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ABSTRACT

As FPGA densitiesincrease partitioning-basedPGA placement
approachesre becomingincreasinglyimportantas they can be
usedto provide high-quality and computationallyscalablesolu-
tions. However, modernFPGA architecturesncorporateheteroge-
neousresourceswhich placeadditionalrequirement®n the parti-
tioning algorithmsbecausé¢hey now needto notonly minimizethe
cut andbalancethe partitions,but alsothey mustensurethatnone
of theresourcesn eachpartitionis oversubscribedIn this paper
we presenta numberof multilevel multi-resourcepartitioning al-
gorithmsthatareguaranteedo producesolutionsthatbalancethe
utilization of thedifferentresourceacrosshepartitions.We evalu-
ateour algorithmson twelve industrialbenchmarksangingin size
from 5,236to 140,118verticesandshav thatthey achieze minimal
degradationin the min-cut while balancingthe variousresources.
Comparingthe quality of the solution producedby someof our
algorithmsagainstthat producedby hMETIS, we shav thatour al-
gorithmsarecapableof balancingthe differentresourcesvhile in-
curringonly a 3.3%-5.7%highercut.

Categoriesand Subject Descriptors
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1. INTRODUCTION

In recentyears,dueto the developmentof high-quality multi-
level hypergraphpartitioningalgorithms[9, 2], partitioning-based
placementasemepgedasa promisingapproacHor placinglarge
designson ASICs. Thesemethodshave beenshavn to be com-
putationallyscalable capableof leadingto high-qualitysolutions,
andscaleto very large designg13, 1]. Moreover, asFPGAden-
sitiesincreasethe characteristicof this placemenimethodology
are becomingincreasinglyimportantfor placinglarge designson
FPGAs,aswell [12].

However, unlike ASICsthatarein generahomogeneousndas
such,the only constraintthat they imposeon the partitioning al-
gorithm is that of balancingthe areaof the cells assignedo the
different partitions, modernFPGA architecturesncorporatehet-
erogeneousesourcege.g., CLBs, Multipliers, RAM blocks, IP
Cores[16], etc). This placesadditional constraintson the type
of partitioningsthat needto be computed,as the partitioning al-
gorithm mustnow ensurethatthe resourcesisedin eachpartition
canbeaccommodateby theresourceprovidedatthedifferentre-
gionsof theFPGA.For example a partitioningsolutionthatplaces
mostof the FFson onesideof the bisectionandmostof the RAM
blockson the otherside of the bisection,evenif it is balancedn
termsof thetotal numberof cellson eithersideof the cut, it is not
very usefulfor FPGAplacemenasit mayover-subscribehesetwo
resourceypes.

As a result, existing partitioningalgorithms[9, 2, 4,14, 7] can
not be usedto develop partitioning-baseglacemenmethodsfor
FPGAswith heterogeneougsourcesasthey canleadto partition-
ingsthat have highly unbalancedesourceequirementsTo illus-
tratethis, we useda multilevel hypergraphpartitioning algorithm
(hMETIS [10]) to bisecttwelve differentcircuits synthesizedor the
Xilinx Vertex Il architecturewhich containcellsthatmapto differ-
entresourcesVariousstatisticsmeasuringhe balanceof the dif-
ferentresourcaypesareshavn in Tablel. Theseresultsshav that
eventhoughthebisection,in termsof the numberof cellsassigned
to eachpartition,achievesa balanceof 49%-51%.in generaljndi-
vidual resourcesreconsiderablymoreunbalanced.

In this paper we presenta new classof multi-resouce hyper
graphbisectioningalgorithmsthatarecapableof producingaparti-



valueof < 2.0required

#types minub maxub avg ub #viol
ind1 11 0.4 10.3 4.4 6
ind2 9 0.6 9.5 4.8 6
ind3 11 0.9 27.1 6.4 7
ind4 12 0.8 815 106 9
ind5 11 0.8 16.6 5.8 7
ind6 11 0.5 13.8 4.3 5
ind7 11 0.7 11.0 3.0 3
ind8 12 0.7 7.6 2.6 4
ind9 11 0.9 33.2 5.3 6
ind10 5 0.8 31 1.6 1
ind11 11 0.8 11.1 3.3 4
indl2 11 1.2 30.9 5.6 8

Table 1: The distrib ution of unbalancefactors of differ enttypes
of cells,for 49%-51% bisection. For the partition to befeasible,
unbalancefactor of eachcell-type must be below 2.0. The col-
umn “min ub” showsthe minimum unbalancefactor, “max ub”

showsthe maximum unbalancefactor, “avg ub” shows average
unbalancefactor, and “# viol” shows the number of cell-types
in violation by exceedingthe unbalancefactor of 2.0.

tioning solutionthatsimultaneouslyalancehedifferentresources
assignedo eachoneof thepartitions,andthuscanbeusedo power
partitioning-basedlacementmethodologiefor emeging FPGA
architecturesSpecifically we presenfive differentmulti-resource
partitioningalgorithmsthatarebasedbn the multilevel hypergraph
partitioning paradigm. Threeof thesealgorithmssolve the prob-
lem by balancingthe differentresourcest the sametime thatthey
computethe bisectionwhile the othertwo areusedto post-process
a high-quality but potentially unbalancedsolutionto enforcethe
multiple balancingconstraints. We experimentallyevaluatedthe
performanceof thesealgorithmson twelve differentindustrial cir-
cuitscontainingupto 140,118cells. Ourresultsshav thateachone
of thesealgorithmsis capableof producingsolutionghatsatisfythe
multiple balancingconstraintsand achieve differenttime-quality
trade-ofs. Moreover, comparingthe quality of the solution pro-
ducedby someof our algorithmsagainsthatproducedy hMETS,
we shav thatour algorithmsarecapableof balancingthe different
resourcesvhile incurringonly a 3.3%-5.7%highercut.

Therestof the paperis organizedasfollows. Section2 defines
variousconceptsandtermsthat are usedin the paperandpresent
abrief overview of the multilevel partitioningparadigm.Section3
providesaformal definitionof themulti-resourcepartitioningprob-
lem. Section4 describeghe various multi-resourcepartitioning
algorithmsthat we developed. Section5 presenta comprehense
experimentakvaluationof thesealgorithms.Finally, Section6 pro-
videssomeconcludingremarks.

2. NOTATION AND BACKGROUND

A hypegraph G = (V, E) is a setof verticesV anda setof
hyperedge£. Eachhyperedgés a subsebf the setof verticesV.
The sizeof a hyperedgés the cardinality of this subset.A vertex
v is saidto beincidenton a hyperedgeg, if v € e. Eachvertex
v andhyperedges hasa weightassociateavith themandthey are
denotedby w(v) andw(e), respectiely. A circuit/netlistconsist-
ing of asetof cellsanda setof netscanbedirectly representegia
a hypegraph,whoseverticescorrespondso the cells andwhose
hyperedgesorrespondso the nets. Dueto this one-to-onecorre-
spondencéetweerhypegraphsandnetlistswe will usetheterms
vertices/cellandhyperedges/neiaterchangeablyhroughouthis
paper

A bisectionof V is denotedby a vector P suchthat P[i] indi-

catesthe partition numberthatvertex i belongsto. The cut of the
bisectionis equalto the sumof the weight of the hyperedgeshat
connectverticesbelongingto different partitions. We say that a

bisectionP of V satisfiesa single balancingconstaint specified
by [I, u], wherel < u, iff| < Zve\/i w(v) < u, for eachparti-

tion V;. A bisectionthat satisfiesthe constraintis calledfeasible

otherwiseit is infeasible Giventhesedefinitions,the hypergraph
bisectionproblemis formally definedasfollows: Givena hyper

graphG(= V, E) anda balancingconstaint [l, u], find a feasible
bisectionP of G thatminimizeghe cut Sincethereis only asingle
balancingrequirementthis formulationis usuallyreferredto asthe

single-constrainbisectioningproblem([5].

3. PROBLEM DEFINITION

Historically, FPGA devices containedsingle type of resource
(CLBsfor example)thatwereuniformly distributedthroughouthe
chip. However, taking advantageof ever-increasingsilicon den-
sities,modernFPGA devices containmultiple typesof resources,
which allow themto efficiently implementcomplex andhigh per
formancedesigns. One suchexampleis the recentlyintroduced
Virtex Il architecturdrom Xilinx thatcontainsspecializedesources
suchasmultiplier andRAM blocksintersperse@mongCLBs. As
aresult,designscreatedor suchmodernFPGAstry to pro actively
malke useof thesespecializedresourcesn orderto obtainbetter
performancendversatility.

For partitioning driven placementio succeedn utilizing these
differentresourcetypes, the partitioning algorithmsneedto take
theminto accountand balanceeachtype of cells acrossthe cut
lines. Motivatedby this obseration we focus on multi-resource
awarepartitioning,which canbeformally definedasfollows. Con-
sideran FPGA architecturewith m distinctresourcetypesandlet
clj! denotethe minimumnumberof resource®f typei allowedin
partition j, andcu; ! bethe maximumnumberof resourcesf type
i allowedin partition j. Thenthe multi-resourcebisectionP of G
seekgo minimizethe cutsubjectto:

dil < 3 1< oy
YveV:P[v]=1 and t(v)=i
forj =1,2,i =12, ..., mandt(v) istheresourcayperequired

by cell v. Notethatthisis ageneradefinitionof themulti-resource
bisectionandonly theupperboundis usuallyneededn mostcases.
Furthermorewhenthe numberof cells of a certaintype aresmall
and an odd numbey it sometimesmalesit impossibleto satisfy
the balanceconstraint.In suchcaseghe balanceconstraintneeds
to be relaxed. For example,if thereareonly 3 cells of a certain
type presentthenbalanceconstraintof 49%-51%is impossibleto
satisfyandneeddgo berelaxedto 33%- 67%to accomodat¢hem.

4. MULTI-RESOURCE PARTITIONING AL-
GORITHMS FOR FPGAS

To solve the multi-resourcebisectioningproblemwe developed
two classesof multi-resourcepartitioning algorithms. The first
class,computegheoverall solutionby constructinga bisectionthat
simultaneouslhbalanceghe multiple resourcesyhereashe sec-
ond class,achieves the desiredbalanceby modifying a bisection
thatwasinitially obtainedusinga traditional single-constrainbi-
sectioningalgorithm. We will referto the first classasthe native
multi-resouce partitioning algorithmsandto the secondclassas
the multi-resouce enfocementalgorithms. The detailsof the var-
ious algorithmsin eachof theseclassesareprovidedin therestof
this section.



4.1 Native Multi-Resource Partitioning Algo-
rithms

Wedevelopedthreedifferentalgorithms calledmulti-phasemulti-
constaint, andmulti-phase—multi-consdint thatarecapableof di-
rectlycomputingapartitioningthatbalanceshedifferentresources.
Thesealgorithmsweremotivatedby recentlydevelopedgraphpar
titioning algorithmsfor partitioningfinite elementmeshesrising
in multi-phaseandmulti-physicsscientificnumericakimulationg11,
3]. Specifically our multi-phasealgorithmis basedon the graph
partitioning algorithm proposedn [3], our multi-constaint algo-
rithmis basednthegraph-partitioninglgorithmproposedn [11],
whereaghe multi-phase—multi-constrairgigorithmcombinesele-
mentsfrom both of theseapproachesDetailson thesealgorithms
areprovidedin theremaindeof this section.

4.1.1 Multi-PhaseBisection(MP)

The basicidea of this algorithmis very simple. First we con-
structa seriesof hypegraphscontainingcells of type 1 (Hq), cells
of type 1 and2(Hy), cellsof type 1,2 and3 (H3), andsoon. The
hyperedgedor thesesub hypegraphsare reconstructedasedon
the informationfrom the original hypegraph. After that, hMETIS
is usedto obtaina partition of H1. Now usingthe partitioninfor-
mationof Hq, we caneasily assignpartitionsfor cells of type 1
in Hy. To obtainthe bisectionof type 2 cells of Hy, we fix the
cells of type 1 (alsosetthe areaaszero)andusehMETS asusual
which generateshe partitioninformationfor cells of type 2. Now
partitioninformationfor cellsof type 1 andcellsof type2 areavail-
able. Thispartitioningalsosatisfieshebalanceconstraintgor both
typesdueto thefactthebalanceconstrainof type 1 waspresered
sincethey werefixedverticesandthebalanceconstrainof thetype
2 cellsweresatisfiedhMETS. (becauseareaof type 1 cellswereset
to zero). We continuethis procesdy influencingthe partitioning
of Hj by incorporatingpartitioninformationof cell types1 and2
from Ho. Next, we handleH, by usingpartitioninformationfrom
H3 andsoon.

Sinceit is easierto influencethe bisectionof smallersubsetof
cellsfrom the partitioninformationof largersubsebf cells,we re-
orderthetypessuchthatthe numberof cellsof type 1 arethemost,
type 2 secondnostandsoon.

4.1.2 Multi-Constraint Bisection(MC)

Themulti-resourcepartitioningproblemcanbe naturallysolved
usingthe multi-constraintpartitioningprobleminitially developed
in the context of graphs.Specifically usingthe generaframevork
introducedin [11], we extendthe hypergraphmodelso that each
vertex v hasa weight vector w(v) of size m associatedvith it.
Theith componenbf this vectorw;j (v) correspondso the weight
associatedvith the ith constraint. This model assumeswithout
lossof generality thatthe weightvectorsof the verticessatisfythe
propertythat » "y, .y wi(v) = 1L.0fori = 1,2,...,m. Usinga
framework analogougo that usedfor single-constrainproblems,
we allow for m lower- and upperboundconstrainton the size of
eachpartition (Ij, u;) fori = 1,2,...,m, suchthat0 < |; <
Ui andlj + uj = 1. Giventhesedefinitions,the multi-constraint
hypergraptbisectionproblemis formally definedasfollows:

ComputeabisectionP of V thatminimizesthesumof theweight
of the hyperedgeshat spanmultiple partitionssubjectto the con-
straintthat

i< > w <y,
YveV:Pv]=j
wherej = 1,2andi = 1, 2,..., mrepresenthe differentvertex

weights. This multi-constraintpartitioning problemtriesto find a

bisectionsuchthateachweightis individually balancedvithin the
specifiedower- andupperboundtolerances.

Usingthis multi-constraintpartitioningproblemformulationthe
multi-resourcepartitioningproblemcanbe formulatedasfollows.
Given a multi-resourcehypergraphG = (V, E) with m different
vertex types,theneachvertex v € V is assigned vectorof m ver
tex weightsw (v), suchthatwt ,y[v] = Landvi # t(v)wj(v) = 0.
It is easyto seethat a feasible multi-constraintsolution of this
hypergraphwill correspondo a feasiblesolution for the multi-
resourcepartitioningproblem,aswell.

We have developedamulti-constraintiypergraplipartitioningal-
gorithmthatfollows the traditional structureof the multilevel par
titioning paradigm. Specifically we developedalgorithmsfor the
coarseninginitial partitioning,anduncoarseninghaseshatcom-
bine elementsf the single-constrainhypergraphpartitioning al-
gorithmsin hMETS with the multi-constraintextensions,initially
introducedfor graphpartitioning[11]. Due to spaceconstraints,
in this papemwewill only describehe multi-constraingpartitioning
refinementlgorithmusedduringtheuncoarseninghaseasit is an
integral partin mary of theapproachepresentedh this paper The
interestedeadershouldreferto [11, 8, 5] for furtherdetails.

Multi-constraint Refinemen{MC-FM). We developeda
multi-constrainbisectiorrefinemenalgorithm,calledMC-FM, which
is basednthewidely usedsingle-constrainEM algorithm[6] and
operatesasfollows. For eachoneof thetwo partitions,it maintains
m priority queueswherem is the numberof weights. A vertex
belongsto only a single priority queuedependingon the relative
order of the weightsin its weight vector In particular a vertex
v with weight vector (wq (v), wa(v), ..., wm(v)), belongsto the
jth queueif wj(v) = max (wj(v)). Giventhese2m queuesthe
algorithmstartsby initially insertingall theverticesto theappropri-
atequeuesaccordingto their gains. Then,it proceeddy selecting
one of these2m queuespicking the highestgain vertex from this
gueueandmoving it to the otherpartition. The queueis selected
asfollows. If the currentbisectionrepresents feasiblesolution,
thenthe queuethat containsthe highestgain vertex amongthe 2m
verticesat the top of the priority queuess selected.On the other
hand,if thecurrentbisectionis infeasiblethenthequeuds selected
dependingon the relative weightsof the two partitions. Specifi-
cally, if A andB arethetwo partitions,thenthe algorithmselects
the queuecorrespondingo thelargestw; (x) with x € {A, B} and
i = 1,2,...,m. If it happenghatthe selectedqueueis empty
thenthe algorithmselectsa vertex from the non-emptyqueuecor-
respondingo the next heaviest weight of the samepartition. For
example,if m = 3, (w1(A), w2(A), wz(A)) = (.43, .60, .52), and
(w1(B), wa(B), w3(B)) = (.57, .4, .48), the algorithmwill select
thesecondqueueof partition A. If this queueis empty it will then
try the third queueof A, followed by the first queueof A. Note
thatwe give preferenceo the third queueof A asopposedo the
first queueof B, eventhoughB hasmore of the first weight than
A doesof the third. This is becauseur goalis to reducethe sec-
ondweightof A. If the secondqueueof A is non-emptywe will
selectthe highestgain vertex from that queueand move it to B.
However, if this queueis empty we still will like to decreasehe
secondveightof A, andtheonly way to do thatis to move anode
from Ato B. Thisis why whenour first-choicequeuds empty we
then selectthe most promisingnodefrom the samepartition that
thisfirst-queuebelongsto.

4.1.3 Multi-PhaseMulti-Constraint (MPMC)

This algorithmincorporateghe featuresof both multi-phasebi-
sectionandmulti-constrainbisection.Thegeneraktructures sim-



ilar to that of Section4.1.1,but whenconstructinghe subhyper
grapghs( H1, Hao .. Hm), it alsoincorporatepseudchyperedgeso
retainthe information of the original hypergraphmore accurately
andalsoto preventthesesubhypegraphsfrom becomingsparser
andresultin disconnectedegments.This problemis especiallyse-
vere when numerousconstraintsare presentandresultsin highly
disconnecte;. Bisectionof thistrivial hypergraphH; may not
correspondvell with min-cutbisectionof the original hypegraph.

Adding pseuddhyperedgess donein the following way. When
a vertex is removed, its neighborsare analyzedo determinehow
closely eachneighboris connectedo the removed vertex. If the
connectity is largerthan10% of averagehyperedgeveight,then
theseneighborsareconsideredo be connectedo theremovedver-
tex and are connectedby a light weight pseudohyperedge. The
connectiity to neighbords estimatedy representingachhyper
edgeby a clique of edgeseachwith the weightof w(e)/(le] — 1)
and by summingthe weightsof edgescommonto eachneighbor
andtheremovedvertex. The pseudchyperedgemtroduceddo not
participatein estimatingconnectiity. Thesesettingswork very
well for our purposeasevidentin Section5 but may requirefine
tuningdependingon theapplication.

In additionto theabove processwe alsoapplyMC-FM for each
of the sub hypegraphscontainingmorethanonetype (Hs..Hm).
This allows previously fixed cellsto becomdreeandmove, which
oftenresultsin substantialmprovement.

4.2 Multi-Resource EnforcementAlgorithms

In analyzingthecharacteristicef thevariousmulti-resourcecir-
cuits we discoveredthatthe differenttypesof verticesarereason-
ably well-distributed throughoutthe underlyinghypegraph. This
suggestshatthebisectiongroducedy single-constrainpartition-
ing algorithms,even thoughthey will not be perfectly balanced,
they will not be arbitrarily unbalancedeither Moreover, since
thesepartitioningscan be computedusing state-of-the-armulti-
level schemesthey will have small cuts. Motivated by this ob-
senation, we developedtwo schemeghattake asinput a min-cut
single constraintpartitioningandtry to enforcethe variousmulti-
resourcebalancectonstraints.

4.2.1 Single-Constint Direct-BalancingSCDB)

In thismethod we usethemultilevel single-constrainpartitioner
hMETS to seedthe initial bisection. Thenwe usean explicit bal-
ancingalgorithmto balancehe multiple resourcedn asinglestep.
This multi-constraintbalancingalgorithmoperatessery similar to
MC-FM (describedn Section4.1.2), exceptthat it gives priority
to finding a balancedbisectionratherthan minimizing cut. This
balancingsteptendsto increasehe cut, especiallywhenthe num-
ber of constraintds large. Hence, it is imperative to apply multi-
constraintrefinementalgorithmsafter obtaininga feasiblebisec-
tion. Therefore asingleiterationof MC-FM is appliedin aneffort
to improve the cutquality afterobtaininga feasiblebisection.

4.2.2 Single-ConstintMulti-PhaseBalancing(SCMB)

As in the previous algorithm (Section4.2.1),we usehMEIS to
obtainaninitial solutionandthenfix all the cells of the typesthat
satisfythe balancingconstraints For the unbalancedypes,we or-
derthemfrom leastunbalancedo mostunbalancedandthenbisect
eachof themin theway describedn Section4.1.1. After eachun-
balancedypeis balancedve alsoapply aniterationof MC-FM to
capitalizeon the perturbatiorcausediuringbalancing.

4.3 Additional Impr ovements
After the bisectionof the original hypergraphhas beencom-

No. of cellsof varioustypes

#cells #nets #types min max avg
ind1 18160 17689 11 1 8138 1651
ind2 5236 4874 9 3 2584 582
ind3 15783 16272 11 14 5889 1435
ind4 58571 60734 12 6 22193 4881
ind5 89697 91925 11 9 45305 8154
ind6 56462 57674 11 3 26759 5133
ind7 119407 121822 11 5 55873 10855
ind8 136539 139147 12 1 73106 11378
indd 109115 111776 11 4 54377 9920
indl0 72130 49594 5 58 42789 14426
indll 92778 93184 11 1 46577 8434
ind12 140118 141505 11 4 76887 12738

Table 2: The characteristics of netlists usedfor evaluating al-
gorithms

putedi,it is possibleto furtherimprove the cutby applyinga multi-
constraintV-cycle. Multi-ConstraintV-cycle consistsof two com-
ponentsrestrictedmulti-constaint coarseningandmulti-constraint
refinement.The restrictedmulti-constraintcoarseningstepdiffers
from regular multi-constraintcoarsenindy the presencef anad-
ditional requirementthat ary two verticesthat are collapsedto-
getherbelongto the samepartition. The information regarding
the partitioning is thus presered during the creationof succes-
sive approximatehypegraphs.This coarseningschemes a multi-
constraintversionof restrictedcoarseningpresentedn [9]. The
secondcomponents sameasthe multi-constraintrefinementpre-
sentedn Sectiond.1.2.

5. EXPERIMENTS

We experimentallyevaluatedour multi-resourceawarepartition-
ing algorithmsonanindustrialbenchmarlsuiteconsistingof twelve
large designssynthesizedor Virtex Il architecturg15]. Thetypes
of cellsconsistof subCLB elementssuchasLUTs, FFs,MUXes,
controlgatesandnon CLB elementsuchasRAM Blocks,DCMs,
I0OBsetc. Thedetailsof thesedbenchmarksarelistedin Table2. The
columnlabeledas“# types”shavs the numberof distincttypesof
cellsavailable on that particularbenchmark.The columnslabeled
as “min” shavs minimum numberof cells of ary type for that
benchmarkand similarly the “max” and“avg” columnsprovide
thedetailsof distribution of numberof cellsin eachhypegraph.

To evaluatethe quality of the solutionsobtainedby the various
multi-resourcepartitioning algorithms,we usedhMETS (version
1.5.3 [10]) to obtain single-constrainbisectionsof the different
hypegraphs. Thesesolutionswere obtainedusing hMeTiS’s de-
fault parametergincluding V-cycle at the end). Furthermoreto
malke suchquality comparisonsasier we computedthe Average
Ratioof Quality (ARQ) of eachalgorithmagainsthatobtainedby
hMETS. To ensurghemeaningfulveragingof theseratios,wefirst
took the log,-valuesof theseratios, thencalculatedtheir meany,
andthenused2 astheir average.This methodensureghatratios
correspondingo comparabledegradationsor improvementsyi.e.,
ratiosthatarelessthanor greatethanone)aregivenequalimpor
tance. The ARQ numberlargerthan 1.0 indicatesdegradationin
quality.

To ensurethe statisticalsignificanceof our experimentakesults,
for bothhMETIS andeachoneof thefive multi-resourceartitioning
algorithmswe reportaveragemin-cutof tenruns.

5.1 Comparison of Native Algorithms

Tables3 and4 shaw the resultsobtainedby the variousnative
multi-resourcepartitioning algorithms (describedin Section4.1)



Without V-cycle With V-cycle

hMETIS MP MC MPMC MP MC MPMC
ind1 246 987 378 403 426 346 388
ind2 149 349 181 149 144 173 129
ind3 101 908 224 169 908 224 169
ind4 153 4012 405 446 508 376 336
ind5 717 2188 1133 1053 1221 1058 1039
ind6 809 2615 1649 1038 2548 1649 1038
ind7 1021 4126 1187 1234 957 1081 1151
ind8 400 4076 682 921 707 568 734
ind9 1392 4937 1577 1832 1651 1491 1656
ind10 480 719 528 550 505 498 528
ind11 373 1311 545 582 730 504 570
ind12 409 1300 636 533 744 576 531
ARQ 1.000 4.406 1.554 1.500 1882 1.448 1.386
Time 1.000 0.230 0.577 2.496 2.360 1.760 5.206

Table 3: Performance of algorithms as an average of 10 runs
for 49%-51% balanceconstraint.

Without V-cycle With V-cycle

hMETIS MP MC MPMC MP MC MPMC
ind1 213 940 261 375 337 243 355
ind2 147 316 152 123 103 141 114
ind3 85 922 126 177 128 110 110
ind4 127 3910 217 241 184 171 149
ind5 634 2242 779 943 813 739 883
ind6 822 2390 924 1022 841 871 932
ind7 917 4376 983 1167 849 873 1059
ind8 430 3781 558 711 431 502 425
ind9 1289 4052 1449 1454 1371 1367 1326
ind10 360 543 429 391 376 399 377
ind11 193 1053 271 237 240 247 236
ind12 307 1334 375 440 366 361 413
ARQ 1.000 4811 1.246 1.383 1.141 1.136 1.165
Time 1.000 0.255 0.636 2.667 1.863 1.806 5.015

Table 4: Performance of algorithms as an average of 10 runs
for 45%-55% balanceconstraint.

for 49%-51%and 45%-55%balancerespectrely. Eachof these
tablesshavs the averageminimum cutsobtainedby the MP, MC,
and MPMC multi-resourcepartitioningalgorithmsundertwo dif-
ferentscenariosln thefirst scenariothesolutionobtainedoy these
algorithmswaskeptasit was,whereadn the secondscenariothe
solution was further refinedby performinga V-cycle refinement
step(asdiscussedn Sectior4.3).

The columnslabeled“hMEINS” shav the averagemin-cut ob-
tainedby hMETS for either49%—51%or 45%—-55%balance Note
thathMETIS’ sbisectionswill notnecessarilgolvethemulti-resource
problem,asthey do notaccountfor thedifferentvertex types.

Finally, the rows labeled“ARQ” providesthe averageratio of
quality of eachalgorithmto hMETIS’s results(computedusingthe
schemedescribedin the previous section),and the rows labeled
“Time” shavs the amountof time requiredby the multi-resource
partitioning algorithmsrelative to that requiredby hMETS. Num-
berslessthanonerepresentuntimesthat are smallerthanthat of
hMETIS, whereasnumbersgreaterthan one representigher run-
times.

Comparingheresultsin thesetableswe canseethatall schemes
producesolutionswhosecuts are worse than those producedby
hMETS. This shouldnot be surprising,ashMeTS solvesthesingle-
constraintbisectioningproblemwhich, in general,doesnot solve
the multi-resourcepartitioningproblem.

Comparinghesolutionsproducedy thevariousmulti-resource
partitioningalgorithmswe canseethatthereis aconsiderablemount
of variability on the quality of thefinal solutions. In particular in

WithoutV-cycle  With V-cycle
hMETIS SCDB SCMB SCDB SCMB
ind1 246 265 251 260 238
ind2 149 161 165 160 162
ind3 101 125 124 125 124
ind4 153 230 251 226 251
ind5 717 1340 868 799 864
ind6 809 880 827 879 827
ind7 1021 998 1056 997 1048
ind8 400 488 411 472 394
ind9 1392 1463 1439 1456 1438
ind10 480 491 488 489 486
ind11 373 414 374 403 213
ind12 409 499 503 494 503
ARQ 1.000 1184 1119 1.123 1.057
Time 1.000 1.075 1.845 1.898 2945

Table 5: Performance of algorithms combined with multi-
constraint V-cycleasan average10runs for 49%-51% balance
factor.

theabsencef V-cycle refinementthe quality of the solutionspro-
ducedby MP are significantly worse thanthoseproducedby ei-
ther MC or MPMC. On the average the 49%—51%cuts produced
by MP are 4.4 times worse than those producedby the single-
constrainthMETS, whereaghe cutsproducedoy MC andMPMC
areonly 55.4% and 50% worsethan hMETS’s cuts, respectiely.
Similartrendscanbealsoobseredfor the45%—55%cuts,aswell.
Theseresultsillustrate that the multi-constraintalgorithm (MC)
andthemodificationsto the multi-phasepartitioningalgorithmim-
plementedn the MPMC algorithm,leadto superiorsolutions.

Comparingthe resultswithout andwith V-cycle refinementwe
seethattheoverallquality of all threealgorithmsimprovesby using
V-cycle refinement.However, the overall rate of improvementis
differentfor differentschemesThe MP algorithmgainsthe most,
whereaghe MPMC algorithmgainsthe least. We believe thatthe
reasorfor thatis the factthatthe solutionsof MC andMPMC are
alreadyof reasonabldigh quality, andthus,thereis relatively lit-
tle room for improvement. However, becauseMP’s initial solu-
tion is considerablyworse,by applyinga V-cycle refinementwe
canachieze dramaticquality improvements As aresult,the 49%—
51%solutionfor MP now become®nly 88.2%worsethanthat of
hMETS.

Finally, comparingMC with MPMC we can seethat the lat-
ter leadsto consistentlybettersolutions,which areon the average
5%—10%betterthanthoseobtainedby MC. However, this quality
adwantagecomesat the expenseof highercomputationakequire-
ments.In generalMPMC requires2.5to 5.0timesmaoretime than
thatrequiredby MC. Notethatthereasorthatthe runtimesof MP
andMC without V-cycle arein generabmallerthanthatof hMENS
is becauséMEIS doesperforma V-cycle refinementattheend.

5.2 Comparison of EnforcementAlgorithms

Tabless and6 shav theresultsobtainecby thevariousenforcement-
basednulti-resourcepartitioningalgorithmg(describedn Sectiord.2)
for 49%-51%and45%-55%balancerespectrely. Eachof these
tablesshawvs the averageminimum cuts obtainedby the SCDB
and SCMB partitioning algorithmswithout and with V-cycle re-
finement. In addition, the columnslabeled‘hMETIS” shav there-
sultsobtainedby hMETIS (which areidenticalto thoseshavn in Ta-
bles3 and4), therowslabeled'ARQ” providestheaverageratio of
quality of eachalgorithmto hMEIS’sresults,andtherows labeled
“Time” shavs the amountof time requiredby the multi-resource
partitioningalgorithmsrelative to thatrequiredby hMETIS.

Comparinghesolutiongproducedy thetwo setsof enforcement-



WithoutV-cycle  With V-cycle
hMETIS SCDB SCMB SCDB SCMB
ind1 213 218 213 216 204
ind2 147 149 150 149 150
ind3 85 99 96 98 95
ind4 127 167 159 149 155
ind5 634 675 665 669 652
ind6 822 848 832 846 831
ind7 917 928 922 902 905
ind8 430 479 430 425 427
ind9 1289 1334 1335 1320 1332
ind10 360 368 364 363 364
ind11 193 212 193 211 192
ind12 307 375 327 363 322
ARQ 1.000 1.088 1.046 1.058 1.033
Time 1.000 1.034 1278 1.945 2.035

Table 6: Performance of algorithms combined with multi-
constraint V-cycleasan average 10 runs for 45%-55% balance
factor.

basedmulti-resourcepartitioningalgorithmswe canseethat,unlike

thenative algorithms thereis relatively little variationbetweerthe
performanceachiezed by them. Specifically the performancedif-

ferencebetweerthe two schemess lessthat 7%, on the average.
However, the SCMB algorithmis consistentlybetterthan SCDB,
leadingto bettersolutionsin 31 out of the 48 differentexperimen-
tal data-points. Comparingthe resultswithout and with V-cycle

refinementve seethatasit wasthecasewith thenative algorithms,
the overall quality of the two algorithmsimproves,aswell. How-

ever, thoseimprovementsarerelatively small,rangingon the aver-

agebetween2% and5%. Finally, comparingthe amountof time
requiredby thesealgorithmswe canseethat SCMB is slawer than
SCDB, but in mostcaseghedifferenceis small.

5.3 Overall Comparisons

Comparingheperformanceachievedby thevariousmulti-resource
partitioningalgorithmswe canseethatin almostall the casesthe
enforcement-baseazlgorithmsleadto solutionsthathave lower cut
than thoseobtainedby the native multi-resourcepartitioning al-
gorithms. For example, the best-performingenforcement-based
schemeSCMB outperformsthe best-performinghative schemen
41 out 48 data-points.Moreover, the cutdifferencesareconsider
able, and on the averageSCMB leadsto cutsthat are 13%—-32%
betterthanthatof MPMC. However, this performancadwantagdas
alsodata-setlependentandtherelative performancef thevarious
schemeganchangédor differentbenchmarks.

Finally, comparingthe performanceachieved by SCMB against
thatachiezed by the single-constrainhMETS, we canseethatthe
overall increasein the cutresultingby solving the multi-resource
partitioning problem,is quite small. For example,if we consider
SCMB’s resultswith V-cycle refinementwe can seethat on the
averagethe cutincreasedy only 5.7%and3.3%for the 49%-51%
and45%-55%balanceconstraintsrespectiely.

6. CONCLUSION

In this paperwe presentedwo classeof multi-resourceaware
partitioning algorithmsfor enablingpartitioning-baseglacement
methodgor FPGAarchitecturesvith heterogeneousevices. These
algorithmsarevery effective in minimizing the cutwhile satisfying
multiple balancingrequirementsvith acceptableomputationaéf-
fort. The averagecut of the mosteffective algorithmis only 5.7%
and 3.3% worsethanthat of the state-of-the-arpartitioning tool
hMETS [10] for 49%—51%and45%-55%balanceconstraintsye-
spectvely. Moreover, their additionalcomputationalequirements

aresmall,requiringonly two to threetimesmoretime thanhMEeTS.

Theseresultsindicatethathigh-qualitypartitioningsarefeasible
for designswith multiple resourcerequirementssuggestingthat
partitioning-baseglacementnethodscanbeusedfor placingsuch
designson modernFPGAarchitectures.
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