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ABSTRACT 
 
 
A quantitative method for extracting minority carrier diffusion and drift 

lengths is developed and demonstrated in a heavily-doped semiconductor 

heterostructure.  This method advances the high resolution transport imaging 

technique, yielding key material parameters with a single, non-destructive 

measurement.  This is the first demonstration of an SEM-based, contact-free, 

non-destructive technique for high-resolution minority carrier lifetime 

measurement.  The measured values are in excellent agreement with theoretical 

calculations. 

The imaging transport technique is also employed to image the nature of 

the generation region as a function of beam energy, probe current and sample 

atomic number.  These types of images should be useful to allow for 

experimental verification of resolution limits in CL and EBIC associated with 

interaction volume effects in bulk materials and can be obtained without 

additional sample preparation. 

Finally, several suggestions for further research are offered, including 

mapping of radiation damage in solar cells, near-contact E field mapping and 

studies of low-dimensional structures such as superlattices and quantum wires.  

These nanoscale structures are poised to usher-in the next revolution in solid-

state electronic devices.  
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I. INTRODUCTION  

A. STUDYING TRANSPORT IN SEMICONDUCTORS 
A wide range of optoelectronic devices depends upon the generation, 

recombination and transport of free charge in semiconductor structures.  These 

devices span the electromagnetic spectrum and include, but are not limited to, 

infrared (IR) detectors, solar cells and ultraviolet (UV) lasers.  Therefore, 

techniques are continually being developed to better understand the spatial 

variation of luminescence and transport properties of the materials from which 

these structures are fabricated.  Cathodoluminescence (CL) within a scanning 

electron microscope (SEM) is among the most versatile and widely-used 

techniques available to the researcher for optoelectronic material 

characterization [1].  Understanding the interaction of the electron beam (e-

beam) with the material is essential in CL for selecting proper operating 

conditions and interpreting the results.  Understanding material transport 

properties, such as diffusive and drift behavior, is vital in the continuing 

development of more efficient and radiation-hard solar cells.   

In this work, high resolution studies of material transport properties are 

performed using a new technique developed in our laboratory in 2004 [2].  We 

call this technique “transport imaging”.  This technique is related to conventional 

CL, wherein the electrons from the SEM e-beam interact with a sample to 

generate electron-hole (e-h) pairs.   Upon radiative recombination, the emitted 

photons are mapped to the point of e-beam excitation.  Unlike conventional CL, 

however, in transport imaging the e-beam is not scanned and the light collected 

from the radiative recombination retains the spatial information of its point of 

origin.   

In this thesis, the transport imaging technique has been advanced to a 

quantitative method for the extraction of minority carrier diffusion and drift 

lengths.  A method for extracting the material transport properties using the slope 

of the intensity vs. position on a semi-log plot is described and applied to study a 
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Be modulation-doped p-type AlGaAs/GaAs/AlGaAs heterostructure.  In addition, 

the interaction of the e-beam with a high-Z (bulk GaAs, average Z = 32) and a 

low-Z (bulk SiC, average Z = 10) material is studied.  Finally, parallel-plate and 

non-standard electric field maps are produced within a heterostructure which 

demonstrate further potential application of the technique as a high resolution 

probe of field variations.  Feasibility into using such techniques for radiation 

damage mapping in solar cells is discussed. 

 

B. PURPOSE OF THIS THESIS 
The goal is to develop a technique for measurement of key material 

parameters with a single measurement and ∼  0.5 µ m spatial resolution.  To that 

end, the quantitative extraction of transport parameters is developed, transport 

parameters are successfully extracted from a two dimensional (2D) 

heterostructure at a range of temperatures from ∼  5K – 300K and the feasibility 

of directly mapping electric fields in radiation-damaged solar cell materials is 

demonstrated.  Results are presented from the following experiments: interaction 

volume studies in three-dimensional (3D) bulk materials; diffusion and drift 

measurements in a 2D heterostructure; preliminary electric field mapping in a 2D 

heterostructure; transport imaging in a solar cell.  These measurements were 

performed in a SEM with a modified liquid helium-cooled stage and a 

thermoelectrically-cooled silicon charge coupled device (CCD) camera in the 

Physics department at the Naval Postgraduate School (NPS).   

 

C. MILITARY RELEVANCE 
All space-based remote sensing and communication platforms depend 

upon the basic physics of charge transport.  Solar cells and highly sensitive solid-

state photon detectors operate by generating and collecting free charge.  The 

harsh space environment in which these semiconductor materials operate 

degrades their performance over time by exposing them to harmful radiation.  As 

such, knowledge of charge carrier transport parameters within optoelectronic 

materials that have been damaged by radiation is essential to the development of 
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new, radiation-hardened solid-state devices.  The experimental technique 

described in this work could be employed to directly image the effects of radiation 

damage on transport parameters, significantly aiding in the ongoing development 

of radiation-hard solar cells and solid-state remote sensing devices. 

Understanding material transport parameters is also important in the 

development of solid-state UV lasers, new, highly efficient terrestrial photovoltaic 

battery re-chargers and the next generation of spacecraft solar cells capable of 

increased on-orbit power generation efficiencies and enhanced longevity.  

Potential cost savings could be realized, as this characterization technique 

requires minimal or no additional contact processing.    

In addition, this high-resolution technique enables the study of spatial 

inhomogenealities and near-contact electric field behavior.  This information is 

invaluable as semiconductor devices continue to shrink in size.  Smaller solid-

state devices afford the developer of future systems unique, optimizable 

combinations of lighter weight, greater efficiency and/or lower cost. 

 

D. THESIS OVERVIEW 
 Chapter I states the purpose of this thesis, provides an overview of the 

direct transport imaging technique and describes the relevance to military 

semiconductor devices.  Chapter II provides the reader with the requisite 

background information to understand the experimental results.  This includes a 

discussion of luminescence in semiconductors, fundamental concepts of charge 

transport characterization and the photovoltaic effect in solar cells.  Chapter III 

describes the experimental setup, while the studies of the interaction volume are 

presented in Chapter IV.  Transport parameter studies are presented and 

discussed in Chapter V.  Conclusions and suggestions for future research are 

offered in Chapter VI.  
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II. BACKGROUND 

A. LUMINESCENCE IN SEMICONDUCTORS 
 The quantized angular momentum of the electron(s) within a non-radiating 

atom gives rise to discreet, quantized atomic energy levels that can be 

specroscopically observed [3].  When many such atoms (e.g. 1023) are brought 

together within ∼  1 cm3 to form a crystal, the interatomic interactions give rise to 

discreet energy bands – distinct allowed and forbidden energy levels [4].  In a 

semiconductor material the filled energy band, known as the valence band, is 

separated from the next higher band of allowed energy states, called the 

conduction band, by a region of forbidden energies known as the band gap.  At 

temperatures above absolute zero, some valence band (VB) electrons are 

thermally excited into the conduction band (CB), leaving behind an empty 

electronic state, or a hole.  Figure 1 illustrates the interaction of an incident 

photon of sufficient energy to bridge the band gap ( )gh Eυ >  with an electron in 

the VB, exciting it into the CB, where it is free to contribute to electrical 

conductivity.   

 

Figure 1 A photon excites an electron from the VB to the CB                
(adapted from [4]). 
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In Figure 1, Ev represents the upper edge of the VB, Ec the lower edge of the CB 

(separated by Eg, the band gap energy), φ  is the work function (the amount of 

energy required to completely free the electron from the material), h  is Planck’s 

constant and v  is the frequency of the incident photon.  When sufficient electrons 

are present in the CB, the material acts as a conductor;  when few or no 

electrons are present in the CB, the material acts as an insulator - hence the 

name, “semiconductor” for materials where this free carrier concentration can be 

intentionally controlled. 

Conversely, the excited electron can also recombine, moving from the CB 

to the VB.  In an indirect bandgap semiconductor such as silicon, the majority of 

the recombination is non-radiative, leading to phonon production.  In a direct 

band gap semiconductor such as GaAs, this recombination is often radiative, as 

the electron emits electromagnetic energy in the form of a photon.  One 

important form of luminescence in semiconductor materials is the emission of 

band-edge light by an e-h recombination process [5].   

 

B. CARRIER CONCENTRATION 

In the laboratory, non-equilibrium e-h pair production is brought about by 

external excitation in order to study the properties of semiconducting materials.  

Depending upon the source of the excitation, the resulting luminescence may be 

categorized as electroluminescence (energy supplied by an electric field), 

photoluminescence (excitation by photon absorption), chemiluminescence 

(excitation by chemical reaction), or sonoluminescence (acoustic excitation), 

among others [1].  In CL, energetic electrons interact with the material, providing 

the excitation.  In this work, the luminescence is created by bombarding the 

material with the SEM e-beam.  Using this technique, it is possible to generate 

several orders of magnitude more e-h pairs than that produced by PL, which 

leads to higher signal-to noise ratios and potentially higher resolution 

experiments due to the short wavelength of the incident electrons. 
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Let non  be defined as the majority carrier concentration (electron 

concentration in an n-type semiconductor) and nop  be defined as the minority 

carrier concentration (hole concentration in an n-type semiconductor) in the 

absence of any external excitation.  At thermal equilibrium, the Mass Action Law 

is obeyed, and  

2
no no in p n=        (1) 

where in  is the average intrinsic carrier concentration and is constant for a given 

temperature.  Further, let nn  be the instantaneous majority (electron) carrier 

concentration and np  the instantaneous minority (hole) carrier concentration in 

an n-type semiconductor in the presence of external excitation. The external 

excitation disturbs the equilibrium, producing excess e-h pairs in equal numbers.  

Therefore [5], 

n n no n no nn n n p p p∆ = − = − = ∆                 (2) 

and the Mass Action Law is not obeyed.  In this n-type material, no d An N N≈ −  

(the net donor concentration).  From Equation 1, 2 /no i dp n N= , which is 

significantly less than non .  From Equation 2, it is apparent that even a small 

change in nn  (such as that by a weak illumination) gives rise to a drastic change 

in np .  Therefore, the electrical properties of the semiconductor under external 

perturbation are often determined by the minority carriers.   

 

C. CONDUCTIVITY, MOBILITY AND LIFETIME 

Both electrons in the CB and holes in the VB can contribute to the 

semiconductor conductivity.  From the definition of the current density, in a 

uniformly doped sample [5], 

de dhJ env epv= +                         (3) 
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where dev  and dhv  are the respective electron and hole drift velocities in response 

to an applied, effectively  one-dimensional electric field xE  and 

* *; .e h
de x dh x

e h

e ev E v E
m m
τ τ

= =                                (4) 

In Equation 4, *
em  and *

hm  are the effective masses of the electrons and holes, 

respectively; eτ  and hτ refer to the mean free time, also known as the electron and 

hole lifetime.  The lifetime is a measure of the amount of time a generated charge 

carrier exists within a material before recombining.   

 The mobility in this context is defined as this proportionality constant 

between the electric field and the drift velocity: 

* .d
e
m
τµ =         (5) 

Therefore, in these terms, the conductivity is given by Equation 6: 

.e hen epσ µ µ= +            (6) 

For the n-type semiconductor under consideration [4],  

2

.i
d e h d e

d

neN e eN
N

σ µ µ µ
 

= + ≈ 
 

          (7) 

 Minority carrier lifetime is generally determined by measuring the 

photoconductivity (or the change in conductivity), as given by Equation 8: 

( )e h e he n e p e nσ µ µ µ µ∆ = ∆ + ∆ = ∆ +              (8) 

where n p∆ = ∆  since electrons and holes are generated in pairs.  The current 

density as a result of the illumination is just 

.phJ Eσ= ∆          (9) 

 Since n Gτ∆ = , due to the generation rate per unit volume ( )G , the minority 

carrier lifetime is [4] 
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.
( )

ph

e h

J
eG E

τ
µ µ

=
+

              (10) 

Measurement of lifetime using this approach is limited, however, to the precision 

to which the generation rate is known.   

  

D. DIFFUSION AND DRIFT 

 Diffusion in semiconductor materials is the migration of carriers due to a 

concentration gradient [4].  The diffusion coefficient ( )D  is a measure of the ease 

with which a diffusing charge moves through the material and is given by the 

Einstein relation: 

kTD
e
µ

=                (11) 

where k  is Boltzmann’s constant, T  is the temperature and µ  is the mobility.  As 

can be seen in Equation 11, the diffusion coefficient is a function of the mobility, 

which is also a measure of the ease with which the charge carriers move in the 

material.  As the mobility is given in terms of the effective mass (Equation 5), 

which differs for the electrons and holes, the diffusion coefficient for electrons 

also differs from that for holes.  The diffusion length ( )diffusionL  is a measure of the 

average length a charge carrier will migrate before it recombines and is given by 

Equation 12: 

( )
1
2

diffusion

kT
L D

e
µτ

τ
 

= =  
 

          (12) 

where all variables are as previously defined.   

 Drift is the motion of carriers due to an applied bias [4].  The drift length 

( )driftL  is a measure of the average length a charge carrier will travel due to an 

applied electric field and is given by Equation 13: 
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( ) .driftL Eµτ=               (13) 

Note that the ( )µτ product appears explicitly in both ( )diffusionL  and ( )driftL  

expressions.   

 Finally, the total current in a semiconductor material is expressed as 

 drift diffusion displacementJ J J J= + +             (14) 

for both electrons and holes.  At steady state, ( )displacementJ  is zero and  

.

e e e

h h h

dnJ e nE eD
dx
dnJ e nE eD
dx

µ

µ

= +

= +
     (15) 

 Both the mobility and lifetime must be measured in order to determine a 

material’s characteristic operating diffusion and drift length.  A standard 

technique used for minority carrier lifetime measurements is time-resolved 

photoluminescence (TRPL) [6].  In TRPL experiments, extremely fast detectors 

(capable of pico-second resolution) measure the time between excitation by a 

pulsed laser and e-h recombination by monitoring the time decay of the 

luminescence.  This is a well-established and widely used approach.  However, it 

does not give the complimentary mobility information needed to determine the 

diffusion or drift length.  

 Minority carrier mobility has historically been measured using the Haynes-

Shockley technique [7].  In this experiment, charge carriers injected at one end of 

a semiconducting material are moved across the sample under the influence of 

an electric field.  An oscilloscope is used to determine the time delay between the 

application of the electric field and the arrival of the detected pulse.   Knowing the 

transit time ( )t  from emitter to collector, the transit distance ( )x  and the electric 

field ( )E , the mobility can be found by Equation 4 ( / Eµ υ=  and xtυ = ).  This 

technique requires that the sample be prepared with contacts in order to 

establish the electric field.  A disadvantage to this conventional technique is that 
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since the mobility measurement is averaged over the entire area between the 

contacts, material uniformity must be assumed and cannot be easily studied.  

  

E. PHOTOVOLTAIC DEVICES 
One very important device that makes direct use of the charge transport 

properties of semiconductor materials is the solar cell.  Solar cells convert 

incident solar radiation into electrical energy via the absorption of light and the 

production of mobile charge carriers [4].  These photovoltaic devices are 

essentially large p-n junctions that use the internal electric field (EO) across the 

depletion region (W) to drift apart the photogenerated e-h pairs [Figure 2].   

 

Figure 2 Principle of solar cell operation (adapted from [4]). 

 

An external load (VOC) is applied through which the excess electrons travel away 

from the n-side (ln), do work, and eventually recombine with the excess holes on 

the p-side (lp).  As will be explained further below, it is usually more 
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advantageous to use the n-on-p polarity pictured in Figure 2 versus the possible 

p-on-n since in GaAs, for example, the electron (minority carrier) mobility in the 

base p-region is about 20 times higher than that of the hole in the n-region [8]. 

Due to heavy doping, the minority carrier lifetime in the thin n-side is very 

short.  Therefore, those e-h pairs that are photogenerated by energetic (short λ ) 

incident photons in this region near the surface or outside the diffusion length (Lh) 

to the depletion region are lost to recombination.  Therefore, the n-region is made 

very thin, typically less than 0.2 µ m thick.  In fact, the thickness of the n-region 

(ln) may well be less than the diffusion length (Lh).   

Those e-h pairs generated by the medium wavelength (medium λ ) 

photons within the depletion region readily take part in the photovoltaic effect.  As 

depicted in Figure 2, in this region the electrons and holes are promptly 

separated by the internal electric field.   

However, since there is no electric field within the majority of the thick p-

side (Neutral p-region), the e-h pairs that are photogenerated by long wavelength 

(long λ ) photons can only diffuse in this region.  Therefore, only those e-h pairs 

generated within the minority carrier diffusion length (Le) to the depletion region 

contribute to the photovoltaic effect; those e-h pairs generated further away are 

lost to recombination.   

The intensity of the light ( )I  varies from the surface of a semiconductor 

( )x  as [4] 

( ) exp( )oI x I xα= −      (16) 

where ( )oI  is the intensity of the incident light and ( )α  is the absorption 

coefficient.  The absorption coefficient is a material property that depends on the 

incident photon energy or wavelength.  For III-V semiconductors such as GaAs 

and InP, the absorption coefficient rises sharply with increasing wavelength [4].  

This is important because the majority of the photon absorption (63%) occurs 

over a distance ( )1/α , known as the absorption depth.  As the absorption 
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coefficient is inversely proportional to the wavelength of the incident light, for light 

near the material band edge, the absorption depth is typically in excess of 

100 µ m.  Consequently, the p-region is made correspondingly thick, typically in 

the 200 – 500 µ m range.  Minority carrier lifetimes in the micro-second range 

are not uncommon in solar cell materials, as the higher the minority carrier 

diffusion length in these thick regions, the greater the solar cell efficiency.   

 When used in space, the electrical property of solar cells will degrade by 

particle irradiation from energetic electrons and/or protons [8].  These highly-

energetic particles damage the solar cells, creating unwanted non-ionized 

recombination centers for photogenerated e-h pairs, thereby reducing the output 

current and voltage.  This degradation in performance between the spacecraft 

beginning-of-life (BOL) and end-of-life (EOL) can be as high as 30% - 40% [9].  

Spacecraft designers compensate for this reduction by designing to EOL output 

power expectations, thereby increasing the solar cell array size.  This increase 

leads to unavoidable inefficiencies in addition to the obvious additional mass that 

must be lifted to orbit.  For example, the extra BOL power can be used for 

temporary services, but is very often wasted as heat.  Therefore, the spacecraft 

must have design contingencies to remove this unwanted waste heat.  

Additionally, as the payload requires a constant voltage level throughout a typical 

mission, power designers must include shunt circuits to accommodate the power 

degradation over the mission lifetime [8].  These shunts add mass, further 

increasing the system inefficiency.    

From the discussion above, it is apparent that solar cells that exhibit very 

little power degradation are extremely desirable.  Thus, knowledge of the ( )µτ  

product with a high degree of spatial resolution through a simple experimental 

approach is critical to the solar cell designer. 
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III. EXPERIMENTAL APPROACH 

A. DIRECT TRANSPORT IMAGING 

The direct transport imaging technique presented in this work is a means 

to experimentally obtain the ( )µτ  product, and associated minority carrier 

diffusion length, with a single measurement.  This technique directly images the 

radiative recombination of e-h pairs.  It is similar to conventional CL in that 

electrons interact with the sample to generate e-h pairs.  Unlike conventional CL, 

however, the e-beam is held over a fixed location on the sample and the e-h pair 

production/radiative recombination processes are brought to a steady state.  

While much of the light does originate at or very near the point of charge 

generation, any distribution of the luminescence, whether due to drift, diffusion or 

interaction volume, is lost in standard CL.  In transport imaging, the light collected 

from the radiative recombination retains the spatial information of its point of 

origin [2].  By maintaining that information, one can observe the transport of the 

minority charge.  This method can be applied without any additional sample 

preparation to any luminescent material.  In a sample prepared with contacts, the 

transport imaging method yields the ( )µτ  product via the minority carrier drift 

length, provided the applied E field in the material is accurately known.    

 

B. EQUIPMENT 

The system consists of a JEOL 840A SEM with an internal optical 

microscope.  A modified, liquid helium-cooled SEM stage (Oxford Instruments) 

makes it possible to observe luminescence for sample temperatures from ∼  5 – 

300K.   Figure 3 shows the SEM with the modified stage. 
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Figure 3 (color) JEOL 840A SEM with modified cold stage. 

 

The optical detector is a thermoelectrically-cooled Apogee silicon charge 

coupled device (CCD) camera with a 2184 x 1472 pixel array.   During operation, 

the CCD is cooled to about 0o C for noise reduction and collects unfiltered light in 

the range from ∼  400 to 1100 nm.  The pixel size is 8.6 x 8.6 µ m and the 

resolution of the resulting image is ∼  0.4 µ m/pixel.  This is close to the 

diffraction limit for the observation of luminescence from room temperature GaAs 

at ∼  870 nm.  The CCD camera is shown in Figure 4; Figure 5 shows a 

schematic of the full system.  
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Figure 4 (color) Apogee 2184 x 1472 cooled CCD. 
 

 

Figure 5 (color) Schematic of transport imaging operating components. 

 

The SEM operating modes used in this work are the picture mode, line 

mode and spot mode.  When in picture mode, the e-beam is rastered over the 

sample and the luminescence area is recorded by the CCD.  Throughout this 

work, sample features will be depicted using the picture mode, such as the 

epitaxial mismatching in an 8%-In, GaInAs solar cell shown in Figure 6. 
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Figure 6 Picture mode example showing the epitaxial mismatching in an 8%-
In, GaInAs solar cell (200 µ m x 200 µ m). 

The bright line along the bottom edge of the luminescent area with the larger spot 

at the bottom-right corner is a result of the SEM always scanning the beam 

longer along one edge of the raster area.   

 In this work, to visualize dynamic electric field behavior over relatively 

large areas, the SEM is operated in line mode, during which only a one 

dimensional (1D) line described above is generated, as shown in Figure 7. 

 

Figure 7 Line mode example in a p-type AlGaAs/GaAs/AlGaAs 
heterostructure (100 µ m x 200 µ m). 
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Finally, the spot mode is used to generate e-h pairs for diffusive and drift 

measurements.  In this mode, the e-beam is held fixed over a point that is 

precisely controlled, which allows for local minority charge carrier transport 

parameter measurements.  An example of spot mode operation in a bulk GaAs 

sample is shown in Figure 8. 

 

Figure 8 Spot mode example in bulk n-type GaAs sample (250 µ m x 285 µ m). 

 

It is important to realize that the observable spot in Figure 8 is not the spot that 

the e-beam makes when coming into contact with the sample; it is the material 

luminescence created by the recombination of generated carriers.  The spot size 

of this observed luminescence is much larger than the original e-beam spot size.  

As the light collected during the transport imaging technique retains the spatial 

information of its point of origin, it is used to study the material minority carrier 

properties.  Figure 9 shows a 1D line scan of the luminescent spot being taken 

with the CCD software tool.  
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Figure 9 1D line scan taken of luminescent spot (250 µ m x 285 µ m). 

 

When performing transport imaging measurements, the way in which the 

incident e-beam interacts with the semiconducting material is of natural interest.  

Therefore, in the next chapter, this technique is initially employed to image the 

nature of the generation region as a function of beam energy, probe current and 

sample atomic number in 3D bulk materials. 
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IV. INTERACTION VOLUME STUDIES 

A. PENETRATION DEPTH AND INTERACTION VOLUME 

When performing any CL or transport imaging experiments, an e-beam 

with defined incident energy is used to probe the material.  The electrons are 

negatively charged particles visualized as taking a “random walk” through the 

electric fields of the sample atoms, depositing their energy in a series of elastic 

and inelastic scattering events.  The Bethe expression (Equation 16) describes 

the mean rate of energy ( )E  loss per unit of distance ( )S  traveled, due to an 

inelastic scattering event:  

4 1.1662 ln i
A

i

EdE Z keVe N
dS E A J cm

ρπ   = − ⋅ ⋅ ⋅ ⋅   
  

  (16) 

where e  is the electronic charge in Coulombs, AN  is Avogadro’s number, ρ  is 

the density in g/cc, A is the atomic weight in g/mole, iE  is the electron energy in 

keV at any point in the spectrum and J  is the mean ionization potential [1].  

However, the more interesting parameter in application is the total depth 

(perpendicular to the sample surface) over which the energy is dissipated.  

Integrating the Bethe expression over the energy range from the incident value to 

a low threshold value gives an estimate of the Bethe range, or the total distance 

the electron can travel while undergoing randomizing elastic and inelastic 

scattering events.  The penetration depth, according to a commonly used 

expression by Kayana and Okayama, is given by: 

0.889 1.67(0.0276 / ) ( )e bR A Z E mρ µ=     (17) 

where bE  is the electron energy in keV, A  is the atomic weight in g/mol and ρ  is 

the material density in g/cc [1, 10].  This depth, together with the lateral extent 

(parallel to the sample surface) over which the energy is deposited into the 

sample, define the interaction volume.  One highly-energetic (e.g. 20 keV) 
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incident electron can lead to the generation of thousands of e-h pairs within the 

interaction volume, depending on the semiconductor bandgap energy.   

 

B. PREVIOUS STUDIES OF THE INTERACTION VOLUME 

The shape of the interaction volume depends on the incident energy, the 

angle of the electron beam and the atomic composition of the sample [11].  Most 

theoretical studies of the interaction volume involve Monte Carlo calculations 

using different functions to represent the penetration depth and the lateral 

dependence of the energy dissipation [12].  

Goldstein et. al., reviews the findings of early experimental studies 

performed by Everhart et. al., of the interaction of an electron beam normal to the 

surface of the plastic material polymethylmetacrylate (PMMA), a material used as 

an electron-beam resist for patterning [11, 13].  In this experiment, a series of 

successively longer chemical etchings for samples exposed to constant electron 

dose reveal the contours of e-beam energy deposition within the interaction 

volume.  The interaction volume for this low-density, low-Z material was found to 

exhibit a distinct pear shape for the lowest energy deposition contours as shown 

in Figure 10.   

 

Figure 10 PMMA etching experiment: (a) corresponds to the shortest etching 
time, (g) to the longest, revealing the distinctive pear shape [11]. 
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This result is understood theoretically in terms of the effects of elastic and 

inelastic scattering of the primary electrons.  The elastic scattering interactions 

with the nuclei of the material lead to large-angle deviations of the electron path 

with very little energy loss, thereby causing a lateral spreading of the interaction 

volume.  The inelastic scattering events lead to small-angle deviations and 

correspondingly large energy depositions into the sample [11].  Since elastic 

scattering is relatively less probable (∼ Z2) in the low-Z PMMA material, the 

electrons travel deeper into the sample before spreading, in good agreement with 

the Monte Carlo calculations.   

Although the PMMA etching experiment provides representative results 

that are important for low-Z materials, there are no intermediate or high-Z 

materials for which a similar approach can reveal the interaction volume.  

Therefore, Monte Carlo simulations of the electron trajectories have been the 

primary means to explore these cases. 

A recent review of local probe techniques for luminescent studies also 

discusses current understanding of the interaction volume and surveys related 

work [6].  Efforts to probe the lateral extent of the generation volume have been 

done with both CL and electron beam induced current (EBIC) [6, 14, 15, 16].  In 

one set of experiments, the depth and lateral generation profiles in Al0.4Ga0.6As 

have been experimentally probed using CL measurements in samples prepared 

with a multiple-quantum-well (MQW) structure as an internal detector [14, 15].  

The wavelength signature associated with the radiative recombination from the 

quantum well was used to isolate the generation within a 50 Å region, with the 

barrier layers preventing diffusion into or out of the well.  The interaction volume 

was probed by varying the beam position in two different orientations.   Good 

agreement with the Monte Carlo simulations was found, once accurate analytic 

expressions were developed for the depth-dose and lateral dependence 

functions.  This method has the obvious limitation that it is applicable only to 

materials that support MQW growth, and a sample must be uniquely prepared. 
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C. INTERACTION REGION IMAGING 

The direct transport imaging technique is employed to study the 

interaction volume in a high-Z (GaAs, average Z = 32) and a low-Z (SiC, average 

Z = 10) material at room temperature with the e-beam at normal incidence to the 

sample.  No special sample preparation is required, as long as the material has a 

luminescent signature of interest.   

Figure 11 shows the image obtained with a 1 nA, 30 keV e-beam incident 

on a 400 µ m-thick bulk n-type Si-doped GaAs sample with a donor 

concentration of ∼  6 x 1017 cm-3.     

 

 
Figure 11 (color) Luminescence image from GaAs under spot mode excitation 

with e-beam parameters of 30 keV and 1 nA.  Luminescence 
intensity is plotted on the z axis. 
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Figure 12 shows the image obtained from a 265 µ m-thick bulk, doped n-

type SiC (6H crystal) with a 6 x 10-8 A, 30 keV incident e-beam. 

 

Figure 12 (color) Luminescence image from SiC under spot mode excitation 
with e-beam parameters of 30 keV and 6 x 10-8A. 

 
The intensity of the light is again plotted in the z direction, with x and y mapped to 

pixels on the CCD.  Because a 2D projection is observed, the term interaction 

region is defined as the projected area of the interaction volume. 

In both the GaAs and SiC cases, the thickness of both samples is much 

greater than the maximum penetration of the e-beam.   Therefore, these results 

are in the 3D limit for carrier diffusion from the initial generation volume.  This 

leads to a concentration distribution  

( ) ( ) ( )1/ exp / diffn r r r L× −∼         (18) 

for carriers generated at a point source, where diffL  is the diffusion length [6].  

Even for large variations in diffusion lengths, this expression is only weakly 

dependant on diffL .  In standard CL, this effect has been shown to allow for 

higher resolution than might otherwise be expected in materials with long 
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diffusion lengths [12].  This is not true in 2D (e.g. epitaxial or thin films with 

thickness comparable to the diffusion length), since the diffusion dependence in 

that case is 

 ( )/o diffK r L         (19) 

where oK  is the zeroth order modified Bessel function of the second kind, and is 

much more sensitive to variations in diffL .  Figure 13 is a representation of the 

generation volume in a thin (2D) versus a thick (3D) sample. 

 

Figure 13 Generation Volume, 2D and 3D sample. 

 

In addition, in this experiment both materials have diffusion lengths that 

are much shorter ( )1diffL mµ<   than the generation region of interest due to the 

doping concentrations.  Therefore, due to both the small values in diffL  these 

materials and the 3D nature of the diffusion, these images reflect the interaction 

volume, with minimal effect of the diffusion of the minority charge carriers.  
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Information can then be directly obtained about both the 2D extent of the region 

and the variations of minority carrier distributions within that region. 

There are three primary mechanisms that would cause recombination and 

luminescence at points removed from the original generation volume:  diffusion of 

carriers, carrier drift and photon recycling associated with recombination and 

subsequent reabsorption and emission.  In this work, diffusion is minimal, as 

previously discussed and the experiments are done in the absence of applied 

field.  Photon recycling may make some contribution to the spreading of the 

image, however, results as a function of probe current will show that this effect is 

also negligible on this scale.  To the extent that it does occur, however, it is 

included, which is appropriate, given that it will also be a factor to any CL and 

EBIC measurements under similar conditions.  The images allow direct 

visualization of the response to spot excitation. 

Figure 14 shows one dimensional line scans from GaAs interaction region 

images (e.g. Figure 11), normalized to the maximum intensity point, as a function 

of incident beam energy.  Scans are from images taken from 5 to 30 keV, in 5 

keV steps, with a fixed probe current of 1 nA.   
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Figure 14 (color) Intensity distribution as a function of position for GaAs with 
probe current of 1 nA and beam energies from 5 to 30 keV. 

 
As expected, an increase in the interaction region is observed with increasing 

voltage, consistent with previous work [6, 8, 11, 12].  The full-width at half-max 

(FWHM) increases from approximately 2 µ m to 4 µ m as the beam energy 

increases from 5 keV to 30 keV in the GaAs sample.  A similar trend was 

observed for the SiC sample, using a 6 x 10-8 A beam, as shown in Figure 15. 
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Figure 15 (color) Intensity distribution as a function of position for SiC with 
probe current of 6 x 10-8A and beam energies from 10 to 40 keV. 

 
The influence of the e-beam probe current on the lateral distribution and 

local generation volume shape has also been studied in both samples.  The 

results from the SiC sample, using a 30 keV e-beam and varying the probe 

current over three orders of magnitude, are shown in Figure 16.    
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Figure 16 (color) Intensity distribution as a function of position for SiC with 
beam energy of 30 keV and probe currents of 1 nA, 6 nA, 1 x 10-8 A 

and 6 x 10-8 A. 
 

One sees that, for this beam energy, the lateral extent of the generation volume 

is only slightly affected by the changing probe current. This is expected, since the 

beam diameter at the surface is much less than the interaction region width.  For 

a 30 keV e-beam, the spot size at 3 x 10-10 A is expected to be approximately 60 

nm; a 1 x 10-8 A beam yields a spot size of ∼  150 nm [11].  This local variation in 

beam diameter is observed to have only a minor effect on the extent of the 

interaction region which is determined primarily by incident electron energy.   

Similar results were found for the GaAs sample.    

 The insensitivity of the measured luminescence profile to probe current 

also demonstrates that the measurements are made in the “low excitation” limit.  

As a result, they image minority carrier recombination in an approximately 

constant majority carrier distribution.  The ability to operate in this limit over a 

wide range of excitation is due to the heavily doped nature of the samples.   Drift 

experiments have also previously demonstrated that we observe predominately 
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minority carrier recombination for a range of doping levels, based on the direction 

of drift in a given applied field [2].   

The generation region as a function of material parameters is considered 

by comparing the generation region for SiC and GaAs at a fixed beam energy of 

30 keV and a probe current of 1 nA [Figure 17].  The images from which these 

line scans were extracted were taken so that all beam conditions (filament 

current, emission current, aperture) were unchanged.  One sees significant 

variations in the luminescence within the generation region due to the change in 

material properties. 
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Figure 17 (color) Intensity distribution for GaAs and SiC; 30keV, 1 nA. 
 
The Monte Carlo electron trajectory simulations reviewed by Goldstein et. 

al. show a significant change in interaction volume shape as a function of atomic 

number.   In that analysis, a change from the characteristic pear shape in low-

atomic-number materials to a more nearly hemispherical shape for high-atomic-

number materials was reported [11].  The generation region of the SiC plot in 

Figure 17 is consistent with a deeply-penetrating pear shaped interaction volume 

within the low-Z material.  The shape of the GaAs plot is well-described by a 
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more hemispherical interaction volume truncated by the plane of the surface.  

However, we do not observe an increase in linear extent for the low Z material, 

as might be expected from the Monte Carlo calculations.  These experiments 

consistently show a narrower luminescence distribution for the low-Z than for that 

of the high-Z material.   

Finally, the 3D images of the luminescence distribution in the SiC sample 

for two additional cases are compared.  Figure 18 shows the image with incident 

electrons at 10 keV and a beam current of 6 x 10-8 A.  Figure 19 shows similar 

results for electron energies of 40 keV. 

 

Figure 18 (color) Luminescence image from SiC under spot mode excitation 
with e beam of 10 keV and 6 x 10-8A. 
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Figure 19 (color) Luminescence image from SiC under spot mode excitation 
with e beam of 40 keV and 6 x 10-8A. 

 
One observes both the narrow internal distribution associated with the interaction 

in the low-Z material and the broadening of the interaction region with increasing 

incident beam energy.  

As is evidenced in this work, transport imaging is not ideal for measuring 

diffL  in bulk samples, due to the generation volume.  Application of this technique 

to effectively 3D samples requires that diffL � generation dimension to overcome 

the insensitivity of the carrier concentration to the minority carrier diffusion length.  

The lower the dimensionality of the material being considered, the greater the 

sensitivity this approach is to diffL .  In the following chapter, a quantitative method 

of extracting the minority carrier diffusion and drift lengths is described and used 

to make optical measurements in a 2D heterostructure.   
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V. TRANSPORT PARAMETER STUDIES 

A. BOONE SAMPLE 9 
The transport imaging technique is applied to quantitatively extract the 

( )µτ  product and minority charge carrier diffusion length from a 1000 Å-thick 

(effectively 2D) active GaAs layer of an AlGaAs/GaAs/AlGaAs heterostructure, 

modulation-doped p-type with Be at ∼  5 x 1018 acceptors/cm3, herein referred to 

as “Boone Sample 9”.  This sample was provided by Dr. Tom Boone from the 

Hitachi Corp. in San Jose, CA, whose TRPL measurements indicate that the 

minority carrier (free electron) lifetime for this sample is 4320 pico-seconds.  

Mesa structures were etched into the sample and non-alloyed Ti:Au electrical 

contacts were deposited and lithographically defined on top of the mesas [17].  

Quantitatively extracting the ( )µτ  product and knowing the lifetime of the 

minority carriers, an estimate can be made of their mobility and compared to 

theoretical minority carrier mobility calculations in heavily doped p-type GaAs 

based upon quantum calculations by Bennett [18] as outlined below.   

 

1. Imaging Drift 
In samples prepared with electrical contacts, such as Boone Sample 9, a 

voltage bias is applied across the contacts to establish an E field as represented 

in Figure 20.  Application of the E field causes the charge carriers to drift.  The 

minority electron drift “tails” are in the direction of the positive contact and 

radiatively re-combine in a p-type material, as modeled in Figure 21. 
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Figure 20  (color) Representation of a sample prepared with contacts     
(purple areas).  The gray area represents the sample.  

 

 
Figure 21 Drifting minority electrons modeled in a p-type material.   

    
For an n-type material, the minority carriers are holes and the drift tails are 

observed in the direction of the negative contact upon radiative recombination 

[2].  Since band-edge light is imaged, filters are used in the optical train to 

remove any unwanted light from layers other than the active layer of interest.  In 

this work, a 750 nm long-pass filter is used just before the CCD camera shutter 

to remove any extra luminescence from the AlGaAs barrier layers.  As the 
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generation/radiative recombination processes are at steady state while imaging 

transport, the CCD exposure time is adjusted to provide adequate intensity for 

quantitative measurements.   

 

2. Quantitative ( )µτ  Extraction via Slope-matching 

A room temperature transport imaging measurement was made using an 

e-beam accelerating voltage of 20 keV and current of 3 x 10-10 A in Boone 

Sample 9.  Figure 22 shows pseudo-color images of the interaction region and 

the diffusion and drift tails as a function of accelerating voltage.   

 

Figure 22 (color) Boone Sample 9; 20 keV, 3 x 10-10A e-beam.                       
Each image is ∼  200 µ m x 220 µ m (full area). 



38 

For this p-type material, the minority charge carriers are electrons drifting toward 

the positive-biased contact in the direction depicted in the figure.  Note the small 

luminescent spot just beneath the interaction region.  This spot is believed to be 

a reflection internal to our optical microscope and is seen in all images of this 

type.  It can be subtracted from the picture but is routinely ignored as it has no 

bearing on the quantitative analysis that follows.   

Figure 23 shows the 1D line scans of the linear normalized intensity 

curves as a function of linear position in the direction of the diffusive and drift tails 

for increasing E-field; Figure 24 shows the same data on a semi-log plot (linear in 

X, logarithmic in Y). 

 

 

Figure 23 (color) Boone Sample 9 Intensity vs. Distance (Linear) taken through 
the center of the incident spot, in the direction of the minority carrier 

drift tails, using a 20keV, 3 x 10-10A e-beam. 
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Figure 24 (color) Boone Sample 9 Intensity vs. Distance (Semi-log), as in 
Figure 23, using a 20keV, 3 x 10-10A e-beam (Linear in X, Log in Y). 

 

On the semi-log plot depicted in Figure 24, the drift tails appear to be 

nearly linear, suggesting a simple negative exponential governing function.  Boaz 

shows that, in the limit of large ( )x , the Bessel function ( )( )pK x  can be 

approximated by a simple negative exponential [19]: 

( )
x

x
p

eK x e O
x

−
−  

≈ +  
 

           (20) 

The symbol 
xeO
x

− 
 
 

 stands for terms of the order of nx  or less and means that 

the error in the given approximation is less than a constant times nx .  The 

theoretical model that describes minority carrier distribution from a point source 

in the presence of diffusion and drift, given in Equation (21): 
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In the model, S  is the Drift Length (Equation (13)) and L  is the Diffusion 

Length (Equation (12)).  So, out in the drift tails where the large ( )x  

approximation is assumed, the Point Generation model becomes: 

2 2

2 2
4

2 2
S x S L x C xL LIntensity e e e

+ ⋅ − + ⋅
⋅⋅ ⋅≈ ⋅ =         (22) 

where C  is the slope.  Solving for C : 
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Now, let S nL=  (so 0n =  corresponds to purely diffusive behavior and 

large ( )n  corresponds to dominant drift behavior): 

2 2 2 2

2 2

( ) 4 4 4 .
2 2 2 diff

nL nL L nL L n n nC
L L L

− + − + − +
= = =   (24) 

As can be seen for the above equation for C , for purely diffusive behavior 

( )0n = , the slope provides the diffusion length ( )diffL , as: 

diffL
C 1−

=      (25) 

And with increasing ( )n , corresponding to increasing E field, the slope decreases 

to the limit where 0C =  for very large ( )n .   

Figure 25 shows that linear regression curves fit to the experimental data 

do, indeed follow the general trend predicted above.  Note that the linear fit is 

applied in the tail (less than 10%) of the distribution. 
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Figure 25 (color) Boone Sample 9 Intensity vs. Distance                             
(Semi-log with regressions). 

 

In the presence of an E field, the modeled slope is as follows: 

( )2
2

2
2

4
1

2 22 diff

kTE E
e e eC E E

kT kT kT L
e

µτ µτ µτ

µτ

 − +       = = − +        
 
 

 (26) 

where E  is the applied E field.  Knowing the E field, a measurement of the slope 

yields the diffusion length by the following: 

1

2
22

22

−



















−








−






= E

kT
eCE

kT
eLdiff    (27) 

The technique described above for “curve fitting” using the slope of the 

Intensity vs. Distance on a semi-log plot enables one to estimate the ( )µτ  
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product, and thereby the minority carrier diffusion length, with a single drift 

measurement.  However, the accuracy of the estimate depends upon how well 

the applied E field strength is known. 

 
3. Measurement of the E-field 
A four-point measurement was performed on Boone Sample 9 in order to 

determine the applied E field strength in the region where the drift measurement 

was performed.  Figure 26 is an SEM image of the sample showing the four 

contacts (A, B, C, D) across which the voltage measurements were made.   

 

Figure 26 Boone Sample 9 E field measurement area (600 µ m x 400 µ m). 

 

Each contact in Figure 26 is 80 µ m wide; the center-to-center spacing 

between contacts A and D is 470 µ m ( )1x  and the center-to-center spacing 

between contacts B and C is 280 µ m ( )2x .  The gold wires connected to 

contacts A and D were expertly put down by Jeff Beeman at Lawrence Berkeley 

National Laboratory.  A series of known voltages (-19V to +19V) was applied 

between contacts A and D and voltage measurements were made between 

contacts B and C.  The measured voltage drop through the material for a known 
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range of applied voltages divided by the measured distance between the 

contacts provides precise knowledge of the E field in the region of the transport 

imaging measurement, as shown in Figure 27. 
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Figure 27 (color) Boone Sample 9 applied voltage from -19 V to +19 V across 
contacts A and D vs. measured voltage across contacts B and C. 

 

In addition to providing valuable knowledge about the E field strength, 

comparing the measured voltage drop between contacts B and C to what one 

would expect from purely geometrical considerations through the material yields 

an estimation of the voltage drop at the contacts as a function of applied bias.  By 

geometry alone: 

2

1

( ) ( ) .xVoltage measured Voltage applied
x

 
=  

 
       (28) 

Figure 28 shows the estimated drop at the contacts for this measurement. 
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Figure 28 (color) Boone Sample 9 estimated voltage drop at the contacts by 
comparing the measured voltage between contacts B and C to 

geometry alone.  
 
4. Experimental Results 
Using the regression curve slopes from Figure 25 and the E field strength 

from Figure 27 in Equation (27), the following results were found (Table 1): 

Applied Measured Diffusion
Bias: Bias: E-field: Contacts: Slope: Length: (µτ) (µ)
[+V] [+V] [V/cm] [+V] [1/µm] [µm] [cm^2/V] [cm^2/Vs]

0.00 0.00 0.00 0.00 -0.31 3.2 3.9E-06 9.1E+02
3.00 0.88 44.00 0.86 -0.25 3.1 3.5E-06 8.2E+02
6.00 2.63 131.50 0.94 -0.16 3.0 3.5E-06 8.0E+02
9.00 4.19 209.50 1.13 -0.13 2.9 3.2E-06 7.3E+02

12.00 6.27 313.50 0.87 -0.09 2.9 3.1E-06 7.2E+02
15.00 8.24 412.00 0.76 -0.07 2.9 3.2E-06 7.4E+02
18.00 10.43 521.50 0.33 -0.06 2.8 3.0E-06 7.0E+02  

Table 1 Boone Sample 9 room temperature minority carrier mobility          
and diffusion length results. 
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The transport imaging technique provides a minority carrier diffusion 

length of approximately 3.0 µ m for this sample.  Using Equation (12) and the 

known minority carrier lifetime, the minority carrier mobility is found to be 910 

cm2/Vs for the +0 V bias case.  This is in excellent agreement with the value 

calculated for heavily-doped p-type GaAs (∼ 5 x 1018 cm-3) by Bennett [18].  In 

that work, closed-form analytic expressions derived from quantum mechanical 

calculations are presented for electron and hole mobilities at 300 K in p-type and 

n-type Ga1-xAlxAs as a function of dopant densities between 1016 and 1020 cm-3 

and mole fractions of AlAs with 0.0 0.3x≤ ≤ .  The minority electron mobility from 

Table I of that work, following the 0x =  line (pure GaAs), yields a value of 990 

cm2/Vs.  
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VI. CONCLUSION AND SUGGESTIONS FOR FURTHER 
RESEARCH 

A. SUMMARY AND CONCLUSION 
A quantitative method for extracting minority carrier diffusion and drift 

lengths has been developed and demonstrated in a heavily-doped 

heterostructure.  This method advances the high resolution transport imaging 

technique, yielding the ( )µτ  product with a single measurement.  A minority 

carrier diffusion length of approximately 3.0 µ m is measured in the 1000 Å-thick 

active GaAs layer of an AlGaAs/GaAs/AlGaAs heterostructure, modulation-

doped p-type with Be at ∼  5 x 1018 acceptors/cm3.  The minority carrier mobility 

is found to be 910 cm2/Vs, in excellent agreement with the 990 cm2/Vs theoretical 

value calculated by Bennett [18].  This is the first demonstration of an SEM-

based, contact-free, non-destructive technique for high-resolution minority carrier 

lifetime measurement. 

The imaging transport technique has also been employed to image the 

nature of the generation region as a function of beam energy, probe current and 

sample atomic number.  In high-Z and low-Z materials, the width of the 

generation volume increases as a function of increasing e-beam accelerating 

voltage, in excellent agreement with previous theoretical work.  However, we do 

not observe an increase in linear extent for the low Z material, as might be 

expected from Monte Carlo calculations.   These direct images reveal a relatively 

narrower generation/recombination volume width for the low-Z than for that of the 

high-Z material under exactly similar excitation conditions.  These types of 

images should be useful to allow for experimental verification of resolution limits 

in CL and EBIC associated with interaction volume effects in bulk materials and 

can be obtained without additional sample preparation. 

In conclusion, the high resolution imaging transport technique is advanced 

to a quantitatively rigorous process to extract key material parameters with a 

single, non-destructive measurement.  This technique can be employed with no 
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additional sample preparation to any luminescent material.  As demonstrated in a 

heterostructure with ohmic contacts, this method yields experimental minority 

carrier mobility values that are in excellent agreement with theoretical 

calculations.    

 

B. SUGGESTIONS FOR FURTHER RESEARCH 
  

1. Electric Field Mapping 
Further application of the direct transport imaging technique presented in 

this work suggests a potentially highly sensitive technique for local E field 

mapping.  As solid-state electronic devices continue to shrink to the micro- and 

nano-scales, the contacts must operate at ever smaller distances from one 

another.  Therefore, understanding the near-contact E field behavior is essential.   

Because the minority carriers are manipulated with an applied E field 

during transport imaging, the field itself could be directly studied in a material of 

known parameters, assuming local uniform material properties.  In Boone 

Sample 9, the E field has been quantitatively probed, as presented in the 

following section.  Future efforts should include developing a quantitative method 

for probing near-contact E fields. 

Parallel-plate E fields and E fields of non-standard geometry in Boone 

Sample 9 have been qualitatively probed using the transport imaging technique.  

Figure 29 illustrates the geometry of one such non-standard E field probe.   

 

 



49 

 
Figure 29 (color) Geometry of non-standard E field probe.  (a) represents the 

+0V bias case; (b) with a +6V bias on the near contact; (c) reversed 
polarity.  

 

First, the SEM is operated in line mode with no applied bias, as depicted in 

Figure 29(a).  The location and orientation of the e-beam with respect to the 

contacts is represented by the green line.  A six volt bias is then applied across 

the contacts, as in Figure 29(b).  Finally, the polarity of the bias is reversed as 

represented in Figure 29(c).  The resulting effect of the non-standard E field on 

the diffusion and drift of minority charge carriers is seen in the location of their 

radiative recombination in Figure 30. 

 

Figure 30 (color) Results of non-standard E field probe,  (a), (b) and (c) 
correspond to Figure 29 (a), (b) and (c), respectively and are 

approximately 246 x 261 µ m (full area) each. 

 

In Figure 30, the location of the near contact has been artificially accentuated.  

Note the way in which the light follows the bending E field lines and changes in 

intensity as the minority charge carriers diffuse, drift and finally recombine within 
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the applied E field.  As these images suggest, the imaging transport technique is 

a potentially powerful tool with which to study near-contact E field behavior.   

 
2. Mapping of Radiation Damage in Solar Cells  
In addition to studying near-contact E fields, the unique transport imaging 

technique should be employed to study the effects of radiation damage on the E 

fields in solar cells.  As was discussed in Chapter II, knowledge of the ( )µτ  

product with a high degree of spatial resolution through a simple experimental 

approach is critical to the solar cell designer.  Preliminary transport imaging 

experiments have been performed on a 1%-In GaInAs (lattice-matched) double-

heterostructure solar cell with a 3 µ m-thick active layer, doped p-type at ∼ 1 x 

1016 cm-3, with a TRPL-measured lifetime of 2450 ns, as presented in the 

following section.  Future efforts should include developing a quantitative method 

for characterizing the damage done to solar cell materials by radiation, as well as 

experimentally extracting key material parameters from new solar cell materials 

such as InGaN.  These new materials are being developed for their radiation-

robust properties [20].   

Initial transport imaging probes of the double-heterostructure solar cell 

suggest that fundamentally different phenomena from those in 3D bulk materials 

and 2D heterostructures may be responsible for the observed minority carrier 

behavior.  For example, Figure 31(a) shows the generation region in the double-

heterostructure solar cell produced with a 20keV, 1 x 10-9 A e-beam in the 

absence of any applied voltage bias; in Figure 31(b), a bias of +1.3 V, 

corresponding to an E field of 162.5 V/cm, has been applied.  
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Figure 31 (color) Generation region in a solar cell using a 20keV, 1 x 10-9 A e-
beam in spot mode, with (a) no applied bias and (b) +1.3 V bias.  

Each image is ∼ 220 µ m x 220 µ m. 

 

Note that no drift tail in the direction of the applied bias is observed, as might be 

expected from the Boone Sample 9 heterostructure study above.  Instead, the 

intensity has markedly decreased in the presence of the applied field.  An 

observable decrease in intensity as a function of increasing E field was observed, 

as plotted in Figure 32. 



52 

Applied Bias 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

In
te

ns
ity

1000

2000

3000

4000

5000

6000

7000

8000

9000

 

Figure 32 Intensity vs. applied E field in a solar cell using a 20keV, 1 x 10-9 A e-
beam in spot mode. 

 

Although no drift tail was observed, drift behavior was observed when the 

SEM was operated in picture mode with the raster area overlapping either 

contact, the geometry of which is illustrated in Figure 33. 

 

Figure 33 (color) Geometry of solar cell drift probe using the SEM picture 
mode.  (a) represents the +0V bias case; (b) with a +0.5 V bias on the 

lower-left contact; (c) reversed polarity. 
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First, the SEM is operated in picture mode with no applied bias, as depicted in 

Figure 33(a).  The location and orientation of the e-beam with respect to the 

contacts is represented by the green region.  An 0.5 V bias is then applied across 

the contacts, corresponding to an E field of 62.5 V/cm, as in Figure 33(b).  

Finally, the polarity of the bias is reversed as represented in Figure 33(c).  The 

resulting effect of the applied E field on the diffusion and drift of minority charge 

carriers within the interaction region is seen in Figure 34. 

 

Figure 34 (color) Generation region in a solar cell using a 20keV, 1 x 10-9 A e-
beam in picture mode, with (a) no applied bias, (b) +0.5 V bias on the 

lower-left contact and (c) reversed polarity.                                            
Each image ∼ 220 µ m x 220 µ m.  Inter-contact distance ∼ 80 µ m. 

 

In Figure 34, the location and orientation of the contacts have been 

artificially accentuated.  Note the shift in peak intensity within the interaction 

region with the application and subsequent reversal of polarity of an applied E 

field.  Further studies are needed to understand this behavior and advance the 

imaging transport technique to a quantitative measurement tool for these solar 

cells.  Once this goal is achieved, differences between pristine and radiation-

damaged solar cells can be experimentally sought and the degree to which a 

solar cell is damaged by or hardened against radiation can be quantitatively 

characterized. 
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3. Low-dimensional Structure Studies 
Results of experiments performed to date on the low-dimensional double-

heterostructure solar cell and a superlattice sample (20 X 100 Å-thick active 

GaAs layers between AlGaAs layers, modulation-doped p-type with Be at ∼  5 x 

1018 acceptors/cm3) are not yet understood.  However, they do suggest an 

exciting possibility: the low-dimensional geometry of the active layers of these 

structures may be giving rise to observable changes in charge carrier transport 

properties.  If found, this would open the door for the creation of low-dimensional 

semiconductor devices whose minority charge carrier parameters may be 

controllable by an E field, facilitating extremely fast switching and tremendous 

packing densities.  Further experiments performed with nano-scale resolution 

provided by the new SEM hardware on order in our laboratory in conjunction with 

the installed beam-blanker should facilitate the understanding of minority charge 

carrier transport properties of low-dimensional structures such as superlattices 

and quantum wires, which are poised to usher-in the next revolution in solid-state 

electronic devices. 
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