
Discovering Frequent Geometric Subgraphs

Technical Report

Department of Computer Science

and Engineering

University of Minnesota

4-192 EECS Building

200 Union Street SE

Minneapolis, MN 55455-0159 USA

TR 04-039

Discovering Frequent Geometric Subgraphs

Michihiro Kuramochi and George Karypis

October 21, 2004

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
21 OCT 2004 2. REPORT TYPE

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Discovering Frequent Geometric Subgraphs

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Army Research Laboratory,2800 Powder Mill
Road,Adelphi,MD,20783-1197

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

32

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Discovering Frequent Geometric Subgraphs ⋆

Michihiro Kuramochi 1 and George Karypis 2

Department of Computer Science & Engineering,
Digital Technology Center & Army HPC Research Center

University of Minnesota, MN 55455, USA

Abstract

Data mining-based analysis methods are increasingly being applied to datasets de-
rived from science and engineering domains that model various physical phenomena
and objects. In many of these datasets, a key requirement for their effective analysis
is the ability to capture the relational and geometric characteristics of the underly-
ing entities and objects. Geometric graphs, by modeling the various physical entities
and their relationships with vertices and edges, provide a natural method to rep-
resent such datasets. In this paper we present gFSG, a computationally efficient
algorithm for finding frequent patterns corresponding to geometric subgraphs in a
large collection of geometric graphs. gFSG is able to discover geometric subgraphs
that can be rotation, scaling, and translation invariant, and it can accommodate
inherent errors on the coordinates of the vertices. We evaluated its performance
using a large database of over 20,000 chemical structures, and our results show that
it requires relatively little time, can accommodate low support values, and scales
linearly with the number of transactions.

Key words: graph mining; pattern discovery; geometric subgraphs

⋆ This work was supported by NSF CCR-9972519, EIA-9986042, ACI-9982274,
ACI-0133464 and ACI-0312828, by Army Research Office contract DA/DAAG55-98-
1-0441, by the DOE ASCI program, by the Army High Performance Computing Re-
search Center (AHPCRC) under the auspices of the Department of the Army, Army
Research Laboratory (ARL) under Cooperative Agreement numbers DAAH04-95-
C-0008 and DAAD19-01-2-0014, and by the Digital Technology Center at the Uni-
versity of Minnesota. The content of which does not necessarily reflect the position
or the policy of the government, and no official endorsement should be inferred.
Access to research and computing facilities was provided by the Digital Technology
Center and the Minnesota Supercomputing Institute.
1 Email: kuram@cs.umn.edu.
2 Corresponding author. Email: karypis@cs.umn.edu.

Preprint submitted to Elsevier Science 24 June 2004

1 Introduction

Efficient algorithms for finding frequent itemsets—both sequential and non-
sequential—in very large transaction databases have been one of the key suc-
cess stories of data mining research [3,2,54,19,4,51]. Over the years, these
frequent patterns have been used extensively to discover association rules, to
extract prevalent patterns that exist in the datasets, and to build effective clus-
tering and classification algorithms. Nevertheless, as data mining techniques
have been increasingly applied to non-traditional domains, such as scientific,
spatial and relational datasets, situations tend to occur in which we can not ap-
ply existing itemset discovery algorithms, because these problems are difficult
to be adequately and correctly modeled with the traditional market-basket
transaction approaches.

In recent years, labeled topological graphs have emerged as a promising ab-
straction to capture the characteristics of these datasets [32,22,26,30,25,27,35,17,28].
In this approach, each object to be mined is represented via a separate graph
or the entire set of objects and their relations are represented via a single large
graph. The vertices of these graphs correspond to the entities in the objects
and the edges correspond to the relations between them. This graph-based
modeling can directly capture many of the sequential, topological, and other
relational characteristics of scientific datasets and allow us to solve problems
that we could not solve previously. For example, graphs can be used to di-
rectly model the key topological characteristics of chemical structures (e.g.,
chemical compounds, protein molecules, etc.). Vertices in these graphs will
correspond to different atoms or amino acids and the edges will correspond
to atoms connected via bonds, or amino acids that are connected in the pro-
tein’s backbone or are connected via non-covalent bonds (i.e., contact points)
in their 3D structure.

This paper focuses on the problem of finding frequently occurring geomet-
ric patterns in geometric graphs—graphs whose vertices have two- or three-
dimensional coordinates associated with them. These patterns correspond to
geometric subgraphs that are embedded in a sufficiently large number of
graphs. Datasets arising in many scientific domains often contain such ge-
ometric information and any patterns discovered in them are of interest if
they preserve both the topological and the geometric nature of the pattern.
A prototypical example of such patterns are the two- and three-dimensional
pharmacophores, which are used extensively in virtual screening methods for
drug design [7,20,6]. These patterns correspond to certain chemical substruc-
tures that are present in chemical compounds and whose conserved geometry
is critical for the compound’s ability to bind to a particular drug target.

Despite the importance of the problem, there has been limited work in develop-

2

ing general purpose algorithms to find such patterns as most of the existing re-
search has focused on finding patterns only in topological graphs [30,25,17,29,48,8,49,23].
The notable exceptions are the work by Wang et al. proposed several al-
gorithms for automated finding of interesting substructures in chemical or
biomolecule domain [43,41] and the work by Chew et al. that proposed an
approach to find common substructures in protein sequences using root mean
squared (RMS) distance minimization [9]. However, these approaches are ei-
ther computationally too expensive or they find a restricted set of geometric
subgraphs.

In this paper we present an algorithm called gFSG that is capable of finding
frequently occurring geometric subgraphs in a large database of graph trans-
actions. The key characteristic of gFSG is that it allows for the discovery
of geometric subgraphs that can be rotation, scaling and translation invari-
ant. Furthermore, to accommodate inherent errors on the coordinates of the
vertices (either due to experimental measurements or floating point round-
off errors), it allows for patterns in which the coordinates can match with
some degree of tolerance. gFSG uses a pattern discovery framework, which
follows the level-by-level approach made popular by the Apriori [3] algorithm,
and incorporate numerous computationally efficient algorithms for (i) com-
puting isomorphism between geometric subgraphs that are rotation, scaling
and translation invariant, (ii) candidate generation, and (iii) frequency count-
ing. In addition, gFSG incorporates an iterative pattern shape optimization
algorithm whose goal is to identify the geometric shape of patterns that lead
to the highest support. Experimental results using a large database of over
20,000 chemical structures show that gFSG requires relatively little time,
can accommodate low support values, and scales linearly on the number of
transactions.

The rest of this paper is organized as follows. Section 2 provides some back-
ground definitions and introduces the notation that is used through-out the
paper. Section 3 formally defines the problem solved in this paper and dis-
cusses the various challenges associated with it. Section 4 surveys the related
research in this area. Section 5 provides a detailed description of gFSG and
the various algorithms used for subgraph isomorphism, candidate generation,
and frequency counting. Section 6 presents a detailed experimental evaluation
on a variety of chemical compound datasets. Finally, Section 7 provide some
concluding remarks and discusses future research directions.

2 Definitions and Notation

A graph g = (V, E) is made of two sets, the set of vertices V and the set of
edges E. Each vertex v ∈ V has a label l(v) ∈ LV , and each edge e ∈ E is

3

an unordered pair of vertices uv where u, v ∈ V . Each edge also has a label
l(e) ∈ LE . LE and LV denote the sets of edge and vertex labels, respectively.
These edge- and vertex-labels are not necessarily unique. That means more
than one edge or vertex may have the same label. If each vertex v ∈ V of the
graph has coordinates associated with it, in either the two or three dimensional
space, we call it a geometric graph. We will denote the coordinates of a vertex
v by c(v).

Two graphs g1 = (V1, E1) and g2 = (V2, E2) are isomorphic, denoted by g1 ∼
g2, if they are topologically identical to each other, i.e., there is a bijection
φ : V1 �→ V2 with e = xy ∈ E1 ↔ φ(x)φ(y) ∈ E2 for every edge e ∈ E1 where
x, y ∈ V1. In the case of labeled graphs, this mapping must also preserve
the labels on the vertices and edges, that means for every vertex v ∈ V ,
l(v) = l(φ(v)) and for every edge e = xy ∈ E, l(xy) = l(φ(x)φ(y)). A graph
g = (V, E) is called automorphic if g is isomorphic to itself via a non-identity
mapping. Given two graphs g1 = (V1, E1) and g2 = (V2, E2), the problem of
subgraph isomorphism is to find an isomorphism between g2 and a subgraph
of g1, i.e., to determine whether or not g2 is included in g1.

The notion of isomorphism and automorphism can be extended for the case of
geometric graphs as well. A simple way of defining geometric isomorphism be-
tween two geometric graphs g1 and g2 is to require that there is an isomorphism
φ that in addition to preserving the topology and the labels of the graph, to
also preserve the coordinates of every vertex. However, since the coordinates
of the vertices depend on the particular reference coordinate axes, the above
definition is of limited interest. Instead, it is more natural to define geometric
isomorphism that allows homogeneous transforms on those coordinates, prior
to establishing a match. For the purpose of our work, we consider three basic
types of geometric transformations: rotation, scaling and translation, as well
as, their combination. In light of that, we define that two geometric graphs g1

and g2 are geometrically isomorphic, if there exists an isomorphism φ of g1 and
g2 and a homogeneous transform T , that preserves the coordinates of the cor-
responding vertices, i.e., T (c(v)) = c(φ(v)) for every v ∈ V . In this case, φ is
called a geometric isomorphism between g1 and g2. Geometric automorphism
is defined in an analogous fashion. Figure 1 shows some examples illustrating
this definition. There are four geometric graphs drawn in this two dimensional
example, each of which is a rectangle. Edges are unlabeled and vertex labels
are indicated by their colors. The graphs r1 ∼ r2 if all of the rotation, scaling
and translation are allowed, and r1 ∼ r3 if both rotation and translation are
allowed, and r1 ∼ r4 if translation is allowed.

One of the challenges in using the above definition of geometric graph isomor-
phism is that it requires an exact match of the coordinates of the various ver-
tices. Unfortunately, equivalence of the two sets of coordinates is not straight-
forward. Geometric graphs derived from physical datasets may contain small

4

r2 r3

r4
r1

Fig. 1. Sample isomorphic geometric graphs.

X

Y

r

Fig. 2. Tolerance r.

amounts of error, and in many cases, we are interested in finding geometric
patterns that are similar to, but slightly different from each other. To accom-
modate these requirements, we allow a certain amount of tolerance r when we
establish a match between coordinates. That is, if ‖T (c(v))− c(φ(v))‖ ≤ r for
every v ∈ V , we regard φ as a valid geometric isomorphism. We will refer to the
parameter r as the coordinate matching tolerance. A two dimensional example
is shown in Figure 2. We can think of an imaginary circle or sphere of a radius
r centered at each vertex. After aligning the local coordinate axes of the two
geometric graphs with each other, if a corresponding vertex in another graph
is inside this circle or sphere, we consider that the two vertices are located at
the same position. We will refer to these isomorphisms as r-tolerant geometric

isomorphisms, and will be the type of isomorphisms that will assume for the
rest of this paper.

Finally, a graph is connected if there is a path between every pair of vertices in
the graph. Given a graph g = (V, E), a graph gs = (Vs, Es) will be a subgraph

of g if and only if Vs ⊆ V and Es ⊆ E. In a way similar to isomorphism,
the notion of subgraph can be extended to r-tolerant geometric subgraphs in
which the coordinates match after a particular homogeneous transform T .

5

3 Frequent Geometric Subgraph Discovery—Problem Definition

The input for the frequent geometric subgraph discovery problem is a set of
graphs D, each of which is an undirected labeled geometric graph, a parameter
σ such that 0 < σ ≤ 1.0, a set of allowed geometric transforms out of rotation,
scaling and translation, and a coordinate matching tolerance r. The goal of
the frequent geometric subgraph discovery is to find all connected undirected
geometric graphs that have an r-tolerant geometric subgraph in at least σ|D|%
of the input graphs. We will refer to each of the graphs in D as a geometric

graph transaction or simply a transaction when the context is clear, to D as
the geometric graph transaction database, to σ as the support threshold, and
each of the discovered patterns as the r-tolerant frequent geometric subgraph.

There are four key aspects in the above problem statement. First, we are only
interested in geometric subgraphs that are connected. This is motivated by
the fact that the resulting frequent subgraphs will be encapsulating relations
(i.e., edges) between some of the entities (i.e., vertices) of various objects.
Within this context, connectivity is a natural property of frequent patterns.
An additional benefit of this restriction is that it reduces the complexity of the
problem, as we do not need to consider disconnected combinations of frequent
connected subgraphs.

Second, we allow the graphs to be labeled, and as discussed in Section 2,
each graph (and discovered pattern) can contain vertices and/or edges with
the same label. This greatly increases our modeling ability, as it allows us to
find patterns involving multiple occurrences of the same entities and relations,
but at the same time makes the problem of finding such frequently occurring
subgraphs non-trivial [30]. In such cases, any frequent subgraph discovery
algorithm needs to correctly identify how a particular subgraph maps to the
vertices and edges of each graph transaction and can only be done by solving
many instances of the subgraph isomorphism problem, which has been shown
to be in NP-complete [16].

Third, we allow homogeneous transforms when we find instances of them in
transactions. That is, a pattern can appear in a transaction in a shifted, scaled
or rotated fashion. This greatly increases our ability to find interesting pat-
terns. For instance in many chemical datasets, common substructures are at
different orientation from each other, and the only way to identify them is to
allow for translation and rotation invariant patterns. However, this added flex-
ibility comes at a considerable increase in the complexity of discovering such
patterns, as we need to consider all possible geometric configurations (a com-
bination of rotation, scaling and translation) of a single pattern. For example,
the triangle shown in Figure 3(a) has infinitely many geometric configurations,
some of which are shown in Figure 3(b).

6

(a) A triangle. (b) Samplegeometricconfigurationsof
thesametriangle.

Fig. 3. A triangle and its geometric configurations under rotation and translation.

Fourth, we allow for some degree of tolerance when we try to establish a
matching between the vertex-coordinates of the pattern and its supporting
transaction. Even though this significantly improves our ability to find mean-
ingful patterns and deal with measurement errors and errors due to floating
point operations (that occur when we apply the various geometric transforms),
it dramatically changes the nature of the problem for the following reason. In
traditional pattern discovery problems such as finding frequent itemsets, se-
quential patterns, and/or frequent topological graphs there is a clear definition
of what is the pattern given its set of supporting transactions. On the other
hand, in the case of r-tolerant geometric subgraphs, there are many different
geometric representations of the same pattern (all of which will be r-tolerant
isomorphic to each other). The problem becomes not only that of finding a pat-
tern and its support, but also finding the right representative of this pattern.
Note that this representative can be either an actual instance, or a composite
of many instances. The selection of the right representative can have a seri-
ous impact on correctly computing the support of the pattern. For example,
given a set of subgraphs that are r-tolerant isomorphic to each other, the one
that corresponds to an outlier will tend to have a lower support than the one
corresponding to the center. Thus, the exact solution of the problem of discov-
ering all r-tolerant geometric subgraphs involves a pattern optimization phase
whose goal is to select the right representative for each pattern, such that it
will lead to the largest number of frequent patterns (this is further discussed
in Section 5.5).

4 Related Research

A number of different algorithms have been developed to find frequent patterns
corresponding to frequent topological subgraphs in graph databases. Develop-
ing such algorithms is particularly challenging and their execution is compu-
tationally intensive, as graph and/or subgraph isomorphisms play a key role
throughout the computations. For this reason, a considerable amount of work
has been focused on approximate algorithms [50,22,27,33] that use various
heuristics to prune the search space. However, a number of exact algorithms

7

have been developed [12,30,25,17,29,48,8,39,49,23,31] that are guaranteed to
find all subgraphs that satisfy certain minimum support or other constraints.
Among them, algorithms developed in the last three years [30,25,17,29,48,8,49,23,31],
have been shown to achieve reasonably good performance and scalability. The
enabling factors to the computational efficiency of these schemes have been
(i) the development of efficient candidate subgraph generation schemes that
reduce the number of times the same candidate subgraph is being generated,
(ii) the use of efficient canonical labeling schemes to represent the various sub-
graphs; and (iii) the use of various techniques developed by the data-mining
community to reduce the number of times subgraph isomorphism computa-
tions need to be performed.

Relatively little research has been done for finding frequent subgraphs in ge-
ometric graph databases. The most notable exception is the work by Jason
T. L. Wang et al. [44,40,41,45]. In their most recent work [45], they propose
an algorithm to find frequent substructures from a set of three dimensional
graphs. Their approach starts with identifying blocks, or non-decomposable
rigid substructures, and counts the frequency of them by geometric hash-
ing [46]. By restricting the definition of a pattern to just those blocks, they do
not have to perform any candidate generation. However, this approach cannot
find arbitrary frequent geometric subgraphs and depending on the application
domain, the assumption that the frequent subgraphs will have such block-
based structure may not be applicable. An alternate approach was proposed
by Parthasarathy and Coatney [34] that represents each subgraph as a list of
pairs of vertices associated with a in-between distance. To reduce the size of
vertex pair lists, their approach introduces a cut-off radius and ignores vertex-
pairs with longer distances. To handle errors and noise, it discretizes distances
using an appropriately chosen unit distance, and allows inexact matches using
a technique called recursive fuzzy hashing which acts as a voting scheme.

In addition to the work on frequent subgraph discovery, researchers has re-
cently focused on the related but different problem of mining trees to discover
frequently occurring subtrees [42,5,53,10,47]. In particular, two similar algo-
rithms have been recently developed by Abe et al. [1] and Zaki [53] that op-
erate on rooted ordered trees and find all frequent subtrees. A rooted ordered
tree is a tree in which one of its vertices designated as its root and the order
of branches from every vertex is specified. Because rooted ordered subtrees
are in a special class of graphs, the inherent computational complexity of the
problem is dramatically reduced as both graph and subgraph isomorphism
problems for trees can be solved in polynomial time. Cong et al. [11] also pro-
posed an algorithm to find frequent subtrees from a set of tree transactions,
which allows wildcards on edge- and vertex-labels. Their algorithm first finds
a set of frequent paths which may contain wildcards, allowing inexact match
on both the structure as well as the edge and vertex labels.

8

Finally, recent work on classification has shown that frequent subgraphs found
by those algorithms can be used as effective features for other data mining
tasks (e.g., [13,24]).

5 gFSG—Frequent Geometric Subgraph Discovery Algorithm

To solve the problem of finding the frequently occurring r-tolerant geomet-
ric subgraphs we developed an algorithm called gFSG. gFSG was designed
to operate on a database of geometric graphs (either 2D or 3D) and find all
subgraphs according to the problem statement described in Section 3. gFSG

follows the level-by-level structure of the Apriori algorithm [3] and shares many
characteristics with the previously developed frequent subgraph discovery al-
gorithm for topological graphs [30]. The motivation behind this choice is the
fact that the level-by-level structure of Apriori requires the smallest number of
subgraph isomorphism computations during frequency counting, as it allows
it to take full advantage of the downward closed property of the minimum
support constraint and achieves the highest amount of pruning when com-
pared with the most recently developed depth-first-based approaches such as
dEclat [54], Tree Projection [2], and FPgrowth [19]. In fact, despite the extra
overhead due to candidate generation that is incurred by the level-by-level
approach, recent studies have shown that because of its effective pruning, it
achieves comparable performance with that achieved by the various depth-
first-based approaches, as long as the data set is not dense or the support
value is not extremely small [21,18]. At the same time, the relatively simple
algorithmic structure of this approach, allows us to focus on the non-trivial
aspects of operating on geometric graphs.

To ensure that gFSG can correctly operate on geometric graphs and find
frequent r-tolerant geometric subgraphs the input database must satisfy the
following two conditions. First, the closest distance between any pair of points
in each graph should be at most 2r; second, the database does not contain fre-
quent subgraphs that are 2r-tolerant geometrically isomorphic to each other.
The first condition allows us to efficiently compute geometric isomorphism
between two graphs, whereas the second condition states that the frequent
patterns in order to be distinguished as being different, they have to be rea-
sonably far away from each other. If these conditions are not met, gFSG may
fail to discover some patterns and/or undercount the frequency of some of the
discovered patterns.

In addition gFSG provides two basic approaches for constructing the shape
of the frequent geometric pattern. The first approach uses an arbitrarily se-
lected embedding of a graph as its representative geometric shape, whereas
the second approach employs an iterative shape optimization phase that tries

9

Table 1
Notations used throughout the paper.

Notation Description
D A datasetof graphtransactions
t A graphtransactionin D

k-(sub)graph A (sub)graphwith k edges
gk A k-subgraph
Ck A setof candidateswith k edges
Fk A setof frequentk-subgraphs

to greedily select as its representative, a geometric shape that will maximize
the frequency of the corresponding subgraph. These two approaches provide
different performance-coverage trade-offs. The first approach is faster but it
may fail to identify some of the frequent subgraphs, whereas the second ap-
proach is somewhat slower, but in general, finds a larger number of frequent
geometric subgraphs. However, regardless of the method, due to their inher-
ently heuristic nature, both of them may miss some of the patterns, especially
as the value of r increases.

The high-level structure of gFSG is shown in Algorithm 1. (The notation used
in this algorithm and in the rest of this paper is explained in Table 1.) gFSG

initially enumerates all the frequent single-, double- and triple-edge graphs.
Then, based on the double- and triple-edge graphs, it starts the main com-
putational loop. During each iteration it first generates candidate subgraphs
whose size is greater than the previous frequent ones by one edge (Line 6 of
Algorithm 1). Next, it counts the frequency for each of these candidates, if de-
sired, optimizes the shape of each pattern’s representative (Lines 10–11), and
finally prunes subgraphs that do no satisfy the minimum support constraint
(Line 12).

In the rest of this section we describe the various algorithms used by gFSG

to compute geometric graph isomorphism, generate the size one, two, and
three frequent subgraphs, generate the candidate subgraphs, determine their
frequency, and optimize their shape.

5.1 Geometric Graph Isomorphism

One of the key computational kernels used by gFSG is that of determining
whether or not two geometric graphs are geometrically isomorphic to each
other. In principle, a geometric isomorphism between two graphs g1 and g2

can be computed in two different ways. First, we can identify all topological
isomorphisms between g1 and g2, and then check each one of them to determine
whether or not there is an allowable homogeneous geometric transformation
that brings the corresponding vertices of the two graphs within an r distance
from each other (where r is the coordinate matching tolerance). Alternatively,

10

Algorithm 1 gFSG(D, s, adjust type , N) (Frequent Geometric Subgraph)

gFSG(D, s, adjust type ,N)

1: F 1, F 2, F 3 ← all frequent geometric subgraphs of size 1, 2 and 3 in D

2: k ← 4
3: while F k−1
= ∅ do

4: Ck ← gFSG-Gen(F k−1)
5: for each candidate gk ∈ Ck

do

6: �gk.S is the current set of supporting transactions.
7: gk.S ← Count-Frequency(gk,D)
8: if |gk.S| < s then

9: continue

10: if adjust type
= None then

11: Adjust-Shape(gk,D, adjust type ,N)
12: F k ← {gk ∈ Ck | gk.count ≥ sD}
13: k ← k + 1
14: return F 1, F 2, . . . , F k−2

Count-Frequency(gk,D)

1: S ← ∅
2: for each transaction t ∈ D do

3: if candidate gk is included in t then

4: S ← S ∪ {t}
5: return S

Adjust-Shape(gk,D, adjust type ,N)

1: for i = 1 . . . N do

2: compute the average of vertex coordinates of gk across gk.S.
3: if adjust type = Simple then

4: gk.S ← Count-Frequency(gk,D)
5: else if adjust type = Support then

6: S′ ← Count-Frequency(gk,D)
7: if S′ = gk.S then

8: return

9: gk.S ← S′

10: else if adjust type = DWC then

11: if gk fails the downward closure check then

12: return

13: gk.S ← Count-Frequency(gk,D)

we can first identify the possible set of geometric transformations that map
the vertices of g1 within an r distance of the vertices of g2, and then check each
one of them to see if it preserves the topology (and the vertex- and edge-labels)
of the two graphs.

In gFSG we experimented with both of these approaches and found that the
latter is more efficient as it allows us to terminate many of these mapping
attempts earlier (i.e., quicker miss-matches). Furthermore, in contrast to the

11

X

Y

u v

(a) 2D

Z

u Xv

Y
w

(b) 3D

Fig. 4. Edges for the basis of the local coordinate system.

purely topological graph isomorphism (used in the first approach) whose time
complexity has not been proven to be in P- or NP-complete, the second ap-
proach has the advantage of having a polynomial complexity. The details of
this algorithm and additional optimizations are described in the rest of this
section. Note that our description assumes that we are interested in geomet-
ric isomorphism that include all three transformations: rotation, scaling, and
translation.

5.1.1 Transform and Map Approach

Each geometric graph has its own coordinate system or reference frame. When
we check the geometric isomorphism between g1 and g2, both should be in the
same coordinate system. However, there are infinitely many possible local
coordinate systems that we can choose, especially when we consider rotation
invariant isomorphisms. Our algorithm limits this number by using a subset of
the edges of the graph to define the coordinate axes. In the two dimensional
space, it suffices to choose an edge and its direction to determine a local
coordinate system (e.g., the edge uv in Figure 4(a) as the X axis), and in the
three dimensional space, two connected non-collinear edges (edges uv and uw
in Figure 4(b)) form the XY plane and set the reference frame. These reference
frames allow us to find translation and rotation invariant isomorphisms. To
accommodate isomorphisms that are scale invariant, we uniformly scale the
graph such that one of these edges (e.g., the one defining the X-axis) is of
unit length. We will refer to each one of the graphs obtained by using the
edge-defined reference frames as a geometric configuration.

The algorithm for computing the geometric isomorphism is shown in Algo-
rithm 2. First we check to see if g1 and g2 are of the same size, and if not,
then the algorithm returns “false” indicating that these graphs are not iso-
morphic to each other. Then, the algorithm chooses an arbitrary geometric
configuration for g2 and tries to find a bijection between that configuration
of g2 and all possible geometric configurations of g1. The bijection between a
pair of geometric configurations is determined by iterating over each vertex of
g1 and pairing it with the closest vertex of g2 with the same label that has
not yet being paired. If at any given time, the pair of closest vertices are more

12

Algorithm 2 Geometric-Isomorph(g1 = (V1, E1), g2 = (V2, E2), r) (Geo-
metric Isomorphism)

1: if |V1|
= |V2| or |E1|
= |E2| then

2: return false
3: choose one arbitrary geometric configuration of g2.
4: for each geometric configuration of g1 do

5: change the coordinates of all the vertices in g1 according to the chosen geo-
metric configuration.

6: {assume g1 and g2 now share the same coordinate system}
7: for each vertex v ∈ V1 do

8: find the closest vertex u ∈ V2 from v such that l(u) = l(v)
9: if ‖c(v) − c(u)‖ > r then

10: break

11: φ(v) ← u

12: if φ is a valid topological isomorphism between g1 and g2 then

13: return true
14: return false

than r-distance apart, the algorithm terminates the search for that configu-
ration, as there is not an r-tolerant bijection between them. Once a bijection
has been established, it is then checked to determine if it is a valid topological
isomorphism (Line 12–13).

The above algorithm will correctly determine if two graphs are geometrically
isomorphic or not provided that the distance between any pair of points in
either g1 or g2 is greater than 2r. This is because it pairs a vertex of g1 to
a single closest vertex of g2 and it stops considering a particular geometric
configuration as soon as a pairing is not r-tolerant. As discussed in the begin-
ning of Section 5, gFSG requires that the minimum distance between any two
pairs of vertices in the input graphs to be greater than 2r, which ensures that
the above restrictions are satisfied and thus, the correctness of this algorithm.

The complexity of Algorithm 2 depends on the size of the input geometric
graphs. The number of possible geometric configuration is in O(|V1|

2) and
O(|V1|

3) for the two and three dimensions, respectively. Choosing the closest
point out of |V2| vertices can be done in O(|V2|) time. It takes O(|E1|) steps to
check the validity of a bijection φ. Therefore, the overall time complexity of
Geometric-Isomorph is in O(|V |2|E|) and O(|V |3|E|) for two- and three-
dimensional patterns, respectively. Note that the expressions on the number of
geometric configurations assume that g is dense. For most real-life problems,
however, g will be sparse, dramatically reducing the overall complexity of this
algorithm.

13

lmin
d1

d2

d4

d3d5

Fig. 5. The normalized sum of distances from the center.

5.1.2 Using Topological and Geometric Descriptors to Speedup the Compu-

tations

To further reduce the overall time spent in checking whether two graphs are
geometrically isomorphic or not, gFSG computes various descriptors that cap-
ture certain topological properties and geometric transform invariants. Geo-
metric transform invariants are certain quantities computed from a geometric
graph that remain the same no matter how the original graph is rotated,
scaled, or translated. The key idea behind this approach is to use these de-
scriptors to quickly eliminate pairs of graphs that cannot be isomorphic to each
other by simply checking to see whether their respective descriptors match or
not. Since both the topological properties and the geometric transform invari-
ants remain the same regardless of the geometric configuration of a particular
graph, these descriptors need to be computed only once. Even though this ap-
proach does not decrease the worst-case asymptotic complexity, in most cases
it leads to dramatic speedup as they are very effective in pruning the overall
search space of possible isomorphisms.

For each geometric subgraph g, gFSG computes three descriptors. The first
two are the distribution of vertex- and edge-labels, respectively, and the third
is the normalized sum-of-distances between the vertices and the center of the
graph. Specifically, the normalized sum-of-distances is given by

d =
1

lmin

∑

v∈V

‖c(v) − c(c)‖,

where c(v) is the coordinate of vertex v, c(c) is the coordinate of the g’s center
point (i.e., c(c) = (

∑
v∈V c(v))/|V |), and lmin is the length of g’s shortest edge

(i.e., lmin = mine∈E(length of e)) This definition is illustrated in Figure 5 for
which the normalized sum-of-distances is given by d = (d1 + . . . + d5)/lmin.
Note that the sum-of-distances to the center is rotation and translation invari-
ant, and by dividing this distance with lmin, the resulting quantity becomes
scaling invariant as well. Also, because the normalized sum-of-distances has
the same dimension as distance, we use the same coordinate matching toler-
ance r for checking the equality between two normalized sums.

14

In addition to the above properties, a number of additional topological prop-
erties and geometric transform invariants can be used to increase the set of de-
scriptors (e.g., vertex degree distributions, number of size-two paths and their
label distributions, etc.). In our experiments, we found that incorporating such
more complicated properties do not dramatically improve the performance as
the cost of computing and comparing them outweigh the incremental savings
in direct isomorphism-related computations.

5.2 Generating Size One, Two, and Three Frequent Subgraphs

The first step in gFSG is to determine the frequent size one, two, and three
r-tolerant geometric subgraphs using a direct enumeration approach. This is
done primarily for two reasons. First, direct enumeration, if done efficiently,
can significantly reduce the amount of time required to find size two and three
subgraphs over an approach that uses the general candidate-generation and
frequency-counting framework. This is consistent with observations of pre-
vious studies performed in the context of frequent itemsets and sequences.
Second, gFSG’s candidate generation scheme (that will be described later in
Section 5.3) obtains a candidate (k +1)-subgraph gk+1 by joining two distinct
frequent k-subgraphs gk

i and gk
j that share a common (k − 1)-subgraph hk−1.

To uniquely determine the geometry of the candidate subgraph, hk−1 must
represent a rigid body. Thus, hk−1 must have two non-collinear vertices for
2D graphs, and three non-collinear vertices for 3D graphs. Consequently, the
size k subgraphs that are joined should at least of size two or three for 2D and
3D, respectively.

gFSG performs the direct enumeration of these subgraphs by making exten-
sive use of the various descriptors described in Section 5.1.2 to quickly elim-
inate the various subgraphs that are not frequent. Specifically, the frequent
subgraphs are determined by performing two passes over the input graphs.
During the first pass, gFSG records the descriptors of size two and three sub-
graphs that are present in every transaction and determines their frequencies
in terms of the number of supporting transactions. During the second pass,
for each size two and three subgraph whose descriptor’s frequency satisfies the
minimum support requirement, it checks to see if it is r-tolerant geometric
isomorphic to a previously encountered subgraph. If it is, it then updates the
frequency of the corresponding subgraph, otherwise it creates a new candidate

subgraph whose frequency is one. Our internal experimentation showed that
this two-pass approach is very effective in dramatically reducing the number
of subgraphs that need to be considered during the second pass.

15

Join

g6
1 g6

2

+

g5
1 g5

2
g6

3

g6
4

(a) Multiple automorphismsof a core.

Join

g4
1 g4

2 g5
1

g5
2First coreh3

1 Secondcoreh3
2

+

(b) Multiple cores.

Fig. 6. Three different cases of candidate joining.

5.3 Candidate Generation

Candidate geometric subgraphs of size k + 1 are generated by joining two
frequent geometric k-subgraphs. In order for two such frequent k-subgraphs to
be eligible for joining they must contain the same geometric (k−1)-subgraph.
We will refer to this common geometric (k−1)-subgraph among two k-frequent
subgraphs as their core.

Unlike the joining of itemsets in which two frequent k-size itemsets lead to
a unique (k + 1)-size itemset, the joining of two geometric subgraphs of size
k can lead to multiple distinct geometric subgraphs of size k + 1. This can
happen because of two different reasons. First, the core itself can have multiple
automorphisms, each potentially leading to a different (k + 1)-candidate. In
the worst case where a core of size k − 1 has a symmetric structure, the
number of automorphisms can be at most k − 1. This case is illustrated in
Figure 6(a), in which the core—a square of 4 vertices—has more than one
automorphism which result in four different candidates of size 6. Second, two
frequent geometric subgraphs may have multiple geometric cores as depicted
by Figure 6(b). Because every core has one fewer edge, for a pair of two k-
subgraphs to be joined, the number of multiple cores is bounded by k − 1.

The overall algorithm for candidate generation (gFSG-Gen) is shown in Al-
gorithm 3. For each pair of frequent subgraphs that share the same core it calls
gFSG-Join (Line 6) to generate all possible candidates of size k+1. Then, for

16

Algorithm 3 gFSG-Gen(F k) (Candidate Generation)

1: Ck+1 ← ∅;
2: for each pair of gk

i , gk
j ∈ F k, i < j do

3: for each edge e ∈ gk
i do {create a (k − 1)-subgraph of gk

i by removing an
edge e}

4: gk−1
i ← gk

i − e

5: if gk−1
i is included in gk

j then {gk
i and gk

j share the same core}

6: T k+1 ← gFSG-Join(gk
i , gk

j , gk−1
i)

7: for each gk+1
j ∈ T k+1

do

8: {test if the downward closure property holds for gk+1
j }

9: flag ← true
10: for each edge fl ∈ gk+1

j do

11: hk
l ← gk+1

j − fl

12: if hk
l is connected and hk

l
∈ F k
then

13: flag ← false
14: break

15: if flag = true then

16: Ck+1 ← Ck+1 ∪ {gk+1}
17: return Ck+1

each of these candidates, it checks to see if they have already been generated
(i.e., they are already in Ck+1), and discards them if they have. Otherwise, it
inserts them in Ck+1 as long as all of its k-subgraphs are frequent (i.e., satisfy
the downward closure property). The actual joining procedure (gFSG-Join)
is shown in Algorithm 4. Given a pair of k-subgraphs gk

1 and gk
2 that share the

same core (k − 1)-subgraph hk−1, gFSG-Join first generates the set M of all
possible automorphisms of hk−1 and then identifies the pair of edges e1 and
e2 from gk

1 and gk
2 , respectively that are not part of the core. Then, for each

automorphism in M , it generates a candidate (k + 1)-subgraph by adding the
edges e1 and e2.

5.4 Frequency Counting

Once candidate subgraphs have been generated, gFSG computes their fre-
quency. In the context of the original Apriori algorithm, the frequency count-
ing is performed efficiently by storing the candidate itemsets in a hash-tree
data structure and then scanning each transaction to determine which of the
itemsets in the hash-tree it supports. However, developing such an algorithm
for frequent subgraphs is challenging (if not impossible) because there is no
natural way to build a hash-tree-like structure for graphs. For this reason,
gFSG’s frequency counting approach considers one candidate subgraph at-a-
time and tries to determine the transactions that it is contained in. Within this
framework, gFSG implements three different approaches, which are described

17

Algorithm 4 gFSG-Join(gk
1 , g

k
2 , h

k−1) (Join)

1: M ← detect all automorphisms of hk−1

2: {determine an edge e1 ∈ gk
1 that does not appear in hk−1}

3: e1 ← NULL
4: for each edge ei ∈ gk

1 do

5: if ei
∈ hk−1
then

6: e1 ← ei

7: break

8: {determine an edge e2 ∈ gk
2 that does not appear in hk−1}

9: e2 ← NULL
10: for each edge ei ∈ gk

2 do

11: if ei
∈ hk−1
then

12: e2 ← ei

13: break

14: G ← generate all possible graphs of size k + 1 from gk
1 and gk

2 , using M

in the rest of this section, that offer different time-space trade-offs.

5.4.1 Counting by Geometric Subgraph Isomorphism

In the first approach, for each subgraph gFSG scans each one of the graph
transactions in the input dataset and determines if it is contained or not us-
ing geometric subgraph isomorphism. This operation requires to check each
geometric configuration of the graph against a particular geometric configu-
ration of the pattern using an algorithm similar to that for geometric graph
isomorphism.

To reduce the amount of time required for frequency counting, gFSG uses a
descriptor-based approach (as it was done in the case of graph isomorphism in
Section 5.1.2) to quickly detect whether a particular candidate subgraph can
exist in a transaction or not. This is done by using an additional geometric
transform invariant, referred to as the edge-angle list, that takes into account
the multiset of angles between each pair of edges incident on the same vertex.
Specifically, let � eiej denote the angle formed by two connected edges ei and
ej . Then, the edge-angle list eal(g) of a geometric graph g is the multiset given
by

eal(g) = { � eiej | edges ei, ej share the same end point}.

Note that edge-angles are invariant against translation, scaling, and rotation.
To illustrate this definition, consider the graph g shown in Figure 7. This graph
has three different pairs of edges that are incident on the same vertex, namely,
e1e2, e2e3, and e3e1, which result to an edge-angle list of eal(g) = {θ1, θ1, θ2}
(in this example � e1e2 = � e2e3).

18

e3 e2

e1

θ2

θ1
θ1

Fig. 7. A star-shaped geometric graph with three edges.

Given a transaction t and a candidate subgraph g, it follows directly from the
geometric transform invariant nature of edge-angles that if g is contained in
t, then eal(g) ⊆ eal(t). Thus, by comparing the edge-angle lists, gFSG can
easily detect cases where geometric subgraph isomorphism does not hold, with-
out actually performing subgraph isomorphism. Note that equality between
two angles is determined with a certain threshold as the vertex coordinate
matching.

5.4.2 TID Lists

Determining the geometric subgraph isomorphism described in Section 5.4.1 is
expensive and for this reason we also developed a frequency counting approach
that uses Transaction ID (TID) lists, proposed by [15,38,55,52,54]. In this ap-
proach for each frequent subgraph gFSG keeps a list of transaction identifiers
that support it. Now when the frequency of gk+1 is computed, gFSG first
computes the intersection of the TID lists of its frequent k-subgraphs. If the
size of the intersection is below the support, gk+1 is pruned, otherwise it com-
putes the frequency of gk+1 using subgraph isomorphism by limiting the search
to only the set of transactions in the intersection of the TID lists.

The advantages of this approach are two-fold. First, in the cases in which the
intersection of the TID lists is bellow the minimum support level, we are able to
prune the candidate subgraph without performing any subgraph isomorphism
computations. Second, when the intersection set is sufficiently large, we only
need to perform subgraph isomorphism for those graphs that can potentially
contain the candidate subgraph and not for all the graph transactions.

However, the computational advantages of the TID lists come at the expense
of higher memory requirements. In particular, when gFSG is working on
finding the frequent patterns of size (k + 1), it needs to store in memory the
TID lists for all frequent patterns of size k. Even though this approach can
be extended to work in cases in which the amount of available memory is not
sufficient [52], such an extension will require to perform multiple passes over
the database and we may not be able to get the same effect of pruning based

19

on the downward closure property.

5.4.3 Hybrid Approach

The last scheme that we developed can be thought of as a hybrid between
the counting approach that uses subgraph isomorphisms and the one that
uses TID lists. In this approach, gFSG initially identifies the set of frequent
edge-angles by exhaustive enumeration. Then, for each frequent edge angle,
it creates a list of transaction IDs that contain an instance of the edge angle.
Let tid(θ) denote a list of transaction ID’s that contain an instance of the
edge angle θ. Suppose a candidate geometric graph g has an edge-angle list
eal(g) = {θ1, θ2, . . . , θn}. To compute the frequency of g, gFSG proceeds in a
fashion similar to the TID-list intersection approach (Section 5.4.2) but this
time it computes the intersections of the TID-lists of the various edge-angles
that g contains. That is, it computes l = ∩itid(θi). The sequence in which these
intersections are performed is based on the increasing order of the length of
the angle-specific TID lists. This allows it to quickly detect the cases in which
the final intersection will not be sufficiently large. It is easy to see that (i) if
g is frequent, then |l| ≥ σ|D|, and (ii) l contains all the transactions that can
potentially support g.

Our experiments (not presented in this paper) showed that this approach is
usually five times faster than the one based on subgraph isomorphism and only
twice as slow as the one based on TID lists. However, it has the advantage of
requiring substantially less memory than the TID-list based approach, and is
the scheme that was used in all of our experiments.

5.5 Iterative Shape Adjustment

Through-out our description of gFSG, we assumed that the geometric shape
of a frequent pattern is determined when the corresponding candidate is first
created by joining two smaller frequent subgraphs (the details are described
in Section 5.3). As discussed in Section 3, the shape of the resulting candi-
date may not necessarily be optimal in the sense that it may not represent
the geometric configuration that leads to the highest frequency. As a result,
some of its occurrences may be missed with respect to the r-distance and the
frequency of the pattern will tend to be smaller than what it should be.

To alleviate this problem gFSG implements a simple, and yet powerful mech-
anism to adjust the shape of a candidate subgraph so that to maximize its
occurrence frequency. The overall idea behind this approach is to perform the
frequency counting phase multiple times, each time incrementally adjusting
the shape of the candidate subgraph so that to represent the consensus pat-

20

tern of its supporting embeddings. Specifically, for each candidate subgraph
the frequency counting operation (i.e., the scanning of the input database
looking for occurrences of the candidate) is repeated multiple times. For every
iteration, the set of occurrences of the candidate subgraph are identified and
the mean of the coordinates of the vertices is computed across these multi-
ple occurrences. The resulting set of vertex-coordinates become the adjusted

shape of the candidate subgraph. The motivation behind this approach is that
by averaging the shape we are able to obtain a better overall representative of
the various occurrences, which it can lead to higher occurrence frequency. Note
that in this approach, the final geometric configuration of a pattern will not
correspond to a particular embedding, but it will correspond to a centroid-like
structure.

Within the above framework, gFSG implements three different schemes for
determining when this iterative shape adjustment process will terminate. The
first scheme, referred to as simple adjustment (SA), terminates the overall
process after performing a user-specified fixed number N of iterations. The
second scheme, referred to as supporting transaction monitoring (STM), ex-
tends the simple adjustment scheme by keeping track of the changes in the set
of supporting transactions and allows for the early termination of the overall
process as soon as the supporting set of a pattern does not change in two
successive iterations. Finally, the third scheme, referred to as downward clo-

sure check (DWC), extends the supporting transaction monitoring scheme by
terminating the overall process when the resulting candidate subgraph fails
to satisfy the downward closure property. This is because due to the accumu-
lated adjustments, the shape of a candidate subgraph may change significantly
from its initial configuration. Once the change becomes large, it may happen
that the modified candidate does not satisfy the downward closure property
in terms of the given r-tolerance threshold. Depending on the application,
obtaining such patterns may not be desirable.

6 Experimental Evaluation

We experimentally evaluated the performance of gFSG using a set of real
geometric graphs representing chemical compounds. In particular, we used a
dataset containing 223,644 chemical compounds with their two dimensional
coordinates that is available from the Developmental Therapeutics Program
(DTP) at National Cancer Institute (NCI) [14]. These compounds were con-
verted to geometric graphs in which the vertices correspond to the various
atoms with their two dimensional coordinates and the edges correspond to
the bonds between the atoms. The various atom types were modeled as vertex
labels and the various types of bonds were modeled as edge labels. Overall,
there are a total of 104 distinct vertex labels (atom types) and three distinct

21

Table 2
runtime with scaling, rotation and translation.

Total Numberof TransactionsD
σ D = 1000 D = 2000 D = 5000 D = 10000 D = 20000
% t [sec] l # f t [sec] l # f t [sec] l # f t [sec] l # f t [sec] l # f
5.0 8 6 119 14 6 113 34 6 114 75 5 117 179 6 111
4.5 9 6 137 20 6 138 45 6 139 83 5 132 209 6 126
4.0 10 6 168 22 6 157 52 6 160 96 6 151 244 6 154
3.5 12 6 206 30 6 209 57 6 184 110 6 185 281 6 182
3.0 14 7 236 35 6 246 73 7 236 126 6 217 321 6 224
2.5 20 7 314 55 7 329 85 7 287 150 6 259 357 7 268
2.0 26 7 415 72 7 430 124 7 404 205 7 352 522 7 359
1.5 48 7 687 107 7 613 218 8 630 410 7 552 842 7 526
1.0 123 8 1393 315 8 1395 460 9 1189 1107 8 1295 1974 8 1019
0.5 694 10 4960 1478 10 4623 2108 10 3593 4621 9 3869 9952 9 3354
0.25 2043 13 14235 5674 12 15232 8972 12 11103 17421 9 10929 41895 11 11177

σ : theminimumsupportthreshold[%].
t : Runtimein seconds.
l: Thesizeof largestfrequentsubgraphs.
f : Thetotal numberof frequentsubgraphsdiscovered.

edges labels (bond types).

All experiments were done on an AMD Athlon MP 1800+ (1.53GHz) machines
with 2GB main memory, running the Linux operating system. All the runtimes
reported are in seconds.

6.1 Scalability with Respect to the Database Size

Our first set of experiments were designed to evaluate the scalability of gFSG

with respect to the number of input graph transactions. Toward this goal we
created five datasets with different number of transactions varying from 1,000
to 20,000. Each graph transaction was randomly chosen from the original
dataset of 223,644 compounds. This random dataset creation process resulted
in datasets in which the average transaction size (the number of edges per
transaction) was about 23.

Using these datasets we performed two types of experiments. In the first ex-
periment we used gFSG to find all frequently occurring geometric subgraphs
that are rotation, scaling and translation invariant; whereas in the second set
of experiments we found the subgraphs that are only rotation and translation
invariant. For both sets of experiments, we used different values of support
ranging from 0.25% up to 5%, and set r to 0.05. The results from these ex-
periments are shown in Tables 2 and 3, respectively. For each individual ex-
periment, these tables show the amount of time required to find the frequent
geometric subgraphs patterns, the size of the largest discovered frequent pat-
tern, and the total number of geometric subgraphs that were discovered.

There are three main observations that can be made from these results. First,
gFSG scales linearly with the database size. For most values of support, the
amount of time required on the database with 20,000 transactions is 15–30

22

Table 3
Runtime with rotation and translation only.Table3: Runtimewith rotationandtranslationonly.

Total Numberof TransactionsD
σ D = 1000 D = 2000 D = 5000 D = 10000 D = 20000
% t [sec] l # f t [sec] l # f t [sec] l # f t [sec] l # f t [sec] l # f
5.0 4 6 90 7 6 80 19 6 92 39 6 96 79 4 69
4.5 4 6 105 7 6 89 20 6 101 40 6 107 89 6 84
4.0 4 6 116 8 6 106 23 6 121 45 6 122 82 4 92
3.5 5 6 154 12 6 146 26 6 144 60 6 150 93 4 111
3.0 8 6 203 18 6 197 32 6 177 69 6 187 109 4 143
2.5 10 6 250 24 6 251 47 6 236 105 6 238 155 4 191
2.0 14 6 371 38 6 356 62 6 321 128 6 321 216 5 269
1.5 26 7 610 61 7 559 79 6 457 162 6 436 380 6 421
1.0 60 8 1124 134 7 1023 161 8 795 423 8 874 839 7 826
0.5 263 8 3213 540 8 3009 622 9 2177 1514 9 2281 2465 7 2091
0.25 790 10 10040 2051 10 10733 2224 10 6112 5351 9 6090 8590 10 5649

σ : theminimumsupportthreshold[%].
t : Runtimein seconds.
l: Thesizeof largestfrequentsubgraphs.
f : Thetotal numberof frequentsubgraphsdiscovered.

times larger than the amount of time required for 1,000 transactions. Second,
as with any frequent pattern discovery algorithm, as we decrease the support
the runtime increases and the number of frequent patterns increases. The
overall increase in the amount of time tends to follow the increase in the
number of patterns, indicating that the complexity of gFSG scales well with
the number of frequent patterns. Third, comparing the scale invariant with
the scale variant results, we can see that the latter is faster by almost a factor
of two. This is because the number of discovered patterns is usually smaller,
and each pattern has fewer supporting transactions, reducing the amount of
time to compute their frequency.

6.2 Scalability with Respect to the Graph Size

Our second set of experiments was designed to evaluate the runtime of gFSG

when the average size (i.e., the number of edges) of each transaction increases.
Using the whole set of chemical compounds, we created four different datasets
by extracting 5,000 chemical compounds in the following way. First we sorted
the original dataset based on the size of the compounds. Then, we selected
5,000 compounds from four different locations of the sorted list, so that each
dataset would have different average transaction sizes. This resulted in four
datasets whose average transaction size were 14, 19, 23, and 28 edges, respec-
tively. Because the chemical compounds are taken from the sorted order, the
size of almost all the transactions is the same as that of the average.

As with our earlier experiments, we used gFSG to find both scale invariant
and scale variant patterns and we varied the minimum support from 5.0% to
0.25%. Tables 4 and 5 show the amount of time and the number of frequent
patterns discovered in these two sets of experiments.

23

Table 4
Runtime and average transaction size.

AverageTransactionSizeT
σ T = 14 T = 19 T = 23 T = 28
% t [sec] l # f t [sec] l # f t [sec] l # f t [sec] l # f
5.0 15 6 74 21 6 93 37 6 116 92 6 201
4.5 16 6 86 26 6 112 46 6 142 102 6 236
4.0 17 6 110 29 6 130 54 6 166 115 7 277
3.5 19 7 127 34 6 162 64 6 205 128 7 309
3.0 22 7 154 41 6 196 73 6 249 175 7 408
2.5 27 7 195 59 6 247 96 7 302 331 7 658
2.0 36 7 264 81 6 325 142 7 420 543 8 993
1.5 53 7 386 138 6 502 291 7 729 1002 8 1599
1.0 92 9 680 284 8 927 612 9 1385 2530 10 3936
0.5 406 9 2072 1438 9 2859 3050 9 4620 9923 12 13178
0.25 1226 10 5358 4997 10 8949 10824 12 15232 29686 14 38788

σ : theminimumsupportthreshold[%].
t : Runtimein seconds.
l: Thesizeof largestfrequentsubgraphs.
f : Thetotal numberof frequentsubgraphsdiscovered.

From these results we can see that as the average transaction size increases,
the time required to find the frequent geometric subgraphs increases, as well.
In most cases, this increase is at a higher rate than the corresponding increase
on the size of each transaction. In general, the runtime for finding the patterns
when the average transaction size is 28, is about ten times longer than the
runtime for the average transaction size 14. This non-linear relation between
the time complexity and the size of the transaction is due to the fact that
the algorithm needs to explore a much larger search space, and is consistent
with the time increases for other pattern discovery algorithms, such as those
for finding frequent itemsets [36] and sequential patterns [37]. Nevertheless,
gFSG is able to mine the largest dataset with a support of 0.25 in less than two
hours. Also, comparing the scale invariant with the scale variant experiments,
we can see that as before, finding the scale variant patterns is faster by about
a factor of two.

6.3 Effectiveness of Shape Adjustment

Table 6 shows the effect of the different iterative shape adjustment methods
described in Section 5.5 for different values of the maximum number of allowed
adjustment iterations (N). Two datasets are used in these experiments, one
with 5,000 chemical compounds and the other with 10,000 compounds from
the DTP dataset each.

From these results we can see that the iterative shape adjustment increases
the total number of frequent subgraphs that are discovered by gFSG. For ex-
ample, from the dataset with 5,000 compounds, 404 frequent subgraphs were
found without any adjustment, while all three adjustment methods enabled
gFSG to find more than 540 compounds—an increase of 34%. Likewise, from

24

Table 5
Runtime for the same datasets shown in Table 4, without scaling.

AverageTransactionSizeT
σ T = 14 T = 19 T = 23 T = 28
% t [sec] l # f t [sec] l # f t [sec] l # f t [sec] l # f
5.0 11 5 68 14 6 79 20 5 97 36 5 128
4.5 12 5 78 17 5 97 26 5 122 46 5 158
4.0 13 5 93 17 5 113 29 5 148 54 5 182
3.5 15 6 118 20 5 136 32 5 182 64 6 213
3.0 17 6 148 26 5 175 47 6 258 81 6 268
2.5 20 6 189 35 5 237 64 6 338 142 6 428
2.0 27 7 270 49 5 324 81 7 418 288 6 792
1.5 33 8 389 84 5 473 107 7 583 481 8 1268
1.0 65 8 671 181 6 807 287 8 1164 1189 9 2975
0.5 196 7 1613 610 7 2180 1002 9 3315 3454 11 8093
0.25 497 9 3708 1726 9 5768 2622 12 8819 10172 12 24242

σ : theminimumsupportthreshold[%].
t : Runtimein seconds.
l: Thesizeof largestfrequentsubgraphs.
f : Thetotal numberof frequentsubgraphsdiscovered.

the dataset with 10,000 compounds, there was at least a 25% increase in the
number of frequent subgraphs for all the adjustment methods. Also, these re-
sults show that the maximum allowed number of adjustment iterations does
not significantly increase either the overall execution time or the number of
discovered frequent patterns. For example, for the dataset with 10,000 com-
pounds and the supporting transaction monitoring scheme, the number of
frequent patterns found with N = 10 (1,699) is only 5% greater than that
found with N = 2 (1,637). Similar results hold for the other methods and
dataset. Finally, the overall increase in runtime associated with performing
these shape optimization iterations is quite modest. In all the examples of Ta-
ble 6 the majority of the improvements can be obtained with only a 5%–25%
increase in runtime.

7 Conclusion

In this paper we presented an algorithm, gFSG, for finding frequently oc-
curring geometric subgraphs in large graph databases, which can be used to
discover recurrent patterns in scientific, spatial, and relational datasets. These
patterns can correspond to either exact occurrences or occurrences that are
translation, rotation, and/or scaling invariant, and can accommodate a user-
specified tolerance on how the coordinates of the various vertices are matched.
In addition, we presented an iterative shape refinement framework that makes
it possible to optimize the discovered patterns; thus, increasing their frequency
and the number of patterns that get discovered. Our experimental evaluation
showed that gFSG can scale reasonably well to very large graph databases
provided that graphs contain sufficiently many different labels of edges and

25

Table 6
Effect of three shape adjustment methods.

Dataset σ [%] Adjustment N t [sec] # f
DTP 2.0 None — 124 404
5,000 2 155 541
compounds SA 5 209 562

10 248 558
2 138 543

STM 5 187 542
10 233 536
2 138 543

DWC 5 187 542
10 248 557

DTP 1.0 None — 1107 1295
10,000 2 1180 1637
compounds SA 5 1509 1638

10 1720 1678
2 1026 1618

STM 5 1383 1666
10 1676 1699
2 1123 1631

DWC 5 1461 1628
10 1737 1683

σ : theminimumsupportthreshold[%].
None: No adjustment.
Simple: Simpleshapeadjustment.
Support: Adjustmentbasedon supportingtransactionmonitor-

ing.
DWC: Adjustmentbasedon thedownwardclosurecheck.
N : Thenumberof iterationsfor shapeadjustment.
l: Thesizeof largestfrequentsubgraphs.
t : Runtimein seconds.
f : Thetotal numberof frequentsubgraphsdiscovered.

vertices.

Despite gFSG’s reasonable success in discovering frequently occurring geo-
metric subgraphs, we believe that it represents a first attempt in developing
computationally efficient algorithms for geometric graphs and can be improved
along a number of different directions. For example, as discussed in Section 3,
the notion of r-tolerant frequently occurring patterns dramatically changes
the characteristics of the pattern discovery problem as it now becomes critical
to properly identify the representation of the pattern. gFSG’s heuristic shape
optimization approaches, though effective, are not guaranteed to identify all
patterns that can have a sufficiently large number of embeddings. A precise
solution to this problem may require the identification of the pattern shapes
that maximize the number of discovered patterns, which in turn may require
solving a certain instance of a maximum independent set problem. At the
same, gFSG’s notion of r-tolerant patterns can be extended to allow addi-
tional types of tolerances by allowing certain degree of approximate- or near-
matching (e.g., skipping certain vertices and/or edges). Finally, vertical or
projection-based mining approaches can also be investigated. Recent research
in the context of finding patterns in topological graph has shown that such
approaches are in general faster than their horizontal counterparts [48,23,31].

26

References

[1] K. Abe, S. Kawasoe, T. Asai, H. Arimura, and S. Arikawa. Optimized
substructure discovery for semi-structured data. In Proc. the 6th European
Conference on Principles and Practice of Knowledge Discovery in Databases
(PKDD-2002), LNAI 2431, pages 1–14. Springer-Verlag, August 2002.

[2] R. C. Agarwal, C. C. Aggarwal, and V. V. V. Prasad. A tree projection
algorithm for generation of frequent item sets. Journal of Parallel and
Distributed Computing, 61(3):350–371, 2001.

[3] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In
J. B. Bocca, M. Jarke, and C. Zaniolo, editors, Proc. of the 20th International
Conference on Very Large Data Bases (VLDB), pages 487–499. Morgan
Kaufmann, September 1994.

[4] R. Agrawal and R. Srikant. Mining sequential patterns. In P. S. Yu and A. L. P.
Chen, editors, Proc. of the 11th International Conference on Data Engineering
(ICDE), pages 3–14. IEEE Press, 1995.

[5] T. Asai, K. Abe, S. Kawasoe, H. Arimura, H. Sakamoto, and S. Arikawa.
Efficient substructure discovery from large semi-structured data. In Proc. of
the 2nd SIAM International Conference on Data Mining (SDM’02), pages 158–
174, 2002.

[6] J. Bajorath. Integration of virtual and high throughput screening. Nature
Review Drug Discovery, 2002.

[7] H. Bohm and G. Schneider. Virtual Screening for Bioactive Molecules. Wiley-
VCH, 2000.

[8] C. Borgelt and M. R. Berthold. Mining molecular fragments: Finding relevant
substructures of molecules. In Proc. of 2002 IEEE International Conference on
Data Mining (ICDM), 2002.

[9] L. P. Chew, D. Huttenlocher, K. Kedem, and J. Kleinberg. Fast detection of
common geometric substructure in proteins. In Proc. of the 3rd ACM RECOMB
International Conference on Computational Molecular Biology, 1999.

[10] Y. Chi, Y. Yang, and R. R. Muntz. Indexing and mining free trees. In Proc.
of the 3rd IEEE International Conference on Data Mining (ICDM’03), pages
509–512, 2003.

[11] G. Cong, L. Yi, B. Liu, and K. Wang. Discovering frequent substructures
from hierarchical semi-structured data. In Proc. of the 2nd SIAM International
Conference on Data Mining (SDM-2002), 2002.

[12] L. Dehaspe, H. Toivonen, and R. D. King. Finding frequent substructures
in chemical compounds. In R. Agrawal, P. Stolorz, and G. Piatetsky-Shapiro,
editors, Proc. of the 4th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD-98), pages 30–36. AAAI Press, 1998.

[13] M. Deshpande, M. Kuramochi, and G. Karypis. Frequent sub-structure
based approaches for classifying chemical compounds. In Proc. of 2003 IEEE
International Conference on Data Mining (ICDM), 2003.

27

[14] DTP/2D and 3D structural information. ftp://dtpsearch.ncifcrf.gov/
jan02 2d.bin.

[15] B. Dunkel and N. Soparkar. Data organizatinon and access for efficient
data mining. In Proc. of the 15th IEEE International Conference on Data
Engineering, March 1999.

[16] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman and Company, New York, 1979.

[17] S. Ghazizadeh and S. Chawathe. SEuS: Structure extraction using summaries.
In Proc. of the 5th International Conference on Discovery Science, 2002.

[18] B. Goethals. Efficient Frequent Pattern Mining. PhD thesis, University of
Limburg, Diepenbeek, Belgium, December 2002.

[19] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate
generation. In Proc. of ACM SIGMOD International Conference on
Management of Data, Dallas, TX, May 2000.

[20] J. S. Handen. The industrialization of drug discovery. Drug Discovery Today,
7(2):83–85, January 2002.

[21] J. Hipp, U. Güntzer, and G. Nakhaeizadeh. Algorithms for association rule
mining–a general survey and comparison. SIGKDD Explorations, 2(1):58–64,
July 2000.

[22] L. B. Holder, D. J. Cook, and S. Djoko. Substructure discovery in the SUBDUE
system. In Proc. of the AAAI Workshop on Knowledge Discovery in Databases,
pages 169–180, 1994.

[23] J. Huan, W. Wang, and J. Prins. Efficient mining of frequent subgraph in the
presence of isomophism. In Proc. of 2003 IEEE International Conference on
Data Mining (ICDM’03), 2003.

[24] J. Huan, W. Wang, A. Washington, J. Prins, R. Shah, and A. Tropsha. Accurate
classification of protein structural families using coherent subgraph analysis. In
Proceedings of the 9th Pacific Symposium on Biocomputing (PSB), 2004.

[25] A. Inokuchi, T. Washio, K. Nishimura, and H. Motoda. A fast algorithm
for mining frequent connected subgraphs. Technical Report RT0448, IBM
Research, Tokyo Research Laboratory, 2002.

[26] I. Koch, T. Lengauer, and E. Wanke. An algorithm for finding maximal common
subtopoloties in a set of protein structures. Journal of computational biology,
3(2):289–306, 1996.

[27] S. Kramer, L. De Raedt, and C. Helma. Molecular feature mining in HIV data.
In Proc. of the 7th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD-01), pages 136–143, 2001.

[28] M. Kuramochi, M. Deshpande, and G. Karypis. Data Mining: Next Generation
Challenges and Future Directions, chapter Mining Scientific Data Sets using
Graphs. AAAI Press, 2004. in press.

[29] M. Kuramochi and G. Karypis. An efficient algorithm for discovering frequent
subgraphs. IEEE Transactions on Knowledge and Data Engineering. in press.

28

[30] M. Kuramochi and G. Karypis. Frequent subgraph discovery. In Proc. of 2001
IEEE International Conference on Data Mining (ICDM), November 2001.

[31] M. Kuramochi and G. Karypis. Finding frequent patterns in a large sparse
graph. In Proc. of the 2004 SIAM International Conference on Data Mining
(SDM04), 2004.

[32] E. M. Mitchell, P. J. Artymiuk, D. W. Rice, and P. Willett. Use of techniques
derived from graph theory to compare secondary structure motifs in proteins.
Journal of Molecular Biology, 212:151–166, 1989.

[33] C. R. Palmer, P. B. Gibbons, and C. Faloutsos. ANF: A fast and scalable tool
for data mining in massive graphs. In Proc. of the 8th ACM SIGKDD Internal
Conference on Knowlege Discovery and Data Mining (KDD-2002), Edmonton,
AB, Canada, July 2002.

[34] S. Parthasarathy and M. Coatney. Efficient discovery of common substructures
in macromolecules. In Proc. of 2002 IEEE International Conference on Data
Mining (ICDM), pages 362–369, 2002.

[35] J. W. Raymond. Heuristics for similarity searching of chemical graphs using
a maximum common edge subgraph algorithm. J. Chem. Inf. Comput. Sci.,
42:305–316, 2002.

[36] M. Seno and G. Karypis. LPMiner: An algorithm for finding frequent itemsets
using length decreasing support constraint. In Proc. of 2001 IEEE International
Conference on Data Mining (ICDM), November 2001.

[37] M. Seno and G. Karypis. SLPMiner: An algorithm for finding frequent
sequential patterns using length-decreasing support constraint. In Proc. of 2002
IEEE International Conference on Data Mining (ICDM), 2002.

[38] P. Shenoy, J. R. Haritsa, S. Sundarshan, G. Bhalotia, M. Bawa, and D. Shah.
Turbo-charging vertical mining of large databases. In Proc. of ACM SIGMOD
International Conference on Management of Data, pages 22–33, May 2000.

[39] N. Vanetik, E. Gudes, and S. E. Shimony. Computing frequent graph patterns
from semistructured data. In Proc. of 2002 IEEE International Conference on
Data Mining (ICDM), pages 458–465, 2002.

[40] J. T. L. Wang, Q. Ma, D. Shasha, and C. H. Wu. Application of neural networks
to biological data mining: A case study in protein sequence classification.
In Proc. of the 6th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD-2000), pages 305–309, Boston, MA, August
2000.

[41] J. T. L. Wang, Q. Ma, D. Shasha, and C. H. Wu. New techniques for extracting
features from protein sequences. IBM Systems Journal, 40(2):426–441, 2001.

[42] K. Wang and H. Liu. Discovering structural association of semistructured data.
IEEE Transactions on Knowledge and Data Engineering, 12:353–371, 2000.

[43] X. Wang and J. T. L. Wang. Fast similarity search in three-dimensional
structure databases. Journal of Chemical Information and Computer Sciences,
40(2):442–451, 2000.

[44] X. Wang, J. T. L. Wang, D. Shasha, B. Shapiro, S. Dikshitulu, I. Rigoutsos, and
K. Zhang. Automated discovery of active motifs in three dimensional molecules.

29

In Proc. the 3rd International Conference on Knowledge Discovery and Data
Mining, pages 89–95, Newport Beach, CA, August 1997.

[45] X. Wang, J. T. L. Wang, D. Shasha, B. A. Shapiro, I. Rigoutsos, and K. Zhang.
Finding patterns in three dimensional graphs: Algorithms and applications to
scientific data mining. IEEE Transactions on Knowledge and Data Engineering,
14(4):731–749, July/August 2002.

[46] H. Wolfson and I. Rigoutsos. Geometric hashing: An overview. IEEE
Computational Science and Engineering, 4(4):10–21, 1997.

[47] Y. Xiao, J.-F. Yao, Z. Li, and M. H. Dunham. Efficient data mining for maximal
frequent subtrees. In Proc. of the 3rd IEEE International Conference on Data
Mining (ICDM’03), pages 379–386, 2003.

[48] X. Yan and J. Han. gSpan: Graph-based substructure pattern mining. In Proc.
of 2002 IEEE International Conference on Data Mining (ICDM), 2002.

[49] X. Yan and J. Han. CloseGraph: Mining closed frequent graph patterns. In Proc.
of the 9th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD-2003), 2003.

[50] K. Yoshida and H. Motoda. CLIP: Concept learning from inference patterns.
Artificial Intelligence, 75(1):63–92, 1995.

[51] M. J. Zaki. Fast mining of sequential patterns in very large databases. Technical
Report 668, Department of Computer Science, Univeristy of Rochester, 1997.

[52] M. J. Zaki. Scalable algorithms for association mining. IEEE Transactions on
Knowledge and Data Engineering, 12(2):372–390, 2000.

[53] M. J. Zaki. Efficiently mining frequent trees in a forest. In Proc. of the 8th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD-2002), July 2002.

[54] M. J. Zaki and K. Gouda. Fast vertical mining using diffsets. Technical Report
01-1, Department of Computer Science, Rensselaer Polytechnic Institute, 2001.

[55] M. J. Zaki and C.-J. Hsiao. CHARM: An efficient algorithm for closed
association rule mining. Technical Report 99-10, Department of Computer
Science, Rensselaer Polytechnic Institute, October 1999.

30

