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Abstract

As FPGA densitiesncreasepartitioning-basedPGA placementpproachesre becomingincreasinglyimpor-
tantasthey canbe usedto provide high-qualityandcomputationallyscalableplacemensolutions.However, modern
FPGA architecturesncorporateheterogeneousesourceswhich place additionalrequirementsn the partitioning
algorithmsbecausehey now needto not only minimize the cutandbalancethe partitions,but alsothey mustensure
thatnoneof theresourcesn eachpartitionis over-subscribedin this paperwe presenta numberof multilevel multi-
resourcehypergraplpartitioning algorithmsthat are guaranteedo producesolutionsthat balancethe utilization of
the differentresourcesacrossthe partitions. We evaluateour algorithmson twelve industrial benchmarksanging
in sizefrom 5,236t0 140,118cellsandshav thatthey achieze minimal degradationin the min-cutwhile balancing
the variousresources Comparingthe quality of the solution producedby someof our algorithmsagainstthat pro-
ducedby hMETIS, we shav thatour algorithmsare capableof balancingthe differentresourcesvhile incurring only
a3.3%-5.7%highercut.

Keywords: Partitioning, Placement-PGA, HeterogeneousJiulti-constraint

1 Intr oduction

Thepartitioning-drivenplacemenframework enables divide-and-conquestratey by successiely bisectingthe hy-

pemgraphandassigningthe partitionsto successiely geometricallysplit chip surfaces. The recentdevelopmentof
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high-quality multilevel hypergraptpartitioningalgorithms[12, 2] hasrekindledinterestin this placemenmethod-
ology andhasled to the developmentof highly scalableand high-quality ASIC placementools suchas Capol[4],
Dragon[27], FengShu[19], andTheTo [22]. In contrastjn the contet of FPGA-basedlesignspartitioning-drven
placemenhasnotbeena popularoptiondueto their historicallylower densitiesandthe factthatsimulated-annealing
basedplacementools producehigh-qualitysolutions(e.g., VPR [3]), andcanbe easily modifiedto obey comple
constraint§10]. However, increasing=PGA densitiesandtheresultingscalabilitychallengegorce FPGA CAD tool
developerdo increasinglyrely on morescalablgechniqueshatarenow commonlyusedin the ASIC domain[24].

Adopting a partitioning-drven placementframeavork to modernFPGAs s not straightforvard. Unlike ASIC
placementwherethe variousmodulescan be placedanywhere,with the only partitioning constraintof balancing
theareaof the cellsassignedo differentpartitions,modernFPGA architecturesncorporateheterogeneougsources
suchas CLBs, FFs, Multipliers, RAM blocks, IP Cores[29], etc This placesadditionalconstraintson the types
of partitioningsthat needto be computedasthe partitioningalgorithmmustnow ensurethatthe resourcesisedin
eachpartition canbe accommodatetly the resourcesvailableat the differentregionsof the FPGA. For example,a
partitioningsolutionthatplacesmostof the FFson the oneside of the bisectionandmostof the RAM blockson the
othersideof the bisection,evenif it is balancedn termsof thetotal number/areaf cellson eithersideof the cut, is
not very usefulfor FPGA placementsit may over-subscribehesetwo resourceypes. To illustratethis, we useda
multilevel hypergraplpartitioningalgorithm(hMETS [15]) to bisecttwelve differentcircuitssynthesizedor the Xilinx
Vertex Il architecturecontainingcells thatmapto differentresourcesThesebisectionsvere computedoy ignoring
theresourcaypeof eachindividual cell andusinga 2% sizedifferenceconstrain{i.e., a 49%-51%cut). Theresulting
bisectionsywhosecharacteristicaresummarizedn Tablel1, shavedthateventhoughthe numberof cellsassignedo
eachpartitionachievesthe desiredbalanceconstraintthe individual resourcesreconsiderablymoreunbalancedin
mostcircuitsthereareresourcaypeswhosesizedifferenceis over 10%andin eightof thetwelve circuits, well over
50%of thedifferentresourceypesviolatethe 2% sizedifferenceconstraint.

Eventhoughtheinability of existing hypergraphpartitioningmodelsto capturethe multi-resourceaequirements
of emeging FPGA architecturehiasbeenknown for a while [21], therehasbeenrelatively little work on develop-
ing multi-resourceaware partitioningalgorithms. To our knowledge,the only exceptionis the work by Liu, Zhu,
andWong[21] in whichthey attemptedo solve the heterogeneougsourcepartitioningproblemusingan FM-based
framevork. They useanincrementahetwork flow computatiorbasedeasibility checkingalgorithmintegratedwith
aflat FM basedgraphpartitioningalgorithm. This approactwasableto achieve the resultingresourcebalancingre-
guirementsHowever, sincetheunderlyingalgorithmrelieson network flow computationso calculateandupdategain
valuesfor the FM iteration, its time compleity is O(n?). This limits the applicability of this algorithmto only very
smallpartitioninginstancesin additionto this FPGA-focusedvork, anumberof researcherBave lookedatthesome-
whatrelatedproblem(seethe discussiorin Section7) of partitioningfor heterogeneousulti-chip systemg18, 20Q].
Theseapproachesely on relatively expensve optimizationmethodsasedon functionalreplication[18] andgenetic
algorithmg[20] andformulatethe problemasa complex optimizationproblem.However, theseapproachesannotbe
directly appliedto our context andthe high computationatompleity of the underlyingoptimizationmethodsmake

themimpracticalfor largedesigns.



numberof minimum maximum average numberof

resource size size size  violated
types difference difference difference resources
ind1 11 0.4% 10.3% 4.4% 6
ind2 9 0.6% 9.5% 4.8% 6
ind3 11 0.9% 27.1% 6.4% 7
ind4 12 0.8% 81.5% 10.6% 9
ind5 11 0.8% 16.6% 5.8% 7
ind6é 11 0.5% 13.8% 4.3% 5
ind7 11 0.7% 11.0% 3.0% 3
ind8 12 0.7% 7.6% 2.6% 4
ind9 11 0.9% 33.2% 5.3% 6
ind10 5 0.8% 3.1% 1.6% 1
ind11 11 0.8% 11.1% 3.3% 4
ind12 11 1.2% 30.9% 5.6% 8

Tablel: Thecharacteristicsf thebisectiongproducedy hMETS usinganoverall 2% sizedifferenceconstraintEach
circuit containscells of differenttype. The numberof cell-typesis shavn in column?2. The extentto which each
bisectioncanbalanceheindividual resourcdypeswasmeasuredby computingthe sizedifferencefor eachresource
type. Theminimum,maximum andaveragesizedifferenceoverthedifferentresourcaypesfor eachcircuit areshavn
in columns3-5. Sizedifferenceghatarelessthan2% areconsideredo satisfythe sizedifferenceconstraintwhereas
differenceghat are greaterthan 2% are consideredo violate the constraint. The last columnshaws the numberof
resourcdypesin eachcircuit thatviolatethe 2% sizedifferenceconstraint.

In this paperwe presentanew classof scalablemulti-resouce hypegraphbisectioningalgorithmsthatarecapa-
ble of producinga partitioningsolutionthat simultaneouslpalanceghe differentresourcesssignedo eachone of
the partitionsand canbe usedto implementpartitioning-baseglacementmethodologiesor emeging FPGA archi-
tectures.Specifically we presenfive differentmulti-resourcepartitioningalgorithmsthatarebasedon the multilevel
hypergraplpartitioningparadigm.Threeof thesealgorithmssolve the problemby balancinghedifferentresourcest
thesamedime asthey computehebisectionwhile theothertwo areusedto post-procesahigh-qualitybut potentially
unbalancedolutionto enforcethe multiple balancingconstraints.We experimentallyevaluatedthe performanceof
thesealgorithmson twelve differentindustrial circuits containingup to 140,118cells. Our resultsshowv that each
oneof thesealgorithmsis capableof producingsolutionsthat satisfythe multiple balancingconstraintsandachiese
differenttime-qualitytrade-ofs. Moreover, comparinghe quality of the solutionproducedy someof ouralgorithms
againstthat producedby hMETS, we shaowv that our algorithmsare capableof balancingthe differentresourcesvhile
incurringonly a 3.3%-5.7%highercutandrequiringonly two to five timesmoretime thanthatrequiredby the hMENS
algorithm.A shorterversionof this papemwaspresentedAC 2004[23].

The restof this paperis organizedasfollows. Section2 definesvariousconceptsaandtermsthatareusedin the
paperandpresents brief overview of the multilevel partitioningparadigm.Section3 providesa formal definition of
the multi-resourcepartitioningproblem. Sections4 and5 describethe variousnative andenforcement-basedulti-
resourcepartitioningalgorithmsthat we developed. Section6 presentsa comprehensie experimentalevaluationof
thesealgorithms. Finally, Section7 providessomeconcludingremarksanddiscussesdditionalapplicationsof the

algorithmspresentedh this paper



2 Notation and Background

A hypegraph G = (V, E) is a setof verticesV anda setof hyperedge€. Eachhyperedgds a subsetof the
setof verticesV. The sizeof a hyperedgés the cardinality of this subset. A vertex v is saidto beincidenton a
hyperedgee, if v € e. Eachvertex v andhyperedgee hasa weight associatedvith themandthey aredenotedby
w(v) andw(e), respectiely. A circuit/netlistconsistingof a setof cellsanda setof netscanbedirectly represented
via a hypegraph,whoseverticescorrespondso the cellsandwhosehyperedgesorrespond$o the nets. Dueto this
one-to-oneorrespondendeetweerhypegraphsandnetlistswe will usethetermsvertices/cellandhyperedges/nets
interchangeablthroughouthis paper

A bisectionof V is denotedby a vector P suchthat P[i] indicatesthe partition numberthat vertex i belongs
to. The cut of the bisectionis equalto the sumof the weight of the hyperedgeshat connectverticesbelongingto
differentpartitions. We saythata bisectionP of V satisfiesa singlebalancingconstaint specifiedby [I, u], where
| < u,iffl < Zve\/i w(v) < u, for eachpartitionV;. A bisectionthat satisfiesthe constraintis calledfeasible
otherwiseit is infeasible Giventhesedefinitions,the hypergraptbisectionproblemis formally definedasfollows:
Givena hypegraphG = (V, E) anda balancingconstaint[l, u], find a feasiblebisectionP of G thatminimizeghe
cut. Sincethereis only a singlebalancingrequirementthis formulationis usuallyreferredto asthe single-constraint
bisectioningproblem[8].

Eventhoughavarietyof algorithmshave beendevelopedor solvingthehypergraplbisectioningoroblem thecur
rentstate-of-the-ardlgorithmsfollow the multilevel partitioningparadigm{12, 2, 13, 7], asthey provide high-quality
solutions,have low computationarequirementsand can scaleto very large hypegraphs. Multilevel partitioning
algorithmscomputea partitioningof a hypergraphin threephasescommonlyreferredto asthe coarsening initial
partitioning, anduncoaseningand refinemenphases.During the coarseningphasethey obtaina sequencef suc-
cessve approximation®f theoriginalhypegraph.Eachoneof theseapproximationsepresenta problemwhosesize
is smallerthanthesizeof the original hypegraph.This processontinuesuntil alevel of approximatioris reachedn
whichthehypergrapltontainsonly a few tensof vertices.At this point, thesealgorithmsentertheinitial partitioning
phasewhich computes partitioningof thathypegraph.Sincethe sizeof this hypergraplis quite small,evensimple
algorithmssuchasKernighan-Lin(KL) [17] or Fiduccia-Matthgses(FM) [9] leadto reasonablyoodsolutions.Fi-
nally, duringthe uncoarseningndrefinemenphasethesealgorithmstake the partitioningcomputecat the smallest
hypergraphanduseit to derive apartitioning of the original hypegraph. This is usually doneby propagatinghe
solutionthroughthe successie betterapproximation®f the hypergraptandusingsimpleapproacheto furtherrefine

thesolution.

3 Problem Definition

Historically, FPGAdevicescontainedesourcesf singletype(e.g., CLBs) thatwereuniformly distributedthroughout
the chip. However, taking advantageof everincreasingsilicon densitiesmodernFPGA devicesarefabricatedwith

multiple typesof resourceswhich allow themto efficiently implementcomple< andhigh performancealesigns.One
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Figurel: A Sectionof Virtex Il (Xilinx (©) architectureshaving heterogeneougsources.

suchexampleis therecentlyintroducedvirtex Il architecturdrom Xilinx (Figurel) thatcontainsspecializedesources
suchasmultipliersandRAM blocksintersperse@amongCLBs. Similar heterogeneitganbe seenin devicessuchas
Altera’s Excalibur andStratix. As a result,designflows createdor suchmodernFPGAstry to pro-actively make use
of thesespecializedesourceé orderto obtainbetterperformancendversatility.

For partitioningdrivenplacemento succeedn utilizing thesedifferentresourceaypes,thepartitioningalgorithms
needto take theminto accountandcomputea solutionthatminimizesthe cutwhile balancingeachtypeof cellsacross
the cutlines. For example,in the caseof the multi-resourcenypergraptshavn in Figure 2, the bisectiondenotedy
the dashedines corresponds$o a valid solutionasit balancesachof the resourcetypesindividually, whereaghe
bisectiondenotedy the dotedlinesis notvalid asit assignsall thecellsof typets to oneof thetwo partitions.

Motivatedby this obsenationwe focuson multi-resourceaware partitioning, which canbe formally definedas
follows. Consideran FPGA architecturevith m distinctresourcdypesandletty, to, . . ., tyy denotethetypesof cells
thatneedto bematchedo theresource$abeledasrq, ro, ..., rm, respectiely. Letcl, I denotethe minimumnumber
of cellsof typet; allowedin partition j, andcutij be the maximumnumberof cells of typet; allowedin partition j.
Thenthe multi-resourceébisectionP of G seekgo minimizethe cutsubjectto:

cly) < 3 1<cuyl, (1)

YveV:P[v]=] and t(v)=t
wherej =1,2,i =1,2,..., m,andt(v) is thetypeof cell v. ThepartitioningthatsatisfiesEEquationl is referredto
asfeasible(or legal) bisection.Notethatthisis a generabefinitionof the multi-resourcebisectionandonly theupper
boundis usuallyneededn mostcasesFurthermoreywhenthe numberof cellsof a certaintypearesmallandanodd

numberit is sometimesmpossibleto satisfythe balanceconstraint.In suchcaseghe balanceconstrainneedgo be



This bisection with
min-cut = 2, is an
invalid bisection

(individual resources
are unbalanced).

This bisection with
min-cut = 3, is a
valid bisection.

Figure2: An examplemulti-resourceyraphpartitioningproblem.

relaxed. For example,if thereareonly 3 cells of a certaintype presentthenthe balanceconstraintof 49%- 51%is
impossibleto satisfy andneedgo berelaxedto 33%- 67%for thistype of cells,to accommodatthem.

Notethatthe spaceof feasiblesolutionsfor the multi-resourcepartitioningproblemis in generala subsebf the
feasiblesolutionspacewheneachcell is treatedto be partof the sameresourcaype. As aresult,the quality of the
feasiblemulti-resourcebisectionswill tendto be worsethanthat of the feasiblesingle-resourcbisections. This is
illustratedin Figure2 in which thefeasiblesolutionwith respecto thethreeresourcesiasa cut of three, whereaghe
feasiblesolutionthatignorestheindividual cell typeshasa cut of two.

To solve the multi-resourcebisectioningproblemwe developedtwo classef multi-resourcepartitioningalgo-
rithms. The first class,computeshe overall solutionby constructinga bisectionthat simultaneouslhbalanceshe
multiple resourceswhereaghe secondtlass,achiesesthe desiredbalanceby modifying a bisectionthatwasinitially
obtainedusingatraditionalsingle-constrainbisectioningalgorithm.We will referto thefirst classasthenativemulti-
resouce partitioning algorithmsandto the secondclassasthe multi-resouce enfocementlgorithms.The detailsof

thevariousalgorithmsin eachof theseclassesreprovidedin thefollowing two sections.

4 Native Multi-Resource Partitioning Algorithms

We developedthreedifferentalgorithms,called multi-phase multi-constaint, and multi-phase—multi-constint that
arecapableof directly computinga partitioningthatbalancedhe differentresourcesThesealgorithmsaremotivated
by therecentlydevelopedgraphpartitioningalgorithmsfor partitioningfinite elementmeshesrisingin multi-phase
and multi-physicsscientific numericalsimulations[16, 25]. Specifically our multi-constaint algorithmis based
on the graphpartitioningalgorithmproposedn [16], our multi-phasealgorithmis basedon the graphpartitioning
algorithm proposedn [25], whereasthe multi-phase—multi-consdint algorithm combineselementsfrom both of

theseapproachedetailsonthesealgorithmsareprovidedin the remaindeof this section.



4.1 Multi-Constraint Bisection(MC)

The multi-constraintpartitioning formulation, initially developedin the context of graphs[16], was introducedto
modelthe requirement®f applicationghat needto partition graphsthat balancemultiple quantitiesassociatedvith
theirvertices.Formally, themulti-constrainhypegraphbisectioningproblemformulationin thecaseof m constraints
is definedasfollows. Let H = (V, E) be a hypergraplsuchthateachvertex v hasa weightvectorw(v) of length
m associatedvith it. Theith componenbf this vector (wi (v)) correspondso the weight associatedvith theith
constraint. Without loss of generality we assumehat the weight vectorsof the verticessatisfy the propertythatt
Y wey wi(v) = 1.0fori = 1,2,..., m. Usingaframavork analogouso thatusedfor single-constrainproblems
(Section2), let[l;, ui] fori =1, 2,..., m, bem lower andupperboundconstrainton the sizeof eachpartitionsuch
thatO < |; < u; andl; +u; = 1. Giventhesedefinitions thegoalof themulti-constrainhypergraphisectionproblem
is to computea bisectionP of V thatminimizesthe sumof theweightof thehyperedgethatspanmultiple partitions

subjectto the constrainthat

I < Z wi(w) <Uu, j=1,2 andi =1,2,...,m.
YveV:P[v]=j

As an exampleof wherethis problemformulationcanbe used,consideran applicationthat needsto computea
bisectionof a circuit suchthatthearea powerconsumptionandpin-countaresimultaneouslypalancedcrosghetwo
partitions. This partitioningrequirementanbe formulatedasa multi-constraintproblemby assigningo eachcell a
vectorof threeweightscorrespondingo the cell’'s area,power consumptionandpin-count,respectrely, andsetting
[li,ui] =[0.50, 0.50]fori = 1, 2, 3. Theresultingmulti-constrainbisectionwill producea bisectionthatminimizes
the cutandalsobalancegachof thesethreequantitiesacrosghetwo partitions.

However, the multi-constraintformulationcanalsobe usedto solve the multi-resourcepartitioning problemby
creatinga constrainfor eachdifferenttype of cells. Specifically givena multi-resourcéhypergraptH = (V, E) with
m differenttypesof cells, eachvertex v € V is assigneda vectorof m weightsw(v), suchthat wyqy[v] = 1 and
Vi # t(v), wi(v) = 0. For example,in a hypergrapltwith threetypesof cellsts, to, andtsz, we would assign(1, 0, 0)
to thecellsof typets, (0, 1, 0) to the cellsof typet, and(0, 0, 1) to the cellsof typets. It is easyto seethatafeasible
multi-constrainfpartitioningof this problemwill correspondo afeasiblesolutionfor the multi-resourcepartitioning
problem,aswell. Thisrepresentatioandtheresultingfeasiblepartitionsthatit producesreillustratedin Figure3.

Motivatedby the abose obsenation,we developeda multilevel multi-constraintpartitioningalgorithmfor hyper
graphsandusedit to solve the multi-resourcepartitioning problem. Specifically we developedalgorithmsfor the
coarseninginitial partitioning,anduncoarseningphaseghat combineelementsof the single-constrainhypergraph

partitioningalgorithmsin hMETS with the multi-constrainextensiongntroducedor graphpartitioning[16].

1in casesn which this doesnot hold, theweightof eachvertex with respecto eachconstraintcanbedivided by thetotal weightof this constraint
over all the vertices. The resultingweightswill satisfythis conditionandthe scalingdoesnot affect the ability to find partitioning solutionsthat
satisfythe desiredbalancingconstraints.
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This bisection
is infeasible as the
partition constraint weights
are unbalanced
[(4,2,0)and (2,2,2) ].

This bisection is
feasible as the
partition constraint
weights are balanced

[ wd (3.2,1) 1.

Figure3: Theexamplemulti-resourceroblemposedasmulti-constrainiproblem.

4.1.1 CoarseningPhase

During the coarseningohase,a sequencef successiely smallerhypegraphsis constructedy finding groupsof
verticesandmerging themtogetherto form the verticesof the next level coarsethypegraph. A numberof schemes
have beendevelopedfor selectingwhatgroupsof verticeswill be melgedtogetherto form singleverticesin the next
level coarsehypegraphd13, 12, 2, 28]. Of theseschemeghefirst-choice (FC) schemd13], hasbeenexperimentally
shavn to producehigh-qualitybisectionsandformsthe basisof the coarseningchemausedin our algorithm.

The FC schemds derived by modifying the commonlyusededge-coarsenin(EC) schemen which a vertex is
randomlyselectedndit is meigedwith ahighly connecte@ndunmatcheaeighbor Theconnectvity to theneighbors
is estimatedy representingachhyperedgéy a cliqueof edgesachwith aweightof w(e)/(Je| — 1) andby summing
the weightsof the edgescommonto eachneighborandthe vertex in considerationHowever, the FC schemdliffers
from EC in thatit relaxesthe requirementhata vertex is matchednly with anotherunmatchedrertex. Specifically
in the FC coarseningchemetheverticesareagainvisitedin arandomorder However, for eachvertex v, all vertices
(both matchedandunmatchedjhatbelongto hyperedgeincidentto v areconsideredindthe onethatis connected
via theedgewith thelargestweightis matchedwith v, breakingtiesin favor of unmatchedertices.

The primary purposeof the coarseningphasein single-constraintultilevel partitioningalgorithmsis to create
successiely smallerhypegraphghatcontaina progressiely smallernumberof hyperedgefrom the original hyper
graph. In fact, comparedo the othercoarseningschemesthe FC schemeéendsto remove alargeramountof the
exposedhypeedge-weight thusmakingit easierto find high-qualityinitial partitioningsthatrequirelittle refinement
during the uncoarseninghase. However, within the context of the multi-constraintpartitioning problem,one can
alsousethe coarseningrocesgo try to reducethe inherentdifficulty of the load balancingproblemresultingfrom
the presencef multiple weights. This is becausét is easierto computea balancedartitioningif the valuesof the



differentelementof every weightvectorarenot significantlydifferentfrom eachother asin this casethe balancing
problembecomegloserto thatof a single-constrainpartitioning.Motivatedby this obsenration,we developeda new

coarseningschemereferredto asbalancedfirst-choice (BFC), that inheritsthe key propertiesand structureof the
FC schemeébut collapsedogethersetsof verticesthatarebothwell-connectedndalsoleadto morebalancedveight
vectors.

Specifically the BFC schemeconsiderghe variousverticesin arandomorder For eachvertex v, it identifiesthe
vertex u thatis connectedo v with the highestweightedge(let w (v, u) betheweightof thisedge).Let N(v, w(v, u))
be the setof verticesadjacento v suchthatx € N(v, w(v, u)) iff w(v, X) > aw(v, u) for0 < o < 1. Thatis, the
setN (v, w(v, u)) containsall the verticesthatare connectedo v via anedgewhoseweightis greaterthana certain
fraction of the highest-weightncidentedgeof v. Eachof theverticesin N(v, w(v, u)) represents potentialvertex
which v canbe matchedwith andamongthemthe BFC schemeselectsthe vertex x thatleadsto the mostbalanced
memgedvertex. The balanceof a weight vectoris measuredas the ratio of the maximumweight over the average
weight of the m vectorelements.Within this algorithm,the value of parameterx controlsthe extentto which we
emphasizéigh connectity over goodbalance.If « is setcloseto 1.0,thenN (v, w(v, u)) will tendto containfew
vertices,andthusthealgorithmwill focusmoretowardselectingwell-connectedrerticeswhereasf « is closeto 0.0,
thenN (v, w(v, u)) will tendto containmostof v's adjacenwertices,emphasizindpalance Our experimentatiorwith
this parameteshavedthatthe BFC schemeachiezesconsistentlybetterresultswhene is in therangeof [0.85, 0.95],
asit providesa goodbalancebetweenreducingthe exposedhyperedgeveight and also makingit easierto find a

balancedartitioning.For thisreasonin all of ourexperimentsve usex = 0.90.

4.1.2 Initial Partitioning Phase

The goal of theinitial partitioningphaseof a multilevel algorithmis to computea feasiblebisectionof the coarsest
hypergraphihatminimizesthecut. In thecaseof single-constrainpartitioning,ensuringhefeasibility of theresulting
bisection(i.e., thatit satisfiesthe balancingconstraint)is quite straightforvard. However, in the contet of multi-
constrainipartitioning,finding a feasiblebisectionthatbalanceshe multiple weightsis considerablymuchharder

Ouralgorithmfor computingabisectionin the presencef multiple weightsis similarin spirit to thegreedyregion
growing algorithm[14] usedfor computinga bisectionof a graphwhenthereis a singleweight. In the caseof single-
weightgraphs the greedyregion growing algorithmworks asfollows. Let H = (V, E) be the hypergraphthatwe
wantto bisectinto two subgraph$ip = (Va, Ea) andHg = (Vg, Eg). Thisalgorithminitially selectavertexv € V
randomly andsetsVa = {v} andVg = V/Va, andtheninsertsall the verticesu € Vg into a max-priority queue
accordingto their gain function. The gainof a vertex v is the reductionin the value of the hyperedge-cuachiered
by moving v from the partitionthatit belongsto the otherpartition. Then,it repeatedlyselectsthetop vertex u from
the priority queue movesit to Ha, andupdateghe priority queueto reflectthe new gainsof the verticesadjacento
u. Thealgorithmterminatesassoonasthe weightof the verticesin Ha becomesnorethanhalf of the weight of the
verticesin H.

In the caseof hypegraphswith multiple vertex-weights,we modifiedthe above algorithmasfollows. Insteadof

usinga singlepriority queuewe usem separategueueswherem is the numberof weights. A vertex belongso only



a singlepriority queuedependingon the relative orderof the weightsin its weightvector In particular a vertex v
with weightvector (w1 (v), wz(v), ..., wm(v)) belongsto the jth queueif wj(v) = max (wj(v)). The existenceof
thesemultiple priority queuesalsochangesow the verticesare selectecandmovedfrom Hg to Ha. At ary given
time, dependingon the relative orderof theweightsof hypergraphHg, the algorithmmovesthe vertex from the top
of a specificpriority queue.In particulay if wj(Vg) = max (wi(Vg)), thenthe jth queueis selected.If this queue
is empty thenthe non-emptyqueuecorrespondingo the next heavier weightis selectedandsoon. The algorithm
terminategssoonasoneof theweightsof H o becomamorethantheuserspecifiedower-boundfor thecorresponding
weightof H.

A key questiorthatneedso beaddresse the extentto whichtheabove algorithmcanleadto afeasiblesolution
or not. The problemof computinga balancedartitioningof a graphin the presencef multiple vertex weightshas
beenanalyzedn [16], in which they developeda multi-constraintin-packingalgorithmcapableof splitting a setof
n multi-weightobjectsinto two bins. The authorsshovedthat, underreasonabl@assumptionstheir multi-constraint
bin-packingalgorithmcanleadto partitionswhoserelative imbalances boundedoy mwmax, Wwherem is the number
of weights,andwmay is the largestindividual weightamongthe m weightsacrosshe n objects.Whenm = 2, this
multi-constraintin-packingalgorithmusesthe samepair of priority queuesasour initial partitioningalgorithmand
alsofollows similar rulesfor selectingthequeuethatwill provide the next vertex for inclusionin Ha. As aresult,our
initial partitioningalgorithmcanachiere very goodboundsontherelative balanceof thetwo partitionsand,assuch,it
leadsto afeasiblesolution.In addition,by preferringthe highestgainverticesfrom the selectedjueue puralgorithm
extendsthe multi-constraintbin-packingalgorithmto computea bisectionwhich besideseingfeasible alsotriesto
minimizethe hyperedge-cuh a greedyfashion.

However, for m > 2, a preciseimplementatiorof the weightselectionalgorithmusedin the multi-constrainbin-
packingalgorithmis quite comple, asit requiresmaintainingm! priority queuesFor thisreasonpurinitial bisection
algorithmis only a looseapproximatiorof the multi-constraintin-packingalgorithmof [16]. Consequentlyit does
not provide ary usefulboundson therelative balanceof the two partitions,andin somecasest mayfail to achieve
reasonablyight balance.To addresghis problem,afterwe computethe bisection,we performan explicit balancing
stepfollowedby a bisectionrefinemenstepto obtainboth betterbalanceandalsofurtherimprove the quality of the
bisection. The algorithmsusedto balanceandrefinea multi-constraintbisectionare describedn Section4.1.3. We
repeathis processa smallnumberof timesandpick the bestsolutionasour initial solution.

4.1.3 UncoarseningPhase

Duringtheuncoarseninghasea partitioningof thecoarsehypergraplis successiely projectedo thenext levelfiner
hypegraph,anda partitioningrefinementalgorithmis usedto optimizethe objective function without violating the
balancingconstraintsA classof local refinementlgorithmsthattendto producevery goodresultswhenthevertices
have asingleweight[12], arethosethatarebasedon the FM algorithm[9]. The FM algorithmstartsby inserting
all theverticesinto two max-priority queuespnefor eachpartition,accordingo their gains. Initially all verticesare
unloded, i.e., they arefreeto moveto the otherpartition. Thealgorithmiteratively selectsanunlockedvertex v from

the top of the priority queuefrom one of the partitions(sourcepartition) andmovesit to the otherpatrtition (target
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partition). The sourcepartitionis determinedasedn whetherthe currentbisectionis a feasiblesolutionor not. If it
is feasible thenthe partitionthat containsthe highestgainvertex becomeghe source.On the otherhand,if it is not
feasible(i.e., the balancingconstraints violated),the partitionthat containsthe largestnumberof vertices,becomes
thesource.Whenavertex v is moved, it is locked andthe gain of the verticesadjacento v areupdated.After each
vertex movementthe algorithmrecordsthe valueof the objective functionachieved at this point andwhetheror not
thecurrentbisectionis feasibleor not. A singlepassof thealgorithmendswhenthereareno moreunlockedvertices.
Thentherecordedraluesof the objective functionarechecled,andthe pointwherethe minimumvaluewasachieved
while achieving afeasiblesolutionis selectedandall verticesthatweremovedafterthatpointaremovedbackto their
original partition. This now becomesheinitial partitioningfor the next passof thealgorithm.

Multi-constraint FM Refinement(MC-FM)  For the purposeof refining a bisectionin the presenceof multiple
balancingconstraintsye have developedanew bisectionrefinementlgorithm,calledMC-FM, thatuses=M’s overall
stratgly andoperatesasfollows. For eachoneof the two partitions,we maintainm priority queueswherem is the
numberof weights.A vertex belonggto only a singlepriority queuedependingntherelative orderof theweightsin
its weightvector In particular a vertex v with weightvector (w1 (v), w2(v), ..., wm(v)), belongsto the jth queue
if wj(v) = max(wi(v)). Giventhese2m queuesthe algorithmstartsby initially insertingall the verticesto the
appropriatequeuesaccordingto their gains. Then, it proceedsby selectingone of these2m queuespicking the
highestgain vertex from this queue,and moving it to the otherpartition. The queueis selectedasfollows. If the
currentbisectionrepresents feasiblesolution, thenthe queuethat containsthe highestgain vertex amongthe 2m
verticesat the top of the priority queuess selected On the otherhand,if the currentbisectionis infeasible thenthe
gueusds selectedlependingntherelative weightsof thetwo partitions.Specifically if A andB arethetwo partitions,
thenthe algorithmselectsthe queuecorrespondingo the largestw; (x) with x € {A,B}andi = 1,2,...,m. If it
happenshattheselectedjueueas empty thenthealgorithmselectsa vertex from the non-emptyqueuecorresponding
to the next heaviestweightof the samepartition.

For example,if m = 3, (w1(A), w2(A), wz(A)) = (.43, .60, .52), and(w1(B), w2(B), w3z(B)) = (.57, .4, .48),
thealgorithmwill selectthe secondqueueof partition A. If this queueis empty it will thentry thethird queueof A,
followedby thefirst queueof A. Notethatwe give preferenceo thethird queueof A asopposedo thefirst queueof
B, eventhoughB hasmoreof thefirst weightthan A doesof thethird. Thisis becauseurgoalis to reducehesecond
weightof A. If thesecondjueueof A is non-emptywe will selectthe highestgainvertex from thatqueueandmove
it to B. However, if this queueis empty we still will like to decreas¢he secondwveightof A, andthe only way to do
thatis to move anodefrom A to B. Thisis why whenour first-choicequeueis emptywe selectthe mostpromising

nodefrom the samepartitionthatthis first-queuebelongsto.

Multi-constraint Balancing (MC-B) As discussedh Section4.1.2,theregion-graving algorithmusedto compute
the initial bisectionof the hypergraphmay fail to producea feasiblesolutionwhenm > 2. For this reasonwe
developedan iterative algorithmthat balanceghe differentweightsby moving verticesbetweenthe two partitions.

This multi-constaint balancingalgorithm operatesn a fashionsimilar to MC-FM, exceptthatit gives priority to
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finding abalancedisectionratherthanminimizing thecut.

MC-B usesthe sameset of priority queuesas MC-FM, andin eachstepit movesthe vertex from the priority
gueuecorrespondingo the mostviolatedbalanceconstraint. The mostviolatedbalanceconstraintis determinecy
measuringheconstrainiveightvaluesin eachpartitionandchoosinghe constraintvhoseweightis thefurthestaway
from the minimum requiredamountof constraintweight. Thena move is selectedrom the priority queueof the
otherpartition, sothatthe moving of that particularvertex to the mostviolatedsidewill reducethe violation. If that
particularqueuds empty otherqueueonthe samesidearesearchedor verticesthatcanreducetheviolation of most
unbalancedaonstraint. Note that during the operationof this algorithm,all the movesthatimprove the balanceare
acceptedrrespectve of thedegradationn the cut. Thus,this balancingsteptendsto increasehe cut, especiallywhen
thenumberof constraintss large.

4.2 Multi-Phase Bisection (MP)

Themulti-phaseisectionalgorithmis basedntheintuitive ideaof tacklingeachtypeof cellsoneby one.Essentially
it usesthe single-constrainpartitioner(hMEeTS) to partitiona singletype of cellswhile therestof thetypesaremade
non-participatoryn the partitioningprocess.Sinceeachtypeis handledn separat@hasethis algorithmis referred
to as multi-phasebisection The cells are madenon-participatoryeither by makingthemfixed (i.e., not allowing
themto move betweerpartitions)or by removing themfrom the hypegraph.We male this choicebasedn whether
the partitioninformationof a cell is available or not. Specifically if the cells of a particulartype have alreadybeen
bisectedhenwe make themfixedcells,andif the cellsof a certaintype have notbeenpartitionedthenwe make them
non-participatoryy removing themfrom the partitioningproblem.

Thealgorithmproceedssfollows. Initially, it constructsa seriesof sub-hypegraphsdenotedoy Hi, Ho, ..., Hmy
suchthat Hi containsonly the cells of typets, to, .. ., tk. Thatis, sub-hypegraphH; containsonly the cells of type
t1, Ho containsonly the cells of type t; andty, Hs containsonly the cells of typets, to, andts, andsoon. Note
that Hy, is nothingmorethanthe original hypergraphH. Becauseeachof thesesub-hypegraphscontainsa subset
of the cells, we will referto themas partial hypegraphs This sequencef partial hypegraphsis constructedy
startingfrom Hp, andrepeatedlyremaoving from it all the cells of typetm, tm—1, ..., t2 in thatorder leadingto the
sub-hypegraphsHm_1, Hn—2, . .., Hi, respectrely. Next, the algorithmuseshMETS to bisectone-by-onesachof
the sub-hypegraphsHi, Ho, ..., Hy, to obtainthe partitions P, Po, ..., Py, respectiely. Specifically partitioning
P is obtainedby bisectingH; usingthe balanceconstraintof [cly,, cuy,]. Partitioning P, is obtainedby first fixing
thecellsof Hj thatareof typet; to eitherpartitiononeor two basedn the previously computedpartitioning P1, and
thenbisectingthe cellsof typet, thatremainusinga balanceconstrainof [cly,, cut,]. Sinceby constructionthecells
of typet; in Ha correspondo the cells of Hy, partitioning Py containsall informationrequiredto assignthesecells
to eitherpartitionone or two; thus,the above procedurewill resultin partitioningall the cellsof H,. Moreover, the
resultingpartitioningsatisfiesthe balanceconstraintsof the cell-typesthatit contains(i.e., it is a feasiblesolution)
becausgi) thecellsof typet; satisfytheconstrain{cly,, cuy, ], asthey remainedixedduringpartitioning;and(ii) the

cellsof typet; satisfythe constrain{cly,, cu,], asit wasenforcedoy hMETS. PartitionsPs, ..., Pn arecomputedy
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following a similar procedurehatfixesthe cells of the previously partitionedcell-typesanduseshMETS to bisectthe
newly addedcell-typesubijectto its specificbalanceconstraint. By following a similar argumentasit wasthe case
with Py, it canbe easily shavn that thesepartitioningswill alsocorrespondo feasiblesolutionsandconsequently
partitioning Py, will beafeasiblepartitioningto the overall problem.

Cell-TypeOrdering  Within thecontet of this multi-phasepartitioningalgorithm therearetwo elementghataffect
its overall effectiveness.Thefirst is the methodusedto orderthe differenttypesof cells andthusthe sequencéy
which the overall partitioningis computed. In our algorithm, the orderingof the variouscell-typesis determined
by the numberof cells of eachtype thatis available. In particular sincethe overall multi-resourcepartitioningis
computedn anincrementafashion,in which the partitioningof cell-typests, to, . .., tx—1 hasaninfluenceon hov
cells of type ty are partitionedin Hg, we would like the cell-type orderingto be suchthatit ordersfirst the cell-
typeswhosebisectionwill mostlikely accountfor a large fraction of the overall cut. By doing so, we allow the
algorithmto focuson thesecostlycell-typesasearlyaspossible.This allows it to computehigh-qualitypartitionings
asthey areonly affected/constraineldy a smallnumberof previously partitionedcell-types.Eventhoughthe a priori
determinatiorof suchanorderingis all but impossible our experimentatiorshavedthatthe numberof cells of each
cell-typecorrelatesvell with its contritution to the overall cut. Thatis, the bisectionof the morefrequentcell-type
will accounfor alargerfractionof the cutwhencomparedo thelessfrequent.For this reasonpur algorithmorders
thedifferentcell-typesin non-increasingrderof theirrespectie frequenciesThis orderingensureshatthecellswith
known partitioninginformationis alwayslargerthan(or equal)the numberof cells without partitioninginformation
duringthepartitioningof arny of the sub-hypegraphs.

Modeling the Modified Nets The secondelementaffectingthe performancef the multi-phasepartitioningalgo-
rithm is the methodusedto modelthe netsaffectedby the eliminationof the cellsthat occursduringthe construction
of thesuccessiely smallersub-hypegraphsH,—1, Hn—2, . . ., H1. To seewhy we needto differentiatebetweerthese
partial netsandthe netsthatremainunafected(referredto ascompletenetg, considertwo equal-sizenetse; ande;
of Hy suchthate; containsall of its original cells wherease, wasobtainedafter eliminatingsomeof its cells. Let
usassumehatthereexist two feasiblebisectionsP,* and P of Hi suchthatbothof themcut thesamesetof nets
with the only differencebeingthat Pfl cutse; but notey, whereast2 cutse but note;. By constructionpoth of
thesebisectionsare equally goodasthey cut thesamenumberof nets. However, within the context of our incre-
mentalmulti-resourcepartitioningalgorithm, sz shouldbe preferredover Plfl becausehe cutstatusof e; (or that
of any othercompletenet)remainsunchangediuringthe incrementapartitioningof the successie sub-hypegraphs
Hk+1, . . ., Hm, whereaghe cutstatusof e; canchange.In particular evenif e, is not beingcut by the currentbi-
section,it canstill be cutin successie sub-hypegraphssincethey containmoreof its original cells. Moreover, the
likelihoodof changingthe future statusof an uncutpartial netincreasessthe differencebetweenthe original and
thepartial sizeof the netincreasesThis is becausgartial netsthatcontaina muchsmallernumbersof their original
cells canbe cut in multiple waysand/orin multiple successie sub-hypegraphs(if they containa large numberof

differentcell-types).For this reasongverythingelsebeingequal,it is morepreferableo cut a partialnetasopposed
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to a completenet, andamongthesepartial netsit is betterto cut a netthat hasa large numberof its original cells
removed. In ouralgorithmwe introducesuchpreferenceby decreasinghe weightof eachpartialnet,which biasthe
bisectiontowardpartialnets.Specifically for eachpartialnete’, we calculatdts new weightw(€') asw(e) = (|€|/|€]),
wheree andw(e) areits correspondingompletenetandits weight,respectrely. Notethatthis re-weightingformula
takesinto accountthe numberof cellsthathave beenremoved, further biasingthe bisectiontoward partial netsthat
aremuchsmallerthantheir original nets.

4.3 Multi-Phase Multi-Constraint (MPMC)

The third native multi-resourcepartitioningalgorithmthat we developed,referredto as MPMC, extendsthe multi-
phasealgorithmpresentedn Section4.2 by incorporatingsomeof the elementf the multi-constraintpartitioning
algorithmdescribedn Sectiond.1andby augmentinghepartialhypegraphso includeadditionalhyperedgesyhich
aredesignedo bettercapturethe structureof the original hypeigraph.

Post-BisectionRefinement One of the characteristicof the multi-phasepartitioning algorithmis that oncethe
partitioning of a particularpartial hypergraphH; hasbeencomputed the locationsof the cells of type tj remain
fixedanddo not changeasadditionalcell-typesarebeingpartitioned.Eventhoughthis helpsin reducingthe overall
compleity of thealgorithm(eachcell is partitionedonly once),andin ensuringhatthe resultingbisectionrepresents
a feasiblesolution,it may producebisectionswhoseoverall cut is relatively high. This canbe reducedf we allow
the movementof previously partitionedcell-types. This is especiallytrue in casesn which the schemaeutilized to
orderthe variouscell-types(basedon their frequeng) fails to correctlypredictthe relative difficulty of partitioning
eachcell-typeandin casesvherethereis a high degreeof interdependencbetweerthe partitioningsof differentcell-
types,andthe only way to obtaina low cut bisectionis to considethemat the sametime. MPMC overcomeghese
typesof problemsby usingthe multi-constrainbisectionrefinementlgorithmdescribedn Sectiond.1.3to refinethe
bisectionof eachpartial hypegraph. This refinements appliedafter the bisectionof H; hasbeencomputedandis
allowedto move betweerpartitionscellsof typesty, . . ., t; (i.e.,all thecellsthatarepartof H;)) aslongassuchmoves

improvethe cutwithoutviolating the balanceconstraints.

Pseudo-HypeedgeAddition  Our initial experimentswith the multi-phasepartitioningalgorithmrevealedthat as
the partial hypegraphscontaina progressiely smallernumberof differentcell-types their topologicalstructurecan
changedramaticallywhencomparedo thatof the original hypegraph. For example,it is not uncommorto obtain
partial hypegraphghat have mary disconnecte@omponentsevenwhenthe original hypergraphs relatively well-

connectedi.e., it haslarge balancectuts). This problembecomesnorepronouncedn casesvheretherearealarge
numberof differentcell typesand/orthereis no singlecell-typethataccountdor alargefractionof thetotal number
of cells. The problemwith partial hypegraphsthat are structurallydifferentfrom the original hypergraphis thata
goodbisectionof themmay not necessariljeadto a goodbisectionto the overall problem.For example,if a partial
hypergrapltontainsdisconnectedomponentsywe maybe ableto identify a balancedisectionthatdoesnot cut ary

hyperedgesHowever, this zero-cutbisectionwhenviewed within the larger context of the original hypergraphmay
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actuallybe worsethananotherisectionwith a highercut. Unfortunately the partial hypergraptcontainsno infor-
mationto allow the algorithmto selectwhat appeargo be a worsebisection. Oneway of addressinghis problem
is to rely on the post-bisectiormulti-constraintrefinemeniterationsdiscussedn the previous paragraph However,
the heuristicandlocal natureof suchrefinementmay not alwaysleadto the bestpossiblesolution. For this reason,
MPMC takesa complementarapproactandaugmentsheoriginal representatioof the partialhypegraphsy intro-
ducingpseuddypeedgesthattry to retainthe connectity informationthatotherwisewould belostin the procesof
removing cells.

Specifically thesepseuddhyperedgesarecreatedasfollows. Whena cell u is removed, the setof cellsthatu is
connectedo (neighborsN(u)) is analyzedo determinehow closelyeachof themis connectedo u. The degreeof
connectvity is determinedisingthe sameschemausedfor measuringhe connectvity betweera pair of cellsduring
the coarseninghase. Thatis, we representhe hyperedgess cliqguesof edgeswith the weightof w(e)/(le| — 1).
The sum of weightsof suchedgesconnectingcellsu andv (v € N(u)) determineghe connectvity betweenu
andv. For all thecellsin N(u), thathave aconnectvity to u higherthana certainthresholdare consideredo be
“highly connected”andareallowedto beconnectedo a newly introducedpseuddyperedgeThemotivationbehind
thesepseuddhyperedgess to biasthe partitioningof the partial hypegraphsowardsaligningthemwith the overall
bisectionthatwould have beenobtainedwithout the removal of cells. However, in orderto ensurehatthesepseudo
hyperedgedonotoverly biasthebisectionthey areassignech muchsmallerweightthanthatof theotherhyperedges.
Empirically, we foundthat usingthe connectity thresholdof 10% of the averagehyperedgaveightandsettingthe
weightof pseuddyperedgesqualto 10% of the averagehyperedgeveightimprovedthe overall partitioningresults
for tighterbalanceconstraint§asshavn laterin Section6.1). Furthermorewhendeterminingconnectity, previously
addedpseuddhyperedgearenottakeninto consideration.

4.4 Additional Impr ovements

After thebisectionof theoriginalhypergrapthasbeencomputedit is possibleo furtherimprovethe cutby applyinga
multi-constrain¥/-cycle. This consistof two componentsiestrictedmulti-constaint coarseningandmulti-constraint
refinementTherestrictedmulti-constraintoarseningtepdiffersfrom regularmulti-constraintcoarseningl12] by an
additionalrequirementary two verticesthatarecollapsedogethemustbelongto thesamepartition. Theinformation
regardingthe partitioningis thuspresered during the creationof successie approximatenypegraphs.The second

componenbf theV-cycle is sameasthe multi-constraintrefinemenpresentedn Sectior4.1.3.

5 Multi-Resource EnforcementAlgorithms

In analyzingthe characteristicef the variousmulti-resourcecircuits of Table 1, which correspondo large designs
synthesizedor the Xilinx Virtex Il architecturewe discoreredthatthe differenttypesof cells arereasonablyvell-
distributed throughoutthe underlyinghypegraph. This suggestghat the bisectionsproducedby single-constraint
partitioningalgorithms thoughnot perfectlybalancedthey will notbearbitrarily unbalance@ither Moreover, since
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thesepartitioningscanbe computedisingstate-of-the-annultilevel schemesthey will have smallcuts. Motivatedby
this obsenation, we developedtwo schemeshattake asinput a min-cutsingle-constrainpartitioningand modify it

to enforcethevariousmulti-resourcéalanceconstraints.

Single-Constraint Dir ect-Balancing(SCDB) The first schemetakes advantageof the multi-constraintbalancing
and bisectionrefinementalgorithms,which were developedwithin the context of the multi-constraintpartitioning
algorithm(Sectiond.1),andsolvesthe multi-resourcepartitioningproblemin threesteps.First, it treatsall thecellsas
beingof thesameypeandcomputes bisectiorusinghMETS. Secondit usegshemulti-constrainbalancingalgorithm
(MC-B) to modify this bisectionso that the differentcell-typessatisfytheir respectre balancingconstraints.Third,

it improvesthe quality of thefeasiblesolutionby usingthe multi-constrainbisectionrefinemenalgorithm(MC-FM)

to further modify this bisection. Comparedo the native multi-resourcepartitioningalgorithms(Section4), the key

adwantageof SCDB s thatit is considerablyfasterasit essentiallyrequiresa small numberof additionalFM-style
iterationsto performthebalancingandrefinemensteps.However, despiteits low computationatequirementsasour
experimentwill latershaw, its overall performanceas remarkablygood,andin mary casest is comparabler better

thanthenative schemes.

Single-Constraint Multi-Phase Balancing (SCMB) The secondschemeincorporateghe idea of enforcingthe
multi-resourceonstraintaithin the context of the multi-phasemulti-constrainpartitioningframework (Sectiord.3).
Specifically let P, bethesingle-constrainbisectioncomputedy hMETS, letty, to, .. ., ty bethem cell-typessorted
in increasingunbalancedorderwith respectto Py, andlet ty (1 < x < m) bethefirst cell-typethat violatesthe

balancingconstraint. Thatis, in the bisectionproducedby hMEeTS, the cells of type t; arethe mostbalancedthe

cellsof typety, aretheleastbalancedandthecellsof typesty, .. ., tx_1 satisfythebalancingconstraintsThe SCMB
algorithmcreatesa sequencef partial hypegraphsHy, Hx41, ..., Hn suchthat Hy4i (1 < X + 1 < m) contains
cellsof typesty, ..., ty+j andusesPy, to derive the partitioningof the cellsin Hy whosetypeis lessthanty. From

thatpointonwards,SCMB proceedén afashionsimilarto MPMC, computinga bisectionof eachsuccessiely larger
partialhypergraptbasedon the bisectionof the previouspartialhypegraph.EssentialyfSCMB inheritsthe balanced
portionsof theinitial partitioningcomputedy hMETS andthenit iteratively partitionstheunbalancedell-typesusing
anorderdeterminedy hav mucheachcell-typeviolatesits respectie balancingconstraint.

6 Experimental Evaluation

We experimentallyevaluatedour multi-resourceaware partitioningalgorithmson anindustrialbenchmarlsuitecon-
sistingof twelve large designssynthesizedor the Xilinx Virtex Il architectureThetypesof cellsconsistof subCLB
elementsuchasLUTs, FFs,MUXes, controlgatesandnonCLB elementsuchasRAM Blocks,DCMs, IOBs, Mul-
tipliers etc. We chosesub-CLBelementsasthey provide moretypesof elementsn the benchmarksywhich helpsin
validatingtherobustnes®f ouralgorithms.Thedetailsof thesébenchmarksirelistedin Table2. Thecolumnlabeled

“# types” shaws the numberof distinct typesof cells available on that particularbenchmark.The columnlabeled

16



No. of cellsof varioustypes
#cells #nets #types min max avg

indl 18160 17689 11 8138 1651
ind2 5236 4874 9 2584 582
ind3 15783 16272 11 5889 1435

ind4 58571 60734 12
ind5 89697 91925 11
indé 56462 57674 11
ind7 119407 121822 11
ind8 136539 139147 12
ind9 109115 111776 11
ind10 72130 49594 5

indll 92778 93184 11
ind12 140118 141505 11

22193 4881
45305 8154
26759 5133
55873 10855
73106 11378
54377 9920
42789 14426
46577 8434
76887 12738

a =
rRrghrOowooRwer

Table2: Thecharacteristicef netlistsused

Without V-cycle With V-cycle

hMETIS MC MP MPMC MC MP MPMC
ind1 246 378 987 403 346 426 388
ind2 149 181 349 149 173 144 129
ind3 101 224 908 169 224 908 169
ind4 153 405 4012 446 376 508 336
ind5 717 1133 2188 1053 1058 1221 1039
ind6 809 1649 2615 1038 1649 2548 1038
ind7 1021 1187 4126 1234 1081957 1151
ind8 400 682 4076 921 568 707 734
ind9 1392 1577 4937 1832 1491 1651 1656
ind10 480 528 719 550 498 505 528
ind11 373 545 1311 582 504 730 570
ind12 409 636 1300 533 576 744 531
ARQ 1.000 1.554 4.406 1.500 1.448 1.882 1.386
Time 1.000 0.577 0.230 2.496 1.760 2.360 5.206

Table3: Performancef algorithmsasanaverageof 10 runsfor a49%-51%balanceconstraint.

“min” shavs minimumnumberof cells of ary typefor thatbenchmarkandsimilarly the “max” and“avg” columns
provide thedistribution detailsof numberof cellsin eachhypegraph.

To evaluatethe quality of the solutionsobtainedby the variousmulti-resourcepartitioningalgorithms,we used
hMET'S (versionl.5.3 [15]) to obtainsingle-constrainbisectionsof the differenthypegraphs.Thesesolutionswere
obtainedusinghMETIS’s default parameteréincludingV-cycleattheend). Furthermoreto make suchquality compar
isonseasierwe computedhe AverageRatio of Quality (ARQ) of eachalgorithmagainsthatobtainedoy hMeTIS. To
ensurehemeaningfubveragingof theseratios,wefirst took thelog,-valuesof theseratios,thencalculatedheirmean
u, andthenused2” astheir average.This geometricneanof ratiosensureghatratioscorrespondingo comparable
degradation®r improvementgi.e., ratiosthatarelessthanor greatethanone)aregivenequalimportance The ARQ
numberargerthanl.0indicatesa degradationin quality.

To ensurethe statisticalsignificanceof our experimentakesults,for both hMENS andeachone of the five multi-
resourceoartitioningalgorithmswe reportthe averageresultsof tenruns.
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Without V-cycle With V-cycle
hMETS MC MP MPMC MC MP MPMC
ind1 213 261 940 375 243 337 355

ind2 147 152 316 123 141 1083 114
ind3 85 126 922 177 110 128 110
ind4 127 217 3910 241 171 184 149
ind5 634 779 2242 943 739 813 883

ind6 822 924 2390 1022 871 841 932
ind7 917 983 4376 1167 873 849 1059
ind8 430 558 3781 711 502 431 425
ind9 1289 1449 4052 1454 1367 1371 1326
ind10 360 429 543 391 399 376 377
indll 193 271 1053 237 247 240 236
ind12 307 375 1334 440 361 366 413
ARQ 1.000 1.246 4.811 1.383 1136 1.141 1.165
Time 1.000 0.636 0.255 2.667 1.806 1.863 5.015

Table4: Performancef algorithmsasanaverageof 10 runsfor a45%-55%balanceconstraint.
6.1 Comparison of Native Algorithms

Tables3 and4 show the resultsobtainedby the variousnative multi-resourcepartitioningalgorithms(describedn
Section4) for the 49%—-51%and the 45%—-55%balanceconstraintsrespectrely. Eachof thesetablesshows the
averageminimumcutsobtainedy theMC, MP, andMPMC multi-resourceoartitioningalgorithmsundertwo different
scenariosln thefirst scenariothesolutionsobtainedy thesealgorithmswerekeptasthey were whereasn thesecond
scenariothe solutionswerefurtherrefinedby performinga V-cycle refinemenstep(asdiscussedn Section4.4). In
addition,the columnslabeledhMEINS” shav the averagemin-cutobtainedoy hMEIS for either49%—51%or 45%—
55% balancé? Finally, the rows labeled“ARQ” provide the averageratio of quality of eachalgorithmto hMETIS’s
results(computedisingthe schemedescribedn the previoussection) andtherows labeledTime” shav theamount
of time requiredby the multi-resourcepartitioningalgorithmsrelative to thatrequiredby hMETS. Numberdessthan
onerepresentun-timesthataresmallerthanthatof hMEINS, whereaswumbergreaterthanonerepresenhigherrun-
times.

Comparingthe resultsin thesetableswe canseethat all schemesproducesolutionswhosecutsareworsethan
thoseproducedy hMETS. This shouldnotbe surprisingashMETS solvesthe single-constrainbisectioningproblem
which,in generaldoesnot solve the multi-resourcepartitioningproblem.

Comparingthe solutionsproducedoy the variousmulti-resourcepartitioningalgorithmswe canseethatthereis
a considerableamountof variability in the quality of the final solutions. In particular in the absenceof V-cycle
refinementthe quality of the solutionsproducedby MP are significantlyworsethanthoseproducedoy eitherMC
or MPMC. On average the 49%-51%cutsproducedby MP are4.4timesworsethanthoseproducedy the single-
constrainhMETS, whereaghe cutsproducedy MC andMPMC areonly 55.4%and50% worsethanhMETIS’s cuts,
respectiely. Similar trendscan be also obsened for the 45%—-55%cuts, aswell. Theseresultsillustrate that the

multi-constraintalgorithm (MC) andthe modificationsto the multi-phasepartitioningalgorithmimplementedn the

2hMETIS’s bisectionswill not necessarilysolve the multi-resourceproblem,asthey do not accountfor the differentcell types.
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Without V-cycle  With V-cycle
hMENS SCDB SCMB SCDB SCMB

ind1 246 265 251 260 238
ind2 149 161 165 160 162
ind3 101 125 124 125 124
ind4 153 230 251 226 251
ind5 717 1340 868 799 864
ind6 809 880 827 879 827
ind7 1021 998 1056 997 1048
ind8 400 488 411 472 394
ind9 1392 1463 1439 1456 1438
ind10 480 491 488 489 486
indll 373 414 374 403 213
ind12 409 499 503 494 503

ARQ 1.000 1184 1119 1.123 1.057
Time 1.000 1.075 1.845 1.898 2.945

Table5: Performancef algorithmscombinedwith multi-constraintV-cycle asanaverageof 10 runsfor a49%-51%
balancdactor

MPMC algorithmleadto superiorsolutions.

Comparingheresultswithout andwith V-cycle refinemenive seethatthe overall quality of all threealgorithms
improvesby usingV -cycle refinement.However, the overall rateof improvementis differentfor differentschemes.
The MP algorithmgainsthe most,whereaghe MPMC algorithmgainsthe least. We believe thatthe reasorfor that
is the fact that the solutionsof MC and MPMC arealreadyof reasonabhhigh quality, andthus,thereis relatively
little room for improvement. However, becauséVP’s initial solutionis considerablywvorse,by applyinga V-cycle
refinementye canachieve dramaticqualityimprovements As aresult,the 49%—-51%solutionfor MP now becomes
only 88.2%worsethanthatof hMETS.

Finally, comparingMC with MPMC we canseethatthe latter leadsto bettersolutionsfor a 49%-51%balance
constraintwhich are5%-10%betteron averagethanthoseobtainedoy MC. However, this quality advantagecomes
attheexpenseof highercomputationatequirementsin generalMPMC requires2.5to 5.0timesmoretime thanthat
requiredby MC. Note thathMETIS takesmorerun time thanMC andMP becausét performsV -cycle refinementat
theend,while MC andMC do not.

6.2 Comparison of EnforcementAlgorithms

Tables5 and 6 shaw the resultsobtainedby the SCDB and SCMB enforcement-basehulti-resourcepartitioning
algorithms(describedn Section5) for a 49%-51%and a 45%—-55%balance respectiely. Eachof thesetables
shaws the averageminimum cuts obtainedby the two partitioningalgorithmswithout andwith V-cycle refinement.
In addition,the columnslabeled“hMETIS” show the resultsobtainedby hMETS (which areidenticalto thoseshavn

in Tables3 and4), therows labeled*ARQ” provide theaverageratio of quality of eachalgorithmto hMETIS’s results,
andtherows labeled‘Time” shav the amountof time requiredby the multi-resourcepartitioningalgorithmsrelative

to thatrequiredby hMETIS.

Comparingthe solutionsproduceddy the two enforcement-basadulti-resourcepartitioningalgorithmson these
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Without V-cycle  With V-cycle
hMENS SCDB SCMB SCDB SCMB

ind1 213 218 213 216 204
ind2 147 149 150 149 150
ind3 85 99 96 98 95
ind4 127 167 159 149 155
ind5 634 675 665 669 652
ind6 822 848 832 846 831
ind7 917 928 922 902 905
ind8 430 479 430 425 427
ind9 1289 1334 1335 1320 1332
ind10 360 368 364 363 364
indll 193 212 193 211 192
ind12 307 375 327 363 322

ARQ 1.000 1.088 1.046 1.058 1.033
Time 1.000 1.034 1278 1945 2.035

Table6: Performancef algorithmscombinedwith multi-constraintV-cycle asanaverageof 10 runsfor a 45%-55%
balancdactor

two setsof problemswe can seethat, unlike the native algorithms,thereis relatively little variation betweenthe
performancachievedby them. Specifically the performancalifferencebetweernthetwo schemess lessthan7%, on

the average.However, the SCMB algorithmis consistentlybetterthanSCDB, leadingto bettersolutionsin 31 out of

the 48 differentexperimentaldata-points Comparingthe resultswithout andwith V-cycle refinementve seethatas
it wasthe casewith the native algorithms the overall quality of the two algorithmsimproves,aswell. However, those
improvementsarerelatively small, rangingbetween2% and5% on average.Finally, comparingthe amountof time

requiredby thesealgorithmswe canseethat SCMB is slowerthanSCDB, but in mostcaseghedifferences small.

6.3 Overall Comparisons

Comparinghe performanceachiesed by the variousmulti-resourcepartitioningalgorithmswe canseethatin almost
all casesthe enforcement-basealgorithmsleadto solutionsthathave alower cut thanthoseobtainedby the native
multi-resourcepartitioningalgorithms. For example,the best-performingnforcement-basesthemegSCMB) out-
performsthe best-performingnative schemen 41 out 48 data-pointsMoreover, the cutdifferencesareconsiderable,
andon the averageSCMB leadsto cutsthat are 13%—-32%betterthanthat of MPMC. However, this performance
adwantages alsodata-setdependentandthe relative performanceof the variousschemesan changefor different
benchmarks.

Finally, comparinghe performancechievedby SCMB againsthatachiezed by the single-constrainbMETS, we
canseethatthe overallincreasen the cutresultingby solvingthe multi-resourcepartitioningproblemis quite small.
For example,if we considetSCMB'’s resultswith V-cycle refinementve canseethaton averagethe cutincreasedy
only 5.7%and3.3%for the 49%-51%andthe 45%—55%balanceconstraintsyespectrely.
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7 Conclusionsand Discussion

In this papemwe presentedwo classe®f multi-resourcewarepartitioningalgorithmsfor enablingpartitioning-based
placemeniethodsor FPGAarchitecturesvith heterogeneousevices. Thesealgorithmsarevery effective in mini-
mizingthe cutwhile satisfyingmultiple balancingequirementsvith acceptableomputationaéffort. Theaveragecut
of the mosteffective algorithmis only 5.7%and3.3%worsethanthat of the state-of-the-ampartitioningtool hMENS
[15] for the 49%-51%andthe 45%-55%balanceconstraintsyespectrely. Moreover, their additionalcomputational
requirementaresmall,requiringonly two to threetimesmoretime thanhMEIS. Moreover, asin mostreal-life place-
mentapplicationswve areinterestedn finding partitioningsthatdo not over-subscribesachspecificresourcdype, the
actualbalanceconstraintsor eachresourcecanbe setdifferently. This will increasehe spaceof feasiblesolutions
andwill allow thealgorithmspresentedhereto find evenhigherquality partitionings.Theseresultsillustratethathigh-
quality partitioningsare feasiblefor designswith multiple resourcerequirementssuggestinghat partitioning-based
placemenmethodscanbe usedfor placingsuchdesignson modernFPGAarchitectures.

Eventhoughthe key motivationbehindthis researchs partitioning-drvenplacemenbf FPGAarchitecturesvith
heterogeneougsourcesthe algorithmsdevelopedcanbe usedto solve anumberof otherproblemsencountereéh
todayscomplec chiplayout. Onesuchpotentialapplicationoccursin properlyhandlingarea-array/Os. Traditionally,
I/O pins are locatedon the peripheryof the chip. However, someof the modernfabricationrequirementgplace
I/O pins throughoutthe core area. This type of layout is named“area-arrayl/O” layout[5]. Partitioning-driven
placemenfor suchlayoutsrequirethe ability to computepartitioningsin which boththe I/O pinsaswell asthe core
cellsarewell-distributedthroughthe physicaldesign—ataskthat canbe achiezed by the multi-resourcepartitioning
algorithmsdevelopedn thispaper Anotherapplicatiorariseswhile computingayoutsthatcanensuresignalintegrity.
Specifically one of the reasondor signalintegrity violationsis the close placementof simultaneouslyswitching
elements.If a certaindesignlayout solutionrequiresthattoo mary simultaneouslswitchingelementsare not put
togetherin ary of the bins, thenwe canassignthe typesfor cells basedon the time that particularcell switchesand
thusforcesimultaneouslgwitchingelementdo bespreadut. Suchalayoutsolutionalsohasthepotentialof reducing
peakpower dissipationhot spots.Finally, the printedcircuit board(PCB) designsoftenrequireassigningportionsof
thenetlistto multiple chips. This applicationaswell asheterogeneousulti-chip configurationsequirethe useof the

multi-resourceandmulti-constrainfpartitioningalgorithmsdescribedn this paper
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