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GREW—A ScalableFrequentSubgraph Discovery Algorithm *
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Digital TechnologyCenter
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Abstract

Existingalgorithmsthat minegraphdatasetdo discover
patternscorrespondingo frequentlyoccurring subgaphs
can opetfate efficiently on graphsthat are sparse contain
a large numberof relatively small connecteccomponents
haveverticeswith low and boundeddegrees,and contain
well-labeledverticesandedges. However, there are a num-
ber of applicationsthat lead to graphsthat do not shae
thesecharacteristics for which thesealgorithmshighly be-
comeunscalable

In this paper we proposea heuristic algorithm called
GREW to overcomethe limitations of existing completeor
heuristicfrequensubgaphdiscoveryalgorithms.GREW is
designedo operate on alarge graph andto find patterns
correspondingto connectedsubgaphsthat havea large
numberof vertex-disjoint embeddings.Our experimental
evaluationshowsthat GRew is efficient, can scaleto very
large graphs,and findnon-trivial patternsthat cover large
portionsof theinput graph andthe lattice of frequentpat-
terns.

Keywords frequentpatterndiscovery, frequentsubgraph,
graphmining.

1 Intr oduction

In the last five years,an ever increasingbody of research
hasfocusedon developingefficient algorithmsto minefre-
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Laboratory(ARL) underCooperatie AgreemennumberDAAD19-01-2-
0014.Thecontentof which doesnot necessarilyeflectthe positionor the
policy of thegovernmentandno official endorsemenghouldbeinferred.
Accessto researchand computingfacilities was provided by the Digital
TechnologyCenterandthe MinnesotaSupercomputingnstitute.
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guentpatternsin large graphdatasets Startingwith AGM
by Inokuchietal. [15], originally developedin 1999-2000,
thescalabilityof thesefrequentpattern/subgrapimining al-
gorithmshascontinuouslybeenimproved anda numberof
differentalgorithmshave beendeveloped[20, 17,1, 32, 11,
13, 33,19] thatemploy differentmining stratgyies,arede-
signedfor differentinput graphrepresentationsand find
patternsthat have different characteristicand satisfy dif-
ferentconstraints. As a result, it is now possiblefor cer
tain applicationdomainsto discover frequently occurring
subgraphs$n areasonableamountof time. Moreover, since
thesepatternsanbeusedasinputto otherdataminingtasks
(e.g.,clusteringandclassificatior[6, 14]), thefrequent pat-
terndiscovery algorithmsplay animportantrole in further
expandingtheuseof datamining techniqueso graph-based
datasets.

A key characteristiof all of thesealgorithmsis thatthey
arecompletein thesenseahatthey areguaranteedb find all
subgraphshatsatisfythe specificconstraintsEventhough
completeness intrinsically a very importantanddesirable
property one can not ignore the fact that it alsoimposes
very stronglimitations on the typesof graphdatasetghat
canbe minedin a reasonabl@mountof time. In general,
the completealgorithmsthat are availabletoday canonly
operateefficiently on input datasetshataresparsecontain
a large numberof relatively small connecteccomponents,
have verticeswith low and boundeddegrees,and contain
well-labeledverticesand edges. Almost all datasetaised
duringtheexperimentakvaluationsof completealgorithms
satisfytheserequirementsandthey areoftenderived form
chemicalcompoundg17, 1, 32, 13, 33,19]. Thesere-
strictionsare a direct consequencef the fact that due to
the completenessequirementghesealgorithmsmust per
form numeroussubgraphisomorphismoperationgor their
equivalent)explicitly orimplicitly thatareknown to be NP-
complete[8]. On the other hand, existing heuristicalgo-
rithms, which are not guaranteedo find the completeset
of subgraphsas SUBDUE [2] and GBI [34], tendto find



an extremely small numberof patternsand are not signif-
icantly more scalable. For example, the resultsreported
in a recently publishedstudy shoved that SUBDUE was
ableto find 3 subgraph# 5,043secondswhile v SIGRAM
(arecentlydevelopedcompletealgorithm)wasableto find
3,183 patternsin just 63 second€from a graphcontaining
33,443verticesand11,244edged22].

Therearemary applicationdomainghatleadto datasets
that have inherentlystructuralor relationalcharacteristics,
aresuitablefor graph-basedepresentationgindcangreatly
benefitfrom graph-basedatamining algorithms(e.g.,net-
work topology VLSI circuitdesign protein-proteirinterac-
tions, biological pathvays,web graph,etc). However, the
characteristicef the graphdatasetslerived from theseap-
plicationdomainsaresuchthatthey violatemary of theim-
plicit requirement®f existing completealgorithms,asthey
are eithersignificantly lesssparsecontainvery laige con-
nectedcomponentshave ahigh degreevariations,and/or
containvery few vertex andedgelabels. As aresult,these
graphscannot be effectively minedby existing algorithms.

To overcomethe limitations of existing algorithms(ei-
ther complete or heuristic) we developed an algorithm
called GREW. GREW is a heuristicalgorithm,designedo
operateon a large graphandto find patternscorrespond-
ing to connectedsubgraphghat have alarge number of
vertex-disjoint embeddings. Becauseof its heuristic na-
ture, the numberof patternsdiscoreredby GREW is sig-
nificantly smallerthanthose disceeredby completealgo-
rithms. However, asour experimentswill shov, GREw can
operateeffectively on very lage graphs(containingover a
quarterof a million vertices)andstill find long andmean-
ingful/interestingpatterns.At the sametime, comparedo
existing heuristicalgorithmsGREW is ableto find signifi-
cantlymoreandlargerpatternsatafractionof theirruntime.

GREW discorversfrequentsubgraphdy repeatedlynerg-
ing the embedding®f existing frequentsubgraphshatare
connectedby oneor multiple edgesThekey to GREW’s ef-
ficiengy is thatit maintainsthe locationof the embeddings
of the previously identifiedfrequentsubgraph®y rewriting
the input graph. This idea of edgecontractionand graph
rewriting is similar in spirit to that usedby other heuris-
tic algorithms[2, 34, 23]. However, GREW substantially
extendsit by (i) allowing the concurrentontractionof dif-
ferenttypesof edge,(ii) emplgying a setof heuristicsthat
allows it to find longer and denserfrequentpatterns,and
(iii) using a representatiorof the rewritten graphthat re-
tainsall theinformationpresenin the original graph. The
first two extensionsallows GREW to simultaneouslydis-
cover multiple patternsandfind longerpatterndn fewer it-
erationswhereaghethird extensionenablesGREw to pre-
cisely identify whetheror not thereis an embeddingof a
particularsubgraphandthus guaranteea lower boundon
thefrequeny of eachpatternthatit discovers.

We experimentallyevaluatethe performanceof GREW
on four differentdatasetontaining29,014—-255,79&er-
ticesthatarederived from differentdomainsincluding co-
citationanalysisVLSI, andweblink analysis.Our experi-
mentsshawv that GREW is ableto quickly find alarge num-
berof non-trivial sizepatterns.

Therestof this paperis organizedasfollows. Section2
provides necessaryterminology and notation. Section3
provides a detaileddescriptionof GREW and its various
computationasteps.Sectiord illustrateshow GREw canbe
usedasthebuilding blockin developingalgorithmsto solve
somegeneralmining problems.Section5 shavs a detailed
experimentalevaluationof GREw on datasetdrom differ-
ent domainsand comparest against existing algorithms.
Section6 surneys the relatedresearclandcontrastst with
GREW. Finally, Section7 providesconcludingremarks.

2 Definitions and Notation

A graph G = (V, E) is madeof two sets,the setof ver
ticesV andthe setof edgesE. Eachedgeis represented
asanunorderedair of vertices. Throughouthis paperwe
assumehata graphis undirected andthatthe verticesand
edgesin a grapharelabeled Thelabelsof anedgee and
avertex v aredenotedby | (e) andl (v) respectiely. Each
vertex (or edge)of a graphis notrequiredto have aunique
label andthe samelabel canbe assignedo mary vertices
(or edges)n the samegraph.

GivenagraphG = (V, E), agraphGs = (Vs, Eg) is
asubgraphof G if Vs € V andEs C E, andis denoted
by Gs € G. ThesubgraphGs is saidto be covered by G.
If asubgraphGs C G is isomorphicto anothergraphH,
thenGs is calledanembeddingof H in G. In this paper
a subgraphs often calleda pattern. The total numberof
embeddingef Gs in agraphG is calledtheraw frequency
of Gs.

Two graphsG1 = (Vi, E1) andGy = (o, Ep) areiso-
morphic (denotedby G; ~ Gy) if they aretopologically
identicalto eachother thatis, thereis a vertex mapping
from V; to V, suchthateachedgein E; is mappedo asin-
gleedgein E; andvice versa.In the caseof labeledgraphs,
this mappingmustalso presere the labelson the vertices
and edges. When a setof graphs{G;} areisomorphicto
eachother they all aresaidto belongto the sameequiva-
lenceclass Whentheequivalenceclassof G representan
edgetheclassis calledanedge-type

Giventwo graphsGi = (V1, E1) andGy = (Vo, Ep),
the problemof subgraph isomorphism is to find an iso-
morphismbetweenG, and a subgraphof Gi. In other
words,the subgraphisomorphismproblemis to determine
whetheror not G, is embeddedn G;.

Given a subgraphGs anda graph G, two embeddings
of Gg in G arecalledidentical if they usethe samesetof



edgesof G, edge-disjointif they do not have ary edges
of G in common,and vertex-disjoint if no verticesof G

in common. Given a setof all embedding®f a particular
subgraphGs in a graphG, the overlap graph of Gs is a
graphobtainedby creatinga vertex for eachnon-identical
embedding@ndcreatinganedgefor eachpair of non-\ertex-

disjointembeddings.

Contraction of anedgee = uv of agraphG = (V, E)
is to melge two endpointsu andv togetherinto a new ver-
tex w by removing the edgee, while keepingall the other
edgesncidentto u andv. Theremainingedgeghatusedto
beincidentto eitheru or v areconnectedo w afterthecon-
traction. The newly addedvertex w representshe original
edgee. Notethat,if therearemultiple edgesbetweentwo
verticesu andv, the contractionof e removesonly e. The
restof the multiple edgesbetweenu and v becomeloops
aroundw afterthecontraction.

2.1 Canonical Labeling

One of the key operationsrequiredby ary frequentsub-
graph discovery algorithm is a mechanismby which to

checkwhethertwo subgraphsreidenticalor not. Oneway

of performingthis checkis to performagraphisomorphism
operation. However, in casesn which mary suchchecks
arerequiredamongthe samesetof subgraphsa betterway

of performingthis taskis to assignto eachgrapha unique
code(i.e.,asequencef bits,astring,or asequencef num-
bers)that is invariant on the orderingof the verticesand
edgedn thegraph.Sucha codeis referredto asthe canon-
ical label of agraphG = (V, E) [29, 7], andwe will de-
noteit by cl(G). By usingcanonicallabels,we cancheck
whetheror not two graphsareidenticalby checkingto see
whetherthey have identicalcanonicalabels.Moreover, the
canonicallabelsallow us to uniquelyidentify a particular
vertex in a subgraphregardlessof the original vertex and
edgeorderingin the subgraph.

Eventhoughthe worst-casecompleity of canonicalla-
beling may be exponentialon the numberof vertices, its
average-timecompleity can be reducedby using vari-
ous heuristicsto narrov down the searchspaceor by us-
ing alternatecanonicallabel definitions that take adwan-
tageof specialpropertiesthat may exist in a particularset
of graphs[25, 24, 7]. As part of our earlierresearchwve
have developedsuchcanonicalabelingalgorithmthatfully
malkesuseof edgeandvertex labelsfor fastprocessingnd
variousvertex invariantsto reducethe compleity of deter
mining the canonicallabel of a graph[20, 21]. Our algo-
rithm cancomputethe canonicalabelof graphscontaining
up to 50 werticesextremelyfastandwill be the algorithm
usedto computethe canonicallabelsof the differentsub-
graphsn this paper

Note thatthe patternsfound by GREw are often larger
than those foundby the completealgorithms (as GREwW

canoperatenith muchsmallerminimumfrequeng thresh-
old). It is necessaryo adoptanefficient canonicalabeling
schemeo handlelargesubgraphgn areasonablamountof
time. Naive methodsthat requireto permutecolumnsand
rows of the adjaceng matrix of a subgraphwithout parti-
tioning verticesdo noscalewell.

3 GREw—ScalableFrequent Subgraph Dis-
covery Algorithm

GREW is a heuristicalgorithm, designedto operateon a

large graphandto find patternscorrespondingo connected
subgraphghat have alarge numberof vertex-disjoint em-

beddings Specifically the patternghat GREw finds satisfy

thefollowing two properties:

Property 1 The numberof vertex-disjoint embeddingof
eachpatternis guaranteedo be at leastashigh asthe user
suppliedminimumfrequengy threshold.

Property 2 If avertex contributesto the supportof multi-
plepatterngG1, Go, ..., Gk} of increasingsize,thenG; is
asubgraphof Gj;1 fori =1,..., k—1.

The first property ensureghat the patternsdiscovered by
GREW will befrequent.However, GREW is notguaranteed
to find all the vertex-disjoint embeddingf eachpattern
thatit reports,nor is it guaranteedo find all the patterns
thathave asufficiently large numberof vertex-disjoint em-
beddings. As aresult, GREw will tendto undercounthe
frequeng of the patternsthat it discovers and will miss
some patterns. Moreover, the secondproperty imposes
someadditional constraintson the types of patternsthat
it candiscover, asit doesnot allow eachvertex to con-
tribute to the supportof patternsthat do not have asub-
graph/supgraphrelationship.As a resultof theseproper
ties, the numberof patternghat GREw discoversis signif-
icantly smallerto those disceeredby completealgorithms
suchasSIGRAM [22].

GREW discoversfrequentsubgraphsn aniterative fash-
ion. During eachiteration, GREw identifiesvertex-disjoint
embeddingf subgraphghat were determinedo be fre-
guentin previous iterationsand mergescertainsubgraphs
thatare connectedo eachothervia oneor multiple edges.
This iterative frequentsubgraphmemging processontinues
until thereare no suchcandidatesubgraphsvhosecombi-
nationwill leadto alargerfrequentsubgraphNote thatun-
like eisting subgraphgrowing methodsusedby complete
algorithms[16, 19, 32,22], which increasdhe sizeof each
successie subgrapltby oneedgeor vertex atatime, GREw,
in eachsuccessie iteration,canpotentiallydoublethe size
of thesubgraphshatit identifies.

The key featurethat contribtutesto GRew’s efficiency
is thatit maintainsthe location of the embeddingof the



previously identified frequentsubgraphsby rewriting the
input graph. As a resultof this graphrewriting, the ver-
ticesinvolved in eachparticularembeddingare collapsed
togetherto form a new vertex (referredto asmulti-v ertex),
whoselabel uniquelyidentifiesthe particularfrequentsub-
graphthatis supportedy them. Within eachmulti-vertex,
the edgesthat are not part of the frequentsubgraphare
addedas loop edges. To ensurethat the rewritten graph
containsall the information presentin the original graph,
thesenewly createdoop-edgesaswell asthe edgesof the
original graphthat areincidentto a multi-vertex, are aug-
mentedto containinformationabout(i) the label of thein-
cidentverticesand(ii) theiractualend-pointverticeswithin
eachmulti-vertex (with respecto the original graph). Us-
ing the above representationGREW identifiesthe setsof
embedding-pairso be memged by simply finding the fre-
guentedgesthat have the sameaugmentecedgelabel. In
addition, GREW obtainsthe next level rewritten graphby
simply contractingtogetherthe verticesthatareincidentto
theselectecedges.

3.1 Graph Representation

GREW representshe original input graphG aswell asthe
graphsobtainedafter eachsuccessie rewriting operation
in a unified fashion. This representatiomeferredto asthe
augmentedyraph is designedo containall necessaryn-

formationby which we canrecover theoriginalinputgraph
G from ary intermediategraphobtainedaftera sequencef

rewriting operations.

Eachvertex v andedgee of theaugmenteuj;raphé has
alabelassociatesvith it, whichis denotedby [ (v) andi (e),
respectrely. In addition, unlike the original graphthatis
simple, the augmentedyraph can containloops. Further
more,therecanbemultiple loop edges associatadth each
vertex andtherecanbe multiple edgesonnectinghesame
pair of vertices.However, wheneer thereexist suchmulti-
ple loopsor edgesthe augmentedabel of eachindividual
edgewill bedifferentfrom therest.

The label of eachvertex v in the augmentedyraphde-
pendson whetheror not it correspondgo a single vertex
or amulti-vertex obtainedafter collapsingtogethera setof
verticesthatare usedby an embeddingof a particularsub-
graph. In the former case the label of the vertex is iden-
tical to its label in the original graph,whereasin the lat-
ter case,its label is determinedby the canonicallabeling
(Section2.1)of its correspondingubgraphThiscanonical-
labeling-baseadpproactensureshatthemulti-verticesrep-
resentingthe embeddingsof the samesubgraphswill be
uniquelyassignedhe sameabel.

To properlyrepresenedgeghatareconnectedo multi-
verticestheaugmentedraphrepresentatioassignslabel
to eachedgethatis a tuple of five elements.For an edge
e = uv in an augmentedgraph G, this tuple is denoted

by ('(u), [(v), (), e. epidu), e. epid(v)), wherel(u) and
[(v) arethe labelsof the verticesu andv in G, | (e) is the
original label of the edgee, and e. epid(u) and e. epid(v)
aretwo numbersyreferredto asendpoint identifiers, that
uniquely identify the specific pair of G’s verticeswithin
the subgraphsencapsulatedhy u and v that e is incident
to. Theendpointidentifiersaredeterminedy first ordering
theoriginal verticesin u andv accordingto theirrespectie
canonicallabeling, and then using their rank as the end-
pointidentifier. If anendpointis nota multi-vertex, but just
aplainvertex, theendpointidentifieris always seto zero.
Since the endpoint identifiers are derived from the
canonicallabelsof u and v, it is easyto seethat this ap-
proachwill correctly assignthe samefive elementsto all
the edgeghathave the sameoriginal labelandconnecthe
samepair of subgraphst exactly thesamevertices. How-
ever, to ensurethat topologically equivalentedgescan be
quickly identified by comparingtheir tuple representation,
the order of the tuple’s elementsmustbe determinedn a
consistenfashion. For this reasongiven anedgee = uv,
theprecisetuplerepresentatiors definedasfollows:

(), [(v), 1(e), e. epidu), e. epid(v))
if [(u) < (v), or
if [(u) = [(v) ande. epidu) < epid(v)
or
(), T(u), 1 (e), e. epid(v), e. epidu))
if [(u) > I(v), or
if [(u) = [(v) ande. epidu) > epidv)

This consistent tuplerepresentatiorensuresthat all the
edgedhatsharethe samédabelin theaugmentedraphcor-
respondo identicalsubgraph#n theoriginal graph.

Note thatloops and multiple edgescan also be rep-
resentedby thesefive-elementuples, and the augmented
graphrepresentatiotreatsthemlik e ordinaryedges.

3.2 GREW-SE—Single-EdgeCollapsing

The simplestversion of GREw, which is referredto as
GREW-SE, operate®ntheaugmentedraphandrepeatedly
identifiesfrequentlyoccurringedgesandcontractshemin

aheuristicfashion.

The overall structureof GREw-SE is shawvn in Algo-
rithm 1. It takes asnputthe original graphG andthe min-
imum frequeng thresholdf, andon completion,it returns
the setof frequentsubgraphsF thatit identified. During
eachiteration (loop startingat line 5), it scansthe current
augmentegraphG anddetermineshe setof edge-types’
thatoccuratleast f timesin G. Thisis achiesed by com-
paringthelabelsof the variousedgesn G anddetermining
thoseedge-typeshatoccuratleastf times.



Algorithm 1 GREw-SE(G, f)

1: > G istheinputgraph.

2: > f istheminimumfrequeng threshold.
3 F <0

4: G < augmentedjraphrepresentationf G
5:

6

7

8

while true do

& <« all edge-typein G thatoccuratleast f times

order& in decreasindgrequeny

for eachedge-typeein £ do
9: Go < overlapgraphof e
10: I> eachvertex in G, correspondso anembeddingf ein G
11: Mwmis < obtainMIS for Go
12: e.f <« |Mwmsl

13: if e.f > f then

14: F <« FU{e}

15: for eachembeddingnin My s do

16: markm

17:  if nomarkededgein G then

18: break

19:  updateG by rewriting all of its markededges
20: return

Fromthe discussionin Section3.1, we know thateach
of these edge-typegpresentdenticalsubgraphsandasa
resulteachedge-typen £ canleadto a frequentsubgraph.
However, becausesomeverticescanbe incidentto multi-
ple embeddingsof the same(or different) frequentedge-
types,thefrequencie®btainedat this steprepresentipper
bounds,and the actualnumberof the vertex-disjoint em-
beddingscanbesmaller. For this reason GREw-SE further
analyzegsheembedding®f eachedge-typdo selectamax-
imal setof embeddingghat do not shareary verticeswith
eachotheror with embeddingselectegreviously for other
edge-typesThis step(loop startingatline 8) is achievedby
constructingheoverlapgraphG, for thesetof embeddings
of eachedge-typee andusinga greedymaximalindepen-
dentsetalgorithm[10] to quickly identify a large number
of vertex-disjoint embeddings.If the size of this maximal
setis greaterthanthe minimum frequeng threshold,this
edge-typesurvivesthecurrentiterationandtheembeddings
in theindependensetaremarked. Otherwisethe edge-type
is discardedasit doesnotleadto afrequentsubgraphn the
currentiteration. After processingll the edge-typesthe
contractionoperationsare performed,graphG is updated,
andthenext iterationbegins.

In order to illustrate someof the stepsperformedby
GREW-SE, let us take the simple example shawvn in Fig-
urelin whichtheoriginalgraph(Figurel (a)) containgwo
squaresonnectedo eachotherby anedge.Assumeall the
edgeshave the samelabel at the beginning, while thereare
two distinctvertex labels(the white andthesslightly shaded
ones). Edgecontractionprocessproceedsasillustratedin
(b), (c), (d) and (e), assumingthe edge-typesare selected
in decreasingorder of the raw frequeng (eachedge-type
is representedby a capitalletter andthe raw frequeng of
eachedge-typeis also shavn in the figure) . Every time

anedgeis contracteda new multi-vertex is createdwhose
label identifiesa subgraphthat the multi-vertex represents
(shavn by the differencein shadingandfilling patternof
vertices).Note thatat the endof this sequencef edgecol-
lapsing,the two squaresoriginally existedin Figure 1l (a)
arerepresentedly two blackverticesin Figurel (e).

3.3 GReEw-ME—Multi-Edge Collapsing

As discussedn Section3.1, a result of successie graph
rewriting operationsis the creationof multiple loopsand
multiple edgesin G. In mary casestheremaybethesame
setof multiple edgesconnectingsimilar pairsof verticesin

G, all of which canbe collapsedtogetherto form a larger
frequentsubgraph.GREw-SE canpotentiallyidentify such
asubgraplby collapsinga sequencef single-edge$which

afterthefirstiteration,eachsuccessieiterationwill involve

loop edges).However, this will requiremultiple iterations
andowing to the heuristicnatureof the overall algorithm,it

mayfail to orchestate the propersequencef steps.

To addresghis problem,we developedthe GREW-ME
algorithmthatin additionto collapsingverticesconnected
via asingleedge,it alsoanalyzeghe setsof multiple edges
connectingpairsof verticesto identify ary frequentsubsets
of edges. This is achiesed by using a traditional frequent
closeditemsetmining algorithm (e.qg.,[27, 36, 28]) asfol-
lows. For eachpair of verticesthatareconnected/ia mul-
tiple edgeqor a singlevertex with multiple loops), GREW-
ME createsa list that containsthe multiple edge-typeshat
are involved, and treatseachlist as a transactionwhose
items correspondgo the multiple edges. Then, by run-
ningaclosedrequentitemsetminingalgorithm,GREW-ME
finds all the frequentsetsof edgeswhoseraw frequeng is
above the minimum threshold.Eachof thesemultiple sets
of edgess treatedasa differentedge-typeand GREW-ME
proceedsn afashionidenticalto GREw-SE.

3.4 Discussion

As discusseth thebeginningof Section3, thefrequentsub-
graphsdiscoveredby GREw satisfypropertiesl and2. In

generalthesepropertiecanbe satisfiedby multiple setsof

frequentsubgraphghatin mary casesarein conflict with

eachother Thatis, frequentsubgraphdrom differentsets
cannotbe arbitrarily combinedinto a new setandstill sat-
isfy thesetwo properties.

To alargeextent,theparticularsetof frequentsubgraphs
that are identified by GREw is determinedby (i) the or-
der in which the different edge-typesare analyzedto de-
terminetheir vertex-disjoint embeddingsand (ii) the par
ticular setof maximalindependenémbeddingshatarese-
lectedby the maximalindependensetalgorithm. The or-
der of the edge-typess importantbecausaluring eachit-
eration,a vertex of G canonly participatein a single con-
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Figure 1. Sequenceof edgecollapsingoperations performed by GREw-SE

tractionoperation. As a result,edge-types considerezhr

lier have agreaterchancein leadingto a large numberof

vertex-disjoint embeddinggndthusresultingin afrequent
subgraph.At the sametime, the particularmaximal setof

independenembeddingshatis selecteccandirectly or in-

directly impactthe discoreredsubgraphs.The directim-

pactoccurswhenthe size of the selectedndependenset
happengo be smallerthanthe minimumfrequeny thresh-
old (whenthe maximumsizeindependensetis above the
threshold),in which casethe subgraphwill not be identi-

fied asfrequent. The indirectimpactoccurswhenthe cho-
senindependensetnegatively affectsthe numberof vertex-

disjointembedding®f someof theedge-typeshatarecon-
sideredafterward.

GREW performseachof thesestepsby emplgying rela-
tively simple heuristicsthat are designedo maximizethe
frequeng of the discoveredpatterns. Specifically GREw
ordersthedifferentedge-typesn decreasingaw frequeny
and usesa greedymaximal independentet algorithm to
identify thelargestpossibleéndependenset. However, each
of thesetwo stepscanbe performedusingdifferentheuris-
tics thatcanguide/biasGREw to find/preferonesetof sub-
graphsovertheothers.

Specifically in the courseof developing GREwW, we ex-
perimentedvith a numberof differentschemedor eachof
thesetwo steps.For example,we developeda schemehat
insteadof usingtheraw frequeng of eachedge-typeit used
the greedymaximalindependensetalgorithmto estimate
the numberof vertex-disjoint embeddingghatit has,and
sorted theedge-types baseth this estimate.Similarly, we
developedaschemehatselectedhesetof independeném-
beddingssuchthatthe rewriting on thoseembeddingswill
leadto theidenticalor similar local structureafterthe con-
traction. The motivation behindthis heuristicis to prefer
the embeddingghat have abetterchanceto grow into a
largerfrequentsubgraphin subsequeniterations. Our ex-
perimentswith both of theseschemeshavedthatthey led
to differentsubgraphsalthoughtheoverallnumberandsize
of the discoreredsubgraphslid notchangedramatically

4 Mining a Graph using GREwW

A key limitation of GREw is thatit tendsto find a very
smallnumberof frequentsubgraphsomparedo complete
algorithms[23, 22]. This is primarily dueto the fact that

its graphrewriting-basedapproactsubstantiallyconstraints
thesetsof frequentsubgraphshatareallowedto have over-
lapping embeddingg(property 2 in Section3), and sec-
ondarydueto the factthatit underestimatethe frequeny
of eachsubgraphandconsequentlyt may misssubgraphs
thatareactuallyfrequent.

However, becauseof its low computationalrequire-
ments,GREW canbe usedasa building block to develop
meta-statggies which canbeusedto effectively mine \ery
large graphsin reasonablemountof time. In the restof
this sectionwe presenttwo suchschemes.The first uses
GREW to find a diversesetof frequentsubgraphghat can
cover the entire lattice of frequentsubgraphswhereaghe
secondschemeusesGREW to find a setof frequentsub-
graphswhoseembeddingsan cover asmuchof the input
graphaspossible.

Thefirst setof subgraphganbe usedto obtainthesame
type of patternsasmostobtainedby completealgorithms,
whereaghe secondsetof subgraphgsanbeusedto obtaina
conciserepresentatioof theinput graphwhich canbeem-
ployed for summarizatiorpurposer asaninputto other
datamining tasks.

4.1 Covering the Pattern Lattice

The approachthat we adoptedto find a diversesetof fre-
guentsubgraphss composedf two elements First, since
GREW tendsto undercounthe frequeng of the subgraphs
thatit discovers,we minetheinput graphwith alower fre-
gueng threshold.Secondsince GRew finds a limited set
of patternswe invoke GREwW multiple times,eachtime bi-
asingit toward discovering a differentsetof frequentsub-
graphsandreturnthe union of the frequentsubgraphghat
werefoundacrosghemultiple runs.

We developedtwo different schemedor biasing each
successie run. Both of themrely ontheobserationsmade
in Section 3.4, which identified GREW’S key operations
that affect the setof subgraphghatit identifies. The first
schemejnsteadof consideringthe differentedge-typesn
decreasingrderof their raw frequeng, it considershem
in a randomorder which is differentfor eachsuccessie
run. Sinceeachrun of GREw will tendto favor different
setsof edge-typesthefrequentsubgraph&dentifiedin suc-
cessve runswill be somevhat different. We will refer to
this asthe simplerandomizatiorscheme



Thesecondschemaisegshesamerandontraversalstrat-
egy asbefore,but alsotriesto biasthe patterngo different
edgedrom thoseusedearlier Thisis doneby maintaining
statisticsasto which and how mary times eachedgewas
usedto supporta frequentsubgraphdentifiedby earlierit-
erations,andbiases thalgorithmthat selectshe maximal
independensetof embeddingsothatit will preferedges
thathave not beenused(or usedinfrequently)in previously
discoreredsubgraphsThus,this schemdriesto learnfrom
previousinvocations,andfor this reasonit will bereferred
to astheadaptiverandomizatiorscheme

4.2 Covering the Graph

The approachthat we adoptedto find frequentsubgraphs
whoseembeddingsancover asmuchof theoriginal graph
aspossiblecombineghe randomizatiorschemesisedear
lier with thewell-known sequentiatoveringparadignused
for building rule-basealassifierd26].

Specifically after eachrun of the simplerandomization
schemeegvery edgethatbelongsto anembeddingsf afre-
guentsubgraplis removed. The sizeof theinput subgraph
swiftly decreasesndtheremoval of these edgeforcesthe
algorithmto useunusededges.As shovn in Section5.3.1,
this schemeesnablesus to cover the input datasewith fre-
guentsubgraph®y performinga smallnumberof different
runs.

5 Experimental Evaluation

In this section,we studythe performanceof the proposed
algorithmswith various parametersand real datasets.All
experimentswere doneon Intel Pentium4 processol(2.6
GHz) machineswith 1 Gbytesmain memory runningthe
Linux operatingsystem. All the reportedruntimesarein
seconds.

5.1 Datasets

We evaluatedthe performanceof GREw on four different
datasetseachobtained froma differentdomain. The ba-
sic characteristicof thesedatasetsare shavn in Table 1.
Note thateventhoughsomeof thesegraphsconsistof mul-
tiple connectedomponentsiGREW treatsthemasonelarge
graph.

The Aviation datasets obtained fromthe SUBDUEweb
sitel. This datasetis originally from the Aviation Safety
ReportingSystemDatabaseThedirectededgesn theorig-
inal graphdatawere corvertedinto undirectedones. The
VLSI datasetwas obtained fromthe InternationalSympo-
siumon PhysicalDesign'98 (ISPD98)benchmark bn052
and correspondso the netlist of a real circuit. The netlist

Ihttp://oygnus.uta.edu/subdue/databasestirtaen
2http://visicad.cs.ucla.edutheese/ispd98.html

Table 1. Datasetsusedin the experiments

Labels Connected

Dataset | Vertices Edges ~Vertex Edge~ Components
Aviation | 101,185 133,113 6,173 52 1,049
Citation 29,014 294,171 742 1 3,018
VLSI 29,347 81,353 11 1 1
Web 255,798 317,247 3,438 1 25,685

wascorvertedinto a graphby usinga starbasedapproach
to replaceeachnet(i.e., hyperedge)by a setof edges.The
Citation datasetvascreatedrom thecitationgraphusedin
KDD Cup2003. Eachvertex in thisgraphcorrespondso a
documentandeachedgecorresponds$o a citationrelation.
Becaus@uralgorithmsarefor undirectedyraphsthedirec-
tion of thesecitationswasignored.Sincetheoriginal graph
hasno meaningfullabelson eithertheverticesor theedges,
we assignednly to verticeslabelsobtained fromthe sub-
domainsof the first authors email address. Self-citations
basedon this vertex assignmentvereremoved. Finally, the
Web datasetvasobtained fromthe 2002 GoogleProgram-
ming Contest. The original datasetontainsvariousweb-
pagesandlinks from various“edu” domain. We corverted
the datasetinto an undirectedgraphin which eachvertex
correspondso a web-pageandan edgeto a hyperlink be-
tweenweb-pagesin creatingthis graph,we keptonly the
links betweert'edu” domaingthatconnecteditesfrom dif-
ferentsubdomains Every edgehasanidenticallabel (i.e.,
unlabeled)whereasachvertex wasassignedh labelcorre-
spondingo the subdomairof theweb-serer.

5.2 SingleInvocation Performance

Table2 shows the runtime,the numberof frequentpatterns
found,andthesizeof thelargestfrequentpatternsobtained
by GREw-SE and GREW-ME for the four datasets.It also
shaws the faction of the verticesand edgesin the input
graphthatarenot coveredby ary of the frequentpatterns.
In calculatingthesevalueswe excludedtheverticesandthe
edgeghatcannotbefrequentbecausef theirlabels.

Both GREw-SE and GREwW-ME canfind large frequent
patternsin a reasonableamountof time. For example,
GREW-SE canmine the Web datasetwhich containsover
250,000vertices,with the minimum frequeny of five in
aroundfour minutes. Looking at the characteristic®f the
algorithms,asthe minimumfrequeng thresholddecreases,
we can seethat, as expected,they areableto find both a
largernumberof frequentpatternsand patternsthatarein
generalonger

Comparingthe relative performanceof GREw-SE and
GREW-ME, we canseethatoverall, they performquite sim-
ilarly, asthey both find similar numberof patterns,and
their longestpatternsare of similar sizes. However, there

Shttp:/iwww.cs.cornell.edu/projects/kddcup/datasets.html
4http://www.google.com/programming-contest/



Table 2. GREW-SE and GREW-ME

Method f ¢ # Size Unused
[sec] VS es
Aviation GREw-se 1000 336 38 13 22 43
500 213 72 16 41 57
200 129 117 32 49 62
100 2151 175 53 56 68
GREW-ME 1000 370 38
500 396 72 16 41 57
200 ME
100 ME
Citation GREw-SE 100 9 87 3 55 63
50 20 150 7 63 78
20 48 306 16 65 90
10 105 533 31 59 94

Dataset

GREW-ME 100 18 86 3 55 63

VLSI GREW-se 100 20 54 17 14 717

10 23 239 27 4 72

5 29 445 33 3 70

GREwW-ME 100 23 55 15 14 77
50 23 90 18 8 74

20 24 146 20 6 73

10 26 238 36 4 71

5 38 417 44 3 70

Web GREW-se 100 6 296 1 8 80

9

5 259 4822 13

GREW-ME 100 8 296 1
50 20 553 3 84 85

5

4

20 66 1256
10 220 2461 1
5 ME

Note.“ME” indicatesthe computationvasaborted
becausef memoryexhaustion.
f: theminimumfrequeny threshold
t: runtimein seconds
#: thenumberof frequentpatterndiscovered
Size:thesizeof thelargestfrequentpatternsfound
Unused:thefraction (%) of vertices(vs) andedgeges)
in theinputgraphthatarenot coveredby ary of the
frequentpatterns

are somedatasetdependencies.For example, GREW-SE
performsbetterfor the Citation dataset,whereasGREW-
ME performsbetterfor the VLSI dataset.In termsof run-
time, GREW-ME is somavhat slower than GREwW-SE. This
is because(i) GREW-ME incurs theadditional overhead
of finding closedfrequentitemsets,and (ii) it processes
largernumberof distinct edge-typegaseachcloseditem-
setis representetly a differentedge-type)In addition,the
memoryoverheadassociateavith storingthesdargernum-
ber of edge-typess the reasorwhy GREW-ME run out of
memoryfor someparameteicombinationswith the Avia-
tion andWebdatasetsWe arecurrentlydevelopingalterna-
tiveimplementationandexploreschemeso selecthemost
promisingcloseditemsetsto reducethe memoryoverhead
of GREW-ME.

Note that fromtheresultsin Table2 we canseethatthe
percentagef unusedrerticesandedgesioesnotmonotoni-

cally decreasaswe decreas¢heminimumfrequeng. This
is primarily an artifact of the way that we computethese
statisticsasthe fraction of the usedvertices/edgeever the
numberof vertices/edgethat meethe minimumfrequeny
threshold As aresult,astheminimumfrequeng decreases,
the baselinefrequencieswill tendto increase Jeadingto
higherfractions. In all casesthe absolutenumberof ver
ticesandedgedhatwereusedovertheentiresetof frequent
patterngddecreasewith the minimumfrequeng.

Example Subgraphs To illustratethe typesof subgraphs
that GREw can discover, we analyzedthe subgraphghat
wereidentifiedin the Web datasetRecallfrom Section5.1
thateachvertex in this graphcorresponds$o anactualweb-
page,eachedgeto a hyperlink betweentwo web-pages,
and the vertex-labelsto the subdomainof the sener that
hoststhe web-page.Moreover, this graphwas constructed
by removing ary hyperlinks betweenweb-pageghat have
the samesubdomain. As a result, a frequently occurring
subgraphwill represent particularcross-linkingstructure
amonga specificsetof institutionsthatoccursoften,andit
canidentify commoncross-unversity collaborationsinter-
disciplinaryteamspr topic-specificcommunities.

Figure 2 shavs two representatie examplesof the sub-
graphsdiscovered by GREw. The first subgraph(Fig-
ure 2(a)) hasa star topology and connectstogethervari-
ousweb-serersthatarepartof California’s University Sys-
tem. The starnode correspondgo web-serers that are
part of the University of California’s Office of the Pres-
ident with variousweb-serers that are locatedat Berke-
ley, UCI, UCLA, UCSD, and UCSF The secondsub-
graph (Figure 2(b)) hasa more complex topology with a
higher degree of connectity and connectstogethervari-
ousweb-serersatHarvard,NationalRadioAstronomyOb-
senatory(nrao.edu)andSpaceTelescopesciencdnstitute
(stsci.edu).An analysisof the completeuniform resource
locators(URLSs) of theembeddingsf thissubgraptshoved
that all the web-pageshadto do with astronomyand as-
trophysics. Theseexamplessuggesthat the patternsthat
GREW findsareinterestingandcanbe usedto gaininsights
ontheunderlyinggraphdatasets.

ucsf.edg ucsd.edﬂn nrao.eda
|
[ uci.edu)—(ucop.edHucla.edQ [harvard.ed} [harvard.ed} [harvard.ed}
|
Gerleley.edﬂl éerlelw.edﬂj stsci.edg

(a) University of CaliforniaSystem (b) Astronomyrelatedwebpages

Figure 2. Examples of patterns discovered by
GREW



5.3 Multiple Invocation Performance

As discussedn Section4, GREW canbe usedasa build-
ing blockto developeffective meta-stratgiesthatmine very
large graphsanddiscover a large setof frequentsubgraphs
that satisfy certaincharacteristics.In the restof this sec-
tion we evaluatethe performanceof therandomizatiorand
sequentiatoveringstratgiesdiscussedn thatsection.

5.3.1 Simple and Adaptive Randomization Schemes

Table 3 shaws the performanceand characteristicof the
subgraphsliscoreredby multiple runs (rangingfrom one
to ten) of GREw-SE and GREW-ME for the casesn which
thesemultiple runs were performedusing the simple and
the adaptie randomizatiorschemes.

From theseresultswe canseethat the two randomiza-
tion schemesre quite effective in allowing GREw to find
a largernumberof frequentsubgraphs.As the numberof
runsincreaseshoththe numberof frequentpatternsandthe
sizeof thelargestfrequentpatternancreasenonotonically
As expected,thereis a certaindegreeof overlap between
the patterndound by differentruns,andfor this reasorthe
distinctnumberof subgraphsloesnotincreasdinearly. In
addition,the setof verticesandedgeof the original graph
thatare coveredby the discoveredfrequentsubgraphalso
increasesvith thenumberof runs. For all thedatasetsafter
invoking GREW-SE and GREW-ME tentimes,the resulting
setof frequentsubgraphgover morethan50% of the ver-
tices and/oredgesof the input graph. This suggestghat
GREW is ableto find a diverseset of frequentsubgraphs
thatcapturesa goodfractionsof theinputgraph.

Comparingthe relative performanceof GREw-SE and
GREW-ME within the context of this randomizatiorframe-
work, we canseethat GREW-ME tendsto find alargernum-
ber of distinctfrequentsubgraphsvhosemaximumsizeis
largerthanthe subgraphsliscoreredby GREw-SE. Thisin-
dicatesthat GREw-ME’s ability to identify multiple edges
and collapseverticesthat are connectedoy thembecomes
moreeffective in increasinghe diversity of the discovered
patternsn the context of this randomizatiorstrateyy.

Finally, comparingthe relative performanceof the two
randomizationschemesve can seethat, as expected,the
adaptve randomizationschemeimproves the patterndis-
covery processasit finds a larger numberof distinct pat-
ternsthanthe simplerandomization.However, the overall
sizeof the patternddentifiedby bothschemesemainsthe
same,as they both cover similar fractionsof the vertices
and/oredgesof theinput graph.

Pattern Lattice Coverage The static and adaptve ran-
domizationschemesvereintroducedasa meta-stratgy to
identify the setof frequentsubgraphghat canbe usedto

approximatethe subgraphsiscovered by a completeal-
gorithm; that is, cover the entire patternlattice. Unfor-
tunately it is not possibleto evaluatethe effectivenessof
thesescheme®n thefour datasetsisedin ourbenchmarks,
becausewing to their sizeand/ordensity completealgo-
rithmscannoffinishin areasonablamounif time. For this
reasonwe evaluatedthe effectivenesf this meta-stratgy
on a smallerdatasetconsistingof variouschemicalcom-
pounds(containing51,101verticesand 54,88 7edgeswith
28 \ertex-labelsand 3 edge-labels)for which the existing
completealgorithmscanoperateeffectively.

Table4 shavstheresultsobtainedby thecompletealgo-
rithm vSIGRAM and GREW-SE with the staticrandomiza-
tion scheme This tableshows the resultsobtainedby v Si-
GRAM with aminimumfrequeng thresholdbf 100,andthe
resultsobtainedoy GREw-SE afterl, 10,and100runsanda
minimumfrequeng thresholdf 100,50,and10. Thelast
column of this table (labeled“Coverage”)shaws the frac-
tion of the frequentpatternsin the lattice that are covered
by ary of thefrequentpatternsliscoveredby GREW-SE (see
Section2 for thedefinitionof coverage).

Theseresultsshav that the stratgy discussedn Sec-
tion 4.1, which invokes GREw multiple times while de-
creasingthe minimum frequeng threshold,is quite effec-
tive in identifying the setof subgraphghat coversa very
large fraction of the overall lattice of frequentsubgraphs.
Moreover, the overall amountof time requiredby GREW
is smallerthan thatrequiredby vSIGRAM. For example,
even after running GREW-SE 100 times with a minimum
frequeng thresholdl0, its runtimeis still abouthalf of that
of VSIGRAM, while the patternsfound by GREW-SE can
cover 97% of thefrequentpatternlattice.

Table 4. Coverageof FrequentPattern Lattice

VSIGRAM GREW-SE Coverage
f  t[sec] # f Runs t[sec] # Size [%]
100 1161 13649 100 1 4 62 7 3
10 49 164 10 3
100 579 343 14 9
3
8

50 1 9 102 9
10 46 338 10

100 594 765 17 33
10 1 3 485 40 46
10 59 2272 4Q 70
100 560 8992 51 97

Note. for GREW-SE, the simplerandomizations used.

f: theminimumfrequengy threshold

t: runtimein seconds

Runs:thenumberof runs

#: thenumberof frequentpatterndiscovered

Size:thesizeof thelargestfrequentpatternsfound
Coverage:thefraction (%) of frequentpatternsn thelatticethatare
coveredby ary of the frequentpatternsdiscoreredby GREwW-SE

5.3.2 SequentialCovering Scheme

Table5 shavstheresultsobtainedoy GREW-SE andGREW-
ME whentheirsuccessie runswereperformedusingthese-



Table 3. Simple and Adaptive Randomization

SimpleRandomization Adaptive Randomization
Dataset f Method Runs| t #  Size Unused| t #  Size Unused
[sec] vs es| [sec] VS es
Aviation 100 GREW-SE 1 23 245 14 54 67 18 245 14 54 67
2 46 386 14 44 59 35 386 14 44 59
5| 261 795 17 28 47 166 793 19 30 48
10| 423 1426 22 20 39 260 1476 19 19 39
GREW-ME 1 49 233 14 55 6§ 37 233 14 55 68
2| 193 363 22 44 59 144 363 22 44 59
5| 345 754 22 28 47 252 754 22 23 47
10| 615 1422 22 19 40 634 1434 40 18 39
Citation 10 GREW-SE 1 39 659 5 54 94 41 659 5 54 94
2 82 881 5 45 92 86 881 5 44 92
5| 231 1340 7 36 88 224 1365 5 35 87
10| 461 1912 7 31 82 453 1940 8 30 80
GREW-ME 1| 188 658 5 56 94 189 658 5 56 94
2| 367 940 6 46 92 358 936 7 46 92
5| 899 1527 7 37 88 916 1519 9 36 87
10| 1843 2311 8 32 82 2683 2319 9 30 80
VLSI 10 GREW-SE 1 12 394 20 6 73 12 389 21 6 73
2 25 712 20 2 61 24 674 34 1 58
5 74 1372 20 1 42 621452 34 0 34
10| 146 2335 21 0 27 1402416 34 0 16
GREW-ME 1 37 509 20 10 73 37 509 18 10 74
2 83 959 22 3 58 74 933 21 3 57
5| 2352049 30 1 3§ 2021925 22 0 31
10| 440 3547 30 O 2§ 3623403 27 0 14
Web 10 GREW-SE 1| 298 2716 9 74 86 199 2716 9 74 86
2| 393 3268 9 69 82 3953273 13 67 80
5| 992 4095 15 62 74 994 4155 13 58 70
10| 1970 4871 15 56 67 1974 4881 13 51 61
GREW-ME 1| 8052719 14 74 86 550 2719 14 74 86
2| 1084 3249 14 69 82 978 3257 14 67 80
5| 2578 4138 16 62 74 2464 4158 14 58 70
10| 5074 4945 16 57 67 5175 4979 15 51 61

Note. f: theminimumfrequeng threshold
Runs:thenumberof randomizeduns

t: runtimein seconds

#: thenumberof frequentpatterngdiscovered
Size:thesizeof thelargestfrequentpatternsound

Unused:thefraction (%) of vertices(vs) andedgeges)in theinput graphthatarenot covered
by ary of thefrequentpatterns

guentialcoveringschemewhich wasintroducedasa meta-
stratgyy to identify asetof frequentsubgraphshatcoversas
mary of the verticesand/oredgesof the input graph(Sec-
tion 4.2). The combinationsof tunableparameter®f the
experimentareidenticalto the ones useéh Section5.3.1.

Fromtheseresultswe canseethatin generalthisscheme
identifies patternsthat cover a larger fraction of the input
graph, when comparedto the characteristicof the sub-
graphsdiscoveredby the two randomizatiorstratgies(Ta-
ble 3). However, we shouldalsonote thatthe size of the
largestpatterndound by the sequentiatovering schemeds
smallerthanthesizeof thepatterndoundby thesimpleand
the adaptie randomizatiorschemeConsideringhe mech-
anismof the sequentiabovering schemethis is inevitable.
The simple and adaptve randomizationschemesan find
patternsvhoseembeddingsnayoverlap.However, theem-
beddingsof the patternsfound by the sequentiakovering
schemedo not overlap. Becauseof this reason the setof
patternsfound by the sequentialcovering schemetend to
have lessdiversityandbe smaller

5.4 Comparisonwith SUBDUE

We ran SUBDUE [12] version5.1.0 (with the default set
of parameterspn our four benchmarkdatasetsand mea-
suredthe runtime, the numberof patternsdiscovered,their
size,andtheirfrequeng. Althoughwe gave SUBDUEEeight
hoursto mineeachof thedatasetsSUBDUE couldonly fin-
ish within the eight hourwindow for the Aviation dataset.
It took SUBDUE morethan6 hoursanddiscoveredthree
mostinterestingpatternsaccordingto the MDL principle.
Their sizesare either9 or 10 andtheir frequenciesareall
13. On the other hand, as shavn in Table 3, GREW-SE
andGREw-ME with the adaptie randomizatiorschemecan
find patternsup to size 19 and 40, respectiely whosefre-
gueny is atleast100,whichis aboutl0timesmorethanthe
frequeng of the bestthreepatternsgeportedby SUBDUE.
The runtime of GREW-SE and GREW-ME are also signifi-
cantlyshorterthan thaiof SUBDUE. GREW-SE spend®60
secondaand GREW-ME spend$34 seconddor the 10ran-
domizedruns.



Table 5. SequentialCovering Scheme

Dataset f Method Runs ¢ # Size Unused
[sec] VS es
Aviation 100 GREW-SE 1 7 245 14 54 67
2 9 274 14 49 63
5 17 337 14 36 53
10 28 403 14 22 41
GREW-ME 1 17 233 14 55 68
2 52 267 14 49 69
5 435 332 14 37 53
10 ME
Citation 10 GREW-SE 1 41 659 5 54 94
2 81 905 7 44 92
5 224 1434 8 34 86
10 452 9993 9 29 78
GREW-ME 1 188 658 5 56 94
2 372 936 7 45 92
5 902 1571 7 34 86
10 1799 2283 9 30 78
VLSI 10 GREW-SE 1 11 389 21 6 73
2 21 740 21 1 52
5 36 1163 21 15
10 41 1213 21 0 2
GREW-ME 1 36 509 18 10 74
2 73 899 18 2 53
5 139 1554 22 0 14
10 147 1625 22 0 1
Web 10 GREW-SE 1 472 2716 9 74 86
2 877 3412 9 67 80
5 1963 4412 11 57 69
10 3783 5078 11 51 60
GREW-ME 1 1179 2719 14 74 86
2 1952 3398 14 67 80

5 3476 4410 14 57 69

10 5768 5084 14 51 61
Note.“ME” indicatesthe computatiorwasaborted
f: theminimumfrequengy threshold
Runs:thenumberof runs
t: runtimein seconds
#: thenumberof frequentpatterndiscovered
Size:thesizeof thelargestfrequentpatternsound
Unused:thefraction (%) of vertices(vs) andedgeges)in the
input graphthatarenot coveredby ary of thefrequentpatterns

6 RelatedReseach

The previous researchon finding frequent subgraphsin
graphdataset$alls undertwo cateyories. Thefirst category
containsalgorithmsthat find subgraphghat occur multi-
ple timesin a single large graph[12, 9, 31, 22] and are
directly relatedto the algorithmspresentedn this paper
whereaghe secondcateyory containsalgorithmsthat find
subgraphghat occurfrequentlyacrossa databasef small
graphs[34, 5, 15, 18, 20, 17, 32]1], Betweenthesetwo
classesf algorithms,thosedevelopedfor the latter prob-
lemarein generalmorematureasthey have moderatecom-
putationalrequirementsindscaleto large datasets.

The most well-known algorithm for finding recurring
subgraphsn a singlelarge graphis the SUBDUE system,
originally developedin 1994, but hasbeenimproved over
theyears[12, 2, 4, 3]. SUBDUE is an approximatealgo-
rithm andfindspatternghatcancompressheoriginalinput
graphby substitutingthosepatternswith a singlevertex. In
evaluatingthe extentto which a particularpatterncancom-
pressthe original graphit usesthe minimum description
length(MDL) principle,andemplgys a heuristicthe beam

searchto narrov the search-spaceTheseapproximations
improve its computationaéfficiengy but atthe sametime it
preventsit from finding subgraphshatareindeedfrequent.
Motodaetal. developedanalgorithmcalledGBI [34] which
is similarto SUBDUE andlaterproposedheimprovedver-
sion called B-GBI [23] adoptingthe beamsearch.B-GBI
is the closestalgorithmto our study in the sensehatboth
performthe samebasicoperationto identify frequent pat-
ternsbasedon edgecontraction. However, while B-GBI
focusennoneedge-typeatatimewhencollapsingtheem-
bedding=of theedge-typan agreedymanner GREW iden-
tifies and contractsmorethanone edge-typesoncurrently
usinga greedyMIS algorithm. BecauseB-GBI workson a
singleedge-typeaat attime, it usesthe beamsearchto com-
pensatehe greedynatureof the algorithm. On the other
hand, we adoptedthe randomizedprocessto increasethe
diversity of frequentpatternsto be found, on top of the
concurrenedgecollapsingschemef GREw. Furthermore,
ouralgorithmemploysvariousheuristicssuchasmulti-edge
collapsingandthe adaptie and sequentiaschemego en-
surethe coverageof the input graphby the frequent pat-
terns. Unfortunately becausehe currentimplementation
of B-GBI is mainly designedfor a setof graphs,not for
a singlelarge graph,it cannot be directly comparedwith
GREW. Ghazizadeland Chawvathe[9] developedan algo-
rithm calledSEuSthat uses datastructurecalledsummary
to constructa compactrepresentatiorof the input graph.
Thissummaryis obtainedby collapsingtogetheall thever-
ticesof theinput graphthathave the samelabelandis used
to quickly prune infrequentandidates As the authorsin-
dicate,this summarydata-structurés usefulonly whenthe
input graphcontainsa relatively small numberof frequent
subgraphsvith high frequeng, andis not effective if there
arelargenumberof frequentsubgraphsvith low frequeng.
Vanetik, Gudesand Shimory [31] presentedan algorithm
for finding all frequentlyoccurringsubgraphgrom a sin-
gle labeledundirectedyraphusingthe maximumnumberof
edge-disjoinembeddingef agraphasameasuref its fre-
gueng. Eachsubgraphs representetly its minimumnum-
ber of edge-disjointpaths(path numbej, andusea level-
by-level approacho grow the patternsbasedon their path-
number They presented limited numberof experiments
illustratingthefeasibility of suchcandidatesubgrapltgener
ationapproachhowever, their experimentsnvolvedgraphs
with a very small numberof vertices(around100) mak-
ing it impossibleto determineits scalability Kuramochi
andKarypisdevelopedanalgorithmcalledSIGRAM to find
frequentconnectedsubgraphgrom a singlelabeledsparse
undirectedgraph[22]. SIGRAM followed the definition
of the frequeng that Venetik, Gudesand Shimory pro-
posed31], andfurtherproposedeuristicgo accelerat¢he
mining processn the horizontalandvertical paradigm.

Five different algorithmshave beendevelopedcapable



of finding all frequentlyoccurringsubgraphsn a database
of graphswith reasonableomputationakfficiengy. These
are the AGM algorithm developedby Inokuchi et al [15,
17], the FSG algorithm developed by Kuramochi and
Karypis [20, 21], the chemicalsubstructureliscovery al-
gorithm developedby Borgelt andBerthold[1], the gSpan
algorithm developedby Yan and Han [32], and most re-
cently FFSM by Huan,WanandPrins[13]. The AGM al-
gorithminitially developedto find frequentlyinducedsub-
graphs[15] and later extendedto find arbitrary frequent
subgraphgq17] discovers the frequentsubgraphausing a
breadth-firstapproach,and grows the frequentsubgraphs
one-\ertex-at-a-time. To distinguisha subgraphfrom an-
other it usesa canonicallabelingschemebasedon the ad-
jaceny matrix representationThe FSG algorithminitially
presentedh [20], with subsequerimprovementgresented
in [21], usesa breadth-firsapproactto discover the lattice
of frequentsubgraphsThesizeof thesesubgraphgs grown
by addingone-edge-at-a-time@ndthe frequentpatternlat-
tice is usedto prunenon downward closedcandidatesub-
graphs. FSG emplgys a numberof techniquego achiere
high computationaperformancencluding efficient canon-
ical labeling, efficient candidatesubgraphgeneratioralgo-
rithms, and variousoptimizationsduring frequeng count-
ing. Thechemicakubstructureniningalgorithmdeveloped
by Borgelt and Berthold [1], finds frequentsubstructures
(connectedsubgraphsysinga depth-firstapproacksimilar
to thatusedby dEclat[35]. To reducethe numberof sub-
graphisomorphismoperationsijt keepsthe embedding®f
previously discoreredsubgraphandtriesto extendtheem-
beddingsby one edge. However, despitetheseoptimiza-
tions, the reportedspeedof the algorithm is slower than
that achieved by FSG and gSpan. This is mainly dueto
the fact that their candidatesubgraphgenerationscheme
doesnot ensurethat the same subgrapls generatednly
once,andthealgorithmgeneratesndcountsthefrequeny
of the same subgrapmultiple times. gSpan[32] findsthe
frequentlyoccurringsubgraphslsofollowing a depth-first
approach. Unlike the algorithm by Borgelt and Berthold,
every time a candidatesubgraphis generatedijts canoni-
cal labelis computed. If the computedlabel is the mini-
mum one, the candidatds saved for further exploration of
the depthsearch.If not, the candidatds discardechbecause
theremustbe anotherpathto the samecandidateBy doing
s0,gSparavoidsredundantandidateyenerationTo ensure
that thesesubgraphcomparisonsre doneefficiently, they
useacanonicalabelingscheméasedn depth-firstraver-
sals.In addition,gSpandoesnotkeeptheinformationabout
all previousembedding®f frequentsubgraphsvhich saves
thememoryusage However, all embeddingsireidentified
on the fly, andusethemto projectthe datasetin a fash-
ion similar to that usedby [1]. Accordingto the reported
performancen [32], gSpanandFSG arecomparableon a

chemicalcompounddatasetisedin the Predictive Toxicol-

ogy EvaluationChallenge(PTE) [30], whereagySpanper

formsbetterthanFSG onsyntheticdatasetsFFSM[13] in-

corporateshejoin-basectandidategeneratiorschemeaused
by the horizontalalgorithmsinto the vertical frequentsub-
graphmining paradigmproposedby gSpan. By the com-
bination of the candidategeneratiorand extension,FFSM
is ableto pruneunnecessargandidatesggressiely. It is

reportedthatthe speedof FFSM outperformsgSpanby up
to afactorof sevenwith chemicalcompoundiatasets.

7 Conclusions

In this paperwe presenteda heuristic algorithm called
GREW to find frequentconnectedsubgraphdrom a sin-
gle undirectednput graph,andevaluatedits efficiency and
scalabilityby variousexperimentsisinggraphddirectly cre-
atedfrom the four real datasets.Our resultsshoved that
GREW is highly scalablecanoperateon very laigegraphs,
andfind alargeanddiversesetof patterns.

GREW'’s low computationarequirementsllowed us to
develop effective randomizationstratgies that were de-
signedto find a large setof patternsthat cancover either
the lattice of frequentsubgraphsr the input graph. This
suggestghat GREw can be usedas an effective building
block in developing task-specificpatterndiscovery algo-
rithmswith applicationgo clusteringandclassification.
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