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Abstract

In this paper we develop a macroscopic framework quantifying the hysteresis and constitutive
nonlinearities inherent to ferromagnetic materials. In the first step of the development, we construct
Helmholtz and Gibbs energy relations at the mesoscopic or lattice level based on the assumption
that magnetic moments or spins are restricted to two orientations. Direct minimization of the Gibbs
energy yields local average magnetization relations appropriate for operating regimes in which re-
laxation mechanisms are negligible whereas the balance of the Gibbs and relative thermal energies
through Boltzmann principles provides local models which incorporate mechanisms such as thermal
after-effects. To construct macroscopic relations that incorporate material nonhomogeneities, poly-
crystallinity, and variable effective fields, we employ stochastic homogenization techniques based on
the assumption that parameters such as local coercive and interaction fields are manifestations of
underlying distributions. The resulting framework quantifies in a natural manner the anhysteretic
magnetization provided by decaying AC fields and guarantees the closure of biased minor loops once
transient accommodation and after-effects are complete. Furthermore, noncongruency is achieved
with certain choices for the energy functionals. Hence the framework provides an energy basis for
certain extended Preisach models and the relation of the framework to several macroscopic hystere-
sis models is detailed. The behavior of both the nonlinear anhysteretic relations and full hysteresis
model are validated through comparison with experimental steel and nickel data.
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1 Introduction

The modeling of hysteresis in ferromagnetic materials is a classical problem, dating back to at least
Maxwell [1], which has profound implications for present and projected applications utilizing mag-
netic materials. As the range of magnetic applications grows, so too does the list of requirements
necessary for the models used to quantify hysteresis and constitutive nonlinearities inherent to the
compounds. For example, transducer design, material characterization, optimization of magnetic
recording media, and development of magnetic computing paradigms require high fidelity models
that are feasible to implement in optimization algorithms. Real-time implementation of model-based
control algorithms for such systems necessitates the development of low-order macroscopic models
which are easily constructed and updated to accommodate changing environmental conditions. To
optimize material design, however, it is necessary to construct models at the microscopic and meso-
scopic levels to quantify and predict the effects of changing material composition. Moreover, these
microscopic models must be commensurate with macroscopic measurements to permit evaluation
and updating of the material designs. This necessitates the development of multiscale modeling
hierarchies in which energy-based fine-scale models are used to predict effective parameters in higher
level models.

As a prelude to constructing any energy-based models, it is necessary to at least qualitatively
understand the physical mechanisms which produce hysteresis and constitutive nonlinearities. In
magnetic materials, these properties are due to a number of mechanisms but the primary sources of
hysteresis are moment or domain interactions, domain wall losses caused by material inclusions, and
material anisotropies [2–5]. Micromagnetic models can accommodate a number of these mechanisms
but do so at high computational cost. There are presently no macroscopic models which quantify
all of these effects for general, broadband, variable temperature, variable stress operating conditions,
and present macroscopic theories address one or two of these mechanisms as dictated by the regimes
under consideration.

In this paper, we develop a macroscopic framework which quantifies hysteresis and constitutive
nonlinearities in the H-M and H-B relation for a variety of ferromagnetic materials and yields an-
hysteretic magnetization relations in a natural manner. It guarantees the closure of biased minor
loops once after-effect and accommodation processes are complete but does not enforce congruency –
in accordance with noncongruencies measured in certain operating regimes. The model incorporates
relaxation mechanisms but neglects eddy current losses so it should be employed for low frequency
material characterization or architectures for which eddy current losses are minimal (e.g., laminated
Terfenol-D rods). It is constructed in the context of uniaxial moment configurations but does not
incorporate additional anisotropy energy mechanisms; hence it applies to isotropic polycrystalline
materials, a variety of uniaxial regimes, and weakly anisotropic materials. Finally, the characteriza-
tion framework is sufficiently efficient to permit model-based system and control design.

In the first step of the model development, a mean field approximation for the exchange energy
of moments on a uniform lattice is balanced with entropy effects to construct a Helmholtz free
energy relation. This in turn is used to construct a piecewise quadratic Helmholtz energy which
retains salient features of the statistical mechanics model at fixed temperatures but is more efficient
to implement. The incorporation of the magnetoelastic energy subsequently yields a Gibbs energy
relation which quantifies changes in the energy due to an applied field. For general operating regimes,
the Gibbs and relative thermal energies are balanced through Boltzmann probability relations to
yield a local average magnetization model which incorporates the thermal activation mechanisms
which produce thermal after-effects [2] and certain manifestations of accommodation or reptation [6].
In the limit of negligible thermal activation, it is proven that these relations reduce to the local
magnetization kernels, or hysterons, obtained by minimizing the Gibbs energy. For certain regimes,
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it is illustrated that the kernels are given by Ising relations. In the second step of the development,
we incorporate lattice nonhomogeneities, inclusions, polycrystallinity, texture and certain mean field
effects by assuming that quantities such as the local coercive and effective fields are manifestations
of underlying distributions rather than fixed parameters. Stochastic homogenization in this manner
yields macroscopic models suitable for material characterization.

To place the modeling framework in perspective, we compare it with four presently employed
macroscopic models: Jiles–Atherton, Stoner–Wohlfarth, Globus and Preisach — detailed comparison
of these models can be found in [7]. These four approaches were chosen to illustrate similarities
and differences with the proposed framework, and they represent what can now be considered as
established macroscopic hysteresis models. However, they are by no means exhaustive and additional
hysteresis models can be found in [2–4, 8, 9]. Additionally, details about micromagnetic theory and
its relation to the proposed model is included in Section 2 where it is more in context.

Jiles–Atherton Model

The Jiles–Atherton model characterizes hysteresis in isotropic materials through the quantifica-
tion of domain wall losses [4, 10–12]. In its original formulation, the model was constructed in two
steps: (i) quantification of the anhysteretic magnetization, and (ii) incorporation of irreversible and
reversible domain wall effects. The anhysteretic magnetization is modeled through the Langevin
relation

Man = Ms [coth(He/a)− (a/He)]

He = H + αM
(1)

where Ms is the saturation magnetization, α is a mean field parameter, and a is a parameter having
dimensions of field. The irreversible and reversible domain wall losses are incorporated by determining
the magnetostatic energy required to reorient moments in the presence of the effective field He. In
this manner, the model also incorporates certain rotational effects.

The original model has subsequently been extended to include eddy current losses [13], certain
anisotropies [14] and to enforce closure of biased minor loops. The minor loop extension provided
by Carpenter [15] is phenomenological in the sense that it is based on translates and scaling of the
major loop curves whereas the extension provided by Jiles [16] relies on a priori knowledge of future
turning points. This reduces the utility of the model for dynamic control applications where turning
points are determined by a feedback law responding to state measurements and hence are unknown
before the control commences.

It will be observed that the proposed model yields a hysteresis kernel at the mesoscopic level
which is formulated as the Ising relation M = Mstanh(He/a) and hence agrees through first-order
terms with (1). The primary difference between the theories lies in underlying energy formulation
and manner through which losses are incorporated.

Stoner–Wohlfarth Model

The original Stoner–Wohlfarth model quantified the rotation of noninteracting, single-domain
particles having uniaxial anisotropy [17]. While the model has received widespread use in the mag-
netic recording industry, its use for general material characterization was originally limited by the
fact that it did not incorporate moment interactions. A number of recent extensions to both the
model and underlying philosophy have substantially improved its utility. The model was extended
to include cubic anisotropies by Lee and Bishop [18] whereas Armstrong [19], Clark et al. [20], and
Jiles and Thoelke [21] extended the model to quantify magnetoelastic effects in Terfenol-D. Certain
mean field effects are incorporated in [22, 23] while pinning losses are incorporated in [7] where it is
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illustrated that this latter mechanism is necessary to achieve physical minor loop behavior. Finally,
relations between the Stoner–Wohlfarth model and micromagnetic models are detailed in [8].

The hysteresis kernels, or hysterons, provided by the proposed model are analogous to those
predicted by the Stoner–Wohlfarth model when the applied magnetic field is aligned with the easy
axis of particles. This is consistent with the assumption in the proposed framework that moment
alignment occurs in two diametrically opposite directions. The assumptions differ from the original
Stoner–Wohlfarth model in that moment interactions are incorporated whereas anisotropy energies
are neglected.

Globus Model

The Globus model preceded that of Jiles of Atherton and bears certain similarities in that it
quantifies irreversible and reversible hysteresis effects through domain wall mechanisms [24]. A
primary difference between the theories lies in the Globus assumption that domain walls are pinned
on grain boundaries which results in the simplifying assumption that reversible domain wall bending
and irreversible domain wall displacement can be considered on a single, representative spherical
grain. While efficient to implement, this model lacks a number of mechanisms required for high
performance applications.

The anhysteretic curves provided by the Globus model are analogous to the mesoscopic hysteresis
kernel provided by the new theory. However, the latter includes moment interactions and physical
minor loop behavior which makes it advantageous for general applications.

Preisach Framework

Preisach’s original model quantified the hysteretic relation between input fields H(t) and the
magnetization M(t) through a superposition of rectangular hysteresis relays or kernels [ks1,s2(H)](t)
[25]. Here s1 and s2, with s1 < s2, provide thresholds at which the kernel switches between +1 and
−1. The magnetization is modeled as

[M(H)](t) =
∫ ∞

0

∫ ∞

−∞
ν(r, s)[ks−r,s+r(H)](t)dsdr (2)

where ν is a density, or weighting function which depends on properties of the material under
consideration [26]. It is illustrated in [7, 9] that one choice of ν is the normal density function

ν(hI , hc) =
Ms

2πσcσI
e−(hc−hc)2/2σ2

c e−h2
I/2σ2

I (3)

where hI and hc denote interaction and coercive fields, hc is an average coercive field, and σI , σc are
respective variances. For general characterization, the weight or measure ν can be estimated from
measured data through techniques analogous to those described in [27,28].

The advantage of the Preisach methodology lies in its generality. From a solely mathematical
perspective, it can be used to characterize material behavior in regimes where the underlying physics
is poorly understood or unknown. It also yields models which can, at least approximately, be in-
verted for linear control design [28]. However, these advantages are complemented by a number of
disadvantages. First, the nonphysical nature of the measures or parameters makes it difficult to
construct models using known physical behavior or to employ attributes of the data for updating
models to accommodate changing operating conditions. While extensions to the Preisach model
have recently been proposed to facilitate parameter identification through correlation with physical
mechanisms [9, 29], the accurate characterization of biased minor loops typically requires general
weights comprised of a large number of nonphysical parameters. A more fundamental difficulty
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arises in operating regimes involving broadband input signals and temperature or load dependence
since the classical Preisach model is based on the assumptions of frequency, load and temperature
invariance. Finally, classical Preisach models erroneously enforce congruency in certain regimes and
do not accommodate reversible magnetization mechanisms. As detailed in [6, 7, 9, 30], extensions to
the classical theory have been developed to address a number of these issues. However, these exten-
sions add significant complexity to the theory and reduce its efficiency for real-time implementation.
For example, one technique for incorporating temperature-dependence is to employ vector-valued
measures or weights [ν(r, s)](T ) (e.g., see [31]). For control design, however, this necessitates the use
of lookup tables which reduces significantly the efficiency of associated control algorithms.

As illustrated in [32,33], the proposed model can be interpreted as providing an energy basis for
certain extended Preisach models. In summary, the kernels derived through energy considerations
at the mesoscopic level provide the Preisach hysterons whereas the stochastic densities, used to
obtain macroscopic models, provide the Preisach weights. However, the proposed framework differs
from the classical Preisach model in five crucial aspects. (i) The first is the energy basis of the
model — formulation through energy analysis provides a low-order model which, for certain density
choices, has parameters that can be physically correlated with properties of the data. (ii) Due to
the energy basis of the framework, stress and temperature-dependencies are incorporated in the
basis or kernel in the new model (e.g., see [34, 35]) whereas they enter the weights in the Preisach
formulation. Because they are incorporated in the kernel, the model automatically incorporates
these effects which eliminates the necessity of vector-valued weights or lookup tables. From the
perspective of implementation, this indicates that only one set of parameters must be identified
for the proposed model and no switching between parameter sets is required during operation. This
significantly augments the efficiency of characterization and control algorithms employing the model.
(iii) The incorporation of relaxation mechanisms through the energy basis provides the framework
with the property that it accommodates nonclosure or nondeletion properties in accordance with
measured material properties. In this case, the framework provides an energy basis for certain
extended Preisach formulations based on Arrhenius relations [9]. (iv) Derivation of the theory from
Boltzmann principles yields kernels or hysterons which accommodate the noncongruency observed
for certain materials and operating regimes. This is in contrast to input and output-dependent
(moving) Preisach formulations which incorporate noncongruency through input or output-dependent
densities. (v) The model automatically incorporates reversible magnetization mechanisms for small
AC field excursions about a fixed DC value – hence it accurately characterizes reversible material
behavior following field reversal without the extensions required for Preisach formulations.

The proposed framework builds upon and significantly extends ferromagnetic theory originally
developed in [36]. The extensions include the derivation of energy relations based on statistical
mechanics tenets, formulation of the model in terms of general densities, and rigorous analysis
establishing the convergence of models incorporating thermal activation to those derived through
minimization of the Gibbs energy as relative thermal energies become negligible. In the present
work, we also establish the manner through which the anhysteretic magnetization is characterized
and summarize highly efficient implementation algorithms.

Appropriate Helmholtz and Gibbs energy relations are constructed at the lattice level in Sec-
tion 2 and used in Section 3 to quantify the local average magnetization M and local anhysteretic
magnetization Man in the presence and absence of thermal activation. These local relations are
combined with stochastic homogenization techniques in Section 4 to construct macroscopic models
which quantify the hysteresis and constitutive nonlinearities inherent to a variety of ferromagnetic
compounds. The properties of both the anhysteretic and full hysteresis models are illustrated in
Section 5 through numerical simulations and comparison with experimental steel data.
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2 Energy Relations for Homogeneous Materials

The microscopic and macroscopic behavior of ferromagnetic materials is defined by the exchange,
anisotropy, magnetostatic and magnetoelastic energies, and hence a complete energy-based theory
quantifying hysteresis and magnetic properties of these materials must include, or at least, accom-
modate these contributions. The magnetostatic energy quantifies long range interactions between
magnetic moments and applied fields and is significant in both ferromagnetic and paramagnetic
materials. Additionally, ferromagnetic materials exhibit exchange interactions between neighbor-
ing atomic spins which serves to align moments. This effect is short range and typically influences
nearest, or next-nearest, neighbors. The exchange interactions and associated exchange energy also
differentiate ferromagnetic and paramagnetic compounds. The anisotropy energy quantifies changes
in the internal energy of materials due to changes in the direction of the magnetization. Whereas
magnetic anisotropy can be due to a number of factors, we will focus primarily on crystalline and
stress anisotropies. Finally, the magnetoelastic energy quantifies magnetomechanical coupling inher-
ent to the materials.

The first statistical mechanics model for the exchange interactions was posed by Ising in 1925
and was based on the assumption of a linear lattice of magnetic moments in which only neighbors
interact [37]. This was later extended by Heisenberg in 1928 to include quantum effects and complete
correlation between neighboring electrons having overlapping wave functions [38]. In the Heisenberg
model, the interaction energy between spins Si and Sj is

U = −2JSi · Sj (4)

where J is an exchange integral with J > 0 for ferromagnetic materials and J < 0 for antiferro-
magnetic compounds. The exchange energy for the system is then obtained by summing over all
magnetic moments which yields

U = −2
∑
ij

JijSi · Sj . (5)

The Ising model can be obtained from that of Heisenberg by truncating the interaction energy for
the lattice. For example, if quantization is assumed to take place only in the z-direction (e.g., the
direction of an applied field H), the full inner product Si · Sj = SixSjx + SiySjy + SizSjz is replaced
in the Ising model by the z-component SizSjz. If the restricted spins are denoted by σi = ±1, the
Ising relation for the exchange energy can be formulated as

U = −2
∑
〈ij〉

Jijσiσj (6)

where the notation 〈ij〉 indicates summation over nearest neighbors. In addition to the simplification
provided by reduced dimensionality, the Ising model admits a classical treatment of the spins, due in
part to the fact that spins commute in the truncated expansion and hence can be treated as variables,
whereas spins must be treated as quantum mechanical operators in the Heisenberg model. While
the Ising model proves sufficiently accurate when characterizing the exchange energy in a number of
applications, it is necessary to include the quantum effects incorporated in the Heisenberg model to
quantify mean field properties from first principles.

As detailed in [8, 39], the Heisenberg energy relation (5) is exactly solvable for only a few cases,
one of which is the Ising model, and is completely isotropic. The inclusion of the anisotropy and
magnetostatic energy in the Heisenberg Hamiltonian or energy formulation yields a model that is
prohibitively expensive to approximate due to its generality. This necessitates the consideration of
simplified theories motivated by the quantum energy relations but tractable for implementation.
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One technique in this vein is the theory of micromagnetics which originated with the work by
Landau and Lifshitz in 1935 [40] on the analysis of domain walls. Significant contributions to the
theory were provided by Brown [41–43] and subsequent researchers; e.g. see [8]. The basic tenet in
this approach is to employ classical theory in combination with quantum principles to predict the
distribution of spins through the minimization of general energy relations

U = UE + UA + Uλ + UM (7)

where UE , UA, Uλ and UM respectively denote the exchange, anisotropy, magnetoelastic and magneto-
static energies. The capability this theory provides for predicting domain structures in ferromagnetic
materials is illustrated in [44] where a micromagnetic energy relation of the form (7), with the specific
energy components defined by

UE = −2
∑

x

∑
y

∑
z

JSi · Sj

UA = −2
∑

x

∑
y

∑
z

[
K1

(
α2

1α
2
2 + α2

2α
2
3 + α2

3α
2
1

)
+ K2α

2
1α

2
2α

2
3

]
Uλ = −3

2

∑
x

∑
y

∑
z

λσ cos2 φ

UM = −1
2

∑
x

∑
y

∑
z

mi ·HI

(8)

was minimized on a Cray X-MP/22 for a cubic grid consisting of 22 × 22 × 22 exchange coupled
spins. Here K1 and K2 are anisotropy constants and α1, α2 and α3 are direction cosines of a moment
mi at the center of the cube. Furthermore, λ, σ and φ respectively denote the magnetostriction
constant, magnetoelastic stress and angle between the magnetization and stress. Finally, HI denotes
the interaction field at mi due to all moment.

In addition to the capabilities that this theory provides for predicting the domain structure and
dynamics of ferromagnetic materials, it is established in [8] that this approach provides a set of
differential equations for which the Stoner–Wohlfarth model is an eigenfunction or mode.

However, due to their complexity, models derived through micromagnetic principles presently
preclude real-time implementation. The predictive capabilities provided by the models include more
detail than is necessary for modeling hysteresis in a manner that facilitates system and control design.
To provide such quasi-macroscopic models, we construct an energy formulation which incorporates
certain aspects of the Ising and micromagnetics models at the microscopic scale but employs statisti-
cal techniques rather than physical principles to obtain a commensurate macroscopic magnetization
model.

2.1 Helmholtz Energy

We consider two techniques for specifying the Helmholtz energy at the lattice level. The first is based
on statistical mechanics principles and hence includes certain temperature dependencies; the second
is obtained through an approximation of the first for fixed temperature regimes.

The statistical mechanics model is based on an approximation to the Ising model which has the
requisite assumption that spins or magnetic moments are restricted to two possible orientations,
σi = ±1.

The assumption that spins have two preferred orientations appears at first to be highly restrictive
but can in fact be physically motivated for a number of regimes. From a classical perspective,
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Co Fe

(a)

Co Fe

(b)

Figure 1: (a) Crystallographic orientation of magnetic moments in cobalt and iron (after [4]). (b) Cor-
responding domain structure which reflects the uniaxial or hexagonal anisotropy of cobalt and the
cubic anisotropy of iron.

this will be at least approximately true for materials having uniaxial crystalline anisotropies or
systems in which uniaxial stresses dominate the crystalline structure. Materials exhibiting uniaxial
crystalline anisotropies include cobalt and a number of rare earth metals and alloys (e.g., Terbium
single crystals). This produces domain structures in which moments are highly parallel or antiparallel
as depicted in Figure 1.

To illustrate a regime in which stresses dominate crystalline anisotropies, consider the Terfenol-
D transducer depicted in Figure 2(a) and detailed in [45–47]. In present manufacturing processes,
Terfenol-D crystals are grown in Dendrite sheets oriented in the [112̄] directions as depicted in
Figure 2(b). At the prestress levels employed in present transducer designs, the preferred orientation
of domains is shifted from the original eight 〈111〉 magnetic easy axes to the two axes [111] and [111]
perpendicular to the [112̄] axis of the rod. In the presence of a field H generated by an applied current
I to the solenoid, moments first rotate irreversibly to the [111̄] easy axis and then rotate reversibly
to the [112̄] axis. For these transducer constructions, stress anisotropies can dominate crystalline
anisotropies to provide regimes for which the assumption of two spin orientations provides reasonable
approximations.

Direction of
Rod Motion

����

Spring
Washer

Terfenol-D  Rod
Compression
Bolt

Permanent Magnet

Wound Wire Solenoid

End
Mass

[111]

(110)

[112]

[001]

[110]

[111]

[002]

Figure 2: (a) Cross section of a typical Terfenol-D magnetostrictive transducer. (b) Orientation of
Terfenol-D crystals.
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Finally, this assumption can be motivated by noting that from a quantum perspective, spins
cannot be uniformly oriented and one allowed orientation is parallel and opposite to an applied field.
This interpretation can be used to explain the accuracy of the theory for quantifying the behavior of
certain materials such as iron which has the crystalline and domain properties illustrated in Figure 1
and exhibits cubic anisotropy.

2.1.1 Temperature-Dependent Helmholtz Energy

The statistical mechanics model is based on an approximation to the Ising model first proposed
by Gorsky in the analysis of order-disorder transitions in binary alloys [48]. In this context, it
was later extended by Bragg and Williams to include the concept of long range order [49–51]. An
underlying tenet in the Bragg-Williams theory, which simplifies subsequent computations, is the
assumption that the energy of an individual atom is determined by the average order of the system
rather than the fluctuating states of adjacent atoms. For this reason, the model is often termed
the mean field or molecular field approximation to the Ising model. To construct a ferromagnetic
model, we make the same assumption regarding magnetic moments or spins. Further details about
this approach, including some discussion concerning its application to ferromagnetic materials, can
be found in [52,53].

We consider an arbitrary lattice of volume V and mass ν comprised of N = N++N− cells, each of
which is assumed to contain one spin or magnetic moment. In accordance with the Ising assumptions,
the spin orientations are constrained to be σi = ±1, and N+ and N− respectively denote the number
of positive and negative spins in the lattice. We note that due to the initial assumption of material
homogeneity, this lattice structure is representative of that found throughout the structure. If each
spin has a moment m, the magnetization for the lattice is

M =
m

V

N∑
i=1

σi

=
Ms

N
(N+ −N−),

(9)

from which it follows that

N+ =
N

2

(
1 +

M

Ms

)
, N− =

N

2

(
1− M

Ms

)
. (10)

Here Ms = Nm/V denotes the technical saturation magnetization which occurs when all moments
are aligned. Additionally, we make the assumption that only adjacent moments interact.

To quantify the energy required to reorient moments, we employ the mean field approximation
of Bragg and Williams and make the assumption that the average exchange energy Φ is proportional
to M/Ms; that is,

Φ = Φ0M/Ms (11)

where Φ0 denotes the energy required to reorient a single moment if the lattice is completely ordered
(M = Ms). For the case of a homogeneous lattice, Φ0 is considered to be constant. For nonho-
mogeneous and polycrystalline materials, Φ0 will be considered as a manifestation of an underlying
statistical distribution as discussed in Section 4. We also note that Φ0 is related to the exchange
integral J employed in (6) through the expression

Φ0 = 2ξJ (12)
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where ξ denotes the number of neighbors adjacent to a site. Hence ξ = 2 for a 1-D lattice chain,
ξ = 4 for a 2-D rectangular lattice, and ξ = 6, 8 or 12, respectively, for 3-D cubic, body-centered
cubic, or face-centered cubic lattices. The fact that (11) is independent of the exact lattice structure
has led Pathria to refer to the subsequent model as a zeroth approximation of the Ising model [53].

We now consider the decrease in internal energy due to a change from N+ to N+ + dN+. From
the mean field approximation (11), each switch requires Φ0

M
Ms

in energy so the change in internal
energy for a unit volume is

dUE = −Φ0M

V Ms
dN+

= −φ0M

V Ms
· N

2Ms
dM

(13)

where the second equality follows from (10). Integration, in combination with (10), yields the relation

UE =
Φ0N

4V

(
1− M2

M2
s

)
+ U0 (14)

for the exchange energy. Since we are interested in relative rather than absolute measures of energy,
we take U0 = 0 which specifies that the completely ordered state has an internal energy of zero.

As detailed in [52], the entropy S for the system is given by

S =
kN

V
lnW (15)

where k is Boltzmann’s constant and W quantifies the number of ways moments can be arranged in
the lattice to yield the magnetization M . By noting that this is equivalent to arranging N+ moments
in N sites, and employing Stirling’s approximation

lnx! = x lnx− x , (16)

the entropy can be formulated as

S =
k

V
ln

[(
N
N+

)]

=
k

V
ln

[
N !

N−! N+!

]

=
kN

V

[
ln 2− 1 + M/Ms

2
ln

(
1 +

M

Ms

)
− 1−M/Ms

2
ln

(
1− M

Ms

)]
+ S0

=
−kN

2V Ms

[
M ln

(
M + Ms

Ms −M

)
+ Ms ln

(
1−

(
M

Ms

)2
)]

+ S0

(17)

where S0 = kN
V ln 2.

The Helmholz energy for the lattice is then

ψ(M, T ) = U − ST

=
Φ0N

4V

[
1− (M/Ms)2

]
+

TkN

2V Ms

[
M ln

(
M + Ms

Ms −M

)
+ Ms ln

(
1− (M/Ms)2

)]

=
HhMs

2
[
1− (M/Ms)2

]
+

HhT

2Tc

[
M ln

(
M + Ms

Ms −M

)
+ Ms ln

(
1− (M/Ms)2

)]
(18)
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Figure 3: Helmholtz energy specified by (18) for (a) T < Tc, and (b) T > Tc.

where Hh = NΦ0
2V Ms

is a bias field and Tc = Φ0
2k denotes the Curie temperature. The initial assumption

that the exchange energy Φ0 is constant implies that Hh will also be constant for homogeneous
materials. This assumption will be relaxed in Section 4 to include statistically distributed values of
Hh for modeling nonhomogeneous and polycrystalline materials.

As illustrated in Figure 3, the Helmholtz relation (18) exhibits double well behavior for temper-
atures T < Tc and single well behavior for T ≥ Tc. This is consistent with the transition exhibited
between ferromagnetic and paramagnetic phases.

2.1.2 Temperature-Invariant Helmholtz Energy

Whereas the Helmholtz relation (18) incorporates a number of the properties desired for microscopic
material characterization, the logarithmic components add complexity to resulting macroscopic mod-
els which can reduce the efficiency of algorithms when considered for real-time implementation. For
applications requiring high efficiency, a simplified Helmholtz relation can be obtained by retaining
the quadratic behavior of (18) for fixed temperature regimes.

To determine an appropriate piecewise quadratic model, we consider the Taylor expansion

ψ(M, T ) = ψ(M0, T ) + (M −M0)
∂ψ

∂M
(M0, T ) +

(M −M0)2

2
∂2ψ

∂M2
(M0, T ) + O‘ (M3) (19)

for fixed T < Tc, where M0 is taken to be an equilibrium, and

∂ψ

∂M
=
−Hh

Ms
M +

HhT

Tc
tanh−1(M/Ms) ,

∂2ψ

∂M2
=
−Hh

Ms
+

HhT

TcMs [1− (M/Ms)2]
.

(20)

From the necessary condition ∂ψ
∂M (M0, T ) = 0, the equilibria are determined to be the two stable

solutions to

M = Mstanh
(

αM

a(T )

)
(21)

10



in addition to the unstable solution M = 0. The parameters α and a(T ) are specified by

α =
Hh

Ms
, a(T ) =

HhT

Tc
. (22)

If we let M̂R and −M̂R denote locations of the stable equilibria determined through solution of (21),
as depicted in Figure 3(a), then it can be directly established that the quadratic approximations to
(19) in neighborhoods of the equilibria M0 = 0,−M̂R and M̂R are

ψ(M, T ) =


c1 − k2

1(T )M2 , M0 = 0

c2(T ) + k2
2(T )(M + M̂R)2 , M0 = −M̂R

c2(T ) + k2
2(T )(M − M̂R)2 , M0 = M̂R

(23)

where
c1 =

HhMs

2
, k2

1(T ) =
Hh

2MsTc
(Tc − T ) (24)

with analogous, but more complicated, expressions for c2(T ) and k2(T ).
For fixed temperature regimes, this motivates the consideration of the piecewise quadratic defi-

nition

ψ(M) =


1
2η(M + MR)2 , M ≤ −MI

1
2η(M −MR)2 , M ≥ MI

1
2η(MI −MR)

(
M2

MI
−MR

)
, |M | < MI

(25)

as a second choice for the Helmholtz energy. As illustrated in Figure 4(a), MI and MR respectively
denote the inflection point and magnetization at which the minimum of ψ occurs. It will be estab-
lished in subsequent discussion that MI and MR represent parameters to be estimated through a
least squares fit to data when quantifying specific materials.

GG
(M)=G(0,M)G

(b)

c

I

2 (H  (H

RI

R

,M),M)1

0

ψ

(a)

H

M M M M

H

M

M

H

M

M

H

MM

M

Figure 4: (a) Helmholtz energy ψ and Gibbs energy G for increasing field H (H2 > H1 > 0).
(b) Dependence of the local average magnetization M on the field in the absence of thermal activation.

11



2.2 Gibbs Energy

The Helmholtz relations (18) or (25) quantify certain aspects of the exchange energy UE for ferro-
magnetic materials. To incorporate the work done by an applied field, we note from (8) that the
magnetostatic energy can be expressed as UM = µ0m ·H, where µ0 denotes the magnetic perme-
ability, and form the Gibbs energy relations

G(H, M, T ) = ψ(M, T )− µ0HM (26)

or
G(H, M, T ) = ψ(M, T )−HM (27)

by incorporating µ0 into ψ. For increasing H, the behavior of G with ψ given by (25) is depicted
in Figure 4(a). In the absence of anisotropic effects or applied stresses, G approximates the energy
landscape exhibited at the lattice level in homogeneous materials.

3 Local Average and Anhysteretic Magnetizations

3.1 Local Magnetization

For conditions in which thermal after-effects [2] are negligible, the local average magnetization M
at the lattice level is determined by minimizing the Gibbs relations (26) or (27) whereas the Gibbs
energy must be balanced with the thermal energy through Boltzmann principles if thermal effects
are significant. We consider these two regimes in Sections 3.1.1 and 3.1.2 and then illustrate in
Section 3.1.3 that the model which incorporates thermal energy limits to the case of no thermal
activation when reference volumes V are taken to be arbitrarily large.

3.1.1 Negligible Thermal Effects

For conditions in which thermal after-effects are negligible, the local average magnetization M is
determined from the necessary conditions

∂G

∂M
= 0 ,

∂2G

∂M2
> 0. (28)

When the statistical mechanics relation (18) is employed for the Helmholtz energy, this yields the
Ising relation

M(H) = Mstanh
(

H + αM

a(T )

)
(29)

where α and a(T ) are defined in (22). The behavior of the kernel or hysteron is illustrated in
Figure 5(a).

Remark 1. The Ising relation (29), whose input is the effective field

He = H + αM, (30)

is fundamental in a number of hysteresis models for ferromagnetic and ferroelectric compounds.
This relation was directly employed for quantifying the anhysteretic component of unified models
developed in [54]. Furthermore, it is illustrated in [54, 55] that if one relaxes the constraint that
moments have only the orientations σi = ±1 and considers uniformly distributed moments, one
obtains the Langevin relation M = L(He) ≡ Ms[coth(He/a) − a/He] which agrees with the Ising

12
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Hc

Figure 5: (a) Limiting kernel (29) obtained with the Helmholtz energy (18) in the absence of thermal
activation. (b) Limiting kernel (32) provided by the Helmholtz relation (25).

relation M = Mstanh(He/a) through first order terms – see [2, 4] for a derivation of the Langevin
equation in the context of magnetic materials. The Langevin model M = MsL(He), with He specified
by (30), is employed when quantifying the anhysteretic magnetization in the domain wall theory of
Jiles and Atherton [10, 11] as well as the transducer models based on that theory [45–47] — e.g.,
see (1). Finally, translates of the Ising relation r(x) = tanh(x) form appropriate ridge functions
for generalized Preisach, or Krasnosel’skǐı-Pokrovskǐı characterizations [56–58]. Hence this relation
plays a fundamental role in two of the present macroscopic theories outlined in Section 1.

The local average magnetization M resulting from (25) is elementary in the sense that it is
piecewise linear but is complicated by the fact that a history of moment switches must be maintained
to ascertain which branch of the hysteron is active. Enforcement of the necessary condition(28) yields

M =
1
η
H + MRδ (31)

where δ = 1 for positively oriented moments and δ = −1 for negative orientations. To quantify δ
in terms of initial moment configurations and previous switches, we employ Preisach notation —
e.g., see [33, 56,58] — and take

[M(H; Hc, ξ)](t) =


[M(H; Hc, ξ)](0) , τ(t) = ∅
H
η −MR , τ(t) 6= ∅ and H(max τ(t)) = −Hc

H
η + MR , τ(t) 6= ∅ and H(max τ(t)) = Hc.

(32)

Here

[M(H; Hc, ξ)](0) =


H
η −MR , H(0) ≤ −Hc

ξ , −Hc < H(0) < Hc

H
η + MR , H(0) ≥ Hc

(33)

denotes the initial moment distribution and transition times are designated by

τ(t) = {t ∈ (0, tf ] |H(t) = −Hc or H(t) = Hc} (34)

where tf denotes the final time under consideration.
The dependence of M on the local coercive field

Hc = η(MR −MI) (35)

is indicated as a prelude to the discussion in Section 4 where Hc is assumed distributed to accom-
modate material nonhomogeneities.
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The behavior of the limiting kernel (31) or (32) is compared with its statistical mechanics coun-
terpart (29) in Figure 5. It is observed that the primary difference between the kernels occurs in
the saturation behavior at high fields. The kernel (32) predicts a linear relation between H and
M after moment switching whereas the kernel (29) exhibits saturation behavior to a local average
magnetization value Ms.

Remark 2. A comparison of the upper and lower branches of the Ising kernel plotted in Figure 5(a)
illustrates that this kernel, obtained from the energy relation (18), yields noncongruent behavior.
Hence it can be used to characterize the noncongruency measured in certain operating regimes.

Remark 3. The limiting kernel (32) provides reversible behavior at high fields due to the fact that
the kernel does not saturate.

3.1.2 Thermal After-Effects

To incorporate the thermal mechanisms which produce phenomena such as after-effects [2], it is
necessary to balance the Gibbs energy G with the relative thermal energy kT/V , over the reference
volume V , through the Boltzmann density relation

µ(G) = Ce−GV/kT (36)

which specifies the probability of attaining an energy level G for a fixed field input. The constant C is
chosen to ensure a probability of unity when µ is integrated over all admissible moment configurations.

Gaussian Behavior of µ

To illustrate the behavior of µ for the Gibbs energy G = ψ−HM constructed using the piecewise
Helmholtz model (25), we consider the specific energy profile depicted in Figure 6 for which it is
assumed that H > 0 and G(M+

min) < G(M−
min) ≤ G(M0). The relative minima

M−
min(H) =

H

η
−MR ,

M+
min(H) =

H

η
+ MR

(37)

result from the necessary condition (28) utilized when constructing the limiting model (31) or (32).
The local coercive field Hc for which M−

min = −MI = M0 is given by (35).
From (25), it follows that for M < −MI , the Boltzmann probability can be formulated as

µ(G(H, M)) = C(T )e−G(H,M)V/kT

=
e−[ 1

2
η(M+MR)2−HM]V/kT∫ −MI

−∞
e−[ 1

2
η(M+MR)2−HM]V/kT dM

=
e−(M−M−

min)2ηV/2kT∫ −MI

−∞
e−(M−M−

min)2ηV/2kT dM

= C(T, β)e−(M−M−
min)2/2β2

(38)
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Figure 6: (a) Gibbs energy profile with a high level (– – –) and low level (——) of thermal activation
in the Boltzmann probability µ(G) = Ce−GV/kT . (b) Local magnetization M given by equation (49)
with high thermal activation (– – –) and limiting magnetization M specified by (32) in the absence
of thermal activation (——).

where

β =

√
kT

ηV
,

C(T, β) =
[∫ −MI

−∞
e−(M−M−

min)2/2β2(T )dM

]−1

.

(39)

Similarly, for M > MI , the probability has the form

µ(M) =
e−(M−M+

min)2ηV/2kT∫ −MI

−∞
e−(M−M+

min)2ηV/2kT dM

. (40)

Relations (38) and (40) illustrate the Gaussian behavior of the Boltzmann probabilities for the
piecewise quadratic Helmholtz function ψ while (39) illustrates that the variance β2 is proportional to
the relative thermal energy kT/V . From a physical perspective, low relative thermal energy implies
that fewer moments achieve the energy required to overcome energy barriers thus producing steep
transitions in the local relation between H and M .

To illustrate the Dirac nature of µ(G) in (38) as kT/V decreases, let j = 1/β and define the
sequence

φj(M −M−
min) =

{
C(T, j)e−(M−M−

min)2j2/2 , M ≤ −MI

0 , M > −MI .
(41)

The sequence {φj} satisfies properties (i)-(iii) of Theorem 1 in 7 and hence constitutes a Dirac family.
It follows immediately that

lim
kT/v→0

µ(M) = lim
j→∞

φj(M)

= δ(M −M−
min).

(42)

Analogous behavior is exhibited at M+
min as depicted in Figure 6(b).

Transition Likelihoods and Local Average Magnetization

Because the Boltzmann relation (36) quantifies the balance between the Gibbs and relative ther-
mal energies, it is employed when modeling the fraction of positively and negatively oriented mo-
ments, the average magnetizations due to the two configurations, and the likelihoods that moments
changes configurations for a given input field level.
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Recalling that N− and N+ respectively denote the number of negatively and positively oriented
moments, we denote the respective moment fractions by x− = N−/N and x+ = N+/N where

x− + x+ = 1 (43)

since N− + N+ = 1. The evolution of moment fractions is determined by the differential equations

ẋ+ = −p+−x+ + p−+x−

ẋ− = −p−+x− + p+−x+

(44)

which can be simplified to
ẋ+ = −p+−x+ + p−+(1− x+) (45)

through the identity (43). For a demagnetized material, initial conditions can be taken to be x̂− =
x̂+ = 1/2.

The expected or average magnetizations due to negatively and positively oriented moments are
defined by

〈M−〉 =
∫ M0(T )

−∞
Mµ(M) dM , 〈M+〉 =

∫ ∞

M0(T )
Mµ(M) dM (46)

where M0(T ) denotes the unstable equilibrium of G as depicted in Figure 6(a). For the piecewise
quadratic Helmholtz energy functional (25), the evaluation of the integrals in (46) is simplified by
replacing the limit M0(T ) respectively by −MI and MI in the definitions of 〈M−〉 and 〈M+〉. This can
be motivated by observing that maximum restoring forces occur at the inflection points as detailed
on pages 332-333 of [3] or pages 486-487 of [2]. Furthermore, these points coincide in the limit of
negligible thermal activation as illustrated in Section 3.1.3. With this approximation, we have

〈M−〉 =

∫ −MI

−∞
Me−G(H,M)V/kT dM∫ −MI

−∞
e−G(H,M)V/kT dM

, 〈M+〉 =

∫ ∞

MI

Me−G(H,M,T )V/kT dM∫ ∞

MI

e−G(H,M,T )V/kT dM

. (47)

The likelihood of switching from a positive moment orientation to negative, and conversely, are
respectively quantified by

p+− =
1

T (T )

∫ MI

MI−ε
e−G(E,M)V/kT dM∫ ∞

MI−ε
e−G(E,M)V/kT dM

, p−+ =
1

T (T )

∫ −MI+ε

−MI

e−G(E,M)V/kT dM∫ −MI+ε

−∞
e−G(E,M)V/kT dM

(48)

where ε is taken to be a small positive constant. The quotient of integrals is a probability and hence
is unitless. The relaxation time T is the reciprocal of the frequency at which moments attempt to
switch so 1

T has units of 1
sec . This yields the correct units in the differential equations (44) and

(45). Moreover, we note that T 2 is considered to be inversely proportional to the relative thermal
energy so that T (T ) = T1

√
V/kT ; hence increased temperature lead to increased thermal relaxation

behavior. For materials having a single relaxation time, T1 is constant whereas variable relaxation
times may need to be identified for materials exhibiting distributed relaxation behavior.

With the moment fractions, expected magnetization values, and transition likelihoods thus de-
fined, the local average magnetization for the lattice is

M = x+ 〈M+〉+ x− 〈M−〉 . (49)
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The behavior of the local model (49), which incorporates thermal after-effects (thermal relaxation)
is compared in Figure 6(b) with the relation (32) obtained by simply minimizing the Gibbs energy.
For values of kT/V on the order of G, a significant number of moments achieve the relative thermal
energy required for switching in advance of the local coercive field Hc. This produces a smooth
transition between the limiting minima (37) of the hysteron. For diminishing values of kT/V as
compared with G, fewer moments achive the thermal energy required for pre-coercive switching
which produces increasingly steep transitions between orientations. This convergence is rigorously
established in the next section.

3.1.3 Limiting Behavior of Local Magnetization Model

The local model (49) incorporates thermal after-effects by employing the Boltzmann relation (36)
to balance the Gibbs energy G and relative thermal energy kT/V whereas the local model (32) was
derived in the absence of thermal relaxation mechanisms simply by minimizing the Gibbs energy.
We rigorously establish here the convergence of (49) to (32) in the limit kT/V → 0 of increasing
control volumes and hence diminishing relative thermal energies. To clarify the discussion, we con-
sider the representative energy landscape depicted in Figure 6(a) – however, the analysis techniques
accommodate general energy configurations.

We consider first the convergence of the expected magnetization relations (47). For negative
moments, we consider the Dirac sequence {φj} defined in (41), define the function f(M) = M , and
consider the interval [a, b] = [M−

min, M0] where M−
min is defined in (37). Hence f is continuous on R

and satisfies the decay property (iv) in Theorem 1 of 7. It then follows that

lim
kT/V→0

〈M−〉 = lim
j→∞

∫ ∞

−∞
Mφj(M −M−

min)dM

= M−
min.

(50)

Analogous arguments can be used to demonstrate that 〈M+〉 → M+
min as kT/V → 0.

To illustrate the convergence of the transition likelihoods for a fixed relaxation time T (T ), we
modify the sequence {φj} defined in (41) for the interval (−∞,−MI + ε]. The function f is specified
to be

f(M) =

{
0 , M < −MI

1 , M ≥ −MI
(51)

and the interval [a, b] is taken to be [−2M−
min,−MI ] or [−MI , M0]. Since f again satisfies (iv) in

Theorem 1 of 7, we obtain the convergence

lim
kT/V→0

p−+ = lim
j→∞

1
T (T )

∫ ∞

−∞
f(M)φj(M −M−

min) dM

= 1
T (T )

{
0 , H < Hc

1 , H ≥ Hc

(52)

for Hc defined by (35). Similar analysis for positively oriented moments in the considered energy
landscape yields

lim
kT/V→0

p+− = 0. (53)

We let ζ+ = x+(0) and ζ− = x−(0), ζ++ζ− = 1, denote the initial moment fractions and consider
the behavior of the differential equation (45) governing the evolution of x+. Under the assumption
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that H, which is parameterized with respect to time, is increasing, we let t = tc denote the time at
which H(t) = Hc. The solution to (45) in the limit kT/V → 0 is then

x+(t) =

{
ζ+ , t < tc

1− (1− ζ+)e−(t−tc)/T , t ≥ tc
(54)

and the limiting local magnetization is

[M(H)](t) =


H(t)

η + (2ζ+ − 1)MR , t < tc

H(t)
η +

[
1− 2(1− ζ+)e−(t−tc)/T

]
MR , t ≥ tc.

(55)

For large t or small T , M(H) limits to

[M(H)](t) =


H(t)

η + (2ζ+ − 1)MR , t < tc

H(t)
η + MR , t ≥ tc

=

{
ζ−[M−

min(H)](t) + ζ+[M+
min(H)](t) , t < tc

[M+
min(H)](t) , t ≥ tc

(56)

which is precisely (32).

Remark 4. To summarize, the linear kernel (31) or (32) can be accurately employed when thermal
effects are negligible (kT/V is small) and relaxation times T are small compared with drive frequen-
cies. Otherwise, one should employ the kernel (49) or an asymptotic relation of the form (55) to
accommodate thermal activation or long relaxation times.

3.2 Local Anhysteretic Magnetization

The relations (32) and (49) characterize the local hysteretic H-M behavior at the lattice level when
the piecewise quadratic relation (25) is used to quantify the Helmholtz energy. The energy framework
used to establish these relations also quantifies the anhysteretic H-M behavior which is experimen-
tally achieved by applying sufficiently large AC fields superimposed on a DC bias field. From a
theoretical perspective, the local anhysteretic magnetization Man represents the locus of magnetiza-
tion values which would occur in materials devoid of inclusions. It can also be theoretically formulated
as the magnetization achieved when relaxation times T (T ) are sufficiently small compared with drive
frequencies that moments achieve global equilibria.

We illustrate the latter theoretical interpration in the context of the local magnetization model
(49) derived under the assumption that G and kT/V are balanced through the relation (36). The
condition of moment equilibrium yields ẋ+ = ẋ− = 0 in (44) which in turn implies that equilibrium
solutions x̄+ and x̄− satisfy the relation

x̄+

x̄−
=

p−+

p−+
. (57)

To demonstrate the implication of (57), consider first the case when H = 0. From the definition
(48), it follows immediately that p−+ = p+− and hence x̄+ = x̄−. From the conservation relation
x̄+ + x̄− = 1, it is deduced that x̄+ = x̄− = 1

2 , regardless of the initial conditions x+(0) and x−(0).
The rate at which the relations converge to equilibrium values is determined by the relaxation time
T (T ), with smaller values of T producing more rapid equilibration.
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To ascertain the resulting anhysteretic magnetization for H = 0, we note that the symmetry of
(47) implies that 〈

M+

〉
= −

〈
M−

〉
(58)

at equilibrium. When combined with the fact that x̄+ = x̄− = 1
2 , (49) yields

Man(H = 0) = 0. (59)

The field-dependence of p+−, p−+, 〈M+〉 and 〈M−〉 precludes a similar exploitation of symmetries
for H 6= 0. However, Man(H) can be easily computed by numerically approximating (49) with
sufficiently small T — recall that ω = 1

T quantifies the frequency at which moments attempt to
switch. The Gibbs energy G at the field value H0 = 2000 A/m, unnormalized density µ(G) =
e−GV/kT , and resulting local anhysteretic magnetization obtained with T = 1.0 × 10−13 sec, and
relative thermal energies kT/V = 5.0× 105 and kT/V = 7.14× 106 are plotted in Figure 7.

It is observed that when kT/V is significant compared with G, thermal fluctuations produce
switching between wells thus yielding a gradual anhysteretic transition between positive and negative
saturation magnetizations. As kT/V becomes increasingly small, the local anhysteretic magnetiza-
tion Man provided by (49) converges to

M(H) =
H

η
+ MRδ

δ = sign(H).
(60)

The limiting relation (60) can be interpreted as the locus of magnetization values which would occur
in the absence of inclusions — which is manifested by Hc = 0 in the local model.

Remark 5. We note that the local magnetization relation (29) obtained from the necessary condition
∂G
∂M = 0, with the statistical mechanics model for G, also yields an anhysteretic magnetization for

x106
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kT/V = 7.1
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Figure 7: (a) Gibbs energy G, and (b) unnormalized Gaussian densities µ(G) = e−GV/kT with
H0 = 2000 A/m. (c) Anhysteretic magnetization Man given by (49) with T = 1.0× 10−13 sec.
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certain values of α and a. This is analogous to the Jiles–Atherton framework in which the Langevin
expression (1) is employed to quantify Man. Due to its simplicity, however, we generally employ
(60) as a kernel when characterizing the anhysteretic magnetization for regimes in which thermal
relaxation is negligible.

4 Macroscopic Magnetization Models

The local magnetization models (29, (32) or (49) were derived by constructing appropriate energy
relations at the lattice level. For homogeneous materials with uniform effective fields, these relations
hold throughout the material and hence will also provide macroscopic models. By construction, they
exhibit the steep transitions depicted in Figures 4, 5 and 6 since moments are assumed to switch
instantaneously once they achieve the energy required to overcome energy barriers. The models
in this form prove adequate for characterizing the hysteretic behavior of certain materials which
exhibit small demagnetizing factors, certain uniaxial wires and films or annealed toroidal specimens.
Hysteresis loops exhibiting nearly instantaneous transitions due to these factors are illustrated for
a uniaxial nickel-iron film, a magnetically annealed core of cobalt ferrous ferrite and manganese-
magnesium ferrite on page 298 of Craig and Tebble [59]. However, the transitions provided by these
local models are too steep to provide accurate characterization of general polycrystalline magnetic
materials. To extend the local models, we consider certain parameters in the models to be statistically
distributed to reflect variations in the lattice structure, exchange energies and grain orientations. The
resulting macroscopic magnetization models accurately characterize both major and biased minor
loops in a wide range of ferromagnetic materials.

4.1 Statistical Mechanics Model

An implicit assumption made when deriving the Helmholtz energy relation (18) used to construct the
local magnetization models (29) and (49) is that the exchange energy Φ0 is constant throughout the
lattice. This implies that the bias field Hh = NΦ0

2V Ms
and Curie temperature Tc = Φ0

2k are constant which
yields a constant mean field coefficient α = Hh

Ms
and constant coefficient a(T ) = HhT

Tc
in the models

(29) and (49). However, for nonhomogeneous, polycrystalline materials with variable magnetization,
this assumption is overly simplistic. For such materials, it is more reasonable to assume instead that
Φ0 is statistically distributed which motivates the consideration of statistically distributed parameters
in the macroscopic magnetization models. Additionally, material nonhomogeneities, variable grain
orientations, nonuniform stress distributions, and variations due to texture motivate consideration
of statistically distributed model parameters.

Because Φ0 quantifies the energy required to reorient a moment when the lattice is completely
ordered, the assumption that Φ0 is statistically distributed implies that the exchange energy between
spins or moments is distributed. Through (12), this implies that the exchange integral J is variable
rather than constant as assumed for homogeneous materials. At the quantum level, the variability
of Jij employed in (5) is incorporated by modeling the overlap of electron wave functions whereas
at the macroscopic level, it is incorporated by considering Hh and α to be statistically distributed.
We consider the construction of macroscopic mean field models which accommodate the microscopic
variations in the exchange integral and lattice energy Φ0.

We first make the assumption that Φ0 is normally distributed about a mean value of Φ0. If N, V
and Ms remain constant, the bias field Hh = NΦ0

2V Ms
will then be normally distributed with mean Hh.
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A resulting macroscopic magnetization model is

[M(H)](t) = C

∫ ∞

−∞
[M(H; Hh, ξ)](t)e−(Hh−Hh)2

/2b2 dHh (61)

where b and C are constants and M is specified by (29) or (49). Because α = Hh
Ms

, this is equivalent
to employing effective fields

He = H + αM (62)

where α is normally distributed. This should be compared with a number of current hysteresis
models which employ effective fields of the form (62) with fixed α (e.g., [4, 11, 22]).

More general effective fields can be incorporated if it is assumed that in addition to variations
in Hh, the effective field He at the domain level is normally distributed about the applied field H.
Since He = H + HI , where HI denotes the interaction field, this yields the macroscopic model

[M(H)](t) = C

∫ ∞

−∞

∫ ∞

−∞
[M(H + HI ; Hh, ξ)](t)e−H2

I /2b2e−(Hh−Hh)2
/2b2dHIdHh (63)

where b2 determines the variance about H.

4.2 Piecewise Quadratic Helmholtz Relations

For the model derived using the piecewise quadratic Helmholtz energy (25), we incorporate lattice
variations due to nonhomogeneities, polycrystallinity and material inclusions by considering the local
coercive field Hc to be stochastically distributed. To enforce Hc ≥ 0, we make the initial assumption
that Hc satisfies a lognormal distribution with density

ν1(Hc) = c1 exp

{
−

[
ln(Hc/Hc)

2c

]2
}

(64)

where c, c1 and Hc are positive constants. It is illustrated in [9], where this distribution is considered
in the context of Preisach models, that if c is small compared with Hc, the mean and variance of f
have the approximate values

〈Hc〉 ≈ Hc , σ ≈ 2Hcc . (65)

The macroscopic magnetization model based on this distribution of Hc is

[M(H)](t) =
∫ ∞

0
[M(H; Hc, ξ)](t)ν1(Hc) dHc (66)

where M is given by (32) or (49). The relations (65) can be used to obtain initial parameter
estimates from attributes of measured data. For certain materials, the distribution of Hc can be
taken as Gaussian; however, positivity should still be enforced in the integration limits.

To incorporate variability in the exchange energy Φ0, we consider the effective field He to be nor-
mally distributed about the applied field H. When combined with (66), this yields the macroscopic
magnetization model

[M(H)](t) = C

∫ ∞

0

∫ ∞

−∞
[M(H + HI ; Hc, ξ)](t)e−H2

I /2b2e−[ln(Hc/Hc)/2c]2dHIdHc (67)

where C and b are positive constants and M is given by (32) or (49). When the kernel M is computed
using (49), the model incorporates certain relaxation mechanisms including magnetic after-effects.
However, it does not incorporate elastic effects or eddy current dynamics in this formulation so it
should be employed in low frequency regimes.
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4.3 General Density Formulation

The macroscopic model formulations (63) and (67) are based on a priori assumptions regarding
the normal or lognormal nature of underlying densities. In certain cases, the normal behavior of
parameters can be argued using statistical theory based on the central limit theorem; e.g., see [9].
In general, however, the choice of normal or lognormal distributions is based solely on mathematical
attributes rather than physical or energy principles. These mathematical assumptions can be avoided
by formulating the macroscopic models in terms of general densities to be estimated through a least
squares fit to data.

To illustrate, let ν1 and ν2 designate the densities respectively associated with local coercive and
effective fields. To satisfy physical criteria, we assume that ν1 and ν2 satisfy the conditions

(i) ν1(x) defined for x > 0,

(ii) ν2(−x) = ν2(x),

(iii) |ν1(x)| ≤ c1e
−a1x , |ν2(x)| ≤ c2e

−a2x

(68)

for positive a1, a2, c1, c2. The restricted domain in (i) reflects the fact that the coercive field Hc

is positive whereas the symmetry enforced in the effective field through (ii) yields the symmetry
observed in low-field Rayleigh loops. Hypothesis (iii) incorporates the physical observation that the
coercive and interaction fields decay as a function of distance and guarantees that integration against
the piecewise linear kernel yields finite magnetization values.

For the piecewise quadratic Helmholtz energy (25), The resulting macroscopic magnetization
model is then given by

[M(H)](t) =
∫ ∞

0

∫ ∞

−∞
ν1(Hc)ν2(HI)[M(H + HI ; Hc, ξ)](t) dHI dHc

=
∫ ∞

0

∫ ∞

−∞
ν(Hc, HI)[M(H + HI ; Hc, ξ)](t) dHI dHc

(69)

where M is specified by (31) or (49). Formulation in terms of the product density ν is more general
whereas retention of the components ν1 and ν2 can facilitate subsequent implementation.

Remark 6. A comparison of (69) with (2) indicates the manner through which the framework
provides an energy basis for certain extended Preisach models as detailed in [32, 33]. Techniques
analogous to those developed for Preisach models [27] have been developed to identify the general
density ν in an efficient manner [60,61], thus exploiting the similarity between the two frameworks.
As detailed in Sections 1 and 5, the formulation (69) is advantageous over classical Preisach models
in the manner through which it relaxes reversibility, deletion, and congruency criteria and incorpo-
rates temperature and rate-dependencies in the basis M rather than in the parameters ν. For these
reasons, it provides an energy basis for certain extended Preisach models [9].

4.4 Anhysteretic Magnetization Model

It was illustrated in Section 3.2 that for the piecewise quadratic Gibbs energy, the local anhysteretic
magnetization Man followed naturally from (49) for thermally active regimes or (60) in the absence
of thermal after-effects or relaxation. The global anhysteretic model follows directly from the general
hysteresis model (67) or (69) but can be simplified substantially since coercive fields play no role in
the anhysteretic material behavior.
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We consider first the anhysteretic model for the a priori density choices

ν1(Hc) =
c̃1

I1
e−[ln(Hc/Hc)/2c]2

ν2(HI) =
c̃2

b
√

2π
e−H2

I /2b2
(70)

where c1 = c̃1/I1 and c2 = c̃2/b
√

2π are expressed in terms of the normalization constants

I1 =
∫ ∞

0
e−[ln(Hc/Hc)/2c]2 dHc , b

√
2π =

∫ ∞

−∞
e−H2

I /2b2 dHI . (71)

The anhysteretic magnetization is then given by

Man(H) =
c̃1

I1
· c̃2

b
√

2π

∫ ∞

0

∫ ∞

−∞
M(H + HI)e−[ln(Hc/Hc)/2c]2e−H2

I /2b2 dHIdHc

= C̃

∫ ∞

−∞
M(H + HI)e−H2

I /2b2 dHI

(72)

where
C̃ =

c̃1c̃2

b
√

2π
. (73)

If solely quantifying anhysteretic material behavior, one can treat the constant C̃ as a material
parameter to be identified whereas if correlating modeled hysteretic and anhysteretic properties, one
should identify the constants c̃1 and c̃2. In the absence of thermal after-effects, the local relation
(60) yields

M(H + HI) =
H + HI

η
+ MRδ

δ = sign(H + HI)
(74)

whereas the kernel (49) can be employed if thermal activation is significant.
Additional generality can be obtained through the formulation

Man(H) =
∫ ∞

−∞
M(H + HI)ν2(HI) dHI (75)

where ν2 is a general density satisfying the assumption (68). As with the parameterized formulation,
normalization constants must be accounted for if comparing the anhysteretic model (75) and hys-
teresis model (69) — this reflects the price paid for employing unnormalized density formulations to
simplify notation.

4.5 Model Implementation

Two issues must be addressed when implementing the hysteresis models (63) or (67); (i) approxima-
tion of the integrals, and (ii) efficient implementation of the conditional relations (32). Because both
issues are crucial for providing algorithms that permit efficient system design and real-time control
implementation, we summarize pertinent details. For simplicity, we focus on the implementation of
(67) and note that analogous constructs exist for (63).
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4.5.1 Quadrature Techniques

The integrals can be approximated either on the original infinite and semi-infinite domains or on finite
domains determined by the exponential decay properties of the integrands. On the infinite domain,
Gauss-Hermite quadrature formulae apply whereas Gauss-Laguerre points and weights apply for
the semi-infinite integrals [62]. As illustrated in Figures 8(a) and 8(c), the exponential decay of
the densities can also be employed to determine finite intervals where Gauss-Legendre formulae are
accurate.

In all cases, approximation of (67) yields

[M(H)](t) = C

Ni∑
i=1

Nj∑
j=1

[M(HIj + H; Hci , ξj)](t)e
−H2

Ij
/2b2

e−[ln(Hci/Hc)/2c]2viwj (76)

where HIj , Hci denote the abscissas and vi, wj are weights associated with the respective quadrature
formulae. At H = 0, M = 0, the initial moment distribution ξj corresponds with the quadrature
points as illustrated in Figure 8(b).

To further illustrate, we consider the construction of Gauss-Legendre points and weights on the
interval [−L, L] using a 4 point composite quadrature rule. On each subinterval [hj−1, hj ], where
hj = −L + jh, the quadrature points and weights are

HIq1 = hq−1 + h

[
1
2 −

√
15+2

√
30

2
√

35

]
, wq1 = 49h

12(18+
√

30)

HIq2 = hq−1 + h

[
1
2 −

√
15−2

√
30

2
√

35

]
, wq2 = 49h

12(18−
√

30)

HIq3 = hq−1 + h

[
1
2 +

√
15−2

√
30

2
√

35

]
, wq3 = 49h

12(18−
√

30)

HIq4 = hq−1 + h

[
1
2 +

√
15+2

√
30

2
√

35

]
, wq4 = 49h

12(18+
√

30)

(77)

For Nq = 2 intervals, and hence Nj = 8, the quadrature points specified by (77) are depicted in
Figure 8(b).

The use of a similar relation to approximate the coercive field integral yields the double sum (76)
which must be evaluated when computing a magnetization value for each input field value. From
(32), it is observed that for each field value HIj , it is necessary to determine whether a transition
has occurred relative to the coercive value Hci . This yields Ni×Nj conditions to be checked for each
input value. While this can be easily accomplished using an if-then construct, implementation in
this manner diminishes significantly the efficiency of the algorithm. This motivates consideration of
an algebraic technique for evaluating the conditional statements.

4.5.2 Implementation Algorithm — Hysteresis Model with Negligible After-Effects

To retain the history of whether or not effective field values HIj = H + HIj have switched due to
encounters with coercive field values Hci , we employ (31) to motivate the matrix formulation

M =
H

η
+ MR∆(H; Hc, HI) (78)
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Figure 8: (a) Decay exhibited by the effective field HI having the density e−H2
I /2b2 and truncated

domain [−L, L]. (b) Gaussian quadrature points • and initial local magnetization values ξj for
Nj = 8. (c) Lognormal density ν1(Hc) = c1e

−[ln(Hc/Hc)/2c]2 given by (64). (d) Distribution of
hysteresis kernels having coercive fields Hc.

where ∆ = 1 if evaluating on the upper branch of the hysteron and ∆ = −1 if on the lower branch.
For the evaluation of (77), ∆ is an Ni ×Nj matrix whose ijth component specifies whether HIj has
reached the coercive value Hci . We also define the following matrices

∆init =

 −1 · · · −1 1 · · · 1
...

...
...

...
−1 · · · −1 1 · · · 1


Ni×Nj

, Hc =

 Hc1 · · · Hc1
...

...
HcNi

· · · HcNi


Ni×Nj

Hk =

 Hk + HI1 · · · Hk + HINj

...
...

Hk + HI1 · · · Hk + HINj


Ni×Nj

(79)

and weight vectors

W T =
[
w1e

−H2
I1

/2b2
, · · · , wNje

−H2
INj

/2b2
]

1×Nj

V T =
[
v1e

−[ln(Hc1/Hc)/2c]2 , · · · , vNie
−[ln(HcNi

/Hc)/2c]2
]
1×Ni

.

(80)

Here Hk = H(tk) is the kth value of the input field. The magnetization Mk ≈ M(Hk) is specified
by Algorithm 1. Here sgn denotes the signum function, .∗ indicates componentwise multiplication,
and

C = c1 · c2 =
c̃1

I1
· c̃2

b
√

2π
(81)

follows from (71). The first step in the for-loop updates ∆ by incorporating the status of previous
coercive field switches. We note that by employing algebraic matrix operations to evaluate and
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incorporate ∆, the efficiency of the algorithm is improved by a factor of more that 100 over algorithms
utilizing conditional evaluations. This efficiency is crucial for system design and real-time control
implementation.

Algorithm 1.
∆prev = ∆init

for k = 1 : Nk

∆ = sgn(Hk +Hc. ∗∆prev)
M = 1

ηHk + MR∆
Mk = CV tMW

∆prev = ∆
end

4.5.3 Implementation Algorithm — Anhysteretic Model

The implementation of the discretized anhysteretic model is significantly easier than implementation
of the hysteresis model since it does not require updating of ∆ to retain a history of moment switches
due to local coercive fields. One can employ either the matrices and vectors defined in (79) and
(80) for the hysteresis model, or a reduced set of vectors which reflects the fact that the coercive
density integrates to the constant I1 defined in (71). The two equivalent approaches are illustrated
in Algorithms 2 and 3 where C̃ = I1C and

hk =
[
Hk + HI1 , · · · , Hk + HINj

]
1×Nj

(82)

in Algorithm 3. Algorithm 2 retains the direct correlation with the hysteresis model whereas Algo-
rithm 3 is more efficient to implement since it requires vector rather than matrix multiplication.

Algorithm 2.
for k = 1 : Nk

∆ = sgn(Hk)
Man = 1

ηHk + MR∆
Mk = CV T ManW

end

Algorithm 3.
for k = 1 : Nk

∆ = sgn(hk)
Man = 1

ηhk + MR∆
Mank

= C̃ManW

end

5 Model Properties and Validation

To illustrate attributes of the model, we consider the characterization of steel under zero prestress
conditions using data from [10]. This demonstrates a variety of regimes including quantification
of the anhysteretic magnetization and the prediction of symmetric minor loop behavior using the
model with parameters obtained from the symmetric major loop. To further illustrate the manner
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through which the framework characterizes anhysteretic material behavior, we numerically simulate
the experimental process in which a decaying AC field is applied at a DC offset to demonstrate that
the resulting magnetization coincides with that predicted by the anhysteretic model. In the third
example, we illustrate the response of the model to a step input to demonstrate its capability for
quantifying the effects of thermal activation. Finally, we note that additional examples illustrating
the capability of the model to accurately characterize biased minor loop behavior can be found
in [63,64] and the characterization of strains in a Terfenol-D transducer is illustrated in [36].

5.1 Experimental Validation for Steel: Anhysteretic and Biased Minor Loop
Behavior

We consider data from a steel specimen having a length of 6 cm and cross-sectional area of 1 cm as
reported by Jiles and Atherton [10]. The composition (% by weight) of the sample was C (0.08),
Mn (1.98), S (0.08), P (0.015), Cu (0.055) and Mo (0.235). We consider hysteretic and anhysteretic
data collected under σ = 0 prestress conditions which is plotted in Figures 9(a) and 9(b).

Anhysteretic Model

The anhysteretic model (72) is more fundamental than the full hysteresis model (67), since it
does not incorporate local coercive fields, so we consider it first. The parameters MR, C̃, η and b
have the following physical interpretations. The local remanence value MR and constant C̃ both
scale the height of the curve and are constructed to yield correct saturation values. The parameter
η asymptotically represents the reciprocal slope dH

dM at field reversal and an initial value can be
obtained from the slope of the data at Hmax. The variance b quantifies the degree of pre-remanence
switching in the hysteresis model which corresponds to the curvature of the anhysteretic model in
low drive regimes.

A least squares fit to the data yielded the values for MR, C̃, η and b summarized in Table 1. A
comparison between the resulting model fit and data in Figure 9(a) illustrates that the anhysteretic
model (72) accurately characterizes the material behavior through the drive range.
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Figure 9: Steel data from [10] collected under σ = 0 prestress conditions. (a) Anhysteretic data and
model fit provided by (72). (b) Hysteresis data, major loop model fit provided by (67), and minor
loop predictions.
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Parameters η MR (A/m) b (A/m) C̃ Hc (A/m) c (A/m)

Values 6.5 5.4× 103 3521.4 0.0190 250 0.75

Table 1: Parameter values identified for the anhysteretic model (72) and hysteresis model (67).

Hysteresis Model

The full hysteresis model additionally requires the estimation of the mean coercive field Hc and
variance c. Whereas an initial estimate for the former can be obtained directly from the coercivity
of the data, the parameter c which quantifies the variability at coercivity due to material nonhomo-
geneities, is usually prescribed a qualitative rather than quantitative interpretation. For example,
materials exhibiting a steep transition at coercivity will have small variances when compared with
materials such as the steel data plotted in Figure 9(b) which exhibits a gradual transition at H = Hc.

To complete the model, the measured coercive field Hc = 910 A/m was used as an initial value and
the values of Hc and c compiled in Table 1 were estimated through a least squares fit to the symmetric
major loop data. Measured periodic fields having lower amplitudes were subsequently input to the
model — using the same parameter values — to obtain the symmetric minor loop predictions which
are also plotted in Figure 9(b). It is observed that the model accurately characterizes the hysteretic
material behavior throughout the drive regime, including the approximately quadratic Rayleigh loop
behavior at low input fields.

5.2 Numerical Simulation of Anhysteretic Behavior

To further illustrate the manner through which the anhysteretic magnetization is quantified by
this framework, we numerically simulate the experimental procedure used to obtain Man using the
full hysteresis model (67), and compare with the value predicted by the anhysteretic model (72).
Specifically, we applied the periodic and subsequently decaying AC field depicted in Figure 10(a) to
the model (67) to simulate the experimental procedure used to obtain Man or Ban at the DC field
H0 = 2000 A/m. The parameter values from Table 1 were employed so the result, Ban = 0.5544
Tesla, which is plotted as ∗ in Figure 10(b), is representative of steel. A comparison with the
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Figure 10: (a) Field input to the hysteresis model (67) to generate the hysteretic response and
anhysteretic value at H0 = 2000 A/m. (b) Value of Ban generated by the decaying AC field (∗) and
anhysteretic model (◦), and full anhysteretic curve (– – –) given by (72).
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corresponding value of Ban = 0.5704 Tesla predicted by the anhysteretic model (72), which is denoted
by ◦, illustrates that the two approaches yield identical results to within reasonable precision. The
locus of points computed using (72) completes the comparison between the predicted anhysteretic
and hysteretic responses for the material. Hence the modeling framework developed to quantify
hysteresis in ferromagnetic materials also quantifies the anhysteretic response in a natural manner.

5.3 Experimental Validation for Nickel: Biased Minor and Reversible Post-
Switching Behavior

To illustrate the capability of the model to characterize biased mior loop behavior, we consider data
collected from a rod comprised of Nickel 200. As detailed in [65], the rod had a diameter of 0.0635 cm
(1/4 in), length of 6.858 cm (2.7 in), and was employed in a water-cooled transducer analogous to
the Terfenol-D design depicted in Figure 2. Data was collected at a rate of 10 mHz to minimize eddy
current losses.

The kernel (49), which incorporates thermal relaxation, was employed in the magnetization model
and general densities ν1 and ν2 were identified using the least squares techniques detailed in [61] for
the analogous ferroelectric model. When implementing the model in optimization routines, the
measured experimental field H, plotted in Figure 11(a), was employed as input to the model to
maintain experimental rates and time scales. The resulting magnetization data and model fit are
shown in Figure 11(b)-(e). The time history in Figure 11(b) illustrates the fact that because the
nested minor loop data comprises a large percentage of the total data set, the optimization routine
determines density values which yield greater accuracy in the minor loops than in the post-switching
region of the major loop. The slight nonclosure of modeled minor loops results from the relaxation
values prescribed during the optimization process to accommodate similar behavior in the measured
data.

For fields higher in magnitude than approximately 6 kA/m, the model incorporates the reversible
post-switching behavior of the material due to the form of the energy-based kernel. The characteri-
zation of these effects using a Preisach approach requires extensions of the type detailed in [9] since
classical Preisach hysterons have zero slope. Similarly, an extended formulations of the Jiles–Atherton
model is required to incorporate this effect.

The accuracy exhibited in Figure 11(b) is important for model-based control design since charac-
terization and compensation in this context are typically posed as a functions of time. Further details
regarding the utility of the framework for model-based control design are provided in Section 6.

5.4 Numerical Simulation of Relaxation Behavior

One manifestation of relaxation effects is the nonclosure of biased minor loops observed in Figure 12.
To further illustrate the manner through which the model characterizes magnetic after-effects, the
discontinuous step input shown in Figure 12(a) was input to the model. The resulting magnetization,
plotted in Figure 12(b), exhibits both an associated discontinuity and creep or after-effects due to
the modeled thermal activation mechanisms. Quantification of this phenomenon is important both
for fundamental material modeling and characterization of transducers required to hold a precise set
point over time scales comparable with relaxation times.

For the classes of macroscopic models discussed in Section 1, extended Preisach formulations in-
corporating Arrhenius behavior will characterize this behavior whereas the Jiles–Atherton, Globus,
and Stoner–Wohlfarth formulations do not presently address this phenomenon. The inherent in-
corporation of thermal activation mechanisms constitutes an advantage of the homogenized energy
framework.
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Figure 11: (a) Field input, (b) Nickel 200 data and model as a function of time, (c) Nickel 200
H-M data, (d) H-M model fit, and (e) comparison between data and model in the first minor loop
following negative remanence.

30



0 0.2 0.4 0.6 0.8 1

0

2

4

6

8

10

12

Normalized Time

F
ie

ld
 (

kA
/m

)

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

Normalized Time

M
ag

ne
tiz

at
io

n 
(k

A
/m

)

(a) (b)

Figure 12: (a) Input field H and (b) response of the model (69) employing the kernel (49) which
incorporates thermal activation.

6 Concluding Remarks

The model presented here provides a framework for characterizing hysteretic and anhysteretic be-
havior of a broad range of ferromagnetic compounds. The approach combines energy analysis at
the lattice level with stochastic homogenization techniques to construct macroscopic models which
accurately characterize the nonlinear H-M or H-B material behavior while remaining sufficiently
efficient to permit subsequent transducer design or model-based control designs having the potential
for real-time implementation. At the lattice level, exchange and magnetostatic energy relations are
employed in a mean field framework to construct a temperature-dependent Gibbs energy relation
G which quantifies the transition from ferromagnetic to paramagnetic behavior as temperatures are
increased through the Curie temperature Tc. For fixed temperature regimes, Taylor expansion about
equilibria yields a piecewise quadratic Gibbs relation which is highly efficient to implement. For
regimes in which magnetic after-effects (thermal relaxation) are negligible, the local average magne-
tization M at the lattice level is determined from the necessary condition ∂G

∂M = 0 whereas Boltzmann
principles are employed to balance G with the relative thermal energy kT/V for operating regimes
in which relaxation times are significant compared with drive frequencies.

To construct macroscopic models utilizing the energy-based kernels or hysterons M , we assume
that bias fields Hh, local coercive fields Hc, and interaction fields HI are manifestations of underly-
ing distributions rather than constant parameters or inputs. This yields constitutive relations which
guarantee minor loop closure once accommodation and after-effects are completed, incorporate relax-
ation and certain temperature-dependencies, incorporate reversible effects, and yield noncongruency
in certain operating regimes. The model is also highly efficient to implement thus facilitating future
incorporation in design and control algorithms. Finally, the framework incorporates mechanisms
common to a number of presently employed macroscopic models.

Jiles–Atherton: The Ising relation (29) obtained by minimizing the Gibbs energy constructed
through statistical mechanics tenets is analogous, and agrees through first-order terms, with the
Langevin relation (1) employed in the Jiles–Atherton theory to quantify the anhysteretic magneti-
zation. The difference between the theories lies in the manner through which energy relations are
constructed and losses are incorporated.

Globus and Stoner–Wohlfarth: The energy-based hysterons M provided by the proposed model
are also analogous to those provided by the Globus and Stoner–Wohlfarth models. The present theory
differs from the original Globus and Stoner–Wohlfarth theories due to its formulation in terms of the
exchange energy which incorporates moment interactions. It also differs from the Stoner–Wohlfarth
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theory in that it does not incorporate anisotropy energies.
Preisach: The theory bears the greatest resemblance to extended Preisach theories and the

formulation (69) in terms of general densities provides an energy basis for certain extended Preisach
models. The primary differences between the proposed framework and classical Preisach theory are
the following. (i) As detailed in Section 5.1, certain parameters such as the local average coercive
field Hc and reciprocal slope η at Hmax can be directly correlated with properties of the data to
facilitate model construction and updating. This is analogous to interpretations proposed in [9] for
Preisach models with a priori density specifications. (ii) Temperature and relaxation mechanisms
are incorporated in the basis or kernel M of (67) or (69) rather than the densities or weights as is
typically the case for Preisach formulations. This eliminates the need for vector-valued measures
or lookup tables for general operating conditions. (iii) As illustrated in Figure 5, the proposed
framework employing the kernel (29) relaxes the criterion of congruency and hence is analogous to
certain moving Preisach models [9]. (iv) The model also automatically incorporates reversible effects
after switching and hence does not required the Preisach extensions detailed in [9] to incorporate
reversibility.

We note that the framework developed here for ferromagnetic materials is based on theory quan-
tifying phase transitions in shape memory alloys (SMA) [66–69] which has subsequently been ex-
tended to ferroelectric materials [61, 70]. Hence the framework provides a unified methodology for
modeling constitutive nonlinearities and hysteresis in ferroelectric, ferromagnetic and ferroelastic
materials [63, 64]. This directly facilitates the construction of unified characterization techniques
for ferroic compounds and the development of unified model-based control designs for ferroic trans-
ducers. It also provides a framework which may facilitate the construction of models for hybrid
transducers employing multiple components (e.g., Terfenol-D and PZT) or the characterization of
newly developed and proposed materials such as ferromagnetic shape memory alloys (FSMA) which
exhibit attributes common to multiple classes of the compounds.

As noted in Section 2, exchange, magnetostatic, magnetoelastic and anisotropy energy compo-
nents contribute to the total energy in ferromagnetic materials. The present modeling framework
incorporates the exchange and magnetostatic energies, and aspects of the magnetoelastic energy have
been employed in [36] to develop magnetoelastic constitutive relations

σ = Y Mε− Y MγM2

M(H) =
∫ ∞

0

∫ ∞

−∞
ν(Hc, HI)M(H + HI ; Hc, ξ) dHI dHc

(83)

where ε, σ and γ respectively denote a uniaxial strain, stress and coupling coefficient. These relations
form the basis for constructing PDE models for magnetostrictive transducers, and the performance of
the framework for characterizing the magnetization and strains generated by a Terfenol-D transducer
analogous to that depicted in Figure 2 is demonstrated in [36].

Attributes and open research questions pertaining to the framework can be summarized as fol-
lows. (i) Minor Loop Closure and After-Effects: For operating regimes in which thermal relaxation
processes are negligible, use of the kernel (32) in the macroscopic model (69) guarantees the closure
of biased minor loops. Alternatively, use of the kernel (49), which incorporates thermal relaxation,
yields nonclosure of biased minor loops in certain regimes as well as after-effects of the type shown in
Figure 12. (ii) Noncongruency: As noted in Remark 2 and depicted in Figure 5(a), the model employ-
ing the kernel (29) incorporates the noncongruency exhibited by certain materials. (iii) Reversibility:
The model employing the kernels (32) or (49) provides reversible behavior after switching due to the
nonzero slope of the upper and lower hysteron branches (e.g., see Figure 11). (iv) Accommodation:
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Whereas the framework phenomenologically quantifies certain accommodation processes, the exten-
sion of the theory to incorporate energy mechanisms associated with magnetic accommodation has
not been completed and is under present investigation. (v) Temperature and Stress-Dependencies:
The kernel (29) incorporates certain temperature-dependencies as well as the transition between
ferromagnetic and paramagnetic phases; however, its accuracy should be considered limited when
quantifying changes over a broad temperature range. Certain extensions to the framework to provide
more comprehensive characterization of temperature effects has been developed in [35] in the context
of relaxor ferroelectric materials. The framework presented here focuses on constant stress condi-
tions. Initial extensions of the theory to incorporate stress-dependencies in M due to magnetoelastic
coupling are provide in [73]. (vi) Eddy Currents: The present framework does not incorporate eddy
currents and hence should be employed in low frequency regimes or transducers constructed for mini-
mal eddy losses (e.g., laminates). (vii) Anisotropy: The model is presently formulated for isotropic or
weakly anisotropic materials and the extension of the framework to incorporate the energy associated
with hexagonal and cubic crystalline anistropies is under investigation.

One of the motivating criteria when constructing the characterization framework was to provide
macroscopic models with sufficient efficiency to permit model-based control design. It is illustrated in
[71] that the monotonicity inherent to the H-M relation can be exploited to construct highly efficient
approximate inverse representations M−1(H) using the discretized model (76). These approximate
inverses are then employed as filters to the linear and hysteretic transducers so that prescribed
and actual control inputs to the plant approximately coincide. It is illustrated in [71, 72] that
by linearizing a Terfenol-D transducer in this manner, highly accurate tracking tolerances can be
maintained through linear robust control designs while operating in highly nonlinear and hysteretic
drive regimes.

7 Appendix A

We summarize here the attributes of a Dirac sequence and provide a theorem which establishes that
the convolution of Dirac sequences with suitably smooth functions f will limit to a point evaluation
of f . This theorem is employed in the model development to illustrate the convergence of Gaussian
moment distributions to a Dirac distribution in the limit of small relative thermal energies kT/V or
increasing control volumes V . It also provides a framework employed to demonstrate that models
which include thermal after-effects converge to models based on the assumption of negligible thermal
energy as control volumes are taken to be arbitrarily large.

Theorem 1. Let {φj} be a sequence satisfying the following properties:

(i) φj > 0 for all j

(ii)
∫

φj(y)dy = 1 for all j

(iii) Given ε, δ > 0, there exists j0 such that∫
|y|≥δ

φj(y)dy < ε

for all j ≥ j0.

Let f be piecewise continuous on R, continuous on the interval [a, b], and satisfy the decay property:
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(iv) Given ε, δ > 0, there exists j0 such that∫
|y|≥δ

φj(y)f(x− y)dy < ε

for all j ≥ j0 and x ∈ [a, b].

Then for x ∈ [a, b], φk ∗ f converges to f ; that is∫
φj(y)f(x− y)dy → f(x)

or ∫
φj(x− y)f(y)dy → f(x).

Proof. From (ii) it follows that

f(x) = f(x)
∫

φj(y)dy =
∫

f(x)φj(y)dy

so that for x ∈ [a, b],

φj ∗ f(x)− f(x) =
∫

φj(y)f(x− y)dy −
∫

φj(y)f(x)dy

=
∫

φj(y)[f(x− y)− f(x)]dy .

From the continuity of f , it follows that for fixed ε, there exists δ such that

|f(x− y)− f(x)| < ε

for |y| < δ. For this δ, we write

|φj ∗ f(x)− f(x)| ≤
∫
|y|<δ

φj(y)|f(x− y)− f(x)|dy +

∣∣∣∣∣
∫
|y|≥δ

φj(y)f(x− y)dy

∣∣∣∣∣
+

∫
|y|≥δ

φj(y)|f(x)|dy.

For sufficiently large j, the integral over the region |y| < δ is bounded by ε due to the continuity
of f on [a, b] whereas the second integral is bounded by ε due to (iv). Finally the third integral
is bounded by ‖f‖∞ε, where ‖f‖∞ ≡ maxx∈[a,b] |f(x)|, thus yielding the desired convergence. The
convolution expression follows from a direct change of variables. ¤

We note that a sequence of functions {φj} satisfying the properties (i)-(iii) is termed a Dirac sequence
on R1. Additionally, if we replace the assumption (iv) by the condition that f is bounded and
measurable on R, then Theorem 1 is a 1-D version of Theorem 3.1 from page 228 of [74].
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