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ABSTRACT
Discovery of biological relationships between genes is one
of the keys to understanding the complex functional nature
of the human genome. Currently, most of the knowledge
about interrelating genes are found in immense amounts of
various biomedical literature. Hence, extraction of biological
contexts occurring in free text represents a valuable tool in
gaining knowledge about gene interactions. We present a
textual analysis of documents associated with pairs of genes,
and describe how this approach can be used to discover and
annotate functional relationships among genes. A study on
a subset of human genes show that our analysis tool can
act as a ranking mechanism for sets of genes based on their
functional relatedness.

Keywords
information retrieval, document clustering, gene relations

1. INTRODUCTION
Although most genes in the human DNA now have been
completely sequenced [3], their functional roles and the di-
verse interrelationships between them are still to be fully
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understood. With the development of the DNA microar-
ray [10], researchers have a tool where they can measure the
expression levels of several genes at a time. Producing huge
amounts of data, discoveries made from such experiments
are published at an enormous rate in the scientific litera-
ture; thus, giving researchers a severe information retrieval
challenge in keeping up to date in their fields of expertise.
With the aim of structuring existing knowledge occurring in
free text, biomedical text collections have been subject to
extensive research the last years.

The problem of extracting information about how genes are
related has been the major focus by many groups, e.g. [5,
8, 12, 16, 17, 18], and has led to a variety of approaches for
discovery of functional groupings among genes. Clearly, any
successful method should be able to extract the biological
nature of the discovered relationships. This goal has been
achieved to some extent by different efforts, but they either
rely on the quality of documents associated with genes [12]
or limit themselves to controlled vocabularies for annotat-
ing the relationships [5, 16]. Furthermore, knowledge about
gene relations often include several biomedical aspects, i.e.
biology, chemistry and medicine. This fact reflects the com-
plex nature of gene relationships, and indicates that they
ought to be characterized by more than one functional con-
text.

We propose an approach that initially extracts the multi-
ple local contexts between pairs of genes found co-occurring
in MEDLINE abstracts. Further, a global analysis of local
contexts between pairs is performed, giving similiar local
contexts a global interpretation. It is our belief that this
scheme can represent an efficient way of discovering func-
tionally related genes.

We evaulate our method on a subset of human genes, and
the results (though preliminary) show that sets of genes con-
nected by same global contexts are functionally similar.

The rest of the paper is organized as follows: The next sec-
tion presents related work on mining the literature for gene-
relations. We then give a description of the models and
methods used in our scheme for finding functionally related
genes. Finally, we present and discuss preliminary results
on applying our approach on a set of human genes.



2. RELATED WORK
Detecting gene relations based on the co-occurrence method-
ology was initially explored by Stapley et. al [14] in their
prototype system for visualization of gene interactions. Later,
the method was utilized in a comprehensive manner by Jenssen
et. al [5, 6], who developed a genome-wide network of hu-
man genes. The co-occurrence method is very efficient for
its purpose; to detect gene relations. However, co-occurrence
alone can not help us in discovering the characteristics of the
relation. An approach of going beyond simple co-occurrence
was suggested by [5], who annotated the relations between
genes detected by co-occurrence with associated MeSH and
GO terms.

Recently, analysis of the graph structure inherent in a co-
occurrence network has attracted the attention of researchers,
e.g. [17, 18]. Wilkinson et al. [17] employed Girvan and New-
man’s process of finding communities [4] to discover related
genes. By picking sets of genes statistically correlated to
user-selected keywords, components of a gene co-occurrence
graph are partitioned into functionally related communi-
ties. Interesting results included placing co-occurring genes
into different communities; demonstrating the fact that co-
occurrence does not always imply functional relatedness.
Wren et. al [18] took advantage of statistical properties
of connections in the network to determine the “cohesive-
ness” of sets of co-occurring objects (genes, diseases, chemi-
cal compounds etc.). The technique could therefore identify
whether a set of objects form a purposeful grouping, and
maybe more importantly, whether members not in the set
should be included.

Based on domain knowledge from thesauri, Stephens et.
al [16] both found and annotated gene relationships by scan-
ning sentences for gene thesauri terms. However, the ap-
proach is dependent upon high quality domain-specific the-
sauri in order to produce good results.

Given a group of genes, Raychaudhuri et. al [8] developed
the concept of neighbor divergence pr. gene(NDPG) within
scientic texts to discover a potential biological relation in
the group. The motivation behind their approach was to
recognize articles describing the function inherent in the
group. It achieved accurate results on a testset taken from
the yeast organism (79% recall at 100% precision). How-
ever, the method requires that a list of relevant articles is
provided for each gene in the organism, and this requirement
is by no means trivial. Furthermore, NDPG does not tell us
the function among a set of genes, it merely determines if
the group shares one.

Approaches using the published literature as the main source
for annotation have been investigated earlier. With the
same goal as [5] of establishing functional gene relations on a
genome-wide scale, Shatkay et. al [12] employed document
similiarity search as basis for their method. Arguing that
clustering of co-expressed genes from DNA microarry exper-
iments may fail to give the true picture of interrelationships
between genes, they proposed a complementory method in
which relationships between genes are found and annotated
by measuring the similarity between the genes’ set of rel-
evant documents in the literature. The annotation mech-
anism involves a “theme-based” probabilistic search [13],

which provides a summary of the content between a query
document and its similar documents. The main limitation
of this approach is that it requires each gene to be associ-
ated with a kernel document, capturing most of the gene’s
functional biology. The method relies heavily on the quality
of these documents, which may be hard to find.

3. METHODS
In this section, the methods and models used in our ap-
proach are described in more detail.

3.1 Overview
Our work represents a novel method for annotating the func-
tional contexts that exist between genes found co-occurring
in MEDLINE records. After creating a co-occurrence graph
of human genes from MEDLINE, contexts between genes are
assigned by local and global analysis of documents associated
with the edges of the graph. The documents associated with
an edge of the graph are the MEDLINE abstracts where a
pair of genes co-occurred. First, documents relating to the
gene-pairs are clustered into k local clusters; thus, splitting
literature related to a pair into k contexts. Furthermore,
each cluster (context) between a genepair is associated with
its hundred most descriptive features. Viewing this opera-
tion within the context of the co-occurrence graph, each edge
is being split into a multiedge, reflecting multiple relation-
ships between the connecting nodes. Using our terminology,
the co-occurrence graph has been unfolded.

With the goal of creating a limited set of contexts between
the genes in our unfolded graph, we give each edge in the
graph a globally defined context, or “color”. The colors are
defined on the basis of the total set of local contexts oc-
curring between the genes. More specifically, we cluster the
total set of descriptive features into a predefined number of
clusters. As in the first stage, each cluster (color) is associ-
ated with its most descriptive features. This second stage
ensures that similar local functional contexts occurring be-
tween any pair of genes are given the same global context.

Having a co-occurrence graph between genes as the only pre-
requisite, our approach of mining gene relations can hence-
forth achieve two major goals:

• annotate multiple relationships between pairs of genes
with globally defined functional contexts

• find functionally related groups of genes by means of
extracting same-colored edges in the colored unfolded
co-occurrence graph

3.2 Creation of co-occurrencegraph
A co-occurrence network between human genes forms the
backbone of our method. As shown in various experiments [5,
6], the co-occurrence method has proved to be an efficient
as well as valid approach of detecting meaningful biological
relationships between genes. The methodology is simplis-
tic; if two genes co-occur in an abstract, they are assumed
to have a relationship of some kind. Our work is no at-
tempt of copying the comprehensive network developed by
the people behind PubGene [5], henceforth, we do not intend
to improve upon the method for co-occurrence extraction.



In fact, we only used HGNC1, HUGO Gene Nomenclature
Commmitte, as the database of gene symbols used in our
search for co-occurrences. That said, the nomenclature pro-
vided by HGNC does include literature aliases for a major
part of the symbols, and these were also being searched for.
Common abbreviations used in biology literature (i.e. IV,
SD, ABO etc.) that coincided with gene symbols led to false
positives, as experienced by [5, 17]. The actual extraction
process was done in a straigthforward manner; whenever a
symbol was found in a MEDLINE record (title or abstract),
this was considered a match for the gene associated with
the gene. A link was made between a pair of genes if they
occurred in the same record, and the strength of the link
was found by counting the number of records in which the
pair co-occurred.

There is, however, a key difference between our extraction
process and the one by Jenssen et. al [5]. Along with cre-
ating the co-occurrence-based links, the set of MEDLINE
records (hereafter termed documents) associated with each
pair of genes were stored for further analysis.

We model the documents in our collection using the docu-
ment vector model [2]. This model considers a document as
a set of representative keywords, index terms. Index terms
are document words (mainly nouns) used to summarize the
semantic contents of the text. In order to reduce the influ-
ence of very common words, the terms are weighted with
the TF-IDF (Term Frequency-Inverse Document Freqency)
strategy. If M denotes the number of distinct index terms
in our collection of N documents, each document i will be
represented by a vector on the following format:

~di = (wi,1, wi,2, ..., wi,M )

Each weight wi,j is given by TF × IDF :

wi,j = tfi,j × log
N

nj

where tfi,j is the normalized frequency of term j in docu-
ment i. The IDF factor is calculated as log N

n j
, where nj

denotes the number of documents where term j is occurring.

Similarity between two documents are found by seeing how
well their two respective vectors correlate, quantified by the
cosine of the angle between them:

cos(~di, ~dj) =
~di • ~dj

|~di| × |~dj |
(1)

The cosine coefficient will range from 0 to 1, where 1 denotes

complete similiarity (~di = ~dj), and 0 implies orthogonal vec-
tors.

3.3 Unfolding the co-occurrence graph with
documentclustering

Along each edge in the co-occurrence graph, we use a clus-
tering software toolkit named CLUTO2 to cluster the docu-
ments into k clusters. At the moment, we use k=2 on every

1http://www.gene.ucl.ac.uk/nomenclature/
2http://www.cs.umn.edu/k̃arypis/cluto/

edge, but we are investigating more advanced ways of de-
ciding k (see Section 5). The clustering technique employed
is bisecting K-means. With the bisecting k-means approach,
a document collection is first clustered in two groups, then
one of these groups is seleced and bisected further. The
similiarity function used for the clustering is the cosine co-
efficient, given in Equation 1. A detailed explanation of the
bisecting K-means clustering technique can be found else-
where, e.g. [15]. The most descriptive features of a cluster
is found by selecting the l words the contribute the most to
the average similarity between the documents in the clus-
ter. Currently, l=100 is used as the number of descriptive
features.

Although we now cluster each edge into k=2 clusters, an
extra step is taken to certify that the edge clusters have
a certain degree of dissimilarity. If the majority of each
cluster’s descriptive features are identical, the edge is not
clustered into two clusters. This case reflects the fact that
all the literature discussing the pair of genes are basically
referring to the same context. In order to retrieve such an
edge’s descriptive features, we treat all its documents as
belonging to a single cluster.

3.4 Coloring the unfolded graph
The result of the first clustering stage is a graph with multi-
ple edges between nodes, and where each edge is associated
with ten descriptive features. To assign each edge a globally
defined color, we cluster the total set of descriptive features
in the graph into m clusters (colors). The variable m will
reflect how many functional contexts we expect to see on a
global basis in the graph, and is a factor we are currently
experimenting with (see Section 5 for further discussion).
As in the first stage, we employ bisecting K-means as the
clustering technique. Furthermore, each of the m colors are
given descriptive features following the same procedure as
in Section 3.3. A color’s ten most descriptive features pro-
vides a brief summary of a global functional context. Since
each edge in the unfolded co-occurrence graph now belongs
to particular color and its associated features, the graph has
been colored.

Given a clique of nodes in the colored unfolded co-occurrence
graph, we developed a simple measure of “color purity”;
the maximum number of edges in the clique connected by
the same color. Since the coloring process can give a gene-
pair two global contexts of the same color, two same-colored
edges between a gene-pair in a clique were merged into one
edge. In that manner, all the k(k-1)/2 gene-pairs in a clique
of size k were connected either by two edges of different
colors or by one edge alone. A formal expression of the
purity measure can then be given:

maxColorFracc =
argmaxcolorEDGESc · 2

k(k − 1)

where EDGESc represents the total set of edges in the un-
folded colored clique c of size k.

3.5 GO-similarity
We use the Gene Ontology (GO)3 as means of validating
our method. Being the most comprehensive ontology used

3http://www.geneontology.org



to describe the functional roles of genes, it is valuable tool
for assessing whether two genes are biologically related. The
terms comprising GO is organized into a directed acyclic
graph (DAG), which has the property of multiple inheri-
tance. Hence, every GO term follows the true path rule: if
a child term describes a gene product, then all its parents
also apply to that gene product. Using EBI’s4 existing GO-
annotation of the human genome, we managed to associate
10030 HUGO gene symbols with GO terms. In an effort to
expand the number of GO terms pr. gene, we took advan-
tage of the the true path rule inherent in the ontology graph
structure to generate greater sets of GO terms pr. gene.

One way of measuring gene functional similiarity would be
to find which GO terms are common between the genes in
question. While this approach is simple and intuitive, clearly
it doesn’t give us any quantiative measure of similarity. Al-
ternatively, one can consider each gene as a “document”,
where the document consists of textual descriptions of GO
terms associated with it. Furthermore, we can model each
document in the vector-space of GO terms, and as shown
earlier, this view gives us an opportunity to compute quan-
titative similarities. Now, the index terms consists of all GO
terms associated with gene symbols. If there are a total of
N GO terms used in annotation of our genes, we can repre-
sent a gene with the following GO vector, where wi,j is the
weight of GO term j for gene i :

~gi = (wi,1, wi,2, ..., wi,N )

The weighting strategy becomes slightly different than in
the ordinary text document context. Since no GO term is
associated with a gene more than once, the TF (term fre-
quency) factor is omitted. Thus, each wi,j will only contain
the IDF-part, reflecting how relevant or specific GO term j
is to gene i. Finally, each gene’s weighted GO vector ~gi is
normalized to a vector of length 1. Using the cosine coeffi-
cient used previously for abstracts, we can define our notion
of GO similiarity.

Definition 1. Given two genes i and j, represented by
their weighted normalized GO vectors ~gi and ~gj , their GO-
similarity score is given by:

GOsim(~gi, ~gj) = ~gi • ~gj

Definition 2. Given a set of n genes, represented by their
weighted normalized GO vectors (~g1 ... ~gn), the average
pairwise GO-similarity in the set is given by the standard
sum-of-pairs score:

avgGOsim(~g1.. ~gn) =
2

n(n − 1)

n∑

i=1

n∑

i>j

GOsim(~gi, ~gj) (2)

We believe this definition of GO-similiarity is valid for our
limited purposes. Lord et. al [7] used a similar line of at-
tack when they explored semantic similiarities across GO us-
ing Resnik’s [9] notion of shared information content. Their
method was validated by showing that semantic GO simil-
iarity correlated well with sequence similarity in the SWISS-
PROT database.
4ftp://ftp.ebi.ac.uk/pub/databases/GO/goa

4. RESULTS
Our initial co-occurrence graph contained 5799 human genes
connected by 73729 edges, each associated with two or more
documents. In order to make sure that gene-pairs were rep-
resented appropriately in the literature, we pruned the graph
to only include edges with between 10 and 100 documents.
Furthermore, we kept only genes that were annotated with
GO terms, reducing the graph even more. Finally, after
removing genes that were considered to be false positives
because of bad aliases, our testgraph contained 1516 genes,
connected by 4849 edges.

Figure 1 shows a part of the unfolded co-occurrence graph,
each edge being denoted with its descriptive features. Note
that one connection in this part of the graph contains only
one cluster, this corresponds to the case where the docu-
ments are considerered to contain only one functional con-
text. However, this illustrates a rare case among gene-pairs
in the graph, since almost every pair were given two local
contexts during the first clustering process.

After coloring the clusters of edges with the method outlined
in Section 3.4 (using m=100 colors), the clique shown in
Figure 1 turned into the clique shown in Figure 2. As can
be seen from Figure 2, some of the color descriptions are
fairly similar, and this observation may imply that a color-
scheme with lower number of colors should have been used
(see Section 5 for further discussion).

To validate our method on a large scale, we looked at all the
cliques in the colored unfolded co-occurrence graph. Cliques
are fully connected components of the graph, and based
on the co-occurrence assumption, a clique can potentially
contain a set of functionally related genes. By measuring
the color distribution among edges in cliques of size 4 and
greater, we investigated whether this distribution were re-
lated to functional similarity among the genes in the clique.
More specifically, the color purity measure developed in Sec-
tion 3.4 were used to give rankings among sets of genes. This
were accomplished by sorting all the cliques in the graph
based on decreasing order of maxColorFrac, and plotting the
running average GO-similarity of cliques in this ordering.

To evaluate the quality of our approach, we compared our
color-based ranking with three schemes that only employ
local contexts to evaluate a group of genes’ relatedness. The
first scheme computes average pairwise document similarity
between documents supporting each gene-pair in a clique of
genes:

SIMA =
2

n(n − 1)

n∑

i=1

n∑

i>j

Di ∩ Dj

Di ∪ Dj

,

where Di is the set of documents supporting edge i, and n
represents the number of edges in the clique. The second one
measures average pairwise textual similarity between docu-
ments supporting each gene-pair in a clique of genes:

SIMB =
2

n(n − 1)

n∑

i=1

n∑

i>j

cos( ~mdi, ~mdj),

where n denotes the number of edges in the clique, and mdi

represents edge i ’s metadocument, a combined document of
the documents supporting edge i. The last scheme computes
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Figure 1: A clique of size=4 in the unfolded co-occurrence graph showing genes NPY, GHRH, ADCYAP1
and CRH. Each edge’s documents have been clustered into k=2 or k=1 clusters. Also shown is the most
descriptive features (stemmed) of each cluster in the clique.
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Figure 2: The same clique as in Figure 1, now each cluster has been replaced with a colorlabel, the global
functional context. The descriptive features (stemmed) of each color is also given.
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Cliquesize Multicolor fraction
4 56.5%
5 66.7%
6 79.9%
7 85.5%

Table 1: Average fraction of multicolored edges in
cliques.

the average textual similarity of the union of documents sup-
porting each gene-pair in a clique of genes:

SIMC =
2

k(k − 1)

k∑

i=1

k∑

i>j

cos(~di, ~dj),

where k is the number of unique documents in the clique,
and di represents document i in this unique set.

As can be seen from Figure 3, on 5% of the cliques ranked
best by the different methods, our scheme discovers more
functionally related sets of genes than the other methods.
However, on the remaining cliques, the performance of our
scheme does not persist in the same manner, and the reason
for this is currently being investigated.

To give an indication of how multicolored our cliques are,
Table 1 shows the average fraction of multicolored edges in
cliques of different sizes. Considering the fact that nearly
every gene-pair in our unfolded co-occurrence graph were
assigned two edges (local contexts), the global coloring has
made sure that similar local contexts are given same global
contexts; representing the samecolored fraction of edges. So,
even though the majority of genes in cliques are connected
with different global contexts, our approach can still find the
cliques with the most functionally related genes.

5. DISCUSSIONAND FURTHER WORK
There are several limitations to our approach, and it is cur-
rently being explored in different ways. Document cluster-
ing represents a high-level method for the problem of finding
functional contexts between genes, as it does not involve any
form for advanced NLP processing. Thus, results should give
perspective rather than detailed knowledge. The descriptive
features associated with the global contexts exemplifies this
in not being very detailed.

The number of local contexts that are likely to exist between
a pair of genes will be dependent upon how much research
and published literature there is about the pair, and this
varies widely for different pairs. Providing each edge with
an estimate of k, the number of local contexts likely to exist
between the connecting genes, will give the clustering pro-
cess a higher degree of validity. Intuitively, the number of
MEDLINE records between a pair will give some indication
for k. Using the MeSH5 terms associated with each MED-
LINE article may also be of importance. Sehgal et. al [11]
recently deveveloped MeSH profiles of topics in MEDLINE

5Every MEDLINE record is associated with
Medical Subject Headings (MeSH) terms. See
http://www.nlm.nih.gov/mesh/meshhome.html for more
information

collections. Developing a MeSH profile for a genepair can
act as a heuristic leading to the right size of k.

We will also work on methods for determining the appropri-
ate number of global functional contexts (colors) for a given
set of gene pairs. At the moment, we experiment with differ-
ent colorschemes, and evaluate a scheme’s goodness based on
empirical observations of the specificity of the different col-
ors’ descriptive features. A more theoretical procedure for
this assessment would be beneficial for the method’s appli-
cability. Factors such as graph size and functional diversity
among the genes in the graph will play a significant role in
determining the right size of m.

Our results have shown that groups of highly “GO-similar”
genes are connected with similar global functional contexts.
However, GO-similarity may not give the whole true pic-
ture of a set of genes’ relatedness with respect to MED-
LINE records. Since the literature about gene relations are
discussed in a variety of contexts, the functional contexts
assigned to a pair of genes will represent a broad notion of
biomedical knowledge. GO terms, on the other hand, are
specific and merely related to genes’ biological processes,
molecular function and cellular component. Hence, some
cliques may appear with high maxColorFrac (implying context-
related genes) even though their GO-similarity is low.

The mechanism for selecting potential sets of related genes
in the graph will influence the functional discoveries among
the genes. Although the results by using cliques are promis-
ing, tracking same-colored connected compontents might
give other interesting findings. Moreover, our current mea-
sure for the functional relatedness of genes in a clique, max-
ColorFrac, maybe too simple for capturing the properties
between the set of genes. A closer investigation of the color
distribution in the clique might reveal other functional rela-
tions.

As noted earlier, the co-occurrence process has not been our
area of focus; thus, our initial graph did possibly include
more false positives than desirable. Badly designed gene
symbols, coinciding with other abbreviations in the litera-
ture, is a matter of great frustration among text miners in
biology. Recently, an approach to address and resolve such
symbol ambiguities was proposed by Adar [1].
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