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Abstract:

We propose a new universal High-Level Information (HLI) format to effectimédgrate front-end

and back-end compilers by passing front-end information to the back-end compiler. imgpbis
information into an existing back-end leverages the state-of-the-art anagdisransformation ca-
pabilities of existing front-end compilers to allow the back-end greater optiraizabtential than it

has when relying on only locally-extracted information. A version of the HLI hasibgg@amented in

the SUIF parallelizing compiler and the GCC back-end compiler. Experimentatsesith the SPEC
benchmarks show that HLI can provide GCC with substantially more accurate data dependence i
mation than it can obtain on its own. Our results show that the number of dependence edges in GCC
can be reduced substantially for the benchmark programs studied, which provides greabdityiéo

GCC'’s code scheduling pass, common subexpression elimination pass, loop invariargroosalr

pass and register local allocation pass. Even with GCC’s optimizations limitédésic blocks, the

use of HLI produces moderate speedups compared to using only GCC’s dependence tests when the
optimized programs are executed on a MIPS R10000 processor.
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1 Introduction

High-performance microprocessors increasingly rely on parallel operati@apeétal up program ex-
ecution. Recent superscalar processors fetch multiple instructions, dyigrinmchindependent in-
structions from a set akservation stationgor awindowof instructions), and issue them in parallel
to multiple function units [12, 13, 14]. Extensive research is under way to iseréee exploitable
instruction level parallelisnfILP) in a program and to widen the issue bandwidth from 4 to 8 instruc-
tions per cycle, or even up to 16 [19, 23]. Additionally, researchers have begun twesttpead-
level parallelismin which multiple threads of instructions can be simultaneously fetched byetitfe
thread-execution units for processing [22, 27, 30, 31]. These thread-execution emterartightly
coupled than processors in a multiprocessor system in that the order of instdispatching and
retiring is tightly synchronized among different units.

The trend towards higher-level hardware parallelism imposes a seveasmdem compilers to an-
alyze and transform programs more aggressively to uncover parallelisentd@comes increasingly
more difficult for hardware to extract parallelism alone. Traditionalynpilers for microprocessors
use a low-leveintermediate representatiqitiR) of the program to analyze dependences and the data
flow between operations. Such low-level IR, or LIR, normally lacks infdromaregarding naming,
types and aliases concerning arrays, and other high-level data structures.re8@rences to such
variables become a series of indirect references using simple scekslea or so-calledymbolic
registers array subscripts and pointer expressions all become obscured.

This type of LIR has served microprocessor compilers reasonably well sodiaynbecause
sufficient ILP can often be exploited among scalar operations within avalatharrow program
scope. Such parallelism can either be detected by hardware without coderirsatssn or it can
be exposed relatively simply through code motion done byrisguction schedulein the compiler.
To uncover additional parallel operations to feed the increasing hardwatéelsrain the future,
however, the compiler needs to analyze a wider program scope and higher-le\sfadetizres. The
compiler must perform high-level program semantic analysis regarding arraysoandrs, such as
analysis of data dependences, aliases, data flow, loop level paralleligsy@mmary use-modification
information for procedure calls. Only a high-level IR (HIR) contains the nergssbstract syntax

information to support this extensive analysis.



The LIR must continue to exist since the low-level machine operations are thecinsn schedul-
ing target. Indeed, some low-level operations may not even have a directleqtimahe HIR. Hence,
the problem becomes one of passing high-level semantic information from the HiR LdR.

We have designed and implemented a format, cédigti-Level Information (HLIJ4], to facilitate
the propagation of high-level semantic information from the HIR to the LIR. 3¢eensiderations
have influenced our design:

e Transportability : The HLI can be exported from a high-level analyzer, such as those used in
sophisticated parallelizing compilers, to a microprocessor compiledtied not contain HIR
and thus lacks a high-level analyzer.

e Hierarchy: The information regarding data dependences and aliases are organized in a hier-
archy corresponding to the loop structures in the program. This reduces the compl ¢y
represented information and makes the access to such informationfeasidrack-end com-
piler.

e Flexibility : The HLI information can be updated if the program is modified after the HLI is
produced, as occurs with many backend optimizations, such as statementingordér have
implemented and experimented with a maintenance utility for the HLI t@parthis updating.

In the remainder of the paper, Section 2 presents the formal definition of theokh&t, showing
what information is extracted using the HIR and how it is condensed and pagbed I®. Section 3
then describes our prototype implementation of this HLI within the SUIF pamatiglcompiler and
the GCC compiler back-end. Experiments with the SPEC benchmark programs [29¢seatpd
in Section 4, showing how the use of the high-level information provided by SUIFowvegrthe
dependence information available to GCC and the execution time of benchmarkmsog&me

related work is discussed in Section 5, with our results and conclusions siradhia Section 6.

2 High-Level Information Definition

A High-Level Information (HLI) file for a program includes information that mgortant for back-
end optimizations, but is only available or computable in the front-end. As shokigume 1, an HLI



HLIFILE

| FUNCTION | | FUNCTION | | FUNCTION |

Line Table Region Table

‘ Line ‘ ‘ Line ‘ ‘ Region ‘ ‘ Region ‘ ‘ Region ‘

[ [
item item
item item
item item
item item

Equivalent Access Alias

class class alias alias

item item class class
item item class class

LCDD Func Call Ref/Mod

lcdd lcdd call call

class class class class
class class class class

Figure 1:Top-level layout of an HLI file.

file contains a number of HLI entries. Each HLI entry corresponds to a program tiné source file

and contains two major tablesliae tableand aregion table as described below.

2.1 Line table

The purpose of the line table is to build a connection between the front-end and therfthapresen-
tations. After generating the intermediate representation (IR), suekpagssion trees or instructions
from the source program, a compiler usually annotates the IR with the correspondiog lga@inum-
bers. If both the front-end and the back-end read the program from the same soutbe Sleurce
line numbers can be used to match the expression trees in the front-end witltthetions in the
back-end.

The HLI focuses on memory references and function calls, which are dedledin the HLI
representation. In the line table, each line entry corresponds to a source tiregbgram unit in
the source file, and includes an item list for the line. In the item list) & entry consists of aid
field and atypefield. The ID field stores a unique number within the scope of the program unit that
is used to reference the item. The type field stores the access type ohthe/liech may be a load, a
store, or a function call.

Groups of items from the front-end are mapped to the back-end instructions by matuosing

source line numbers. However, this mapping information may not be precise enougip items



inside a groupi(e., a single source line) from the front-end to the back-end. To perform precise
mapping, the front-end needs to know the instruction generation rules of the back-efne amder
of items associated with each source line. Specifically, the orderp$ilisted in the line table must

match the order of the items appearing in the instruction list in the back-end.

2.2 Regiontable

To simplify the representation of the high-level information while maintagnprecise data depen-
dence information for each loop, we represent the high-level information of a pragnanwith
scopes ofegions A region can be a program unit or a loop and can include sub-regions. The basic
idea of using region scopes in the HLI is to partition all of the memory actessiin a region into
equivalent access classasad then describe data dependences and alias relationships among those
equivalent access classes with respect to the region.

The region table of a program unit stores the high-level information for every regiba program
unit. Each region entry has a region header describing the ID, type, and scope ajitme ri
addition to the region header, each region entry holds four sub-tables: (1) an equaadess table,
(2) an alias table, (3) a loop-carried data dependence (LCDD) table, andug@teoh call REF/MOD
table. In the following subsections, we describe each of these tablesasdosith each region.

2.2.1 Equivalent access table

A region can contain a large number of memory access items. Recording alld#téndependences
and alias relationships between every pair of memory access items vesuld in a huge amount

of data. The HLI deals with such complexity by separating data dependenceseatrdiffegion-
levels. In each region, two kinds of memory references are distinguishede@omother, namely
theimmediatereferences, which are not embedded in any subregions, amartheddedeferences,
which appear inside subregions. Two immediate references are egllidhlent and are placed in
anequivalent access clag$ they refer to the same memory location in the same execution instance
of the region bodyi(e. the same iteration if the region is a loop). Likewise, two embeddedameies

are equivalentwithin the current region if they access the same memory locations. If tihheonye
locations accessed by two references within the current region mayapvast are not necessarily

identical, then the two references are said tort@ybeequivalent and their equivalent access class is



marked asnaybe Moreover, if the memory locations accessed by two references magpve one
execution instance of the region body but not in another instance, then the twocefeege also said
to bemaybeequivalent. All other equivalent references are said tddfaitelyequivalent. Since it
is easier to identify definitely-equivalent immediate references th@medded references, we do not
place an immediate memory reference and an embedded memory referéheesame equivalent
access class.

Equivalent access classes serve two purposes. First, they capturemEtdatees that are loop
independent [1]. If two references, one being a load, belong to the same equivaless atass,
then they have a loop-independent data dependence within the corresponding region. If diaienme
reference and an embedded reference are not placed in the same equivassictass, their loop-
independent data reference, if any, will be represented bglihetabledescribed below. The second
purpose of equivalent access classes is to reduce the number of loop-carriepdatiedees [1] that
need to be represented. Within the same region, if a number of sources of loop-dependences
belong to the same equivalent access class, they can be represented mgtbaaggiivalent access
class. Likewise, a number of dependence sinks can also be represented by aginglkent access
class.

Since the nesting of all regions in a program unit can be viewed as a tree, theé4$la tiee pro-
gram structure to accurately and efficiently describe the relationshop@equivalent access classes
in different regions. Each leaf represents an individual memory referenteah internal node rep-
resents an equivalent access class. Each internal node, associhtaguaiticular region, represents
the union of the equivalent classes represented by its children that areatesd@dth the immediate
sub-regions. Each equivalent access class has a unique ID and each regiondiagadent access
table that identifies all equivalent access classes within that region.

Figure 2 demonstrates the region structure of a procedure and its equivalest tatdtes. The
outermost region of the procedure is Region 1, which represents the whole proceduren Regi
has two immediate sub-regions (Regions 2 and 3) that represent theldaps in the procedure.
The second loop (Region 3) has an inngtoop, which is represented by Region 4. In the equivalent
access table of Region 1, all memory access items in the procedure arerpadtinto three equivalent
access classesum a[0..9], andb[0..9]. From the viewpoint of Region 1, every memory access item
inside the procedure is represented by exactly one of those equivalent access. ckas example,



:inta[10];
:int b[10];
int sum;
foo () /* region 1%/
{
inti, j;

for (i = 0; i < 10; i++) /* region 2 */

PROONOURAWNE

-

afi] = 0;
{1} *item 1%/
b[i] = i

2

PRe
ahw

sum =0;

L&) S '
. for (i = 0;i<10; i++) /* region 3 */
17:

PRe
0o~

a[i] = afi] + b[0];
4 {5 {6

19: for (j=1;j <10; j++) /* region 4 */
20:
21: bij] = b[j] + b[j-1];
7 8 9;
21: a[i] = a[i] + b[j];

{10} {11} {12}

24 sum = sum + a[i;
{13} {14} {15}

\
egion 3:
\

Region 2
for (i) for (i)

T,

ali] sum |
IR {1314} ||
= L= T —r————— a
\
fReg_ion 4: \

I or (j) I D S N,
eq_acc_class | i bfj bi-1] |l
(definitely) | ’{13'11} ‘ ’ {7,8,12} ‘ ?9) ! ‘ |
eq_acc_class L=——= —A———— ‘

] Gales N

Figure 2:The structure of the regions and equivalent access classes for an exangpégrpro

in Region 1, item 114]i] ) inside thej loop is represented by the equivalent access claafloB].

As mentioned above, equivalent access classes use the IDs of sub-regiorasles@ocess classes
to refer to the items residing in their sub-regions. For example, the eguivadeess class aumin
Region 1 uses the equivalent access classiofdefined in Region 3 to refer to memory access items

13 and 14 enclosed by Region 3.

2.2.2 Alias table

Two memory references referring to two distinct names in the same pnagrd may actually access
the same memory location in the same execution instance of the unit. Such aariesown as
aliases For convenience, we say that those two memory referencediased If the two references

belong to different equivalent access classes in the same region, we ag#iatsthe two classes are
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aliased An alias tableis created for each region to describe the possible alias relationships among
the equivalent access classes of that region. If two equivalent accessshre marked as aliased, all
of the memory access items represented by the two equivalent access @es considered aliased.

Recall that an immediate reference and an embedded reference are adtipldee same equiv-
alent access class in the same region. If they may access the sameyrtmrations in that region,
they are also marked as aliased. Note #hiasingis a binary relation between two equivalent classes.
A and B being aliases an® andC being aliases does not imply thatandC' must be aliases. This
is the primary reason that the HLI does not place all aliased refereneesimgle equivalent access
class. For a loop region, the alias table only describes the alias relatioashgrsy the equivalent
access classes within a loop iteration. Loop carried data dependencesenbeatkin the LCDD
table.

In the example in Figure 2, equivalent access clasggsandb[0..9] in Region 3 may access the
same memory location. Thus, the alias table of Region 3 will include an entryaitity that these

two equivalent access classes are aliased.

2.2.3 Loop-carried data dependence (LCDD) table

If the region is identified as a loop, the LCDD table will list all of the LCDBIsthat loop level.

Loop-carried data dependences are represented by pairs of equivalent aasess defined at the

region. Each pair specifies a data dependence arc caused by the loop. The data depgreleane t
be definiteor maybe In addition, each dependence pair includes a distance field. To simplify the
representation of the dependence distance, the direction of a dependence is alwayizewtmbe
‘>’ (forward), that is, from an earlier iteration to a later iteration.

For the example shown in Figure 2, the only LCDD is between equivalent acessgesl[j] and
b[j-1] in Region 4. The distance of this LCDD is one.

2.2.4 Function call REF/MOD table

Thefunction call REF/MOD tablef a region describes the side effects caused by function calls on
the equivalent access classes of the region. If a function call is immigdégtelosed by the region,
the function call REF/MOD table will use the function call item ID definethie line table to refer to

the function call and will list the equivalent access classes whosenefed memory locations may



Source code HLI file

foo.c . SUIF — foo.hli ~,

foo.f ?v Compiler | foo.opt.c/

|
Optimized C source

Object file

GCC — fooo

Figure 3:Overview of the HLI implementation using the SUIF front-end and G&¢k-end compilers.

be referenced or modified by the called function. For function calls inside a gidnréhe function
call REF/MOD table will use the sub-region ID to represent all of the funatedts and will list the
equivalent access classes whose referenced memory locations mayréecedeor modified by the
function calls inside the sub-region. With this table, the front-end can pasprmtedural data-flow
information to the back-end to enable the back-end to move instructions around iarfusadt, for

instance.

3 A Prototype Implementation

A version of the HLI described in the previous section has been implementée iISWIF paral-
lelizing compiler [33] and the GCC back-end compiler [28]. This section dissussme of the
implementation details. Note, however, that the HLI format is platfordependent, and many of
the implemented functions are portable to other compilers. Figure 3 shows aeavef our HLI

implementation [4] in the SUIF compiler and GCC.

3.1 Front-end implementation

The HLI generation in the front-end contains two major phasesemory access item generation
(ITEMGEN) andHLI table constructio(TBLCONST). The ITEMGEN phase generates memory ac-
cess items and assigns a unique number (ID) to each item. The memory s&wader a source line,
ordered by the ID, can be one-to-one matched to the memory reference instruction&CC RTL
chairt for the same line. These items are annotated in the SUIF expression nodes $sdx tpahe

TBLCONST phase.

IRTL (Register Transfer Language) is an intermediate representation used®yh@t resembles Lisp lists [28]. An
RTL chain is the linked list of low-level instructions in the RTLrfoat.



The TBLCONST phase first collects the memory access item information from the SUIF diomota
to produce the line table for each program unit. It then generates information feguhalent access
table, alias table, and LCDD table for each region. Because it is dependentdraloktend compiler
and the machine, separating the HLI generation into these two phases alltiw®use the code for

TBLCONST across different back-end compilers or target machines.

3.1.1 Memory access item generatiorl {(EMGEN)

The ITEMGEN phase traverses the SUIF internal representation (IR) to generate yarness items.
It passes this memory access item information to theJONST phase by annotating the SUIF IR.
To guarantee that the mapping between the generated memory access itelns GQCtRTL in-
structions is correct, the RTL generation rules in GCC must be considerkd HlLil generation by
SUIF.

Most of the memory access items correspond to variable accesses in ttemagram. However,
when the optimization level is above -O0, GCC assigns a pseudo registeoftal @talar variable or
a variable used for temporary computation results. An access to this typaatie does not generate
a memory access item. Since GCC does not assign pseudo registers to giabéévand aggregate
variables, they generate memory access items.

There are some memory access items produced in GCC that do not correspondattiuahy
variable accesses in the source program. These memory accesses doe paeineter and return
value passing in subroutine calls. The actual number of parameter regisadediavis machine
dependent. For each subroutine, GCC uses the parameter registers to pasyg pararasters as
possible, and then uses the stack to pass the remaining parameters. Harstdyrautine call site, if
a memory value is passed to the subroutine via a parameter passing regieerogy read is used to
load the value into the register. If a register value is passed to the suleedithe stack, however,
a memory write is generated to store the value to the stack. Simigrdysubroutine entry point, if
a memory value is passed into the subroutine via a register, a memory vwgéeasated to store the
value. If a register value is passed into the subroutine via the stack, though,@ynesd is again
used to load the value from the memory to the register.

A subroutine return value can also generate memory accesses that do ngiararesany vari-

able accesses in the source program. One register is available to handievedties in the MIPS



architecture [14] which we target in our implementation. When the returnee v&la structure, the
address of the structure is stored in that register at the subroutine callrsitieis case, the return
statement generates a memory write to store the return value to the ynlecetion indicated by the

value return register. If the return value is a scalar, the value redgister directly carries the value,

SO N0 Memory access is generated.

3.1.2 HLI table construction (TBLCONST)

The HLI table construction phase traverses the SUIF IR twice. The fgtiisal creates a line table
for each routine by collecting the memory access item information from thE &thotations. It also
creates a hierarchical region structure for each routine and groups all therynaccess items in a
region into equivalent access classes.

The second traversal of the IR visits the hierarchical region structurebfreatine in a depth-first
fashion. At each node, it gathers the LCDD information for each pair of equivatesss classes and
calculates the alias relationship between each pair of equivalensaddasses. All of the information
propagates from the bottom up. If the SUIF data dependence test for a pair of arrayesqjaiveess
classes in a region returns zero distance, the two equivalent accesssadae merged. Otherwise, the
test results are stored into the LCDD table. Then, all the pointer refesehat may refer to multiple
locations are determined. An alias relationship is created betweemtivakent access class for
each pointer reference and the equivalent access class to which the pefgremce may refer. Next,
the equivalent access class information and alias information is propagatee immediate parent

region. At the completion of these two phases, the HLI is ready to be exportediactkesnd.

3.2 Back-end implementation
3.2.1 Importing and mapping HLI into GCC

The HLI file is read on demand as GCC compiles a program function by function. Thisaambpr
eliminates the need to keep all of the HLI in memory at the same tirmeyirgg the memory space
requirements on the back-end. The imported information is stored in a sep@madec data structure
to enhance portability. Mapping the items listed in the line table onto mereteyances in the GCC
RTL chain is straightforward since theHMGEN phase in the front-end (Section 3.1.1) follows the

GCC rules for memory reference generation. A hash table is constructed msyipéng procedure
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proceeds to allow GCC quick access to the HLI. A memory reference in, ®C6ther back-end
compilers, can be represented as a 2-tugRingn, RefSpec), wherelRInsn specifies an RTL in-
struction andRefSpec identifies a specific memory access among possibly several memoryescess
in the instruction. The hash table forms a mapping between each item and gspoodingIRInsn,

RefSpec) pair.

/* remove from the hash table all the expressions with a mem. ref.
clobbered by a function call (call, call_spec) */
static void invalidate_memory_clobbered (call, call_spec)

for (i = 0; i < NBUCKETS; i++)
for (p = table[il; p; p = next) {
next = p->next_same_hash;
for each mem. ref. (mem, mem_spec) in p
switch (HLI_GetCallAcc (mem, mem_spec, call, call_spec) {
case HLI_CALL_MOD:
case HLI_CALL_REFMOD:
remove_from_table (mem, mem_spec);
)
o}
}

Figure 4:Using call REF/MOD information to aid GCC8SEoptimization.

3.2.2 Using HLI

Information in the HLI can be utilized by a back-end compiler in various wayscufate data de-
pendence information allows aggressive scheduling of a memory reference atines memory
references, for example. Additionally, LCDD information is indispensableafoyclic scheduling
algorithm such as software pipelining [18]. Interprocedural information proviteback-end com-
piler more freedom to move memory references around function calls. Hrghgeogram structure
information, such as the line type, may provide hints to guide heuristics for effimele scheduling.

To provide a common interface across different back-ends, the stored HLI acatrieged only
via a set of query functions. There are five basic query functions that can be usetstaict more
complex query functions [5]. There are another settdity functionsthat simplify the implemen-
tation of the query and maintenance functions (Section 3.2.3) by hiding the low-leadbd#tthe
target compiler. Two examples are given in this section to show how the fuestons can be used
in GCC.

In GCC’s Common Subexpression Eliminati@SE pass, subexpressions are stored in a table

as the program is compiled, and, when they appear again in the code, the alreatbtexdicalue

11



in the table can directly replace the subexpression. Without interprocedurahatfon, however,
all the subexpressions containing a memory reference will be purged from the tadabeawunction
call appears in the code since GCC pessimistically assumes that thefucerti change any memory
location. In Figure 4, an HLI query function to obtain call REF/MOD informai®nsed to remedy
the situation by selectively purging the subexpressions on a function call.

The example in Figure 5 shows how the HLI provides memory dependence informatioa to t
instruction scheduler. It is used in Section 4.2 to measure the effectvef@sing HLI to improve

the code scheduling pass.

/* given a mem. write A and a mem. read B, add a dependence
edge if there is a true dependence from A to B */
{
int gcc_value, hli_value, final_value;
HLI_EquivAccType hli_gresult;

gcc_value = true_dependence (A, B); /* GCC query function */
hli_gresult = HLI_GetEquivAcc (A, B); /* HLI query function */
hli_value = (hli_gresult != HLI_NONE);
final_value = flag_use_hli ? gcc_value * hli_value : gcc_value;
if (final_value)
add_dependence (A, B, DEP_TRUE);
¥

Figure 5:Using equivalent access and alias information for dependence analysis in @&€istion scheduling pass.

3.2.3 Maintaining HLI

As GCC performs various optimizations, some memory references can bedjeteived, or gener-
ated. These changes break the links between HLI items and GCC memoryceteset up at the
mapping stage, requiring appropriate actions to reestablish the mapping to resgwndhange. Fur-
ther, some of the HLI tables may need updating to maintain the integrity of tbiemation. Typical

examples of such optimizations include:

e TheCSEpass, where an item may be deleted. The corresponding HLI must then be deleted.

¢ In the loop invariant removal optimization, an item may be moved to anr satgon. The
HLI item must be deleted and inserted in the outer region. All the HLI tablest ive updated

accordingly.

¢ Inloop unrolling, the loop body is duplicated and preconditioning code is generated. The entire

HLI components (tables) must be reconstructed using old information, and the olahatifon

12



must be discarded.

/* construct LCDD info. for the unrolled loop A, based on
the info. about the original loop A */
for each LCDD [item i, item j, d, t] between item i and j with
distance d and type tin A {
/* Kis the unroll factor */
/* item[a] b is the item b in the a’th unrolled loop */
forallu (0 <=u<K){
if (floor ((u+d)/K) == 0)
HLI_MergeEquivAcc (item[u] i, item[(u+d)%K] j);
else
HLI_AddLCDD (item[u] i, item[(u+d)%K] j, floor((u+d)/K), t);
}
}

Figure 6:Updating the LCDD information for loop unrolling.

The HLI maintenance functions have been written to provide a means to update [he et
sponse to these changes [5]. The functions allow a back-end compiler to generatet®itdais,
inherit the attributes of one item to another, insert an item into a region, andeuiheaHL| tables.
Changes such as ti@SEor loop invariant code removal call for a relatively simple treatmegither
deleting an item, or generating, inheriting, moving, and deleting an item. Loopliagtdiowever,
requires more complex steps to update the HLI. First, new items need be géresdhe target loop
body is duplicated multiple times. The generated items are inserted @ratiffregions, based on
whether they belong to the new (unrolled) loop body or the preconditioning code. Data dependence
relationships between the new items are then computed using the informatioth&amginal loop.
An example of updating the HLI tables for the loop unrolling pass is given in Figure 6.

4 Benchmark Results

To demonstrate how the HLI can be used, we experimented with several progiensfrom the
SPEC benchmark suite and other sources. High level information is passeth&#@WIF front-end

to the GCC backend for each program. We then measured the reduction in the nucdgszredence
arcs identified by the GCC memory dependence checking routines when using HLI cdrtpare
using only GCC’s normal dependence checking capabilites. We also measuregtbeement in
execution time made possible when GCC used the HLI to improve seversbafok-end optimization
passes within basic blocks.
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Code size | HLIsize | HLI per
Benchmark Suite (#oflines) | (KB) line (bytes)
wc GNU 1262 12 10
023.eqgntott | CINT92 7738 108 14
129.compress CINT95 2252 21 10
008.espressg CINT92 43505 654 15
Average — — — 12
101.tomcatv | CFP95 719 354 492
102.swim CFP95 1203 78 64
107.mgrid CFP95 1794 36 21
103.su2cor | CFP95 6959 248 36
125.turb3d | CFP95 8934 244 27
034.mdljdp2 | CFP92 7094 127 18
056.ear CFP92 4911 91 18
052.alvinn | CFP92 507 7 14
Average — — — 86

Table 1:Benchmark program characteristics.

4.1 Program characteristics

Table 1 lists all of the benchmark programs used in these experiments, both antddgmating-point,
showing the number of lines of source code, the HLI size in KBytes, and the ratie ¢fltl size to
the code size. This ratio shows the average number of bytes needed for the HldHf@oeace code
line. We have only a few integer programs due to current implementation liomgaof the SUIF
front-end tools’

This table shows that, in general, a floating-point program requires two to threg tnore space
for the HLI than an integer program. This suggests that the floating-point programsotéiaste
more memory references per line. The relatively large HLI size per saade line inl01.tomcaty
102.swimand103.su2cois mainly due to a large number of items in nested loops. This characteristic

causes the alias table and the LCDD table to grow substantially compatezldther programs.

20ur implementation uses the SUIF parser twice (see Figure 3). Aftgrtiggamfoo.c is compiled and optimized
by SUIF, the optimized C filéoo.opt.c is generated. This code is then used as the input to the HLI generation ad GC
Whenfoo.opt.c is fed into the SUIF parser again for the HLI generation, it causes unrecée@mbrs in some cases.
We are currently developing a front-end compiler that will eliminahadifficulties.
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4.2 Aiding GCC's dependence analysis

The HLI can potentially enhance several back-end optimizations by providing mcuesée memory
dependence information when GCC would otherwise have to make a conservativeptisn due
to its simple dependence analysis algorithm. Four optimizations in GCC wernenesited with the
HLI to utilize this more accurate memory dependence information to imphe/performance of the
resulting code.

Instruction scheduling3chedlis an important code optimization in a back-end compiler. With this
optimization, instructions in a code segment are reordered to minimize thaleseecution time. A
crucial step in instruction scheduling is to determine if there is a dependebeeen two memory
references when at least one is a memory write operation. Accuratelyfyd@msuch dependences
can reduce the number of edges in the data dependence graph, thereby giving the scheduler more
freedom to move instructions around to improve the quality of the scheduled code.

In the Common Subexpression Eliminati@@SB pass, all subexpressions that reference memory
are removed from the table since GCC must assume that any memonncefevél change these
subexpressions. Distinguishing memory references according to the data dependmmeation
provided by HLI will maintain the subexpressions whose memory is independent withuthent
memory reference in the table.

In the loop invariant code removdl@op) pass, a memory reference can be moved out of a loop
only when there are no other memory references in the loop that could possibhasedalith the
current memory reference. Since HLI will potentially reduce the number ofdégiandences within
the loop, more memory instructions could be taken out of the loop. This then increa$iksltheod
of a memory operation becoming loop invariant.

In the register local allocatiorLfcal) pass, the first step is to find the symbolic registers that are
equivalent to a single value throughout the compilation. These are grouped to a sirgjlerrégihis
step, there is one special case—after one register is defined, it is storee teemory location within
a single basic block. If no other memory store operations between the above tiatinsis could
be aliased with the memory location, the two instructions can be combined intandnibe register
could be eliminated completely. This reduces the total number of instructiondlawd the register

allocator more degrees of freedom. The more accurate data dependence infornuafideddoy the
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HLI can help in finding more of these types of instruction pairs.
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Figure 7:Comparison of GCC results, HLI results and Combined results fordigiandence queries. The first bar for
each program reports all queries to be true, the next bar is the standarcb®@\s, the third bar is the HLI results and the
final bar shows the combination of standard GCC results with the Hbtrimation. The divisions within each bar show
the results of data dependence queries made in each of the four optimizsasp

For the programs tested, Figure 7 compares the total number of dependence querigsemade (
do A and B refer to the same memory location?), the number of times the GCC emnahgvers yes
(meaning that it must assume there is a dependence), the number of times HLisayssyeand the
number of times both GCC and HLI answer yes. The values shown are normaltheddtal number
of dependence queries. The subsections of each bar correspond to each of the opmtipéasses
studied. Since the height of the bars in the figure corresponds to the number of data depehdénces t
must be assumed, the lower the bar, the more accurate the corresponding anahiteeth&\figure
shows the normalized number of queries, Table 2 provides the absolute number of tatd godr
the number of queries made in each pass.

The results show that using HLI can reduce the number of data dependences sulystitusill
of the programs exhibited a reduction of over 60% in the number of dependence that must be as-
sumed when using HLI compared to GCC'’s standard analysis. Floating-point pogldain more
reductions than integer programs on average.

Table 2 shows that for both integer and floating-point programs, over half of the datadéepe
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Total # | # of queries| # of queries| # of queries| # of queries
Benchmark | of queries| in Sched in Loop in CSE in Local

wc 950 212 152 543 43
023.eqgntott 2200 398 348 1349 105
129.compress 1529 280 56 1177 16
008.espressa 21821 3827 5710 11738 546
Average 6625 904 1566 3702 180
101.tomcatv 1660 260 930 433 37
102.swim 3474 526 1728 1115 105
107.mgrid 3446 531 1905 970 40
103.su2cor 20697 3744 6271 10475 207
125.turb3d 64713 15152 799 39547 9215
034.mdljdp2 10094 2660 4022 2866 546
056.ear 3605 973 441 1981 210
052.alvinn 316 35 151 127 3
Average 27001 5970 4062 14379 2591

Table 2:The total number of data dependence queries for all four of the GCC aption passes.

gueries are in th&€SEpass. The register local-allocation pass has the fewest dependence queries
among the four passes tested. The number of queries inSwbthdandLoopis between these two.

The differences in the number of dependences for each optimization pass producdgitbet giér-
formance improvements for each pass, as discussed in Section 4.3. Thetsecasirm that the

data dependence information extracted by the front-end analysis is veryveffectisambiguating
memory references in the back-end compiler.

Note that theHLI_only resultsand theCombined results Figure 7 are often not the same. This
difference means that there is room for additional improvement in the HLIeGushortcomings in
generating the HLI include: (1) the front-end algorithms for array data dependenpeiater anal-
ysis in SUIF are not as aggressive as possible, and (2) there are misoe@®€C code generation
rules that the current HLI implementation has not considered. Ignoring these rotkgpainknown
dependence types between some memory references. The valuesibf theultare expected to be-
come smaller as more aggressive front-end algorithms are developed and&me icoplementation
limitations are overcome.
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Figure 8:1mpact on execution times when using HLI in the different GCC optimizagiasses for the MIPS R10000.
(The bars for each program report the execution time improvement af tregnHLI in all 4 optimization passes, in the
Schedpass only, in th&€€SEpass only, in thé.oop pass only and in theocal pass only over the execution time without
using the HLI in any of the optimization passes. The solid horizdimes$ for some programs are used to show that the
execution time improvement is zero. )

4.3 Impact on program execution times

To study the performance improvement attributable to using HLI in GCC’sdptimization passes,
the benchmark programs were compiled in six different ways: without HLI, usidgirHall four
optmization passes (All), using HLI in th&chedpass only (Sched), using HLI in theSE pass
only (CSE), using HLI in the_oop pass only (Loop), and using HLI in tHeocal pass only (Local).
Execution times of these six different cases for each benchmark prograamveaisured on a MIPS
R10000 superscalar processor with a 32 KB on-chip data cache, a 32 KB on-chip iostcache, a 2
MB unified off-chip second-level cache, and 512 MB of interleaved main menddirthe programs
were compiled with GCC version 2.7.2.2 with the -O2 optimization flag. Each anogxecution
used the “reference” input. The input to the progracwas 73 MB of C source code.

Figure 8 shows that, among the twelve programs tested, seven achievedeabletispeedup
in more than three of the cases. One progr@84.mdljdp2 obtained remarkable speedups for the
Sched, CSE and All cases. For almost all programs, the executables compiiddlL| used in all

four passes achieved the best speedup due to benefits contributed by each pass.

18



The specific pass that obtains the most performance improvement depends on theristacac
of the program. Comparing Figures 7 and 8, we see that the reductions in the number of dependenc
arcs that come from using HLI tend to correlate with improvements inxbelwion time. However,
a large reduction in the number of dependence edges does not always result in a correspondingly
large execution time speedup, as can be seet2mturb3d¢for instance. One reason for this lack
of improvement in execution time is because the optimiztion passes studiéthaed to optimiza-
tions only within basic blocks. Another reason is that in some of the programs, thefdize most
frequently executed basic blocks is relatively small. As a resultethsr fewer memory references
available to use the HLI during runtime. In addition, our pointer analyzer impleesdent the SUIF
front end is still preliminary and often makes conservative assumptiahper$orms inter procedural
pointer analysis. This makes the HLI information less aggressive in handiing pointer derefer-
ences in a number of important functions in the benchmark programs. On the othe@8ama/jdp2
achieved the best performance improvement. The most frequently calletbhsut this program
have a large number of memory references in very large basic blocks.

The integer programs achieved relatively small speedups compared to threyHoaint programs.

It is known that the basic blocks in integer programs are usually small, containipg — 6 instruc-
tions on average. Furthermore, it is likely that each basic block contaursé&nory references. This
is indirectly evidenced by comparing the total number of dependence queries made iffietfeadi
programs tested (Table 2). Typically, an integer program requires fewenpttefourth the number
of dependence tests needed by a floating-point program.

To summarize, using the HLI in the four optimization passes tested redheatutnber of de-
pendence edges by over 60% in the programs tested. This reduction translated oderatenim-
provement in execution time. Expanding the scope of these optimizations beyond bakgdan be
enhanced by using the HLI. This expansion should lead to a more substantial redueti@tution

times.

5 Related Work

Traditionally, parallelizing compilers and optimizing compilers for unipsswes have been largely

two separate efforts. Parallelizing compilers perform extensiayatata dependence analysis and
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array data flow analysis to identify parallel operations. Based on theseausequential program
is transformed into a parallel program containing program constructs such asLD@kernatively,
the compiler may insert a directive before a sequential loop to indicateltedbop can be exe-
cuted in parallel. Several research parallelizing Fortran comspilecluding Parafrase [17], PFC [1],
Parafrase-2 [24], Polaris [3], Panorama [11], and PTRAN [25], and comah&i@rtran compilers,
such as KAP [16] and VAST [32], have taken such a source-to-source approach.

Computer vendors generally provide their own compilers to take a source progtach, vas
been parallelized by programmers or by a parallelizing compiler, and gemetithreaded machine
code,i.e, machine code embedded with thread library calls. These compilers uspeiig sheir
primary effort on enhancing the efficiency of the machine code for individual proces9are the
thread assignment to individual processors has been determined, paralletizipders have little
control over the execution of the code by each processor.

Over the past years, bothachine independerind machine specificompiler techniques have
been developed to enhance the performance of uniprocessors [6, 7, 15, 20, 21]. Theser ¢techpil
niques rely primarily on dataflow analysis for symbolic registers or sim@lascthat are not aliased.
Advanced data dependence analysis and data flow analysis regarding arraycesfexred pointer
dereferences are generally not available to current uniprocessor comfilespublicly available
GCC [28] and LCC [9] compilers exemplify the situation. They both maintainlewel IRs of the
input programs, keeping no high-level program constructs for array data dependence aed point
structure analysis.

With the increased demand for ILP, the importance of incorporating high-levéysesmanto
uniprocessor compilers has been generally recognized. Recent work on pointeruatutestanal-
ysis aims at accurate recognition of aliases due to pointer dereferences iated @a@uments [8, 34].
Experimental results in this area have been limited to reporting theamycof recognizing aliases.
Compared with these studies, this paper presents new data showing how higiri@yeind pointer
analysis can improve data dependence analysis in a common uniprocessor compiler.

There have been continued efforts to incorporate uniprocessor parameters aneldigsoalbout
low-level code generation strategies into the high-level decisions about progirssformations. The
ASTI optimizer for the IBM XL Fortran compilers [26] is a good example. Nonetgléhe register
allocator and instruction scheduler of the uniprocessor compiler still lackst difermation about

20



data dependences concerning complex memory references.

New efforts on integrating parallelizing compilers with uniprocessor cargpdlso have emerged
recently. The SUIF tool [33], for instance, maintains a high-level interniedgpresentation that
is close to the source program to support high-level analysis and transformatiatso inaintains
a low-level intermediate representation that is close to the machine éxlanother example, the
Polaris parallelizing compiler has recently incorporated a low-ley@lasentation to enable low-level
compiler optimization techniques [2]. Nonetheless, results showing how highdealysis benefits
the low-level analysis and optimizations are largely unavailable todayeftut has taken a different
approach by providing a mechanism to transport high-level analysis results to wspoocompilers
using a format that is relatively independent of the particular parallel@mgpiler and the particular

uniprocessor compiler.

6 Conclusions and Future Work

Instead of integrating the front-end and back-end into a single compiler, this paygErses an ap-
proach that provides a mechanism to export the results of high-level program afrakystke front-
end to a standard back-end compiler. This high-level information is traadfesing a well-defined
format (HLI) that condenses the high-level information to reduce the total amoulstafthat must
be transferred. Additionally, this format is relatively independent of thequaat front-end and back-
end compilers.

We have demonstrated the effectiveness of this approach by implementiniin tie SUIF
front-end and the GCC back-end compilers. Our experiments with the SPEC bekstsinaw that
using this information in four optimization passes of GCC substantially redheesumber of data
dependences compared with using standard GCC dependence analysis algorithm onigreEsed
flexibility provided by this reduction allowed GCC to improve executiorgicompared to using only
the low-level information normally available in GCC.

We expect that the HLI mechanism proposed in this paper will make it rdlagaesy to inte-
grate any existing front-end parallelizing compiler with any existingkbad compiler. In fact, we
are currently developing a new front-end parallelizing compiteat will use the HLI mechanism

3Seehttp://www.cs.umn.edu/Research/Agassiz/.
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to export high-level program information to the same GCC back-end implementeséshin these
experiments. The HLI will be used more extensively in back-end optimizatiosidémthose done
within basic blocks. We believe that global optimizations will provide HLI moreepbéal to improve
the performance of applications. Furthermore, compilers for future wide-isswegsor architec-
tures, such athe Multiscalar architecturg27], the Superthreading architectuf80] andthe Trace
processof22], may benefit substantially from HLI when generating highly optimized canlesyloit
the available hardware parallelism.
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