
Technical Report

Department of Computer Science

and Engineering

University of Minnesota

4-192 EECS Building

200 Union Street SE

Minneapolis, MN 55455-0159 USA

TR 04-025

SUMMARY: Efficiently Summarizing Transactions for Clustering

Jianyong Wang and George Karypis

June 22, 2004

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
22 JUN 2004 2. REPORT TYPE

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
SUMMARY: Efficiently Summarizing Transactions for Clustering

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Army Research Laboratory,2800 Powder Mill
Road,Adelphi,MD,20783-1197

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

11

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

SUMMARY: Efficiently Summarizing Transactions for Clustering ∗

Jianyong Wang and George Karypis

Department of Computer Science, Digital Technology Center, & Army HPC Research Center

University of Minnesota, Minneapolis, MN 55455

{jianyong, karypis}@cs.umn.edu

Abstract

Frequent itemset mining was initially proposed and
has been studied extensively in the context of associa-
tion rule mining. In recent years, several studies have
also extended its application to the transaction (or doc-
ument) classification and clustering. However, most of
the frequent-itemset based clustering algorithms need to
first mine a large intermediate set of frequent itemsets
in order to identify a subset of the most promising ones
that can be used for clustering. In this paper, we study
how to directly find a subset of high quality frequent
itemsets that can be used as a concise summary of the
transaction database and to cluster the categorical data.
By exploring some properties of the subset of itemsets
that we are interested in, we proposed several search
space pruning methods and designed an efficient algo-
rithm called SUMMARY. Our empirical results have
shown that SUMMARY runs very fast even when the
minimum support is extremely low and scales very well
with respect to the database size, and surprisingly, as a
pure frequent itemset mining algorithm it is very effec-
tive in clustering the categorical data and summarizing
the dense transaction databases.

1 Introduction

Frequent itemset mining was initially proposed and
has been studied extensively in the context of associa-

∗This work was supported in part by NSF CCR-9972519,
EIA-9986042, ACI-9982274, ACI-0133464, and ACI-0312828; the
Digital Technology Center at the University of Minnesota; and by
the Army High Performance Computing Research Center (AH-
PCRC) under the auspices of the Department of the Army, Army
Research Laboratory (ARL) under Cooperative Agreement num-
ber DAAD19-01-2-0014. The content of which does not neces-
sarily reflect the position or the policy of the government, and
no official endorsement should be inferred. Access to research
and computing facilities was provided by the Digital Technology
Center and the Minnesota Super-computing Institute.

tion rule mining [2, 3, 24, 29, 15, 9, 18, 34]. In recent
years, some studies have also demonstrated the use-
fulness of frequent itemset mining in serving as a con-
densed representation of the input data in order for an-
swering various types of queries [22, 8], and the trans-
actional data (or document) classification [5, 20, 19, 4]
and clustering [32, 7, 11, 33].

Most frequent-itemset based clustering algorithms
need to first mine a large intermediate set of frequent
itemsets (in many cases, it is the complete set of fre-
quent itemsets), on which some further post-processing
can be performed in order to generate the final result
set which can be used for clustering purposes. In this
paper we consider directly mining a final subset of fre-
quent itemsets which can be used as a concise summary
of the original database and to cluster the categorical
data. To serve these purposes, we require the final
set of frequent itemsets have the following properties:
(1) it maximally covers the original database given a
minimum support; (2) each final frequent itemset can
be used as a description for a group of transactions,
and the transactions with the same description can
be grouped into a cluster with approximately maxi-
mal intra-cluster similarity. To achieve this goal, our
solution to this problem formulation is that for each
transaction we find one of the longest frequent itemsets
that it contains and use this longest frequent itemset
as the corresponding transaction’s description. The set
of so mined frequent itemsets is called a summary set.

One significant advantage of directly mining the fi-
nal subset of frequent itemsets is that it provides some
chances to design more efficient algorithm. We proved
that each itemset in the summary set must be closed,
thus some search space pruning methods proposed for
frequent closed itemset mining can be borrowed to ac-
celerate the summary set mining. In addition, based
on some properties of the summary set, we proposed
several novel pruning methods which greatly improve
the algorithm efficiency. By incorporating these prun-
ing methods with a traditional frequent itemset min-

ing framework, we designed an efficient summary set
mining algorithm, SUMMARY. Our thorough empir-
ical tests show that SUMMARY runs very fast even
when the minimum support is extremely low and scales
very well w.r.t. the database size, and its result set
is very effective in clustering the categorical data and
summarizing the dense transaction databases.

The rest of this paper is organized as follows. Sec-
tion 2 and Section 3 introduce the problem definition
and some related work. Section 4 describes the algo-
rithm in detail. Section 5 presents the empirical re-
sults. Section 6 presents an application of the algo-
rithm in clustering the categorical data, and the paper
ends with some discussions and conclusion in Section 7.

2 Problem Definition

A transaction database TDB is a set of transactions,
where each transaction, denoted as a tuple 〈tid, X〉,
contains a set of items (i.e., X) and is associated with a
unique transaction identifier tid. Let I={i1, i2, . . . , in}
be the complete set of distinct items appearing in
TDB. An itemset Y is a non-empty subset of I and
is called an l-itemset if it contains l items. An itemset
{x1, . . . , xl} is also denoted by x1 · · ·xl. A transaction
〈tid, X〉 is said to contain itemset Y if Y ⊆ X . The
number of transactions in TDB containing itemset Y
is called the (absolute) support of itemset Y , denoted
by sup(Y). In addition, we use |TDB| and |Y | to de-
note the number of transactions in database TDB, and
the number of items in itemset Y , respectively.

Given a minimum support threshold, min sup, an
itemset Y is frequent if sup(Y)≥min sup. Among the
longest frequent itemsets supported by transaction Ti,
we choose any one of them and denote it by SITi

. SITi

is called the summary itemset of Ti
1. The set of the

summary itemsets w.r.t. the transactions in TDB (i.e.,

∪
|TDB|
i=1 {SITi

}) is called a summary set w.r.t. database
TDB. Note that the summary set of a database may
not be unique, this is because a transaction may sup-
port more than one summary itemset.

Given a transaction database TDB and a minimum
support threshold min sup, the problem of this study
is to find any one of the summary sets w.r.t. TDB.

Example 2.1 The first two columns in Table 1 show
the transaction database TDB in our running example.
Let min sup=2, we sort the list of frequent items in
support ascending order2 and get the sorted item list

1Transaction Ti may contain no frequent itemset, in this case
SITi

is empty and Ti can be treated as an outlier.
2Our experience tells that there is no clear winer between the

support descending order and ascending order.

Tid Set of items Ordered frequent item list

01 a, c, e, g a, c, e

02 b, d, e b, d, e

03 d, f, i d, f

04 e, f, h e, f

05 a, b, c, d, e, f a, b, c, d, e, f

06 b, c, d b, c, d

07 a, c, f a, c, f

08 e, f e, f

09 b, d b, d

Table 1. A transaction database TDB

which is called f list. In this example f list = <a:3, b:4,
c:4, d:5, e:5, f :5>. The list of frequent items in each
transaction are sorted according to f list and shown in
the third column of Table 1. It is easy to figure out
that {ace:2, acf :2, bcd:2, bd:4, bde:2, df :2, ef :3} is one
summary set w.r.t. TDB. �

3 Related Research

Since the introduction of the association rule min-
ing [2, 3], numerous frequent itemset mining algo-
rithms have been proposed. In essence, SUMMARY
is a projection-based frequent itemset mining algo-
rithm [18, 1] and adopts the natural matrix structure
instead of the FP-tree to represent the (conditional)
database [26, 12]. It grows a current prefix itemset by
physically building and scanning its projected matrix.
In [15] an algorithm was proposed to mine all most
specific sentences, however, both the problem and the
algorithm in this study are different from those in [15].

In Section 4 we prove that each summary itemset
must be closed, thus some pruning methods previously
proposed in the closed (or maximal) itemset mining
algorithms [6, 25, 27, 10, 34, 30, 23, 21] can be used
to enhance the efficiency of SUMMARY. Like several
itemset mining algorithms with length-decreasing sup-
port constraint [28, 31], SUMMARY adopts some prun-
ing methods to prune the unpromising transactions and
prefixes. However, because the problem formulations
are different, the pruning methods in SUMMARY are
different from the previous studies.

One important application of the SUMMARY algo-
rithm is to concisely summarize the transactions and
cluster the categorical data. There are many algo-
rithms designed for clustering categorical data, typical
examples include ROCK [14] and CACTUS [13]. Re-
cently several frequent-itemset based clustering algo-
rithms have also been proposed to cluster categorical or

numerical data [7, 11, 33]. These methods first mine an
intermediate set of frequent itemsets, and some post-
processing are needed in order to get the clustering so-
lution. SUMMARY mines the final subset of frequent
itemsets which can be directly used to group the trans-
actions to form clusters and enables us to design more
effective pruning methods to enhance the performance.
Contributions. The contributions of this paper can
be summarized as follows.

1. We proposed a new problem formulation of min-
ing the summary set of frequent itemsets with the
application of summarizing transactions and clus-
tering categorical data.

2. By exploring the properties of the summary set,
we have proposed several pruning methods to ef-
fectively reduce the search space and enhance the
efficiency of the SUMMARY algorithm.

3. Thorough performance study has been performed
and shown that SUMMARY has high efficiency
and good scalability, and can be used to cluster
categorical data with high accuracy.

4 SUMMARY: An Efficient Algorithm

to Summarize the Transactions

In this section we first briefly introduce a traditional
framework for enumerating the set of frequent itemsets,
which forms the basis of the SUMMARY algorithm.
Then we discuss how to design some pruning methods
to speed up the mining of the summary set. Finally
we present the integrated SUMMARY algorithm, and
discuss how to revise SUMMARY to mine all the sum-
mary itemsets for each transaction.

4.1 Frequent Itemset Enumeration

Like some other projection-based frequent itemset
mining algorithms, SUMMARY employs the divide-
and-conquer and depth-first search strategies [18, 30],
which are applied according to the f list order. In
Example 2.1, SUMMARY first mines all the frequent
itemsets containing item a, then mines all frequent
itemsets containing b but no a, ..., and finally mines
frequent itemsets containing only f . In mining item-
sets containing a, SUMMARY treats a as the current
prefix, and builds its conditional database, denoted by
TDB|a={〈01, ec〉, 〈05, efc〉, 〈07, fc〉} (where the local
infrequent items b, d, and g have been pruned and
the frequent items in each projected transaction are
sorted in support ascending order). By recursively ap-
plying the divide-and-conquer and depth-first search

methods to TDB|a, SUMMARY can find the set of
frequent itemsets containing a. Note instead of using
the FP-tree structure, SUMMARY adopts the natu-
ral matrix structure to store the physically projected
database [12]. This is because the matrix structure
allows us to easily maintain the tids in order to de-
termine which set of transactions the prefix itemset
covers. In addition, in the above enumeration process,
SUMMARY always maintains the current longest fre-
quent itemset for each transaction Ti that was discov-
ered first so far. In the following we call it the current
longest covering frequent itemset w.r.t. Ti (denoted by
LCFTi

).

4.2 Search Space Pruning

The above frequent itemset enumeration method
can be simply revised to mine the summary set : Upon
getting a frequent itemset, we check if it is longer than
the current longest covering frequent itemset w.r.t. any
transaction that this itemset covers. If so, this newly
mined itemset becomes the current longest covering fre-
quent itemset for the corresponding transactions. No-
tice that this näıve method is no more efficient than
the traditional all frequent itemset mining algorithm.
However, the above algorithm for finding the summary
set can be improved in two ways. First, as we will
prove later in this section, any summary itemset must
be closed and thus, the pruning methods proposed for
closed itemset mining can be used. Second, since dur-
ing the mining process we maintain the length of the
current longest covering itemset for each transaction,
we can employ additional branch-and-bound techniques
to further prune the overall search space.

Definition 4.1 (Closed itemset) An itemset X is a
closed itemset if there exists no proper superset
X ′ ⊃ X such that sup(X ′) = sup(X). �

Lemma 4.1 (Closure of a summary itemset) Any
summary itemset w.r.t. a transaction Ti, SITi

, must
be a closed itemset.

Proof. We will prove it by contradiction. Assume SITi

is not closed, which means there must exist an itemset
Y , such that SITi

⊂Y and sup(SITi
) = sup(Y). Thus,

Y is also supported by transaction Ti and is frequent.
However, |Y | > |SITi

| contradicts with the fact that
SITi

is the summary itemset of transaction Ti. �

Lemma 4.1 suggests that any pruning method pro-
posed for closed itemset mining can be used to enhance
the performance of the summary set mining. In SUM-
MARY, only one such technique, item merging [30], is
adopted that works as follows. For a prefix itemset P,

the complete set of its local frequent items that have
the same support as P are merged with P to form a
new prefix, and these items are removed from the list of
the local frequent items of the new prefix. It is easy to
see that such a scheme does not affect the correctness
of the algorithm [30].

Example 4.1 Assume the current prefix is a:3, whose
local frequent item list is <e:2, f :2, c:3>, among which
c:3 can be merged with a:3 to form a new prefix ac:3
with local frequent item list <e:2, f :2>. �

Besides the above pruning method, we developed
two new pruning methods called conditional transac-
tion and conditional database pruning that given the set
of the currently maintained longest covering frequent
itemsets w.r.t. TDB, they remove some conditional
transactions and databases that are guaranteed not to
contribute to and generate any summary itemsets.

Specifically, let P be the prefix itemset that
is currently under consideration, sup(P) its sup-
port, and TDB|P = {〈TP1 , XP1〉, 〈TP2 , XP2〉, · · · ,
〈TPsup(P)

, XPsup(P)
〉} its conditional database. Note

that some (or all) of the transactions XPi
(1 ≤ i ≤

sup(P)) can be empty.

Definition 4.2 (Invalid conditional transaction)
A conditional transaction TPi

in TDB|P (where
1≤i≤sup(P)), is an invalid conditional transaction if
it falls into one of the following two cases:

1. |XPi
|≤ (|LCFTPi

|−|P |);

2. |XPi
|>(|LCFTPi

|−|P |), but |{ ∀j ∈ [1..sup(P)],
TPj

| |XPj
| > (|LCFTPi

| − |P |) }| < min sup.

Otherwise, TPi
is called a valid conditional trans-

action. �

The first condition states that a conditional trans-
action is invalid if its size is no greater than the dif-
ference between its current longest covering frequent
itemset and the length of the prefix itemset, whereas
the second condition states that the number of condi-
tional transactions which can be used to derive itemsets
longer than LCFTPi

by extending prefix P is smaller
than the minimum support.

Lemma 4.2 (Unpromising summary itemset genera-
tion) If TPi

is an invalid conditional transaction, there
will be no frequent itemset derived by extending prefix
P that TPi

supports and is longer than LCFTPi
.

Proof. Follows directly from Definition 4.2. (i) If a
transaction TPi

is invalid because of the first condition,
it will not contain sufficient items in its conditional

transaction to identify a longer covering itemset. (ii)
If a transaction TPi

is invalid because of the second
condition, the conditional database will not contain a
sufficiently large number of long conditional transac-
tions to obtain an itemset that is longer than LCFTPi

and frequent. �

Note it is possible for an invalid conditional trans-
action to be used to mine summary itemsets for other
valid conditional transactions w.r.t. prefix P ; thus, we
cannot simply prune any invalid conditional transac-
tion. Instead, we can safely prune some invalid condi-
tional transactions according to the following Lemma.

Lemma 4.3 (Conditional transaction pruning) An in-
valid conditional transaction, TPi

, can be safely pruned,
if it satisfies:

|XPi
| ≤ min

∀j, TPj
is valid

(|LCFTPj
| − |P |) (1)

Proof. Consider an invalid conditional transaction TPi

that satisfies Equation 1. Then in order for a frequent
itemset supported by the conditional transaction TPi

and prefix P to replace the current longest covering
frequent itemset of a valid conditional transaction TPj

,
TPi

needs to contain more than |XPi
| items in its con-

ditional transaction. As a result, TPi
can never con-

tribute to the support of such an itemset and can be
safely pruned from the conditional database. �

Lemma 4.3 can be used to prune from the condi-
tional database some unpromising transactions satisfy-
ing Equation 1 even when there exist some valid condi-
tional transactions. However, in many cases, there may
exist no valid conditional transactions, in this case the
whole conditional database can be safely pruned.

Lemma 4.4 (Conditional database pruning) Given
the current prefix itemset P and its projected condi-
tional database TDB|P , if each of its conditional trans-
actions, TPi

, is invalid, TDB|P can be safely pruned.

Proof. According to Lemma 4.2, for any invalid con-
ditional transaction, TPi

, we cannot generate any fre-
quent itemsets longer than LCFTPi

by growing prefix
P . This means that if each conditional transaction
is invalid, we can no longer change the current status
of the set of the currently maintained longest covering

frequent itemsets w.r.t. prefix P , ∪
sup(P)
i=1 {LCFTPi

}, by
extending P ; thus, TDB|P can be safely pruned. �

Example 4.2 Assume the prefix is c:4 (i.e., P=c).
From Table 1 we get that TDB|c={〈01, e〉, 〈05, def〉,
〈06, d〉, 〈07, f〉}, and LCF01=ace:2, LCF05=ace:2,
LCF06=bcd:2, and LCF07=acf :2. Conditional trans-
actions 〈01, e〉, 〈06, d〉, and 〈07, f〉 fall into case 1

of Definition 4.2, while 〈05, def〉 falls into case 2 of
Definition 4.2, thus all the conditional transactions in
TDB|c are invalid. According to Lemma 4.4, condi-
tional database TDB|c can be pruned. �

ALGORITHM 1: SUMMARY(TDB, min sup)

INPUT: (1) TDB : a transaction database, and (2) min sup: a min-
imum support threshold.
OUTPUT: (1) SI : the summary set.
BEGIN

01. for all ti ∈ TDB

02. SIti
← ∅;

03. call summary(∅, TDB);

END

SUBROUTINE 1 : summary(pi, cdb)

INPUT: (1) pi: a prefix itemset, and (2) cdb: the conditional
database w.r.t. prefix pi.
BEGIN

04. I ← find frequent items(cdb,min sup);
05. S ← item merging(I); pi ← pi ∪ S; I ← I - S;
06. if(pi 6= ∅)
07. for all ti ∈ cdb

08. if(|SIti
| < |pi|)

09. SIti
←pi;

10. if(I 6= ∅)
11. if(conditional database pruning(I,pi,cdb))
12. return;
13. cdb ← conditional transaction pruning(I,pi,cdb);
14. for all i∈I do

15. pi
′

← pi ∪ {i};

16. cdb
′

← build cond database(pi
′

, cdb);

17. call summary(pi
′

, cdb
′

);
END

4.3 The Algorithm

By pushing deeply the search space pruning meth-
ods of Section 4.2 into the frequent itemset mining
framework described in Section 4.1, we can mine the
summary set as described in the SUMMARY algo-
rithm shown in Algorithm 1. It first initializes the
summary itemset to empty for each transaction (lines
01-02) and calls the Subroutine 1 (i.e., summary(∅,
TDB)) to mine the summary set (line 03). Sub-

routine summary(pi, cdb) applies the search space
pruning methods such as the item merging (line 05),
conditional database pruning (lines 11-12), and condi-
tional transaction pruning (line 13), updates the sum-
mary set information for conditional database cdb
w.r.t. prefix itemset pi (lines 06-09), and grows the cur-
rent prefix, builds the new conditional database, and
recursively calls itself under the projection-based fre-
quent itemset mining framework (lines 14-17).

Discussion. A transaction may be covered by multiple
summary itemsets. In this paper we mainly focus on
the SUMMARY algorithm, which for each transaction,
only inserts into the summary set the summary itemset

that was discovered first. However, it is rather straight-
forward to revise SUMMARY to find all the summary
itemsets supported by each transaction. Specifically, if
we change the ‘≤’ to ‘<’ in case 1 of Definition 4.2,
all the ‘>’ to ‘≥’ in case 2 of Definition 4.2, the ‘≤’ to
‘<’ in Equation 1 of Lemma 4.3, and the ‘<’ to ‘≤’ in
line 08 of Algorithm 1, the revised SUMMARY algo-
rithm will find all the summary itemsets. We denote
the so-derived algorithm by SUMMARY-all.

5 Experimental Results

We have implemented both the SUMMARY and
SUMMARY-all algorithms, and performed a thorough
experimental study to evaluate the effectiveness of the
pruning methods, their algorithmic efficiency, and their
overall scalability. All the experiments except the effi-
ciency test were performed on a 2.4GHz Intel PC with
1GB memory and Windows XP installed. In our exper-
iments, we used some databases which were popularly
used in evaluating various frequent itemset mining al-
gorithms [34, 30, 16], such as connect, chess, pumsb*,
mushroom, and gazelle, and some categorical databases
obtained from the UCI Machine Learning repository,
such as SPECT, Letter Recognition, and so on.

1

10

2481632

R
u

n
ti

m
e
 i

n
 s

e
c
o

n
d

s

Absolute support threshold

SUMMARY-all with no pruning
SUMMARY with no pruning
SUMMARY-all with pruning

SUMMARY with pruning

a) Database (mushroom)

1

10

100

1000

10000

2481632

R
u

n
ti

m
e
 i

n
 s

e
c
o

n
d

s

Absolute support threshold

SUMMARY-all with no pruning
SUMMARY with no pruning
SUMMARY-all with pruning

SUMMARY with pruning

b) Database (gazelle)

Figure 1. Effectiveness of pruning methods

Effectiveness of the Pruning Methods. We first
evaluated the effectiveness of the pruning methods by
comparing SUMMARY and SUMMARY-all themselves
with or without the conditional database and transac-
tion pruning methods. Figure 1 shows that the algo-
rithms with pruning can be over an order of magnitude
faster than the corresponding algorithms without prun-
ing for both mushroom and gazelle databases. This il-
lustrates that the pruning methods newly proposed in
this paper are very effective in reducing search space.

Efficiency. To mine the summary set, a näıve method
is to first mine the complete set of frequent closed item-
sets, from which the summary set can be further iden-

tified. Our comparison with fpclose [17], one of the
most recently developed efficient closed itemset mining
algorithms [16], shows that such a solution is not prac-
tical when the minimum support is low. As we will
discuss in Section 6, such low minimum support values
are beneficial for clustering applications. The efficiency
comparison was performed on a 1.8GHz Linux machine
with 1GB memory by varying the absolute support
threshold and turning off the output of fpclose. The
experiments for all the databases we used show con-
sistent results. Due to limited space, we only report
the results for dense database connect, sparse database
gazelle, and categorical database SPECT.

100

1000

128256512102420484096

R
u

n
ti

m
e
 i

n
 s

e
c
o

n
d

s

Absolute support threshold

fpclose
SUMMARY-all

SUMMARY

a) Database (connect)

1

10

2481632

R
u

n
ti

m
e
 i

n
 s

e
c
o

n
d

s

Absolute support threshold

fpclose
SUMMARY-all

SUMMARY

b) Database (gazelle)

Figure 2. Efficiency test for connect and gazelle

Figure 2 shows the runtimes for databases con-
nect and gazelle. It shows that both SUMMARY
and SUMMARY-all scale very well w.r.t. the sup-
port threshold, and for connect database, they even
run faster at low support value of 128 than at high sup-
port value of 512. This is because these two algorithms
usually mine longer itemsets at lower support, which
makes the pruning methods more effective in remov-
ing some short transactions and conditional databases.
Because the FP-tree structure adopted by fpclose is
very effective in condensing dense databases, at high
support fpclose is much faster than SUMMARY and
SUMMARY-all for dense databases like connect, but
once we continue to lower the support, it can be or-
ders of magnitude slower. While for sparse databases
like gazelle, fpclose can be several times slower. The
SPECT database is very small and only contains 267
instances (i.e., patient image sets) and 23 attributes
per instance. Figure 3a shows that even for such a
small database, both SUMMARY and SUMMARY-
all can be over an order of magnitude faster than
fpclose. In addition, the above results also demon-
strate that SUMMARY always runs a little faster than
SUMMARY-all, this is because SUMMARY-all mines
more summary itemsets than SUMMARY. For exam-

ple, at absolute minimum support threshold 32, on av-
erage SUMMARY-all finds 11.1 summary itemsets for
each transaction of the dense database mushroom, and
finds 1.3 summary itemsets for each transaction of the
sparse database gazelle.

0.1

1

10

8163264

R
u

n
ti

m
e
 i

n
 s

e
c
o

n
d

s

Absolute support threshold

fpclose
SUMMARY-all

SUMMARY

a) Efficiency(SPECT)

5

10

15

20

25

30

200 300 400 500 600 700 800 900 1000

R
u

n
ti

m
e
 i

n
 s

e
c
o

n
d

s

Base size (in K tuples)

SUMMARY-all: min_sup=0.2%
SUMMARY: min_sup=0.2%

SUMMARY-all: min_sup=1%
SUMMARY: min_sup=1%

b) Scalability(T10I4Dx)

Figure 3. Efficiency and scalability test

Scalability. We also tested the algorithm scalability
using the IBM synthetic database series T10I4Dx by
setting the average transaction length at 10 and chang-
ing the number of transactions from 200K to 1000K.
We ran both SUMMARY and SUMMARY-all at two
different minimum relative supports 0.2% and 1%. Fig-
ure 3b shows that these two algorithms scale very well
against the database size.

6 Application - Summary Set based

Clustering

One important application of the SUMMARY algo-
rithm is to cluster the categorical data by treating each
summary itemset as a cluster description and grouping
the transactions with the same cluster description into
a cluster. In SUMMARY, we adopt a prefix tree struc-
ture to facilitate this task, which has been used exten-
sively in performing different data mining tasks [18, 30].
For each transaction, Ti, if its summary itemset SITi

is not empty, we sort the items in SITi
in lexicographic

order and insert it into the prefix tree. The tree node
corresponding to the last item of the sorted summary
itemset represents a cluster, to which the transaction
Ti belongs.

Example 6.1 The summary itemsets for the transac-
tions in our running example are SI01=ace, SI02=bde,
SI03=df , SI04=ef , SI05=ace, SI06=bcd, SI07=acf ,
SI08=ef , and SI09=bd. If we insert these summary
itemsets into the prefix tree in sequence, we can get
seven clusters with cluster descriptions ace, bde, df ,

root

a d

 c

 e:2

d:1

e:1

f:1

b e

f:2c

d:1 f:1

cid 01 02 03 04 05 06 07

tid
list

01
05 02 03 04

08 06 07 09

Figure 4. Clustering based on summary set

ef , bcd, acf , and bd, as shown in Figure 4. From Fig-
ure 4 we see that transactions 01 and 05 are grouped
into cluster 01, transactions 04 and 08 are grouped into
cluster 04, while each of the other transactions forms
a separate cluster of their own. Note that a non-leaf
node summary itemset in the prefix tree represents a
non-maximal frequent itemset in the sense that one
of its proper supersets must be frequent. For example,
summary itemset bd is non-maximal, because summary
itemset bde is a proper superset of bd. In this case, we
have an alternative clustering option: merge the non-
leaf node clusters with their corresponding leaf node
clusters to form larger clusters. In Figure 4, we can
merge cluster 07 with cluster 02 to form a cluster. �

Clustering Evaluation. We have used many cat-
egorical databases to evaluate the clustering quality
of the SUMMARY algorithm, including mushroom,
SPECT, Letter Recognition, and Congressional Vot-
ing, which all contain class labels and are available at
http://www.ics.uci.edu/∼mlearn/. We did not use the
class labels in mining the summary set and cluster-
ing, instead, we only used them to evaluate the clus-
tering accuracy, which is defined by the number of
correctly clustered instances (i.e., the instances with
dominant class labels in the computed clusters) as a
percentage of the database size 3. SUMMARY runs
very fast and can achieve very good clustering accu-
racy for these databases, especially when the mini-
mum support is low. Due to limited space, we only
show results for mushroom and Congressional Voting

3Note we also used the average cluster purity and entropy
to evaluate the clustering quality, and our results show that the
clustering of SUMMARY has high purity and low entropy, which
is consistent with the clustering accuracy measure. Due to lim-
ited space, we will not report them here.

databases, which have been widely used in the previ-
ous studies [14, 32, 33].

The mushroom database contains some physical
characteristics of various mushrooms. It has 8124 in-
stances and two classes: poisonous or edible. Table 2
shows the clustering results for this database, including
the minimum support used in the tests, the number of
clusters found by SUMMARY, the number of misclus-
tered instances, clustering accuracy, compression ratio
and runtime (in seconds) for both the summary set dis-
covery and clustering. The compression ratio is defined
as the total number of items in the database divided by
the total number of items in the summary set. We can
see that SUMMARY has a clustering accuracy higher
than 97% and a runtime less than 0.85 seconds for a
wide range of support thresholds. At support 25, it
can even achieve a 100% accuracy. The MineClus al-
gorithm is one of the most recently developed clustering
algorithm for this type of databases [33]. Its reported
clustering solution for this database finds 20 clusters
with an accuracy 96.41% and in the meantime declares
0.59% of the instances as outliers, which means it mis-
clusters about 290 instances and treats about another
48 instances as outliers. Compared to this algorithm,
SUMMARY is very competitive in considering both of
its high efficiency and clustering accuracy. In addition,
the high compression ratios demonstrate that the sum-
mary set can be used as a concise summary of the orig-
inal database (Note in each case of Table 2, the sum-
mary set covers each instance of the original database,
which means there is no outlier in our solution).

sup. # clu. # miscl. accur. com. rat. time

1400 30 32 99.6 660 0.38s

1200 35 32 99.6 549 0.42s

1000 37 32 99.6 509 0.44s

800 63 208 97.4 268 0.48s

400 128 8 99.9 120 0.66s

200 140 6 99.93 97 0.77s

100 197 32 99.6 62 0.81s

50 298 1 99.99 37 0.79s

25 438 0 100 23 0.75s

Table 2. Clustering mushroom database

The Congressional Voting database contains the
1984 United States Congressional Voting Records and
has two class labels: Republican and Democrat. In our
experiments, we removed four outlier instances whose
most attribute values are missing and used the left
431 instances. Table 3 shows the clustering solution
of SUMMARY at a minimum support 245, at which

cid # Rep. # Demo. cid # Rep. # Demo.

1 2 244 4 1 3

2 155 16 5 2 1

3 5 0 6 1 1

Table 3. Clustering Congressional Voting
database

point the clusters produced by SUMMARY covers the
whole database (while a minimum support higher than
245 will make SUMMARY miss some instances), and
SUMMARY only uses 0.001 seconds to find the six clus-
ters with an accuracy higher than 95% and a compres-
sion ratio higher than 1164. Even we simply merge the
four small clusters with the two large clusters in order
to get exact two clusters, the accuracy is still higher
than 93% in the worst case (e.g., clusters 3 and 5 are
merged into cluster 1, and clusters 4 and 6 are merged
into cluster 2), and is much better than the reported
accuracy, 86.67%, of the MineClus algorithm [33].

7 Discussions and Conclusion

In this paper we proposed to mine the summary set
that can maximally cover the input database. Each
summary itemset can be treated as a distinct clus-
ter description and the transactions with the same de-
scription can be grouped together to form a cluster.
Because the summary itemset of a cluster is one of
the longest frequent itemsets that is common among
the corresponding transactions of the same cluster, it
can approximately maximize the intra-cluster similar-
ity, while different clusters are dissimilar with each
other because they support distinct summary itemsets.
In addition, we require each summary itemset be fre-
quent in order to make sure it is statistically significant.

Directly mining the summary set also enabled us to
design an efficient algorithm, SUMMARY. By explor-
ing some properties of the summary set, we developed
two novel pruning methods, which significantly reduce
the search space. Our performance study showed that
SUMMARY runs very fast even when the minimum
support is extremely low and the summary set is very
effective in clustering categorical data. In addition,
we also evaluated SUMMARY-all, a variant of SUM-
MARY, which mines all the summary itemsets for each
transaction. In future, we plan to explore how to
choose the one among the summary itemsets supported
by a transaction which can reduce the number of clus-
ters while achieving a high clustering accuracy.

References

[1] R. Agarwal, C. Aggarwal, V. Prasad. A Tree Projec-
tion Algorithm for Generation of Frequent Item Sets,
J. Para. Distr. Comp. 61(3), 2001.

[2] R. Agrawal, T. Imielinski, A. Swami. Mining Associ-

ation Rules between Sets of Items in Large Databases,
SIGMOD’93.

[3] R. Agrawal, R. Srikant. Fast Algorithms for Mining

Association Rules, VLDB’94.

[4] M. Antonie, O. Zaiane. Text Document Categorization

by Term Association, ICDM’02.

[5] R.J. Bayardo. Brute-force Mining of High-confidence

Classification rules, KDD’97.

[6] R.J. Bayardo. Efficiently Mining Long Patterns from

Databases, SIGMOD’98.

[7] F. Beil, M. Ester, X. Xu. Frequent Term-Based Text

Clustering, KDD’02.

[8] J. Boulicaut, A. Bykowski, C. Rigotti. Free-Sets: A

Condensed Representation of Boolean Data for the Ap-

proximation of Frequency Queries, J. of Data Mining
and Knowl. Discov. 7(1), 2003.

[9] S. Brin, R. Motwani, J.D. Ullman, S. Tsur. Dynamic

Itemset Counting and Implication Rules for Market

Basket Data, SIGMOD’97.

[10] D. Burdick, M. Calimlim, J. Gehrke. MAFIA: A

Maximal Frequent Itemset Algorithm for Transactional

Databases, ICDE’01.

[11] B. Fung, K. Wang, M. Ester. Hierachical Document

Clustering Using Frequent Itemsets, SDM’03.

[12] K. Gade, J. Wang, G. Karypis. Efficient Closed Pat-

tern Mining in the Presence of Tough Block Con-

straints, to appear in KDD’04.

[13] V. Ganti, J. Gehrke, R. Ramakrishnan. CAC-

TUS: Clustering Categorical Data Using Summaries,
KDD’99.

[14] S. Guha, R. Rastogi, K. Shim. ROCK: A Robut Clus-

tering Algorithm for Categorical Attributes, ICDE’99.

[15] D. Gunopulos, H. Mannila, S.Saluja. Discovering All

Most Specific Sentences by Randomized Algorithms,
ICDT’97.

[16] B. Goethals, M. Zaki. An Introduction to FIMI’03

Workshop on Frequent Itemset Mining Implementa-

tions, ICDM-FIMI’03.

[17] G. Grahne, J. Zhu. Efficiently Using Prefix-trees in

Mining Frequent Itemsets, ICDM-FIMI’03.

[18] J. Han, J. Pei, Y. Yin. Mining Frequent Patterns with-

out Candidate Generation, SIGMOD’00.

[19] W. Li, J. Han, J. Pei. CMAR: Accurate and Efficient

Classification based on multiple class-association rules,
ICDM’01.

[20] B. Liu, W. Hsu, Y. Ma. Integrating Classification and

Association Rule Mining, KDD’98.

[21] G. Liu, H. Lu, W. Lou, J. X. Yu. On Computing, Stor-

ing and Querying Frequent Patterns, KDD’03.

[22] H. Mannila, H. Toivonen. Multiple Uses of Frequent

Sets and Condensed Representations, KDD’96.

[23] F. Pan, G. Cong, A.K.H. Tung, J. Yang, M. Zaki.
CARPENTER: Finding Closed Patterns in Long Bi-

ological Datasets, KDD’03.

[24] J. Park, M. Chen, P. S. Yu. An Effective Hash Based

Algorithm for Mining Association Rules, SIGMOD’95.

[25] N. Pasquier, Y. Bastide, R. Taouil, L. Lakhal. Discov-

ering Frequent Closed Itemsets for Association Rules,
ICDT’99.

[26] J. Pei, et al. H-Mine: Hyper-structure Mining of Fre-

quent Patterns in Large Databases, ICDM’01.

[27] J. Pei, J. Han, R. Mao. CLOSET: An Efficient Algo-

rithm for Mining Frequent Closed Itemsets, DMKD’00.

[28] M. Seno, G. Karypis. LPMiner: An Algorithm for

Finding Frequent Itemsets Using Length-Decreasing

Support Constraint, ICDM’01.

[29] H. Toivonen. Sampling Large Databases for Associa-

tion Rules, VLDB’96.

[30] J. Wang, J. Han, J. Pei. CLOSET+: Searching for the

Best Strategies for Mining Frequent Closed Itemsets,
KDD’03.

[31] J. Wang, G. Karypis. BAMBOO: Accelerating Closed

Itemset Mining by Deeply Pushing the Length-

Decreasing Support Constraint, SDM’04.

[32] K. Wang, C. Xu, B. Liu. Clustering Transactions using

Large Items, CIKM’99.

[33] M. Yiu, N. Mamoulis. Frequent-Pattern based Iterative

Projected Clustering, ICDM’03.

[34] M. Zaki, C. Hsiao. CHARM: An Efficient Algorithm

for Closed Itemset Mining, SDM’02.

