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moulitsa, karypis � @cs.umn.edu

Abstract

This paper focuses on domain decomposition-based numerical simulations whose sub-

problems corresponding to the various subdomains are solved using sparse direct factorization

methods (e.g., FETI). Effective load-balancing of such computations requires that the resulting

partitioning simultaneously balances the amount of time required to factor the local subprob-

lem using direct factorization, and the number of elements assigned to each processor. Un-

fortunately, existing graph-partitioning algorithms cannot be used to load-balance these type

of computations as they can only compute partitionings that simultaneously balance numerous

constraints defined a priori on the vertices and optimize different objectives defined locally

on the edges. To address this problem, we developed an algorithm that follows a predictor-

corrector approach that first computes a high-quality partitioning of the underlying graph, and

then modifies it to achieve the desired balancing constraints. During the corrector step we

compute a fill reducing ordering for each partition, and then we modify the initial partitioning

and ordering so that our objectives are satisfied. Experimental results show that the proposed

algorithm is able to reduce the fill-in of the overweight sub-domains and achieve a considerably

better balance.

Keywords: graph partitioning, parallel algorithms, domain decomposition, direct

solvers, iterative solvers
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1 Introduction

Existing graph partitioning algorithms aim at computing partitionings that balance constraints de-

fined a priori on the vertices and optimize objectives defined locally on the edges. However,

emerging high-performance computational simulations require that the resulting partitioning sat-

isfies multiple constraints and objectives that are not local on the vertices and edges of the graph,

but are defined on the overall structure of the resulting partitioning.

Examples of such computations are domain decomposition-based numerical simulations where

the subproblems corresponding to the various subdomains are solved using a sparse direct fac-

torization e.g., Finite Element Tearing and Interconnecting (FETI) domain decomposition method

[5]. Effective load-balancing of such computations requires that the resulting partitioning simul-

taneously balances the amount of time required to factor the local subproblem using direct factor-

ization, and the number of elements assigned to each processor. In this example, the constraints

and objectives cannot be modeled by assigning different weights on the vertices and/or edges of the

graph, as they depend on the overall structure of the partitioning. For example, in the case of a sim-

ulation using FETI, the amount of time required by each subdomain, depends on the fill-in of the

factors in each subdomain, which can only be determined once a partitioning has been computed,

and the corresponding matrices have been re-ordered using a fill-reducing ordering. Therefore, this

optimization leads to constraints that are dynamic in nature, as they cannot be evaluated unless a

partitioning has been computed.

The limitations of traditional partitioning algorithms for solving problems with dynamic con-

straints and objectives has been recognized some time ago [24, 13, 14]. For example, many re-

searchers have recognized that computing partitionings that balance the number of vertices, and

minimize the edgecut, is not sufficient to balance the computations performed by a per-subdomain

direct factorization [24, 22]. Despite that, none of the approaches that were proposed to solve the

problem led to solutions that are both computationally efficient and/or are guaranteed to ensure

load balance. To a large extent, one of the reasons that these issues have not yet been rigorously

addressed is that it was not until recently that the problem of computing high-quality partition-

ings was well understood, and fast and high-quality algorithms were developed for solving them.

Moreover, developing algorithms for solving such problems is particularly challenging, as it re-

quires the partitioning algorithm to balance and optimize quantities that can be measured only

after a partitioning has already been computed.

In this paper we present a graph-partitioning algorithm for balancing and optimizing multiple

constraints and objectives that are defined on the overall structure of the partitioning solution. Our

research has focused on developing such partitioning algorithms to address the classes of prob-

lems where we need to compute a partitioning and a per-subdomain fill-reducing ordering that

simultaneously balances the number of elements assigned to each partition, and the fill-in of the

subdomain matrices, while minimizing the edgecut. Since these constraints and objectives can-

not be determined/evaluated prior to actually knowing the partitioning of the graph, the proposed

algorithms follow a predictor-corrector approach. That is, they first compute a high-quality parti-

tioning of the underlying graph and then modify this partitioning to achieve the desired balancing
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and optimization goals.

The rest of the paper is organized as follows. Section 2 gives a brief overview of graph parti-

tioning and definitions of basic terminology. In Section 3 we explain why existing techniques are

deemed insufficient for some types of scientific problems. We propose a new approach and we

describe the variations and details of our algorithm. The experimental evaluation of the algorithms

is shown in Section 4. Finally, Section 5 provides some concluding remarks.

2 Graph Partitioning Background

In this section we will give the definitions of graph partitioning terms that we will use later on, and

review briefly some existing graph partitioning techniques.

The graph partitioning problem can be defined as: Given a graph �����
	���
�� , where 	 is the

set of vertices, ������	�� is the number of vertices, and 
 is the set of edges in the graph, partition

the vertices to � sets 	�������������	�� such that 	! #"$	&%'�)( for *,+�.- . This is called a � -way partitioning

and we denote it by / . Every one of the subsets 	# , of the vertices of � , is called a partition or

subdomain. The graph � is a weighted graph if every vertex and edge has an associated weight.

By the edgecut of a partition, we mean the sum of the weights of the edges in 
 that were cut

among different subdomains. If we look among all the individual partitions, we define maxcut as

the maximum cut in edges from among all subdomains. The total vertex weight of graph � is

the sum of the weights of all the vertices in 	 and is denoted by 01�2	1� . The partition weight of

partition 	! is the sum of the weights of the vertices assigned to 	3 and is denoted by 01�2	4 2� . The

load (im)balance of a � -way partitioning is defined as

57698&:&;=<$>?8A@B8 �DC�E&�
/F��� <G8�H  I�J0��
	K 
�L�01�2	1�NM?� �
which is the ratio of the highest partition weight over the average partition weight.

For the traditional graph partition problem the goal is to compute a � -way partitioning / , such

that for O adequately small, and OQPSR , 57698T:�;=<$>U8T@B8 �DC�E&�
/V�XWZYK[\O , and E :^] E_CU`4ab�
/V� is minimized.

The load imbalance is the constraint we have to satisfy, and the edgecut is the objective we have to

minimize. Therefore graph partitioning can be viewed as an optimization problem.

Graph partitioning is an NP complete problem [7]. Therefore, many heuristic algorithms have

been developed [12, 4, 2, 3, 6, 9, 15, 16, 19, 20, 25, 23] to address it. A very popular approach to

handle the graph partitioning problem is the multilevel paradigm. Such algorithms [16, 19, 20, 25,

23] are very popular due to the fact that they can produce high quality partitions, they are fast, and

they can be extended to run in parallel environments, therefore scaling to graphs that have several

million of vertices.

Multilevel graph partitioning algorithms consist of three different phases :

1. Graph Coarsening

2. Initial partitioning of the coarse graph

3. Uncoarsening of the partitioned coarse graph
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The idea is that since the original graph might be too large to work with, we first try to coarsen

the graph down to another graph with fewer vertices, by collapsing together vertices of the original

graph [16, 19, 20]. Once the graph is coarse enough, then this new graph can be split into � parts

fairly easily. During the uncoarsening phase, the initial partitioning of the coarse graph is projected

back to the original fine graph. Since a finer graph has more degrees of freedom, vertices can move

among partitions so that the initial partitioning can be improved [16, 19, 20].

3 Problem Definition and Challenges

Consider a graph �)�c�2	���
�� with �d�e��	f� vertices corresponding to an �Fgh� symmetric matrix i ,

and let / be a partition of its vertices into � parts 	j����	#k_����������	&� . For *l�mYn�?oA�p�������J� , let �q D�m�
	K I��
X 2�
be the induced subgraph of � , and ir be the matrix corresponding to that induced subgraph.

Given these definitions, the particular partitioning problem that we are trying to solve is as follows:

Compute a partitioning / of � and a fill-reducing ordering of each submatrix iq such that:

1. each partition has �jM?� vertices;

2. the fill incurred by each submatrix is the same;

3. the fill of each submatrix is minimized; and

4. the edge-cut is minimized.

Note that this partitioning problem definition accounts both for minimizing the amount of time

spent during the iterative phases (by balancing the partitions and minimizing the edge-cut), and for

minimizing the amount of time spent in the various direct factorizations and subsequent triangular

solves (by balancing and minimizing the fill).

Even though it is quite straight-forward to compute a partitioning and the associated fill-reducing

orderings that satisfies conditions Y=�Ns , and t , it is quite hard to simultaneously satisfy condition o .
This is because the amount of fill incurred by a particular subdomain depends on the topological

properties of its corresponding subgraph and the characteristics of the fill-reducing algorithm that

is used. In most cases involving irregular matrices, there is no easy way to determine the work

without actually computing a fill-reducing ordering followed by symbolic factorization. Moreover,

computing fill-reducing orderings and their associated symbolic factorizations is quite expensive

and cannot be done repetitively.

3.1 Predictor-Corrector Partitioning and Fill-Reducing Ordering Algorithm

To address these issues we developed a three-phase approach for solving this problem. During

the first phase we compute a � -way partitioning of the graph that satisfies conditions Y and t .
Then, in the second phase we compute a fill-reducing ordering of each subdomain and determine

the fill by computing a symbolic factorization. Finally, in the third phase, we modify both the

initial partitioning and the fill-reducing orderings of each subdomain to correct any observed load-

imbalances. These last two steps allow us to compute a partitioning that also satisfies conditions o
and s .
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The key idea of this approach is motivated by the observation that in the case of problems

derived from finite element meshes, even though the exact fill-ins of each submatrix are hard to

determine a priori, they tend to follow a function that has in order terms a similar asymptotic

growth for the various partitions. That is, the fill incurred by each partition 	u will be of the order

of ��	K N� v^w!xzy , where { is fixed across the partitions and O� is a small constant �2OL }|,|.{l� that depends

on the particular topological characteristics of �, . Thus, the fill imbalance of the initial ~ -way

partitioning will not be arbitrarily bad. For this reason, a scheme that starts from that partitioning

and attempts to perform relatively small modifications can still achieve load balance, in terms of

fill-in. We will refer to this as a predictor-corrector approach, as we use the first two phases

to predict the partition-fill-reducing ordering, and the third phase to correct it so that it becomes

balanced.

Achieving the first phase of the proposed approach is quite straightforward and any of the exist-

ing graph partitioning algorithms can be used. For our implementation we relied on the multilevel~ -way partitioning algorithm developed in [20], and that is available in the METIS 4.0 [18] package

(pmetis). This algorithm is known to produce partitionings that are well balanced, have a low

edgecut, and low computational requirements. Therefore, we start with an initial partitioning that

satisfies conditions Y and t .

For the second phase we used an ordering algorithm based on multilevel nested dissection de-

scribed in [20], and implemented in METIS 4.0 [18]. Given a graph, nested dissection algorithms

compute a fill-reducing ordering using a divide-and-conquer approach. For each graph, they first

find a minimum size vertex-separator � that partitions the graph into two relatively balanced sets,i and � such that vertices in i are not connected to vertices in � . The vertices in i are ordered

first, followed by the vertices in � , followed by the vertices in � . The exact ordering of the vertices

in � is not important, but the exact ordering of the vertices in i and � is determined by performing

the same vertex-separator discovery process recursively in each of the subgraphs induced by i and� .

The choice of a nested dissection based ordering algorithm is critical for two reasons. First, in

the last few years, fill-reducing ordering algorithms based on nested-dissection have improved sig-

nificantly (primarily due to the development of high-quality multilevel algorithms for finding small

vertex separators [20, 17, 18]), and are now considered the state-of-the-art method for computing

fill-reducing orderings. Second, they provide a reasonably easy way to account for the amount of

fill that is created as a function of the size of the separators. In particular, each vertex separator

translates to a dense submatrix whose size is equal to the number of vertices in the separator. Thus,

the fill incurred by a nested-dissection ordering can be modified by manipulating the size of these

separators.

We use this observation to develop an algorithm that simultaneously modifies the partitioning

and the fill-reducing orderings for the third phase of the proposed algorithm. In particular, we

develop partitioning refinement algorithms that move vertices between partitions such that the size

of the top-level separators of the domains with high fill is reduced; thus, reducing the overall

load-imbalance. Note that the proposed approach does not try to reduce the size of a separator

by refining it locally within the subdomain, because these separators are already very small and
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in general cannot be reduced any further. Instead, the proposed partitioning refinement algorithm

tries to move vertices that are at the separators of an overweight domain to one of the adjacent

subdomains, which reduces the size of the separator � and ensures that the subsubdomains (e.g.,i and � in the previous example) remain disconnected.

3.2 Separator Refinement Algorithm

The key challenge in the above predictor-corrector scheme is how we select which vertices to move

between partitions so that we balance the fill, while ensuring that the characteristics of the existing

partition in terms of conditions Yn�?oA� and t remain the same (i.e. each partition has the same number

of vertices, the fill-in and the edgecut are minimized).

To address this challenge we developed an iterative heuristic refinement algorithm that first

estimates by how much each top level separator needs to be decreased (if any), and then follows

a randomized greedy refinement framework. The refinement framework moves vertices between

partitions so that it achieves the desired top level separator sizes, without significantly degrading

the quality characteristics of the initial partitioning. Details on how the above steps are performed

are provided in the rest of this section.

3.2.1 Determining the Size of the Separators

We determine which of the partitions have a high fill-in and by how much it should be reduced as

follows. First we compute the average fill-ins over all the partitions. For these partitions that have

a fill-in that is less than ��� over the average fill-in we do not attempt to lower their fill-in, (i.e.,

we assume that they are more or less balanced). For the remaining partitions, we try to reduce

their fill-in, so that it becomes equal to the average fill-in. This fill-in reduction is achieved by

moving vertices out of their top-level separators. In order to decide how many vertices we need to

move, we rely on the fact that there is a quadratic relation between the size of a separator and the

amount of the fill-in that it generates. Specifically, if � is the fill-in due to a top level separator of

size � , we assume that there is a simple ����Ch�q� k relation between � and � for some constantC , and moreover C does not change as we decrease � . Based on this assumption, the new top level

separator size �p� that will decrease the fill-in from � to ��� is given by

� � ��C���� � k�� � � � �� k ��� � k�� � � �
� � �� �h� (1)

Thus, by knowing the average fill-in of an “overweight” partition we can use Equation 1 to

estimate the size of the top level separator that will result in the desired fill-in reduction (assuming

the rest of the partition remains fixed).

3.2.2 Determining which Vertices to Move

Since the size of the separator is by construction minimal, the candidate vertices will need to be

moved to a different partition. However, there are multiple potential problems that can arise if

these moves are not made with extreme care. The first problem is that most of the times these

moves translate into an increase in the edgecut. The second problem is that by moving a vertex
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into a different partition, we perturb the fill of that partition. Even though the fill of the originating

partition is guaranteed to go down, the fill-in of the destination partition can be increased. The

third problem is that the load imbalance of the partitions can be perturbed. Even though the initial

load imbalance of the partitioning, as given to us by METIS, was good, by moving vertices around

we run the risk of creating a partition with high load imbalance.

In order to avoid encountering the above problems, our refinement algorithm has to follow some

rules. These rules vary depending on, whether, the vertex that can potentially be moved, belongs to

a separator or not. The reason we do not follow the same procedure in both cases is the following.

A separator vertex is moved out of necessity, therefore we are willing to make a move even if

it somehow increases the edgecut, or perturbs the load imbalance. On the other hand, we move

non-separator vertices only to reduce edgecut or improve the balance. As mentioned already, we

also need to establish some metrics. One of them is the maximum partition weight, that we do not

allow to be more than s&� above the average partition weight. This metric will be used in order to

ensure that our partitions will be load balanced. As we mentioned before, for every partition we

have the vertex separator � , that divides the partition into two relatively balanced sets, i and � .

In order to ensure that i and � remain balanced we set the maximum subsubdomain weight not

to be more than YpR&� above the average.

For these vertices that do not belong to a separator we set the following rules. If moving this

vertex will increase the destination partition weight beyond the maximum allowed, then this move

should not be performed. Also, the move is not be allowed, if it increases the subsubdomain weight

beyond the maximum. By following these two rules we ensure the load balance of our partitions.

Another rule is the following, if the vertex has more than one candidate partitions as destinations,

then we choose the partition to which the vertex is most connected, and at no time is a move

allowed to increase the edgecut. Finally, if the separator size of the destination partition is larger

than what we want it to be, then we do not allow any moves into this partition. The reason we do

not allow such moves is because we try to balance the fill of the partitions. Therefore, we would

not like to cause unnecessary fill to partitions that already have a fill higher than the average.

With regards to the load balance of the partitions, we follow the same rules for separator vertices,

as with non-separator vertices. Therefore, we do not allow separator vertices to move to a partition,

if this move will increase the partition weight, or the subsubdomain weight above our preset limits.

In our effort to keep the edgecut as low as possible, we follow the described tactic. As long as the

separator size of the partition has not been reduced to the desired point, we allow separator vertices

to move to other partitions, even if such moves increase the edgecut. However, once the separator

size has been reduced as much as we wanted, then we do not allow any moves that will increase

the edgecut. Whenever a separator vertex can be moved to more than one partitions, we choose the

partition that is most connected to it. In order to ensure the fill balance of the partitions, a separator

vertex is not allowed to move to a partition that has a higher fill. Also, in order to ensure that the

fill of every partition is kept minimal, separator vertices are not allowed to move to partitions that

have a fill that is above the average fill.
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3.2.3 Determining the Fill-in of Each Partition

In our vertex move selection procedure one of the criteria utilized the fill of the originating and/or

destination partition. Initially, we have a very good estimate of the fill-in through the symbolic fac-

torization. However, once we start moving vertices between partitions, then the fill-in is perturbed.

Therefore we need to find a way to estimate the fill of every partition after every move. To achieve

this, we have two options. One option is to perform a symbolic factorization after the move. Even

though this is a straightforward solution, it is a time consuming one too. The second option is to

model how a vertex move will affect the fill-in of its original and its target partition. Let � be the

fill of a partition let � be the number of its vertices. Then it is true that

�)��� v where {�� constant

Therefore for the constant { we can say that

{������=� ����=� �
Let � be the original fill-in before the move, and � � , be the fill-in after the move. Similarly, let �
be the original partition weight, and � � , be the weight after the move. Then, assuming that both �
and � � grow in the same way we have

� � �S� � v � � �A� �)��� � v � � v � � � ���S[�� �I���B�
����B�b  � � ���B�
����¡��  (2)

Therefore, after every vertex move we can update the fill-in information of the original and des-

tination partition by using Equation 2. For the original partition �j���¢� � 0��J£!� , and for the

destination partition ���4�S�¤[�01�B£!� , where 0��J£!� is the vertex weight, of the moved vertex.

3.2.4 Putting Everything Together

Based on the above key points we have developed five different refinement algorithms that give

different emphasis on the above parameters.

RS1 The first scheme is a crude refinement scheme. First we find by how much the separator size

should be reduced, using Equation 1. Once we know this, then we start the refinement procedure,

exactly as described before. This algorithm is the most aggressive of all, in terms of the way it

handles the edgecut. The reason is that it allows separator vertices to move to other to partitions

even when the increase in the edgecut is high. After every move we recompute the fill using

Equation 2.

RS2 The algorithm moves vertices in different passes. The criterion of moving a separator vertex,

with regards to edgecut, is more relaxed with every successive pass. During the first pass only the

separator vertices that incur the lowest cost are moved. But, in later passes, nodes of increasing cost

are allowed to be moved. The target separator size is determined by using Equation 1. The rest of

the refinement procedure is exactly as described before and the fill-in is updated using Equation 2.
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RS3 In this algorithm we follow the relaxation procedure of the previous version. However,

separator vertex moves are made in a more relaxed fashion not only based on the pass, but also

based on the size of the separator compared to the average separator size. Therefore, if a partition

has a large separator then we will make more relaxed moves out of this partition. In other words, we

are more willing to increase the edgecut if this move is to help a partition with a large separator.

The rest of the refinement procedure follows the tactic we described in the general discussion

before, and the fill-in is updated using Equation 2.

RS4 In this scheme we compute the target separator size using Equation 1. The algorithm makes

relaxed moves, exactly as described in RS2. But, instead of using our model in Equation 2 to

estimate the fill-in of a partition, we perform a symbolic factorization at the end of every move.

RS5 Just as in the previous schemes, the target separator size is computed using Equation 1. In

this scheme, we perform relaxed moves, just as in RS2. However, all of our decisions are based

on the size of the separator, rather than the fill-in of the partition. In this scheme we do not need

to use the model that describes the fill-in update, since we consider a partition to be ”overweight”

based only on the size of the top level separator.

4 Experimental Results

We evaluated the performance of our algorithms using a wide variety of graphs whose description

and characteristics are shown in Table 1. The size of these graphs ranged from 14K to 1.1M

vertices.

Table 1: Characteristics of the test data sets.
Name # Vertices # Edges Description

1 144 �¦¥I¥N§z¨©¥«ª �¬§z­«®©¥N§z¯Iª¬¯ Graph corresponding to a 3D FEM mesh of a parafoil

2 auto ¥I¥«°L§z¨¬ª«± ¯N§¡¯N�¦¥N§z¨��¬� Graph corresponding to a 3D FEM mesh of GM’s Saturn

3 bcsstk29 �2¯L§¡ª¬ª«k ¯©­LkI®
¥«° Graph corresponding to Buckling model of a Boeing 767 rear pressure bulkhead

4 brack2 ¨«k«§¡¨¬¯�� ¯I¨¬¨N§¡±¬±¬ª Graph corresponding to a 3D FEM mesh of a bracket

5 cylinder93 ¥L±«§¡±¬ª¬¥ �©§B®¬°¬¨N§¡®¬kI± Graph of a 3D stiffness matrix

6 f16 �¬§¦�
k
¥�§z¨¬¥I° ®L§¡¨IkI±«§z¯��¦° Graph corresponding to a 3D FEM mesh of F16 wing

7 f22 ¥Lk¬°L§¡®
¥«° ¯N§z­«±I±«§z¯I¨N� Graph corresponding to a 3D FEM mesh of F22 wing

8 finan512 ®©¥N§B®¬±Ik k¬¨N�¬§¦�2k©­ Graph of a stochastic programming matrix for financial portfolio optimization

9 inpro1 ¥«¨L§¡ª©¥«ª �¬§¦�I�
®«§z°©­«ª Graph corresponding to a 3D stiffness matrix

10 m6n ª¬¥N§z¥IªI¯ ¨I¨¬¨N§¡±©¨Iª Graph corresponding to a 3D FEM mesh of M6 wing

In the rest of this section we compare the results for all five variations of our proposed algo-

rithm. Labels RS1, RS2, RS3, RS4, RS5, correspond to our fill balancing algorithms as described

in Section 3.2. Whenever used, Original corresponds to the results of the traditional pmetis par-

titioning algorithm [20]. We choose to use these names so that the following tables and graphs are

easily readable.

4.1 Quality of the Results

Our first set of experiments focused on evaluating the quality of the partitions produced using the

different variations of our proposed algorithm. In particular, the upcoming figures show the results
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for the graph partitioning algorithms: Original, RS1, RS2, RS3, RS4, RS5. The evaluation

was performed on the ten data sets, numbered Y � YpR , as they appear in Table 1. Due to space

limitations we only present the results for a ²9t -way partition.

For every data set there are five different qualities that we are going to assess in order to decide

which of the proposed fill balancing algorithms works best most of the times.

4.1.1 Fill Balance Assessment

Similarly to the LoadImbalance, defined in Section 2, we define the fill-in (im)balance of a � -way

partitioning as

�'* @J@B;=<$>U8T@B8 �DC�E&�
/V�7� <³8�H  «�
�q* @J@ �
	K 2�L��2´  �q* @J@ �2	! 2�L�NM?� �
which is the ratio of the highest partition fill-in over the average partition fill-in. Figure 1(a) shows

the overall fill-in balance of the resulting partitioning for all different methods, as well as the fill-in

balance of the Original (pmetis) algorithm.

Looking at the results in this figure we can see that for all the datasets, Original produces par-

titions with a higher fill imbalance. On the other hand our proposed methods are able to improve

the balance of the resulting partitioning, verifying the validity of our approach. For example, for

the ²^t -way partition of the sixth data set, we were able to improve the imbalance from Yn�µon¶ to Y=��YpR
which is an improvement of 64%. In general we can observe that RS5 (moves made based on the

separator size) tends to attain a worse fill balance, although this is not always the case. Based on

all the experiments we have made, and not just the ones presented, RS1 (aggressive) gives a better

balancing in general.

4.1.2 Average Fill Assessment

For each one of our experiments we computed the average of the fills over all the individual par-

titions. In Figure 1(b) we present the average fill of our methods relative to that produced by the

Original (pmetis) algorithm.

From this figure we can easily see that almost all of the time our algorithms produce partitions

with lower fill (ratio |·Y ). In fact only once were we not able to do so. This is a particularly

important achievement because we understand that one of the leading limitations of solving large

problems is the memory of the underlying architecture. Therefore, by lowering the fill, we are

able to lower the memory needs for the rest of the execution of the scientific application. From the

figure, and our overall experience, we can make one more observation. Different methods seem

to perform better or worse than others, depending on the data set and the k-way partition (8-way,

64-way etc.). However, by carefully looking at our results, we concluded that RS1 (aggressive) is

the winner since it outperformed all other methods most of the time.

4.1.3 Maximum Fill Assessment

One more characteristic to compare against is the maximum fill accrued, i.e. for every experiment

we found the partition that had the largest fill. We have to keep in mind that partitions with larger

fills will be more time and memory consuming. Therefore it is important to be able to keep this

10
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Figure 1: Characteristics of the induced 64-way partitioning.
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maximum fill as low as possible. The maximum fill relative to that produced by the Original

(pmetis) algorithm is graphically shown in Figure 1(c).

Again, our proposed methods seem to be successful since in ¶���� of the experiments we were

able to lower the maximum fill. Only tA� of the times that our algorithms failed did we actually

produce a larger maximum fill. In the rest of the experiments the change was actually insignificant.

A more thorough examination of our results showed that RS1 (aggressive) tends to produce the best

results.

4.1.4 Edge-Cut Assessment

One more measure to be evaluated is the total edgecut of the partitioning. The edgecut is an

indicator of the total communication that will need to be performed later; larger edgecut indicates

that more information will need to be exchanged within different partitions. The edgecut of our

proposed algorithms relative to that produced by the Original (pmetis) algorithm is graphically

shown in Figure 1(d).

We can see that in most of the cases our algorithms produce partitions that incur higher edgecut.

However, this is something that we had expected for the simple reason that we were willing to

sacrifice some communication quality as long as we obtain better fill balance. We can also say that

in general RS5 (moves made based on the separator size) is the method that sacrifices the least in

terms of edgecut.

4.1.5 Max-Cut Assessment

The last quality measure that we are consider is the maxcut, i.e. for each experiment we identify

the highest edgecut that one single partition incurs. This measure indicates the maximum data

exchange taking place within two individual partitions. The results are shown in Figure 1(e).

As we see, our algorithms usually result in partitions with higher maxcut. This is again due to

the fact that we sacrifice in communication quality in order to achieve a better fill balance. For the

seventh data set there is some increase in maxcut, but for the rest of the experiments we ran the

increase is not significant. Again, RS5 (moves made based on the separator size) is the method

that usually produces the best results.

4.2 Computational Requirements

Our second set of experiments focused on timing the different variations of the proposed algorithm.

In Table 2 we show the run times, in seconds, needed to compute an ¶ -way partition.

We see that four out of the five algorithms have comparable times. However, RS4 (explicit

computation of fill-in) seems to take roughly four times that long. It should come to no surprise to

us that RS4 is so expensive. The reason is inherent to the algorithmic procedure that we followed

there. Since for every pass of the algorithm we computed the exact fill-in information for each

partition, we spent a large amount of time for this step.

On the other hand, all of the other methods require roughly the same time. Compared to the

the Original algorithm, our algorithms always perform within a factor of o . Therefore, we have

attained to solve the problem in question using algorithms that perform within expectations.
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Table 2: Run times required for computing an ¸ -way partition (in secs).

Original RS1 RS2 RS3 RS4 RS5

144 ¹«º¼» º�½ ¾b¿�»�Àb¿ ¾�¿�»�Àb¸ ¾b¿b»�Àb½ 112.65 ¾�¿�»�À�À
auto ½UÀ_»�¾?º ¹�¹N½p» ºp¿ ¹�¹N½p»�¸�½ ¹U¹N½p»Á¿?¸ 494.00 ¹�¹N½�»�½�Â
b29 ¹U»�À�Ã ¹U»�Ãb¿ ¹U»�½U¾ ¹U»�Ã�Ä 4.29 ¹?»�½

brack2 Âp»�½�½ ½p»µ¹N½ ½p» ÀbÄ ½p»Å¹«À 25.89 ½p» À�¿
cylinder93 Äp»�¿U¸ ¹NÃp»�Ä�½ ¹NÃp»�Ä�Ä ¹N½p»�À�¾ 70.73 ¹NÃp»�Â�¿

f16 ¹NÃb¿�»�Ä�¸ ¾b¿UÃp»�¾b¿ ¾b¿UÃp»�¿?À ¾�¿�¿�»Å¹LÂ 1361.49 ¾b¿UÃ�»Å¹�¹
f22 Ã�¾p»µ¹LÀ ÄUÀ_»Å¹L¸ Ä?À_»Á¿U¾ ÄUÀp»Á¿U¾ 434.39 Ä?À_»�½�¸

finan512 º¼» À¼¹ ½�»�Â_¹ ½p»�¾�Ä ½p»�Â_¹ 16.24 ½�»Á¿U¸
inpro1 Ãp»�Ã�Â ¸p»�Ã�Ã ¸p»�¸�¸ ¸p»�¸�¿ 29.14 ¸p»�ÄUÀ
m6n ¿�»�Ä�º ¹NÂp»�Ã?À ¹LÂp» º�Ä ¹NÂ�» º�Ä 60.39 ¹LÂp» ºp¿

We would like to note here that with the help of RS4 we were able to verify the validity of

our model for computing a new approximation to the fill-in after each move, without explicitly

computing the fill-in every time. Indeed, the quality (see Section 4.1 for our definitions of quality

measures) of the partitions induced by RS4, was similar to the quality of the rest of our other

algorithms.

4.3 Characteristics of the Induced Partitions

In this section we are going to present several characteristics of the individual partitions produced

by our algorithm. We will refer to our algorithm as kfmetis, and for simplicity we present the

results of RS1 (aggressive). We would like to note here that for all of our experiments the weight

imbalance of each partition, in terms of the vertex weight, has been kept within s&� .

4.3.1 Factor Size.

An interesting comparison is the number of non-zeros of the various partitions, and how their size

is affected by our algorithm. In Figure 2 we show two such examples. The first one corresponds to

an 8-way partition of the auto data set, whereas the second one corresponds to a 16-way partition

of the 144 data set.
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Figure 2: Load balancing improvements achieved by kfmetis.
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Comparison of separator sizes (auto)
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Figure 3: Separator Size balancing improvements achieved by kfmetis.

We see that in both cases the proposed algorithm is able to substantially reduce the fill-in of the

overweight subdomains. For auto, the overweight subdomains are R and Y and are reduced

roughly by Yps&� . For data set 144, partition Y=Y is the overweight subdomain and is reduced

roughly by Y�Æ&� .

4.3.2 Separator Size.

Another interesting comparison is to look at the number of vertices that are on the separator of the

various partitions, and see how the separator size is affected by kfmetis. In Figure 3 we show the

separator size of each partition for the same experiments that were presented in Section 4.3.1.

In both cases kfmetis was successful in cutting down the size of the larger separators. For auto

the decrease in the separator sizes of the first two subdomains was roughly s&Ç=� . For data set 144

the decrease in the separator size of partition Y=Y is t�R&� .

Finally it is worth pointing out the similarity between the graphs that appear in Figure 2 and

those of Figure 3. Partitions with larger separators tend to have a larger fill and the reduction in the

larger separator size is reflected in the reduction of the fill-in of that partition.

5 Conclusions and Directions for Future Research

In this paper we presented a set of predictor-corrector graph partitioning algorithms that addresses

the classes of problems where we need to compute a partitioning and a per-subdomain fill-reducing

ordering that simultaneously balances the number of elements assigned to each processor and the

fill-in of the subdomain matrices while minimizing the edgecut. Our results show that our algo-

rithm has been successful in balancing the fill-ins, when unbalanced, while being able to maintain

the quality of the partition with regards to the edgecut.

The algorithms presented here can be improved along two directions. First, the refinement

approach can be extened to take account separators at lower levels of the nested dissection tree.

This will allow for improved balance and edgecut. Second, the refinement algorithm can be applied

in a multilevel fashion, increasing its effectiveness by achieving the desired balance, while limiting

the cut degradation. We are currently investigating both of these directions.
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