthat are betterthanthoseproducedby existingnon-

profile-basedschemes.

1 Intr oduction

Breakthroughsin large-scalesequencinghave led to a surge
in the available protein sequenceinformation that has far
out-strippedour ability to experimentallycharacterizetheir
functions. As a result, researchersare increasinglyrelying
on computationaltechniquesto classifythesesequencesinto
functionalandstructuralfamiliesbasedon sequencehomol-
ogy.

∗This work wassupportedin part by NSFEIA-9986042,ACI-0133464,
ACI-0312828,andIIS-0431135;the Digital TechnologyCenterat the Uni-
versity of Minnesota;andby the Army High PerformanceComputingRe-
searchCenter(AHPCRC)undertheauspicesof theDepartmentof theArmy,
Army ResearchLaboratory(ARL) underCooperative Agreementnumber
DAAD19-01-2-0014.Thecontentof which doesnot necessarilyreflect the
positionor thepolicy of thegovernment,andnoofficial endorsementshould
beinferred.Accessto researchandcomputingfacilitieswasprovidedby the
Digital TechnologyCenterandtheMinnesotaSupercomputingInstitute.

While satisfactorymethodsexist to detecthomologswith
high levels of similarity, accuratelydetectinghomologsat
low levels of sequencesimilarity (remotehomologydetec-
tion) still remainsa challengingproblem. Over the years,a
largenumberof methodshavebeen developedfor homology
detection. Someof the early methodswerebasedon pair-
wise sequencecomparisonscomputedusing either optimal
dynamicprogramming-basedalgorithms[23, 28] or various
fastapproximations[25, 2]. Betterremotehomologypredic-
tion waslaterobtainedby comparinga proteinwith a collec-
tion of relatedproteinsusingmethodssuchasproteinfamily
profiles [5], hiddenMarkov models(HMMs) [15, 3], PSI-
BLAST [1], andSAM [14]. Theseschemesproducedmodels
that weregenerative in the sensethat they built a modelfor
a set of relatedproteinsand then checked to seehow well
this modelexplaineda candidateprotein.In recentyears,the
performanceof remotehomologydetectionwasgreatlyim-
provedthroughtheuseof methodsthatexplicitly modeledthe
differencesbetweenthevariousclasses(proteinfamilies)and
built discriminative models. Thesemethodsby using both
sequencesknown to belongto a particularclass(positive ex-
amples)andsequencesknown to beoutsidethis class(nega-
tive examples)arebettersuitedfor identifyingandcapturing
theratherweaksequence-level signalsof theremotehomol-
ogy detectionproblem.A numberof differentmethodshave
been developedthatbuild thesediscriminative modelsusing
supportvectormachines(SVM) [29] andhavebeenshown to
produceresultsthatarein generalsuperiorto thoseproduced
by eitherpairwisesequencecomparisonsor approachesbased
ongenerativemodelsprovidedthatthereis sufficientdatafor
training[12, 19, 17, 18, 10, 11, 26, 16].

A corecomponentof anSVM is thekernelfunction. For
our purposes,thekernelfunctionmeasuresthesimilarity be-
tweenany pair of examples.Differentkernelscorrespondto
differentnotionsof similarity andcanleadto discriminative
functionswith differentperformance.A commonapproach
for deriving a kernelfunction is to first choosean appropri-
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atefeaturespace,representeachsequenceasa vectorin that
space,andthentake theinnerproduct(or a functionderived
from them)betweenthesevector-spacerepresentationsasa
kernelfor thesequences.Oneof theearlyattemptswith such
feature-space-basedapproachesis the SVM-Fishermethod
[12], in which a profile HMM model is estimatedon a set
of proteinsbelongingto thepositiveclassandusedto extract
a vectorrepresentationfor eachprotein. Anotherapproach
is the SVM-pairwise scheme[19], which representseach
sequenceas a vectorof pairwisesimilarity betweenall se-
quencesin thetrainingset.Thesimilarity betweeneachpair
of sequences(i.e., the valuealongeachdimension)is com-
putedastheE-valueof theSmith-Watermanalignmentscore
betweenthem. A relatively simplefeaturespace,containing
all possibleshortsubsequencesrangingfrom3–8aminoacids
(kmers) is explored in a seriesof papers(Spectrumkernel
[17], Mismatchkernel[18], andProfilekernel[16]). Despite
thesimplicity of thefeaturespace,theresultingmethodshave
beenshown to produceverygoodresults.Thedifferencebe-
tweentheseschemesis on themethodusedto representeach
sequence.TheSpectrumkernelrepresentseachsequenceas
a 0/1 vector basedon whetheror not it containsthe kmer
correspondingto eachdimensionof the featurespace.The
Mismatchkernelallows for somedegreeof tolerancewhen
determiningif a particulardimensionis presentin the se-
quenceor not. For eachkmer u in the proteinsequence,it
setsto oneall the dimensionsof the featurespacethat cor-
respondto kmersthatdiffer in at mosta predefinednumber
of positions. Finally, the Profile kernelextendsthe ideasof
theMismatchkernelby generatingapositionspecificscoring
matrix for eachproteinsequenceandutilizing it to determine
whetheror not a particulardimensionis sufficiently similar
to a proteinsequencekmer. Specifically, for eachkmeru in
theproteinsequence,asetof otherkmersis generatedwhose
profile-basedungappedalignmentscorewith u is above a
user-suppliedthreshold,andu is “subscribed”to all of the
dimensionsin that set. An entirelydifferentfeaturespaceis
exploredby the SVM-Isites [10] andSVM-HMMSTR [11]
methodsthattakeadvantageof asetof localstructuralmotifs
(SVM-Isites)andtheir relationships(SVM-HMMSTR).

An alternative to measuringpairwisesimilarity througha
dot-productof vector representationsis to calculatean ex-
plicit proteinsimilarity measure.TherecentlydevelopedLA-
Kernelmethod[26] representsonesuchexampleof a direct
kernelfunction. Thisschememeasuresthesimilaritybetween
apairof proteinsequencesby takinginto accountall theopti-
mal localalignmentscoreswith gapsbetweenall of theirpos-
siblesubsequences.Theexperimentspresentedin [26] show
that this kernelis superiorto previously developedschemes
that do not take into accountsequenceprofilesandthat the
overallclassificationperformanceimprovesby takingintoac-
countall localalignments.

In this paperwe developnew kernelfunctionsthatarede-
riveddirectlyfrom explicit similarity measuresandutilize se-

quenceprofiles.We presenttwo classesof suchkernelfunc-
tions.Thefirst class,referredtoaswindow-based,determines
thesimilarity betweena pair of sequencesby usingdifferent
schemesto combineungappedalignmentscoresof certain
fixed-lengthsubsequences.The second,referredto as local
alignment-based,determinesthesimilarity betweena pair of
sequencesusingSmith-Watermanalignmentsanda position
independentaffine gapmodel,optimizedfor thecharacteris-
tics of the scoringsystem. Both kernel-classesutilize pro-
filesconstructedautomaticallyvia PSI-BLASTandemploy a
profile-to-profilescoringschemewe developby extendinga
recentlyintroducedprofilealignmentmethod[21].

Experimentson two benchmarksderivedfrom SCOP, one
designedto detectremotehomologsandthe otherdesigned
to identify folds,show thatthesenew kernelsproduceresults
thataresubstantiallybetterthanthoseproducedby all other
state-of-the-artSVM-basedmethods.In addition,theexper-
imentsshow that thesenewly proposedkernels,even when
usedin theabsenceof profiles,produceresultsthatarebetter
thanthoseproducedby existingnon-profilebasedschemes.

2 Methods and Algorithms

2.1 SVM and Kernel Functions

Key to our algorithm for protein classificationis its learn-
ing methodology, whichis basedonsupportvectormachines.
Givenasetof positivetrainingsequencesS+ andasetof neg-
ative trainingsequencesS−, an SVM learnsa classification
functionf(X) of theform

f(X) =
X

Xi∈S+

λ
+

i K(X, Xi) −
X

Xi∈S−

λ
−

i K(X, Xi), (1)

whereλ+

i andλ−

i arenon-negativeweightsthatarecomputed
during training by maximizing a quadraticobjective func-
tion, andK(., .) is calledthekernelfunctionthatis computed
overthevarioustraining-setandtest-setinstances.Giventhis
function,anew sequenceX is predictedto bepositiveor neg-
ative dependingon whetherf(X) is positive or negative. In
addition,thevalueof f(X) canbeusedto obtainameaning-
ful rankingof a setof instances,asit representsthestrength
by which they aremembersof thepositiveor negativeclass.

2.2 Sequence Profiles

The inputs to our classification algorithm are the vari-
ous proteinsand their profiles. A protein sequenceX of
length n is representedby a sequenceof charactersX =

〈a1, a2, . . . , an〉 suchthateachcharactercorrespondsto one
of the 20 standardaminoacids. The profile of a proteinX

is derived by computinga multiple sequencealignmentof
X with a setof sequences{Y1, . . . , Ym} that have astatis-
tically significantsequencesimilarity with X (i.e., they are
sequencehomologs).Many schemeshavebeendevelopedfor
identifying thesetof homologoussequencesandcomputing
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themultiple sequencealignment.In this paperwe obtainthe
profilesusingPSI-BLAST [1] as it combinesboth steps,is
veryfast,andhasbeenshown to producereasonablygoodre-
sults.However, theprofile-basedkernelsdevelopedherecan
beusedwith othermethodsof constructingsequenceprofiles
aswell.

Theprofile of a sequenceX of lengthn is representedby
two n × 20 matrices.Thefirst is its position-specificscoring
matrix PSSMX that is computeddirectly by PSI-BLASTus-
ing theschemedescribedin [1]. Therows of this matrixcor-
respondto thevariouspositionsin X andthecolumnscorre-
spondto the20distinctaminoacids.Thesecondmatrix is its
position-specificfrequencymatrix PSFMX that containsthe
frequenciesusedby PSI-BLAST to derive PSSMX . These
frequencies(alsoreferredto astarget frequencies[21]) con-
tain both the sequence-weightedobserved frequencies(also
referredto aseffectivefrequencies[21]) aswell astheBLO-
SUM62[9] derived-pseudocounts[1]. For eachrow, thefre-
quencieswerescaledsothatthey addup to one.In thecases
in which PSI-BLAST could not producemeaningfulalign-
mentsfor certainpositionsof X , thecorrespondingrows of
the two matriceswerederived from the scoresandfrequen-
ciesof BLOSUM62.

2.3 Profile-based Sequence Similarity

Many differentschemeshave beendevelopedfor determin-
ing the similarity betweenprofiles that combine informa-
tion from the original sequence,position-specificscoring
matrix, or position-specifictarget and/oreffective frequen-
cies[21, 30, 20]. In ourwork weuseaschemethatis derived
from PICASSO[8, 21]. Specifically, thesimilarity scorebe-
tweentheith positionof protein’sX profile,andthejth po-
sitionof protein’sY profile is givenby

SX,Y (i, j) =

20
X

k=1

PSFMX(i, k) PSSMY (j, k) +

20
X

k=1

PSFMY (j, k) PSSMX(i, k),

(2)

where PSFMX(i, k) and PSSMX(i, k) (PSFMY (j, k) and
PSSMY (j, k)) arethevaluescorrespondingto thekth amino
acid at the ith (jth) position of X ’s (Y ’s) position-specific
scoreandfrequency matrices.

Equation2 determinesthesimilarity betweentwo profile
positionsby weightingtheposition-specificscoresof onese-
quenceaccordingto thefrequency atwhichthecorresponding
aminoacidoccursin thesecondsequence’sprofile.Notethat
by construction,Equation2 leadsto a symmetricsimilarity
score. The key differencebetweenEquation2 andthe cor-
respondingschemeusedin [21] (referredto asPICASSO3),
is that our measureusesthe target frequencies,whereasthe
schemeof [21] wasbasedon effective frequencies.Our ex-

periments(not includedhere)indicatethattargetfrequencies
leadto betterresults.

2.4 Windo w-based Kernels

Thefirst classof profile-basedkernelfunctionsthatwedevel-
opeddeterminesthe similarity betweena pair of sequences
by combiningtheungappedalignmentscoresof certainfixed
length subsequences(referredto as wmers). Given a se-
quenceX of lengthn anda user-suppliedparameterw, the
wmer at positioni of X (w < i ≤ n − w) is definedto be
the(2w + 1)-lengthsubsequenceof X centeredatpositioni.
Thatis, thewmer containsxi, thew aminoacidsbefore,and
thew aminoacidsafterxi. We will denotethis subsequence
aswmerX(i).

Note that wmersare nothingmore than the fixed-length
windows used extensively in secondarystructure predic-
tion and in capturinglocal sequenceinformation arounda
particular sequenceposition. Also, for someof the ker-
nel functions describednext, they also correspondto the
kmersusedby someof thefeature-spacederivedkernelfunc-
tions[17, 18, 16].

2.4.1 All Fixed-width wmers (AF-PSSM). The
AF-PSSMkernelcomputesthe similarity betweena pair of
sequencesX and Y by adding-upthe alignmentscoresof
all possiblewmersbetweenX and Y that have a positive
ungappedalignmentscore. Specifically, if the ungapped
alignmentscorebetweentwo wmersat positionsi andj of
X andY , respectively is denotedby wscoreX,Y (i, j), n and
m are the lengthsof X andY , respectively, andPw is the
set of all possiblewmer-pairsof X andY with a positive
ungappedalignmentscore,i.e,

Pw = {(wmerX(i), wmerY (j)) | wscoreX,Y (i, j) > 0}, (3)

for w + 1 ≤ i ≤ n − w andw + 1 ≤ j ≤ m − w, thenthe
AF-PSSMkernelcomputesthesimilarity betweenX andY

as
AF-PSSMX,Y (w) =

X

(wmerX (i),wmerY (j))∈Pw

wscoreX,Y (i, j). (4)

The ungappedalignment score betweentwo wmers is
computedusing the profile-to-profile scoring method of
Equation2 asfollows:

wscoreX,Y (i, j) =
w

X

k=−w

SX,Y (i + k, j + k). (5)

Note that both the AF-PSSMkernelandthe Profile ker-
nel [16] determinethesimilarity betweenapairof sequences
by consideringhow all of their fixed-lengthsubsequences
are relatedin view of sequenceprofiles. However, unlike
the feature-spacebasedapproachemployed by Profile, the
AF-PSSMkernelsdeterminethe wmer-basedsimilarity of
two sequencesby comparingall of their possiblewmers
directly. This allows such kernels to preciselydetermine
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whethertwo wmersaresimilar or not. In addition,compared
to theneighborhoodintersection-basedschemeemployedby
Profile,by utilizing profile-basedungappedalignmentscores
theAF-PSSMkernelcanprovidebetterquantitativeestimates
of thedegreeto which two wmersaresimilar.

2.4.2 Best Fixed-width wmer (BF-PSSM). In deter-
mining thesimilarity betweena pair of sequencesX andY ,
theAF-PSSMkernelincludesinformationaboutall possible
wmer-level local alignmentsbetweenthem. In light of this
observation,it canbe thoughtof asa specialcaseof theLA
kernelsproposedby Saigoetal [26], whichcomputethesim-
ilarity betweena pair of sequencesasthesumof theoptimal
local alignmentscoreswith gapsbetweenall possiblesubse-
quencesof X andY .1 Theresultsreportedin [26] show that
takinginto accountall possiblealignmentsleadsto betterre-
sults.

To seewhetheror not this is true in the context of the
profile-derivedwmer-basedkernels,we developeda scheme
thatattemptsto eliminatethis multiplicity by computingthe
similarity betweena pair of sequencesbasedon a subsetof
the wmersusedin the AF-PSSMkernel. Specifically, the
BF-PSSMkernel selectsa subsetP ′

w of Pw (as definedin
Equation3) suchthat(i) eachpositionof X andeachposition
of Y is presentin at mostonewmer-pair and(ii) thesumof
the wscoresof the selectedpairs is maximized. GivenP ′

w,
thesimilarity betweenthepairof sequencesis thencomputed
asfollows:

BF-PSSMX,Y (w) =
X

(wmer(X,i),wmer(Y,j))∈P
′
w

wscoreX,Y (i, j). (6)

Theway thatBF-PSSMselectsthewmersto be included
in P ′

w can be betterunderstoodif the possiblewmer-pairs
in Pw areviewedasforming ann × m matrix, whoserows
correspondto thepositionsof X , columnsto thepositionsof
Y , andvaluescorrespondto the respective wscores.Within
this context, P ′

w correspondsto a matchingof the rows and
columns[24] whoseweight is high (bipartitegraphmatch-
ing problem). Sincethe selectionforms a matching,each
position of X (or Y ) contributesa single wmer in Equa-
tion 6, andassuch,eliminatesthemultiplicity presentin the
AF-PSSMkernel.At thesametime,sinceweareinterestedin
a highly weightedmatching,we try to selectthebestwmers
for eachposition. In our algorithm,we usea greedyalgo-
rithm to incrementallyconstructP ′

w by includingthehighest
weightwmersthatarenot in conflictwith thewmersalready
in P ′

w.
Note that an alternateway of definingP ′

w is to actually
look for the maximum weight matching(i.e., the match-
ing whoseweight is the highestamongall possiblematch-
ings). However, the complexity of the underlying bipar-

1The major differencesare that the AF-PSSMkernel is profile-aware,
only considersfixed-lengthwmers, andusesungappedalignments.

tite maximumweight matchingproblem is relatively high
(O(n2m + nm2) [24]), andfor this reasonweusethegreedy
approach.

2.4.3 Best Variab le-width wmer (BV-PSSM). In
fixed-widthwmer-basedkernelsthe width of the wmersis
fixedfor all pairsof sequencesandthroughouttheentirese-
quence. As a result, if w is set to a relatively high value,
it may fail to identify positive scoringsubsequenceswhose
length is smallerthan2w + 1, whereasif it is set too low,
it may fail to reward sequence-pairsthat have relative long
similarsubsequences.

To overcomethisproblem,wedevelopedakernel,referred
to asBV-PSSM,which is derivedfrom theBF-PSSMkernel
but operateswith variablewidth wmers. In particular, given
a user-suppliedwidth w, it considersthe setof all possible
wmer-pairswhoselengthrangesfrom oneto w, i.e.,

P1...w = P1 ∪ . . . ∪ Pw, (7)

and amongthem, it usesthe greedyschemeemployed by
BF-PSSMto selecta subsetP ′

1...w of wmer-pairsthat form
a high weight matching. The similarity betweenthe pair of
sequencesis thencomputedasfollows:

BV-PSSMX,Y (w) =
X

(wmer(X,i),wmer(Y,j))∈P′
1...w

wscoreX,Y (i, j). (8)

Sincefor eachpositionof X (andY ),P ′

1...w is constructedby
includingthehighestscoringwmer for i thatdoesnotconflict
with the previous selections,this schemecanautomatically
selectthehighestscoringwmer whoselengthcanvary from
oneupto w; thus,achieving thedesiredeffect.

2.5 Local Alignment-based Kernels
(SW-PSSM)

The secondclassof profile-basedkernelsthat we examine
computethesimilarity betweena pairof sequencesX andY

by findinganoptimalalignmentbetweenthemthatoptimizes
a particularscoringfunction. Therearethreegeneralclasses
of optimalalignment-basedschemesthatarecommonlyused
to compareprotein sequences.Theseare basedon global,
local, andglobal-local(alsoknown asend-spacefree)align-
ments[7]. Ourexperimentswith all of theseschemesindicate
thatthosebasedonoptimallocalalignments(alsoreferredto
asSmith-Watermanalignments[28]) tendto producesome-
what betterresults. For this reasonwe usethis methodto
derive aprofile-basedalignmentkernel,which is referredto
asSW-PSSM.

Given two sequencesX andY of lengthsn andm, re-
spectively, theSW-PSSMkernelcomputestheir similarity as
the scoreof the optimal local alignmentin which the sim-
ilarity betweentwo sequencepositionsis determinedusing
theprofile-to-profilescoringschemeof Equation2, andapo-
sition independentaffine gapmodel.Theactualalignmentis
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computedusingtheO(nm) dynamicprogrammingalgorithm
developedby Gotoh[4].

Within this local alignment framework, the similarity
scorebetweena pair of sequencesdependson the partic-
ular valuesof the affine gap model (i.e., gap-opening(go)
andgap-extension(ge) costs)andtheintrinsiccharacteristics
of the profile-to-profilescoringscheme. In order to obtain
meaningfullocal alignments,thescoringschemethatis used
shouldproducealignmentswhosescoremuston averagebe
negativewith themaximumscorebeingpositive[28]. A scor-
ing systemwhoseaveragescoreis positive will tendto pro-
ducevery long alignments,potentiallycoveringsegmentsof
low biologically relevantsimilarity. On theotherhand,if the
scoringsystemcannoteasilyproducealignmentswith posi-
tivescores,thenit mayfail to identify any non-emptysimilar
subsequences.

To ensurethattheSW-PSSMkernelcancorrectlyaccount
for the characteristicsof the scoringsystem,we modify the
profile-to-profilescorescalculatedfromEquation2 by adding
a constantvalue. This scheme,commonly referredto as
zero-shifting[30], ensuresthat theresultingalignmentshave
scoresthat on the averageare negative while allowing for
positivemaximumscores.In ourscheme,theamountof zero-
shifting,denotedby zs, is keptfixedfor all pairsof sequences,
asa limited numberof experimentswith sequence-pairspe-
cific zsvaluesdid notproduceany betterresults.

2.6 From Similarity Measures to Mercer Ker-
nels

Any function can be used as a kernel as long as for
any numbern and any possibleset of distinct sequences
{X1, . . . , Xn}, the n × n Grammatrix definedby Ki,j =

K(Xi, Xj) is symmetricpositive semidefinite.Thesefunc-
tions are said to satisfy Mercer’s conditionsand are called
Mercerkernels,or simplyvalid kernels.

The similarity basedfunctionsdescribedin the previous
sectionscanbeusedaskernelfunctionsby settingK(Xi, Xj)

to be equal to one of AF-PSSMXi,Xj, BF-PSSMXi,Xj
,

BV-PSSMXi,Xj
, or SW-PSSMXi,Xj

. However, theresulting
functionswill notnecessarilyleadto valid Mercerkernels.

To overcomethisproblemweusedtheapproachdescribed
in [26] to convert a symmetricfunctiondefinedon thetrain-
ing set instancesinto positive definite by addingto the di-
agonalof the training Grammatrix a sufficiently large non-
negative constant. Specifically, for each similarity-based
trainingGrammatrix, we found its smallestnegative eigen-
valueandsubtractedit from thediagonal.Theresultingker-
nel matrix is identicalto thesimilarity-basedGrammatrix at
all positionsexpectthosealongthe maindiagonal.We also
experimentedwith the empirical kernelmap approachpro-
posedin [27], but we find that the eigenvalue-basedscheme
producedsuperiorresults.

3 Experimental Design

3.1 Dataset Description

We evaluatedthe classificationperformanceof the profile-
basedkernelsonasetof proteinsequencesobtainedfrom the
SCOP(StructuralClassificationof Proteins)database[22].
Weformulatedtwo differentclassificationproblems.Thefirst
wasdesignedto evaluatethe performanceof the algorithms
for the problemof homologydetectionwhenthe sequences
havelow sequencesimilarities(i.e.,theremotehomologyde-
tectionproblem),whereasthesecondwasdesignedto evalu-
atetheextentto which theprofile-basedkernelscanbeused
to identify the correctfold when thereare no apparentse-
quencesimilarities(i.e., thefold detectionproblem).

3.1.1 Remote Homology Detection (Superfamil y
Detection). Within thecontext of theSCOPdatabase,re-
motehomologydetectionwassimulatedby formulatingit as
a superfamily classificationproblem. The samedatasetand
classificationproblems2 have beenusedin a numberof ear-
lier studies[19, 11, 26] allowingusto performdirectcompar-
isonsontherelativeperformanceof thevariousschemes.The
dataconsistedof 4352sequencesfrom SCOPversion1.53
extractedfrom theAstraldatabase,groupedinto familiesand
superfamilies. Thedatasetwasprocessedso that it doesnot
containany sequencepairswith anE-valuethresholdsmaller
than10−25. For eachfamily, theproteindomainswithin the
family were consideredpositive test examples,and protein
domainswithin the superfamily but outsidethe family were
consideredpositive trainingexamples.This yielded54 fami-
lies with at least10 positive trainingexamplesand5 positive
testexamples.Negative examplesfor thefamily werechosen
from outsideof the positive sequences’fold, andwereran-
domlysplit into trainingandtestsetsin thesameratio asthe
positive examples.

3.1.2 Fold Detection. Employingthesamedatasetand
overall methodologyas in remotehomologydetection,we
simulatedfold detectionby formulatingasa fold classifica-
tion within the context of SCOP’s hierarchicalclassification
scheme.In this setting,proteindomainswithin thesamesu-
perfamily were consideredto be as positive test examples,
and protein domainswithin the samefold but outsidethe
superfamily were consideredas positive training examples.
This yielded23 superfamilieswith at least10 positive train-
ing and 5 positive test examples. Negative examplesfor
thesuperfamily werechosenfrom outsideof thepositive se-
quences’fold and split equally into test and training sets3.
Sincethe positive testandtraining instancesweremembers
of differentsuperfamilieswithin thesamefold, thisnew prob-

2The datasetand classification problem definitions are available at
http://www.cs.columbia.edu/compbio/svm-pairwise.

3The classification problem definitions are available at
http://bioinfo.cs.umn.edu/supplements/remote-homology/.
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lem is significantlyharderthanremotehomologydetection,
as the sequencesin the differentsuperfamiliesdid not have
any apparentsequencesimilarity [22].

3.2 Profile Generation

The positionspecificscoreandfrequency matricesusedby
the profile-basedscoringmethodof Equation2 were gen-
eratedusingthe latestversionof the PSI-BLAST algorithm
(available in NCBI’s blast release2.2.10), and were de-
rived from the multiple sequencealignmentconstructedaf-
ter five iterationsusing an e value of 10−3 (i.e., we used
blastpgp -j 5 -e 0.001). ThePSI-BLASTwasper-
formedagainstNCBI’s nr databasethat wasdownloadedin
Novemberof 2004andcontained2,171,938sequences.

3.3 SVM Learning

We use the publicly available supportvector machinetool
SVMlight [13] that implementsan efficient soft margin op-
timization algorithm. Following the approachusedby the
LA-K ernel [26], for any given positive semi-definitekernel
GrammatrixK(., .) to betested,wefirst normalizethepoints
to unit normin thefeaturespaceandseparatethemfrom the
origin by addingaconstant,thatis, weconstructthekernel

K′(X, Y ) =
K(X, Y )

p

K(X, X)K(Y, Y )
+ 1, (9)

whichis thenprovidedasinputtoSVMlight. Notethatunlike
previouswork [12, 19, 26], wedonotperformany additional
class-dependentkernel regularizationto accountfor classes
of differentsize. Thus, the resultsreportedfor the kernels
that we developedcanpotentiallybe further improvedafter
suchregularizations.

3.4 Evaluation Methodology

Wemeasuredthequalityof themethodsby usingthereceiver
operatingcharacteristic(ROC)scores,theROC50scores,and
themedianrateof falsepositives(mRFP).TheROC scoreis
the normalizedareaundera curve that plots true positives
againstfalse positives for different possiblethresholdsfor
classification[6]. TheROC50scoreis theareaundertheROC
curve up to thefirst 50 falsepositives. Finally, themRFPis
the numberof falsepositivesscoringashigh or betterthan
themedian-scoringtruepositives.

Among theseevaluationmetrics,dueto the fact that the
positive classis substantiallysmallerthanthenegativeclass,
the ROC50 is consideredto be the most usefulmeasureof
performancefor real-world applications[6]. For this reason,
our discussionsin the restof this sectionwill primaryfocus
onROC50-basedcomparisons.

Table1: Comparativeperformanceof thewindow-basedker-
nel functionsthatrely onsequenceprofiles.

Superfamily-level Fold-level

Kernel ROC ROC50 mRFP ROC ROC50 mRFP

AF-PSSM(1) 0.965 0.692 0.022 0.851 0.275 0.143
AF-PSSM(2) 0.978 0.816 0.013 0.909 0.338 0.075
AF-PSSM(3) 0.976 0.833 0.014 0.904 0.340 0.080
AF-PSSM(4) 0.956 0.816 0.019 0.9110.374 0.067

BF-PSSM(1) 0.967 0.794 0.025 0.906 0.359 0.082
BF-PSSM(2) 0.980 0.854 0.015 0.928 0.419 0.059
BF-PSSM(3) 0.977 0.853 0.016 0.918 0.408 0.069
BF-PSSM(4) 0.965 0.830 0.031 0.918 0.414 0.060

BV-PSSM(1) 0.965 0.808 0.027 0.900 0.423 0.088
BV-PSSM(2) 0.973 0.855 0.018 0.927 0.475 0.052
BV-PSSM(3) 0.966 0.851 0.022 0.936 0.480 0.046
BV-PSSM(4) 0.963 0.850 0.026 0.9410.481 0.043

Theparameterassociatedwith eachkernelcorrespondsto thewidth of thewmer used
to definethekernel. TheROC50of the bestperformingvalueof w for eachkernelis
shown in bold,andtheoverall bestROC50is alsounderlined.

4 Results

4.1 Performance of the Windo w-based Ker-
nels

Table 1 summarizesthe performanceachieved by the
window-basedkernels for the superfamily- and fold-level
classificationproblemsacrossa rangeof w values.

Theseresultsshow thatfor boththesuperfamily- andfold-
level classificationproblems,the BV-PSSMkernelachieves
the bestresults,the AF-PSSMkernel tendsto perform the
worst, whereasthe BF-PSSMkernel’s performanceis be-
tweenthesetwo. In thecaseof superfamily classification,the
performanceadvantageof BV-PSSMover thatof BF-PSSM
is relatively small,whereasin thecaseof fold classification,
theformerhasaclearadvantage.It achievesanROC50value
that is on average16.3%betteraccrossthedifferentwindow
lengths.

Comparingthe sensitivity of the threeschemesbasedon
thevalueof w, we seethat,asexpected,their performanceis
worsefor w = 1, as they only considerwmersof length3,
andtheir performanceimproves asthevalueof w increases.
In general,the BV-PSSMkernel performsbetterfor larger
windows,whereastheperformanceof theotherkernelstends
to degrademorerapidlyasthelengthof thewindow increases
beyonda point. Again, this result is consistentwith the de-
sign motivation behindthe BF-PSSMkernel. Also, the re-
sultsshow that the bestvalueof w is alsodependenton the
particularclassificationproblem. For mostkernels,the best
resultsfor fold classificationwereobtainedwith longerwin-
dowscomparedto thesuperfamily classification.

To see the effect of using sequenceprofiles, we per-
formed a sequenceof classificationexperimentsin which
we usedthesamesetof window-basedkernelfunctions,but
insteadof scoring the similarity betweentwo amino acids
using the profile-basedscheme(Equation2), we usedthe

6



Table2: Comparativeperformanceof thewindow-basedker-
nel functionsthatrely onBLOSUM62.

Superfamily-level Fold-level

Kernel ROC ROC50 mRFP ROC ROC50 mRFP

AF-GSM(1) 0.906 0.403 0.068 0.720 0.093 0.288
AF-GSM(2) 0.921 0.461 0.055 0.739 0.118 0.255
AF-GSM(6) 0.926 0.549 0.048 0.7700.197 0.217
AF-GSM(7) 0.923 0.557 0.056 0.777 0.192 0.210

BF-GSM(1) 0.904 0.488 0.071 0.803 0.166 0.177
BF-GSM(2) 0.923 0.584 0.064 0.808 0.189 0.162
BF-GSM(6) 0.934 0.669 0.053 0.822 0.240 0.157
BF-GSM(7) 0.933 0.665 0.056 0.812 0.236 0.178

BV-GSM(1) 0.906 0.486 0.070 0.808 0.167 0.176
BV-GSM(2) 0.919 0.571 0.064 0.808 0.182 0.166
BV-GSM(6) 0.930 0.666 0.052 0.840 0.242 0.140
BV-GSM(7) 0.929 0.658 0.054 0.8450.244 0.133

Theparameterassociatedwith eachkernelcorrespondsto thewidth of thewmer used
to definethekernel. TheROC50of the bestperformingvalueof w for eachkernelis
shown in bold,andtheoverall bestROC50is alsounderlined.

BLOSUM62 position-independentscoringmatrix. The re-
sultsobtainedfrom theseexperimentsaresummarizedin Ta-
ble 2. In this table,AF-GSM, BF-GSM,andBV-GSM refer
to the BLOSUM62-variantsof the correspondingwindow-
basedkernels(GSM standsfor globalscoringmatrix).

Theseresultsclearly illustratethe advantageof usingse-
quenceprofilesin designingkernelfunctionsfor bothremote
homologydetectionandfold recognition.Theprofile-based
kernelfunctionsachieve significantimprovementsover their
non-profilecounterpartsacrossall differentkernelfunctions,
classificationproblems,andmetrics.

Comparingthe performanceof the profile-basedkernel
functions acrossthe two classificationproblems, we see
thattheir overall effectivenessin remotehomologydetection
(superfamily-level classification)is muchhigherthanthatof
fold recognition. This result is in line with the underlying
complexity of the classificationproblem,as the sequence-
basedsignalsfor fold recognitionareextremelyweak. This
is alsomanifestedby the relative improvementachieved by
the profile-basedkernel functions over their BLOSUM62-
basedcounterparts(Tables1 and 2). For fold recognition,
theROC50valuesof theprofile-basedkernelsarehigherthan
thosebasedon BLOSUM62by a factorof two, whereasfor
remotehomologyprediction,the relative ROC50valuesare
higherby 25%–30%.

In light of the previously published results on LA-
Kernels[26], thebetterresultsachievedby theBF-PSSMand
BV-PSSMkernelsover thoseachievedby theAF-PSSMker-
nel (which also hold for their correspondingBLOSUM62-
basedinstancesof thesekernels)weresurprising.Oneexpla-
nationfor this discrepancy maybethefact thatour window-
basedkernels consideronly short-lengthungappedalign-
ments,and the resultsmay be differentwhen longeralign-
mentswith gapsareconsideredaswell.

Table 3: Comparative performanceof the local alignment-
basedkernelfunctionsthatrely onsequenceprofiles.

Superfamily-level Fold-level

Kernel ROC ROC50 mRFP ROC ROC50 mRFP

2.0,0.125, 0.0 0.972 0.784 0.014 0.867 0.377 0.111
2.0,0.250, 0.0 0.972 0.791 0.014 0.873 0.334 0.114
3.0,0.125, 0.0 0.971 0.796 0.013 0.860 0.382 0.133
3.0,0.250, 0.0 0.960 0.771 0.027 0.852 0.395 0.138
3.0,0.750, 1.5 0.982 0.904 0.015 0.933 0.530 0.052
3.0,0.750, 2.0 0.979 0.901 0.017 0.9360.571 0.054

Thethreeparametersfor eachkernelcorrespondto thevaluesfor thegapopening,gap
extension,andzero-shiftparameters,respectively. TheROC50of the bestperforming
schemeis underlined.

4.2 Performance of the Local Alignment-
based Kernels

Table 3 summarizesthe performanceachieved by the opti-
mal local alignment-basedkernel for the superfamily- and
fold-level classificationproblemsacrossa representative set
of valuesfor the gap-opening,gap-extension,andzero-shift
parameters.Theseparametervalueswereselectedafterper-
forming a study in which the impact of a large numberof
value combinationswas experimentallystudied,and repre-
sentsomeof thebestperformingcombinations.Dueto space
constraints,thisparameterstudyis not includedin thispaper.

Themoststrikingobservationfrom theseresultsis thema-
jor impactthatthezero-shiftparameterhasto theoverallclas-
sificationperformance.For both the superfamily- andfold-
level classificationproblems,thebestresultsareobtainedby
theSW-PSSMkernelfor which thezeroshift parameterhas
beenconsideredandoptimized(i.e., the resultscorrespond-
ing to thelasttwo rowsof Table3).

Comparing the classification performance of the
SW-PSSM kernel against the window-based kernels
(Table 1) we see that the zero-shift optimized SW-PSSM
kernel leads to better results than those obtainedby the
window-basedkernels. Moreover, the relative performance
advantageof SW-PSSMis higher for fold recognitionover
the superfamily classificationproblem. However, if the
SW-PSSMkerneldoesnot optimizethezero-shiftparameter
(i.e., zs = 0.0), the window-basedkernels consistently
outperformthe SW-PSSM kernel. We also performeda
limited numberof experimentsto seetheextentto which the
performanceof the window-basedkernelscanbe improved
by explicitly optimizingthezero-shiftparameterfor themas
well. Our preliminaryresultsshow thatthesekernelsarenot
significantly affectedby suchoptimizations. However, we
arein theprocessof furtherinvestigatingits impact.

To alsoseethe impactof sequenceprofilesin thecontext
of kernelsderived from optimal local alignments,we evalu-
atedtheclassificationperformanceof asetof kernelfunctions
thatcomputetheoptimallocal sequencealignmentusingthe
BLOSUM45andBLOSUM62aminoacidscoringmatrices.
Table4 shows someof theresultsobtainedwith thesekernel
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Table 4: Comparative performanceof the local alignment-
basedkernel functionsthat rely on BLOSUM45 andBLO-
SUM62.

Superfamily-level Fold-level

Kernel ROC ROC50 mRFP ROC ROC50 mRFP

B45,3.0,0.0 0.944 0.686 0.037 0.809 0.165 0.169
B45,10.0,0.0 0.940 0.687 0.042 0.789 0.200 0.185
B62,3.0,0.0 0.947 0.686 0.038 0.781 0.188 0.217
B62,10.0,0.0 0.912 0.599 0.060 0.781 0.182 0.185
B62,5.0,0.5 0.948 0.711 0.039 0.826 0.223 0.176
B62,5.0,1.0 0.946 0.711 0.038 0.808 0.214 0.155

Thethreeparametersfor eachkernelcorrespondto theparticularglobalscoringmatrix
(B45for BLOSUM45andB62for BLOSUM62)andthevaluesfor thegapopeningand
zero-shiftparameters,respectively. In all cases,thegapextensioncostwassetto 1.0.
TheROC50of thebestperformingschemeis underlined.

functionsfor a representative setof valuesfor thegapopen-
ing, gapextension,andzero-shiftparameters.

Comparingtheresultsof Table4 with thoseof Table3 we
seethat,aswasthecasewith thewindow-basedkernels,in-
corporatingprofile informationleadsto significantimprove-
mentsin theoverall classificationperformance.In addition,
theseresultsshow that(i) thewidely usedvaluefor thegap-
openingcost(go = 10) is not necessarilythebestfor either
remotehomologydetectionor fold recognition,and(ii) the
classificationperformanceachieved by local alignmentker-
nelsderivedfrom theBLOSUM matricescanbefurther im-
proved by explicitly optimizing the zero-shiftparameteras
well.

4.3 Comparisons with Other Schemes

Tables5 and6 comparetheperformanceof thevariouskernel
functionsdevelopedin this paperagainstthat achievedby a
numberof previouslydevelopedschemesfor thesuperfamily-
and fold-level classificationproblems,respectively. In the
case of the superfamily-level classificationproblem, the
performanceis comparedagainstSVM-Fisher [12], SVM-
Pairwise[19], anddifferentinstancesof theLA-K ernel[26],
SVM-HMMSTR [11], Mismatch[18], andProfile [16]. In
thecaseof the fold-level classificationproblem,we only in-
cluderesultsfor theLA-K ernelandProfileschemes,asthese
resultscould be easilyobtainedfrom the publicly available
dataand programsfor theseschemes.(Obtainingcompar-
ative performancenumbersfor the otherkernelfunctionsis
currentlyunderway.)

Theresultsin thesetablesshow thatboththewindow- and
local alignment-basedkernelsderived from sequencepro-
files (i.e.,AF-PSSM,BF-PSSM,BV-PSSM,andSW-PSSM)
leadto resultsthat arein generalbetterthanthoseobtained
by existing schemes. Comparingthe ROC50 values ob-
tainedby our schemes,we seethat eachone of them out-
performsall existing schemes.The performanceadvantage
of thesekernelsis greaterover existing schemesthat rely
on sequenceinformation alone (e.g., SVM-Pairwise, LA-
Kernels),but still remainssignificantwhencomparedagainst

Table 5: Comparisonagainst different schemesfor the
superfamily-level classificationproblem.

Kernel ROC ROC50 mRFP

SVM-Fisher 0.773 0.250 0.204
SVM-Pairwise 0.896 0.464 0.084
LA-eig(β = 0.2) 0.923 0.661 0.064
LA-eig(β = 0.5) 0.925 0.649 0.054
SVM-HMMSTR-Ave – 0.640 0.038
Mismatch 0.872 0.400 0.084
Profile(4,6) 0.974 0.756 0.013
Profile(5,7.5) 0.980 0.794 0.010

AF-PSSM(2) 0.978 0.816 0.013
BF-PSSM(2) 0.980 0.854 0.015
BV-PSSM(2) 0.973 0.855 0.018
SW-PSSM(3.0,0.750,1.50) 0.982 0.904 0.015
AF-GSM(6) 0.926 0.549 0.048
BF-GSM(6) 0.934 0.669 0.053
BV-GSM(6) 0.930 0.666 0.052
SW-GSM(B62,5.0,1,0.5) 0.948 0.711 0.039

TheSVM-Fisher, SVM-Pairwise,LA-K ernel,andMismatchresultswereobtainedfrom
[26]. TheSVM-HMMSTR resultswereobtainedfrom [11] andcorrespondto thebest-
performingscheme(the authorsdid not reportROC values).The Profile resultswere
obtainedlocally by running the publicly available implementationof the schemeob-
tainedfrom the authors. The ROC50valueof the bestperformingschemehasbeen
underlined.

schemesthat eitherdirectly take into accountprofile infor-
mation(e.g.,SVM-Fisher, Profile)or utilize higher-level fea-
tures derived by analyzingsequence-structureinformation
(e.g.,SVM-HMMSTR). Also, the relative advantageof our
profile-basedmethodsover existing schemesis greaterfor
the much harderfold-level classificationproblemover the
superfamily-level classificationproblem. For example, the
SW-PSSMschemeachieves ROC50 valuesthat are 13.8%
and 81.8% better than the best valuesachieved by exist-
ing schemesfor thesuperfamily- andfold-level classification
problems,respectively.

To geta betterunderstandingof the relative performance
of thevariousschemesacrossthedifferentclasses,Figures1
and2 plot thenumberof classeswhoseROC50wasgreater
thana given thresholdthat rangesfrom 0 to 1. Specifically,
Figure1 shows the resultsfor the remotehomologydetec-
tion problem,whereasFigure2 shows theresultsfor thefold
detectionproblem. (Note that thesefigurescontainonly re-
sultsfor theschemesthatwewereableto run locally). These
resultsshow that our profile-basedmethodslead to higher
ROC50 valuesfor a greaternumberof classesthan either
the Profile or LA-kernels,especiallyfor larger ROC50val-
ues(e.g. in the rangeof 0.6 to 0.95). Also, the SW-PSSM
tendsto consistentlyoutperformtherestof theprofile-based
directkernelmethods.

In addition, the resultsfor the BF-GSM, BV-GSM, and
SW-GSMkernelsthatrely ontheBLOSUM scoringmatrices
show thatthesekernelfunctionsarecapableof producingre-
sultsthataresuperiorto all of theexisting non-profile-based
schemes. In particular, the properly optimized SW-GSM
schemeis ableto achieve significantimprovementsover the
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Figure1: Comparisonof the differentSVM-basedmethods
for remotehomologydetectionontheSCOP1.53benchmark
dataset. The graphplots the total numberof families for
whichagivenmethodexceedsanROC-50scorethreshold.

Table6: Comparisonagainstdifferentschemesfor the fold-
level classificationproblem.

Kernel ROC ROC50 mRFP

LA-eig(β = 0.2) 0.847 0.212 0.129
LA-eig(β = 0.5) 0.771 0.172 0.193
Profile(4,6) 0.912 0.305 0.071
Profile(5,7.5) 0.924 0.314 0.069

AF-PSSM(4) 0.911 0.374 0.067
BF-PSSM(4) 0.918 0.414 0.060
BV-PSSM(4) 0.941 0.481 0.043
SW-PSSM(3.0,0.750,2.0) 0.936 0.571 0.054
AF-GSM(6) 0.770 0.197 0.217
BF-GSM(6) 0.822 0.240 0.157
BV-GSM(7) 0.845 0.244 0.133
SW-GSM(B62,5,1.0,0.5) 0.826 0.223 0.176

Theresultsfor theLA-K ernelwereobtainedusingthepublicly availablekernelmatrices
that areavailableat the author’s website.TheProfile resultswereobtainedlocally by
runningthepublicly availableimplementationof theschemeobtainedfrom theauthors.
TheROC50valueof thebestperformingschemehasbeenunderlined.

bestLA-K ernel-basedscheme(7.6% higher ROC50 value)
and the bestSVM-HMMSTR-basedscheme(15.1%higher
ROC50value).

5 Discussion and Conc lusion

This paperpresentedand experimentallyevaluateda num-
berof kernelfunctionsfor proteinsequenceclassificationthat
werederivedby consideringexplicit measuresof profile-to-
profile sequencesimilarity. The experimentalevaluationin
the context of a remotehomologypredictionproblemanda
fold recognitionproblemshow that thesekernelsare capa-
bleof producingsuperiorclassificationperformanceoverthat
producedby earlierschemes.

Threemajor observationscan be madeby analyzingthe
performanceachieved by the variouskernel functionspre-
sentedin this paper. First, as was the casewith a num-
berof studieson theaccuracy of proteinsequencealignment
[21, 30, 20], theproperuseof sequenceprofilesleadto dra-
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Figure2: Comparisonof the differentSVM-basedmethods
for fold detectionon theSCOP1.53benchmarkdataset.The
graphplots the total numberof superfamilies for which a
givenmethodexceedsanROC-50scorethreshold.

matic improvementsin the overall ability to detectremote
homologsandidentify proteinsthatsharethesamestructural
fold. Second,kernelfunctionsthatareconstructedby directly
taking into accountthe similarity betweenthe variouspro-
tein sequencestendto outperformschemesthatarebasedon
a feature-spacerepresentation(whereeachdimensionof the
spaceis constructedasoneof k-possibilitiesin a k-residue
longsubsequenceorusingstructuralmotifs(Isites)in thecase
of SVM-HMMSTR). This is especiallyevident by compar-
ing the relative advantageof thewindow-basedkernelsover
the Profile kernel. Third, time-testedmethodsfor compar-
ing proteinsequencesbasedon optimal local alignments(as
well as global and local-globalalignments),whenproperly
optimizedfor theclassificationproblemat hand,leadto ker-
nel functionsthat are in generalsuperiorto thosebasedon
either short subsequences(e.g., Spectrum,Mismatch,Pro-
file, or window-basedkernel functions)or local structural
motifs (e.g., SVM-HMMSTR). The fact that thesewidely
usedmethodsproducegoodresultsin the context of SVM-
basedclassificationis reassuringas to the validity of these
approachesandtheir ability to capturebiologically relevant
information.
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