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ABSTRACT 
 
 
 
The warfighter constantly needs increased accuracy from Global Positioning 

System (GPS) and one means to increasing its accuracy to the decimeter level is a 

broadcast ephemeris message containing GPS satellite orbit and clock corrections.  The 

ephemeris message is produced at the GPS MCS (Master Control Station) which receives 

GPS signal data from National Geospatial-Intelligence Agency (NGA) and Air Force 

tracking sites worldwide and uses sophisticated software to produce the orbit and clock 

corrections.   

The problem is getting the ephemeris message to the tactical user in a forward 

operating area.  This thesis proposes a notional architecture for pushing the ephemeris 

message to the tactical user.  It then models the architecture and simulates the broadcast 

of the ephemeris message to a tactical user using NETWARS.  The baseline architecture 

is analyzed and then additional constraints are placed upon the network to simulate a real-

world model.  The simulation results demonstrate that the architecture is feasible for 

ephemeris message broadcast with the constraints on time intervals between broadcasts, 

residual traffic, and message size.     
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I. INTRODUCTION  

A. BACKGROUND  
The Global Positioning System is a technology that allows users to determine 

their position accurately anywhere in the world.  The system was originally designed for 

use by the United States Department of Defense (DoD) but has since expanded to 

commercial and individual users as well.  Despite its wide variety of uses for these 

commercial users, GPS is still an extremely important technology for the military.  GPS 

is used by the United States Armed Forces for navigation, tracking, bomb and missile 

guidance, rescue, and map updating.  This thesis focuses on the bomb and missile 

guidance capacity of GPS.   

The bomb and missile guidance capability of GPS is currently employed on the 

JDAM (Joint Direct Attack Munition) and the JSOW (Joint Stand-Off Weapon). These 

weapons can be launched from tactical aircraft platforms of the United States Navy, Air 

Force and Marine Corps including the F/A-18, F-16, F-15, B-1, B-2, and B-52.  While 

the current accuracy of these weapons is excellent, it is possible for even greater accuracy 

and precision through the use of GPS Point Positioning.1  GPS Point Positioning has been 

shown to provide real-time decimeter level GPS accuracy.    GPS Point Positioning is a 

type of differential GPS positioning that requires corrections for the GPS satellite orbit 

and satellite clock errors.  The combination of the satellite orbit and satellite clock 

corrections with the original GPS signal at a passive receiver allows for GPS Point 

Positioning.         

 

B. STATEMENT OF PROBLEM 
The current problem with GPS Point Positioning is providing the Zero Age of 

Data (ZAOD), which contains the corrections to the GPS satellite orbits and satellite 

clocks errors, known collectively as the ephemeris message, to tactical aircraft.  The GPS 

constellation is updated on average 1.2 times per day with current ephemeris data even 

though the corrections are generated every 15 minutes by OMNIS, a ground-based 

                                                 
1 The Air Force TENCAP project Talon NAMATH and the Navy TENCAP project Radiant ZEPHYR 

V both discuss the use of GPS Point Positioning.     
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computer system located at Schriever Air Force Base, Colorado Springs, Colorado.2  This 

thesis proposes to examine the ability to deliver ephemeris data from Schriever AFB to 

tactical aircraft in a forward operating area using currently available terrestrial 

communication systems.   

The communications architecture is designed to push the ephemeris data over a 

terrestrial IP network such as JRES/NIPRNET/SIPRNET to a Global Broadcast System 

(GBS) uplink site.  The GBS uplink will push the ephemeris data over the GBS pipe to a 

GBS downlink.  This GBS downlink could be to a United States Navy aircraft carrier 

(CVN) or a United States Air Force Air Operations Ceneter (AOC) or a Combined Air 

Operations Center (CAOC).  The CVN, AOC or CAOC will then use the Link 16 tactical 

data network to forward the ephemeris data to an E-2C or AWACS command aircraft.  

The command aircraft will then forward the ephemeris data via Link 16 to tactical aircraft 

in flight.  This ephemeris data will be inputted into the tactical aircraft’s GPS receiver 

allowing for GPS Point Positioning.            

This thesis will simulate the ephemeris data being pushed over the above 

proposed communications architecture and examine the feasibility and compatibility of 

this technique.  Feasibility defines whether or not the communications architecture can 

support the size and frequency of the ephemeris message.  Compatibility defines whether 

or not the ephemeris data moves seamlessly between the communication systems 

employed in the architecture. 

 

C. METHODOLOGY 
The data for this thesis is obtained using the NETWARS Simulation Program.  

The data for this project is collected using a progressively constructed simulation that 

first establishes the baseline architecture and runs a simulation of bits (the GPS 

ephemeris message) through the communications network simulation that has been 

designed.  The simulation of bits is checked to ensure that it makes it through the network 

to the receiver and does not overload the system.     

After establishing a baseline, the simulation is run multiple times using different 

timing for the ephemeris message, different message breakdowns and different loads 
                                                 

2 Air Force TENCAP Talon NAMATH Briefing, 21 April 2005. 
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placed on the rest of the network.  The timing for the ephemeris messages is increased to 

see the limit of how often the receiver can actually be updated.  The ephemeris message 

is also broken down into the GPS satellite clock updates and the GPS satellite orbit 

updates with the orbital updates sent every 15 minutes and the clock updates sent at faster 

rates through the network.  The clock updates are more essential to the receiver in order 

to achieve decimeter level accuracy than the orbit updates.  Finally, increased loads are 

placed on the rest of the network to simulate other users.   

 The methodology for the technical side to check for the compatibility of the GPS 

ephemeris message through the proposed architecture will be established via research 

into the current systems and how they handle message traffic.  This will include 

investigation into the data transfer at the CVN/CAOC node between GBS and Link 16, 

and at the tactical aircraft node between Link 16 and the GPS receiver.  Link 16 will also 

be investigated to check for compatibility between the TADIL-J format of Link 16 and 

the ICD-153C format of the GPS ephemeris message.   

 

D. ORGANIZATION OF THE THESIS 
This thesis is organized as follows, Chapter II: Technologies; Chapter III: GPS 

Ephemeris Message Broadcast Architecture; Chapter IV: GPS Broadcast Simulation 

Using NETWARS; Chapter V: GPS ephemeris message architecture Simulation with 

shorter Time Intervals; Chapter VI: GPS ephemeris message architecture Simulation with 

Background traffic; Chapter VII: GPS ephemeris message architecture Simulation 

Varying the number and Size of the ephemeris message and Chapter VIII: Conclusion.   
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II. TECHNOLOGIES 

A. GPS 

1. Basics 
The Global Positioning System (GPS), known as NAVSTAR by the U.S. 

Department of Defense, is a space-based navigation system.  The current system is made 

up of a network of 28 satellites, 24 operational and 4 backups, orbiting the earth at an 

altitude of approximately 12,000 miles.  At this altitude, each satellite completes two full 

orbits in slightly less than 24 hours.  The GPS system uses satellite signal time-of-arrival 

calculations to determine position and time for the user.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.   GPS Satellite Constellation (From: Garmin, 2005)  

 

GPS is a dual-use system developed by the Department of Defense that is 

designed to support both military and civilian users.  The two main services that GPS 

provides are the Precise Positioning Service (PPS) and Standard Positioning Service 
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(SPS).  PPS is the full-accuracy GPS positioning service with a design specification 

accuracy of approximately 15 meters intended for military users.  SPS is the partial-

accuracy GPS positioning service and was intended to provide civilian users with GPS 

capability, but with minimum accuracies of 100 meters.  The difference between the two 

GPS signals is achieved through the use of Selective Availability (SA), which is 

essentially an intentional degradation of the satellite signal for civilian users.  The 

rationale behind SA was that civilian users could achieve the benefits of GPS but not at 

the cost of U.S. national security. The use of SA was discontinued by May 1, 2000 by 

order of the President of the United States although the U.S. reserves the right to turn it 

back on at anytime in the future when our interests may be threatened.  The 

discontinuation of SA means that all GPS users have access to PPS.     

The current types of GPS satellites in orbit, Blocks IIA and IIR, transmit two 

lower power signals in the microwave part of the radio spectrum that are designated L1 

and L2.  Civilian GPS receivers access the Coarse Acquisition (C/A) code transmitted on 

the L1 frequency (1575.42 MHz).  Military receivers use the encrypted P-code (precise or 

precision code) which is transmitted on both L1 and L2 frequencies (1228.60 MHz).  In 

the future the GPS constellation will add new signals beginning with a new C/A code 

transmitted on the L2 frequency.  This signal will be available beginning with the initial 

GPS Block IIR-M satellites scheduled for launch later this year.3  Another new signal, 

known as L5 and transmitted at 1176.45 MHz, will be available on GPS Block IIF 

satellite scheduled for launch beginning in 2007.4  The L5 signal falls in a band which is 

protected worldwide of aeronautical radio navigation, and therefore will be protected for 

safety-of-life applications.5 

Figure 2 outlines the GPS frequencies and signals: 

                                                 
3 Davidson, Joe, Air Force Space Command Continues GPS Modernization, Space Daily, August 22, 
2005.  Available [www.spacedaily.com/news/gps-05zzzt.html], September 26, 2005.   

4 Global Security.org, GPS III/GPS Block III not dated 
[http://www.globalsecurity.org/space/systems/gps_3.htm], September 26, 2005.    

 5 FAA, GPS Basics, [http://gps.faa.gov/gpsbasics/GPSmodernization-text.htm], June 15, 2005.    
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Figure 2.   GPS Frequencies and Signals (From: SS3011, Lesson 22A) 
 

2. Segments 
The GPS system includes three main segments: the space segment, the control 

segment and the user segment.  The space segment currently consists of 28 satellites in 

six orbital planes separated by 60 degrees and at a 55 degree inclination angle from the 

equatorial plane.  The orbit period is 11 hours 58 minutes and its radius is approximately 

26,600 km (Kaplan, 1996).  The orbital design ensures that at least four satellites are 

always visible from any location.   

The control segment of the Global Positioning System, known as the Operational 

Control Segment (OCS), consists of a Master Control Station (MCS), monitor stations 
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and ground control stations.  The main operational tasks of the OCS are: tracking for the 

orbit and clock determination and prediction, time synchronization of the satellites, and 

upload of the data message to the satellites.6  The MCS is located at Schriever Air Force 

Base, Colorado Springs, Colorado.  The MCS receives data from the monitor stations and 

calculates the satellite orbit and clock corrections using a Kalman filter.  These results are 

then passed through the ground control stations to be uploaded to the GPS satellites.   

The five GPS monitor stations are located at Hawaii, Colorado Springs, 

Ascension Island in the South Atlantic Ocean, Diego Garcia in the Indian Ocean and 

Kwajalein in the North Pacific Ocean.  The main operational task of the monitor stations 

is to continuously track all GPS satellites in view and measure the pseudoranges every 

1.5 seconds.  These measurements allow the monitor stations to determine the errors 

associated with ionospheric delay of the satellite signals.  The pseudoranges are 

smoothed to produce 15-minute interval data which is transmitted to the MCS.7   

The three GPS ground control stations are co-located with the monitoring stations 

at Ascension Island, Kwajalein, and Diego Garcia.  The satellite orbit and clock 

corrections, previously calculated at the MCS and received by the ground control stations 

via communications links, are uploaded to each satellite via S-band radio links.8 The 

upload takes place approximately 1.2 times per day.9  

                                                 
6 Hofmann Wellenhoff, 18.  
7 Hofmann Wellenhoff, 19.   
8 Hofmman Wellenhoff, 20. 
9 Air Force TENCAP Talon NAMATH, April 2005.   
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Figure 3.   GPS OCS (From: Garmin, 2005) 

 

The user segment of GPS consists of the receivers and antennas that process GPS 

signals to determine user position, velocity and time.  There are four basic types of GPS 

receivers:  (1) C/A-code pseudorange, (2) C/A-code carrier phase, (3) P-code carrier 

phase and (4) Y-code carrier phase measuring instruments.  C/A-code pseudorange 

receivers measure only code pseudoranges using the C/A-code.  C/A-code carrier phase 

receivers obtain code ranges and carrier phases from the L1 frequency.  P-code carrier 

phase receivers are able to lock onto both the L1 and L2 frequencies.  In the absence of 

A-S (anti-spoofing), observables are derived by first correlating the signals with a replica 

of the P-code.  Then, after removing the P-code from the received satellite signal, phase 

measurements can be performed.  Y-code carrier phase receivers access the P-code with 

A-S invoked.  A-S is the ability of the GPS system to “turn off” the P-code or invoke an 

encrypted code as a means of denying access to the P-code to all but authorized users.  

The encrypted P-code is known as the Y-code.  Thus, similarly to the P-code receiver 

code ranges and phases can be derived from the L1 and L2 frequencies by the P-code 

correlation technique.       

3. Signals 
The GPS signal carried by the L1, L2, or L5 frequency contains three different 

pieces of information that allow the user to determine their position with a GPS receiver.  

This information is the pseudorandom noise (PRN) code, ephemeris data, and almanac 
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data.  The GPS receiver is able to identify which GPS satellite is transmitting information 

because the PRN acts as a unique I.D.  The ephemeris data tells the GPS receiver where 

all GPS satellites should be at any time throughout the day.  Almanac data contains 

information about the satellite’s health and current date and time.  The time component of 

the almanac data is essential to calculating position using GPS.  

The receiver determines how far away one GPS satellite is by comparing the time 

the signal was transmitted by the satellite and received by the receiver.  The receiver does 

this using the PRN code.  Both the satellite and receiver generate the PRN code at the 

same time and since the satellite PRN code has to travel more than 11,000 miles it is 

delayed compared to the receiver PRN code.  The amount of time that the receiver has to 

delay its PRN code to be in sync with the satellite PRN code is the travel time.     

GPS receivers determine position by using triangulation between three or four 

GPS satellites.  If the receiver is locked into three satellites then it obtains three distances 

and can provide a two-dimensional position (latitude and longitude), but this solution is 

problematic.  The clocks on the GPS satellites and GPS receivers need to be extremely 

accurate because at the speed of light an error of one-one thousandth of a second equals 

nearly 200 miles of error in distance.  GPS satellites have atomic clocks to ensure 

minimal timing errors but GPS receivers do not because the cost is prohibitive.10  Thus 

errors in the GPS receiver clock cause inaccurate positioning when the receiver locks 

onto only three satellites.   To ensure accurate timing at the receiver, a distance is 

obtained from a fourth GPS satellite.  This fourth position solution leads to four spheres 

that do not quite intersect.11  The GPS receiver then looks for a single time correction 

factor that it can subtract from all the timing measurements to cause the spheres to 

intersect at a single point.  This correction allows the receiver to be as accurate as an  

 

                                                 
10 The cost of an atomic clock is approximately $50,000-$100,000.   
11 The distance from any single GPS satellite lies on a sphere.  Two intersecting distance spheres from 

two satellites forms a circle of possible user positions and three intersections yields two points, one of 
which is on the Earth’s surface.  The fourth sphere does not intersect with the other three because of clocks 
errors in the imprecise receiver clock.  The clock errors in the receiver clock mean that the satellite and 
receiver clocks are not perfectly synchronized which causes the range measurements to be inaccurate.  The 
inaccurate range measurements causes the fourth range, the one checking the other three, to not intersect 
with the original position.      
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atomic clock without having one.  The receiver applies the correction to all four distances 

and is able to produce a more accurate three-dimensional position (latitude, longitude and 

altitude).   

In order to compute accurate GPS solutions, it is essential to know the true 

position of GPS satellites.  Ephemeris data describes the coordinates of GPS satellites for 

small portions of their orbit.  Broadcast ephemeris sets are updated by the control 

segment every two hours and are considered valid for two hours before and after the time 

of ephemeris.12  These broadcast ephemeris sets are different from precise ephemeris 

data which is obtained by utilizing a network of tracking stations and orbit processing 

facilities to collect and analyze satellite orbit data.  Despite these continuous updates, 

discrepancies between the ephemeris data and the true satellite position develop over 

time.  These differences are caused by perturbations attributed to gravitational effects of 

the earth and sun, magnetic forces, atmospheric drag, solar radiation effects and the 

earth’s non-spherical shape and uneven mass distribution.13  

4. Errors 
A large number of factors contribute to errors between the receiver’s true position 

and GPS position calculated by the receiver.  This thesis focuses primarily on two types 

of these errors but will briefly address all types of GPS errors.  GPS errors can be 

grouped into clock errors (satellite and receiver), orbit errors, propagation errors 

(ionosphere and troposphere), multi-path errors, and receiver errors.  This thesis will 

focus on satellite clock errors and orbit errors. 

Clock errors occur when the satellite or receiver clocks drift from UTC 

(Coordinated Universal Time).  The drift from UTC means that the satellite and receiver 

clocks may not be synchronized, so this will affect the range measurement using the 

pseudorandom code.  Orbit errors, also known as ephemeris errors, occur when the GPS 

satellite’s position is not accurately reported to receiver.  Ephemeris errors are caused by 

gravitational effects of the earth and sun, magnetic forces, atmospheric drag, solar 

radiation effects, and the earth’s non-spherical shape and uneven mass distribution.14  
                                                 

12 Bisnath, 2000.   
13 Kaplan, 1996. 
14 Kaplan, 1996. 



12 

These two errors, the satellite clock error and the satellite orbit error, are what the GPS 

ephemeris message corrects in its broadcast to the GPS receiver.     

Propagation delays are caused by GPS signals propagating through the ionosphere 

and troposphere.  In the ionosphere, the part of the atmosphere 80 to 1000 km above the 

earth’s surface, GPS signals are affected by charged particles which delay the signal.  

This delay is dependent upon the frequency of the signal15 so dual-frequency receiver can 

eliminate this error by comparing the relative speeds of the two GPS signals.  In the 

troposphere, which extends from sea level to 80 km above the earth’s surface, signal 

delays are caused by the presence of water vapor.  Delays caused by water vapor can be 

modeled using temperature, pressure and humidity.  Multipath error occurs when the GPS 

signal is reflected off objects such as tall buildings or large rock surfaces before it reaches 

the receiver.  This reflection increases the travel time of the signal since it has to travel a 

longer distance before reaching the receiver due to the reflection.    

 

B. GPS POINT POSITIONING 

1. Differential GPS 
 Differential GPS (DGPS) is a way to correct the inaccuracies of the GPS systems 

by placing a receiver, known as the reference station, on an accurately surveyed location. 

The reference station then compares the theoretical distances to the observable GPS 

satellite with the actual measurement to the satellite according to the pseudorandom noise 

code.  The difference between the theoretical distance and the actual measured distance to 

the satellite represents the pseudorange error.  A GPS receiver in the same general area as 

the reference site can then apply the negative residual from the pseudorange errors to its 

own measurements to realize its true position.  The assumptions are that the GPS receiver 

is receiving the same set of GPS satellite signals as the reference site at the same time so 

that the errors for both will be the same.  Additionally, a one-way data link needs to be 

established between the reference site and the GPS receiver so that receiver obtains the 

pseudorange errors.  In Evans et al “The Global Positioning System Geodesy Odyssey,” 

the authors note that:  

                                                 
15 The ionospheric delay is proportional to the inverse of the square of the carrier frequency.   
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DGPS is fundamentally a relative positioning system. The monitor receiver could 
be (and sometimes is) located on a moving vehicle such as a ship, airplane or 
satellite.  In this case, the measurement corrections supplied to the user, who is 
positioned relative to that vehicle, are the negative of the measurement residuals 
from the vehicle position computation.  When multiple monitor receivers are used 
they, of course, must be located accurately relative to one another.  The 
requirement for accurate surveying of the monitor receiver position arises only 
from the desire to transform the relative positioning accuracy into an absolute 
accuracy.   

  
2. GPS Point Positioning 
GPS Point Positioning is a form of DGPS without a ground-based reference site.  

It uses satellite and clock updates from the MCS to have decimeter level GPS accuracy.  

Currently, GPS Point Positioning has been performed after the fact (not in real time) by 

Naval Surface Warfare Center, Dahlgren Division.16  To perform GPS Point Positioning 

in real time the satellite orbit and clock updates must get to the user over a data link of 

some sort from the processing center, and they must be nearly continuous in order to 

constantly account for errors in the system.  Two service-specific programs are working 

on the problem of getting the satellite orbit and clock updates to users.  These programs 

are Navy TENCAP (Technical Exploitation of National Capabilities) Radiant ZEPHYR 

V and Air Force TENCAP Talon NAMATH.  Both programs propose architectures 

similar to the one used in this thesis for the NETWARS simulation.    

3. Civilian Applications Similar to GPS Point Positioning – Starfire 
A majority of the material in this section comes from Hatch et al “StarFire: A 

Global High Accuracy Differential GPS System.”  

A commercial product has emerged that provides decimeter level accuracy 

worldwide differential GPS.  StarFire Wide Area Differential GPS System (WADGPS) 

was developed by NavCom Technology, Inc. and AG Management Solutions (which are 

both components of John Deere and Company) for agricultural applications.  NavCom 

operates StarFire.  The predecessor to the current StarFire system had continental size 

coverage, of which the principal source of error was the inaccuracy in the broadcast GPS 

orbits.  In order to convert regional systems using DGPS to a global DGPS system, 

accurate real-time GPS orbits needed to be generated.  The Jet Propulsion Laboratory 
                                                 

16 Evans meeting, 2005. 
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(JPL) developed a technology called RTG (Real Time GYPSY) to compute the orbit and 

clock corrections needed for a global DGPS system for the National Aeronautics and 

Space Administration (NASA).  Unfortunately, JPL had no means to distribute their 

product to isolated users.  NavCom leased the software from JPL and broadcasts the 

correction stream over three Inmarsat satellites to provide global coverage.  NavCom also 

contracted with JPL to receive the data from JPL/NASA reference sites in order to 

coordinate the NavCom reference sites.  The final product, StarFire, is a global DGPS 

system that provides decimeter level accuracy anywhere in the world.  StarFire does not 

require base stations, and its positioning results are absolute, not relative.  This service 

can go beyond agricultural applications, customers in the offshore market are using 

StarFire, and there are abundant uses in the commercial world for accurate positioning. 

The accuracy of the StarFire system is a result of the following key 

characteristics: 

- GPS measurement data from a global network of dual frequency reference 

 receivers 

- Very accurate orbit calculations using JPL’s RTG technology 

- Modeling of all significant error sources 

- High quality dual frequency mobile receivers 

- Highly redundant measurement data, processing structures, and communication 

 links 

There are seven major components in the StarFire system: 

- Reference Network: reference receivers that continuously provide the raw GPS 

 observables to the Hubs for processing.  These observables include dual 

 frequency code and carrier measurements, ephemeredes, and other information. 

- Processing Hubs: facilities at which the GPS observables are processed into 

 DGPS corrections.  There are two geographically separated (Redondo Beach, CA, 

 and Moline, IL), independent Hubs that operate fully in parallel, with each 

 continually receiving all the measurement data and each computing corrections  
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 that are sent to the uplink facilities for the satellites.  The Hubs are also the 

 control centers for StarFire, from which the system operators monitor and manage 

 StarFire. 

-Communication Links: provide reliable transport mechanisms for the GPS 

 observables and for the computed corrections.  A wide variety of links are used to 

 ensure that data are continuously available at the Hubs and that corrections can 

 always be provided to the Land Earth Station (LES) sites. 

- Land Earth Stations: satellite uplink facilities that send the correction data 

 received from the Hubs to the geostationary satellites. 

-Geostationary Satellites: used to distribute the corrections to users via L-band 

 broadcasts.  The corrections from the LESs are broadcast on L-band frequencies 

 to the users.  Three Inmarsat geostationary satellites are used to provide correction 

 coverage over most of the Earth (between +76 North and -76 degrees South 

 latitude). 

-Monitors: user receivers distributed throughout the world that use the broadcast 

 corrections and provide their navigation information to the Hubs in real time. 

-User Equipment: uses the broadcast corrections along with local GPS 

 observables to produce very precise navigation.  The user equipment makes dual 

 frequency GPS observations which remove ionospheric effects and combines 

 these with the broadcast corrections in a Kalman filter. 

The current RTG StarFire system is the global system that improved upon the 

preceding WCT (Wide Area Correction Transform) StarFire wide area DGPS.  The WCT 

network was installed in North America, South America, Europe, and Australia.  Eight 

reference sites were used in the US WCT network, five in the Australian, four in the 

European, and three in the South American network.  Each reference receiver sends 

information with the dual frequency observables for all of the GPS satellites tracked at 

the reference receivers (delivered at 1 Hz in real time), and the broadcast ephemeris 

records from the reference receivers (delivered in real time) to all satellites in view.  Each 

reference receiver also sends system integrity information to the two Processing Hubs.  
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Using this information, the normalized pseudoranges for each satellite are combined in a 

weighted average to form a single, wide area pseudorange correction for that satellite.  

All of these corrections for the satellite in view are formatted into a tightly packed, binary 

message and sent from the Hub to the LES for the geostationary L-band communications 

satellite where they are uplinked for broadcast to users throughout each region.  The 

WCT corrections are used as a backup to the current RTG corrections in those regions 

covered by WCT StarFire. 

WCT StarFire uses averaging of weighted refraction corrected satellite range 

errors to produce corrections that are valid over large regions.  This averaging degrades 

with distance from the area of observation.  The principal source of error is inaccuracy in 

the GPS satellite orbits.  The RTG StarFire improves upon WCT by a state approach in 

which the primary states that are estimated are orbit and clock errors.  These are 

continuously computed for all the GPS satellites based on global observations.  These 

two states are globally valid and do not depend on the user’s position.  The two Hubs 

receive raw data from JPL and NavCom’s dual frequency Reference Stations every 

second to compute a new set of orbital corrections every minute and a new set of clock 

corrections every few seconds for each GPS satellite.  Accurately predicting each satellite 

orbit is essential to precise corrections and has been verified from recorded International 

GPS Service records.  The satellite clocks vary more rapidly and require the 

normalization of clock data from the reference sites, which is performed by using the 

clock at a specified reference site as a standard.  The ionospheric error is eliminated by 

the use of dual frequency receivers at both the reference sites and user equipment.  Fifty 

dual frequency reference receivers are distributed throughout the world to generate the 

GPS measurements that are processed at the Hubs.  The precise position of each 

reference antenna is determined by a geodetic survey and tied to the International 

Terrestrial Reference Frame (which is the underlying geodetic framework for GPS, and is 

also tied to WGS-84).  The data between Reference Stations, LESs, and Hubs is 

transferred via the Internet, frame relay, ISDN, VSAT, and dedicated digital circuits.  All 

of these are used to ensure reliability through redundant communication links.  Most 

reference sites use the internet, and due to the large number of reference sites, they 

provide protection from local internet problems.  Frame relay is primarily used in the US 
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for the reference sites, as well as for the Hubs.  LESs rely on the internet as well, but 

because their path is the most critical, the link is backed up by ISDN and VSAT.  It is 

essential that the latency in the links be low so that the clock corrections can be computed 

promptly and that the distribution time to users of the computed corrections also be low, 

so that times are not extrapolated for very long. 

The RTG StarFire system is a commercial product that is able to get decimeter 

level accuracy to its users.  NavCom has created a robust system that tackles the primary 

errors in DGPS (satellite orbits and clocks) and is able to quickly distribute corrections to 

its users every minute.  This is the exact message that the military is able to compute 

using OMNIS (Chapter 1.B), but as yet has been unable to deliver to the tactical user.  

This thesis will simulate the delivery of the message to the tactical military user.   

 

C. GBS 

1. Basics 
Global Broadcast Service (GBS) was created from Operations DESERT 

SHIELD/STORM, the first “information war,” in order to meet worldwide information 

dissemination requirements.  This conflict exposed the limited ability of the United 

State’s military and civilian satellite communication systems to transfer information 

electronically or provide responsive, high-capacity communications to deployed, mobile 

tactical units.  The mission need statement for GBS required:  

A high capacity broadcast capability is needed to provide timely dissemination 
of information products, such as imagery, intelligence information, missile 
warning, weather, record message traffic, joint and service-unique news, 
education, training, video, Morale Welfare & Recreation (MWR) programming, 
and/or other desired information.17     

In 1996 NRO and DoD rapidly integrated key commercial technologies to deploy 

the first operational use of the GBS in the peacekeeping operation in Bosnia and called it 

the Joint Broadcast System (JBS).  GBS uses commercial direct broadcast satellite 

technology to provide critical information to the nation's warfighters. It is a space-based, 

high data rate communications link for the asymmetric flow of information from the                                                  
17 FAS, Global Broadcast Service not dated. 
[http://www.fas.org/spp/military/program/com/gbs.htm] July 12, 2005. 
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United States or rear echelon locations to deployed forces.  GBS can quickly disseminate 

information products to a variety of Joint military user platforms. 

2. Segments 
GBS consists of a system of transmit suites, a space segment, and receive suites.  

The transmit suites also serve as the control segment, and include a Satellite Broadcast 

Manager (SBM), a Primary Injection Point (PIP), and Theater Injection Points (TIP).  

The space segment consists of GBS payloads on Ultra High Frequency Follow-On (UFO) 

satellites.  The GBS Receive Suite Broadcast Managers (RBMs) are fixed ground stations 

or transportable units that distribute the GBS product. 

The transmit suites serve as the dissemination points for GBS information 

provided from national and theater sources.  They integrate, encrypt and package multi-

media information and provide a bit stream to the PIP for Radio Frequency (RF) 

transmission to the satellite.18  Three SBMs provide the PIP for the GBS product payload 

onboard UFO-8, UFO-9, and UFO-10.  These three facilities are located at Wahiawa, 

Hawaii; Norfolk, Virginia; and Sigonella, Italy.  Within a theater, the Theater Information 

Manager (TIM) works with the GBS to build information products.  These information 

products are collected through the Non-Classified Internet Protocol Router Network 

(NIPRNET), the SECRET Internet Protocol Router Network (SIPRNET), the Global 

Command and Control System (GCCS), and File Transfer Protocol (FTP).19  GBS also 

has the capability, through use of the TIP, to inject information directly from within a 

theater of operations. 

The space segment consists of the three GBS payloads onboard UFOs 8, 9, and 

10.  The GBS payload operates independently from the UFH and EHF payloads onboard 

the UFOs.  The payload aboard each satellite is made up of two uplink antennas (one 

fixed and one steerable), four transponders, and three steerable downlink antennas.  The 

downlink antennas include two spot beams that cover greater than a 500 nautical mile 

diameter area.  The spot beams provide data broadcast up to 24 Mbps each and one 2000 

nm wide-area spot beam which provides a data broadcast stream of 1.54 Mbps.  The GBS 

payload serves as a “bent pipe” for the data transmission.  Uplink signals are received, 
                                                 

18 Raytheon [http://www.raytheon.com/products/gbs] 
19 Wheeler, 7-8.   
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converted to a downlink frequency, switched to a downlink transponder, and re-

transmitted via a spot beam.  There is no demodulation or signal processing done on 

board the satellite.20 

The Receive Suite, based on a small 18-inch satellite antenna, will receive and 

convert the RF downlink signal into a bit stream for receive broadcast management 

decryption and distribution to end users.  There are six different receive suite 

configurations (fixed ground, transportable ground, shipboard, sub-surface, airborne, and 

man portable) that allow for both a land and sea-based capability to receive the GBS 

broadcast.  Each of the receive suites include a Receive Terminal, Cryptographic 

Equipment, and a Receive Broadcast Manager.    Each suite is capable of receiving one 

broadcast stream, operating as a stand-alone unit or Local Area Network connection, and 

operating unattended once installed.21 

 

 
Figure 4.   GBS Architecture (From: Headquarters, December 1998). 

 

                                                 
20 Boeing, UHF Follow-On Global Broadcast Service not dated            
[http://www.boeing.com/defense-space/space/bss/factsheets/601/gbs/gbs/html] July 12, 2005.   
21 Wheeler, 9-10.   



20 

The broadcast is conducted under the support of the GBS Program Office and is 

implemented by the NRO Operational Support Office (OSO) and the Defense 

Information Systems Agency (DISA).  GBS is an extension of the Defense Information 

Systems Network (DISN) and a part of the overall DoD MILSATCOM Architecture.22  It 

has an open architecture which can accept a variety of input formats. It exploits 

commercial off-the-shelf (COTS) technology. It will interface with, and augment, other 

major DoD information systems, as well as other theater information management 

systems. 

GBS is being implemented in three phases. Phase I, completed in FY01, consisted 

of leased commercial satellite services and commercial off-the-shelf Receive Suites.  

Phase II, which will be completed in FY08, consists of a transponder package hosted on 

Ultra-high Frequency Follow-On Satellites 8, 9 and 10.  Phase III, FY08-15, will be 

defined as part of future SATCOM architecture.23 

 

D. LINK 16 

1. Basics 
JTIDS (Joint Tactical Information Distribution System) is the communications 

component for Link 16.  Link 16 is an encrypted, jam-resistant, nodeless tactical digital 

data link network.  The purpose of tactical data links is to exchange real-time information 

allowing fast-moving participants to maintain situation awareness in the modern battle 

field.  In theory Link 16 could be employed by all types of platforms both air and ground 

but it is primarily used by aircraft to exchange real-time information with each other and 

supporting ground units.  As every fighter pilot knows, the major factor in determining 

the outcome of any modern air-to-air engagement is not the agility of his aircraft or the 

range of his weapons; it is his ability to acquire and maintain better situational awareness 

than his opponents throughout combat and Link 16 provides this capability.  Situation 

Awareness refers to the pilot’s ability to maintain a `mental air picture', including the 

positions and vectors of all participants, both friendly and bogeys.   

                                                 
22 FAS [http://www.fas.org/spp/military/program/com.gbs.htm] 
23 Global Broadcast Service Joint Program [http://www.losangeles.af.mil/SMC/MC/gbs.htm] 
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Link 16 terminals implement the Tactical Digital information Link-J (TADIL-J) 

message standard.  This architecture provides a common communications net to a large 

number of airborne and surface elements within line-of-sight.  By using one or more 

members of the net as relays, the net can be extended to platforms beyond line-of-sight.  

Any terminal can be employed as a relay.   

The precursor tactical data links to Link 16 were Link 4 and Link 11.  Link 4 and 

Link 11 are still used today and although Link 16 represents an improvement on these 

Links, it will not replace them but rather be a preferable alternative when feasible.24  Link 

4 is a non-secure data link used for providing vector commands to fighters.  There are 

two variants: Link 4A and Link 4C. Link 4A is a fighter-to-controller data link that uses 

the principle of Time Division Multiplexing (TDM) to derive apparently simultaneous 

channels from a given frequency spectrum. It connects two points by assigning a 

sequence of discrete time intervals to each of the individual channels. Thus, one 

controller can control multiple aircraft independently on the same frequency.  Link 4C is 

a fighter-to-fighter data link which is intended to complement Link 4A, although the two 

links do not communicate directly with each other.  Link 11 is a medium-speed, NATO-

standard, HF/UHF tactical data information link.    Link 11 is based on 1960s technology 

and is therefore a relatively slow link that normally operates on a polling system, with a 

Net Control Station (NCS) polling each participant in turn for their data.  If the NCS goes 

down then the link is no longer operational.   

The Link 16 program began in 1975 and the Joint Operational Requirements were 

established in March 1976.  Two separate JTIDS programs were started in the early 

1980’s; one in January 1981 when the Army and Air Force were authorized to proceed 

into Full Scale Development (FSD) with the Air Force as the lead service and another in 

January 1982 when the Navy and Marine Corps were authorized to proceed into FSD 

with the Navy as lead service.  In FY86 the SECDEF redirected the Navy JTIDS program 

and terminated the development of JTIDS phase II, directing the Navy and Marine Corps 

to use the Air Force FSD equipment modules.  In June 1991, the Navy received approval 

to procure Low Rate Initial Production Class 2 and 2H terminals.  After completion of 

                                                 
24 Jane’s Online, Digital Datalinks.   
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various multi-service and multi-platform tests the Navy proceeded to Full Rate 

Production in March 1995.    The first successful employment of Link 16 shipboard and 

aircraft terminals occurred when the USS Carl Vinson (CVN-70) Battle Group deployed 

to the Western Pacific in early 1994.   

Link 16 was developed to replace the older tactical data links.  It contains a 

number of improvements over the older links which are displayed in the following Table 

1: 

 
Table 1. Tactical Data Link Comparison (From: Jane’s Online, 2005) 

 
2. Functions 

The functions currently supported by Link 16 include: Net Entry 

(synchronization), Relative Navigation (navigation and grid lock), Blue Force Reporting 

(identification), Mission Management and Weapons Control (MM/WC) (force orders), 

Surveillance, Air Control, Secure Voice, and Electronic Warfare (EW).  Link 16 

categorizes these functions into communities of interest or Network Participation Groups 

(NPGs).  

Data on Link 16 can be grouped into NPGs which enables networks to be planned 

so that the transmission and reception of data can be selectively managed.  In the older 

data links such as Link 11, all participants in the network received all the data that was 
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transmitted regardless of whether it was relevant to their role or information 

requirements.  The use of NPGs means that the source does not need to know who the 

recipient will be, and only the users that need the data will have access to that NPG and 

will receive all associated messages.25  The NPGs listed below in Table 2 may or may not 

be included in a given network, depending on the objectives and functional requirements 

that the network was designed to fulfill. 

  
Table 2. Network Participation Groups (From: Jane’s Online, 2005) 

 

The Net Entry (Synchronization) Function of JTIDS works to ensure that each 

participating JTIDS terminal acquires and maintains an accurate knowledge of system 

time.  A single designated unit, the Network Time Reference (NTR), establishes the 

system time.  Once operating, the NTR unit begins broadcasting transmission of the 

                                                 
25 TADIL J, FM 6-24.8, page I-3.   
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system time and net entry message.  Other terminals enter the network when operators 

enter a best estimate of system time (UTC), and then the terminals “looks for” the net 

entry message.  Once a message is received, the entering unit starts transmitting round 

trip timing (RTT) messages in order to refine its estimate of system time.  When the 

unit’s time is properly refined, “fine sync” is declared and full link participation is 

possible.   

The identification function of Link 16 is performed through the transmission of 

PPLI (Precise Position, Location and Identification) messages.  These messages are 

transmitted periodically by each member of the Link 16 network.  The Status portion of 

the Identification function includes enough information to eliminate the need for voice 

status updates.   

In Link 16, Surveillance is the exchange of track and track management 

messages.  The Air Control function of Link 16 is similar to Link 4A.  Command and 

Control (C2) units, including ships and E-2C Hawkeyes, exercise control over fighters, 

providing tracks, mission assignments, and vectors.  JTIDS supports two secure voice 

circuits, each with 127 subcircuits.  The voice to data conversion is performed in the 

JTIDS terminal and does not require host processing.   

3. Communications Architecture 
The JTIDS terminal produces the Link 16 waveform.  The Link 16 JTIDS 

waveform uses pulsed transmission in the 960-1215 MHz (UHF) frequency band.26  The 

waveform is designed to provide complete communications service to multiple users 

within a hostile electromagnetic environment.  The waveform employs a number of 

techniques to insure maximum jam resistance including spread spectrum, frequency 

hopping, Error Detection and Correction (EDAC) coding, pulse redundancy, 

pseudorandom noise coding, data interleaving, automatic data packing and inherent relay.   

Frequency hopping involves each radiated pulse being pseudorandomly assigned 

to one of the 51 authorized center frequencies.  The center frequencies are spaced at 3 

MHz intervals on 51 frequencies located in the 960-1215 MHz range excluding 1008-

1053 MHz range and the 1065-1113 MHz range because these ranges are reserved for 

                                                 
26 TADIL J, FM 6-24.8, page I-3. 
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Identification, Friend or Foe (IFF).27    This pseudorandom assignment of frequency is 

referred to as the hopping pattern.  The NPG, the net number (discussed below in stacked 

nets), and the assigned transmission crypto variable determine the hopping pattern.  This 

allows multiple transmitters to be within Line-of-Sight transmitting information without 

causing mutual interference.  The frequency band that JTIDS utilizes has been designated 

for aeronautical radio navigation and Air Traffic Control (ATC) in the United States by 

the Federal Aviation Administration (FAA).  Therefore all JTIDS frequency assignments 

are obtained with concurrence from FAA headquarters.   

The Link 16 access is controlled through the Time Division Multiple Access 

(TDMA) protocol.  TDMA apportions timeslots to each user and each user take turns 

transmitting or receiving based upon time.  This is similar to Time Division Multiplexing 

with the only difference being that in Time Division Multiplexing there is one user on 

each end of the circuit while in TDMA a large number of network participants can access 

the data in the network.  The basic unit of time in Link 16 is called a frame which is 12 

second in length.  The frame is composed of 1536 individual access/transmit units called 

time slots.  Frames occur repeatedly as long as the link is operational.  Each of the 1536 

timeslots are assigned to platforms operating in the network under the function of either 

transmitting or receiving for that platform.28   

Stacked nets are used on Link 16 networks to increase system throughput.  

Stacked nets support the voice, air control and fighter-to-fighter functions of Link 16.  

The selection of a particular net from a stacked net function changes the terminal’s 

frequency hopping pattern.  The use of stacked nets allows multiple air controllers to 

operate independently.29 

The survivability of the JTIDS waveform depends upon its security, jam 

resistance, sufficient power to provide LOS service and extended service beyond LOS 

through use of relay.  Security is employed for the JTIDS waveform by using Message 

Security (MSEC) and Transmission Security (TSEC).  JTIDS employment of frequency 

hopping as well as time hopping increases its anti-jam capability.  Frequency hopping 
                                                 

27 TADIL J, FM 6-24.8, page B-2. 
28 TADIL J, FM 6-24.8, page I-3. 
29 TADIL J, FM 6-24.8, page I-5. 
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forces the jammer to spread its energy over a larger bandwidth which reduces the amount 

of jammer energy per individual frequency while the time hopping (jitter in the 

modulation of the start time of message transmissions) prevents the jammer from 

attacking the sync part of the message with peak power.    

The topology of Link 16 is a nodeless architecture which means that there is not a 

single unit required to maintain communications.  In Link 11, the NCS is a node so if it 

goes down the link goes down.  The closest thing in Link 16 to a node is the Net Time 

Reference, and after the network has been established it will continue to function for 

hours if the NTR goes down.   

4. Equipment 
The equipment of JTIDS includes the terminals themselves that produce the Link 

16 waveform as well as the TADIL-J database, human machine interface controls, and 

displays.  All the terminals in the JTIDS Class II terminal family produce an identical 

waveform that can be received by any other member of the family.   

The terminals themselves are made up of a number of components including the 

digital data processor, the interface unit, the secure data unit, the receiver/transmitter, the 

high power amplifier (not found on all terminals) and at least two antennas.  The Digital 

Data Processor (DDP) performs message formatting and TDMA management functions.  

The interface unit provides the functions necessary to adapt the DDP to the specific 

platform.  The secure data unit is the KGV-8B which contains the cryptovariables (crypto 

keys) required to provide both message and transmission security.  The 

Receiver/Transmitter (R/T) unit creates the outgoing RF stream of pulses.  The High 

Power Amplifier boosts the power of outgoing transmissions.30      

 

E. NETWARS 

1. Basics 
Network Warfare Simulation (NETWARS) is the Joint Chiefs of Staff standard 

for modeling military communications systems.  It is a desktop software application that 

measures and assesses the information flow through tactical, operational, and strategic 

                                                 
30 TADIL J, FM 6-24.8, page B-1.   
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communication networks.  NETWARS has modeling and simulation capabilities that 

assess the information flow.  It is a discrete event simulator developed using the 

Optimized Network Engineering Tool (OPNET) Development Kit (ODK). It is designed 

to analyze military communications networks through the use of reusable 

communications device models (CDM), military doctrine, and network traffic 

information in the joint arena.   The primary objective of the NETWARS program is to 

provide an integrated ability to analyze communication networks.  NETWARS also 

provides a validated simulation capability so that studies can be consistent throughout the 

Unified Combatant Commands, Services, and Joint C4I community. 

NETWARS was born out of the concern that C4I systems’ critical tactical 

information exchange processes would collapse under the unexpected effects of full 

operational combat network loading.  In 1996, LTG Bucholz, the Director of Command, 

Control, Communications, and Computer Systems, J-6 (Joint Staff), raised these concerns 

from the C4I systems-of-systems envisioned in Joint Vision 2010 and other guidance 

documents.  LTG Bucholz addressed his concern by initiating an effort to develop a 

communications modeling capability to credibly model tactical, operational, and strategic 

military communication demands under the stresses and inefficiencies that combat places 

on communication systems. 

The NETWARS software allows the ability to plan, evaluate, optimize, and study 

military communications networks and supporting commercial networks.  The following 

is a brief summary of how a simulation is constructed and analyzed.  Within the 

NETWARS program, the top level view shows the Organizations to be represented in the 

model.  Each organization has Operational Facilities (OPFACS), which are created to 

represent collections of communications devices.  Each communication device in the 

program has the characteristics and attributes of the actual equipment, so the program can 

virtually perform each communications function accurately.  The communication devices 

required for the models are selected from a library called the Object Pallet, and can be 

linked by selecting an appropriate link from the Object Pallet.  Data rates, user profiles, 

and information traffic can be configured for each device, allowing ‘loaded’ traffic to be 

routed between hosts.  Once all the devices, their characteristics, and links are defined, 

the simulation is run and produces statistics to be analyzed.   
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2. Architecture 
NETWARS consists of five functional elements, which are: (1) Database 

Libraries; (2) Scenario Builder; (3) Capacity Planner; (4) Simulation Domain; and (5) 

Results Analyzer.  Figure 5 is the NETWARS functional architecture: 

 
Figure 5.   NETWARS Functional Architecture (From: DISA, 2005) 

 

The Database Libraries include four primary databases: (1) Communications 

Device Model Library; (2) OPFACs Library; (3) Organization Library; and (4) 

Information Exchange Requirement (IER) Library. The simulator uses these libraries to 

obtain detailed information about the communications systems used during the analysis. 

The CDM library contains the fundamental building blocks used in NETWARS, and the 

models that have been developed by the Services to represent the protocols and 

functionality that are found in physical devices.  Examples of Navy CDMs include 

radios, patch panels, multiplexers and tactical communications data links. The OPFAC 

Library is used to represent logical collections of CDMs, such as a tank or a Network 

Operations Center (NOC). The Organization Library is built from one or more OPFACs 

that are connected with various communications links. These include point-to-point, 

wireless, and broadcast links. Information Exchange Requirement Libraries are used to  
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provide the simulation with details about the traffic, such as the type (voice, video or 

data), the source and destination of the message, its size, and the frequency with which 

the message is sent. 

The Scenario builder defines how the OPFACs, Organizations, links and IERs 

will be used during the simulation. OPFACs and Organizations can be developed, and 

links can be assigned. Mobility can be given to organizations to represent the real-time 

movement of units throughout the course of the simulation. IERs are associated with 

devices, and message attributes are defined here. Periods of failure and recovery of 

OPFACs are also specified within the Scenario Builder. 

The Capacity Planner evaluates and optimizes network link capacities. The 

Capacity Planner evaluates a given scenario to determine the configured network’s 

average utilization, hop count, and capacity. It can also optimize a network by using a 

simulated annealing algorithm that mutates the current solution to create new solutions 

for choosing an optimum solution. It can determine optimum link capacities and 

utilizations. 

The Simulation Domain consists of the Simulation Engine (OPNET Modeler) and 

a Simulation Conversion Module. The Simulation Conversion Module translates the 

organizational representation and data flows into discrete events between the sender and 

receiver of specific communications equipment representations understood by the 

Simulation Engine. 

The Results Analyzer allows an analyst to examine the Measures of Performance 

(MOPs) that are collected during a simulation. These MOPs are grouped into six 

categories: MOPs for a destination OPFAC; MOPs for a source OPFAC; global MOPs; 

device-level MOPs; MOPs for inter-OPFAC links; and MOPs for broadcast radio 

networks. 
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III. GPS EPHEMERIS MESSAGE BROADCAST ARCHITECTURE 

A. BASELINE ARCHITECTURE 
The two proposed architectures for the GPS ephemeris message updates are 

shown in Figures 6 and 7 below.  The primary difference between the proposed 

architectures is the difference in service specific nodes for the United States Air Force 

and the United States Navy, respectively.  This difference is purely service specific and 

the communication devices involved do not in fact differ between the two architectures.   

Both architectures begin at the GPS Master Control Station at Schriever AFB, 

Colorado Springs, Colorado.  The OMNIS system at Schriever AFB generates GPS 

ephemeris message updates. These updates are sent over terrestrial IP networks 

(JRES/NIPRNET/SIPRNET) to the continental GBS uplink site.  This GBS uplink site 

pushes the ephemeris updates over the GBS direct satellite broadcast service to a GBS 

downlink site in theatre.  At this point the actual unit nodes of the architecture differ but 

the communications medium does not.  The GBS downlink site is represented by either a 

United States Navy aircraft carrier (CVN) or a United States Air Force Combined Air 

Operations Center (CAOC).  The CVN or the CAOC forwards the GPS ephemeris update 

message over the Link 16 Tactical Data Network.  The nodes in this network are the 

CVN or CAOC broadcasting to an airborne Link 16 relay such as the United States Navy 

E-2C Hawkeye or the United States Air Force E-3 AWACS (Airborne Warning and 

Control System).  The Link 16 relay aircraft forwards the ephemeris update message to 

the tactical aircraft in flight.  The tactical aircraft incorporates the ephemeris message into 

its GPS receiver and ignores the ephemeris message from the GPS satellite allowing for 

GPS point positioning.   
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Figure 6.   Navy Architecture for GPS Ephemeris Message    

 
 

 
 

Figure 7.   Air Force Architecture for GPS Ephemeris Message  
 

B. GPS EPHEMERIS MESSAGE 
The GPS ephemeris update message is generated by OMNIS, a software program, 

at the GPS Master Control Station, Schriever AFB, Colorado Springs, Colorado.   The 

updates are generated every 15 minutes (Evans, 2005).  The Naval Surface Warfare 

Center, Dahlgren Division (NSWC-DD) is currently working on the development of 

EPOCHA (Estimation of Precise Orbits and Clocks to High Accuracy), the next 
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generation satellite correction system.  The EPOCHA system will generate the updates at 

a faster rate with potentially greater accuracy (Evans, 2005).   

The information for the GPS ephemeris update message is taken from Interface 

Control Document (ICD) GPS-153 and ICD GPS-200.  The GPS ephemeris message 

“shall utilize a basic format of a 1500 bit long frame made up of five subframes, each 

subframe being 300 bits long,” (ICD GPS-200, 1993).  The first two subframes of the 

ephemeris message are used for coordination and control purposes and not essential to 

the message.  The next three subframes contain the GPS satellite orbit and clock 

corrections as calculated by OMNIS.  Each set of five subframes contain the corrected 

satellite orbits and satellite clocks for one GPS satellite.  In order for the user to receive 

the updated satellite orbits and clocks for each operational GPS satellite this message 

must be sent a total of twenty-four times, once for each operational GPS satellite.   

 This chapter outlines the architecture that is simulated using the NETWARS 

simulation and modeling program as well as the message that is sent through this 

simulation.  The reason for this thesis is to simulate the delivery of the GPS Ephemeris 

Message to end users.  A number of different simulations are run using this architecture 

and message format.   
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IV. GPS EPHEMERIS MESSAGE BASELINE ARCHITECTURE 
SIMULATION  

A. BASELINE ARCHITECTURE  

1. Baseline Architecture Construction 
The baseline simulation architecture was constructed using NETWARS Version 

2005-1.  This section provides a brief overview of the steps required to create this 

architecture in NETWARS.  It does not provide each step, but rather attempts to give the 

user a general idea of the NETWARS program as well as the specific architecture that 

was created. The architecture was built using the Scenario Builder Module in 

NETWARS.  NETWARS employs a Task Assistant Module to aid the user in developing 

a scenario and provides the user with a number of different workflows that can be 

employed.  The workflow that was employed was Develop a Communications Plan with 

Equipment List Manager.   

Two key functional elements that NETWARS employs to develop an architecture 

are Organizations and OPFACs.  An Organization is defined in NETWARS as, “a group 

of OPFACs that can represent a military organization of physical location.”31  The 

organizations that were represented in the proposed architecture were the GPS MCS, 

GBS Continental Uplink Site, CVN/CAOC, E-2C/AWACS and the Tactical Aircraft.  An 

OPFAC is defined in NETWARS as, “the fundamental building blocks of NETWARS.  

OPFACs contain communication device models and represent the communication assets 

for objects such as facilities, vehicles, airplanes, etc.”32  The OPFACS in the proposed 

architecture and their corresponding Organizations are: 

1. NIPRNET IP Network: GPS MCS 
2. NIPRNET IP Network: GBS Continental Uplink Site 
3. GBS PIP: GBS Continental Uplink Site 
4. GBS UFO: GBS Continental Uplink Site 
5. GBS Receiver Suite: CVN/CAOC 
6. JTIDS Class 2H Terminal: CVN/CAOC 
7. JTIDS Class 2H Terminal: E-2C/AWACS 
8. JTIDS Class 2M Terminal: Tactical Aircraft 

                                                 
31 NETWARS Software Version 2005-1.  
32 NETWARS Software Version 2005-1. 
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After creating the Organizations and OPFACS the next step in NETWARS is to create 

connectivity links between the OPFACs to allow for the transfer of information.  

Different types of connectivity links are available depending upon the communications 

devices that are used.   

The next steps in developing the architecture involved reviewing the requirements 

matrix, managing C4 equipment and defining the device application profiles.  After this 

NETWARS allows the user to analyze the communications plan using the capacity 

planning features.  This is done by adding demands, or traffic loads, to the architecture or 

converting application profiles into demands.  At this point in the architecture 

development background utilization could be defined but it was not since the background 

utilization was zero for the baseline architecture.   

Once the Organizations, OPFACs, connectivity links and demands were added to 

the Scenario Builder the network could be evaluated.  Evaluating the network involves 

defining a number of time steps, length of time steps, and start and stop time for the 

scenario.  Once the scenario is run, NETWARS produces a Capacity Planning Report.  

The Capacity Planning Report provides the user with an Executive Summary, Overall 

Peak Results, and Overall Average Results for each selected time interval.  The Capacity 

Planning Report was used to analyze the compatibility and feasibility of the proposed 

architecture. 

2. Time Intervals 
Time intervals are extremely important to the operation of GPS Point Positioning.  

As discussed earlier, in a perfect scenario the updates of the satellite orbit errors and 

satellite clock errors would occur continuously in real time at the tactical aircraft so the 

time interval between updates would be zero.  It is true that the corrections are not 

currently calculated in real time so this obviously would not occur in the near future.  It is 

not unrealistic for us as planners to attempt to find the shortest possible time interval 

between data transfers even this time interval is less than the current processing output 

for the data by systems such as OMNIS.  The development of EPOCHA will aid in faster 

processing of the orbit and clock corrections and therefore we will push the limits of 

consecutive ephemeris message transfers to the limits of the systems in this architecture.   
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The baseline simulation will be a time interval for the ephemeris message update 

architecture of fifteen minutes.  Every fifteen minutes the ephemeris message is 

generated by OMNIS at Schriever AFB and sent through the architecture to the tactical 

aircraft.  The purpose of the baseline simulation is to check for compatibility between the 

different communications systems and feasibility in transferring that amount of data over 

the communications systems.   

3. Traffic 
Military communication systems are constructed to handle traffic for the entire 

United States DoD and in cases of coalition war efforts they may be handling traffic for 

coalition partners and allies as well.  The amount of information collected by ISR 

(Intelligence, Surveillance and Reconnaissance) assets increases everyday and 

information represents the key to modern warfare.  The ability to analyze this information 

and transfer it to the tactical user is of primary importance to the success of modern 

military operations.  The GBS transfer rate of 23.5 Mbps (Megabits per second) can 

certainly handle the GPS ephemeris updates but it is important to find out how much of 

the pipe the GPS ephemeris update will take up.  GBS is designed to support a higher 

number of users and information so the GPS ephemeris updates, although important for 

GPS Point Positioning, cannot take up too much of the bandwidth that is needed by the 

rest of the end users.  This service is important, and accurately guiding weapons with 

decimeter level accuracy to enemy targets is an important technological advance but not 

one that should be taking up a large percentage of available bandwidth.   

The baseline architecture for the ephemeris message updates will have no extra 

traffic on the communications system that the message is transferred through.  

NETWARS allows the user to find the amount of available bandwidth that the ephemeris 

message will use so the residual bandwidth can be used by other military traffic.   

4. Size and Number of Ephemeris Messages 
The size of the GPS update ephemeris message, as outlined in Section IIIB, will 

be five subframes of 300 bits each for a total frame size of 1500 bits.  In the baseline 

simulation the entire frame for each of the 24 operational GPS satellite will be 

transmitted over the baseline architecture to ensure that the end user has the information 

required to perform GPS Point Positioning.  Changes that could be made to this in future 
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simulations could include cutting the frame message to only the last three subframes of 

the ephemeris message since the first two subframes do not carry critical information.  It 

is hypothesized that the back end of the user’s GPS receiver could be provided with the 

last three subframes and still correctly read the information to perform GPS Point 

Positioning.33   

 

B. SIMULATION I: BASELINE ARCHITECTURE RESULTS 
The results of Simulation 1 are displayed in Table 3: 

 

Name 
Data 
Rate 

(kbps) 

Average Total 
Forward 

Utilization(%) 

Average Total 
Reverse 

Utilization(%) 

Average 
Foward Data 

Utilization(%) 

Average 
Reverse Data 
Utilization(%) 

E2C/AWACS 
to Tactical 
Aircraft 

28.80 0.14 0.00 0.14 0.00

CVN/CAOC to 
E2C/AWACS 28.80 0.14 0.00 0.14 0.00

GBS UFO to 
GBS Receiver 
Suite 

23,500.00 0.00 0.00 0.00 0.00

GBS PIP  to 
GBS UFO 23,500.00 0.00 0.00 0.00 0.00

NIPRNET  to 
GBS Uplink 10,000.00 0.00 0.00 0.00 0.00

GPS MCS to 
GBS Uplink 
via NIPRNET 

10,000.00 0.00 0.00 0.00 0.00

 
 

Table 3. Simulation I Results  

 

                                                 
33 Evans meeting, 2005. 
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This table is taken from the NETWARS Capacity Planning Report with the 

specific table being taken from the Overall Average Utilization Report.  Under the 

‘name’ column the connectivity link is described and the connectivity links are listed in 

reverse order from the tactical aircraft to the ephemeris message generation site at 

Schriever AFB.  The average utilization percentages for the continental IP network and 

the GBS uplink and downlink sites is effectively zero since these pipes are so large and 

the GPS update message is so small especially when it is being generated once every 15 

minutes.  It is interesting to note that the Link 16 connectivity links have much lower 

overall data rates, as one would expect, in comparison to the continental and satellite 

links and therefore these could be problematic in future scenarios when the time interval 

is less or the amount of forward and reverse traffic is increased.   

This simulation does prove that the GPS ephemeris message will reach the tactical 

user without overloading the communication systems.  The communication systems are 

also compatible with each other in terms of transferring the message between formats 

such as a packet switched IP network to GBS broadcast network to Link 16 Time 

Division Multiple Access.  The one compatibility transfer that NETWARS was unable to 

perform was between the GBS downlink and the Link 16 Host Processor at the CVN 

node (CAOC node in the USAF).  NETWARS was unable to construct a link between 

these two types of communication devices the research required to investigate the 

specifics of such transfer in the real world was beyond the scope of this thesis although 

future research could provide for an answer to this important question.   
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V. GPS EPHEMERIS MESSAGE ARCHITECTURE 
SIMULATION WITH SHORTER TIME INTERVALS 

The shorter time intervals for the broadcast of each ephemeris message from 

Schriever AFB to the tactical aircraft were proposed by Alan Evans, Naval Surface 

Warfare Center, Dahlgren Division.  They were 2 minutes, 30 seconds, 6 seconds and 1 

second.  Each time interval was individually employed in a NETWARS simulation of the 

baseline architecture.  In each simulation, at least five continuous time intervals of the 

ephemeris message broadcast were run so that overloads in the system were exacerbated 

throughout the architecture.  The other factors considered in the baseline architecture 

remained the same: 

1.  Level of traffic set to zero on all connectivity links 

2.  Size of the individual correction message for each satellite included all five 

subframes for a total of 1500 bits.   

3.  Number of individual correction messages contained in the entire ephemeris 

message was 24, one for each operational GPS satellite.   

 

A. SIMULATION II: 2 MINUTE TIME INTERVALS 
The results of Simulation II are displayed in Table 4: 
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Name Data Rate 
(kbps) 

Average Total 
Forward 

Utilization(%) 

Average Total 
Reverse 

Utilization(%) 

Average 
Foward Data 

Utilization(%) 

Average 
Reverse Data 
Utilization(%)

E2C/AWACS 
to Tactical 
Aircraft 

28.80 1.04 0.00 1.04 0.00

CVN/CAOC to 
E2C/AWACS 28.80 1.04 0.00 1.04 0.00

GBS UFO to 
GBS Receiver 
Suite 

23,500.00 0.00 0.00 0.00 0.00

GBS PIP  to 
GBS UFO 23,500.00 0.00 0.00 0.00 0.00

NIPRNET  to 
GBS Uplink 10,000.00 0.00 0.00 0.00 0.00

GPS MCS to 
GBS Uplink 
via NIPRNET 

10,000.00 0.00 0.00 0.00 0.00

 
 

Table 4. Simulation II Results 

 

B. SIMULATION III: 30 SECOND TIME INTERVALS 
The results of Simulation III are displayed in Table 5: 
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Name 
Data 
Rate 

(kbps) 

Average Total 
Forward 

Utilization(%) 

Average Total 
Reverse 

Utilization(%) 

Average 
Foward Data 

Utilization(%) 

Average 
Reverse Data 
Utilization(%) 

E2C/AWACS 
to Tactical 
Aircraft 

28.80 4.17 0.00 4.17 0.00

CVN/CAOC to 
E2C/AWACS 28.80 4.17 0.00 4.17 0.00

GBS UFO to 
GBS Receiver 
Suite 

23,500.00 0.00 0.00 0.00 0.00

GBS PIP  to 
GBS UFO 23,500.00 0.00 0.00 0.00 0.00

NIPRNET  to 
GBS Uplink 10,000.00 0.01 0.00 0.01 0.00

GPS MCS to 
GBS Uplink 
via NIPRNET 

10,000.00 0.01 0.00 0.01 0.00

 
 

Table 5. Simulation III Results  

 

C. SIMULATION IV: 6 SECOND TIME INTERVALS 
The results of Simulation IV are displayed in Table 6: 
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Name 
Data 
Rate 

(kbps) 

Average Total 
Forward 

Utilization(%) 

Average Total 
Reverse 

Utilization(%) 

Average 
Foward Data 

Utilization(%) 

Average 
Reverse Data 
Utilization(%) 

E2C/AWACS 
to Tactical 
Aircraft 

28.80 20.83 0.00 20.83 0.00

CVN/CAOC to 
E2C/AWACS 28.80 20.83 0.00 20.83 0.00

GBS UFO to 
GBS Receiver 
Suite 

23,500.00 0.03 0.00 0.03 0.00

GBS PIP  to 
GBS UFO 23,500.00 0.03 0.00 0.03 0.00

NIPRNET  to 
GBS Uplink 10,000.00 0.06 0.00 0.06 0.00

GPS MCS to 
GBS Uplink 
via NIPRNET 

10,000.00 0.06 0.00 0.06 0.00

 
 

Table 6. Simulation IV Results 

 

D. SIMULATION V: 1 SECOND TIME INTERVALS 
The results of Simulation V are displayed in Table 7:  
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Name 
Data 
Rate 

(kbps) 

Average Total 
Forward 

Utilization(%) 

Average Total 
Reverse 

Utilization(%) 

Average 
Foward Data 

Utilization(%) 

Average 
Reverse Data 
Utilization(%) 

E2C/AWACS 
to Tactical 
Aircraft 

28.80 125.00 0.00 125.00 0.00

CVN/CAOC to 
E2C/AWACS 28.80 125.00 0.00 125.00 0.00

GBS UFO to 
GBS Receiver 
Suite 

23,500.00 0.15 0.00 0.15 0.00

GBS PIP  to 
GBS UFO 23,500.00 0.15 0.00 0.15 0.00

NIPRNET  to 
GBS Uplink 10,000.00 0.36 0.00 0.36 0.00

GPS MCS to 
GBS Uplink 
via NIPRNET 

10,000.00 0.36 0.00 0.36 0.00

 
 

Table 7. Simulation V Results 

 

E. SUMMARY OF TIME INTERVAL SIMULATION RESULTS 
The results of Simulations II, III, IV and V are addressed below.  As the time 

interval between GPS Ephemeris Message updates decreases the Average Total Forward 

Utilization of the connectivity links increases.  The amount of the increase in utilization 

is inversely proportional to the decrease in the time interval for all six connectivity links 

in the architecture.  For example, in Simulation II the Average Total Forward Utilization 

for the E2/AWACS to Tactical Aircraft connectivity link was 1.04% with 2 minute time 

intervals.  In Simulation III, the Average Total Forward Utilization of the same 

connectivity link increased to 4.17%, an increase by a factor of four, with 30 second time 

intervals between message updates.  Thirty-second time intervals are a factor of four 

decrease from two minutes.    
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In Simulations II-V the terrestrial IP network and GBS connectivity links had a 

maximum Average Total Forward Utilization of .36% and .15%, respectively, in the 1 

second time interval scenario (Simulation V).  The authors conclude that the terrestrial IP 

network and GBS are effectively large enough to handle near-continuous GPS ephemeris 

message updates without significantly effecting their overall utilization.  The terrestrial IP 

network and GBS will effectively deliver the ephemeris message to the CVN/CAOC 

node; the effective transfer of the message from this node is to the end user is the more 

challenging part of this simulation. 

The following graph displays the Average Total Forward Utilization (%) of the 

E2/AWACS to Tactical Aircraft connectivity link versus time interval between ephemeris 

message updates in seconds:  
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Figure 8.   Average Forward Utilization (%) versus Time Interval between Ephemeris 
Message Updates (seconds) for the Link 16 connectivity Links 

 

The graph and trend-line generated from the results of the four simulations allows 

for the calculation of the Average Forward Utilization percentage for any time interval.  
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It is also important to note that the 100% forward utilization occurs at a time interval of 

approximately 1.25 seconds.  Therefore, the authors conclude that the minimum time 

interval that the Link 16 network can support without any other competing users or data 

on the network is 1.25 seconds.  Ephemeris message that are sent with time intervals of 

less than 1.25 seconds will not reach the tactical user.   
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VI. GPS EPHEMERIS MESSAGE ARCHITECTURE 
SIMULATION WITH BACKGROUND TRAFFIC 

The addition of traffic to the terrestrial communication systems that are being 

used in these simulations is important to add to the real-world applicability of the 

simulation.  As discussed in Section IV.A.3, there are many users on each of these 

systems who required bandwidth for their information.  After reviewing the results from 

Simulations I-V, it was decided that the only connectivity links that would have traffic 

loads placed upon them in addition to the ephemeris message would be the Link 16 Host 

to Airborne Relay link and the Airborne Relay to Tactical Aircraft link.  The reasons for 

this decision are twofold.  First, the GBS and IP network links have large enough data 

throughputs that no matter how often the GPS Ephemeris Message is sent it should not 

overload these networks.  The addition of background traffic to these links will not affect 

the deliverability of the GPS Ephemeris Message.  Second, the compatibility between 

these two networks in terms of transferring the message seamlessly between was 

confirmed by NETWARS in Simulations I-V. 

There were three different simulations run with the amount of traffic varying in 

each simulation on Link 16 connectivity links.  The percentage of data traffic represents 

the percentage of forward and reverse link utilization.  The three simulations were:  

V. 0% data traffic with 1 Voice Channel 

VI. 50% data traffic with 0 Voice Channels 

VII. 50% data traffic with 1 Voice Channel     

The time intervals for these simulations will be 10 seconds between each GPS 

Ephemeris Message broadcast.  This time interval was chosen because it produced a 

reasonable amount of forward utilization in the connectivity links but it did not overload 

them.  It provides a balance between updating in real time while not overloading the Link 

16 Tactical Data network.   

The implementation of data traffic and a single voice channel in Simulation VII, 

is to represent a mission such as a tactical air strike that would use GPS Point 
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Positioning.  Gonzalez et al develop an air-air combat scenario with an AWACS and four 

tactical aircraft (F-15s) using a Link 16 network with one voice channel and data 

exchange.  Although their scenario is a different mission from one that would be 

applicable to GPS Point Positioning, the number of aircraft is the approximately the same 

for a tactical air strike.  The use of a 50% data traffic load is proposed by the authors but 

Stinson defined data loading in a Link 16 network as 30% for lightly loaded, 60% for 

moderately loaded and 90% for heavily loaded.  In context, it is important to note that a 

50% data traffic load is slightly less than a moderate load for the Link 16 so we feel this 

is a reasonable assumption on average for most Link 16 operations involving tactical air 

strikes.   

 

A. SIMULATION VI: 10 SECOND TIME INTERVALS WITH 1 VOICE 
CHANNEL 
The results for Simulation VI are displayed in Tables 8: 

 

Name 
Data 
Rate 

(kbps) 

Average 
Total 

Forward 
Utilization 

(%) 

Average 
Total 

Reverse 
Utilization

(%) 

Average 
Forward 

Data 
Utilization 

(%) 

Average 
Reverse 

Data 
Utilization

(%) 

Average 
Voice 

Utilization 
(%) 

E2C/AW
ACS to 
Tactical 
Aircraft 

28.80 40.27 27.78 12.50 0.00 50.00

CVN/CA
OC to 
E2C/AW
ACS 

28.80 40.27 27.78 12.50 0.00 50.00

 

Table 8. Simulation VI Results 

 

The results for Simulation VI show that the GPS Ephemeris Message was 

received by the tactical aircraft successfully with one voice channel.  The Link 16 

Tactical Data Network was able to handle the ephemeris message and the voice channel.  
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The Average Voice Utilization (%) is 50% for one Voice Channel because Link 16 can 

support two Voice Channels so one voice channel represents 50% of the Voice 

Utilization.   

 

B. SIMULATION VII: 10 SECOND TIME INTERVALS WITH 50% DATA 
TRAFFIC 
The results for Simulation VII are displayed in Tables 9: 

 

Name 
Data 
Rate 

(kbps) 

Average 
Total 

Forward 
Utilization 

(%) 

Average 
Total 

Reverse 
Utilization

(%) 

Average 
Forward 

Data 
Utilization 

(%) 

Average 
Reverse 

Data 
Utilization

(%) 

Average 
Voice 

Utilization 
(%) 

E2C/AW
ACS to 
Tactical 
Aircraft 

28.80 62.50 50.00 62.50 50.00 0.00

CVN/CA
OC to 
E2C/AW
ACS 

28.80 62.50 50.00 62.50 50.00 0.00

 

Table 9. Simulation VII Results 

 

The results for Simulation VII show that the GPS Ephemeris Message was 

received by the tactical aircraft successfully with 50% data traffic.   The Link 16 Tactical 

Data Network was able to handle the ephemeris message in addition to the 50% data 

traffic.   

 

C. SIMULATION VIII: 10 SECOND TIME INTERVALS WITH 50% DATA 
TRAFFIC AND 1 VOICE CHANNEL 

The results for Simulation VIII are displayed in Table 10: 
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Name 
Data 
Rate 

(kbps) 

Average 
Total 

Forward 
Utilization 

(%) 

Average 
Total 

Reverse 
Utilization

(%) 

Average 
Forward 

Data 
Utilization 

(%) 

Average 
Reverse 

Data 
Utilization

(%) 

Average 
Voice 

Utilization 
(%) 

E2C/AW
ACS to 
Tactical 
Aircraft 

28.80 90.28 77.78 62.50 50.00 50.00

CVN/CA
OC to 
E2C/AW
ACS 

28.80 90.28 77.78 62.50 50.00 50.00

 

Table 10. Simulation VIII Results 

 

The results for Simulation VIII show that the GPS Ephemeris Message was 

received by the tactical aircraft over Link 16 but the average total forward utilization of 

both links was over 90%.  This result is problematic because if any more data is placed 

on the network or another voice channel is required the network will be overloaded and 

messages will not be deliverable.   

Additionally, it is important to note that the 50% residual traffic data load 

assumed by the authors could certainly increase depending upon the specific operation.  

As mentioned above, a moderately loaded Link 16 network has traffic of 60% so the 50% 

assumption in this thesis could increase in some scenarios.  Applying a moderately 

loaded Link 16 network to Simulation VIII results in the Average Total Forward 

Utilization of the network being above 100%.   
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VII. GPS EPHEMERIS MESSAGE ARCHITECTURE SIMULATION 
VARYING THE NUMBER AND SIZE OF THE EPHEMERIS 

MESSAGES 

The final variation to the GPS Ephemeris Message broadcast is to vary the 

number and size of the individual ephemeris messages.   The number of individual 

ephemeris messages contained in the broadcast for the baseline architecture was twenty-

four, one for each GPS satellite.  A change that could be made to the message format 

would be to transmit a smaller number of frames to only correct the satellite orbit and 

satellite clocks for those specific satellites that the GPS receiver is actually utilizing.  

This architecture is difficult to realize because it would require prior coordination 

between the GPS receiver onboard the tactical aircraft and the GPS MCS because the 

MCS would need to know which satellites were in the aircraft’s AOR (Area of 

Operations) so it would know which updates to send to it .   

This thesis considered the idea of sending the entire set of 24 individual GPS 

ephemeris messages over the IP network and GBS to the CVN/CAOC node.  At the 

CVN/CAOC node, the flight plan for each specific tactical aircraft is known due to the 

presence of the ATO (Air Tasking Orders).  A software program at the CVN/CAOC node 

reduces the size of each entire GPS ephemeris message to include only those updates that 

correspond to GPS satellites that will be persistent above tactical aircraft’s AOR (Area of 

Operations).  These smaller messages could then be sent out of Link 16 Tactical Data 

Network using the E-2C or AWACS as an airborne relay to the tactical aircraft.  For this 

system to work the software program would need to know precise orbits for all GPS 

satellites over the next 24 hour period and be able to match these orbits with the flight 

plans for the aircraft.  The potential advantages of such a system would be that less data 

would need to be transferred over Link 16 to the tactical aircraft; tactical aircraft GPS 

receivers would not be receiving satellite orbit and satellite clock updates for satellites 

that were not in view.  The potential disadvantages of such a system would be that it 

would require extensive coordination between the ATO, GPS satellite orbits and 

individual aircraft to ensure that each aircraft was receiving the correct corrections.  

Additionally, the size of the ephemeris messages is relatively small so the overall link 
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utilization gain realized from transferring only 50% of them does not seem to compensate 

for the increased complexity in this architecture.   The lack of a feasible gain in total link 

utilization from reducing the number of ephemeris messages broadcast to each individual 

aircraft means that this idea was not simulated using NETWARS. 

Reducing the size of the individual ephemeris messages from five subframes to 

three subframes is a second way to reduce the size of the entire ephemeris message.  The 

first two subframes contain non-critical information but it is not known if the GPS 

receiver will accept the last three subframes without the first two in the ICD-GPS 200 

format.  The advantage of reducing the individual ephemeris message by two subframes, 

which would decrease the overall message size by 40%, is less total utilization of the 

Link 16 tactical data network.  The disadvantage of reducing the message size is that it 

may not be compatible with the GPS receiver.  The advantages to this message size 

reduction outweigh the disadvantage of possible compatibility problems because less 

utilization of the Link 16 is important to this simulation; it allows for shorter time 

intervals between updates as well as increased traffic by other users with overloading the 

network.  If the message is not compatible then the updates can revert to the five-

subframe format, but simulating three subframes is a useful endeavor for planning 

purposes.    The reduced GPS Ephemeris message, containing only three subframes per 

individual satellite update (24 satellites total) is simulated in Simulation IX.  The other 

parameters of Simulation IX remain the same as Simulation VIII: 10 second time 

intervals between updates, 50% background data traffic and 1 voice channel in use.  The 

results for Simulation IX are listed in Table 11:  
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Name 
Data 
Rate 

(kbps) 

Average 
Total 

Forward 
Utilization 

(%) 

Average 
Total 

Reverse 
Utilization

(%) 

Average 
Forward 

Data 
Utilization 

(%) 

Average 
Reverse 

Data 
Utilization

(%) 

Average 
Voice 

Utilization 
(%) 

E2C/AW
ACS to 
Tactical 
Aircraft 

28.80 86.11 73.61 58.33 50.00 50.00

CVN/CA
OC to 
E2C/AW
ACS 

28.80 86.11 73.61 58.33 50.00 50.00

 

Table 11. Simulation IX Results 
 

The Simulation IX results are similar to those found in Simulation VIII except 

that the Average Total Forward Utilization and Average Total Data Utilization 

percentages are slightly less due to the reduction in size of the ephemeris message.  

Despite this reduction, the overall utilization is near 100% as indicated by the red 

outlines, and the Link 16 network is in danger of being overloaded if more information 

peaks at any given time period.   
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VIII. CONCLUSION 

This thesis simulated the broadcast of a GPS Ephemeris message over terrestrial 

communication systems to end users using the NETWARS modeling and simulation tool.  

The GPS Ephemeris message contains satellite and clock updates for the GPS receiver to 

allow for more accurate target geolocation through GPS Point Positioning.  GPS Point 

Positioning provides real-time, kinematic, decimeter level accuracy to the user which 

means greater weapon effectiveness and the potential to reduce collateral damage for the 

warfighter.   

The NETWARS simulation was successful in broadcasting the GPS Ephemeris 

message to tactical aircraft users in flight.  The specific attributes of the ephemeris 

message that were investigated in the simulation were time intervals, residual traffic, 

message size, and compatibility between systems.  Time intervals addressed how often 

the GPS Ephemeris message could be sent from the origination point at the MCS to the 

tactical user without overloading the system.  Residual traffic addressed how much 

residual traffic could conceivably be present on the systems while still allowing the 

ephemeris message to reach the tactical user.  Size of the message investigated the 

feasibility of reducing the ephemeris message size in two different ways and how a size 

reduction affected the overall performance of the communication systems.  The trade-offs 

between the size reduction against less network utilizations were analyzed.  Finally, the 

compatibility between the IP network, GBS, and Link 16 were addressed.   

The results of the time interval simulations (Simulations I, II, III, IV and V) 

showed that the IP network and GBS could support almost continuous ephemeris 

message updates because of their large data rates.  The Link 16 tactical data network was 

able to support time intervals of 15 minutes, 2 minutes, 30 seconds and 6 seconds 

adequately while still providing throughput to other ‘probable’ users.  Link 16 was 

overloaded when the time interval was set to 1 second and ephemeris messages then 

dropped from the broadcast.  The authors conclude that without residual traffic on the 

network, which is a fairly unreasonable assumption, the optimum time interval would be  
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approximately 6 seconds.  Additionally, it was concluded that if residual traffic was 

assumed to be present on the network then the time intervals should not be less than 10 

seconds.    

The results of the residual traffic simulation built upon the time interval 

simulation results.  The residual traffic simulations (VI, VII and VIII) introduced voice 

traffic, data traffic, and voice and data traffic to the architecture, respectively.  The results 

of these simulations seemed to validate the conclusion that the ten second time interval 

for the GPS updates with traffic was close to the minimum time interval.  The only 

possible problems occurred in Simulation VIII, which was close to overloading the 

network with too much data and voice traffic.  The conclusion from these results is that in 

low-tempo operations without a large volume of messages or voice traffic ten second 

time intervals are still feasible.  In higher-tempo operations involving multiple aircraft on 

the same Link 16 network flying various missions, especially operations utilizing both 

available voice channels, a longer time interval of thirty second ephemeris updates is the 

maximum frequency recommended.      

Reducing the size of the ephemeris message was addressed in two different ways.  

The first reduction involved broadcasting only those individual ephemeris messages that 

correspond with satellites in the tactical aircraft field of view.  It was predicted that this 

would reduce the ephemeris message size by approximately 50 percent, but the concept 

was not feasible for simulation.  The disadvantages of this reduction would be that it 

would require extensive coordination between the ATO, GPS satellite orbits, and 

individual aircraft to ensure that each aircraft was receiving the correct set of corrections 

corresponding to the GPS signals it was receiving.    

The second reduction of the ephemeris message involved removing the first two 

subframes from each individual satellite’s update and only broadcasting the last three 

subframes containing the orbit and clock updates.  The feasibility of this size reduction 

was greater than the previous one; the only drawback was that the ephemeris message 

may be unreadable at the GPS receiver.  Simulation IX was run incorporating the results 

of the time interval and residual traffic simulations and the results showed that the 40% 

size reduction in the ephemeris message was marginally effective in reducing Link 16 
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utilization.  The conclusion from this simulation was that reducing the message size by 

subtracting the extra subframes could prove very useful in the future and would allow for 

faster time intervals.  In terms of the present, this thesis’ overall recommendation for the 

GPS message updates is to transmit the entire message over the proposed architecture 

using a maximum of ten second time intervals.  Although the system demonstrated that it 

could support ten second intervals, it is interesting to note that OMNIS currently 

produces satellite and orbit clock corrections every 15 minutes.    

The compatibility between the terrestrial communications systems was addressed 

in this thesis to some extent for the proposed architecture.  The NETWARS simulations 

demonstrated that the IP network and GBS were compatible and the ephemeris message 

moved seamlessly between them.  The two nodes that were assumed to be compatible but 

were not simulated in this thesis were the CVN/CAOC node and the tactical aircraft 

node.  The transfer of the ephemeris message from the GBS downlink onboard the 

CVN/CAOC to the Link 16 Tactical Data Network could not be simulated using 

NETWARS, so the compatibility between these two networks could not be confirmed.  

The second node that was assumed to be compatible but was unproven in the simulation 

was the transfer of the ephemeris message from the JTIDS Terminal (Class II) and the 

GPS receiver aboard the tactical aircraft.  Future work could involve testing these two 

nodes for compatibility in the tactical environment.   

The simulation of the GPS broadcast ephemeris message was successful given the 

proposed architecture with constraints of ten second time intervals, 50% residual traffic, 

one voice channel and no message size reduction.    
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APPENDIX 

The following Appendix outlines the basic procedure for obtaining NETWARS 

and running the simulations described in this thesis.  The process outlined below does not 

include every single step taken in the development of the architecture and the running of 

the simulations found in this thesis; rather it gives an overview of specific procedures that 

were used and when repeated will allow the programmer to develop the entire 

architecture and run the simulations described in this thesis.  Simulation VII is 

specifically outlined in this appendix. 

1. Obtain and Install ETWARS Version 2005-1 

 a. Contact Karen Chin at NETWARS Program Office 

  EMAIL: chin_karen@bah.com 

  WEBSITE: http://www.disa.mil/main/prodsol/netwars/ 

 b. Fill out Justification Form 

 c. Copy of NETWAR will be sent via FedEx 

 d. Install NETWARS 

 e. Register License using the License Manager (this can be done via email) 

2. Obtain Link 16 SPAWAR Contributed Model  

a. Raise the directory 
C:\Netwars\Sim_Domain\op_models\contributed_models\navy_spawar_m
odels to the top list (Edit->Preferences->Advanced->mod_dirs, select 
Move Up)  

b. Uncomment the first section NAVY contributed links in the 
LinkTypeMap.gdf file under 
C:\Netwars\Scenario_Builder\10.5.A\netwars\rules  

c. Update the repository to include these new models (Edit->Preferences-
>Advanced and set Repositories to empty. 

3. Configure Object Palettes 

a. Click the Configure Palette button located at the upper-right corner of the 
object palette to open the Configure Palette dialog box. 

 b. Click the Node Models button to add specific models from the palette.   

 c. Toggle the Status column to included for the Link_16_Host_Processor 
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 d. Click OK, specify GPS in the Save As dialog box, and click in OK again 
to complete. 

 e. Repeat procedure to Configure Object palette for JTDS Terminal.   

4. Construct Architecture of Organizations, OPFACS and Connectivity Links in the 
Scenario Builder using the NETWARS – Task Assistant 

 a. Click the Object Palette button located along the Taskbar 

 b. Click the dropdown menu and choose Custom_Organizations 

c. Click and drag the New_Org to the Scenario Builder map 

d. Right click on the New_Org and choose Edit Netwars Attributes and 
rename it to CVN. 

e. Click the Object Palette button located along the Taskbar 

f. Click the dropdown menu and choose GPS (this menu is specific to where 
the OPFACS were saved on the Object Palette in 3.d) 

g. Click and drag the Link_16_Host_Processor to CVN on the Scenario 
Builder map.   

h. Repeat this procedure for all organizations and OPFACS in the 
architecture (Section IV.A.1) 

i. Click the Show Treeview button located along the Taskbar 

j. Click the Define Infrastructure button located in the lower-left corner of 
the Define Scenario dialog box. 

k. Click the dropdown menu Relationships in the upper-right corner of the 
Define Infrastructure dialog box and change it to Links. 

l. Check the E-2C Hawkeye_JTIDS Terminal and the Tactical 
Aircraft_JTIDS Terminals in the left hand column and click the Define 
button located in the middle-bottom area of the Define Infrastructure 
dialog box.   

m. Right click on the JTIDS Terminal to JTIDS Terminal link listed in the 
right column of the Define Infrastructure dialog box.  Set the Name: E-2C 
to Tactical Aircraft.  Click Ok.   

 
5. Run Simulation VII 

 a. Open Traffic->Specify Demands   

 b. From the Producer Tree check E-2C Hawkeye_JTIDS Terminal 

 c. From the Consumer Tree check Tactical Aircraft_JTIDS Terminal 

 d. Click Create Demand button located at the bottom of the Specify 
Demand dialog box. 
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 e. Set Traffic Type: Data, Size: 4500 (bytes), Average: 10 (seconds), 
Distribution Type: CONSTANT, Priority: ROUTINE, Classification: 
Link 16_NPG_08_Weapons_Coordination, Producer Device: E-2C 
Hawkeye_JTDS Terminal, Consumer Device: Tactical Aircraft_JTIDS 
Terminal, Equipment Type: JTIDS, and Perishability: 10 (seconds).   Click 
Ok.   

 f. Repeat procedure to Specify Demand for CVN_Link 16 Host Processor to 
E-2C Hawkeye_JTIDS Terminal connectivity link. 

 g. Open Capacity Planning->Evaluate 

 h. Set Number of Time Steps: 5 (seconds), Length of Time Steps: 10 
(seconds), Start Time: 0 hours, 0 minutes, 0 seconds.  Click Run.   

 i. The Results of the Simulation are displayed in the Capacity Planning 
Report.   
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