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Abstract

Existingalgorithmsthatminegraphdatasetsto discover
patternscorrespondingto frequentlyoccurring subgraphs
can operate efficiently on graphsthat are sparse, contain
a large numberof relativelysmall connectedcomponents,
haveverticeswith low and boundeddegrees,and contain
well-labeledverticesandedges.However, therearea num-
ber of applicationsthat lead to graphsthat do not share
thesecharacteristics,for which thesealgorithmshighly be-
comeunscalable.

In this paper we proposea heuristic algorithm called
GREW to overcomethe limitations of existing completeor
heuristicfrequentsubgraphdiscoveryalgorithms.GREW is
designedto operate on a large graph andto find patterns
correspondingto connectedsubgraphs that havea large
numberof vertex-disjoint embeddings.Our experimental
evaluationshowsthat GREW is efficient,canscaleto very
large graphs,and findnon-trivial patternsthat cover large
portionsof the input graph andthe lattice of frequentpat-
terns.

Keywords frequentpatterndiscovery, frequentsubgraph,
graphmining.

1 Intr oduction
In the last five years,an ever increasingbody of research
hasfocusedon developingefficient algorithmsto minefre-
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quentpatternsin largegraphdatasets.Startingwith AGM
by Inokuchiet al. [15], originally developedin 1999–2000,
thescalabilityof thesefrequentpattern/subgraphminingal-
gorithmshascontinuouslybeenimprovedanda numberof
differentalgorithmshavebeendeveloped[20, 17,1, 32, 11,
13, 33,19] thatemploy differentmining strategies,arede-
signedfor different input graphrepresentations,and find
patternsthat have different characteristicsand satisfy dif-
ferentconstraints.As a result, it is now possiblefor cer-
tain applicationdomainsto discover frequentlyoccurring
subgraphsin a reasonableamountof time. Moreover, since
thesepatternscanbeusedasinputtootherdataminingtasks
(e.g.,clusteringandclassification[6, 14]), thefrequent pat-
terndiscovery algorithmsplay an importantrole in further
expandingtheuseof dataminingtechniquesto graph-based
datasets.

A key characteristicof all of thesealgorithmsis thatthey
arecompletein thesensethatthey areguaranteedto find all
subgraphsthatsatisfythespecificconstraints.Eventhough
completenessis intrinsicallyavery importantanddesirable
property, one can not ignore the fact that it also imposes
very stronglimitations on the typesof graphdatasetsthat
canbe minedin a reasonableamountof time. In general,
the completealgorithmsthat areavailabletoday, canonly
operateefficiently on input datasetsthataresparse,contain
a large numberof relatively small connectedcomponents,
have verticeswith low and boundeddegrees,and contain
well-labeledverticesandedges. Almost all datasetsused
duringtheexperimentalevaluationsof completealgorithms
satisfytheserequirements,andthey areoftenderivedform
chemicalcompounds[17, 1, 32, 13, 33,19]. Thesere-
strictionsare a direct consequenceof the fact that due to
the completenessrequirementsthesealgorithmsmustper-
form numeroussubgraphisomorphismoperations(or their
equivalent)explicitly or implicitly thatareknown to beNP-
complete[8]. On the other hand,existing heuristicalgo-
rithms, which arenot guaranteedto find the completeset
of subgraphs,asSUBDUE [2] andGBI [34], tendto find



an extremelysmall numberof patternsandarenot signif-
icantly more scalable. For example, the resultsreported
in a recentlypublishedstudy showed that SUBDUE was
ableto find 3 subgraphsin 5,043seconds,while VSIGRAM
(a recentlydevelopedcompletealgorithm)wasableto find
3,183patternsin just 63 secondsfrom a graphcontaining
33,443verticesand11,244edges[22].

Therearemany applicationdomainsthatleadto datasets
that have inherentlystructuralor relationalcharacteristics,
aresuitablefor graph-basedrepresentations,andcangreatly
benefitfrom graph-baseddatamining algorithms(e.g.,net-
work topology, VLSI circuit design,protein-proteininterac-
tions, biological pathways,web graph,etc). However, the
characteristicsof thegraphdatasetsderivedfrom theseap-
plicationdomainsaresuchthatthey violatemany of theim-
plicit requirementsof existingcompletealgorithms,asthey
areeithersignificantlylesssparse,containvery large con-
nectedcomponents,have ahigh degreevariations,and/or
containvery few vertex andedgelabels.As a result,these
graphscannotbeeffectively minedby existingalgorithms.

To overcomethe limitations of existing algorithms(ei-
ther complete or heuristic) we developed an algorithm
calledGREW. GREW is a heuristicalgorithm,designedto
operateon a large graphand to find patternscorrespond-
ing to connectedsubgraphsthat have a large numberof
vertex-disjoint embeddings. Becauseof its heuristic na-
ture, the numberof patternsdiscoveredby GREW is sig-
nificantly smallerthanthose discoveredby completealgo-
rithms. However, asour experimentswill show, GREW can
operateeffectively on very largegraphs(containingover a
quarterof a million vertices)andstill find long andmean-
ingful/interestingpatterns.At the sametime, comparedto
existing heuristicalgorithmsGREW is ableto find signifi-
cantlymoreandlargerpatternsatafractionof theirruntime.

GREW discoversfrequentsubgraphsby repeatedlymerg-
ing theembeddingsof existing frequentsubgraphsthatare
connectedby oneor multipleedges.Thekey to GREW’sef-
ficiency is that it maintainsthe locationof theembeddings
of thepreviously identifiedfrequentsubgraphsby rewriting
the input graph. This ideaof edgecontractionandgraph
rewriting is similar in spirit to that usedby other heuris-
tic algorithms[2, 34, 23]. However, GREW substantially
extendsit by (i) allowing theconcurrentcontractionof dif-
ferenttypesof edge,(ii) employing a setof heuristicsthat
allows it to find longer and denserfrequentpatterns,and
(iii) using a representationof the rewritten graphthat re-
tainsall the informationpresentin theoriginal graph.The
first two extensionsallows GREW to simultaneouslydis-
cover multiple patternsandfind longerpatternsin fewer it-
erations,whereasthethird extensionenablesGREW to pre-
cisely identify whetheror not thereis an embeddingof a
particularsubgraph,andthusguaranteea lower boundon
thefrequency of eachpatternthatit discovers.

We experimentallyevaluatethe performanceof GREW

on four differentdatasetscontaining29,014–255,798ver-
ticesthatarederived from differentdomainsincludingco-
citationanalysis,VLSI, andweblink analysis.Our experi-
mentsshow thatGREW is ableto quickly find a largenum-
berof non-trivial sizepatterns.

Therestof this paperis organizedasfollows. Section2
provides necessaryterminology and notation. Section3
provides a detaileddescriptionof GREW and its various
computationalsteps.Section4 illustrateshow GREW canbe
usedasthebuilding blockin developingalgorithmsto solve
somegeneralmining problems.Section5 shows a detailed
experimentalevaluationof GREW on datasetsfrom differ-
ent domainsand comparesit against existing algorithms.
Section6 surveys therelatedresearchandcontrastsit with
GREW. Finally, Section7 providesconcludingremarks.

2 Definitions and Notation

A graph G = (V, E) is madeof two sets,the setof ver-
tices V andthe setof edgesE. Eachedgeis represented
asanunorderedpair of vertices.Throughoutthis paperwe
assumethata graphis undirected,andthat theverticesand
edgesin a graphare labeled. The labelsof an edgee and
a vertex v aredenotedby l (e) and l (v) respectively. Each
vertex (or edge)of a graphis not requiredto have aunique
label andthe samelabel canbe assignedto many vertices
(or edges)in thesamegraph.

Given a graphG = (V, E), a graphGs = (Vs, Es) is
a subgraph of G if Vs ⊆ V and Es ⊆ E, andis denoted
by Gs ⊆ G. ThesubgraphGs is saidto becovered by G.
If a subgraphGs ⊆ G is isomorphicto anothergraphH ,
thenGs is calledanembeddingof H in G. In this paper,
a subgraphis often calleda pattern. The total numberof
embeddingsof Gs in agraphG is calledtheraw fr equency
of Gs.

Two graphsG1 = (V1, E1) andG2 = (V2, E2) areiso-
morphic (denotedby G1 ≃ G2) if they aretopologically
identical to eachother, that is, thereis a vertex mapping
from V1 to V2 suchthateachedgein E1 is mappedto asin-
gleedgein E2 andviceversa.In thecaseof labeledgraphs,
this mappingmustalsopreserve the labelson the vertices
andedges. When a set of graphs{Gi } are isomorphicto
eachother, they all aresaidto belongto thesameequiva-
lenceclass. Whentheequivalenceclassof Gi representsan
edge,theclassis calledanedge-type.

Given two graphsG1 = (V1, E1) andG2 = (V2, E2),
the problemof subgraph isomorphism is to find an iso-
morphismbetweenG2 and a subgraphof G1. In other
words,thesubgraphisomorphismproblemis to determine
whetheror not G2 is embeddedin G1.

Given a subgraphGs anda graphG, two embeddings
of Gs in G arecalled identical if they usethesamesetof



edgesof G, edge-disjoint if they do not have any edges
of G in common,andvertex-disjoint if no verticesof G
in common. Given a setof all embeddingsof a particular
subgraphGs in a graphG, the overlap graph of Gs is a
graphobtainedby creatinga vertex for eachnon-identical
embeddingandcreatinganedgefor eachpairof non-vertex-
disjointembeddings.

Contraction of anedgee= uv of a graphG = (V, E)

is to mergetwo endpointsu andv togetherinto a new ver-
tex w by removing the edgee, while keepingall the other
edgesincidentto u andv. Theremainingedgesthatusedto
beincidentto eitheru or v areconnectedto w afterthecon-
traction. Thenewly addedvertex w representstheoriginal
edgee. Note that, if therearemultiple edgesbetweentwo
verticesu andv, thecontractionof e removesonly e. The
restof the multiple edgesbetweenu andv becomeloops
aroundw afterthecontraction.

2.1 CanonicalLabeling

One of the key operationsrequiredby any frequentsub-
graph discovery algorithm is a mechanismby which to
checkwhethertwo subgraphsareidenticalor not. Oneway
of performingthischeckis to performagraphisomorphism
operation. However, in casesin which many suchchecks
arerequiredamongthesamesetof subgraphs,a betterway
of performingthis taskis to assignto eachgrapha unique
code(i.e.,asequenceof bits,astring,or asequenceof num-
bers) that is invariant on the orderingof the verticesand
edgesin thegraph.Suchacodeis referredto asthecanon-
ical label of a graphG = (V, E) [29, 7], andwe will de-
noteit by cl(G). By usingcanonicallabels,we cancheck
whetheror not two graphsareidenticalby checkingto see
whetherthey have identicalcanonicallabels.Moreover, the
canonicallabelsallow us to uniquely identify a particular
vertex in a subgraph,regardlessof the original vertex and
edgeorderingin thesubgraph.

Eventhoughtheworst-casecomplexity of canonicalla-
beling may be exponentialon the numberof vertices,its
average-timecomplexity can be reducedby using vari-
ous heuristicsto narrow down the searchspaceor by us-
ing alternatecanonicallabel definitions that take advan-
tageof specialpropertiesthat may exist in a particularset
of graphs[25, 24, 7]. As part of our earlier researchwe
havedevelopedsuchcanonicallabelingalgorithmthatfully
makesuseof edgeandvertex labelsfor fastprocessingand
variousvertex invariantsto reducethecomplexity of deter-
mining the canonicallabel of a graph[20, 21]. Our algo-
rithm cancomputethecanonicallabelof graphscontaining
up to 50 verticesextremely fastandwill be the algorithm
usedto computethe canonicallabelsof the differentsub-
graphsin thispaper.

Note thatthe patternsfound by GREW areoften larger
than those foundby the completealgorithms(as GREW

canoperatewith muchsmallerminimumfrequency thresh-
old). It is necessaryto adoptanefficient canonicallabeling
schemeto handlelargesubgraphsin areasonableamountof
time. Naive methodsthat requireto permutecolumnsand
rows of the adjacency matrix of a subgraphwithout parti-
tioningverticesdo noscalewell.

3 GREW—ScalableFrequent Subgraph Dis-
covery Algorithm

GREW is a heuristicalgorithm, designedto operateon a
largegraphandto find patternscorrespondingto connected
subgraphsthat have alarge numberof vertex-disjoint em-
beddings.Specifically, thepatternsthatGREW findssatisfy
thefollowing twoproperties:

Property 1 The numberof vertex-disjoint embeddingsof
eachpatternis guaranteedto beat leastashigh astheuser-
suppliedminimumfrequency threshold.

Property 2 If a vertex contributesto thesupportof multi-
plepatterns{G1, G2, . . . , Gk} of increasingsize,thenGi is
asubgraphof Gi+1 for i = 1, . . . , k− 1.

The first propertyensuresthat the patternsdiscoveredby
GREW will befrequent.However, GREW is not guaranteed
to find all the vertex-disjoint embeddingsof eachpattern
that it reports,nor is it guaranteedto find all the patterns
thathave asufficiently largenumberof vertex-disjoint em-
beddings.As a result, GREW will tendto undercountthe
frequency of the patternsthat it discovers and will miss
somepatterns. Moreover, the secondproperty imposes
someadditional constraintson the types of patternsthat
it can discover, as it doesnot allow eachvertex to con-
tribute to the supportof patternsthat do not have a sub-
graph/supergraphrelationship.As a resultof theseproper-
ties, thenumberof patternsthat GREW discoversis signif-
icantly smallerto those discoveredby completealgorithms
suchasSIGRAM [22].

GREW discoversfrequentsubgraphsin aniterative fash-
ion. During eachiteration,GREW identifiesvertex-disjoint
embeddingsof subgraphsthat weredeterminedto be fre-
quentin previous iterationsandmergescertainsubgraphs
thatareconnectedto eachothervia oneor multiple edges.
This iterative frequentsubgraphmerging processcontinues
until thereareno suchcandidatesubgraphswhosecombi-
nationwill leadto a largerfrequentsubgraph.Note thatun-
like existing subgraphgrowing methodsusedby complete
algorithms[16, 19, 32,22], which increasethesizeof each
successivesubgraphby oneedgeor vertex atatime,GREW,
in eachsuccessive iteration,canpotentiallydoublethesize
of thesubgraphsthatit identifies.

The key featurethat contributes to GREW’s efficiency
is that it maintainsthe location of the embeddingsof the



previously identified frequentsubgraphsby rewriting the
input graph. As a result of this graphrewriting, the ver-
tices involved in eachparticularembeddingarecollapsed
togetherto form anew vertex (referredto asmulti-v ertex),
whoselabeluniquelyidentifiestheparticularfrequentsub-
graphthat is supportedby them. Within eachmulti-vertex,
the edgesthat are not part of the frequentsubgraphare
addedas loop edges. To ensurethat the rewritten graph
containsall the information presentin the original graph,
thesenewly createdloop-edges,aswell astheedgesof the
original graphthat are incident to a multi-vertex, areaug-
mentedto containinformationabout(i) the labelof the in-
cidentvertices,and(ii) theiractualend-pointverticeswithin
eachmulti-vertex (with respectto theoriginal graph). Us-
ing the above representation,GREW identifiesthe setsof
embedding-pairsto be merged by simply finding the fre-
quentedgesthat have the sameaugmentededgelabel. In
addition, GREW obtainsthe next level rewritten graphby
simply contractingtogethertheverticesthatareincidentto
theselectededges.

3.1 Graph Representation

GREW representstheoriginal input graphG aswell asthe
graphsobtainedafter eachsuccessive rewriting operation
in a unified fashion.This representation,referredto asthe
augmentedgraph, is designedto containall necessaryin-
formationby whichwecanrecover theoriginal inputgraph
G from any intermediategraphobtainedafterasequenceof
rewriting operations.

Eachvertex v andedgee of theaugmentedgraphĜ has
a labelassociatedwith it, which is denotedby l̂ (v) andl̂ (e),
respectively. In addition,unlike the original graphthat is
simple, the augmentedgraphcan containloops. Further-
more,therecanbemultiple loopedges associatedwith each
vertex andtherecanbemultipleedgesconnectingthesame
pair of vertices.However, whenever thereexist suchmulti-
ple loopsor edges,theaugmentedlabelof eachindividual
edgewill bedifferentfrom therest.

The label of eachvertex v in the augmentedgraphde-
pendson whetheror not it correspondsto a singlevertex
or a multi-vertex obtainedaftercollapsingtogethera setof
verticesthatareusedby anembeddingof a particularsub-
graph. In the former case,the label of the vertex is iden-
tical to its label in the original graph,whereasin the lat-
ter case,its label is determinedby the canonicallabeling
(Section2.1)of its correspondingsubgraph.Thiscanonical-
labeling-basedapproachensuresthatthemulti-verticesrep-
resentingthe embeddingsof the samesubgraphswill be
uniquelyassignedthesamelabel.

To properlyrepresentedgesthatareconnectedto multi-
vertices,theaugmentedgraphrepresentationassignsalabel
to eachedgethat is a tuple of five elements.For an edge
e = uv in an augmentedgraph Ĝ, this tuple is denoted

by (l̂ (u), l̂ (v), l (e), e. epid(u), e. epid(v)), where l̂ (u) and
l̂ (v) arethe labelsof the verticesu andv in Ĝ, l (e) is the
original label of the edgee, ande. epid(u) ande. epid(v)

aretwo numbers,referredto asendpoint identifiers, that
uniquely identify the specificpair of G’s verticeswithin
the subgraphsencapsulatedby u and v that e is incident
to. Theendpointidentifiersaredeterminedby first ordering
theoriginalverticesin u andv accordingto their respective
canonicallabeling, and then using their rank as the end-
point identifier. If anendpointis notamulti-vertex, but just
aplainvertex, theendpointidentifieris always setto zero.

Since the endpoint identifiers are derived from the
canonicallabelsof u andv, it is easyto seethat this ap-
proachwill correctly assignthe samefive elementsto all
theedgesthathave thesameoriginal labelandconnectthe
samepair of subgraphsat exactly thesamevertices.How-
ever, to ensurethat topologicallyequivalentedgescanbe
quickly identifiedby comparingtheir tuple representation,
the orderof the tuple’s elementsmustbe determinedin a
consistentfashion.For this reason,given anedgee = uv,
theprecisetuplerepresentationis definedasfollows:

(l̂ (u), l̂ (v), l (e), e. epid(u), e. epid(v))

if l̂ (u) < l̂ (v), or

if l̂ (u) = l̂ (v) ande. epid(u) ≤ epid(v)

or

(l̂ (v), l̂ (u), l (e), e. epid(v), e. epid(u))

if l̂ (u) > l̂ (v), or

if l̂ (u) = l̂ (v) ande. epid(u) > epid(v)

This consistent tuplerepresentationensuresthat all the
edgesthatsharethesamelabelin theaugmentedgraphcor-
respondto identicalsubgraphsin theoriginalgraph.

Note that loops and multiple edgescan also be rep-
resentedby thesefive-elementtuples,and the augmented
graphrepresentationtreatsthemlikeordinaryedges.

3.2 GREW-SE—Single-EdgeCollapsing
The simplestversion of GREW, which is referred to as
GREW-SE, operatesontheaugmentedgraphandrepeatedly
identifiesfrequentlyoccurringedgesandcontractsthemin
aheuristicfashion.

The overall structureof GREW-SE is shown in Algo-
rithm 1. It takes asinput theoriginal graphG andthemin-
imum frequency threshold f , andon completion,it returns
the setof frequentsubgraphsF that it identified. During
eachiteration(loop startingat line 5), it scansthe current
augmentedgraphĜ anddeterminesthesetof edge-typesE
thatoccurat least f timesin Ĝ. This is achievedby com-
paringthelabelsof thevariousedgesin Ĝ anddetermining
thoseedge-typesthatoccurat least f times.



Algorithm 1 GREW-SE(G, f )

1: ⊲ G is theinputgraph.
2: ⊲ f is theminimumfrequency threshold.
3: F ← ∅

4: Ĝ← augmentedgraphrepresentationof G
5: while true do
6: E ← all edge-typesin Ĝ thatoccurat least f times
7: orderE in decreasingfrequency
8: for eachedge-typee in E do
9: Go← overlapgraphof e

10: ⊲ eachvertex in Go correspondsto anembeddingof e in Ĝ
11: MMIS ← obtainMIS for Go
12: e. f ← |MMIS|

13: if e. f ≥ f then
14: F ← F ∪ {e}
15: for eachembeddingm in MMIS do
16: markm
17: if nomarkededgein Ĝ then
18: break
19: updateĜ by rewriting all of its markededges
20: return F

From the discussionin Section3.1, we know that each
of these edge-typesrepresentidenticalsubgraphs,andasa
resulteachedge-typein E canleadto a frequentsubgraph.
However, becausesomeverticescanbe incident to multi-
ple embeddingsof the same(or different) frequentedge-
types,thefrequenciesobtainedat this steprepresentupper-
bounds,and the actualnumberof the vertex-disjoint em-
beddingscanbesmaller. For this reason,GREW-SE further
analyzestheembeddingsof eachedge-typeto selectamax-
imal setof embeddingsthatdo not shareany verticeswith
eachotheror with embeddingsselectedpreviouslyfor other
edge-types.Thisstep(loopstartingat line 8) is achievedby
constructingtheoverlapgraphGo for thesetof embeddings
of eachedge-typee andusinga greedymaximal indepen-
dentsetalgorithm[10] to quickly identify a large number
of vertex-disjoint embeddings.If the sizeof this maximal
set is greaterthan the minimum frequency threshold,this
edge-typesurvivesthecurrentiterationandtheembeddings
in theindependentsetaremarked.Otherwisetheedge-type
is discardedasit doesnot leadto a frequentsubgraphin the
currentiteration. After processingall the edge-types,the
contractionoperationsareperformed,graphĜ is updated,
andthenext iterationbegins.

In order to illustrate someof the stepsperformedby
GREW-SE, let us take the simple exampleshown in Fig-
ure1 in whichtheoriginalgraph(Figure1 (a))containstwo
squaresconnectedto eachotherby anedge.Assumeall the
edgeshave thesamelabelat thebeginning,while thereare
two distinctvertex labels(thewhiteandtheslightly shaded
ones). Edgecontractionprocessproceedsas illustratedin
(b), (c), (d) and(e), assumingthe edge-typesareselected
in decreasingorder of the raw frequency (eachedge-type
is representedby a capital letter andthe raw frequency of
eachedge-typeis also shown in the figure) . Every time

anedgeis contracted,a new multi-vertex is createdwhose
label identifiesa subgraphthat the multi-vertex represents
(shown by the differencein shadingandfilling patternof
vertices).Note thatat theendof this sequenceof edgecol-
lapsing,the two squaresoriginally existed in Figure1 (a)
arerepresentedby twoblackverticesin Figure1 (e).

3.3 GREW-M E—Multi-Edge Collapsing

As discussedin Section3.1, a result of successive graph
rewriting operationsis the creationof multiple loops and
multiple edgesin Ĝ. In many cases,theremaybethesame
setof multiple edgesconnectingsimilar pairsof verticesin
Ĝ, all of which canbe collapsedtogetherto form a larger
frequentsubgraph.GREW-SE canpotentiallyidentify such
asubgraphby collapsingasequenceof single-edges(which
afterthefirst iteration,eachsuccessiveiterationwill involve
loop edges).However, this will requiremultiple iterations
andowing to theheuristicnatureof theoverallalgorithm,it
mayfail to orchestratethepropersequenceof steps.

To addressthis problem,we developedthe GREW-ME

algorithmthat in additionto collapsingverticesconnected
via asingleedge,it alsoanalyzesthesetsof multipleedges
connectingpairsof verticesto identify any frequentsubsets
of edges.This is achieved by usinga traditional frequent
closeditemsetmining algorithm(e.g.,[27, 36, 28]) asfol-
lows. For eachpair of verticesthatareconnectedvia mul-
tiple edges(or a singlevertex with multiple loops),GREW-
ME createsa list that containsthemultiple edge-typesthat
are involved, and treatseachlist as a transactionwhose
items correspondsto the multiple edges. Then, by run-
ningaclosedfrequentitemsetminingalgorithm,GREW-ME

findsall the frequentsetsof edgeswhoseraw frequency is
above theminimumthreshold.Eachof thesemultiple sets
of edgesis treatedasa differentedge-type,andGREW-ME

proceedsin a fashionidenticalto GREW-SE.

3.4 Discussion

Asdiscussedin thebeginningof Section3, thefrequentsub-
graphsdiscoveredby GREW satisfyproperties1 and2. In
general,thesepropertiescanbesatisfiedby multiplesetsof
frequentsubgraphsthat in many casesarein conflict with
eachother. That is, frequentsubgraphsfrom differentsets
cannotbearbitrarily combinedinto a new setandstill sat-
isfy thesetwo properties.

To alargeextent,theparticularsetof frequentsubgraphs
that are identified by GREW is determinedby (i) the or-
der in which the different edge-typesare analyzedto de-
terminetheir vertex-disjoint embeddings,and(ii) the par-
ticular setof maximalindependentembeddingsthatarese-
lectedby the maximal independentsetalgorithm. The or-
der of the edge-typesis importantbecauseduring eachit-
eration,a vertex of Ĝ canonly participatein a singlecon-
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Figure1. Sequenceof edgecollapsingoperationsperformed by GREW-SE

tractionoperation.As a result,edge-types consideredear-
lier have agreaterchancein leadingto a large numberof
vertex-disjoint embeddingsandthusresultingin a frequent
subgraph.At the sametime, the particularmaximalsetof
independentembeddingsthat is selectedcandirectly or in-
directly impact the discoveredsubgraphs.The direct im-
pactoccurswhen the sizeof the selectedindependentset
happensto besmallerthantheminimumfrequency thresh-
old (whenthe maximumsizeindependentset is above the
threshold),in which casethe subgraphwill not be identi-
fied asfrequent.The indirect impactoccurswhenthecho-
senindependentsetnegatively affectsthenumberof vertex-
disjointembeddingsof someof theedge-typesthatarecon-
sideredafterward.

GREW performseachof thesestepsby employing rela-
tively simpleheuristicsthat aredesignedto maximizethe
frequency of the discoveredpatterns.Specifically, GREW

ordersthedifferentedge-typesin decreasingraw frequency
and usesa greedymaximal independentset algorithm to
identify thelargestpossibleindependentset.However, each
of thesetwo stepscanbeperformedusingdifferentheuris-
tics thatcanguide/biasGREW to find/preferonesetof sub-
graphsover theothers.

Specifically, in thecourseof developingGREW, we ex-
perimentedwith a numberof differentschemesfor eachof
thesetwo steps.For example,we developeda schemethat
insteadof usingtheraw frequency of eachedge-type,it used
the greedymaximal independentsetalgorithmto estimate
the numberof vertex-disjoint embeddingsthat it has,and
sorted theedge-types basedon this estimate.Similarly, we
developedaschemethatselectedthesetof independentem-
beddingssuchthat the rewriting on thoseembeddingswill
leadto theidenticalor similar local structureafter thecon-
traction. The motivation behindthis heuristicis to prefer
the embeddingsthat have a betterchanceto grow into a
largerfrequentsubgraphin subsequentiterations. Our ex-
perimentswith bothof theseschemesshowedthat they led
to differentsubgraphs,althoughtheoverallnumberandsize
of thediscoveredsubgraphsdid notchangedramatically.

4 Mining a Graph using GREW

A key limitation of GREW is that it tendsto find a very
smallnumberof frequentsubgraphscomparedto complete
algorithms[23, 22]. This is primarily dueto the fact that

its graphrewriting-basedapproachsubstantiallyconstraints
thesetsof frequentsubgraphsthatareallowedto haveover-
lapping embeddings(property 2 in Section3), and sec-
ondarydueto the fact that it underestimatesthe frequency
of eachsubgraphandconsequentlyit may misssubgraphs
thatareactuallyfrequent.

However, becauseof its low computationalrequire-
ments,GREW canbe usedasa building block to develop
meta-strategies, whichcanbeusedto effectively mine very
large graphsin reasonableamountof time. In the restof
this sectionwe presenttwo suchschemes.The first uses
GREW to find a diversesetof frequentsubgraphsthat can
cover the entire lattice of frequentsubgraphs,whereasthe
secondschemeusesGREW to find a set of frequentsub-
graphswhoseembeddingscancover asmuchof the input
graphaspossible.

Thefirst setof subgraphscanbeusedto obtainthesame
type of patternsasmostobtainedby completealgorithms,
whereasthesecondsetof subgraphscanbeusedto obtaina
conciserepresentationof theinput graphwhich canbeem-
ployed for summarizationpurposesor asan input to other
datamining tasks.

4.1 Covering the Pattern Lattice

The approachthat we adoptedto find a diversesetof fre-
quentsubgraphsis composedof two elements.First, since
GREW tendsto undercountthe frequency of thesubgraphs
that it discovers,we minetheinput graphwith a lower fre-
quency threshold.Second,sinceGREW findsa limited set
of patterns,we invoke GREW multiple times,eachtime bi-
asingit toward discovering a differentsetof frequentsub-
graphs,andreturntheunionof thefrequentsubgraphsthat
werefoundacrossthemultiple runs.

We developedtwo different schemesfor biasing each
successiverun. Bothof themrely on theobservationsmade
in Section3.4, which identified GREW’s key operations
that affect the setof subgraphsthat it identifies. The first
scheme,insteadof consideringthe differentedge-typesin
decreasingorderof their raw frequency, it considersthem
in a randomorder, which is different for eachsuccessive
run. Sinceeachrun of GREW will tendto favor different
setsof edge-types,thefrequentsubgraphsidentifiedin suc-
cessive runswill be somewhat different. We will refer to
thisasthesimplerandomizationscheme.



Thesecondschemeusesthesamerandomtraversalstrat-
egy asbefore,but alsotries to biasthepatternsto different
edgesfrom thoseusedearlier. This is doneby maintaining
statisticsas to which andhow many timeseachedgewas
usedto supporta frequentsubgraphidentifiedby earlierit-
erations,andbiases thealgorithmthatselectsthemaximal
independentsetof embeddingsso that it will preferedges
thathavenotbeenused(or usedinfrequently)in previously
discoveredsubgraphs.Thus,thisschemetriesto learnfrom
previous invocations,andfor this reasonit will bereferred
to astheadaptiverandomizationscheme.

4.2 Covering the Graph

The approachthat we adoptedto find frequentsubgraphs
whoseembeddingscancoverasmuchof theoriginalgraph
aspossiblecombinestherandomizationschemesusedear-
lier with thewell-known sequentialcoveringparadigmused
for building rule-basedclassifiers[26].

Specifically, aftereachrun of thesimplerandomization
scheme,everyedgethatbelongsto anembeddingsof a fre-
quentsubgraphis removed. Thesizeof theinput subgraph
swiftly decreases,andtheremoval of these edgesforcesthe
algorithmto useunusededges.As shown in Section5.3.1,
this schemeenablesus to cover the input datasetwith fre-
quentsubgraphsby performinga smallnumberof different
runs.

5 Experimental Evaluation

In this section,we studythe performanceof the proposed
algorithmswith variousparametersandreal datasets.All
experimentsweredoneon Intel Pentium4 processor(2.6
GHz) machineswith 1 Gbytesmain memory, runningthe
Linux operatingsystem. All the reportedruntimesare in
seconds.

5.1 Datasets

We evaluatedthe performanceof GREW on four different
datasets,eachobtained froma differentdomain. The ba-
sic characteristicsof thesedatasetsare shown in Table 1.
Note thateventhoughsomeof thesegraphsconsistof mul-
tiple connectedcomponents,GREW treatsthemasonelarge
graph.

TheAviationdatasetis obtained fromtheSUBDUEweb
site1. This datasetis originally from the Aviation Safety
ReportingSystemDatabase.Thedirectededgesin theorig-
inal graphdatawereconvertedinto undirectedones. The
VLSI datasetwasobtained fromthe InternationalSympo-
siumonPhysicalDesign’98 (ISPD98)benchmarkibm052

andcorrespondsto the netlist of a real circuit. The netlist

1http://cygnus.uta.edu/subdue/databases/index.html
2http://vlsicad.cs.ucla.edu/∼cheese/ispd98.html

Table1. Datasetsusedin the experiments

Dataset Vertices Edges
Labels Connected

Vertex Edge Components
Aviation 101,185 133,113 6,173 52 1,049
Citation 29,014 294,171 742 1 3,018
VLSI 29,347 81,353 11 1 1
Web 255,798 317,247 3,438 1 25,685

wasconvertedinto a graphby usinga star-basedapproach
to replaceeachnet (i.e., hyperedge)by a setof edges.The
Citationdatasetwascreatedfrom thecitationgraphusedin
KDD Cup20033. Eachvertex in thisgraphcorrespondsto a
documentandeachedgecorrespondsto a citationrelation.
Becauseouralgorithmsarefor undirectedgraphs,thedirec-
tion of thesecitationswasignored.Sincetheoriginalgraph
hasnomeaningfullabelsoneithertheverticesor theedges,
we assignedonly to verticeslabelsobtained fromthe sub-
domainsof the first author’s email address.Self-citations
basedon this vertex assignmentwereremoved.Finally, the
Webdatasetwasobtained fromthe2002GoogleProgram-
ming Contest4. Theoriginal datasetcontainsvariousweb-
pagesandlinks from various“edu” domain.We converted
the datasetinto an undirectedgraphin which eachvertex
correspondsto a web-pageandan edgeto a hyperlink be-
tweenweb-pages.In creatingthis graph,we keptonly the
links between“edu” domainsthatconnectedsitesfrom dif-
ferentsubdomains.Every edgehasan identicallabel (i.e.,
unlabeled),whereaseachvertex wasassigneda labelcorre-
spondingto thesubdomainof theweb-server.

5.2 SingleInvocationPerformance
Table2 shows theruntime,thenumberof frequentpatterns
found,andthesizeof thelargestfrequentpatternsobtained
by GREW-SE andGREW-ME for the four datasets.It also
shows the faction of the verticesand edgesin the input
graphthat arenot coveredby any of the frequentpatterns.
In calculatingthesevalues,weexcludedtheverticesandthe
edgesthatcannotbefrequentbecauseof their labels.

Both GREW-SE and GREW-ME canfind large frequent
patternsin a reasonableamountof time. For example,
GREW-SE canmine the Web dataset,which containsover
250,000vertices,with the minimum frequency of five in
aroundfour minutes. Looking at the characteristicsof the
algorithms,astheminimumfrequency thresholddecreases,
we canseethat, asexpected,they areable to find both a
largernumberof frequentpatternsandpatternsthat arein
generallonger.

Comparingthe relative performanceof GREW-SE and
GREW-ME, wecanseethatoverall, they performquitesim-
ilarly, as they both find similar numberof patterns,and
their longestpatternsareof similar sizes. However, there

3http://www.cs.cornell.edu/projects/kddcup/datasets.html
4http://www.google.com/programming-contest/



Table2. GREW-SE and GREW-M E

Dataset Method f
t

# Size
Unused

[sec] vs es
Aviation GREW-SE 1000 336 38 13 22 43

500 213 72 16 41 57
200 129 117 32 49 62
100 2151 175 53 56 68

GREW-ME 1000 370 38 13 22 43
500 396 72 16 41 57
200 ME
100 ME

Citation GREW-SE 100 9 87 3 55 63
50 20 150 7 63 78
20 48 306 16 65 90
10 105 533 31 59 94
5 683 1061 63 50 96

GREW-ME 100 18 86 3 55 63
50 34 150 7 63 78
20 74 305 8 64 91
10 130 546 25 59 94
5 555 1077 47 50 96

VLSI GREW-SE 100 20 54 17 14 77
50 20 84 18 9 75
20 23 145 43 6 73
10 23 239 27 4 72
5 29 445 33 3 70

GREW-ME 100 23 55 15 14 77
50 23 90 18 8 74
20 24 146 20 6 73
10 26 238 36 4 71
5 38 417 44 3 70

Web GREW-SE 100 6 296 1 85 80
50 15 554 3 84 85
20 45 1254 7 80 86
10 89 2430 9 75 86
5 259 4822 13 69 84

GREW-ME 100 8 296 1 85 80
50 20 553 3 84 85
20 66 1256 5 80 86
10 220 2461 14 74 86
5 ME

Note. “ME” indicatesthecomputationwasaborted
becauseof memoryexhaustion.
f : theminimumfrequency threshold
t : runtimein seconds
#: thenumberof frequentpatternsdiscovered
Size:thesizeof thelargestfrequentpatternsfound
Unused:thefraction(%) of vertices(vs) andedges(es)
in theinputgraphthatarenot coveredby any of the
frequentpatterns

are somedatasetdependencies.For example, GREW-SE

performsbetter for the Citation dataset,whereasGREW-
ME performsbetterfor the VLSI dataset.In termsof run-
time, GREW-ME is somewhatslower thanGREW-SE. This
is because(i) GREW-ME incurs theadditional overhead
of finding closedfrequentitemsets,and(ii) it processesa
largernumberof distinct edge-types(aseachcloseditem-
setis representedby a differentedge-type).In addition,the
memoryoverheadassociatedwith storingtheselargernum-
ber of edge-typesis the reasonwhy GREW-ME run out of
memoryfor someparametercombinationswith the Avia-
tion andWebdatasets.Wearecurrentlydevelopingalterna-
tiveimplementationsandexploreschemestoselectthemost
promisingcloseditemsets,to reducethememoryoverhead
of GREW-ME.

Note that fromtheresultsin Table2 we canseethat the
percentageof unusedverticesandedgesdoesnotmonotoni-

cally decreaseaswedecreasetheminimumfrequency. This
is primarily an artifact of the way that we computethese
statistics,asthefractionof theusedvertices/edgesover the
numberof vertices/edgesthat meettheminimumfrequency
threshold.As aresult,astheminimumfrequency decreases,
the baselinefrequencieswill tend to increase,leading to
higherfractions. In all cases,the absolutenumberof ver-
ticesandedgesthatwereusedovertheentiresetof frequent
patternsdecreaseswith theminimumfrequency.

Example Subgraphs To illustratethetypesof subgraphs
that GREW can discover, we analyzedthe subgraphsthat
wereidentifiedin theWebdataset.Recallfrom Section5.1
thateachvertex in thisgraphcorrespondsto anactualweb-
page,eachedgeto a hyperlink betweentwo web-pages,
and the vertex-labels to the subdomainof the server that
hoststheweb-page.Moreover, this graphwasconstructed
by removing any hyperlinksbetweenweb-pagesthat have
the samesubdomain. As a result, a frequentlyoccurring
subgraphwill representa particularcross-linkingstructure
amonga specificsetof institutionsthatoccursoften,andit
canidentify commoncross-universitycollaborations,inter-
disciplinaryteams,or topic-specificcommunities.

Figure2 shows two representative examplesof thesub-
graphsdiscovered by GREW. The first subgraph(Fig-
ure 2(a)) hasa star topology and connectstogethervari-
ousweb-serversthatarepartof California’sUniversitySys-
tem. The star-node correspondsto web-servers that are
part of the University of California’s Office of the Pres-
ident with variousweb-servers that are locatedat Berke-
ley, UCI, UCLA, UCSD, and UCSF. The secondsub-
graph(Figure 2(b)) hasa more complex topology with a
higher degreeof connectivity and connectstogethervari-
ousweb-serversatHarvard,NationalRadioAstronomyOb-
servatory(nrao.edu),andSpaceTelescopeScienceInstitute
(stsci.edu).An analysisof the completeuniform resource
locators(URLs)of theembeddingsof thissubgraphshowed
that all the web-pageshad to do with astronomyand as-
trophysics. Theseexamplessuggestthat the patternsthat
GREW findsareinterestingandcanbeusedto gain insights
on theunderlyinggraphdatasets.

(b) Astronomyrelatedwebpages(a)Universityof CaliforniaSystem

nrao.edu

harvard.edu

stsci.edu

harvard.edu harvard.eduucop.edu

ucsf.edu ucsd.edu

ucla.eduuci.edu

berkeley.eduberkeley.edu

Figure 2. Examples of patterns discovered by
GREW



5.3 Multiple InvocationPerformance

As discussedin Section4, GREW canbe usedasa build-
ing blockto developeffectivemeta-strategiesthatmine very
largegraphsanddiscover a largesetof frequentsubgraphs
that satisfycertaincharacteristics.In the restof this sec-
tion we evaluatetheperformanceof therandomizationand
sequentialcoveringstrategiesdiscussedin thatsection.

5.3.1 Simpleand AdaptiveRandomizationSchemes

Table 3 shows the performanceand characteristicsof the
subgraphsdiscoveredby multiple runs (rangingfrom one
to ten)of GREW-SE andGREW-ME for thecasesin which
thesemultiple runs were performedusing the simple and
the adaptive randomizationschemes.

From theseresultswe canseethat the two randomiza-
tion schemesarequite effective in allowing GREW to find
a largernumberof frequentsubgraphs.As the numberof
runsincreases,boththenumberof frequentpatternsandthe
sizeof thelargestfrequentpatternsincreasemonotonically.
As expected,thereis a certaindegreeof overlapbetween
thepatternsfoundby differentruns,andfor this reasonthe
distinctnumberof subgraphsdoesnot increaselinearly. In
addition,thesetof verticesandedgesof theoriginal graph
thatarecoveredby thediscoveredfrequentsubgraphsalso
increaseswith thenumberof runs.For all thedatasets,after
invoking GREW-SE andGREW-ME ten times,theresulting
setof frequentsubgraphscover morethan50%of thever-
tices and/oredgesof the input graph. This suggeststhat
GREW is able to find a diverseset of frequentsubgraphs
thatcapturesagoodfractionsof theinputgraph.

Comparingthe relative performanceof GREW-SE and
GREW-ME within thecontext of this randomizationframe-
work, wecanseethatGREW-ME tendsto find alargernum-
berof distinct frequentsubgraphswhosemaximumsizeis
largerthanthesubgraphsdiscoveredby GREW-SE. This in-
dicatesthat GREW-ME’s ability to identify multiple edges
andcollapseverticesthat areconnectedby thembecomes
moreeffective in increasingthediversityof thediscovered
patternsin thecontext of this randomizationstrategy.

Finally, comparingthe relative performanceof the two
randomizationschemeswe can seethat, as expected,the
adaptive randomizationschemeimproves the patterndis-
covery processas it finds a largernumberof distinct pat-
ternsthanthe simplerandomization.However, the overall
sizeof thepatternsidentifiedby bothschemesremainsthe
same,as they both cover similar fractionsof the vertices
and/oredgesof theinputgraph.

Pattern Lattice Coverage The static and adaptive ran-
domizationschemeswereintroducedasa meta-strategy to
identify the setof frequentsubgraphsthat canbe usedto

approximatethe subgraphsdiscovered by a completeal-
gorithm; that is, cover the entire patternlattice. Unfor-
tunately, it is not possibleto evaluatethe effectivenessof
theseschemeson thefour datasetsusedin ourbenchmarks,
becauseowing to their sizeand/ordensity, completealgo-
rithmscannotfinishin areasonableamountof time. For this
reason,we evaluatedtheeffectivenessof this meta-strategy
on a smallerdatasetconsistingof variouschemicalcom-
pounds(containing51,101verticesand54,887edgeswith
28 vertex-labelsand3 edge-labels),for which the existing
completealgorithmscanoperateeffectively.

Table4 showstheresultsobtainedby thecompletealgo-
rithm VSIGRAM andGREW-SE with thestaticrandomiza-
tion scheme.This tableshows theresultsobtainedby VSI-
GRAM with aminimumfrequency thresholdof 100,andthe
resultsobtainedby GREW-SE after1,10,and100runsanda
minimumfrequency thresholdsof 100,50,and10. Thelast
columnof this table(labeled“Coverage”)shows the frac-
tion of the frequentpatternsin the lattice that arecovered
byany of thefrequentpatternsdiscoveredby GREW-SE (see
Section2 for thedefinitionof coverage).

Theseresultsshow that the strategy discussedin Sec-
tion 4.1, which invokes GREW multiple times while de-
creasingthe minimum frequency threshold,is quite effec-
tive in identifying the setof subgraphsthat coversa very
large fraction of the overall lattice of frequentsubgraphs.
Moreover, the overall amountof time requiredby GREW

is smallerthan thatrequiredby VSIGRAM. For example,
even after running GREW-SE 100 times with a minimum
frequency threshold10, its runtimeis still abouthalf of that
of VSIGRAM, while the patternsfound by GREW-SE can
cover97%of thefrequentpatternlattice.

Table4. Coverageof FrequentPattern Lattice
VSIGRAM GREW-SE Coverage

f t [sec] # f Runs t [sec] # Size [%]
100 1161 13649 100 1 4 62 7 3

10 49 164 10 3
100 579 343 10 9

50 1 9 102 9 3
10 46 338 10 8

100 594 765 12 33
10 1 3 485 40 46

10 59 2272 40 70
100 560 8992 51 97

Note. for GREW-SE, thesimplerandomizationis used.
f : theminimumfrequency threshold
t : runtimein seconds
Runs:thenumberof runs
#: thenumberof frequentpatternsdiscovered
Size:thesizeof thelargestfrequentpatternsfound
Coverage:thefraction(%) of frequentpatternsin thelatticethatare
coveredby any of thefrequentpatternsdiscoveredby GREW-SE

5.3.2 SequentialCovering Scheme

Table5showstheresultsobtainedby GREW-SE andGREW-
ME whentheirsuccessiverunswereperformedusingthese-



Table3. Simpleand AdaptiveRandomization

Dataset f Method
SimpleRandomization AdaptiveRandomization

Runs t
# Size

Unused t
# Size

Unused
[sec] vs es [sec] vs es

Aviation 100 GREW-SE 1 23 245 14 54 67 18 245 14 54 67
2 46 386 14 44 59 35 386 14 44 59
5 261 795 17 28 47 166 793 19 30 48

10 423 1426 22 20 39 260 1476 19 19 39
GREW-ME 1 49 233 14 55 68 37 233 14 55 68

2 193 363 22 44 59 144 363 22 44 59
5 345 754 22 28 47 252 754 22 23 47

10 615 1422 22 19 40 634 1434 40 18 39
Citation 10 GREW-SE 1 39 659 5 54 94 41 659 5 54 94

2 82 881 5 45 92 86 881 5 44 92
5 231 1340 7 36 88 224 1365 5 35 87

10 461 1912 7 31 82 453 1940 8 30 80
GREW-ME 1 188 658 5 56 94 189 658 5 56 94

2 367 940 6 46 92 358 936 7 46 92
5 899 1527 7 37 88 916 1519 9 36 87

10 1843 2311 8 32 82 2683 2319 9 30 80
VLSI 10 GREW-SE 1 12 394 20 6 73 12 389 21 6 73

2 25 712 20 2 61 24 674 34 1 58
5 74 1372 20 1 42 62 1452 34 0 34

10 146 2335 21 0 27 140 2416 34 0 16
GREW-ME 1 37 509 20 10 73 37 509 18 10 74

2 83 959 22 3 58 74 933 21 3 57
5 235 2049 30 1 38 202 1925 22 0 31

10 440 3547 30 0 25 362 3403 27 0 14
Web 10 GREW-SE 1 298 2716 9 74 86 199 2716 9 74 86

2 393 3268 9 69 82 395 3273 13 67 80
5 992 4095 15 62 74 994 4155 13 58 70

10 1970 4871 15 56 67 1974 4881 13 51 61
GREW-ME 1 805 2719 14 74 86 550 2719 14 74 86

2 1084 3249 14 69 82 978 3257 14 67 80
5 2578 4138 16 62 74 2464 4158 14 58 70

10 5074 4945 16 57 67 5175 4979 15 51 61
Note. f : theminimumfrequency threshold
Runs:thenumberof randomizedruns
t : runtimein seconds
#: thenumberof frequentpatternsdiscovered
Size:thesizeof thelargestfrequentpatternsfound
Unused:thefraction(%) of vertices(vs) andedges(es)in theinputgraphthatarenot covered
by any of thefrequentpatterns

quentialcoveringscheme,whichwasintroducedasameta-
strategy to identify asetof frequentsubgraphsthatcoversas
many of theverticesand/oredgesof the input graph(Sec-
tion 4.2). The combinationsof tunableparametersof the
experimentareidenticalto theones usedin Section5.3.1.

Fromtheseresultswecanseethatin general,thisscheme
identifiespatternsthat cover a larger fraction of the input
graph, when comparedto the characteristicsof the sub-
graphsdiscoveredby thetwo randomizationstrategies(Ta-
ble 3). However, we shouldalsonote thatthe sizeof the
largestpatternsfoundby thesequentialcoveringschemeis
smallerthanthesizeof thepatternsfoundby thesimpleand
the adaptive randomizationscheme.Consideringthemech-
anismof thesequentialcoveringscheme,this is inevitable.
The simple and adaptive randomizationschemescan find
patternswhoseembeddingsmayoverlap.However, theem-
beddingsof the patternsfound by the sequentialcovering
schemedo not overlap. Becauseof this reason,the setof
patternsfound by the sequentialcovering schemetend to
have lessdiversityandbesmaller.

5.4 Comparisonwith SUBDUE

We ran SUBDUE [12] version5.1.0 (with the default set
of parameters)on our four benchmarkdatasetsand mea-
suredtheruntime,thenumberof patternsdiscovered,their
size,andtheirfrequency. AlthoughwegaveSUBDUEeight
hoursto mineeachof thedatasets,SUBDUEcouldonly fin-
ish within the eight hour window for the Aviation dataset.
It took SUBDUE morethan6 hoursanddiscoveredthree
most interestingpatternsaccordingto the MDL principle.
Their sizesareeither9 or 10 andtheir frequenciesareall
13. On the other hand, as shown in Table 3, GREW-SE

andGREW-ME with the adaptiverandomizationschemecan
find patternsup to size19 and40, respectively whosefre-
quency is atleast100,whichis about10timesmorethanthe
frequency of thebestthreepatternsreportedby SUBDUE.
The runtimeof GREW-SE and GREW-ME arealsosignifi-
cantlyshorterthan thatof SUBDUE.GREW-SE spends260
secondsandGREW-ME spends634secondsfor the10 ran-
domizedruns.



Table5. SequentialCovering Scheme

Dataset f Method Runs
t

# Size
Unused

[sec] vs es
Aviation 100 GREW-SE 1 7 245 14 54 67

2 9 274 14 49 63
5 17 337 14 36 53

10 28 403 14 22 41
GREW-ME 1 17 233 14 55 68

2 52 267 14 49 69
5 435 332 14 37 53

10 ME
Citation 10 GREW-SE 1 41 659 5 54 94

2 81 905 7 44 92
5 224 1434 8 34 86

10 452 9993 9 29 78
GREW-ME 1 188 658 5 56 94

2 372 936 7 45 92
5 902 1571 7 34 86

10 1799 2283 9 30 78
VLSI 10 GREW-SE 1 11 389 21 6 73

2 21 740 21 1 52
5 36 1163 21 0 15

10 41 1213 21 0 2
GREW-ME 1 36 509 18 10 74

2 73 899 18 2 53
5 139 1554 22 0 14

10 147 1625 22 0 1
Web 10 GREW-SE 1 472 2716 9 74 86

2 877 3412 9 67 80
5 1963 4412 11 57 69

10 3783 5078 11 51 60
GREW-ME 1 1179 2719 14 74 86

2 1952 3398 14 67 80
5 3476 4410 14 57 69

10 5768 5084 14 51 61
Note. “ME” indicatesthecomputationwasaborted
f : theminimumfrequency threshold
Runs:thenumberof runs
t : runtimein seconds
#: thenumberof frequentpatternsdiscovered
Size:thesizeof thelargestfrequentpatternsfound
Unused:thefraction(%) of vertices(vs) andedges(es)in the
inputgraphthatarenot coveredby any of thefrequentpatterns

6 RelatedResearch

The previous researchon finding frequent subgraphsin
graphdatasetsfallsundertwo categories.Thefirst category
containsalgorithmsthat find subgraphsthat occur multi-
ple times in a single large graph [12, 9, 31, 22] and are
directly relatedto the algorithmspresentedin this paper,
whereasthe secondcategory containsalgorithmsthat find
subgraphsthatoccurfrequentlyacrossa databaseof small
graphs[34, 5, 15, 18, 20, 17, 32,1], Betweenthesetwo
classesof algorithms,thosedevelopedfor the latter prob-
lemarein generalmorematureasthey havemoderatecom-
putationalrequirementsandscaleto largedatasets.

The most well-known algorithm for finding recurring
subgraphsin a singlelarge graphis the SUBDUE system,
originally developedin 1994,but hasbeenimproved over
the years[12, 2, 4, 3]. SUBDUE is an approximatealgo-
rithm andfindspatternsthatcancompresstheoriginal input
graphby substitutingthosepatternswith asinglevertex. In
evaluatingtheextentto whichaparticularpatterncancom-
pressthe original graph it usesthe minimum description
length(MDL) principle,andemploys a heuristicthebeam

searchto narrow the search-space.Theseapproximations
improve its computationalefficiency but at thesametime it
preventsit from findingsubgraphsthatareindeedfrequent.
Motodaetal.developedanalgorithmcalledGBI [34] which
is similar to SUBDUEandlaterproposedtheimprovedver-
sion calledB-GBI [23] adoptingthe beamsearch.B-GBI
is theclosestalgorithmto our study, in thesensethatboth
performthe samebasicoperationto identify frequent pat-
ternsbasedon edgecontraction. However, while B-GBI
focusesononeedge-typeata timewhencollapsingtheem-
beddingsof theedge-typein agreedymanner, GREW iden-
tifies andcontractsmorethanoneedge-typesconcurrently
usinga greedyMIS algorithm.BecauseB-GBI workson a
singleedge-typeat attime, it usesthebeamsearchto com-
pensatethe greedynatureof the algorithm. On the other
hand,we adoptedthe randomizedprocessto increasethe
diversity of frequentpatternsto be found, on top of the
concurrentedgecollapsingschemeof GREW. Furthermore,
ouralgorithmemploysvariousheuristicssuchasmulti-edge
collapsingandthe adaptive andsequentialschemesto en-
surethe coverageof the input graphby the frequent pat-
terns. Unfortunately, becausethe current implementation
of B-GBI is mainly designedfor a set of graphs,not for
a single large graph,it cannot be directly comparedwith
GREW. GhazizadehandChawathe[9] developedan algo-
rithm calledSEuSthat usesadatastructurecalledsummary
to constructa compactrepresentationof the input graph.
Thissummaryis obtainedby collapsingtogetherall thever-
ticesof theinputgraphthathave thesamelabelandis used
to quickly prune infrequentcandidates.As the authorsin-
dicate,this summarydata-structureis usefulonly whenthe
input graphcontainsa relatively small numberof frequent
subgraphswith high frequency, andis not effective if there
arelargenumberof frequentsubgraphswith low frequency.
Vanetik,GudesandShimony [31] presentedan algorithm
for finding all frequentlyoccurringsubgraphsfrom a sin-
gle labeledundirectedgraphusingthemaximumnumberof
edge-disjointembeddingsof agraphasameasureof its fre-
quency. Eachsubgraphis representedby its minimumnum-
ber of edge-disjointpaths(path number), andusea level-
by-level approachto grow thepatternsbasedon their path-
number. They presenteda limited numberof experiments
illustratingthefeasibilityof suchcandidatesubgraphgener-
ationapproach;however, theirexperimentsinvolvedgraphs
with a very small numberof vertices(around100) mak-
ing it impossibleto determineits scalability. Kuramochi
andKarypisdevelopedanalgorithmcalledSIGRAM to find
frequentconnectedsubgraphsfrom a singlelabeledsparse
undirectedgraph [22]. SIGRAM followed the definition
of the frequency that Venetik, Gudesand Shimony pro-
posed[31], andfurtherproposedheuristicsto acceleratethe
miningprocessin thehorizontalandverticalparadigm.

Five different algorithmshave beendevelopedcapable



of finding all frequentlyoccurringsubgraphsin a database
of graphswith reasonablecomputationalefficiency. These
are the AGM algorithm developedby Inokuchi et al [15,
17], the FSG algorithm developed by Kuramochi and
Karypis [20, 21], the chemicalsubstructurediscovery al-
gorithmdevelopedby Borgelt andBerthold[1], thegSpan
algorithm developedby Yan and Han [32], and most re-
centlyFFSMby Huan,WanandPrins[13]. TheAGM al-
gorithminitially developedto find frequentlyinducedsub-
graphs[15] and later extendedto find arbitrary frequent
subgraphs[17] discovers the frequentsubgraphsusing a
breadth-firstapproach,and grows the frequentsubgraphs
one-vertex-at-a-time. To distinguisha subgraphfrom an-
other, it usesa canonicallabelingschemebasedon thead-
jacency matrix representation.TheFSG algorithminitially
presentedin [20], with subsequentimprovementspresented
in [21], usesa breadth-firstapproachto discover thelattice
of frequentsubgraphs.Thesizeof thesesubgraphsis grown
by addingone-edge-at-a-time,andthe frequentpatternlat-
tice is usedto prunenon downward closedcandidatesub-
graphs. FSG employs a numberof techniquesto achieve
high computationalperformanceincludingefficient canon-
ical labeling,efficient candidatesubgraphgenerationalgo-
rithms, andvariousoptimizationsduring frequency count-
ing. Thechemicalsubstructureminingalgorithmdeveloped
by Borgelt and Berthold [1], finds frequentsubstructures
(connectedsubgraphs)usinga depth-firstapproachsimilar
to that usedby dEclat[35]. To reducethe numberof sub-
graphisomorphismoperations,it keepstheembeddingsof
previouslydiscoveredsubgraphsandtriesto extendtheem-
beddingsby one edge. However, despitetheseoptimiza-
tions, the reportedspeedof the algorithm is slower than
that achieved by FSG and gSpan. This is mainly due to
the fact that their candidatesubgraphgenerationscheme
doesnot ensurethat the same subgraphis generatedonly
once,andthealgorithmgeneratesandcountsthefrequency
of thesame subgraphmultiple times. gSpan[32] finds the
frequentlyoccurringsubgraphsalsofollowing a depth-first
approach.Unlike the algorithmby Borgelt andBerthold,
every time a candidatesubgraphis generated,its canoni-
cal label is computed. If the computedlabel is the mini-
mumone,thecandidateis saved for furtherexplorationof
thedepthsearch.If not, thecandidateis discardedbecause
theremustbeanotherpathto thesamecandidate.By doing
so,gSpanavoidsredundantcandidategeneration.To ensure
that thesesubgraphcomparisonsaredoneefficiently, they
useacanonicallabelingschemebasedondepth-firsttraver-
sals.In addition,gSpandoesnotkeeptheinformationabout
all previousembeddingsof frequentsubgraphswhichsaves
thememoryusage.However, all embeddingsareidentified
on the fly, and usethem to project the datasetin a fash-
ion similar to that usedby [1]. Accordingto the reported
performancein [32], gSpanandFSG arecomparableon a

chemicalcompounddatasetusedin thePredictive Toxicol-
ogy EvaluationChallenge(PTE) [30], whereasgSpanper-
formsbetterthanFSG onsyntheticdatasets.FFSM[13] in-
corporatesthejoin-basedcandidategenerationschemeused
by thehorizontalalgorithmsinto thevertical frequentsub-
graphmining paradigmproposedby gSpan. By the com-
binationof the candidategenerationandextension,FFSM
is ableto pruneunnecessarycandidatesaggressively. It is
reportedthat thespeedof FFSMoutperformsgSpanby up
to a factorof sevenwith chemicalcompounddatasets.

7 Conclusions

In this paper we presenteda heuristic algorithm called
GREW to find frequentconnectedsubgraphsfrom a sin-
gle undirectedinput graph,andevaluatedits efficiency and
scalabilityby variousexperimentsusinggraphsdirectlycre-
atedfrom the four real datasets.Our resultsshowed that
GREW is highly scalable,canoperateon very largegraphs,
andfind a largeanddiversesetof patterns.

GREW’s low computationalrequirementsallowed us to
develop effective randomizationstrategies that were de-
signedto find a large setof patternsthat cancover either
the lattice of frequentsubgraphsor the input graph. This
suggeststhat GREW can be usedas an effective building
block in developing task-specificpatterndiscovery algo-
rithmswith applicationsto clusteringandclassification.
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