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1 Introduction

High-performance microprocessors increasingly rely on parallel operations tospeed up program ex-

ecution. Recent superscalar processors fetch multiple instructions, dynamically find independent in-

structions from a set ofreservation stations(or awindowof instructions), and issue them in parallel

to multiple function units [12, 13, 14]. Extensive research is under way to increase the exploitable

instruction level parallelism(ILP) in a program and to widen the issue bandwidth from 4 to 8 instruc-

tions per cycle, or even up to 16 [19, 23]. Additionally, researchers have begun to explore thread-

level parallelismin which multiple threads of instructions can be simultaneously fetched by different

thread-execution units for processing [22, 27, 30, 31]. These thread-execution units are more tightly

coupled than processors in a multiprocessor system in that the order of instructiondispatching and

retiring is tightly synchronized among different units.

The trend towards higher-level hardware parallelism imposes a severe demand on compilers to an-

alyze and transform programs more aggressively to uncover parallelism since it becomes increasingly

more difficult for hardware to extract parallelism alone. Traditionally, compilers for microprocessors

use a low-levelintermediate representation(IR) of the program to analyze dependences and the data

flow between operations. Such low-level IR, or LIR, normally lacks information regarding naming,

types and aliases concerning arrays, and other high-level data structures. Since references to such

variables become a series of indirect references using simple scalar variables or so-calledsymbolic

registers, array subscripts and pointer expressions all become obscured.

This type of LIR has served microprocessor compilers reasonably well so far mainly because

sufficient ILP can often be exploited among scalar operations within a relatively narrow program

scope. Such parallelism can either be detected by hardware without code transformation or it can

be exposed relatively simply through code motion done by theinstruction schedulerin the compiler.

To uncover additional parallel operations to feed the increasing hardware parallelism in the future,

however, the compiler needs to analyze a wider program scope and higher-level datastructures. The

compiler must perform high-level program semantic analysis regarding arrays andpointers, such as

analysis of data dependences, aliases, data flow, loop level parallelism, and summary use-modification

information for procedure calls. Only a high-level IR (HIR) contains the necessary abstract syntax

information to support this extensive analysis.
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The LIR must continue to exist since the low-level machine operations are the instruction schedul-

ing target. Indeed, some low-level operations may not even have a direct equivalent in the HIR. Hence,

the problem becomes one of passing high-level semantic information from the HIR to the LIR.

We have designed and implemented a format, calledHigh-Level Information (HLI)[4], to facilitate

the propagation of high-level semantic information from the HIR to the LIR. Several considerations

have influenced our design:� Transportability : The HLI can be exported from a high-level analyzer, such as those used in

sophisticated parallelizing compilers, to a microprocessor compiler thatdoes not contain HIR

and thus lacks a high-level analyzer.� Hierarchy : The information regarding data dependences and aliases are organized in a hier-

archy corresponding to the loop structures in the program. This reduces the complexityof the

represented information and makes the access to such information easierfor a back-end com-

piler.� Flexibility : The HLI information can be updated if the program is modified after the HLI is

produced, as occurs with many backend optimizations, such as statement reordering. We have

implemented and experimented with a maintenance utility for the HLI to perform this updating.

In the remainder of the paper, Section 2 presents the formal definition of the HLI format, showing

what information is extracted using the HIR and how it is condensed and passed tothe LIR. Section 3

then describes our prototype implementation of this HLI within the SUIF parallelizing compiler and

the GCC compiler back-end. Experiments with the SPEC benchmark programs [29] are presented

in Section 4, showing how the use of the high-level information provided by SUIF improves the

dependence information available to GCC and the execution time of benchmark programs. Some

related work is discussed in Section 5, with our results and conclusions summarized in Section 6.

2 High-Level Information Definition

A High-Level Information (HLI) file for a program includes information that is important for back-

end optimizations, but is only available or computable in the front-end. As shown inFigure 1, an HLI
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Figure 1:Top-level layout of an HLI file.

file contains a number of HLI entries. Each HLI entry corresponds to a program unit inthe source file

and contains two major tables, aline tableand aregion table, as described below.

2.1 Line table

The purpose of the line table is to build a connection between the front-end and the back-end represen-

tations. After generating the intermediate representation (IR), such asexpression trees or instructions

from the source program, a compiler usually annotates the IR with the corresponding source line num-

bers. If both the front-end and the back-end read the program from the same source file, the source

line numbers can be used to match the expression trees in the front-end with theinstructions in the

back-end.

The HLI focuses on memory references and function calls, which are calleditems in the HLI

representation. In the line table, each line entry corresponds to a source line ofthe program unit in

the source file, and includes an item list for the line. In the item list, each item entry consists of anID

field and atypefield. The ID field stores a unique number within the scope of the program unit that

is used to reference the item. The type field stores the access type of the item, which may be a load, a

store, or a function call.

Groups of items from the front-end are mapped to the back-end instructions by matchingtheir

source line numbers. However, this mapping information may not be precise enough to map items
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inside a group (i.e., a single source line) from the front-end to the back-end. To perform precise

mapping, the front-end needs to know the instruction generation rules of the back-end and the order

of items associated with each source line. Specifically, the order of items listed in the line table must

match the order of the items appearing in the instruction list in the back-end.

2.2 Region table

To simplify the representation of the high-level information while maintaining precise data depen-

dence information for each loop, we represent the high-level information of a programunit with

scopes ofregions. A region can be a program unit or a loop and can include sub-regions. The basic

idea of using region scopes in the HLI is to partition all of the memory access items in a region into

equivalent access classesand then describe data dependences and alias relationships among those

equivalent access classes with respect to the region.

The region table of a program unit stores the high-level information for every regionin the program

unit. Each region entry has a region header describing the ID, type, and scope of the region. In

addition to the region header, each region entry holds four sub-tables: (1) an equivalent access table,

(2) an alias table, (3) a loop-carried data dependence (LCDD) table, and (4) a function call REF/MOD

table. In the following subsections, we describe each of these tables associated with each region.

2.2.1 Equivalent access table

A region can contain a large number of memory access items. Recording all of thedata dependences

and alias relationships between every pair of memory access items would result in a huge amount

of data. The HLI deals with such complexity by separating data dependences at different region-

levels. In each region, two kinds of memory references are distinguished fromeach other, namely

the immediatereferences, which are not embedded in any subregions, and theembeddedreferences,

which appear inside subregions. Two immediate references are calledequivalent, and are placed in

anequivalent access class, if they refer to the same memory location in the same execution instance

of the region body (i.e. the same iteration if the region is a loop). Likewise, two embedded references

areequivalentwithin the current region if they access the same memory locations. If the memory

locations accessed by two references within the current region may overlap but are not necessarily

identical, then the two references are said to bemaybeequivalent and their equivalent access class is
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marked asmaybe. Moreover, if the memory locations accessed by two references may overlap in one

execution instance of the region body but not in another instance, then the two references are also said

to bemaybeequivalent. All other equivalent references are said to bedefinitelyequivalent. Since it

is easier to identify definitely-equivalent immediate references than embedded references, we do not

place an immediate memory reference and an embedded memory reference inthe same equivalent

access class.

Equivalent access classes serve two purposes. First, they capture data dependences that are loop

independent [1]. If two references, one being a load, belong to the same equivalent access class,

then they have a loop-independent data dependence within the corresponding region. If an immediate

reference and an embedded reference are not placed in the same equivalent access class, their loop-

independent data reference, if any, will be represented by thealias tabledescribed below. The second

purpose of equivalent access classes is to reduce the number of loop-carried data dependences [1] that

need to be represented. Within the same region, if a number of sources of loop-carried dependences

belong to the same equivalent access class, they can be represented by that single equivalent access

class. Likewise, a number of dependence sinks can also be represented by a singleequivalent access

class.

Since the nesting of all regions in a program unit can be viewed as a tree, the HLI uses a tree pro-

gram structure to accurately and efficiently describe the relationship among equivalent access classes

in different regions. Each leaf represents an individual memory reference and each internal node rep-

resents an equivalent access class. Each internal node, associated with a particular region, represents

the union of the equivalent classes represented by its children that are associated with the immediate

sub-regions. Each equivalent access class has a unique ID and each region has an equivalent access

table that identifies all equivalent access classes within that region.

Figure 2 demonstrates the region structure of a procedure and its equivalent access tables. The

outermost region of the procedure is Region 1, which represents the whole procedure. Region 1

has two immediate sub-regions (Regions 2 and 3) that represent the twoi loops in the procedure.

The secondi loop (Region 3) has an innerj loop, which is represented by Region 4. In the equivalent

access table of Region 1, all memory access items in the procedure are partitioned into three equivalent

access classes:sum, a[0..9], andb[0..9]. From the viewpoint of Region 1, every memory access item

inside the procedure is represented by exactly one of those equivalent access classes. For example,
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eq_acc_class
(maybe)

alias

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:

12:

13:
14:
15:

16:
17:
18:

19:
20:
21:

21:

23:
24:

25:
26:

b[0]
{6}

a[i]
{1}

b[i]
{2}

a[0..9]
{  ,  }

sum
{3,  }

b[0..9]
{  ,  ,  }

sum
{13,14}

    a[i]
{4,5,15,  }

   a[i]
{10,11}

   b[j]
{7,8,12}

b[j−1]
  {9}

eq_acc_class
(definitely)

lcdd
dist =1

Region 3:
for (i)

Region 4:
for (j)

Region 2:
for (i)

b[0..9]
{  ,  }

Region 1:
foo ()

Equivalent access table

int a[10];
int b[10];
int sum;

foo ()  /* region 1*/
{
    int i, j;

    for (i = 0; i < 10; i++) /* region 2 */
    {
        a[i] = 0;
        {1} /* item 1 */
        b[i] = i;
        {2}
    }

    sum = 0;
     {3}
    for (i = 0; i <10; i++) /* region 3 */
    {
        a[i] = a[i] + b[0];
         {4}    {5}     {6}
        for (j = 1; j  < 10; j++) /* region 4 */
        {
            b[j] = b[j] + b[j−1];
            {7}     {8}      {9}
            a[i] = a[i] + b[j];
            {10}   {11}   {12}
        }
        sum = sum + a[i];
         {13}    {14}    {15}
    }
}

Figure 2:The structure of the regions and equivalent access classes for an example program.

in Region 1, item 11 (a[i] ) inside thej loop is represented by the equivalent access class ofa[0..9].

As mentioned above, equivalent access classes use the IDs of sub-regions’ equivalent access classes

to refer to the items residing in their sub-regions. For example, the equivalent access class ofsumin

Region 1 uses the equivalent access class ofsumdefined in Region 3 to refer to memory access items

13 and 14 enclosed by Region 3.

2.2.2 Alias table

Two memory references referring to two distinct names in the same program unit may actually access

the same memory location in the same execution instance of the unit. Such namesare known as

aliases. For convenience, we say that those two memory references arealiased. If the two references

belong to different equivalent access classes in the same region, we again say that the two classes are
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aliased. An alias tableis created for each region to describe the possible alias relationships among

the equivalent access classes of that region. If two equivalent access classes are marked as aliased, all

of the memory access items represented by the two equivalent access classes are considered aliased.

Recall that an immediate reference and an embedded reference are not placed in the same equiv-

alent access class in the same region. If they may access the same memory locations in that region,

they are also marked as aliased. Note thataliasingis a binary relation between two equivalent classes.A andB being aliases andB andC being aliases does not imply thatA andC must be aliases. This

is the primary reason that the HLI does not place all aliased references ina single equivalent access

class. For a loop region, the alias table only describes the alias relationshipsamong the equivalent

access classes within a loop iteration. Loop carried data dependences are described in the LCDD

table.

In the example in Figure 2, equivalent access classesb[0] andb[0..9] in Region 3 may access the

same memory location. Thus, the alias table of Region 3 will include an entry indicating that these

two equivalent access classes are aliased.

2.2.3 Loop-carried data dependence (LCDD) table

If the region is identified as a loop, the LCDD table will list all of the LCDDsat that loop level.

Loop-carried data dependences are represented by pairs of equivalent access classes defined at the

region. Each pair specifies a data dependence arc caused by the loop. The data dependence type can

be definiteor maybe. In addition, each dependence pair includes a distance field. To simplify the

representation of the dependence distance, the direction of a dependence is always normalized to be

‘>’ (forward), that is, from an earlier iteration to a later iteration.

For the example shown in Figure 2, the only LCDD is between equivalent access classesb[j] and

b[j-1] in Region 4. The distance of this LCDD is one.

2.2.4 Function call REF/MOD table

The function call REF/MOD tableof a region describes the side effects caused by function calls on

the equivalent access classes of the region. If a function call is immediately enclosed by the region,

the function call REF/MOD table will use the function call item ID defined inthe line table to refer to

the function call and will list the equivalent access classes whose referenced memory locations may
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Figure 3:Overview of the HLI implementation using the SUIF front-end and GCCback-end compilers.

be referenced or modified by the called function. For function calls inside a sub-region, the function

call REF/MOD table will use the sub-region ID to represent all of the functioncalls and will list the

equivalent access classes whose referenced memory locations may be referenced or modified by the

function calls inside the sub-region. With this table, the front-end can pass interprocedural data-flow

information to the back-end to enable the back-end to move instructions around a function call, for

instance.

3 A Prototype Implementation

A version of the HLI described in the previous section has been implemented in the SUIF paral-

lelizing compiler [33] and the GCC back-end compiler [28]. This section discusses some of the

implementation details. Note, however, that the HLI format is platform-independent, and many of

the implemented functions are portable to other compilers. Figure 3 shows an overview of our HLI

implementation [4] in the SUIF compiler and GCC.

3.1 Front-end implementation

The HLI generation in the front-end contains two major phases –memory access item generation

(ITEMGEN) andHLI table construction(TBLCONST). The ITEMGEN phase generates memory ac-

cess items and assigns a unique number (ID) to each item. The memory access items for a source line,

ordered by the ID, can be one-to-one matched to the memory reference instructionsin the GCC RTL

chain1 for the same line. These items are annotated in the SUIF expression nodes to be passed to the

TBLCONST phase.

1RTL (Register Transfer Language) is an intermediate representation used by GCC that resembles Lisp lists [28]. An
RTL chain is the linked list of low-level instructions in the RTL format.
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The TBLCONST phase first collects the memory access item information from the SUIF annotation

to produce the line table for each program unit. It then generates information for theequivalent access

table, alias table, and LCDD table for each region. Because it is dependent on both back-end compiler

and the machine, separating the HLI generation into these two phases allows usto reuse the code for

TBLCONST across different back-end compilers or target machines.

3.1.1 Memory access item generation (ITEMGEN)

The ITEMGEN phase traverses the SUIF internal representation (IR) to generate memory access items.

It passes this memory access item information to the TBLCONST phase by annotating the SUIF IR.

To guarantee that the mapping between the generated memory access items and the GCC RTL in-

structions is correct, the RTL generation rules in GCC must be considered in the HLI generation by

SUIF.

Most of the memory access items correspond to variable accesses in the source program. However,

when the optimization level is above -O0, GCC assigns a pseudo register for a local scalar variable or

a variable used for temporary computation results. An access to this type of variable does not generate

a memory access item. Since GCC does not assign pseudo registers to global variables and aggregate

variables, they generate memory access items.

There are some memory access items produced in GCC that do not correspond to anyactual

variable accesses in the source program. These memory accesses are usedfor parameter and return

value passing in subroutine calls. The actual number of parameter registers available is machine

dependent. For each subroutine, GCC uses the parameter registers to pass as many parameters as

possible, and then uses the stack to pass the remaining parameters. Hence, at a subroutine call site, if

a memory value is passed to the subroutine via a parameter passing register, amemory read is used to

load the value into the register. If a register value is passed to the subroutine via the stack, however,

a memory write is generated to store the value to the stack. Similarly,at a subroutine entry point, if

a memory value is passed into the subroutine via a register, a memory write isgenerated to store the

value. If a register value is passed into the subroutine via the stack, though, a memory read is again

used to load the value from the memory to the register.

A subroutine return value can also generate memory accesses that do not correspond to any vari-

able accesses in the source program. One register is available to handle return values in the MIPS
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architecture [14] which we target in our implementation. When the returned value is a structure, the

address of the structure is stored in that register at the subroutine call site. In this case, the return

statement generates a memory write to store the return value to the memory location indicated by the

value return register. If the return value is a scalar, the value returnregister directly carries the value,

so no memory access is generated.

3.1.2 HLI table construction (TBLCONST)

The HLI table construction phase traverses the SUIF IR twice. The first traversal creates a line table

for each routine by collecting the memory access item information from the SUIF annotations. It also

creates a hierarchical region structure for each routine and groups all the memory access items in a

region into equivalent access classes.

The second traversal of the IR visits the hierarchical region structure of each routine in a depth-first

fashion. At each node, it gathers the LCDD information for each pair of equivalentaccess classes and

calculates the alias relationship between each pair of equivalent access classes. All of the information

propagates from the bottom up. If the SUIF data dependence test for a pair of array equivalent access

classes in a region returns zero distance, the two equivalent access classes are merged. Otherwise, the

test results are stored into the LCDD table. Then, all the pointer references that may refer to multiple

locations are determined. An alias relationship is created between the equivalent access class for

each pointer reference and the equivalent access class to which the pointer reference may refer. Next,

the equivalent access class information and alias information is propagatedto the immediate parent

region. At the completion of these two phases, the HLI is ready to be exported to theback-end.

3.2 Back-end implementation

3.2.1 Importing and mapping HLI into GCC

The HLI file is read on demand as GCC compiles a program function by function. This approach

eliminates the need to keep all of the HLI in memory at the same time, relieving the memory space

requirements on the back-end. The imported information is stored in a separate,generic data structure

to enhance portability. Mapping the items listed in the line table onto memory references in the GCC

RTL chain is straightforward since the ITEMGEN phase in the front-end (Section 3.1.1) follows the

GCC rules for memory reference generation. A hash table is constructed as themapping procedure
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proceeds to allow GCC quick access to the HLI. A memory reference in GCC, or other back-end

compilers, can be represented as a 2-tuple: (IRInsn, RefSpec), whereIRInsn specifies an RTL in-

struction andRefSpec identifies a specific memory access among possibly several memory accesses

in the instruction. The hash table forms a mapping between each item and the corresponding (IRInsn,

RefSpec) pair.

Figure 4:Using call REF/MOD information to aid GCC’sCSEoptimization.

3.2.2 Using HLI

Information in the HLI can be utilized by a back-end compiler in various ways. Accurate data de-

pendence information allows aggressive scheduling of a memory reference across other memory

references, for example. Additionally, LCDD information is indispensable fora cyclic scheduling

algorithm such as software pipelining [18]. Interprocedural information provides the back-end com-

piler more freedom to move memory references around function calls. High-level program structure

information, such as the line type, may provide hints to guide heuristics for efficient code scheduling.

To provide a common interface across different back-ends, the stored HLI can beretrieved only

via a set of query functions. There are five basic query functions that can be used to construct more

complex query functions [5]. There are another set ofutility functionsthat simplify the implemen-

tation of the query and maintenance functions (Section 3.2.3) by hiding the low-level details of the

target compiler. Two examples are given in this section to show how the queryfunctions can be used

in GCC.

In GCC’s Common Subexpression Elimination(CSE) pass, subexpressions are stored in a table

as the program is compiled, and, when they appear again in the code, the already calculated value
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in the table can directly replace the subexpression. Without interprocedural information, however,

all the subexpressions containing a memory reference will be purged from the table when a function

call appears in the code since GCC pessimistically assumes that the function can change any memory

location. In Figure 4, an HLI query function to obtain call REF/MOD informationis used to remedy

the situation by selectively purging the subexpressions on a function call.

The example in Figure 5 shows how the HLI provides memory dependence information to the

instruction scheduler. It is used in Section 4.2 to measure the effectiveness of using HLI to improve

the code scheduling pass.

Figure 5:Using equivalent access and alias information for dependence analysis in GCC’sinstruction scheduling pass.

3.2.3 Maintaining HLI

As GCC performs various optimizations, some memory references can be deleted, moved, or gener-

ated. These changes break the links between HLI items and GCC memory references set up at the

mapping stage, requiring appropriate actions to reestablish the mapping to respondto the change. Fur-

ther, some of the HLI tables may need updating to maintain the integrity of the information. Typical

examples of such optimizations include:� TheCSEpass, where an item may be deleted. The corresponding HLI must then be deleted.� In the loop invariant removal optimization, an item may be moved to an outer region. The

HLI item must be deleted and inserted in the outer region. All the HLI tables must be updated

accordingly.� In loop unrolling, the loop body is duplicated and preconditioning code is generated. The entire

HLI components (tables) must be reconstructed using old information, and the old information
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must be discarded.

Figure 6:Updating the LCDD information for loop unrolling.

The HLI maintenance functions have been written to provide a means to update the HLI in re-

sponse to these changes [5]. The functions allow a back-end compiler to generate or delete items,

inherit the attributes of one item to another, insert an item into a region, and update the HLI tables.

Changes such as theCSEor loop invariant code removal call for a relatively simple treatment –either

deleting an item, or generating, inheriting, moving, and deleting an item. Loop unrolling, however,

requires more complex steps to update the HLI. First, new items need be generated as the target loop

body is duplicated multiple times. The generated items are inserted in different regions, based on

whether they belong to the new (unrolled) loop body or the preconditioning code. Data dependence

relationships between the new items are then computed using the information fromthe original loop.

An example of updating the HLI tables for the loop unrolling pass is given in Figure 6.

4 Benchmark Results

To demonstrate how the HLI can be used, we experimented with several programstaken from the

SPEC benchmark suite and other sources. High level information is passed fromthe SUIF front-end

to the GCC backend for each program. We then measured the reduction in the number ofdependence

arcs identified by the GCC memory dependence checking routines when using HLI compared to

using only GCC’s normal dependence checking capabilites. We also measured the improvement in

execution time made possible when GCC used the HLI to improve several of its back-end optimization

passes within basic blocks.
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Code size HLI size HLI per
Benchmark Suite (# of lines) (KB) line (bytes)

wc GNU 1262 12 10
023.eqntott CINT92 7738 108 14

129.compress CINT95 2252 21 10
008.espresso CINT92 43505 654 15

Average � � � 12

101.tomcatv CFP95 719 354 492
102.swim CFP95 1203 78 64
107.mgrid CFP95 1794 36 21
103.su2cor CFP95 6959 248 36
125.turb3d CFP95 8934 244 27

034.mdljdp2 CFP92 7094 127 18
056.ear CFP92 4911 91 18

052.alvinn CFP92 507 7 14
Average � � � 86

Table 1:Benchmark program characteristics.

4.1 Program characteristics

Table 1 lists all of the benchmark programs used in these experiments, both integer and floating-point,

showing the number of lines of source code, the HLI size in KBytes, and the ratio of the HLI size to

the code size. This ratio shows the average number of bytes needed for the HLI for each source code

line. We have only a few integer programs due to current implementation limitations of the SUIF

front-end tools.2

This table shows that, in general, a floating-point program requires two to three times more space

for the HLI than an integer program. This suggests that the floating-point programs tend to have

more memory references per line. The relatively large HLI size per source code line in101.tomcatv,

102.swimand103.su2coris mainly due to a large number of items in nested loops. This characteristic

causes the alias table and the LCDD table to grow substantially compared tothe other programs.

2Our implementation uses the SUIF parser twice (see Figure 3). After theprogramfoo.c is compiled and optimized
by SUIF, the optimized C filefoo.opt.c is generated. This code is then used as the input to the HLI generation and GCC.
Whenfoo.opt.c is fed into the SUIF parser again for the HLI generation, it causes unrecoverable errors in some cases.
We are currently developing a front-end compiler that will eliminate such difficulties.
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4.2 Aiding GCC’s dependence analysis

The HLI can potentially enhance several back-end optimizations by providing more accurate memory

dependence information when GCC would otherwise have to make a conservative assumption due

to its simple dependence analysis algorithm. Four optimizations in GCC were instrumented with the

HLI to utilize this more accurate memory dependence information to improve the performance of the

resulting code.

Instruction scheduling (Sched) is an important code optimization in a back-end compiler. With this

optimization, instructions in a code segment are reordered to minimize the overall execution time. A

crucial step in instruction scheduling is to determine if there is a dependencebetween two memory

references when at least one is a memory write operation. Accurately identifying such dependences

can reduce the number of edges in the data dependence graph, thereby giving the scheduler more

freedom to move instructions around to improve the quality of the scheduled code.

In the Common Subexpression Elimination (CSE) pass, all subexpressions that reference memory

are removed from the table since GCC must assume that any memory reference will change these

subexpressions. Distinguishing memory references according to the data dependence information

provided by HLI will maintain the subexpressions whose memory is independent with thecurrent

memory reference in the table.

In the loop invariant code removal (Loop) pass, a memory reference can be moved out of a loop

only when there are no other memory references in the loop that could possibly be aliased with the

current memory reference. Since HLI will potentially reduce the number of datadependences within

the loop, more memory instructions could be taken out of the loop. This then increases thelikelihood

of a memory operation becoming loop invariant.

In the register local allocation (Local) pass, the first step is to find the symbolic registers that are

equivalent to a single value throughout the compilation. These are grouped to a single register. In this

step, there is one special case–after one register is defined, it is stored toone memory location within

a single basic block. If no other memory store operations between the above two instructions could

be aliased with the memory location, the two instructions can be combined into oneand the register

could be eliminated completely. This reduces the total number of instructions and allows the register

allocator more degrees of freedom. The more accurate data dependence information provided by the
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HLI can help in finding more of these types of instruction pairs.
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Figure 7:Comparison of GCC results, HLI results and Combined results for datadependence queries. The first bar for
each program reports all queries to be true, the next bar is the standard GCCresults, the third bar is the HLI results and the
final bar shows the combination of standard GCC results with the HLI information. The divisions within each bar show
the results of data dependence queries made in each of the four optimization passes.

For the programs tested, Figure 7 compares the total number of dependence queries made (i.e.,

do A and B refer to the same memory location?), the number of times the GCC analyzer answers yes

(meaning that it must assume there is a dependence), the number of times HLI answers yes, and the

number of times both GCC and HLI answer yes. The values shown are normalized tothe total number

of dependence queries. The subsections of each bar correspond to each of the optimization passes

studied. Since the height of the bars in the figure corresponds to the number of data dependences that

must be assumed, the lower the bar, the more accurate the corresponding analyzer. While the figure

shows the normalized number of queries, Table 2 provides the absolute number of total queries and

the number of queries made in each pass.

The results show that using HLI can reduce the number of data dependences substantially. Most

of the programs exhibited a reduction of over 60% in the number of dependence that must be as-

sumed when using HLI compared to GCC’s standard analysis. Floating-point programs obtain more

reductions than integer programs on average.

Table 2 shows that for both integer and floating-point programs, over half of the data dependence
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Total # # of queries # of queries # of queries # of queries
Benchmark of queries in Sched in Loop in CSE in Local

wc 950 212 152 543 43
023.eqntott 2200 398 348 1349 105

129.compress 1529 280 56 1177 16
008.espresso 21821 3827 5710 11738 546

Average 6625 904 1566 3702 180

101.tomcatv 1660 260 930 433 37
102.swim 3474 526 1728 1115 105
107.mgrid 3446 531 1905 970 40
103.su2cor 20697 3744 6271 10475 207
125.turb3d 64713 15152 799 39547 9215

034.mdljdp2 10094 2660 4022 2866 546
056.ear 3605 973 441 1981 210

052.alvinn 316 35 151 127 3
Average 27001 5970 4062 14379 2591

Table 2:The total number of data dependence queries for all four of the GCC optimization passes.

queries are in theCSEpass. The register local-allocation pass has the fewest dependence queries

among the four passes tested. The number of queries in bothSchedandLoop is between these two.

The differences in the number of dependences for each optimization pass produces the different per-

formance improvements for each pass, as discussed in Section 4.3. These results confirm that the

data dependence information extracted by the front-end analysis is very effective in disambiguating

memory references in the back-end compiler.

Note that theHLI only resultsand theCombined resultsin Figure 7 are often not the same. This

difference means that there is room for additional improvement in the HLI. Current shortcomings in

generating the HLI include: (1) the front-end algorithms for array data dependence andpointer anal-

ysis in SUIF are not as aggressive as possible, and (2) there are miscellaneous GCC code generation

rules that the current HLI implementation has not considered. Ignoring these rules producesunknown

dependence types between some memory references. The values of theHLI resultare expected to be-

come smaller as more aggressive front-end algorithms are developed and the current implementation

limitations are overcome.
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Figure 8: Impact on execution times when using HLI in the different GCC optimization passes for the MIPS R10000.
(The bars for each program report the execution time improvement of using the HLI in all 4 optimization passes, in the
Schedpass only, in theCSEpass only, in theLooppass only and in theLocal pass only over the execution time without
using the HLI in any of the optimization passes. The solid horizontallines for some programs are used to show that the
execution time improvement is zero. )

4.3 Impact on program execution times

To study the performance improvement attributable to using HLI in GCC’s fouroptimization passes,

the benchmark programs were compiled in six different ways: without HLI, using HLI in all four

optmization passes (All), using HLI in theSchedpass only (Sched), using HLI in theCSEpass

only (CSE), using HLI in theLooppass only (Loop), and using HLI in theLocal pass only (Local).

Execution times of these six different cases for each benchmark program were measured on a MIPS

R10000 superscalar processor with a 32 KB on-chip data cache, a 32 KB on-chip instruction cache, a 2

MB unified off-chip second-level cache, and 512 MB of interleaved main memory. All the programs

were compiled with GCC version 2.7.2.2 with the -O2 optimization flag. Each program execution

used the “reference” input. The input to the programwc was 73 MB of C source code.

Figure 8 shows that, among the twelve programs tested, seven achieved a noticeable speedup

in more than three of the cases. One program,034.mdljdp2, obtained remarkable speedups for the

Sched, CSE and All cases. For almost all programs, the executables compiledwith HLI used in all

four passes achieved the best speedup due to benefits contributed by each pass.
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The specific pass that obtains the most performance improvement depends on the characteristics

of the program. Comparing Figures 7 and 8, we see that the reductions in the number of dependence

arcs that come from using HLI tend to correlate with improvements in the execution time. However,

a large reduction in the number of dependence edges does not always result in a correspondingly

large execution time speedup, as can be seen in125.turb3d, for instance. One reason for this lack

of improvement in execution time is because the optimiztion passes studied are limited to optimiza-

tions only within basic blocks. Another reason is that in some of the programs, the size of the most

frequently executed basic blocks is relatively small. As a result, there are fewer memory references

available to use the HLI during runtime. In addition, our pointer analyzer implemented on the SUIF

front end is still preliminary and often makes conservative assumptions asit performs inter procedural

pointer analysis. This makes the HLI information less aggressive in handling some pointer derefer-

ences in a number of important functions in the benchmark programs. On the other hand,034.mdljdp2

achieved the best performance improvement. The most frequently called functions in this program

have a large number of memory references in very large basic blocks.

The integer programs achieved relatively small speedups compared to the floating-point programs.

It is known that the basic blocks in integer programs are usually small, containingonly 5 – 6 instruc-

tions on average. Furthermore, it is likely that each basic block contains few memory references. This

is indirectly evidenced by comparing the total number of dependence queries made in the different

programs tested (Table 2). Typically, an integer program requires fewer thanone fourth the number

of dependence tests needed by a floating-point program.

To summarize, using the HLI in the four optimization passes tested reduced the number of de-

pendence edges by over 60% in the programs tested. This reduction translated into a moderate im-

provement in execution time. Expanding the scope of these optimizations beyond basic blocks can be

enhanced by using the HLI. This expansion should lead to a more substantial reduction in execution

times.

5 Related Work

Traditionally, parallelizing compilers and optimizing compilers for uniprocessors have been largely

two separate efforts. Parallelizing compilers perform extensive array data dependence analysis and
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array data flow analysis to identify parallel operations. Based on the results, a sequential program

is transformed into a parallel program containing program constructs such as DOALL. Alternatively,

the compiler may insert a directive before a sequential loop to indicate that the loop can be exe-

cuted in parallel. Several research parallelizing Fortran compilers, including Parafrase [17], PFC [1],

Parafrase-2 [24], Polaris [3], Panorama [11], and PTRAN [25], and commercial Fortran compilers,

such as KAP [16] and VAST [32], have taken such a source-to-source approach.

Computer vendors generally provide their own compilers to take a source program, which has

been parallelized by programmers or by a parallelizing compiler, and generate multithreaded machine

code, i.e., machine code embedded with thread library calls. These compilers usually spend their

primary effort on enhancing the efficiency of the machine code for individual processors. Once the

thread assignment to individual processors has been determined, parallelizing compilers have little

control over the execution of the code by each processor.

Over the past years, bothmachine independentandmachine specificcompiler techniques have

been developed to enhance the performance of uniprocessors [6, 7, 15, 20, 21]. These compiler tech-

niques rely primarily on dataflow analysis for symbolic registers or simple scalars that are not aliased.

Advanced data dependence analysis and data flow analysis regarding array references and pointer

dereferences are generally not available to current uniprocessor compilers.The publicly available

GCC [28] and LCC [9] compilers exemplify the situation. They both maintain low-level IRs of the

input programs, keeping no high-level program constructs for array data dependence and pointer-

structure analysis.

With the increased demand for ILP, the importance of incorporating high-level analysis into

uniprocessor compilers has been generally recognized. Recent work on pointer and structure anal-

ysis aims at accurate recognition of aliases due to pointer dereferences and pointer arguments [8, 34].

Experimental results in this area have been limited to reporting the accuracy of recognizing aliases.

Compared with these studies, this paper presents new data showing how high-levelarray and pointer

analysis can improve data dependence analysis in a common uniprocessor compiler.

There have been continued efforts to incorporate uniprocessor parameters and knowledge about

low-level code generation strategies into the high-level decisions about programtransformations. The

ASTI optimizer for the IBM XL Fortran compilers [26] is a good example. Nonetheless, the register

allocator and instruction scheduler of the uniprocessor compiler still lacks direct information about

20



data dependences concerning complex memory references.

New efforts on integrating parallelizing compilers with uniprocessor compilers also have emerged

recently. The SUIF tool [33], for instance, maintains a high-level intermediate representation that

is close to the source program to support high-level analysis and transformations. It also maintains

a low-level intermediate representation that is close to the machine code. As another example, the

Polaris parallelizing compiler has recently incorporated a low-level representation to enable low-level

compiler optimization techniques [2]. Nonetheless, results showing how high-level analysis benefits

the low-level analysis and optimizations are largely unavailable today. Oureffort has taken a different

approach by providing a mechanism to transport high-level analysis results to uniprocessor compilers

using a format that is relatively independent of the particular parallelizingcompiler and the particular

uniprocessor compiler.

6 Conclusions and Future Work

Instead of integrating the front-end and back-end into a single compiler, this paperproposes an ap-

proach that provides a mechanism to export the results of high-level program analysisfrom the front-

end to a standard back-end compiler. This high-level information is transferred using a well-defined

format (HLI) that condenses the high-level information to reduce the total amount ofdata that must

be transferred. Additionally, this format is relatively independent of the particular front-end and back-

end compilers.

We have demonstrated the effectiveness of this approach by implementing it within the SUIF

front-end and the GCC back-end compilers. Our experiments with the SPEC benchmarks show that

using this information in four optimization passes of GCC substantially reducesthe number of data

dependences compared with using standard GCC dependence analysis algorithm only. The increased

flexibility provided by this reduction allowed GCC to improve execution time compared to using only

the low-level information normally available in GCC.

We expect that the HLI mechanism proposed in this paper will make it relatively easy to inte-

grate any existing front-end parallelizing compiler with any existing back-end compiler. In fact, we

are currently developing a new front-end parallelizing compiler3 that will use the HLI mechanism

3Seehttp://www.cs.umn.edu/Research/Agassiz/.
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to export high-level program information to the same GCC back-end implementationused in these

experiments. The HLI will be used more extensively in back-end optimizations besides those done

within basic blocks. We believe that global optimizations will provide HLI more potential to improve

the performance of applications. Furthermore, compilers for future wide-issue processor architec-

tures, such asthe Multiscalar architecture[27], the Superthreading architecture[30] and the Trace

processor[22], may benefit substantially from HLI when generating highly optimized codes to exploit

the available hardware parallelism.
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