Technical Report

Department of Computer Science
and Engineering
University of Minnesota
4-192 EECS Building
200 Union Street SE
Minneapolis, MN 55455-0159 USA

TR 99-018

A Hierarchical Approach to Context-Sensitive Interprocedural Alias
Analysis

Bixia Zheng and Pen-chung Yew

April 21, 1999



Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display acurrently valid OMB control number.

1. REPORT DATE 3. DATES COVERED

21 APR 1999 2. REPORT TYPE _

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

AH |er§1rch|cal Approach to Context-Sensitive I nterprocedural Alias £b. GRANT NUMBER

Analysis
5¢c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER
5e. TASK NUMBER
5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Army Intelligence Center & Fort Huachuca,Fort Huachuca,AZ,85613 REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR'’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

seereport

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18 NUMBER | 19a NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 19
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18






A Hierarchical Approach to Context-Sensitive Interprocedural Alias
Analysis

Bixia Zheng Pen-Chung Yew
Dept. of Comp. Sci. and Eng., Univ. of Minnesota, Minneapolis, MN55455

Abstract

In this paper, we present a hierarchical flow-sensitive alias analysistalgonihich parameterizes the
context-sensitive level. Our approach groups the pointers in agmoly their maximum possible derefer-
ence levels. It then orders the analysis of each pointer group by itseptenel, starting from the highest
level down to the lowest level. During the analysis of each pointergyratottom-up traversal of a program
call graph is followed by a top-down traversal with the necessary irdeeplural information propagated
along the way. The interprocedural information is tagged with call-chaihih are the program call graph
paths, to achieve context-sensitivity.

We also provide empirical results to quantify how different contexisgtive levels affect the precision
and the efficiency of the algorithm. Our studies show that (1) the poecisiprovement achieved by in-
creasing the context-sensitive level of the analysis varies significd@ptlending on the programs analyzed;
(2) increasing the maximum call-chain length for a higher degree of cosgesitivity may trigger the ex-
ponential complexity problem [15, 10, 23]. Thus, it is very desediol an algorithm to allow users to
select an appropriate context-sensitive level that works best for @ylartprogram. By parameterizing the
maximum call-chain length used in tagging the interprocedural informatiar approach provides this type
of flexibility.

Keywords: interprocedural program analysis, alias analyss.

1 Introduction

In languages with general pointer usage, a pointer derefenmay potentially access any memory location, thus
making it difficult to determine what is defined and used. Rwimlias analysis is a compile-time technique
that identifies the potential memory locations each poideneference may access. The accuracy of such
information directly affects many other analyses and op@étions.

Most of the recent published research works on alias asahgsie focused on interprocedural techniques
[16, 17, 4,7, 6, 24, 25, 13, 23, 14], because we may obtain ingoyecise results when limiting the analysis
within each subroutine. These analysis techniques carabsified into two broad categoriesntext-sensitive
and context-insensitive A context-sensitive approach distinguishes a subrostieffect in different calling
contexts while a context-insensitive approach produceagiesapproximation for all of its calling contexts.
The context-sensitive approach, in general, can produce precise alias information.

To facilitate context-sensitive analysis requires a meigm to handle a subroutine differently in each of
its calling contexts. Emami et al. [7] re-analyzed a subneufor each of its calling contexts. Wilson and
Lam’s partial transfer functionapproach [24, 23] groups the calling contexts by their irglists patterns and
performs one analysis for each pattern. Another approaghdataflow values witkequence tokerandalias



assertios [21]. It computes a single transfer function for each sutine by analyzing the subroutine only
once. However, all of the above context-sensitive appreabtlave an exponential time complexity because the
invocation graph grows exponentially with the size of a pang [23] unless some effort is made to limit the
number of contexts in which a subroutine is analyzed.

In this paper, we propose a hierarchical alias analysigi#thgo which parameterizes the context-sensitive
level. We also provide empirical results to quantify howfetiént context-sensitive levels affect the precision
and the efficiency of the analysis. Our algorithm can avo&@ekponential complexity problem, especially for
large programs, by limiting the context-sensitivity to aikevel.

We first divide each alias analysis problem imtgub-problems where is the maximunpointer levelof
all pointers used in a program. Thavel of a pointer is the maximum level of possible indirect acesfsom
the pointer, e.g. the pointer level p in the definition nt ** p2”! is two. We then calculate the values of
the pointers for each pointer level, starting from poinesel n down to pointer level one. To achieve context-
sensitivity, we tag the dataflow values withll-chairs which are call graph paths describing how the values are
propagated into subroutines. By parameterizing the maxiroall-chain lengthrhaxcall_chain length, we
can control the context-sensitive level of the algorithnur @proach has the following features:

e |t enables the use of a syntax-directed flow-sensitive aigatgchnique which is generally more efficient
than its iterative counterpart [1].

e |t facilitates a combined analysis technique [25, 20, 26icWtapplies different algorithms to analyze
different data structure groups in order to improve the igiec and the efficiency of the algorithm.

e It can provide a spectrum of context-sensitive algorithraaging from a context-insensitive algorithm
to a full context-sensitive algorithm, by simply specifgimaxcall_chainlengthwith different values.

e The algorithm can be extended to analyze non-pointer agakhich have a pointer level equal to zero.

In the rest of this paper, we present the hierarchical flomsitige alias analysis algorithm and provide
empirical results to quantify how different context-sé¢insi levels affect the precision and efficiency of alias
analysis. Section 2 presents the main idea of our hieraachioproach. Section 3 discusses some major
concepts regarding memory objects and dataflow value repi@®ons. We illustrate the algorithm in Section
5 and present our experimental results in Section 6. Othaterbworks are discussed in Section 7. Finally,
Section 8 draws conclusions.

2 The Hierarchical Alias Analysis

As mentioned in the previous section, {heinter levelof a variable is the maximum level of possible indirect
accesses from the variable. For simplicity, we refer to datée with a pointer leveh as an n-level variable.
We also refer to a program whose pointer variables have amamipointer level of: as an n-level program.

To provide some insight into our hierarchical approach, vet onsider an example program in Figure 1. In
the example, it is difficult to determine the dataflow valueseyated or killed by the indirect assignments using
pointer dereferencesp?2, xpl andxql. The side-effect of the indirect assignmenp2 = &c” is determined
by the value op2 when the subroutine is called. On the other hand, the defiisitjenerated by the statements
“¥pl = 1" and “xgl = 1" are unknown until we determine the side-effect of the subne call. Hence, two
main issues need to be addressed:

IWe use the C language to give examples in this paper.



e A subroutine’s side-effect may depend on the values of sarrggrs when the subroutine is called.

e The program segment following a subroutine call may not ladyaed until the side-effect of the subrou-
tine is known.

The first constraint above makes it impossible to use a si@tem-up pass over the call graph to calculate
all pointer values while the second one prevents a singlelteyn pass. Thus, supplementing the interprocedu-
ral analysis with the intraprocedural analysis is necgs$agure 2(a) graphically illustrates this bi-directibna
dependency in a context-sensitive interprocedural aliadyais.

inta, b, ¢, *p1, *q1, **p2;

main() {
sl p2 = &pl;
s2 sub();
s3 *pl=1;
s4 *ql =1,
s5 }

void sub() {
s6 pl = &a;
s7 ql = &b;
s8 *p2 = &c;
s9 }

Figure 1: An example program.

However, this dependency cycle can be eliminated if we gtbepvariables by their pointer levels and
represent each group with a node in the procedutes: andsub. As shown in Figure 2(b), the value for the
2-level variablep?2 is propagated fromnain to sub and determines the value of the expressip. It also
determinessub’s side-effect on the 1-level variabled andql. The new values of1 andql propagate from
sub back tomain and determinenain’s side effect on O-level variables b andc.

main: :

p2,*pl,* q1, © main j : :

a b, c \
(@) ()

Figure 2: The dependency betweenin andsub in Figure 1. The arrow pointing from a node A to another
node B indicates that the values of the expressions in Ami@terthe values of the expressions in B.

This suggests a two-step alias analysis algorithm to thenpbaprogram: first, collect the values for the
variable p2 and show that the statemesft can be treated ap! = &c”; then, collect the values for the
variablespl andql so that later analyses can treapt = 1" as “c = 17, and “xq1 = 1" as “b = 1". Our
hierarchical alias analysis uses a similar approach. Wedivie the alias analysis problem for an n-level
program intor, subproblems. Th&h subproblem analyzes only the assignments to the i-lev@blas in the
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program and determines the memory locations accessed &fgdarcing these i-level variables. We then solve
all subproblems by starting from theh subproblem down to the first subproblem so that by the timeeegin
to solve the subproblem of a certain pointer level, the hi¢fweel pointer values have already been obtained.

3 Major Concepts

This section describes the major concepts used in our biécat alias analysis. We first introduce our memory
object representation. Then we present our definitionsoofter levelandpredicate Finally, we describe our
dataflow value representation.

3.1 Memory Object

We useMemory Objects (MemObjp model run-time memory locations that store informatidrhere are
two kinds of MemObjs:static anddynamic A static MemObj represents the memory location created for
compile-time variable while a dynamic MemObj representshed memory objects generated by a memory
allocation statement (such asraulloc statement) at run-time. If a memory allocation statementates a
structure, we create several dynamic MemObjs, one for ealthdf the structure.

We create one MemObj for a scalar variable, and one MemOkjtesent all the elements in an array. We
treat a structure or a union variable as an aggregate of Mgn@dch of which corresponds to a field in the
structure or the union. The difference between a structar@ale and a union variable is that the MemObjs in
a union variable are overlapped while those in a structurieie are not. This MemODbj representation allows
us to distinguish between different fields in a structure onian and identify the dynamic memory objects by
their allocation statements. However, we do not distingdifferent elements in an array.

We use MemObjs instead of variables in our dataflow valueesgmtation for two main reasons: (1) a
dynamically allocated memory object does not correspomahyovariable; and (2) a structure or a union variable
may correspond to several memory objects.

3.2 Pointer Level

Each MemObj has gypeattribute. The type for a static MemODj is the type of the esponding variable, and
the type for a dynamic MemObj is derived from the type usetiéntype-cast operator of the memory allocation
statement. For instance, we create an array MemObj of type Mmiémory object allocated by statement “(T *)
malloc(size)".

The pointer levelof a type corresponds to the maximum level of possible dexrées from a MemObj of
that type. The pointer level of the varialgein the definition ‘struct S{int « « f;} *ps ", for example, is three
becauses can have up to three levels of dereferenees((xps).f)). The pointer level of a non-recursive type
is calculated as follows:

e Thepointer levelof a scalar type is 0.
e Thepointer levelof a type “T *"is 1 4+ = wherexz is thepointer levelof the type “T".
e Thepointer levelof a structure or a union equals to the maximpomter levelof its field types.

In the absence of recursive data structures, a dereferesroeah n-level MemObj may access one or more
MemObjs with a pointer level less than Our hierarchical approach is based on this observation.wille
discuss how our algorithm conservatively handles recardata structures in Section 4.5.
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3.3 Predicate

A predicateis attached to a dataflow value to represent the conditionhieiwthe value is valid. A predicate
can be eithenwull or the disjunction of a group afall-chairs: CH; v CHy v ... V CH,,. When the predicate
is null, the corresponding dataflow value is not interprocedunalgited. Otherwise, the group of call-chains
describe all the calling conditions under which the dataflaue is passed into the current subroutine.

A call-chainis an order list of(s, c)pairs, represented &s;,c;)— > (s2,c2)...— > (spn, cn). Each(s, c)
pair is associated to a subroutine call site, whagegthe strongly connected component (SCC) in a program call
graph that contains the callee, ant an ID distinguishing among different calls to the same SQsually, ¢
is a non-negative integer; different call sites to the sa@€ Bave different values ef However, to avoid an
unlimited call-chain length, we setto —1 for any call site to a recursive SCC.

A call-chain represents how a dataflow value is passed intbrastine. For instance, a call-chgin ,c;)— >(s2,c¢2)
is attached to a pointer value which is first passed into aostime in SCCs; via a call site with D¢y, then
passed into a subroutine in SGEvia a call site with IDcs.

3.4 Representing Dataflow Values

A definitionto a MemObj is a statement that assigns or may assign a valine tdlemODbj. A definition is
represented aBe finition(s,i,m,v,dp), wheres is the statement that generates the definitids,a unique
ID for the definition,m is the MemObj being defined, are thevalues of the object, andp is the predicate
that describes the calling conditions in which the definiti® valid. The definition ID is necessary because a
statement may generate more than one definition in the pres#rpointer dereferences. The predicétes
also referred to as defined-predicate

We useReach(i, s, rp) to represent a definition with an IDwhich reaches a statementinder the call-
ing conditions described by a predicate The predicatep is also referred to as meach-predicate If we
have Reach(i, s, rp), and the definition with an 1D is defined adefinition(s',i,m, v, dp), then we have a
dataflow valueDbjectV alue(m, v, rp A dp) at the statement. This dataflow value means at the statement
a MemObjm has the values represented:bynder the calling conditions described kyA dp.

A transfer function TF(sub, njescribes all tha-level MemOly referenced or modified in the subroutine
sub. In the transfer functio F(sub, n)aMemObjreferenced iBub is represented by a pdim, p), wherem is
the MemObj referenced andis a predicate describing the calling conditions in whiah dbject is referenced.
Similarly, a MemObj modified isub is represented &sn, (v1,p), (v2,p),...). A (v;, p) pair represents both a
possible output value of the MemO#j and the calling conditions in which the value is valid.

4 The Hierarchical Algorithm

In this section, we describe our hierarchical algorithnvahan Figure 3.

4.1 Pre-analysis

In the pre-analysis phase, we traverse the program oncdl¢atate necessary information for later analysis.
The collected information includes the maximum pointeeldar each subroutine, the maximum pointer level
for the whole program, and an indication of whether the moghas any recursive data structure or not. This
information is used to divide the original problem into stdiggems. We also gather the subroutines and the
variables whose addresses are assigned to pointers. Tiesseld variables are used to handle unknown points-
to values as described in Section 4.5 while the addressedugites are used to determine the potential callees
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pre-analysis();
/lanalysis;
handle recursive data structures;
for i = maximum-pointer-level downto 1
/lbottom-up:
for each SCC scc in a reversed topological order
if (scc is not a call graph cycle)
assume sub is the only subroutine in scc;
compute the reaching definitions for i-level MemObjs;
summarize the subroutine’s effect on i-level MemObjs in TF(sub,i).
else //scc is a call graph cycle
for each subroutine sub in scc
initialize TF(sub, i) = {};
change = true;
while (change)
change = false;
for each subroutine sub in scc
compute the reaching definitions for i-level MemObjs;
summarize the subroutine’s effect on i-level MemObjs in TF(sub, i);
if the new TF(sub, i) is different from the old one, set change = true.
/ltop-down:
for each SCC scc in topological order
if (scc is a call graph cycle) //propagate values for calls within the same SCC
change = true;
while (change)
change = false;
for each subroutine in scc
for each call statement to a callee-subroutine sub which is also in scc

for each MemObj referenced in TF(sub, i)
propagate the value of the MemObj from the current procedure(caller) to sub(callee);
if the new values of MemObj are different from the old ones

change = true;
for each subroutine in scc
traverse each statement in the subroutine

if encounter a call to subroutine sub and sub is not in scc

for each MemObj referenced in TF(sub, i)
propagate the values of the MemObj from the current procedure(caller) to sub(callee);

if encounter a dereference from a i-level MemObj
annotate the dereference with the (i-1)-level MemObjs
that the i-level MemObj may points-to.

Figure 3: An overview of the hierarchical algorithm.

of the indirect calls via function pointers. During the @mealysis phase, we also construct a program call graph,
compute its SCCs, and assigfisac) pair to each subroutine call (Section 3.3).

4.2 Bottom-up analysis

To calculate the reaching definitions for all i-level Mem®jnd the transfer functio’ F'(sub, ) for each
subroutinesub, a bottom-up analysis for pointer leveltraverses the SCCs of the program call graph in a
reversed topological order (see Figure 3).

4.2.1 Handling Assignments

An assignment assigns a value to a MemObj. There are two kihdssignments: direct and indirect. An
assignment with a variable on its left-hand-side(LHS) irad assignment. It generates a definition witl]

as its defined-predicate, which means the definition is géegregardless of how the subroutine is entered.
On the other hand, an assignment with a pointer dereferemite bHS is an indirect assignment. An indirect
assignment generates one or more definitions dependingearuthber of points-to values of the pointer. The
defined-predicate for a definition generated by this indiassignment determines the conditions in which the
pointer points to the MemObj being defined.



Generating a new definition affects the current reachingnitiefins in two ways. First, a definition generated
by an assignment reaches its immediate next statement wétich-predicateull. Thisnull reach-predicate
means that under the condition that the definition is geedydhe definition definitely reaches its immediate
next statement. Second, generating a new definitionkitlagther reaching definitions by changing their reach-
predicates. In general, if we ha¥#e finition(s', j, m,v,dp) andReach(i, s', rp) at a statement where both
definition: and definition; define the same MemObj, then we haWeach(i, s’ + 1,7p A (—dp)) at the next
statements’ + 1. If the value ofrp A (—dp) is false, definitioni is completely killed. Otherwise, it is
conditionally killed. A flow-sensitive algorithm considedboth of the above two effects while a flow-insensitive
algorithm does not consider thdling effect. Therefore, by turning on or off the abokiing effect, our
algorithm can be either flow-sensitive or flow-insensitive.

4.2.2 Backward Propagating Dataflow Values

In order to update the current reaching definitions durirgtibttom-up analysis, we also consider the modifi-
cation side effect of the callee subroutine. Because weitsavthe call graph in its reversed call order, when
we encounter a call to subroutireb, its transfer functiordF'(sub, i) has already been computed and can be
applied to determine the call statement’s effect on theettirdataflow value.

Assumesubmodifies a MemObimwith a valuev and a predicatp, represented b@bjectV alue(m, v, p).
The operatoRReturnable compares the predicapawith the (s, ¢) pair associated with the call site to determine
whether the dataflow value can be propagated back to theialbrsnot. If ObjectValue(m,v,p) can be
propagated back to a call site with, ¢), the (s, c¢) pair should be detached from all the call-chains in the
predicatep. The operatoDetach(p, (s, c)) calculates the new predicate for the dataflow value.

WhenObjectV alue(m, v, p) is propagated back to the call site with ¢), a definitionDe finition (s',i,m, v,
Detach(p, (s, c))) is generated, wher€ is the call statement, arids a new definition ID. The new definition
will reach the immediate next statement. This is represeyehaveReach(i, s’ + 1, null).

4.2.3 Syntax-Directed Method

A syntax-directed flow-sensitive analysis algorithm usagafiow equations for regular control structures,
thus avoiding the need to iteratively analyze control stmes with backward jumps to calculate a fix-point
solution[1]. To apply this syntax-directed method, twdemia must be met: (1) the definitions generated by
any statementgen-set and the definitions killed by any statemeiilli¢set) are independent of the current
dataflow values; (2) the program being analyzed cannot hagateol structure other than sequential, branch(if
or switch), and loop.

Normally, a syntax-directed method cannot be directly igotio programs with indirect assignments using
pointer dereferences because both gea-setand thekill-set for any indirect assignment are not constants
but rather depend on the current reaching definitions. Mpeeifically, thegen-setand thekill-set of the i-
level MemObjs depend on the reaching definitions of the (let¢l MemObjs. However, in our hierarchical
approach, by the time we analyze the i-level MemObjs, thehieg definitions of the (i+1)-level MemObjs
have already been obtained, and gen-setand thekill-set of the i-level MemObjs are independent of the
reaching definitions of the i-level MemObjs. This is one of fleasons that we can use a syntax-directed
method.

To meet the second criterion, we normalize irregular co+iitoay where-ever possible and marks the pro-
gram segments containing irregular control structuresciisannot be normalized. We use a syntax-direct
method to calculate flow-sensitive dataflow values for ragabntrol structures. On the other hand, we calcu-
late flow-insensitive dataflow values for program segmeritls iregular control structures by turning off the
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killing effect of any assignments within the segments (Sectiod}.Zhus, we avoid the need to iteratively
analyze each subroutine to calculate a fix-point solution.

4.3 Top-down analysis

The top-down analysis for a pointer levehs shown in Figure 3, traverses the SCCs in their topolbgicker.
It propagates the values of the i-level MemObjs from theecalto the callees and annotates any dereference
from an i-level MemObj with the (i-1)-level MemObjs it may temtially access.

4.3.1 Forward Propagating Dataflow Values

We check a subroutineub’s transfer functiorl’ F'(sub, i) when we encounter a call to it during the top-down
analysis. If a MemObj is referenced in the subroutine, weagate the values of the MemObj from the caller
to the callee.

When a dataflow valu®bjectV alue(m, v, p) is propagated to a subroutine via a call site withe), the
(s, c) pair is appended to the end of the call-chains in the preglicalhis is to denote that the information is
passed one step further along the call graph. The opetaternd(p, (s, c)) calculates the new predicate for a
dataflow value propagated to a subroutine.

If ObjectValue(m,v,p) is propagated into a subroutine via a call site witlisac) pair, we generate
Definition (se, i, m, v, Append(p, (s,c))) andReach(s., i, null), assumings, is the entry of the subroutine.
Because we traverse the procedures according to theirrcalt, oy the time we start to analyze a subroutine,
the input values of all its referenced i-level MemObjs arailable.

4.3.2 Evaluating Pointer Dereferences

The top-down analysis also annotates the memory objectshvdain be potentially accessed by a dereference
from an i-level MemObj. The input values along with the raaghdefinitions of the i-level MemObjs can deter-
mine an i-level MemObj's value at a certain statement. If sgime that we hav@bjectV alue(m, Address(z), p)
at a statement, then a dereference expression at s can be annotated witRe f erence(x, p). This indicates
that the dereference expressien will access the MemObj under the predicate.

4.4 Parameterizing the Context-Sensitive Approach

We set a parameter calleduz _call_chain_length to limit the length of the call-chains in the predicates tagg
the dataflow values. Without any limitation, a call-chaimipredicate can be as long as the depth of the program
call graph. With the limit set by this parameter, the prediassed to tag the pointer values can only contain
the most recentnax_call _chain_length call sites in the call-chain. This may cause a merge of thafldst
information propagated beyond the most reeent:_call_chain_length call sites. Thus, controlling the value
of maz_call_chain_length can control the context-sensitivity of the algorithm.

The parametetnaz _call_chain_length is also directly related to the complexity of the algorithixet [
denote thenax_call_chain_length used in tagging the dataflow value, andenote the maximum number
of call sites for a subroutine. There can be up-teall-chains in a predicate used in tagging the dataflow
values for the subroutine. The conjunction operatoy i6 the most complicated operator among the three
predicate operators (negativedisjunctionv and conjunctiom) used in dataflow value calculation and has the
complexity ofO(c?'), or the square of the number of call-chains. Without anyipete on the dataflow values,
the operations tgenerate or kill a definition have the complexity 6¥(1). In the presence of predicates, these



two operations need to handle predicate calculation anel th@vcomplexity of) (¢?'). The overall complexity
of our algorithm is, therefore) (ntc?'), wheren is the maximum pointer level of the program arid the time
to compute the reaching definition for a program with singkel pointer. Pande et al. [18] showed thas
polynomial. Thus, the exponential complexity of the algoni lies in the value ofnaz _call_chain_length.

There is a trade-off between the complexity and the pratisfahe algorithm. An algorithm with a larger
value of maz_call_chain_length may provide more precise information at the cost of moreyaimltime.
Thus, the parametenaz _call_chain_length in our approach allows users to select a prudent contexsitaen
level that works best for a particular program.

4.5 Handling Complicated Language Features

For simplicity, our discussion above ignores some probtentanguage features. We now consider some of
those features and modify our algorithm accordingly in otdéhandle real-world programs.

Recursive data structures pose some difficulties to ouatdkical approach because dereferencing a pointer
of arecursive data structure may not “lower” its pointeeleMo overcome this difficulty, we analyze all recur-
sive data structures before the analysis of other MemObghasn in Figure 3. Theoretically, we can incor-
porate any existing recursive data structure analysigighgo into our approach since recursive data structures
are usually handled separately. However, in our currentdmentation, we first annotate any indirect write to
recursive data structures using pointer dereference,asifd>next = a-valué wherep is defined ass$truct S
{ struct S *next;} *p”, with all the addressed MemObjs which have the same typleeaddreference expression
(p->nex). Then, we use the bottom-up and top-down analysis algosittiescribed in Figure 3 to analyze the
recursive data structures.

Type-casting may also be a problem because we order thesemafyMemObjs via their defined types. We
identify three categories of type-casting and their coesling handling strategies:

e Type-casting a pointer value to a lower-level pointer iedgaour assumption that dereferencing an n-
level MemObj may access one or more (n-1)-level MemObijs. Hssve in Figure 4(a), dereferencing a
1-level MemObijp1 accesses a 2-level MemOpi2. The analysis for pointer level two may result in a
wrong value forp2 because it ignores the fact that the statem@nodifiesp2. To avoid this error, the
pre-analysis phase sets tlype-cast-to-lower-pointer-levélag of p2 when it encounters the type-casting
expression in the statemesit. Later analyses conservatively assume that a dereferemmoeafMemODbj
with thetype-cast-to-lower-pointer-levélag set may access any addressed MemObjs.

e Type-casting a non-pointer value to a pointer, as showngdurgi4(b), is considered to be constructing
a pointer value from scratch. We assume a later derefereoethe pointer may potentially access any
addressed memory object.

e Figure 4(c) shows that if we first type-cast a pointer valuerd structure type to a pointer of another
structure type, then dereferencing the poinfs2¢>c[i] ) may access an unknown portion of a structure
(s1). In this case, we conservatively assume the dereferengaaueh all fields in the structure.

User-defined memory-allocation subroutines in a prograrkenitadifficult to determine the type of the
dynamically allocated memory objects. To overcome thisatifty, we create ondeap objectnstead of using
the dynamic memory object naming scheme described in $e8tiofor any program containing user-defined
memory allocation subroutines.

The non-local control flow caused by setjmp/longjmp can belleal as follows: treat the longjmp statement
as a return statement; then model a general program piebes@tjmp in Figure 4(d) as the program piece in
Figure 4(e). Our analysis also assumes signal handlersrimgagm do not affect global pointer values.
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int *pl, **p2; struct S1 { return_value = setjmp(buffer);
sl: p1 = (int *) (&p2); inta, b; ... other statements...
s2: *pl = ...; /imodify p2 }si; sub(); //sub has a long jmp statement
struct S2 { g
@ char c[8]; (d)
: Fps2;
nt c, _*pl; return_value = setjmp(buffer);
pl= (int*)c; ps2 = (struct S2 *) (&s1); L1:
... = ps2->cli]; ... other statements ...
sub();
if (@a-unknown-condition)
goto L1;
(b) (c) (e)

Figure 4: Handling Some Complicated Language Features
5 Experiments

We implemented the above algorithm in our Agassiz Complilét.[The implementation of both the compiler
kernel and the alias analysis algorithm requires an olggetited programming style which avoids dangling
pointers and memory leakage. Unlike other approaches wiaahot take into account such considerations,
this approach tends to increase memory usage and slow deveoorthpiler.

To explore the trade-offs between the efficiency and theigicecof alias analysis, we studied three flow-
sensitive algorithms with different levels of context-sigimity: (1) context-insensitiverfaz _call_chain_length=
0); (2) context-sensitive withnaz_call_chain_length = 1, which distinguishes the calling contexts by the
most recent call site in the call-chains; (3) context-gamsivith an unlimitedmaz_call_chain_length.

For each of the above algorithms, we measured its speed anteinory usage. We also calculated the
average number of target objectsig NumTarget) for indirect reads and indirect writes to measure the preci
sion of the algorithms. Our results were collected on a 20@Nfitel Pentium Pro machine with 256 MB main
memory and 768MB swap space running Linux 2.1.132.

5.1 Benchmark Programs

Our benchmark suite contained a total of 14 programs: fmmfSEPEC95, six from SPEC92, and four other
pointer intensive programs [2]. Table 1 describes some itapbcharacteristics of the benchmark programs.
These program characteristics are collected after theadiow normalization phase, which may duplicate

codes. As can be seen, the third column of the table listsuh#bar of lines in each program while the fourth

column reports the number of user-defined functions (iriolyanain) used in the program. The number of
direct calls to user defined functions and the number of @udlicalls via function pointers are shown in the

next two columns. The following two columns present the nemdff recursive functions, and whether the

programs contain recursive data structures or not. Thermaripointer level of the programs, which are also
the number of subproblems for the analysis of the non-raeudata structures of the programs, are shown in
the next-to-last column. The last column reports whetheptiograms contain irregular control flow or not.

5.2 Results and Discussion

Table 2 shows the speed and the memory usage for the thrae@hatyg The analysis speed in the third and
fourth columns shows the analysis time(in seconds) and uhaber of lines analyzed by the algorithms per
second. The fifth column gives the maximum memory used byra&sis, excluding the memory used by the
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Bench- Source #lines # # call #call | #rec.| rec. | max | irr.
mark udf. | toudf. | viaf.p. | func | ds.| p.l. | cont.
alvinn spec92 cfp 272 8 7 0 0| no 2 no
anagram Austin [2] 646 15 22 0 1| no 3 no
ks Austin [2] 782 13 16 0 0| yes 2 no
026.compresy spec92 cint| 1503 14 83 0 0 no 2 no
129.compress spec95 cint| 1924 18 38 0 0 no 2 no
ft Austin [2] 2157 27 a7 0 0| yes 2 no
egntott spec92 cint| 3457 59 543 11 9| yes 3 no
yacr2 Austin [2] 3979 51 156 0 5| no 2 no
ear spec92 cfp| 5239 68 140 0 1 no 3 no
sc spec92 cint| 8455 | 147 1008 2 20 | yes 3 no
espresso | spec92cint| 14838 | 314 1621 15 27 | yes 3 no
m88ksim spec95 cint| 19915 239 1158 3 3| yes 4 no
go spec95 cint| 29246 | 372 2099 0 1 no 3 no
ijpeg spec95 cint| 31249 | 271 391 446 28 | yes 5 no

Table 1: Benchmark program characteristics (u.d.f.=dséined-function; f.p.=function-pointer;
rec.=recursive; d.s.=data structure; p.l.=pointerild@wecont=irregular-control-flow;)

program intermediate representation(IR). The last colshaws the ratio of the maximum memory used by the
analysis to the memory used by IR. Presenting the memoneubk#gway allows us to distinguish the memory
used by the compiler data structures from the memory useldebgrtalysis.

As expected, Table 2 reveals that larger programs do nossaly require more analysis time. Program
go, for instance, is about twice as large as progeapresso (Table 1) but required an analysis time less than
1/11 that of programaspresso. The fact that larger programs do not always require morlysisaime can also
be seen from the wide range of numbers in the fourth columnekample, the context-insensitive algorithm
achieved 121 1309 lines per second for 11 programs but only 18 lines pemskfor progranespresso. The
difference in the numbers of lines per second suggests that factors, such as program structure complexity
and analysis precision, may affect analysis time.

Table 2 also reveals that some programs are very sensititie exponential complexity problem while the
other programs are not. For example,the context-sensitiedysis withmaz_call_chain_length= 5 for pro-
gramespresso was approximately five times slower than the context-insgasanalysis of the program. Also,
the memory used by the context-sensitive analysis wiih _call_chain_length= 5 for this program was more
than three times that used by the context-insensitive aisaby the program. Moreover, the complexity for the
analysis of programspresso grew so rapidly that we were not able to complete its unlichitentext-sensitive
analysis and collect the result within twenty hours. On tteeohand, increasing theaz_call_chain_length
did not increase the time and memory usage for the analygisogfamsalvinn, anagram, ks, yacr2, ear,
andgo. In general, a program with most of its subroutines haviratbne call site and many pointer values
propagated along deep call graph paths tends to be sertsitikie exponential complexity problem. Further-
more, small programs usually do not suffer from the expaakodomplexity problem.

Table 3 shows the average number of target objdetglV um T ar get) for indirect reads and indirect writes,
as well as the total number of indirect reads and indirectesri At run time, a pointer dereference should
access at least one memory object. Thus, one is the loweddouan Avg NumTarget. An analysis with an
AvgNumTarget close to one means that the algorithm is precise. HowevergalAvgNumT arget may
indicate either a reduced precision due to the algorithnthatrthe pointer dereferences are actually accessing
more than one memory object on average at run time.

As can be seen from Table 3, increasing the level of contaxsiivity resulted in precision improvement on
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Bench- Algo- Speed Memory Usage(KB)
mark rithm | time (sec.)| lines per sec.| ana. max| ana:ir
alvinn 1 0.90 302 1100 0.25
2 0.90 302 1108 0.25

3 0.90 302 1108 0.25

anagram 1 1.40 461 1324 0.28
2 1.41 458 1336 0.28

3 141 458 1340 0.28

ks 1 2.18 359 1588 0.33

2 2.21 354 1624 0.34

3 2.21 354 1624 0.34

026.compresy 1 2.98 504 1648 0.30
2 3.21 468 2288 0.42

3 3.67 410 2288 0.42

129.compresy 1 1.47 1309 1328 0.19
2 1.50 1283 7344 0.19

3 1.53 1283 8496 0.21

ft 1 2.34 922 1648 0.28

2 2.35 918 1672 0.29

3 2.38 906 1680 0.29

eqgntott 1 38.72 89 7132 0.74
2 60.49 57 7688 0.80

3 67.46 51 8296 0.86

yacr2 1 5.70 698 2432 0.33
2 5.92 672 2604 0.35

3 6.19 643 2796 0.37

ear 1 5.26 996 2784 0.36

2 5.32 983 2900 0.38

3 5.34 981 2968 0.39

sc 1 69.62 121 11040 0.55

2 73.69 115 11040 0.55

3 110.03 77 15880 0.79

espresso 1 840.61 18 67332 2.00
2 1668.33 9 138292 411

3% 4179.14 4 216656 6.43

m88ksim 1 295.98 67 44808 0.62
2 353.30 56 48452 0.67

3 1203.58 17 62036 0.86

go 1 75.11 389 15404 0.36

2 75.72 386 16252 0.38

3 76.75 381 16260 0.38

ijpeg 1 145.41 214 15508 0.30
2 167.31 187 15508 0.30

3 1018.33 31 25680 0.49

Table 2: The speed and the maximum memory usage for the thgestlams in Section 53x : the algo-
rithm with maxcall_chainlength=5, we were unable to collect the result for the atbori with unlimited
max_call_chainlength because of the huge invocation graph).
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Bench- Algo- indirect reads indirect writes
mark rithm | AvgNumTarget| tot | AvgNumTarget| tot
alvinn 1 1.00 34 1.00 9
2 1.00 1.00
3 1.00 1.00
anagram 1 1.39 23 1.00 9
2 1.39 1.00
3 1.39 1.00
ks 1 2.08 | 113 1.00 2
2 2.08 1.00
3 2.08 1.00
026.compresy 1 1.00 | 100 1.00 32
2 1.00 1.00
3 1.00 1.00
129.compresy 1 1.13 30 1.06 32
2 1.13 1.06
3 1.00 1.00
ft 1 1.00| 151 1.00 5
2 1.00 1.00
3 1.00 1.00
eqntott 1 1.26 | 1243 1.19 | 539
2 1.25 1.18
3 1.25 1.18
yacr2 1 1.25| 393 1.89 81
2 1.23 1.65
3 1.23 1.65
ear 1 469 | 181 2.05 96
2 3.87 1.68
3 3.87 1.68
sc 1 1.31| 1828 155 | 127
2 1.30 1.38
3 1.30 1.38
espresso 1 22.66 | 4322 31.00 | 1242
2 22.08 28.96
3 21.62 28.28
m88ksim 1 7.36 | 1792 5.77 | 308
2 6.11 3.15
3% 6.10 2.98
go 1 17.10 78 9.73 38
2 1.02 1.06
3 1.00 1.00
ijpeg 1 1.43 | 3235 1.36 | 1275
2 1.37 1.30
3 1.26 1.22

Table 3: The average number of indirect read/write targatshfe three algorithms in Section 5 and the total
number of indirect reads and writes for each program.
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Scheme | Algorithm Time ana. memory| AvgNumTarget | AvgNumTarget
(sec.) (KB) for indirect reads| for indirect writes

scheme-1 1 840.61 67332 22.40 29.89
2 1668.33 138292 21.81 28.96

3 4179.14 216656 21.37 28.29

scheme-2 1 193.99 24864 2.17 2.10
2 250.85 29712 2.13 2.02

3 467.28 45228 2.09 1.97

Table 4: Comparing two schemes in modeling the dynamic mgmbjects for the analysis of program
espresso. (scheme-1: the scheme described in Section 3.1. schepredle one heap MemObj.)

nine out of 14 programs. However, the degree of improvemaii¢d significantly depending on the programs
analyzed. The two algorithms withaz_call_chain_length>= 1 achieved amdvgNumT arget close to one

for go, a significant improvement over the context-insensitivesie&. This is because most of the pointer
values in the program are passed only one step along thereglh.g However, for the other five programs,
alvinn, anagram, ks , 026.compress and ft, the three algorithms achieved the same precision. Thipesig
that either most of the dereferenced pointers are not irdegdurally related, or most of their subroutines are
called with the same points-to values, or that the reducedsion is caused by the conservativeness in handling
recursive data structures (prograimsand f ¢ use recursive data structures extensively). For the renga@ight
programs, increasing the level of context-sensitivityyalightly improved the precision of the analysis.

Thus, considering both the cost, including the analysig timd the peak memory usage, and the precision
of the algorithms, the benefit of increasing thex _call_chain_length varies depending on the programs ana-
lyzed. For the programs where exponential cost is not likglyoblem, increasing theax _call _chain_length
to achieve the best precision result is a good choice. Onttiex band, limiting thenaz_call_chain_length
to a small number is a practical way to efficiently handle thegpams that are sensitive to the exponential
growth without sacrificing very much precision. Our apploatiows users to select a prudent value of the
maz_call_chain_length which works best for each particular program. A similar &jgh has been used in
most compilers for varying levels of optimization.

Table 4 compares two schemes in modeling the dynamic mentgects for the analysis of program
espresso. The first scheme is the one used in our previous algorithnichatreates one or several dynamic
MemOhbjs for each memory allocation statement (Section Jh¢ second scheme, on the other hand, creates
one heap object for all the memory allocation statementgeasaled by the table, replacing the first dynamic
memory object modeling scheme with the second one speedd#tke untext-insensitive algorithm by more
than four times and the most context-sensitive algorithnmibg times. Memory usage was also significantly
reduced in the three algorithms with the second scheme. uBeahe second scheme collapses all dynamic
MemOhbjs into one heap object, the difference in the AgvNumdafor the context-insensitive algorithm in
both schemes suggests that: (1) approximately 21 out of 2he £gvNumTargets for indirect reads in the
first scheme are dynamic memory objects; (2) approximat@lgt of the 29.89 AgvNumTargets for indirect
writes in the first scheme are dynamic memory objects. A ainsituation was also found in the remaining
two context-sensitive algorithms. Our other studies hdnmve that most of the dynamic objects in program
espresso are related to recursive data structures. This suggedt# #iva algorithm cannot precisely analyze
recursive data structures, using the first dynamic memggcbmodeling scheme may complicate the analysis.
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6 Other Related Work

We use a syntax-directed flow-sensitive algorithm to arabeach subroutine while most of the previous flow-
sensitive alias analysis methods use an iterative algorith syntax-directed flow-sensitive algorithm is gen-
erally considered to be more efficient than its iterativenterpart. However, whether the extra effort results in
real saving in time has not been firmly established.

Hind et al. [14] presented another approach to improve tfigiericy of an iterative flow-sensitive alias
analysis algorithm. They provided empirical results to dastrate the effectiveness of four techniques (shared
alias sets, a working list, a sorted working list, and forMainding filters) in speeding up the iterative algorithm.
However, a direct comparison of the speed of their algorithith the speed of our flow-sensitive context-
insensitive algorithm is difficult for four main reasons;) Qur machine environment is different from theirs.
(2) Our context-insensitive algorithm is implemented inrafework which can result in context-sensitive
algorithms. The extra data structures and programs to suppatext-sensitivity may slow down the context-
insensitive algorithm. (3) Our pointer analysis is implerneg as an integral part of a scalar dataflow analysis. It
not only collects points-to information for later non-p@nanalysis, but also collects definition-use information
for pointer variables. Their algorithm, on the other handlyccalculates points-to information. (4) Their
algorithm is based on a sparse evaluation graph [5, 3] with thie pointer-related assignments and function
calls in a program. Ignoring the non-pointer-related assignts this way can simplify the control-flow graph,
thereby speeding up the analysis.

Both Zhang et al. [25, 26] and Ruf [20] presented a progranomigosition alias analysis algorithm. They
first divided object names into equivalent classes usingtpprelated assignments. They then used the “pre-
fix” relation 2 between the object names to draw dependency edges betwgealen classes. Finally, they
constructed the subproblems out of the above dependengl grdifferent manners: Zhang et al. viewed each
weakly connected component of the graph as a subproblene \Wwhif turned the graph into a DAG by col-
lapsing each strong connected component into one nodeeatddreach node in the DAG as one subproblem.
Compared to our approach, the above two approaches usaallit m finer subproblems, thus resulting in a
greater reduction in memory usage. However, it remains geba that finer subproblems will result in a faster
analysis of the original problem.

Wilson and Lam’spartial transfer function (PTFapproach [24, 23] also provides the flexibility to adjust
the precision and the efficiency of their analysis. They juted four different criteria to decide whether to re-
analyze a subroutine or to re-use an existing PTF. This leeaftgir variations of their algorithm with different
levels of context-sensitivity. Unlike their approach, @uproach controls the analysis via the number of the
most recent call sites in the call-chains tagging the data Walues. Our approach can result in a spectrum
of algorithms with unified semantics while their algorithdentifies only four variations. This may not be a
distinctive advantage but certainly indicates a majoredéhce in our approach.

In his studies of the precision of context-insensitive aadtext-sensitive algorithms, Ruf concluded that
a context-sensitive algorithm did not provide any precisimprovement over the context-insensitive version
when considering only the relevant points-to information the pointer dereferences in the programs [19].
He also suggested that his conclusion might be limited tdobigchmark suite. On the other hand, our re-
sults showed that for nine out of 14 programs, the most cosensitive algorithm demonstrated precision
improvement over the context-insensitive method.

The way we handle context sensitivity is similar to previamproaches which tag the interprocedural
dataflow values witltall strings However, unlike some previous approaches whichkieiting to handle
the potentially unlimited call strings in the presence @ursion[22, 16, 12], we combine the calling contexts

2or "pointed-to-by” relation as in [20]
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for recursive calls as in [7].

The way we handle recursive data structures is not as prasigee algorithms addressed in [16, 8, 9]. We
agree with Emami et al. [7] that the pointer analysis probtan be divided into two distinct subproblems:
analyzing pointers to non-recursive data structures aatyzing pointers to recursive data structures. In this
paper, we focus on analyzing pointers to non-recursivestadatures. An improvement to our approach would
be to incorporate a more precise recursive data structualysas algorithm. This is possible because our
hierarchical approach separates the analysis of recutateestructures from the analysis of other pointer levels.

7 Conclusions

We have presented a hierarchical alias analysis approaathwiot only offers varying levels of context-
sensitivity but also enables the use of an efficient synteected dataflow analysis technique. This hierarchical
approach is based on the observation that a dereferenceafroemory object with pointer level results in an
access to one or more memory objects with pointer levell. Thus, we postpone the analysis of the memory
objects for a certain pointer level until we have obtainegl ploints-to information for all the higher pointer
level memory objects. This approach can be extended to zmalyn-pointer variables.

An implementation of our approach can result in a spectrucoofext-sensitive alias analysis algorithms
with a context-insensitive algorithm on one end and a futitegt-sensitive algorithm on the other. Our exper-
imental results show that the precision improvement aelidw increasing the context-sensitive level of the
analysis varies significantly depending on the programbyaed. Furthermore, increasing the maximum call-
chain length for a higher degree of context sensitivity mimger an exponential complexity problem. Thus, it
is very important for an algorithm to allow users to selectudpnt context-sensitive level which works best for
a particular program. By parameterizing the maximum dadlie length used in tagging the dataflow values,
our approach is able to provide this type of flexibility.
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