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ABSTRACT 
 
 
 
Recent military applications have demanded photodetectors with high sensitivity, 

high selectivity and multispectral capability for detection and identification of the target. 

These characteristics have been found in quantum well infrared photodetectors (QWIP). 

Driven by these applications, a QWIP photodetector capable of detecting simultaneously 

infrared emissions within near infrared (NIR), mid wavelength infrared (MWIR) and long 

wavelength infrared (LWIR) was studied, modeled, designed and characterized. Using 

the envelope function approximation, the mathematical model of the quantum phenom-

ena in semiconductor heterostructures was derived. A computational tool was developed 

to solve self-consistently the Schodinger-Poisson equation using the shooting method, al-

lowing the theoretical evaluation of the absorption coefficient. A three-color (NIR, 

MWIR and LWIR) GaAs-based QWIP sample and a two-color (NIR and MWIR) InP-

based QWIP sample were designed, both comprised of stacks of uncoupled wells for each 

band detection. The 67 layers of the GaAs sample was grown using molecular beam epi-

taxy (MBE). Intersubband absorption in the sample was measured for the MWIR and 

LWIR using Fourier transform spectroscopy (FTIR) and the measured peak positions, 

found at 5.3 µm , 8.7 µm , and 13.8 µm  are within 0.3 µm  of the theoretical values, indi-

cating that the model accurately predicts the absorption wavelengths. A two-dimensional 

ordered grating pattern was selected and optimized separately for both MWIR and LWIR 

desired peaks. Finally the photodetector device configurations were designed to permit to 

the measurement of the NIR band through photocurrent spectroscopy and performance 

analysis. The fabrication and characterization of the prototypes are a matter for future 

work. 
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EXECUTIVE SUMMARY 
 
 
 

Recent military applications have demanded photodetectors with high sensitivity, 

high selectivity and multispectral capability. Both mecrurium cadmiun telluride 

(HgCdTe) photodiodes and quantum well infrared photodetectors (QWIP) offer multi-

color capability in the medium-wave IR (MWIR) and long-wave IR (LWIR) spectral re-

gions. Each of these technologies has its advantages and disadvantages. However, the 

possibility to achieve multicolor detection, going from near infrared (NIR) to LWIR, is 

more likely to be obtained using QWIPs. 

Driven by those applications, and in continuity of the work being conducted at the 

Sensor Research Laboratory (SRL) at the Naval Postgraduate School (NPS), QWIPs ca-

pable to detect simultaneously 3 different IR bands within the wavelengths intervals of 

0.9 - 1.4 µm , 3.8 - 5.0 µm  and 8.0 - 12.0 µm  were studied, modeled, and designed. The 

work was performed bounded by technological, financial and temporal limitations, aim-

ing the fabrication of proof-of-concept QWIP prototypes to be investigated and optimized 

in future work. 

When one semiconductor layer (well) is sandwiched between two layers of larger 

bandgap material (barriers), it forms a quantum well. The potential profile is defined by 

the bands offset, allowing the existence of the quantized energy levels, confined inside 

the wells, while continuum states are possible outside. When a quantum well photodetec-

tor is exposed to an incident photon flux, transitions between quantized energy levels can 

occur. The photon flux can be sensed when bias is applied to the structure and the transi-

tions allow the extraction of the electrons from the well, to the barrier regions leading to a 

photocurrent.  

The semiconductor material properties along with their availability were consid-

ered and two main material groups were selected to be used. GaAs/AlGaAs/InGaAs sys-

tems proved easy in growth and fabrication while InP/AlGaAs/AlInAs systems were ca-

pable of meeting the requirements for detecting the desired NIR band. A configuration of 
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three uncoupled quantum wells stacks, one stack for each band, placed between highly 

doped contact layers, proved to be more suitable to allow separate readouts of the signals.  

To be able to estimate the QWIPs’ absorption the quantized energy levels inside 

the wells as well as their respective wavefunctions were computed self-consistently solv-

ing the Schrodinger-Poisson equation numerically for the structures. The shooting 

method was used due to its ability to handle any potential profile making the design more 

flexible. Finally, a GaAs-based sample for three-color detection, and a InP-based sample 

for two-color detection were designed, taking into account the limitations on each con-

figuration. 

The GaAs sample was fabricated using MBE and the absorption measurements 

are presented in the fourth chapter. An FTIR spectrometer was used to measure the room 

temperature absorptance of the MWIR and LWIR bands, and the sample showed absorp-

tion in good agreement with the theoretical predictions. Also the heavily doped contact 

layers introduced a second LWIR absorption band. The measured peaks, 5.3 µm , 8.7 µm  

and 13.8 µm,  varied less than 0.3 µm  from the predicted values, mostly due to the uncer-

tainties in the material parameters.  

The optical coupling structure was than designed to allow detection of normal in-

cident radiation. A bi-dimensional ordered grating pattern was selected and optimized 

separately for both MWIR and LWIR desired peaks. Constraints in mask fabrication and 

wafer processing forced the degradation of the grating performance, to make it feasible. 

Finally the photodetector device configurations were designed, to permit to performance 

analysis. The fabrication and characterization of the prototypes are matter for future 

work. 

Despite the financial, temporal and technological limitations, normally present in 

any research, the objective of this thesis was successfully accomplished. However, fur-

ther work needs to be done to finalize the devices’ fabrication and testing and to improve 

the mathematical models and the numerical algorithms to be able develop optimal detec-

tors.  
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I. INTRODUCTION  

Infrared guided weapons have proved to be indispensable in any modern battle-

field. Statistics and analysis have shown that the capability to detect and identify the en-

emy platforms’ IR signatures as well as the ability to negate ones own are a significant 

factors of success in most tactical combat environments [1]. In this scenario, the IR coun-

termeasures play an important role. By emulating the sought platform IR signature and 

seducing the IR guided weapon, it is possible to reduce significantly the target risk. Mod-

ern countermeasures have the capability to produce signatures very close to the target’s 

emissions. Consequently, to be able to distinguish between countermeasure and target, 

the weapon seeker must have not only high sensitivity but also high selectivity combined 

with multispectral detection capability. Equation Chapter (Next) Section 1 

Systems that gather data in separate IR spectral bands can discriminate both abso-

lute temperature and unique signatures of the target, necessary to distinguish it from the 

countermeasure. In addition, the imaging capability of the focal plane arrays (FPA) has 

been explored in the newest generation of seekers, making the weapons even harder to 

counter. 

This combination has been achieved until recently using conventional infrared 

photodetectors and extensive postprocessing computational efforts [2]. Furthermore, mul-

tispectral systems rely on complicated optical techniques that either disperse the optical 

signal across multiple IR FPAs or use filter wheels to spectrally discriminate the image 

focused on a single FPA [3]. In addition, beam splitters, lenses, optical bandpass filters as 

well as a complex alignment configuration are required, making these approaches expen-

sive in size, complexity and cooling requirements. 

Currently, both mecrurium cadmiun telluride (HgCdTe) photodiodes and quantum 

well infrared photodetectors (QWIP) offer multicolor capability in the medium-wave IR 

(MWIR) and long-wave IR (LWIR) spectral regions. Each of these technologies has its 

advantages and disadvantages, detailed in Ref. [4]. However, the possibility to achieve 

multicolor detection, going from near infrared (NIR) to LWIR, is more likely to be ob-

tained using QWIPs. 
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A. QUANTUM WELL INFRARED PHOTODETECTORS  

The ability to sense optically driven transitions between two quantized energy 

levels is the origin of the photodetection in quantum well photodetectors. Conventional 

interband optical absorption involves photoexiting carriers across the bandgap. Since the 

incident photon energy is greater than the bandgap, both electrons and holes can be cre-

ated in the semiconductor. In a detector, these carriers are collected, thereby producing a 

photocurrent. By controlling the bandgap energy, selecting the desired material and con-

trolling the alloy composition, the spectrum of the absorption can be tailored. [5] 

In 1969 L. Esaki and R. Tsu [6] started the investigation of the idea that a periodic 

variation on of the alloy composition or of impurity density introduced during epitaxial 

growth could create a periodic potential or superlattice, in monocrystalline semiconduc-

tors. This structure is responsible for the formation of subbands in both the valence and 

conduction bands. In consequence, intersubband optical absorptions are possible in quan-

tum well photodetectors, permitting the utilization of large bandgap materials to detect 

long wavelength infrared radiation. Beyond that, in quantum wells, both interband and in-

tersubband absorption are possible to be detected allowing: monolithically integrated 

multi spectral detection from NIR to LWIR, very high speed, and narrow and tunable 

band detection. Most of those characteristics, necessary for the application in discussion, 

are difficult to be achieved with conventional photodetectors [4].  

Several studies and experiments were conducted since Esaki’s paper confirming 

the feasibility of practical devices using this concept. The first quantum well laser [7] was 

reported in 1975; the first successful fabrication of a high electron mobility transistor 

(HEMT) [8] was reported in 1980. Finally in 1987 B. F. Levine et al. published the ex-

perimental results of the first working QWIP [9]. The device was a periodic repetition of 

AlGaAs/GaAs and based in conduction band bound-to-bound transitions. In the follow-

ing years, various configurations have been tested with great improvement in the detec-

tion characteristics, reaching the state of art with the first 640x512 pixel four-band QWIP 

FPA camera, described in detail in [10]. 

In 2002, a series of investigations in dual color and band-tunable QWIPs started 

to be conducted at the Sensor Research Laboratory (SRL) at the Naval Postgraduate 
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School (NPS). The results, published in [11], [12], [13], [14], and [15], showed the poten-

tial of these devices in military applications. The unique characteristic of the SRL work is 

the inclusion of the NIR band in its QWIPS, using interband transitions in asymmetric 

quantum wells. Currently the research has reached a stage that demands more elaborated 

numerical models, devices capable of detecting normal incident IR radiation and more 

than two bands of military interest monolithically detected. 

 

B. PURPOSE AND ORGANIZATION OF THIS THESIS 
Driven by those applications, and in continuity of the work being conducted at the 

SRL, the purpose of this thesis was to study, to model, and to design a QWIP capable to 

detect 3 different IR bands within the wavelengths intervals of 0.9 - 1.4 mµ , 3.8 - 5.0 

mµ  and 8.0 - 12.0 mµ . The work was performed bounded by technological, financial 

and temporal limitations, aiming at the fabrication of proof-of-concept QWIP prototypes 

to be investigated and optimized in future work. 

In order to document the conducted research work, this thesis is organized as fol-

lows. This chapter elucidates the motivation of this work as well as gives a brief introduc-

tion of the research realm of QWIPs. A short description of the organization of the docu-

ment is also presented.  

The second chapter explores the physics of the semiconductor heterostructures 

and quantum wells. The envelope function approximation is described along with the 

one-dimensional potential solutions of the Schrodinger’s equation. The density of states 

and the charge distribution potential are analyzed providing a theoretical background to 

understand the transitions between quantized energy levels within the hetereostructures. 

The possible quantum well transitions are analyzed and used to derive the absorption co-

efficient in all cases of interest of this work. The chapter ends by providing the necessary 

background information to be employed in designing issues. The mathematical models of 

the main figures of merit, such as absorption spectra, quantum efficiency, responsivity, 

dark current, and detectivity are also discussed. 

The third chapter is the core of the document and starts with the initial design 

considerations. The basic device configuration is defined based on the material analysis, 
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limitations, and constraints, as well as the desired detection conditions, light coupling and 

restrictions on the bands. A specific numerical model that mathematically describes the 

quantum well structures, predicts the absorption line shapes and helps to design band-

specific photodetectors is developed, based on the self-consistent Schrodinger-Poisson 

solutions. 

The fourth chapter presents the experimental results. Absorptance measurements 

using Fourier transform infrared spectroscopy of the molecular beam epitaxially (MBE) 

grown wafer are presented and compared with the estimated values. The analysis and 

conclusions are shown and the possible future improvement and optimization are dis-

cussed. Sequentially, the optical coupling is analyzed and a two-dimensional grating 

structure is designed to couple the desired IR bands. The final device structure, as well as 

several photodetector configurations, are designed to meet the standards and rules of fab-

rication. The layout of the masks is finalized in accordance with the processes and budget 

restrictions. 

The conclusive chapter summarizes the research work, discussing the main as-

sumptions, along with the technological, temporal and financial limitations faced during 

the thesis work period. Also the lessons learned are addressed. The chapter ends pointing 

the scientific contribution of the work and identifying the most important needs of im-

provement and continuity of the research.  
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II. QUANTUM WELL INFRARED PHOTODETECTORS 
PHYSICS 

The understanding of the physical concepts involved in IR photodetection by 

quantum well devices lies in the quantum physics realm, as the name suggests. The abil-

ity to control such phenomena requires the capability to mathematically model quantum 

effects caused by semiconductor structures and its interacting fields. This chapter pro-

vides the theoretical background necessary to physically understand and practically de-

sign QWIPs through the manipulation of the mathematical models. Equation Chapter (Next) Section 2 

Initially, the one-dimensional potential present in heterostrucures is described by 

Schordinger’s equation, along with the concepts necessary to understand how quantum 

well devices absorb IR and how to evaluate and predict such absorption. After that, 

QWIPs are described and their figure of merit are derived to permit predicting and ana-

lyzing their performances.  

 

A. SEMICONDUCTOR HETEROSTRUCTURES 
One of the most important characteristics of semiconductors is the existence of 

forbidden energy bands, responsible for separating the electrons in the highly populated 

valence band from those in the poorly populated conduction band. The energy gap and 

bands are determined by the periodic potential of the crystalline material. When one 

semiconductor layer is grown on top to the other, a heterojunction is formed. This can be 

obtained using selected semiconductors with compatible crystal structures and lattice 

spacings. Using modern techniques such as Molecular Beam Epitaxy (MBE) and Metal 

Organic Chemical Vapor Deposition (MOCVD), under carefully controlled conditions, 

the compositional transition between two materials can be made almost perfectly abrupt 

with the heterointerfaces being defined on a monolayer scale. [16] 

Away from the heterojunction, the electrons are subjected to the bulk properties 

of each material. At the heterojunction, the potential changes abruptly from one material 

to the other. Moreover, a transfer of electrical charge occurs over the scale of a few 

atomic layers near the interface. This redistribution of charges creates an interface dipole 
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responsible for a sharp jump in the electrostatic potential that is superimposed to the crys-

talline potential. On each side, the electrons take on the characteristics of the constituent 

semiconductors. The relative positions of the bands, however, are considered, from a 

macroscopic viewpoint, as a discontinuity or “offset” in the valence and conduction 

bands, that depends uniquely on the pair of materials forming the heterojunction. [5] 

In terms of the band discontinuities three types of structures are possible, classi-

fied into four groups  [16]: type I, type II-misaligned, type II-staggered, and type III. 

Type I occurs when the entire gap of the small bandgap semiconductor resides within the 

conduction and valence bands of the large bandgap material. Type II, alternatively, oc-

curs when one (staggered) or both (misaligned) band offsets are larger than the difference 

between the semiconductors bandgaps. Finally, type III occurs when the heterojunction is 

formed by one semiconductor with positive bandgap and the other with a negative band-

gap. The last behaves like semimetals, since the conduction and valence bands overlap.  

Taking into account the bulk properties of the semiconductors, it is possible to 

create virtually any potential profile along the crystal growth direction, by depositing se-

quences of different materials. Limitations such as the material availability and their ca-

pability to be grown epitaxially as well as the difference in lattice constants must be con-

sidered in any design. In the rest of the chapter a detailed discussion on the electron states 

in heterostructures is presented. 

 

1. Envelope Function Approximation 

The electron wavefunctions in a heterostructure can be described using the enve-

lope function approximation, as described in Ref. [5]. 

A semiconductor heterostructure can be considered as possessing a periodic po-

tential Vc(r), due to the crystal lattice, and a slowly varying electrostatic potential Ve(r) 

due to different layers of the heterojunction. Here r represents the position vector. The 

Hamiltonian for an electron, given this combination of potentials can be written as [5]: 

 
2

0

( ) ( )
2 c e
pH V V
m

= + +r r . (2.1) 
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The momentum operator p is described as 

 , ,p
i x y z
 ∂ ∂ ∂=  ∂ ∂ ∂ 

= , (2.2) 

where =  is the Plank constant h divided by 2π and i is the imaginary unit. Along with 

some very demanding algebra, some physically consistent approximations  [5] can be 

made under the assumption that the electron in the nth band is therefore a particle pos-

sessing effective mass associated with the nth band and subjected to a potential Ve(r). 

Furthermore, considering that influence of the periodic potential Vc(r) is taken into ac-

count through the effective mass *nm  and the energy 0nE  of the nth band at 0=k  (k be-

ing the crystal momentum), the Schrodinger’s equation for the envelope function can be 

written as [5]: 

 0( ) ( ) ( )n n nH E EΨ = − Ψr r . (2.3) 

Here, H is the Hamiltonian described by Equation (2.1) (replacing m0 by the effective 

mass) and E represents the energy eingenstates of the wavefunction nΨ . The full wave-

function can be written as [5] 

 0( ) ( )n n nuψΨ ≅ r r , (2.4) 

where nψ  is the envelope function, and 0nu  is the Bloch function possessing the periodic-

ity of the lattice. When the electrostatic potential is zero, the solution is [5] 

 0
1 ( )i

n ne u⋅Ψ ≅
Ω

k r r , (2.5) 

where Ω is the crystal volume. 

Further simplifications are possible, taking into account the one-dimensional 

characteristic of the heterostructure potential Ve(r) and the effective mass along the 

growth axis z. Consequently the envelope function can be written in the form [5] 

 ( ) ( ) iz eψ ψ ⋅= K ρr . (2.6) 
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It is important to distinguish between r (that is the 3-D position vector) and ρ  (that is the 

2-D position vector in the x-y plane). Also, while k represents the 3-D crystal momentum, 

K is the 2-D representation of the momentum in the x-y plane.  

The z component of the envelope function satisfies [17]  

 
2 2

2 ( ) ( ) ( ) ( )
2 *( )

d z V z z E z
m z dz

ψ ψ ψ− + == . (2.7) 

To obtain the stationary states of an electron in the heterostructure, it is necessary 

to solve Equation (2.7) in each layer, considering the properties of each component sepa-

rately and to join the solutions at the interfaces [17]. First, the wavefunctions must be 

continuous at the interface. Mathematically, 

 ( ) ( )i iz zψ ψ− += , (2.8) 

where zi represents the z coordinate of the ith interface and the (±) sign refers to the mate-

rials on the right and left of the heterojunction. Second, the solution must conserve the 

probability flux which crosses the interface. This requirement is satisfied when [18] 

 1 1( ) ( )i iz z
m z m z

ψ ψ− +
− +

∂ ∂=
∂ ∂

, (2.9) 

Finally, the probability interpretation of the wavefunction [17] requires the nor-

malization condition for the bound states potential. Mathematically, 

  * ( ) ( ) 1z z dzψ ψ
∞

−∞

=∫ , (2.10) 

where (*) represents the complex conjugate. 

Some important constrains of this formalism must be mentioned [18]. First, the 

effective mass was assumed to not depend on k, meaning a perfect parabolic band. When 

the discontinuities in V(z) are significant, a correction accounting for band nonparabolic-

ity must be applied. This can be done using the expression [19] 

 ( )( )*( ) *( ) 1 ( )p em z m z E V zβ= + − , (2.11) 
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where  *( )pm z  is the “parabolic” band effective mass profile and β is given by [19]: 

 
2

0

*( ) 11
( )g

m z
m E z

β  
= − 
 

. (2.12) 

Here, m0 is the electron rest mass and Eg(z) is the bandgap profile along the heterostruc-

ture. Second, all parameters characterizing the band structure are temperature dependent 

This dependence can be modeled by the Varshini equation [19]: 

 
2

0( ) tmp
g g

tmp

T
E T E

T
α

β
= −

+
 (2.13) 

where 0gE  is the bandgap at 0T = , and tmpα  and tmpβ  are adjustable Varshini parame-

ters that can be found for several semiconductors compounds in [20]. 

 Finally, the strain placed on the material by growing layers with different lattice 

constants on top of each other also affects the band structure. This allows an additional 

degree of freedom in designing heterostructure devices. For lattice-mismatched epitaxial 

growth on a (001) substrate, the strain tensor is given by [21] 

 
12

11

1

2 ,

S
xx yy

L

zz

a
a
c
c

ε ε

ε

= = −

= −
 (2.14) 

where aS and aL stand for the lattice constants of the substrate and the strained layer, re-

spectively, and c12 and c11 are elastic constants for crystals with cubic cells under small 

deformations. All off-diagonal terms are zero in this case. Therefore, applying the defor-

mation potential theory, it is possible to compute the bandgap shift [21]. For III-V mate-

rials, due to the nature of the atomic bonding, the bandgap increases for compressive 

strain and the change is given by [20] 

 ( )( )g c xx yy zzE a aυδ ε ε ε= + + + , (2.15) 

where aυ  and ca  are the empirical deformation potentials, also given in [20]. 
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Rigorously, the assumptions made until now cannot be applied to the valence 

bands that are degenerate with respect to the heavy and light hole bands. A formal treat-

ment for the valence subbands can be found in [21] and the envelope function approxima-

tion using a 4x4 k⋅p Hamiltonian approximation can be compiled as 

 

1 1

† 2 2

† 3 3

† † 4 4

0 ( ) ( )
0 ( ) ( )

( )
0 ( ) ( )

0 ( ) ( )

P Q L M
L P Q M

E
M P Q L

M L P Q

ν ν

ν ν

ν ν

ν ν

ψ ψ
ψ ψ
ψ ψ
ψ ψ

+     
    −      =
   − − 
    − +     

k k
k k

k
k k
k k

, (2.16) 

where iνψ  is the envelope wavefunction of the holes under the spin symmetry specified 

as follows: 1ν and 4ν represents the 3 2, 3 2±  heavy hole spin states, and 2ν and 

3ν represents the 3 2, 1 2±  light hole spin states. The symbol ( † ) stands for adjoint, 

and the matrix elements are given by [21]: 

 
2 2

2 21
1

0 0

( ) ( ) ( ) ( )
2 2x y e

z d dP k k z V z
m m dz dz

γ γ= + − += = , (2.17) 

 
2 2

2 22
1

0 0

( ) ( ) ( ) ( )
2 2x y e

z d dQ k k z V z
m m dz dz

γ γ= + + += = , (2.18) 

 
2

3 3
0

3 ( ) ( ) ( )
2 x y

d dL k ik z z
m dz dz

γ γ = − − +  
= , (2.19) 

and 

 [ ]
2

2
2 3

0

3 ( ( ) ( ) ( )
4 x yM z z k ik

m
γ γ= − −= . (2.20) 

All parameters in the previous expressions were defined before except for the “Luttinger 

parameters”, iγ , that can be found, for several III-V compound semiconductors and their 

alloys, in [20]. It is important to mention that the z dependence of iγ  and V is due the ma-

terial change along the growth axis. 

For practical applications, further simplifications are acceptable. The most com-

mon is to consider the valence band represented by two parabolic bands, one for the 
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heavy holes with effective mass * 0hhm < , and other for the light holes with effective 

mass * 0lhm < . The well potential is then a confining potential for holes and the same 

model used for electrons in the conduction band becomes applicable. 

In a more practical sense, a heterostructure can be grown to create potential wells, 

with electrooptical proprieties that can be customized for a wide variety of applications. 

This practice is commonly called “quantum engineering” or “bandgap engineering”. 

 

2. Quantum Wells 
When one thin semiconductor layer (well) is sandwiched between two layers of 

larger bandgap material (barriers), it forms a quantum well. As mentioned in the previous 

section, the potential profile is defined by the bands offsets, allowing the existence of the 

quantized energy levels, confined inside the wells, while continuum states are possible 

outside. Such structures allow the exploration of quantum effects that have become very 

useful in optoelectronic devices. [5] 

A schematic representation of the electrostatic potential of a structure comprised 

of multiple quantum wells is shown in Figure 1. The barriers and wells are highlighted 

with bandgaps, EgB and EgW, respectively. The other parameters in Figure 1 include va-

lence and conduction band offsets, VBO and CBO, respectively; and the valence and con-

duction bands confined energy levels Evi and Eci, respectively. 

Ec1

Ec2

Ev1
Ev2

Ec1

Ec2

Ev1
Ev2

Ec1

Ec2

Ev1
Ev2

Ec1

Ec2

Ev1
Ev2

Conduction Band

Valence Band

Continuum 

Continuum 

EgWEgB

VBO

CBO

V(z)

z

 
Figure 1 Schematic diagram of a heterostructure potential profile Ve(z) (dark continu-

ous line). 
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The ability to explore this structure as a device requires knowledge of the in-

volved physical phenomena through mathematical models. The behavior of the carriers 

inside the heterostructure can be described by the Schrodinger’s equation along with the 

appropriate boundary conditions. Complementarily, the concepts of: density of states; 

subbands population; charge distribution potential; transition rates; and effects of external 

fields; among others, have to be elaborated in order to allow practical comprehension and 

required control in designing procedures. 

Therefore, the efforts from now on are focused in describing mathematically the 

most important characteristics of quantum wells, considering their suitability to act as 

photodetectors. 

 

3. Schrodinger’s Equation Solutions 
 For the sake of simplicity, we consider, initially, an electron in a conduction band.  

A schematic diagram of an N-layer multiple quantum well structure is shown in Figure 2. 

WL- 2 + WL
2

 
Figure 2 Conduction Band schematics diagram of an N-layer structure. The well width 

is WL . 

 

The general solution of the Shrodinger equation for the nth layer can be written as 

 n nik z ik z
n n nA e B eψ −= +  (2.21) 

where 

 2
2 *( )( ) n n

n
m E Vk E −=

=
. (2.22) 
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The coefficients, An and Bn, can be evaluated applying the boundary conditions described 

by Equations (2.8) and (2.9), leading to the matrix form 

 1

1

n n
n

n n

A A
M

B B
+

+

   
=   

   
� , (2.23) 

where  

 
1 1

1 1

( ) ( )

( ) ( )

(1 ) (1 )1
2 (1 ) (1 )

n n n n n n

n n n n n n

i k k z i k k z
n n

n i k k z i k k z
n n

e e
M

e e
γ γ
γ γ

− −

− −

− − +

+ − −

 + −
=  − + 

� , (2.24) 

and 

 1

1

*
*

n n
n

n n

m k
m k

γ +

+

= . (2.25) 

Here, if the structure contains N layers, the coefficients of the first and last layers are re-

lated by 

 1 1 1 1
1 2 1

1

... N
N N

N

AA
M M M M

BB
− − −

−
  

=   
   

� � � � , (2.26) 

where the interior product turns out a 4-by-4 matrix M� . The wavefunction normalization 

condition expressed in Equation (2.10) further demands that ( ) 0zψ →  and 

( ) 0z zψ∂ ∂ → , as z → ±∞  for bound states. Therefore, since the two outer layers are 

barriers, and for 0E V< , the coefficients B1 and AN must be zero. Thus, Equation (2.26) 

can be rewritten as 

 11 121

21 22

0
0 N

m mA
Bm m
    =    

     
. (2.27) 

To evaluate the confined energy states it is necessary to solve, numerically, the equation 

 22 ( ) 0m E = . (2.28) 

Finally, the wavefunctions can be obtained making 1NB = , for example, and solving se-

quentially, for each layer, Equation (2.23). 



14

 For 0E V> , the structure admits delocalized states where the electron can take on 

any value of positive energy, forming a continuum state. Since the states are not bound 

any more, the normalization of the wavefunction becomes a problem. A simple technique 

to overcome that is described later in this chapter.  

This approach is called the Transfer Matrix Method [22]. Despite its simplicity, it 

has proven to be a powerful tool to handle structures with multiple layers. The confined 

states as well as their respective wavefunctions are depicted in Figure 3 for a single-well 

structure. 

WL- 2 + WL
2

ψ4

ψ3

ψ2

ψ1

WL- 2 + WL
2

WL- 2 + WL
2

ψ4

ψ3

ψ2

ψ1

 
Figure 3 Confined energy states and respective wavefunctions in a single square well. 

 

It is proved [17] that, for symmetric structures like the well in the Figure 3, the wavefunc-

tions are mutually orthogonal, in the sense that 

  ( ) * ( ) 0n mz z dzψ ψ =∫  (2.29) 

whenever n m≠ . This result is a key point to establish the electron transition rules. 

 When the structure barrier/well/barrier is periodically repeated, and the carrier  

de Broglie wavelength is of the order of the barrier thickness, an energy miniband is 

formed. Thus, the wavefunctions of individual wells tend to overlap due to tunneling. 

Such configurations are interesting to broaden the absorption spectra as well as allowing 

photovoltaic detection [23]. Nevertheless, when the barriers are thick (greater than 200Å, 



15

in most cases), the wells in the superlattice are uncoupled and the structure exhibits the 

individual wells with discrete energy levels [21]. This is the case of interest in this work 

and all treatment onward considers this configuration.  

 

4. Density of States and Subband Populations 
 To be able to map the distribution of energy and momentum of electrons in a 

quantum well, it is necessary, first of all, to determine the density of states. Using a two-

dimensional electron gas model due to the characteristic of the structure, the density of 

states of a single subband per unit area ( 1 2J m− − ) is given by [18]: 

 2
2
*( )D emEρ

π
=
=

. (2.30) 

If there are n confined states within the quantum well, then the density of states at 

a particular energy is the sum over all subbands below that point and can be written as 

 2
2

1

*( ) ( )
n

D e
i

i

mE E Eρ
π=

= Θ −∑ =
 (2.31) 

where Θ  is the step unit function. 

 The surface density of carriers in a subband is given by [18] 

 2
 ( ) ( )FD D

n subband
n f E E dEρ= ∫ , (2.32) 

where FDf  (Fermi Dirac statistics) is the probability of occupation [19] 

 1( )
1

F

B

FD
E E
k T

f E
e

−=
+

. (2.33) 

Here, EF represents a quasi-Fermi level which describes the carrier population within a 

subband. Evaluation of Equation (2.32) gives [5] 

 2
* ln 1

F n

B

E E
k Te B

n
m k Tn e

π

− 
= + 

  =
. (2.34) 
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The total electron density in a system is obtained by summing the densities of all 

subbbands.  

 In practice, a good approximation is to deduce the number of carriers directly 

from the doping densities in the well layer or the surrounding barrier layers. This allows 

the evaluation of the quasi-Fermi energy, the only unknown in Equation (2.34). 

This concept is quite important and necessary to determine the band bending 

caused by potential due to the charge distribution. 

 

5. Charge Distribution Potential 
In practical devices, the doping concentration can be high enough to give rise to a 

significant additional potential on top of the usual band-offsets. In this case, it becomes 

necessary to solve the electrostatics that describes the system. In quantum well structures 

it is reasonable to assume the charge density given by the doping density of the well 

and/or surrounding layers. In a n-doped quantum well structure, the electrons are trapped 

in the well layer, where the potential energy is the lowest, making this region negatively 

charged. Consequently the left and right barriers become positively charged. The addi-

tional potential, ( )V zρ , arising form this charge distribution, ρ , can be derived using 

Poisson’s Equation [24] 

 2Vρ
ρ

ε
−∇ = , (2.35) 

where ε  is the permittivity of the material. The solution can be obtained determining the 

electric field strength. The potential and the electric field are related by 

 ( )
z

V z dzρ
−∞

= − ⋅∫ E . (2.36) 

Here, the one-dimensional characteristic of the bandedge potential imposes the one-

dimensional charge distribution.  

In a doped semiconductor, there are basically two contributions to the charge den-

sity, the ionized impurities and the free carriers. While the former can be obtained from 
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the doping density profile, ( )d z , the latter can be computed from the probability distribu-

tions of the carriers at the heterostructure, * ( ) ( )i iz zψ ψ . Thus, the charge density can be 

expressed as 

 [ ]( ) *( ) ( ) ( )z q N z z d zρ ψ ψ= − , (2.37) 

where q is the charge on the extrinsic carriers and N is the total number of carriers. Fur-

thermore, the volumetric charge density ( )zρ  can be considered as an surface charge 

density ( )zσ  with infinitesimal thickness zδ . This can be expressed mathematically as: 

 ( ) ( )z z zσ δ ρ= . (2.38) 

When more than one subband is populated, then the contribution to the charge density 

must be summed over the relevant subbands, resulting in 

 
1

( ) *( ) ( ) ( )
n

i i i
i

z q N z z d z zσ ψ ψ δ
=

 = − 
 
∑ . (2.39) 

Since in most of the cases the dimensions in the x-y plane are much greater than 

the z direction, the x-y plane can be considered an infinite uniform charge distribution. 

Thus, the electric field at z can be written as [18] 

 ( )( ) sign( )
2z

zz z zσ
ε

∞

′=−∞

′ ′= −∑E . (2.40) 

In Equation (2.40), the summation represents the contribution of each surface density 

slice to the electric field at the position z. The function “sign” is defined as 

 
1 for 0

sign( )
1 for 0,

z
z

z
+ ≥

= − <
 (2.41) 

and was introduced to account on charge neutrality along the structure.  

At this point, all parameters are in place to allow the evaluation of ( )V zρ , given 

by Equation (2.36). However it should be noticed that the wavefunctions are needed to 

obtain the density of electrons. This recursive problem can be solved using the so called 

“Self-Consistent Schrodinger-Poisson Solution.” This method is detailed described in the 

next chapter. 
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6. Transitions 
Transitions between different states in a quantum well can occur in many ways. 

Nonetheless, two kinds of transitions, caused by a time-varying electromagnetic perturba-

tion, are of interest of this work: an interband transition, in which an electron in the va-

lence subband can be exited to the conduction subband, and an intersubband transition, in 

which an electron moves from one subband to another while remaining in the same band 

(conduction or valence). In both cases, depending on the structure characteristic, transi-

tions can occur from a confined state to a continuum state. All four possibilities are dis-

cussed in this section. 

In the general sense, the transition rate from initial a state represented by 
iiΨ K  to 

final states represented by 
ffΨ K , due to an interaction potential, Vp, can be calculated us-

ing Fermi’s golden rule [5] 

 ( ) ( )22
i f f i f ii f f p i f iW V E Eπ δ ωΨ → Ψ = Ψ Ψ − −K K K K K K =

=
. (2.42) 

In Equation (2.42), ω=  is the incident photon energy, and the delta function accounts for 

conservation of energy. The interaction potential, under the dipole approximation, can be 

written as [25] 

 
1 2

0

ˆ
* 2

i
p

e r

q IV e
m n cε ω

⋅ 
= ⋅ 

 
s re p= , (2.43) 

where q is the electron charge, I is the incident photon flux, c is the speed of light, nr is 

the index of refraction, ω  is the angular frequency of the incident photon flux, ê  is the 

unit vector of the photon polarization, and p is the vector form of the momentum opera-

tor. In the exponential term s represents the wavevector of Vp. Since the main interest is 

the interaction with light and the photon momentum is negligible compared to the elec-

tron momentum, the exponential term can be dropped out. 

The term in the Dirac notation in Equation (2.42) is called electric dipole matrix 

element. Combining Equations (2.4) and (2.6) to represent the wavefunctions nΨ , the 

matrix element can be expanded, resulting in 
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 0 0
1 ( ) ( ) ( ) ( )f i

f i f i

i i
f p i f f p i iV z u e V z u e

A
ψ ψ⋅ ⋅Ψ Ψ = K ρ K ρ

K K K Kr r . (2.44) 

Considering the fact that the envelope functions (related to the band-offset/electrostatic 

potential) vary slowly compared to the Bloch functions (related to the lattice potential) 

and the initial and final states have the same momentum ( )f i=K K , Equation (2.44) can 

be rewritten as [25] 

 
0 0

0 0

( ) ( ) ( ) ( )

    + ( ) ( ) ( ) ( ) .

f p i f p i f i

f p i f i

V u V u z z

z V z u u

ψ ψ

ψ ψ

Ψ Ψ ≈ r r

r r
 (2.45) 

This expression can be further simplified considering the specific aspects of each kind of 

transition.  

 

a. Interband Transitions 

 In this case, the transitions occur between the valence and conduction 

bands. Given that iK  and fK  are the same and are far from the edge of the Brillouin 

zone (otherwise the envelope function approximation is not valid), the Bloch functions 

are orthogonal. This cancels out the second term in the right hand side of Equation (2.45). 

The expansion of the interaction potential, in the remainder, results in 

 
1 2

0 0
0

ˆ( ) ( ) ( ) ( )
* 2f p i f i f i

e r

q IV u u z z
m n c

ψ ψ
ε ω

 
Ψ Ψ = ⋅ 

 
r e p r= . (2.46) 

The insertion of Equation (2.46) into Equation (2.42) results in the rate of transitions per 

state, given by  

 

2 2

0 02
0

2 22

ˆ( ) ( )
( *)

     ( ) ( ) ,
2 *

f i
e r

f i f i
r

q IW u u
m n c

Kz z E E
m

π
ε ω

ψ ψ δ ω

= ⋅

 
× + − − 

 

r e p r

= =
 (2.47) 

where iE  and fE  are the initial and the final confined energy levels. 
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The extra term in the argument of the delta function accounts for the en-

ergy displacement due to the value of K (conduction and valence bands are assumed pa-

rabolas with opposite concavity). The reduced mass mr* is defined as 

 1 1 1
* * *r e hm m m

= + , (2.48) 

where me* and mh* are the effective masses of the electron and hole, respectively. 

At this point it is necessary to sum over all states (K). Considering the K-

space a continuous space, and taking into account all occupied states in the valence band 

and the correspondent available states in the conduction band through the occupation sta-

tistics, it is possible to express the transition rate as 

 

2 2 2

0 02
0

2 2
2

2

ˆ( ) ( ) ( ) ( )
( *)

     ( ) 1 ( ) .
(2 ) 2 *

f i f i
e r

FDv FDc
i i f f f i

r

q IW u u z z
m n c

A Kd f E f E E E
m

π ψ ψ
ε ω

δ ω
π

= ⋅

  
 × − + − −   

  
∫

r e p r

K = =
 (2.49) 

Here, the term out of parenthesis inside the integral is the 2-D joint density of states in-

volved in the transitions, and ( )FDv
i if E  and [1 ( )]FDc

f ff E−  represent the Fermi-Dirac 

probability of occupancy of the valence band and probability of unocupancy of the con-

duction band, respectively. The integral in Equation (2.49) is evaluated substituting  

 
2 2

2 r

KE
m

= = , (2.50) 

considering the Fermi-Dirac statistics constant for the K values involved and using the 

properties of the delta function. The result is 

 

( )

2 2 2

0 02
0

2

ˆ( ) ( ) ( ) ( )
( *)

*     ( ) ( ) 1 ( ) .

f i f i
e r

FDv FDcr
f i i i f f

q IAW u u z z
m n c

m E E f E f E

ψ ψ
ε ω

ω

= ⋅

 × Θ − − − 

r e p r

=
=

 (2.51) 

The modulus square of the Bloch functions matrix element term in Equation (2.51) must 

be expanded to obtain the strength of the transition. For practical reasons [5], only normal 

incidence (TE mode) is considered. Thus 
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22

0 0 0 0ˆ ( ) ( ) cos( ) ( ) ( ) sin( )vc f x i f y iS u x p u x u y p u yθ θ⋅ = +e p  (2.52) 

where vcp  is the Kane matrix element in the bulk material, S stands for selection rule due 

to the type of transition, and θ is the angle between the ê  and the x axis. Here, for polar-

ized light one can select, for example ˆ xe=e  and drop the y term out. In the general case, 

it is necessary to take the average incident direction of ê . The electron momentum x and 

y components can be considered the same on average, due to the heterostructure charac-

teristics. Hence, Equation (2.52) can be rewritten as 

 
22 2

0 0ˆ ( ) ( ) cos( ) sin( )vc f x iS u x p u x θ θ⋅ = +e p . (2.53) 

Moreover, the average in θ  for the second term in the right hand side of Equation (2.53) 

is one. The matrix element left can be evaluated in terms of Kane energy, Ep (eV), and for 

transitions close to the subband edges, where 0K ≈ , it can be approximated as 
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0
0 0( ) ( )

2f x i p
mu x p u x E= , (2.54) 

where Ep is unanimously accepted in the literature as varying between 17 and 25 eV for 

most of the III-V binaries. An extensive collection of this parameter is given in [20]. 

Finally the absorption coefficient is defined as the rate of transitions per 

unit volume divided by the incident photon flux, and can be expressed from the above 

derivations, for TE incident light with energy ω= , as 
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 (2.55) 

The selections rules S are derived from the wavefunctions that satisfy Equation (2.16) and 

can be thought as a correction factor in the valence band simplification made here. For 

TE configuration [24], 
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 (2.56) 
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where the indexes lh and hh stand for light and heavy holes, respectively. 

Especially important is to notice that the overlap of the envelope function, 

( ) ( )f iz zψ ψ , in Equation (2.55) imposes selection rules as well. Due to the orthogonal-

ity of the envelope functions in symmetric wells, transitions between subbands with dif-

ferent quantum numbers are forbidden. In most of the practical cases, transitions between 

the first valence subband and the second conduction subband are desired. In this case the 

symmetry of the quantum well must be broken and it is commonly done using step wells. 

Further simplification is possible when undoped wells are used along with 

low temperatures. In this case, the probability of occupied states can be considered to be 

one in the valence band and zero in the conduction band. In this sense, Equation (2.55) 

reduces to 
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 (2.57) 

Afterward, the absorption coefficient can be evaluated, applying Equation (2.57) for the 

case of heavy and light holes. 

Interband absorptions are experimentally explored in bulk material and 

widely used in practical devices. In the case of quantum wells, interband absorptions are 

interesting mainly in optical modulators [26] or multiband detection [11]. Much more ex-

plored in QWIPs are the intersubband transitions that allow long wavelength detections 

with quite large bandgap materials. 

 

b. Intersubband Transitions 

  Electronic transitions between subbands within the same band occur in 

doped quantum wells. Valence band transitions require p-type doped material while con-

duction band transitions require n-type doped semiconductors. Due to the simplicity of 

the conduction band compared to the valence band, the conduction-band configuration is 

more practically explored. That is the case of interest in this work. 
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  Starting with Equation (2.45), the first term in the right hand side van-

ishes, due to the orthogonality of the envelope functions. In addition, the Bloch overlap, 

in the same term, goes to one since the Bloch functions are normalized to unity. The ex-

pansion of the interaction potential, with the remainder, results 

 
1 2

0

ˆ( ) ( )
* 2f p i f i

e r

q IV z z
m n c

ψ ψ
ε ω

 
Ψ Ψ = ⋅ 

 
e p= . (2.58) 

Given that the envelope function only depends on z, only the z component of the dot 

product ˆ ⋅e p  applies to ( )i zψ  resulting 
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where φ  is the angle between the vector ê  and the z axis. 

The insertion of Equation (2.58) into Equation (2.42) results in the rate of 

transition per state, given by 
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Notice that the delta function in this case does not depend on K (the subbands are consid-

ered identical parabolas displaced by f iE E− ). 

At this point it is necessary to consider all occupied states in the initial 

subband and the correspondent available states in the final subband, introducing the oc-

cupation statistics and integrating over all states. The result is given by the total number 

of carriers, the appropriate occupation statistics, and the oscillator strength. Mathemati-

cally, 
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Recall that d represents the doping density. For low temperature operation, the total num-

ber of carriers can be considered d times the volume AL. The oscillator strength is com-

monly used as a measure of the strength of the transition and is defined as [27] 
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, (2.62) 

and obeys the rule [27] 

 , 1i f
f

f =∑ . (2.63) 

This condition is valid for all initial states i and the sum of the extending over all final 

states f. 

Finally, the absorption coefficient, for transitions between two bound 

states within the conduction band, can be evaluated through 

 
2 2

,
0

( ) ( ) 1 ( ) ( )
* 2b b

FD FD
c c i f i i f f f i

e r

q f df E f E E E
m n c
πα ω δ ω

ε
 = − − − 

== = . (2.64) 

Ideally the bound-to-bound intersubband absorption occurs in a single 

wavelength; however, in practice, the absorption spectrum is modified by various factors 

[26] such as nonuniformity in well width and collisions experienced by electrons, among 

others. The effect of this broadening is represented by replacing the delta function by a 

Lorentzian function given by 
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, (2.65) 

where Γ is the broadening parameter, which is equal the full width at half maximum of 

the absorption. The broadening parameter is normally determined experimentally and is 

about 10 to 20 meV. 

Further simplification is possible, when the system is to operate in low 

temperatures or the difference between the initial and final states is much greater than 

Bk T . In this case, the occupancies probabilities can be considered one for the initial state 

and zero for the final state, resulting in 
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Analyzing the oscillator strength it is possible to observe the existence of 

some selection rules. The matrix element shows that for symmetric wells, transitions be-

tween states with the same parity are not allowed. This can be overcome by breaking the 

symmetry similarly to the interband case. Also, for normal incidence (TE mode), cos( )φ  

is zero, and consequently, there is no absorption. Some optical techniques can be applied 

to overcome this selection rule, such as coupling throughout beveled edges [28] using dif-

ferent angles of incidence, application of several configuration of diffraction gratings [29] 

[30] to allow normal incidence, introduction of strain in the heterostructure [31], etc. 

A strong characteristic of this kind of absorption is its narrow spectrum 

(about 1 µm ). When a broader absorption spectrum is desired, it is worth to consider 

transitions between bound states to the continuum [32]. 

 

c. Bound-to-Continuum Transitions 
Bound-to-continuum transitions are relatively weak, when bound-to-

bound transitions with high oscillator strength happen in the structure. This can be ex-

plained by Equation (2.63). It becomes considerable, however, when only one confined 

state exists in the conduction band. 

To be able to model those transitions, the continuum states must be com-

puted. A simple but powerful technique to do that is to introduce a fictitious square well 

of width LF, and infinite barrier height within which the continuum electrons are trapped. 

This configuration is shown schematically in Figure 4 [5]. 
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Figure 4 Schematic diagram of the pseudo-quantification technique of the continuous 

states in of a single square well. 

 

The eigenenergies of such structure is given by [5] 
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=
, (2.67) 

where , *e bm  is the effective mass of the electron in the barrier, and 
FLk  is the wavevector 

represented by 

 
FL

F

k
L
π= . (2.68) 

The final states wavefunctions are then, numerically calculated using the pseudo-

quantization model for each En.  

For example, if LF is of the order of 1µm , for example, the energy level 

separation close to the barrier height is of the order of a hundredth of meV, which can be 

considered much smaller than the typical interactions or thermal energies (order of meV). 

The energies are so close that, rather than attempting to take into account individually, 

they are grouped together by means of infinitesimal batches of the one-dimensional den-

sity of states, given by [5] 
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Note that as LF tends to infinity, the density of states increases without bound. More 

states become available over the same range of energy because the separation between 

levels decreases. Also, to be consistent with the adopted energy reference, the barrier 

height is subtracted from the final state energy, leading to 
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. (2.70) 

The density of the continuum states must be included in the transition rate 

formulation. This procedure allows writing the expressions for the absorption coeffi-

cients, for both discussed cases, as: 
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and 
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Notice that in this situation the incident light energy can have values that obey 

 0,  for  f i fE E E Vω = − >= . (2.73) 

Also, the dependence of the absorption coefficients on LF is removed, since the contin-

uum states wavefunctions are normalized by a factor proportional to the square root of 

the quantity LF. This fact is very important because it assures that the computation of the 

bound-to-continuum absorption coefficients does not depend on the model. 
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7. Addition of an Electric Field 
Actual quantum well photodetectors operate in the photoconductive mode, de-

manding the application of bias through the structure to be able to extract the photocur-

rent. Under this condition, a new potential factor is added to the Hamiltonian described in 

Equation (2.1), that becomes [26]  

 
2

0

( ) ( )
2 c e
pH V V qFz
m

= + + −r r , (2.74) 

where the last tem represents the potential change caused by the applied electric field F. 

Notice that if F is constant, the overall potential bends linearly, as depicted in the Figure 

5. 
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Symmetric well Asymmetric well

Second order effect First order effect

Positive Bias

Negative Bias

Symmetric well Asymmetric well

Second order effect First order effect

 
Figure 5 Potential profile diagrams of symmetric and asymmetric quantum wells under 

the effect of a constant electric field F (bias). 

 

The solutions to the Schrodinger’s equation, considering the new Hamiltonian gives the 

envelope wavefunction [18] 

 1 2( ) Ai( ) Bi( )z C z C zψ ′ ′ ′= + , (2.75) 

where Ai and Bi are Airy functions, C1 and C2 are constants that can be evaluated using 

the boundary conditions, and z′  is given by [18] 
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It is important to mention that the Airy functions present some difficulties in being evalu-

ated numerically for either very large or very small arguments.  

 The effect of the static electric field in the confined energy levels within a quan-

tum well is known as quantum confined Stark effect and can be evaluated using the time 

independent perturbation theory [17].  

To determine the change in the difference between the fist and the second con-

fined energy levels, under the influence of low electric field (case of interest in this 

work), a dipole perturbation Hamiltonian of the form, 

 ( )bV z qFz= − , (2.77) 

is employed. 

When the quantum well is symmetric, the perturbation is null to the first order. 

The second-order effect is given by [5] 

 1 22 2

1 2

2
z

E q F
E E

ψ ψ
∆ =

−
, (2.78) 

where E∆  is always positive indicating a blue shift in the photon absorption. This effect 

is very small and is normally obscured by the linewidth of the absorption spectrum. 

In asymmetric quantum wells the first-order perturbation is non-zero and ex-

pressed by 

 1 1 2 2E qF z zψ ψ ψ ψ ∆ = −  , (2.79) 

where the term between rectangular brackets represents the displacement of the average 

position of the electron from the first to the second confined state. In this case, E∆  can 

be either positive or negative, depending on the bias signal and the well geometry. For 

the well depicted in Figure 5, a blue shift occurs when positive bias is applied and a red 

shift occurs for negative bias. In asymmetric structures the Stark effect becomes signifi-

cant and it is commonly used in tunable detectors [33]. 
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Perturbation theory breaks down when the electron wavefunction extends away 

from the well due to field assisted tunneling and thus the prediction of absorption peak 

position becomes more and more inaccurate. [5] 

The understanding of the quantum effects present in heterostructures formed by 

periodic repetition of ultra-thin layers of semiconductors with different bandgaps is nec-

essary step in order to design QWIP to meet specific requirements. Also it is important to 

understand how these heterostructures can act as photodetectors. This section gathered a 

set of theoretical tools that facilitates the comprehension of the discussed semiconductor 

configuration in a general sense. The following discussion, on the other hand, explains 

how QWIPs work and compiles the mathematical models to evaluate and analyze their 

performance. 

 

B. QUANTUM WELL INFRARED PHOTODETECTORS (QWIP) 
 Quantum well photodetectors are basically periodic repetitions of the bar-

rier/well/barrier structure between heavy doped contact layers grown epitaxialy on a 

semiinsulating substrate. Ideally it is possible to pile as many stacks as the desired detec-

tion bands. In practice up to four bands have been demonstrated [34]. In this work, a de-

tector consisting of three stacks with different, uncoupled, periodic repeated well/barrier 

structure, separated by heavy doped contact layers is considered. 

When a quantum well photodetector is exposed to an incident photon flux, transi-

tions between quantized energy levels can occur, as mentioned previously. The photon 

flux can be sensed when bias is applied to the structure and the transitions allow the ex-

traction of the electrons from the well, to the barrier regions leading to a photocurrent. 

When the final state is confined, the electrons must tunnel through the potential barriers, 

made thinner by the applied electric field. Once the electron has escaped the confines of 

well, it accelerates toward the positive contact until it is captured. Figure 6 shows a 

schematic diagram of a biased multi quantum well structure and the photocurrent genera-

tion process. 
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Figure 6 Schematic diagram of the photocurrent generation process in a biased multi 

quantum well structure. 

 

If the exited state is near the potential barrier, which is true in most practical 

cases, the probability of an electron to tunnel through the barrier, narrowed by the effect 

of the bias voltage, can be considered nearly unity and independent of the well position 

[35]. Thus, a single model is used to estimate the photocurrent for both cases, bound-to-

bound and bound-to-continuum transitions.  

It is assumed that the absorption occurs only in the wells and the light gets in the 

structure (N wells), crosses the nth well, reaches the top metal layer and reflects back, 

crossing the same well twice. Then, if the structure is under an applied electric field, F, 

the photocurrent can be written as [36] 

 ( )(2 ) ( )0

1

( ) W W

nLN
nL N n L F

p
n

qI F e e leα α υ τα
ω

−
− − −

=

Φ= +∑ =
. (2.80) 

Here α  is the absorption coefficient, 0Φ  is the incident optical power, ω=  is the photon 

energy, L is the period of the multiple quantum wells, LW is the width of the well, ( )Fυ  

is the drift velocity under an applied electric field F, and τ  is the exited carrier lifetime. 

Since, typically [36], for quantum well detectors, 1WLα � , Equation (2.80) can be sim-

plified to 
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Finally, in the case of electrons, the drift velocity is given by [19] 
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where nµ  is the electron mobility and sυ  is the electron saturation velocity. Both parame-

ters can be found in [19] for the main binaries and its ternaries. 

At this point it is worth to mention that under high electric field, the kinetic en-

ergy of the first electron, in the current generation process, can be large enough to cause 

the transition of a second electron, after collision. This process, repeated many times 

down the chain of wells, causes avalanche multiplication, increasing the photocurrent. 

This phenomenon is detailed in [35] and [37]. 

The way to characterize and measure the performance of a photodetector is 

throughout its figures of merit. The most common used figures of merit for quantum well 

detectors are discussed in the following section. 

 

C. FIGURES OF MERIT  

1. Absorption Spectra 
The absorption coefficient is the key parameter used in photodetector design. The 

crystal heterostructures are optimized for the absorption spectra requirements and the ab-

sorption coefficient is normally measured after the sample growth, before the device fab-

rication. 

A detailed discussion is presented in Section II.A.6, where the absorption coeffi-

cients for the cases of interest in this work are derived. It is worth to notice though, that 

the absorption coefficient for quantum wells with bound-to-continuum transitions is sig-

nificantly lower and wider than for those with bound-to-bound transitions. This fact can 

be attributed to the conservation of the integrated oscillator strength. Mathematically,  
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 constantp d
λ λα ∆ ≈ , (2.83) 

where pα  is the absorption coefficient peak, λ λ∆  is the absorption bandwidth and d is 

the well doping density.  

Experimental measurement of the absorptance using Fourier Transform Infrared 

spectrometry permits to obtain the absorption spectra. This procedure is deeply explored 

in Chapter IV. 

 

2. Quantum Efficiency and Photoconductive Gain 
 The photocurrent in photoconductors is defined as [37]: 

 0
pI q Gη

ω
Φ=
=

, (2.84) 

where η  is the quantum efficiency and G is the photoconductive gain. Comparing Equa-

tions (2.84) and (2.81), it is easy to identify that 

 2 lη α≈  (2.85) 

for 1lα � , and 

 ( )

1

nLN
F

n
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 For moderate electric fields, which is the case in most practical cases, the mean 

free path, ( )Fυ τ , is considerably larger than the period of the multiple quantum wells (L) 

and the summation of Equation (2.86) can be evaluated as 

 
( )

G
L F

τ
υ

= , (2.87) 

that represents the rate between the exited carrier lifetime and the transit time. 
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3. Responsivity 
The responsivity figure quantifies the amount of photocurrent generated per watt 

of incident radiant photon power. It can be expressed mathematically as 

 
0

( )
( ) pI F

R F =
Φ

. (2.88) 

Combining the expressions (2.88), (2.84), (2.85), and (2.87) results in 

 ( )( ) (2 ) q FR F l
L

υ τα
ω

=
=

. (2.89) 

It is important to notice the responsivity dependence on the absorption coefficient 

and bias, through the drift velocity. The absorption coefficient is responsible for the 

shape (spectrum) and the electric field for the amplitude. Increasing the availability of 

carriers (doping concentration), the photocurrent will increase and consequently the re-

sponsivity. 

 

4. Dark Current 
A biased photodetector, when no light is incident, exhibits dark current. Three 

dark current generation mechanisms in quantum well devices can be easily identified 

[38]. First, sequential resonant tunneling can happen, causing electrons to “jump” from 

well to well, through the barriers. This process is independent of temperature and is the 

dominant source of dark current at very lower temperatures. It can be reduced if larger 

barriers are used. The second mechanism is thermally assisted tunneling which involves 

thermal excitation and tunneling through the tip of the barrier into the transport states. 

This process is the dominant source at medium temperatures and can be reduced by plac-

ing the final state as far as possible to the initial state, reducing the probability of ther-

moionc transitions. The third mechanism is classical thermoionic emission and it is the 

dominant source at higher temperatures. To reduce this effect, deeper wells must be con-

sidered in combination with reduced available carriers (less doping). Obviously this will 

reduce the photocurrent as well, and a compromise between both must be established. 
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In order to estimate the dark current, it is necessary to estimate the effective num-

ber of electrons which are thermally exited out of the well into the continuum transport 

states as a function o bias. This is given by [39] 

  2
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i

FDw
E

mn F f E T E F dE
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∞
= ∫=

 (2.90) 

where the term outside the integral is the 2-D density of states divided by the multi quan-

tum well period L, and the Fermi distribution is given by Equation (2.33) where E is re-

placed by ( )iE E− and Ei represents the bound ground state. The bias-dependent tunnel-

ing current transmission factor for a single barrier is represented by ( , )T E F  and can be 

described by [40]  
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Recall that V0 represents the barrier height. 

Equation (2.90) accounts for both thermoionic emission above the barrier height 

and thermoionically assisted tunneling below the barrier height. It can be solved numeri-

cally in order to estimate the dark current, expressed by 

 ( ) *( ) ( )DI F qn F F Aυ=  (2.92) 

where A is the cross sectional area of the device and all other parameters are known. 

 The main mechanism to reduce the dark current, not mentioned before, is to re-

duce the temperature of operation. To verify the relationship between dark current and 

temperature it is possible to assume ( ) 0T E =  for 0E V<  and ( ) 1T E =  for 0E V>  in 

Equation (2.90), which is a good approximation for low biased systems. The dark current, 

then, can be written as 
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where Ec is the cutoff energy ( )0 iV E−  and FE  is quasi-Fermi energy which can be 

evaluated using Equation (2.34). Therefore, the dark current divided by the temperature is 

related to the temperature exponentially, as 

 
c F
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E E
k TDI e

T

−−
∝ ,  (2.94) 

indicating that it decreases as the inverse of the temperature increases. 

 

5. Detectivity 
The detectivity, D*, of a detector is a measure of the smallest photon flux that can 

be measured, and clearly depends on the noise associated with the detector. It is mathe-

matically defined as 

 * A fD
NEPλ

∆=  (2.95) 

where f∆ is the bandwidth of the integration filter, and NEP stands for noise equivalent 

power, that is the noise power that gives a unity signal-to-noise ratio (SNR). The last can 

be estimated using Equation (2.88) as 

 ( )
( )

ND

p

i FNEP
R F

= , (2.96) 

where the dark current noise, ( )NDi F , is given by 

 ( )1
2( ) 4 ( )ND Di F qI F G f= ∆ . (2.97) 

Finally, making 1 Hzf∆ = and combining Equations (2.95), and (2.96), the peak detec-

tivity in [m Hz W] can be written as 

 
( )

*( ) p

ND

R F
D F A

iλ = . (2.98) 

 A more relevant figure of merit than the peak detectivity is the blackbody detec-

tivity with is obtained by calculating the spectral overlap of the responsivity with a 
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blackbody emission spectrum at temperature TBB. Thus, the blackbody detectivity be-

comes 

 * BB
BB

ND

RD A
i

= , (2.99) 

where the bias dependence was omitted for convenience, and RBB is given by 
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. (2.100) 

Here the power radiated per unit wavelength interval at wavelength λ , per unit area of a 

blackbody at temperature TBB (blackbody spectral density) is given by 
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=

−

. (2.101) 

It is worth noting that, for most applications, the blackbody responsivity RBB is 

reduced only a relatively small amount from the peak value Rp. Also, QWIP detectivity 

increases almost exponentially with decreasing temperature [41]. This fact can be ex-

plained by the strong dependence of the dark current on thermoionic emission and ther-

moionic assisted tunneling. Also it must be considered that the improvement on detectiv-

ity implies reduction in dark current noise.  

Another important aspect is the dependence on the detectivity on doping. Apply-

ing the same simplification used to determine the dark current dependence on tempera-

ture, it has been proved [28] that  

 *
1

D
eρ

ρ∝
−

 (2.102) 

where ρ is linearly proportional to the doping density in the well. This indicates that the 

detectivity will increase with the increasing doping density until reaches a maximum and 

starts to decrease again. It is worth mentioning that the maximum region is very wide, al-

lowing the doping density to be used to optimize the responsivity instead. 
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Although the mathematical models discussed above rely on a great number of 

simplifications, it has been shown (in the references cited in this section) that they are ap-

propriate for the practical situations of interest. 

The figures of merit discussed in this section should be considered in both the de-

sign and the characterization phases. In the design they act as requirements and great care 

is necessary since the maximization of one figure may imply the minimization of other. 

In the characterization phase they are a measure of the performance and the requirement 

compliance. 

 

 This chapter assembled the minimum theoretical background necessary to build 

the mathematical models that allows us to design and analyze the performance of QWIP. 

Specificities of the photodetectors in discussion were considered and used as simplifica-

tion factors in the models. Supported by this theory the next chapter presents the practical 

considerations towards the actual devices, the computational tools developed to support 

the design and the final proof-of-concept QWIP design that meets the requirements stated 

in the introductory chapter. 
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III. QWIP DESIGN 

The previous chapter covered the theoretical aspects of quantum well photodetec-

tors. Nevertheless, to be able to design actual devices it is necessary to perform a quanti-

tative analysis of the physical behavior, already described. This is done sequentially in 

this chapter, introducing numerical solutions of the mathematical models, adapted for the 

design specificities of the detectors requirements. Equation Chapter (Next) Section 3 

The first requirement for a photodetector is the operation spectrum. As specified 

before, the interest here is to have a QWIP capable to detect simultaneously wavelengths 

within three distinct bands: 0.9 to 1.4 µm (near infrared); 3.8 to 5.0 µm  (mid infrared); 

and 8.0 to 10.0 µm (long wavelength infrared). 

 

A. INITIAL CONSIDERATIONS 
There is no established sequence in QWIP design. Several analyses and consid-

erations must be done and most are interactive, forcing the designer to go back and forth. 

This section discusses the preliminary assumptions and analysis towards the basic 

photodetector configuration. 

Many ways have been used to achieve multiband detection using quantum wells 

[28]. However, currently, two ways predominate, coupled quantum wells [42] and multi-

stack quantum wells [34]. The former has the advantage of using a fixed bias voltage to 

detect all bands simultaneously. Conversely it is hard to distinguish those without further 

spectral analysis. The requirement of discriminating between the bands demands sepa-

rated readouts, possible to implement in the last configuration. 

The multi-stack of uncoupled wells configuration, selected in this work, is shown 

schematically in the Figure 7. Three different stacks of quantum wells with different ab-

sorption characteristics are piled between contact layers. The readout bias can be opti-

mized for each band independently. It is important to mention, though, that this configu-

ration demands high accuracy of epitaxial growth due to the large number of different 

layers needed. 



40

 
Figure 7 Schematic diagram of a multi-stack quantum well photodetector with inde-

pendent readouts. 

 

Considering this configuration, to minimize the dark current and maximize re-

sponsivity and detectivity, the second bound state in the conduction band (final state) is 

more likely to be placed just bellow the top of the well ( 0fE V≈ ). 

The first well stack is responsible for detecting the near infrared. The lowest 

wavelength detected due to intersubband transitions reported on the literature [28] is 2.7 

µm . Thus, inerband transitions must be used for the NIR band. Furthermore, according 

to the selections rules for interband transitions, the well must be asymmetric to allow the 

transition the ground state of the valence band to the first exited state of the conduction 

band. Thus, a step well configuration seems to be more apporpriate. Moreover, only in-

trinsic carriers participate in the transitions from the valence to the conduction band, 

eliminating the necessity of doping these wells. The main constraints here are to control 

the depth of the well to achieve the right wavelength, as well as to adjust the asymmetry 

to maximize the transition strength. 

The second well stack is responsible for mid-infrared detection. This can be ac-

complished by intersubband transitions in a deep quantum well. The main constraint here 

is to achieve a deep well without having too much strain in the system. Also the doping 

concentration of these wells must be adjusted to maximize the figures of merit. 
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The third stack is responsible for the long-infrared detection. This is the most 

commonly used configuration and can be achieved without much dificulty using shallow 

wells. The principal constraint here is to control the dark current. In shallow wells, the 

thermoionic emission is strong; hence the doping concentration must be reduced to con-

trol this process.  

All the three stacks are schematically represented in the Figure 8, in terms of po-

tential diagram. It is worth noting that all considerations from now on focus on the opti-

mization of the performance of the three stacks together. Since this work aims a verifica-

tion of the concept, a few compromises on the requirements are acceptable to make it fea-

sible. 

 

 

 

Figure 8 Schematic diagram of the potential profile of the basic detector configuration, 
including all three quantum well stacks. 

 

In selecting the configuration, the materials must be chosen, based upon their 

properties, availability, growing process maturity, and cost, among other factors. Figure 9 

shows a plot of energy bandgaps vs. lattice constants for major III-V compounds [43]. 
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Ternary alloys are denoted by lines between binaries and quaternary alloys are repre-

sented by the colored areas. 

 

Ga0.75In0.25AsGa0.75In0.25As

 
Figure 9 Plot of energy bnadgaps vs. lattice constants for major III-V compounds. The 

solid lines and the dashed lines represent the direct-gap and indirect-gap re-
gions, respectively. Ternary alloys are denoted by lines between binaries and 

quaternary alloys are represented by colored areas. (After Ref. [43].) 
 

The requirement of closely matching lattice constants separates these semicon-

ductors into five distinct families in terms of compatible substrate materials [5]. The best 

controlled of these families is GaAs/AlxGa1-xAs, and all the compositional aluminum 

fractions are accessible, as the lattice constant does not vary significantly from GaAs to 

AlAs. GaxIn1-xAs can be grown on GaAs substrates if the composition of indium is not 

very high ( 0.4x < ), and the strain effects for this system are well known (see for exam-

ple [44]). Another important system includes InxGa1-xAsyP1-y and AlxIn1-xAs, which can 

be grown on InP substrates and is commonly used in lasers applications [45]. Also, 

InxAs1-xSb and AlxGa1-xSb are normally grown on GaSb substrates. Finally, the lattice 

constants available to Hg1-xCdxTe are suitable to deposit on a CdTe substrate and allow a 

large range of accessible bandgaps. Recently more combinations have been tested [28]. 



43

In addition to the lattice constant and bandgap energies, the band offsets are ut-

terly important to determine the band edge potentials and consequently the depth of the 

wells. Some theoretical models are available to roughly estimate the band offsets; al-

though, to design quantum well devices, much more accurate values than those obtained 

from the theoretical models are required. Methods such as absorption measurement, pho-

toluminescence measurement, and x-ray core level photoemission spectroscopy are used 

for experimental determination of band-offsets [26]. Even experimental methods cannot 

assure accurate values of band offset, making this parameter a considerable constraint 

when working with certain families of materials [45]. A good collection of band-offset 

parameters can be found in [20]. 

The analysis on available data from the families of compounds mentioned above, 

including cost and fabrication potentialities led to two possibilities, GaAs/AlxGa1-xAs/ 

InxGa1-xAs on GaAs substrate and (In0.53Ga0.47As)y(InP)1-y/ Al0.48In0.52As on InP substrate. 

These families are highlighted in red in Figure 9 For simplicity, from now on, both are 

addressed by their substrate, as the GaAs system and the InP system. 

Very reliable material data (properties) and mature and cheaper fabrication proc-

esses are advantages of the GaAs system. However, to assemble deep wells necessary for 

mid-infrared detection it is necessary to increase the Indium composition, raising the 

strain in the system due to the lattice mismatch. Limitations on indium composition are 

well documented in [44] [46] and [47], and lead to a design limit of 0.25 if used in thin 

wells. Furthermore, the critical layer thickness that represents the maximum thickness of 

the GaxIn1-xAs under which the large lattice mismatch is totally accommodated by uni-

form elastic strain, is dependent on the indium quantity [45]. Therefore, the higher the in-

dium composition, the lower the critical thickness, limiting the design possibilities. Also, 

since AlAs is an indirect semiconductor, the aluminum concentration must be kept lower 

than 0.4, to have a direct AlxGa1-xAs ternary. Moreover the high bandgap of GaAs and the 

limitation on the indium composition indicates that it might be difficult to comply with 

the near infrared requirement. 

The InP system, on the other hand, presents very controversial band offset data 

[45], and uses more difficult and expensive fabrication processes. The absence of strain, 
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due to the matched lattice, is an advantage. Also the lower bandgaps of the compounds 

indicates the possibility to achieve the desired near-infrared detection spectrum. Adapta-

tions on the requirements are also considered in order to make it feasible. 

A significant limitation concerning the material composition is the growing proc-

ess. When using MBE, for example, a limited amount of the basic compounds vapor 

sources are available. Therefore the number of different compositions of the same ternary 

or quaternary is limited. For example, using two sources of Al in different temperatures, 

it is possible to grow AlxGa1-xAs with 3 different fixed-values of x determined by: the 

first source (when only its shutter is open), the second source (when only its shutter is 

open), and both (when both shutters are open). This restricts the structure in having only 

3 different compositions of AlxGa1-xAs, limiting the designing degrees of freedom. 

Lastly it is necessary to consider the angle of incidence selection rules to be able 

to design the optical coupling. According to the previous chapter, intersubband transi-

tions are forbidden in symmetric quantum wells, thus diffraction gratings must be etched 

on the top of the last contact layer, just before the metallization. Also a high purity non-

alloyed gold and silver must be considered, in order to maximize the reflection [48]. A 

complicating factor is that the grating must be optimized for two different bands. Several 

configurations have been proposed [49] [50], however the limitations on mask lithogra-

phy and processing capabilities restrict the possibilities.  

Another complicating factor is the fact that the wavelengths of the LWIR are al-

most two times the wavelengths of the MWIR. As will become clear in the Section IV.2, 

it is impossible to optimize, simultaneously, the grating pattern for wavelengths that are 

multiples to each other.  Therefore, a good strategy is to place the detection peaks closer 

of each other. Then, considering that smaller dimensions are required for smaller wave-

lengths and that the small dimensions (less than 1µm ) are difficult to implement, the de-

tection peaks for the MIWR and LWIR should be placed as close to each other as possi-

ble. This is also an advantage if just one grating pattern is possible to be applied to satisfy 

both spectral regions. 
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Having established the basic detector configuration, based on the requirements, 

constraints, and data availability, the first design step is to quantitatively determine the 

bound states in the conduction and valence bands and their respective wavefunctions. 

 

B. SELF CONSISTENT SCHRODINGER-POISSON SOLUTIONS 
The self-consistent Schrodinger-Poisson solutions are necessary to account on the 

potential distortion caused by the charge distribution. This approach can be summarized 

as follows. First, the band edge potential ( )eV z  is computed from the structure material 

properties. Then the perturbation potential ( )bV z , due to applied electric field, is com-

puted and added to the band edge potential ( ( ) ( ) ( )e bV z V z V z= + ). Next step is to solve 

the Schrodinger’s equation for the structure, to obtain the bound states iE  and their re-

spective wavefunctions iψ , that will be used as the first guess to compute the charge dis-

tribution potential ( )V zρ , through the solution of the Poisson’s equation of the structure. 

The potential ( )V zρ  is then added to the original ( ( ) ( ) ( )e bV z V z V z Vρ= + + ) and the 

Schrodinger’s equation is solved to the new potential. The iteractions repeat until the 

bound states energies converge. This procedure is schematically depicted in Figure 10. 

The details in the figure, including equations and the respective parameters are discussed 

in the following sections. 
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Figure 10 Schematic diagram of the self-consistent Schrodinger-Poisson solution main 
steps. All equations and parameters are explained on the text. 

 

The first step to solve a quantum well Shrodinger’s equation is to compute the 

band edge potential profile. This can be done, basically, taking the bandgap energies of 

the material layers along with their band offset ratios. 

 

1. Bandgap and Effective Mass Parameters 
The bandgap parameters, for both the GaAs system and InP system, shown in the 

Figure 9 are tabulated in [20]. For the ternary 1x xA B C− , the following expression is used: 

 1( ) ( ) (1 ) ( ) (1 ) ( )g x x g g bE A B C xE AC x E BC x x C ABC− = + − − −  (3.1) 
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where the so called bowing parameter Cb accounts for the deviation from a linear interpo-

lation between the endpoints two binaries AC and BC. For the lattice matched quaternar-

ies 1 1( ) ( )x x y yA B C DE− − , the corresponding band parameter is expressed as 

  ( )1 1 1( ) ( ) ( ) (1 ) ( ) (1 ) ( )g x x y y g x x g bE A B C DE yE A B C y E DE y y C ABCDE− − −= + − − − . (3.2) 

The temperature dependence of the bandgap must also be considered and is given 

by Equation (2.13). Thus, the substitution of the GaAs and InP systems material parame-

ters into Equations (2.13), (3.1) and (3.2) gives the needed bandgap values. 

The effective mass profile is directly deduced by the properties of each layer. For 

the binary compounds, the effective masses along the crystal direction [100] are given by 

the following expressions [20]: 

 
( )( )0
2 3

(1 2 )
* ( )

p g so
K

e g g so

E Em F
m E E

+ ∆
= + +

+ ∆
, (3.3) 

 0
1 22

*hh

m
m

γ γ= − , (3.4) 

and 

 0
1 22

*lh

m
m

γ γ= +  (3.5) 

where KF  is the Kane parameter, pE  is the Kane energy, so∆  is the spin-orbiting splitting 

parameter, and iγ  are the Luttinger parameters. All these parameters are obtained ex-

perimentally and are listed, for the binaries in question, in [20]. For the ternaries and lat-

tice matched quaternaries of the type AxB1-x, the effective masses can be obtained by the 

linear interpolation of the extremes (A and B) through the expression  

 
1

1 1 1(1 )
*( ) *( ) *( )x x

x x
m A B m A m B−

= + − . (3.6) 

The substitution of the GaAs and InP system material parameters into Equations (3.3) to 

(3.6) gives a series of equations necessary to obtain the needed effective masses. 
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2. Potential Profile 
An important remark is that, since the design seeks a detector with uncoupled 

wells, all development in this section considers a configuration of two external barriers 

and one quantum well. Also, step wells with one or more steps can be used to create 

asymmetric structures. In this sense, the bottom of the conduction band of the smallest 

bandgap layer is considered the potential zero, and the center of the same layer is taken 

as 0z = . Thus the conduction band edge potential profile is given by 
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where N is the number of layers in the positive direction, , 1
CB
n nδ +  represents the conduction 

band offset ratio between the nth and (n+1)th layers, found in [20] and [45], and nz  is the 

coordinate of the interface between them. The same interpretation is taken for the nega-

tive direction, replacing N by M and n by m. The bandedge potential defined this way can 

handle several distinct layers to model asymmetric step wells. In the same way, the va-

lence band potential is given by 
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where REF
gE is the lowest bandgap within the structure. 

 As mentioned before, the most critical parameter to determine the band edge po-

tential is the band offset. This is determined experimentally and, normally, gives values 

widely spread, depending on the experimental method used, especially for the InP sys-

tem. The values used were confirmed experimentally in the Sensor Research Laboratory 

(SRL), Naval Postgraduate School (NPS) [51], for the GaAs system, and an average 

value suggested by the authors in [20] and [45], for the InP system. When compounds 
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with slightly different compositions from the experimental data are used, it is suggested 

on the literature that linear interpolation would be a reasonable correction. The data used 

in this work is given in [20]. 

 Recall from Equation (2.77) that the potential due to bias applied on the het-

erostructure is given by 

 ( )bV z qFz= − . (3.9) 

The addition of this and the band edge potential is represented by 

 ( ) ( ) ( )b eV z V z V z= + , (3.10) 

where ( )V z  is the potential profile without taking into account the electrostatic potential. 

 At this point, all information is in place to solve the structure Schrodinger’s equa-

tion and to obtain the confined energy levels as well as the corresponding wavefunctions.  

 

3. Numerical Solution of the Schrodinger’s Equation 
The selected method to solve numerically the Schrodinger’s equation here was a 

combination of the shooting method and the finite differences [52] [18]. The one-

dimension Shrodingers’s equation in the heterostructure along the growth axis is given by 

 
2 1 ( ) ( ) ( ) ( )
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that can be expanded as 
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First, the continuous z direction is discretized in an evenly spaced grid with step 

zδ . Second, the derivatives are replaced by their second order central finite difference 

approximations, expressed as 

 ( ) ( )
2z

f f z z f z z
z z

δ δ
δ

∂ + − −≈
∂

, (3.13) 

for the first derivative, where f represents an arbitrary function, and  
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for the second derivative. Applying Equations (3.13) and (3.14) to Equation (3.12), after 

some algebra, the result is [18] 

 

2

2

( ) 2( ) 1[ ( ) ]
*( / 2) *( / 2)

1 ( )     ( ) .
* ( / 2) *( / 2)

z z z V z E
m z z m z z

z zz
m z z m z z

ψ δ δ
δ δ

ψ δψ
δ δ

+ = − ++ +
 −+ −− −

=
 (3.15) 

Equation (3.15) is the shooting equation. The equation shows that knowing two values of 

the wavefunction, ( )z zψ δ−  and ( )zψ , the third point, ( )z zψ δ+ , can be predicted. Us-

ing the new point together with its predecessor, a fourth point can be calculated and so 

on. Hence the wavefunction can be deduced for any particular energy value. The solu-

tions for stationary states have wavefunctions which satisfy the standard boundary condi-

tions, expressed as 

 ( ) 0   and   ( ) 0,    as   z z z
z

ψ ψ∂→ → → ±∞
∂

. (3.16) 

 It has been proved [18] that the general initial conditions that can handle any po-

tential profile is given by  

 ( ) 0   and   ( ) 1z z zψ δ ψ− = = , (3.17) 

since multiplying an eigenstate (wavefunction ψ ) for a constant does not affect the ei-

genvalue (bounded energy E). 

Sequentially, the energy is varied systematically in Eδ  steps, until the wavefunc-

tion switches from diverging to −∞  to diverging to +∞ . That can be mathematically ex-

pressed as 

 ( )( )( ) ( ) 0
z z

E E Eψ ψ δ
→+∞ →+∞

+ < . (3.18) 

Clearly an energy level exists between these values for which the wavefunction will tend 

smoothly to zero. Since the problem now is to find a root of ( ) 0
z

Eψ
→+∞

= , the energy 
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grid is refined in the interval ( ,  )E E Eδ+  and the Newton’s method is applied [52]. This 

is done to accelerate the convergence to the true solution. Recall that, according to the 

Newton’s method, if iE  is the first guess to the solution of ( ) 0
z

Eψ
→+∞

= , then a better 

estimate is given by 

 1

( )
'( )

i z
i i

i z

E
E E

E
ψ
ψ

→+∞
+

→+∞

= − , (3.19) 

where the denominator of the quotient at the right side is the first derivative of the wave-

function ψ  with relation to E, at iE , at z → +∞ . 

 The tolerance of 1 meV in energy values is certainly within the error caused by 

other uncertainties. In terms of wavelength, for a quantum well structure with absorption 

peak around 4.5 µm , the change of 1 meV in the difference between the conduction band 

bound states would cause a shift of the order of one hundredth of a micrometer on the 

peak absorption.  

 In practice, the above mentioned iterative procedure starts and ends at finite dis-

tances from 0z = . This is the same as assuming that, at the lower and upper limits (effec-

tive infinites) of the z domain, the barrier potential is infinite, forcing the wavefunction to 

be zero there. The limits of the z domain should be chosen to be at sufficient extent so as 

not to affect the eigenvalue. It has been proven [18] that if the energy is the only motiva-

tion for this calculation, outer barriers as wide as 150 Å will suffice. 

 When the wavefunction is needed to compute other parameters, great care must 

be taken. Even though the eigenvalues can be obtained within the convergence tolerance, 

for thin outer barriers, the wavefunctions might not satisfy the second boundary condi-

tions, 0ψ ′ =  at z → ±∞ . On the other hand, for thick outer barriers, the wavefunction 

starts to diverge, due to limitation in numerical precision of the energy values. The defini-

tion of thin and thick depend on the structure being solved and should be monitored for 

each specific problem, in order to find the appropriate limits of the z domain. Since the 

wavefunction convergence is dependent on the accuracy of energy, the greater the figure 

accuracy that can be used, the thicker the barriers that can be included in the model. Per-
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sonal computer codes normally assign 16-figure accuracy to a double precision number. 

If the quantum well configurations demand higher precision than that, more sophisticated 

computational tools must be used. 

 The last parameter that must be defined is the step length zδ . Since the atomic 

dimension limits the layer thickness, there is no practical reason to use steps smaller than 

1Å. Higher values can be used, to reduce the computation time, according to the configu-

ration being solved. For the structures computed in this work, zδ =1Å was used. 

 The final wavefunction is then obtained applying the energy value calculated by 

the Newton’s method in Equation (3.15), considering the appropriate limits, steps and 

tolerances, just discussed. 

The wavefunctions obtained for this numerical method are not normalized. This 

can easily be achieved multiplying the wavefunction by its normalization factor,  
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where, the symbol (*)  indicates the complex conjugate. 

The shooting method, sketched in the Figure 11, is a powerful tool to handle any 

kind of potential profile. That is very important in solving biased multiple layer structures 

with a varying doping profile. Because of that, it is very suitable for self-consistent solu-

tions. However, if not carefully implemented, it can be very costly computationally. Also 

the limitation on the wavefunction convergence for wide outer barriers must be taken 

care externally. It is normally possible, imposing a zero value to the wavefunction before 

the divergence region. 
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Figure 11 Schematic diagram of the shooting method procedure. 

 

The shooting method was implemented in Matlab to obtain the confined energy 

levels and its respective wavefunctions of single-period heterostructures.  Routines con-

taining the material properties of the GaAs and InP system were also programmed to 

support the calculations. To validate the code, several different structures from the litera-

ture were solved and the results were found in good agreement. Figure 12 shows the con-

duction and the valence band confined energy levels and their respective wavefunctions 



54

of a single step well studied in [51]. The structure dimensions and composition are also 

shown in the same figure. The wavefunctions have been rescaled for visual purposes.  

Ev1,hh

Ev2,hh

Ev3,hh

V0

Ec1

Ec2

Ev1,hh

Ev2,hh

Ev3,hh

V0

Ec1

Ec2

 
Figure 12 The calculated wavefunctions of the confined energy levels of the asymmetric 

step well studied in [51].  
 

Figure 13 shows the conduction band confined energy levels and their respective 

wavefunctions of a more complex configuration, studied in [53]. The structure consists of 

three different-size coupled quantum wells separated by thin barriers. The dimensions 

and composition are shown in the same figure.  
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Figure 13 The calculated wavefunctions of the confined energy levels of the triple-

coupled quantum well studied in [53]. 
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The results show that this implementation of the shooting method is valid for the 

configuration of interest of this thesis and, moreover, it can handle complex coupled 

structures. Also the effects of the potential bending due applied bias and charge distribu-

tion can be included since the method is applicable for any potential profile. This is very 

appropriate for self-consistent solutions as shown in the next section. 

 

4. Charge Distribution Potential Evaluation 
The carrier distribution in a quantum well depends on the quasi-Fermi level, EF, 

within the well. The basic idea to determine it was mathematically described in the Sec-

tion II.A.5. Since it is desired that there be only two confined states in the conduction 

band, using Equation (2.34), it is possible to express the total number of electrons as [5] 
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were E1 and E2 represents the first and second bound states, respectively, and *av
im  is the 

average effective mass, accounting on the probability of the electron location along the 

structure, for each energy level. It can be evaluated through [5] 
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where the effective mass of the ith layer, *im , is weighed by the total probability of find-

ing an electron at that layer, represented by the integral term. Since the total number of 

carriers can be obtained directly by the doping concentration, the only unknown in Equa-

tion (3.21) is the quasi-Fermi energy. Using the iterative Newton’s root finder to solve 

the equation 
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where the first guess of EF can be obtained considering, initially, only the first state popu-

lated ( 0T = ), which is given by [5] 
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Hence, a better estimate can be obtained by repeating [52] 
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until the convergence. A tolerance of 1 meV is suitable for this evaluation. 

 Having calculated the quasi-Fermi level, the total number of carrier populating 

each subband is obtained using Equation (2.34). For very low temperature and deep 

wells, this can be avoided and it is reasonable to consider all electrons populating the 

ground state (first subband). 

 The next steps are to calculate the net surface charge density, the electric field 

along the structure, and finally the charge distribution potential. Those can be obtained 

directly from Equations (2.39), (2.40), and (2.36), respectively. 

The evaluation of the charge distribution potential, through the Poisson’s equation 

solution, sketched in Figure 14, becomes important in heavily doped structures, such as 

the proposed in this work. Also, the possibility to monitor non-measurable parameters 

such as electric field and charge density inside the structure, allows deeper physical 

analysis. 
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Figure 14 Schematic diagram of the charge distribution potential evaluation 

 

The charge distribution potential computation was included in the Matlab code as 

part of the self-consistent approach. The self-consistent Schrodinger-Poisson program 

was validated through the solutions of several structures from the literature. The results 

were found in good agreement. For example, Figure 15 shows the potential profile, the 

confined energy levels and their respective wavefunctions for the structure studied in 
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[54]. Huang et al studied a GaAs-based step well with the barriers doped in the middle 

(modulation doping). 

(a) (b)(a) (b)  
Figure 15 Self-consistent potential profile with normalized wave functions for the two 

lowest energy levels under a 30-kV/cm electric field (a) and a – 30-kV/cm 
electric field (b), for the structure studied in [54]. Dashed line is the potential 

profile without the charge distribution effects. 
 

Figure 16 shows the individual potential contributions as well as the doping profile, 

charge density and electric field behaviors in the structure under a 30-kV/cm electric 

field, corresponding to Figure 15 (a).  

 
Figure 16 Individual potential contributions in the structure (left) and the doping profile, 

charge density and electric field behaviors (right). 
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At this point, using the developed and validated computational tool, it is possible 

to calculate the confined energy levels and their respective wavefunctions of several 

types of heterostructures in a wide variety of configurations. Furthermore, using the ab-

sorption coefficient expressions derived in Section II.A.6, it is also possible to estimate 

the absorption coefficient of the quantum well systems. This was done for both the GaAs 

and the InP systems, considering the guidelines discussed in Section III.A in order to 

maximize the absorption coefficient on the spectral regions of interest. The next section 

brings this discussion and the final designed structure configurations. 

 

E. DESIGN OF THE QWIP SEMICONDUCTOR HETEROSTRUCTURES 
The computational tools developed to support this work are not optimized for de-

sign purposes. Optimization algorithms must be considered and more computational ca-

pability must be available to obtain that. However it is possible to select the configura-

tions and material composition based on the arguments listed in Section III.A and to run 

the programs to analyze the results. Changes in the inputs must be made based on the 

physical properties and the desired result. After some interactions it is possible to refine 

the inputs to obtain the desired outputs (requirements). This was done for both systems 

aiming to maximize the absorption coefficient, placing the peak at the desired wave-

length.  

 

1. GaAs System 
In terms of available technology and cost predictions, the GaAs-based configura-

tion is the most attractive. In view of the guidelines and taking into account the limita-

tions discussed in Section III.A, the following design requirements were set for the detec-

tors based on GaAs system: 

a. The peak absorption of the three different bands for temperatures below 

77K should be:  the maximum value obtainable for NIR (limited by the 

GaAs bandgap); as close as possible to 5.0 µm  for MWIR (limited by 

the grating pattern); and below 9.0 µm (limited by the grating pattern 

and leakage current due to thermoionic emission). 
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b. Bound-to-quasibound transitions should be preferred to minimize the 

possibility of thermoionic transitions, maximize the oscillator strength 

and reduce the amount of bias needed for photocurrent readout. 

c. The stacks of each band should be limited to 20 repetitions of the basic 

barrier/well/barrier cell (due to the complexity to fabricate and to proc-

ess a large amount of different crystal layers). 

d. The stacks should be grown onto the substrate in the following se-

quence: NIR, MWIR, and LWIR. This is to prevent the undesired ab-

sorption mechanisms from sequentially blocking the IR bands of pass-

ing through their respective detector stacks. Thus, the longer bandgap 

stacks should be placed before (bottom) the smaller ones. Also, the 

MWIR and LWIR should be the second (mid) and the third (top) in or-

der to apply the respective grating pattern. 

e. The indium compositions in InxGa1-xAs as well as the aluminum compo-

sitions in AlxGa1-xAs should be restricted to no more than 3 different 

values each in the entire crystal. This is due to MBE growing limitations 

discussed previously. 

f. The contact layers should be heavily n-doped (about 18 32.10  cm− ) in or-

der to improve the contact uniformity in long pixels. 

g. The cap layer (top) and the contact layer between the MWIR and LWIR 

quantum well stacks should be thick enough to allow the application of 

the respective grating patterns. 

 

Following the considerations given above, several trials were executed varying 

the dimensions and the compositions of each band separately. The final stack configura-

tions with the respective energy and detection wavelength are shown in Figures 17, 18, 

and 19. Its important to remark that, since the photodetectors operate cooled, all the de-

sign computations were carried using 77K material parameters. 
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λp ~ 0.87µm

o

o

λp ~ 0.87µm

o

o

 
Figure 17 Parameters of the NIR quantum well stack (left) and its respective basic cell 

potential profile with the confined energy levels (right). 
 

The NIR quantum wells are basically asymmetric step wells where the overlap be-

tween the initial (valence band) and final (conduction band) envelope functions, the ma-

jor contributor for the strength of the transition, was maximized, bounded by the limit in 

indium concentration and the location of the conduction band exited state. The well is not 

doped to minimize the undesired intersubband transitions.  

The MIR quantum wells are basically symmetric step wells where the intersub-

band oscillator strength was maximized, bounded by the same parameters of the previous 

configuration. In this case, two GaAs layers were placed on the sides of the In0.25Ga0.75As 

layer to better accommodate the Al0.40 Ga0.6As/In0.25Ga0.75As lattice constant mismatch 

and to reduce the amount of indium in the structure. All the three layers of the well were 

heavily doped to increase the absorption coefficient. 
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λp ~ 4.9µm

o

λp ~ 4.9µm

o

 
Figure 18 Parameters of the MWIR quantum well stack (left) and its respective basic 

cell potential profile with the confined energy levels (right). 

 

λp ~ 8.7µm

o

λp ~ 8.7µm

o

 
Figure 19 Parameters of the LWIR quantum well stack (left) and its respective basic cell 

potential profile with the confined energy levels (right). 

 

The LWIR quantum wells are symmetric and shallow square wells where the dop-

ing concentration was kept lower than the previous configuration to reduce the leakage 

current due to thermoionic emission. This is a very common GaAs/AlGaAs configuration 

[28]. 

The entire structure is composed by 68 layers, including the substrate. Table 1 

compiles the parameters needed to grow the crystal. The band diagram of the structure is 
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shown in Figure 20. The allowed transitions for each quantum well configuration are also 

depicted and those maximized by design are highlighted. Notice that, in the figure, the 

layer numbers correspond to those in the Table 1. 

 

Table 1 GaAs based QWIP sample description. 

PROFILE THICKNESS 
Å DOPANT CONC.  

±10% 
1 n-GaAs 7,000 Si 2x1018 cm-3 
2 i-Al0.26Ga0.74As 300 None ------------------ 
3 n-GaAs X20 52 Si 0.5x1018 cm-3 
4 i-Al0.26Ga0.74As 300 None ------------------ 
5 n-GaAs 5,000 Si 2x1018 cm-3 
6 i-Al0.40Ga0.60As 300 None ------------------ 
7 n-GaAs 13 Si 2x1018 cm-3 
8 n-In0.15Ga0.85As 14 Si 2x1018 cm-3 
9 n-GaAs 

X20 

13 Si 2x1018 cm-3 
10 i-Al0.40Ga0.60As 300 None ------------------ 
11 n-GaAs 5,000 Si 2x1018 cm-3 
12 i-GaAs 300 None ------------------ 
13 i-In0.10Ga0.90As 43 None ------------------ 
14 i-In0.25Ga0.75As 

X20 
40 None ------------------ 

15 i-GaAs 300 None ------------------ 
16 n-GaAs 7,000 Si 2x1018 cm-3 
17 S.I. GaAs Substrate ----------------- ------------ ------------------ 
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Figure 20 Band diagram of the GaAs based QWIP sample. The layer numbers corre-

spond to those described in Table 1. 
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Despite the restrictions imposed by the limitations thoroughly discussed, the 

GaAs-based sample was fabricated by means of contract by IQE Inc. and succeeded in 

covering part of the three desired spectral regions (the results are presented and discussed 

in the next chapter). To some extent, the InP system presents even more restrictions, as 

described in the following section. 

 

2. InP System 
Semiconductor structures on InP substrates are more difficult to grow, fabricate, 

and process. Furthermore the band offset data, one of the most important parameter in de-

signing QWIPs, is very controversial, as mentioned before, making the risk in such at-

tempts, very high. Nonetheless, the bandgap of InP is smaller than GaAs, making this 

choice very attractive for the NIR region. In addition, the lattice matched combinations 

eliminate the strain restrictions widening the design possibilities.  

Again considering the discussed possibilities, restrictions, and the lessons learned 

with the GaAs based sample results (discussed in the next chapter) the following design 

requirements were set for the detectors based on InP system: 

a. The InP based QWIP should detect only two IR spectral regions in-

stead of three originally set. This is in attempt to reduce the complex-

ity and consequently the costs,  

b. The peak absorption of the two different bands should be: above 1.2 

µm  and below 1.3 µm  for NIR (to verify the ability to detect higher 

wavelengths in this band, allowing the necessary room to accommo-

date the band offset uncertainties), and as close as possible to the mid-

dle of the band for MWIR (~4.0 µm ). 

c. For the MWIR quantum wells, it would be preferable to use the ternar-

ies In0.53Ga0.47As (well) and Al0.48In0.52As (barrier) due to the consis-

tency in their properties data [20].  

d. Bound-to-continuum transitions should be preferred to broaden detec-

tion spectrum of the MWIR detection. 
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e. The stacks of each band should have no more than 40 and no less than 

30 repetitions of the basic barrier/well/barrier cell. This is to increase 

the absorption coefficient peak, naturally lower than the previous de-

sign, caused by the bound-to-continuum transitions. 

f. The stacks should be grown onto the substrate in the following se-

quence, NIR and then MWIR. Beyond the reasons mentioned in the 

previous design, the MWIR has to be on the top of the device to re-

ceive the grating pattern. 

g. The contact layers doping concentration should be reduced 

( 18 31.10  cm− ) in contrast to the GaAs-based QWIP, to reduce the prob-

ability of electrons diffusing to lower potentials, populating the non-

doped wells. This was experienced in the GaAs-based sample. Also 

the bottom layer should be p-doped in order to create a p-i-n structure 

and deplete of electrons the NIR wells reducing the possibility of un-

desired intersubband transitions even more. 

h. A stop-etch layer should be included right below the cap layer to im-

prove the precision in processing the grating pattern. This was not con-

sidered in the previous design counting on the higher controllability on 

etching GaAs-based semiconductors.  

 

Attempting to consider all the defined requirements, several trials (using the com-

putational tool) were executed varying the dimensions and the compositions of each band 

independently. The final stack configurations are shown in Figures 21 and 22. The tem-

perature considerations are the same as the previous design. 

Similar to the previous design, the NIR quantum wells are basically asymmetric 

step wells. In this case, there are no strain limitations; the asymmetry is clearly higher 

than the GaAs sample, favoring the desired interband transitions. Again, the well is not 

doped to minimize the undesired intersubband transitions.  
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λp ~ 1.25µm

o

o

λp ~ 1.25µm

o

o

 
Figure 21 Parameters of the NIR quantum well stack (left) and its respective basic cell 

potential profile with the confined energy levels (right). 
 

λp ~ 4.2µm

o

λp ~ 4.2µmλp ~ 4.2µm

o

 
Figure 22 Parameters of the MWIR quantum well stack (left) and its respective basic 

cell potential profile with the confined energy levels (side). 
 

The MWIR quantum wells are highly doped, symmetric, and deep wells. In this 

case there is only one confined level forcing the bound-to-continuum transitions. Notice 

that the ternaries In0.53Ga0.47As (well) and Al0.48In0.52As (barriers) provide an absorption 

peak very close to the middle of the band. Similar configurations were reported success-

fully in [32]. 
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The entire structure is composed by 77 layers, including the substrate. Table 2 

compiles the parameters needed to grow the crystal. The band diagram of the structure is 

shown in Figure 23. The allowed transitions for each quantum well configuration are also 

depicted, and those maximized by design are highlighted. Notice that in the figure, the 

layer numbers correspond to those in the Table 2. 

 

Table 2 InP based QWIP sample description. 
PROFILE THICKNESS 

Å DOPANT CONC.  
±10% 

1 n-InP 3,800 Si 1x1018 cm-3 
2 n-Al0.48In0.56As 300 Si 1x1018 cm-3 
3 i-Al0.48In0.56As 300 None ----------------- 
4 n-In0.53Ga0.47As X40 35 Si 2x1018 cm-3 
5 i-Al0.48In0.56As 300 None ----------------- 
6 n-InP 7,000 Si 1x1018 cm-3 
7 i- (In0.53Ga0.47As)0.50(InP) 0.50 300 None ----------------- 
8 i- (In0.53Ga0.47As)0.70(InP) 0.30 85 None ----------------- 
9 i-In0.53Ga0.47As 

X30 
30 None ----------------- 

10 i- (In0.53Ga0.47As)0.50(InP) 0.50 300 None ----------------- 
11 p-InP 7,000 Be 1x1018 cm-3 
12 S.I. InP Substrate ---------------- ------------ ----------------- 

  
 

0.85µm

26.2µm 1.18µm

1.27µm1.33µm1.16µm

4.2µm

0.85µm

26.2µm 1.18µm

1.27µm1.33µm1.16µm

4.2µm

 
Figure 23 Band diagram of the InP based QWIP sample. The layer numbers correspond 

to those described in Table 2. 
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Although the InP sample is more attractive to meet the requirements, the imple-

mentation of such crystalline structure is very expensive and risky, due to the reasons 

previously discussed. In an attempt to make the photodetector feasible, it was restricted to 

a two-color detector and data as reliable as possible were used from [20], [32], and [45]. 

In addition, the feedback from the GaAs sample absorption measurements induced some 

changes in the design approach, making the InP a rich tool of learning. The sample was 

sent to fabrication and its characterization, testing and processing are matter for future 

work. 

 

This chapter covered the aspects of the QWIPs’ design. First, groups of semicon-

ductors were analyzed and strained GaAs-based and matched InP-based systems proved 

more suitable to simultaneously detect the NIR, MWIR and LWIR. Heterostructures 

formed by stacks of uncoupled wells were chosen and the sequence of detection bands 

was defined. Second, considering the specificities of the selected configurations, compu-

tational tools were developed and the structure self-consistent Schrodinger-Poisson solu-

tions were obtained by the shooting method. Finally, two QWIP samples were designed. 

The first, for three-color detection, is based on GaAs/AlxGa1-xAs/ InxGa1-xAs on GaAs 

substrate and the second, for two-color detection, is based on (In0.53Ga0.47As)y(InP)1-y/ 

Al0.48In0.52As on InP substrate. The GaAs-based sample was fabricated via contract by 

IQE Inc. and its characterization is addressed in the next chapter along with the design of 

the photodetector devices. 
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IV. EXPERIMENTAL RESULTS AND FABRICATION 

The GaAs QWIP sample was grown by way of contract by IQE Inc. using MBE 

on a semiinsulating GaAs wafer with 3 inches diameter, following the specifications dis-

cussed in the last chapter. The room temperature absorption measurements were carried 

out and the results are discussed in this chapter along with the optical coupling and the 

mask design for detector processing. Equation Chapter (Next) Section 4 

 

A. ROOM TEMPERATURE ABSORPTION MEASUREMENTS 
There are many ways to characterize QWIP samples. One way is to measure the 

transitions that can occur inside the crystal. As shown in Figure 20, the GaAs sample ex-

hibits both interband and intersubband possible transitions. Cathodeluminescence and 

photoluminescence [12] can be used to measure interband transitions between ground 

states and Fourier transform infrared spectroscopy (FTIR) [11] can be used to measure 

interband transitions. Very comprehensible descriptions of the FTIR working principle 

are given in [11] and [53], and can be summarized as follows. 

The infrared absorption measurements of the MIWR and LWIR bands were car-

ried out in SRL using a Nicolet-750 FTIR. Unlike normal optical spectroscopy, which 

uses diffraction grating monochromators in the visible and ultraviolet, FTIR uses an 

Michaelson interferometer. A broadband radiation source is directed towards a beam 

splitter where the light is divided into two equal beams. One beam is directed to a fixed 

mirror and the other to a moving mirror. The beams are reflected back to the beam split-

ter which combines them and directs them towards the sample. A detector, placed behind 

the sample, measures the combined beam intensity after passing through the sample. [53] 

In this configuration, the detector sees the original signal superimposed by a time-

delayed copy of itself. This represents the autocorrelation function of the radiation field, 

commonly called interferogram. The spectrum is obtained by taking the Fourier trans-

form of the interferogram. The center of the interferogram corresponds to the white light 

position (WLP), where the optical path is the same in both branches of the Michaelson in-

terferometer. The entire source radiation band is reflected towards the sample. The phase 
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difference between partial waves outside the WLP is wavelength dependent. The spectral 

resolution of the FTIR is determined by the displacement length of the moving mirror. 

[53] 

The FTIR spectrometer uses a computer to control the movable mirror and record 

the detector data. The mirror is moved through its entire range at a speed controlled by 

the user and the detected intensity is recorded as a function of data points. The data points 

are converted to a time scale using the velocity of the mirror and the sampling frequency. 

This procedure is repeated several times and the data are averaged to improve the signal-

to-noise ratio. The controlling software performs the Fourier transform of the resulting 

interferogram. [11] 

In order to obtain only the quantum wells’ absorption, the undesired effects must 

be removed from the measured interferogram. That includes the atmospheric and bulk 

material absorptions. The easiest way to do that is to use a polarizer in front of the detec-

tor. By setting the polarization direction parallel to the quantum well layers, no absorp-

tion is expected from the quantum wells. Then, all that is measured is considered back-

ground and subtracted from the actual measurement. 

The samples were prepared in the form of a 4.79 mm long, 13.6 mm wide and 

0.66 mm thick waveguide by polishing 45° angle facets to enhance the absorption, fol-

lowing the same procedures described in [11]. The fabricated sample waveguide is shown 

in Figure 24. 

The prepared sample is placed on a gold-plated holder that channels the infrared 

beam from spectrometer into the waveguide. The light enters the device normal to the 45° 

face, reflects through the waveguide and transmits out the opposing face (as depicted in 

Figure 24) towards the polarizer and detector.  
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Waveguide HolderWaveguide Holder

 
Figure 24 GaAs sample waveguide prepared for the absorption measurements. (Sche-

matic diagram on the top and the actual sample on a holder on the bottom. 

 

The absorptance of the sample was measured at room temperature at polarizations 

from zero (TM) to 90° (TE) at steps of 10°. The results are presented in Figure 25. 

 

3 4 5 6 7 8 9 10 11 12 13 14 15 16
-0.2

0.0

0.2

0.4

0.6

0.8

1.0
p

A
bs

or
pt

an
ce

W avelength (µm)

0 deg

80 deg

5.275

8.745

13.755

3 4 5 6 7 8 9 10 11 12 13 14 15 16
-0.2

0.0

0.2

0.4

0.6

0.8

1.0
p

A
bs

or
pt

an
ce

W avelength (µm)

0 deg

80 deg

5.275

8.745

13.755

 
Figure 25 MWIR and LWIR absorptance of the GaAs based sample measured at 90° in-

cident polarizations. The absorption peaks are highlighted. 
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The absorption peaks for MWIR and LWIR are 5.275 µm  and 8.745 µm,  respec-

tively. Notice that the presence of an additional high LWIR absorption with peak around 

13.8 µm.  The presence of this absorption is discussed later in this section. The depend-

ence of the absorption peaks strength with the polarization angle is shown in Figure 26. 

The absorption peak strength decreases with the square of cosine of the polarization an-

gle, confirming that the absorptions are due to the quantum wells (discussion in Section 

II.A.6). 
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Figure 26 MWIR (a) and LWIR (b and c) absorption peak strengths as a function of the 

polarization angle. 

 

At first view, some interesting facts can be identified. The MWIR absorption at 

5.3 µm  was expected to be stronger than the LWIR due to its higher doping concentra-

tion. The LWIR peak at 13.8 µm  was not expected since the quantum wells responsible 

for that absorption are not doped (see Table 1 and Figure 20). A possible explanation for 

these observations is summarized in Figure 27. 

The figure shows the configuration of the sample layers with their doping concen-

trations and the band diagram. The transitions of interest are represented by black arrows. 

The graphical insertion represents the measured absorption in the sample. The straight 

red arrows indicate which well stack is responsible for which absorption region. Also the 

unexpected LWIR absorption peak is highlighted along with its intersubband transition. 



73

8.9

3 4 5 6 7 8 9 10 11 12 13 14 15 16
-0.2

0.0

0.2

0.4

0.6

0.8

1.0
A

bs
or

pt
an

ce

Wavelength (µm)

2.1018 cm-3

2.1018 cm-3 2.1018 cm-3

2.1018 cm-3

Small Barrier

No Barrier
High Barrier0.5.1018 cm-3

2.1018 cm-3

No doping

~ 13.9 µm

5.0 0.92
ROOM TEMP

8.9

3 4 5 6 7 8 9 10 11 12 13 14 15 16
-0.2

0.0

0.2

0.4

0.6

0.8

1.0
A

bs
or

pt
an

ce

Wavelength (µm)

2.1018 cm-3

2.1018 cm-3 2.1018 cm-3

2.1018 cm-3

Small Barrier

No Barrier
High Barrier0.5.1018 cm-3

2.1018 cm-3

No doping

~ 13.9 µm

5.0 0.92
ROOM TEMP

8.98.9

3 4 5 6 7 8 9 10 11 12 13 14 15 16
-0.2

0.0

0.2

0.4

0.6

0.8

1.0
A

bs
or

pt
an

ce

Wavelength (µm)
3 4 5 6 7 8 9 10 11 12 13 14 15 16

-0.2

0.0

0.2

0.4

0.6

0.8

1.0
A

bs
or

pt
an

ce

Wavelength (µm)

2.1018 cm-3

2.1018 cm-3 2.1018 cm-3

2.1018 cm-3

Small Barrier

No Barrier
High Barrier0.5.1018 cm-3

2.1018 cm-3

No doping

~ 13.9 µm~ 13.9 µm

5.05.0 0.92
ROOM TEMP

 
Figure 27 Schematic diagram of the effects of the electrons drift and tunneling to the 

NIR and LWIR, respectively, due to the high doping concentration of the con-
tact layers. 

 

Due to the difference in potential between layers, the electrons from the highly 

doped surrounding contact layers can diffuse into the NIR quantum wells (indicated in 

Figure 27 by the “curved” double red arrows), populating these wells with electrons, al-

lowing the intersubband transition around 13.9 µm . Also, the electrons can tunnel 

through the AlGaAs barriers to the LWIR quantum wells (indicated in Figure 27 by the 

“curved” single red arrows), increasing the carriers’ populations in those layers. With all 

quantum wells having nearly the same electron concentration, the strength of the transi-

tions is directly proportional to the thickness of the layer and the transition wavelength. 

This explains the enhancement of absorption peak strength with increasing wavelength. 

 Those effects are undesired since they will contribute to increase in the dark cur-

rent due to the high probability of thermoionic emission from shallow wells. One ap-

proach to avoid that in future designs is to reduce the contact layers doping concentration. 

In addition a p-doping in the bottom layer would make a p-i-n structure which depletes 

electrons in the NIR quantum wells, eliminating the probability of intersubband transition 
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there. This approach was used in the InP-based QWIP design, as discussed in Section 

III.E.2.  

The absorption coefficient, α , can be obtained, for each band, given that the ab-

sorptance, A, is [11] 

 ( )10log wgLA e α−= − , (4.1) 

where L is the path lengh through the quantum wells, represented by 

 ocos(45 )wgL nNL= . (4.2) 

Here, n is the number of quantum wells in each pass, N is the number of passes and L is 

the well period. The absorption coefficient of the sample was computed and compared 

with the theoretical calculations as shown in Figure 28. 
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Figure 28 Comparison between the estimated and the measured MWIR and two LWIR 

absorption coefficients. 

 

The blue curve is the estimated absorption using Equation (2.66) and 

20 meVΓ = . The red curve is the estimated absorption considering the effects of the dif-

fusion and tunneling discussed above as well as using the measured broadening parame-

ters. The uncertainties in the estimation of the absorption coefficient are several; how-

ever, it is possible to have an idea of the general behavior. Notice that in Figure 28 the 

red curve is shifted from the black by almost the same amount in all bands.  
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On the other hand, the estimated peak positions are within 0.3 µm  of the meas-

ured values, which indicates the model gives good description of the absorption. A better 

visualization is possible, comparing the normalized curves, as shown in Figure 29. 
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Figure 29 Comparison between the estimated and the measured MWIR and LWIR nor-

malized absorption. 

 

The FTIR measurement did not cover the NIR region due to the limitations on the 

equipment. However, the detection in this band can be characterized after the devices’ 

fabrication through the responsivity measurement.  

The absorptance measurement was important to confirm the MWIR and LWIR 

detection bands. Also the differences between the estimated and the measured absorption 

peaks can be used to refine the low temperature material parameters and design the opti-

mized light coupling gratings. The recomputed low temperature absorption peaks are 5.0 

µm and 8.5µm . This is important because the grating acts as a narrow bandpass filter 

and, if not well tuned with the absorption peak wavelength, it can degrade the 

photodetector performance. The optical coupling design is addressed in the following 

section. 
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B. OPTICAL COUPLING 
As mentioned in Section II.A.6 and confirmed by the results showed in the previ-

ous section, the selection rules state that intersubband absorption cannot occur in sym-

metric structures, for TE mode incident radiation. In practical devices, detection of nor-

mal incident IR is desired. In this design it is required. The most efficient way, that has 

been reported [29] [30] [31] to overcome this selection rule, consists in etching diffrac-

tion gratings on the top of the device. Several configurations have being reported and the 

most common are: random grating [29], when pattern uniformity is the main goal (impor-

tant for arrays); corrugated grating [30], when multi-band detection is the priority; and bi-

directional ordered cross grating [50], when one band detection is desired. The later con-

figuration is simpler than the others, in terms of fabrication, and it has shown potentiali-

ties for multi-band detection [55]. Therefore, bi-dimensional ordered grating was chosen 

for our GaAs-based QWIPs, to be implemented in two different patterns, one maximized 

for LWIR and other maximized for MWIR. 

A thorough theoretical analysis is given in [55]. It is concluded there that the cou-

pling efficiency is very sensitive to the grating period and the dimensions of the cavities. 

Several fabrication limitations, such as smallest possible dimension and precision in etch-

ing, compel us to employ a non-optimum grating with a simpler architecture [29]. 

Although the two grating parameters are dependent on each other [55], they are 

treated separately here without disturbing significantly the final result [29]. First the grat-

ing period is analyzed, followed by the area and depth of the groves. The parameters are 

optimized for the detection bands and adapted to meet the fabrication limitations. 

A schematic diagram of the diffraction grating in a quantum well device is shown 

in Figure 30. There, the substrate, contact layers, a quantum well stack and a metal layer 

are sketched exactly as they are placed in actual devices. The dimensions are off-scale to 

better show the beam paths.  
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Λ
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Figure 30 Schematic diagram of the diffraction grating  

 

In the figure S represents the groove width, h represents the groove depth, and 

Λ represents the period of the grating. The backdiffracted beam angle of the ith order is 

given by the classical grating equation [56] 

 sin sinD
n i

r

n
n
λθ θ+ =
Λ

. (4.3) 

Here iθ  is the incident beam angle with respect to the normal, n is the diffraction order, 

and nr is the refraction index of the material. Consequently, for normal incidence the dif-

fracted angles exhibit the following dependence on the grating period: 

 arcsinD
n

r

n
n
λθ  

=  Λ 
. (4.4) 

According to Equation (4.4), the maximum first-order broadside diffraction oc-

curs when the grating period has the same size of the incident wavelength inside the ma-

terial. Hence, the optimum value of Λ  is 

 op
rn

λΛ = . (4.5) 

Figure 31 shows the first- and second-order diffraction angle dependence on the grating 

period, normalized by the wavelength inside the material. 
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( )rnλ
 Λ 
 ( )rnλ
 Λ 
   

Figure 31 Variation of the first and second order diffracted angles with the normalized 
grating period.   

 

The high sensitivity of the diffraction angles with the variation of the grating pe-

riod is clearly shown in Figure 31, mainly for periods smaller than 1.5λ . This becomes 

important when the desired precision in fabrication cannot be obtained. Using 

3.27GaAs
rn =  in Equation (4.5), the optimum grating period for MWIR (peak at 5.0 µm ) 

and LWIR (peak at 8.5 µm ) were determined as 1.5 and 2.6 µm , respectively. The next 

step is to determine the area and depth of the groove. 

The refraction grating can be viewed as two surfaces where one is retarded rela-

tive to the other by a distance h, the groove depth. If one surface area is u times smaller 

than the other, the area duty cycle turns out to be 1 (1 )u+ . Using the same classical 

analysis used to compute the interference pattern of a Fabry-Perot etalon [56], the optical 

difference path, g∆ , between two beams reflected by the two surfaces can be expressed 

as 

 (1 cos )g rn h θ∆ = +  (4.6) 

where θ  is the angle between the diffracted beam and the normal (see Figure 30). Con-

sequently, the electric field, proportional to the sum of the two beams can be written as 
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 ( )gik x ikx
gF e ue+∆∝ +  (4.7) 

where k is the wave vector and x is the arbitrary distance in the direction of k. The inten-

sity is proportional to *g gF F  and can be represented by 

 2(1 ) 2 cos( )g gI u u k∝ + + ∆ . (4.8) 

An optimum grating is the one that minimizes the back reflection ( 0,  when 0gI θ→ → ) 

and maximizes the broadside reflection ( 90 )θ → D . 

On one hand, when 0θ = , the optical path difference reduces to 

 2g rn h∆ = , (4.9) 

and Equation (4.8) can be rewritten as 

 
2(1 ) cos(2 ) when 0 .

2 r
u kn h
u

θ+ = − = D  (4.10) 

Since u represents a positive quantity and the left side of Equation (4.10) must be in the 

interval ( 1,1)− , the only possible value for u is one ( 1opu = ), indicating that the projected 

area of the cavity openings should be one half of the total projecting area. Therefore, it is 

possible to determine the optimum value of h. This result is expressed as 

       0,  1, 2, 3, ... 
4 2op

r r

h n n
n n
λ λ= + = . (4.11) 

Figure 32 shows the back-reflected intensity due to grating effects. The parameters u and 

h are normalized by their deduced optimum values.  
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Figure 32 Intensity back-reflection due to diffraction grating. 

 

It is rather interesting to observe the behavior of the backreflected intensity when h is 

varied. Figure 33 shows this dependence for the MWIR and LWIR detection peaks along 

with the GaAs QWIP layer structure.  
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Figure 33 Dependence of the grating backreflected intensity on the cavity depth. The 

GaAs QWIP layers were placed right below the graph to compare the depth 
relative to the actual device. 
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In Figure 33, the optimum points for LWIR detection are points 3 and 7 and for 

MIWR detection are 1, 4 and 6, indicated by arrows. Points 2 and 5 are the best choices if 

a single grating would be applied for both bands. Due to fabrication limitations, the grat-

ing must be etched from the top of the wafer, while the sample is flat (i.e., before etch-

ing). Consequently, for LWIR the h value corresponding to point 1 should be selected. 

For MWIR, point 1 is intuitively the best choice; however, to be able to read the photo-

current for each band separately as indicated in Figure 7, the grating cavity must reach 

the second (from the top) contact layer in order to make contact and allow an independent 

readout. As a result, the only choice that maximizes LWIR is an h corresponding to point 

6. This situation is depicted schematically in Figure 34. 
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Figure 34 Schematic diagram of the grating configuration to allow three separate photo-

current readouts. The vertical is exaggerated for visual purposes. 

 

An important factor that must be considered is the etching tolerance. Since in both 

points, 3 and 6 are very close to the respective quantum well stacks. Therefore a small re-

duction in the grating deepness should be considered in order to assure that the cavity 

will not reach the quantum wells, even though the grating efficiency degrades. The opti-

mum and the selected values of h are in Table 3 in the end of this section. 
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To complete the grating specifications, the horizontal dimension of the cavity, as 

well as the distance between them must be computed. Figure 35 shows a schematic dia-

gram of grating pattern. There, 1A  and 2A represent the area to receive the grating pattern 

and the groove area, respectively, and x is the distance between grating squares, called 

the critical dimension (CD). 
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Figure 35 Schematic diagram of a bi-dimensional ordered grating pattern. 

 

Considering that 1opu = , the relationship between the areas 1A  and 2A , depicted 

in Figure 35 is 

 1 22( )A NM A= . (4.12) 

Using Equation(4.12) and after some algebra, the expressions for the dependence of the 

remaining parameters with relation to the grating period is given by 

 

 
2

S Λ=  (4.13) 

and 

 0.29x = Λ . (4.14) 
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Having the grating period previously calculated, the remaining parameters were com-

puted and the results were summarized in Table 3. 

 A restriction to the grating design is the minimum dimension that can be achieved 

during fabrication stage. Based on the limitations discussed in the next section, the mini-

mum feature allowed in this design was set as 1µm . The grating horizontal parameters 

were recalculated for 1 µmx =  and the results are presented in Table 3. This imposes dif-

ferent losses in efficiency for each detection band as can be predicted using Figure 33. 

 

Table 3 Grating parameters of the GaAs sample. (All units are µm ) 

 Optimum Feasible (tolerance = ± 0.1µm ) 

 Λ  S x h Λ  S x h 

MWIR 1.5 1.1 0.45 1.91 3.4 2.4 1.0 1.8 

LWIR 2.6 1.8 0.75 0.65 3.4 2.4 1.0 0.6 

 

 The grating design was an effort to allow the normal incidence detection for the 

QWIP devices. It was not an isolated task, since it is very dependent on the fabrication 

processes and the configuration of the devices. Actually an iterative work was necessary 

to adjust the grating to the devices and the devices to the grating fabrication possibilities. 

Although the parameters that maximize the detection on each band were degraded from 

their optimum values to make the devices feasible, normal incidence detection still can be 

achieved for both bands. 

 

C. DEVICES FABRICATION 
The ultimate goal, after extensive work was to fabricate the photodetectors in or-

der to execute the performance analysis for each band separately. The device fabrication 

sequence, procedures, rules, and limitations must be considered at the very first steps of 

heterostructure design. Initially, the knowledge of the processing possibilities and con-

straints can determine the thickness of the contact layers, the addition of stop-etch layers 
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in the structure, and even the sequence of the quantum well stacks. Lastly, the devices’ 

shapes and configurations are strongly dependent on the processing issues. 

Our devices will be fabricated by the National Research Council in Canada and 

their characterization is left for future work due to lack of time; however the photodetec-

tor configurations were defined and the mask layouts were drawn, based on the following 

requirements: 

a. The mask plates should have the dimensions of be 4x4 inches (limited 

by the mask aligner). 

b. The useful area of the masks cannot be grater than 44x26 mm (limited 

by the aligner) 

c. The smallest feature permitted in the mask is 1.0 µm  (limited by the 

mask fabrication costs and plate dimensions). 

d. The grating patterns should be applied on the top of the wafer, while the 

surface is still flat enough. Consequently the grating etching should be 

the first step. 

e. The devices should be grouped in not more than 4x4 mm (limited by the 

package). 

f. The contact areas should be not less than 50x50 µm . This is a limitation 

imposed by the wire bonding equipment. 

 

In addition, considering the necessity of three separate readouts and 2 grating pat-

terns, the general processing sequence was defined [57], simulated using MEMS Pro v5.0 

licensed for NPS. The results are shown in Figure 36. 
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Figure 36 Photodetector devices fabrication sequence. 

 

Finally, to be able to test several properties of the QWIPs such as three color de-

tection, normal incidence detection, effects of contacts in long pixels, detection uniform-

ity, effect of the bias in the detection band, grating pattern effect on the other band, and 

polarization and angle of incidence effects during the characterization phase, different 

photodetectors configuration were designed. Figure 37 shows the basic detectors.  
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Figure 37 Photodetector devices configurations. 
 

For practical reasons, the fabrication was divided in two phases. In the first phase, 

devices without gratings will be fabricated and in the second phase, after the preliminary 

tests, the devices with a grating pattern will be fabricated. However, to fit in the research 

budget, only two masks accommodating all layers necessary for both phases will be fab-

ricated. The first mask is clear field with the features in chrome, for the mesas etching. 

The second mask is dark field with the features clear, for the grating patterns and metal 

layers.  

The characterization of the devices will be carried out by SRL and the results will 

be published in future work. 

 

This chapter presented the characterization of the GaAs-based QWIP sample, 

showing absorption on the desired bands and some effects of the doping and band struc-
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ture of the sample. The results were important as feedback for the next designs. Having 

the structures tested and working, the optical coupling was designed for the optimum 

normal incidence detection. Limitations on the fabrication forced the final patterns to be 

away from the optimum points, but not compromising the overall proof-of-concept. Fi-

nally the photodetector devices were designed to permit the measurement of the figures 

of merit and several other effects. Despite the limitations, the design methodology de-

fined during this research and the experimental results show a great potentiality of this 

approach, addressed in the conclusion chapter. 
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V. CONCLUSIONS 

The realm of QWIP design is very extensive [28]. The advances in material sci-

ences and semiconductor growth technology have allowed the use of bandgap engineer-

ing to cover, ideally, all IR bands [5]. Specifically in the area of QWIPs a great effort was 

made in the past 20 years to make those devices commercially available for several appli-

cations. High sensitivity, high selectivity, and multispectral detection capability are some 

of the properties of quantum well detectors that make those devices very attractive for 

military applications. The possibility of combine NIR, MWIR and LWIR in a single de-

tector, motivated the work described in this documented in this text. The successful ac-

complishments along with the lessons learned and the future possibilities are discussed in 

this chapter.  

 

A. FINAL CONSIDERATIONS 
The purpose of this thesis was to study, to model, and to design a QWIP capable 

to detect three different IR bands within the wavelengths intervals of 0.9-1.4 µm , 3.8-5.0 

µm  and 8.0-12.0 µm . This objective was accomplished through the following steps. 

In the first chapter, the background theory was organized in order do physically 

explain the quantum effects in semiconductor heterostructures that make possible the IR 

detection. The envelope function approximation was used to mathematically model the 

electron behavior under the influence of the band-offset and charge distribution poten-

tials. The one-dimensional Schrodinger’s equation was used to obtain the confined en-

ergy levels and their respective wavefunctions. The transitions between different states 

due to the incident IR radiation were identified and studied. The absorption coefficient 

was modeled for interband and intersubband transitions, and the strength and selection 

rules were identified. The effects of the electric field were also included in the mathe-

matical models. The mechanisms of extraction of the electrons from the wells and leads 

to a photocurrent were also studied and modeled. After that, the main figures of merit, 

necessary to set requirements and to analyze the QWIPs performance were discussed. 
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The second chapter brings the practical design implications and procedures. The 

semiconductor material properties along with their availability were considered and two 

main material groups were selected to be used. GaAs/AlGaAs/InGaAs system showed 

easy in growth and fabrication while InP/AlGaAs/AlInAs system was capable of meeting 

the requirements for detecting the desired NIR band. A configuration of three uncoupled 

quantum wells stacks, one stack for each band, placed between highly doped contact lay-

ers, showed to be more suitable to allow separate readouts of the signals.  

Considering the specificities of the configuration and materials, a computational 

tool was developed to solve self-consistently the Schodinger-Poisson equations for the 

structure. The shooting method was implemented due to its ability to handle any potential 

profile, necessary feature for QWIP designs. Finally, a GaAs based sample for three color 

detection, and a InP based sample for two color detection, were designed, taking into ac-

count the limitations on each configuration. 

The GaAs sample was fabricated using MBE and the absorption measurements 

were presented in the fourth chapter. An FTIR spectrometer was used to measure the 

room temperature absorptance of the MWIR and LWIR bands, and the sample showed 

absorption in good agreement with the design predictions. Also the heavily doped contact 

layers introduced a second LWIR absorption band. The measured peaks, 5.3 µm , 8.7 µm  

and 13.8 µm  varied less than 0.3 µm  from the predicted values mostly due to the uncer-

tainties in the material parameters.  

The optical coupling structure was then designed to allow detection of the nor-

mally incident radiation. A bi-dimensional ordered grating pattern was selected and opti-

mized separately for both MWIR and LWIR desired peaks. Constraints in mask fabrica-

tion and wafer processing forced the degradation of the grating performance, to make it 

feasible. Finally the photodetector device configurations were designed, to permit to per-

formance analysis. The fabrication and characterization of the prototypes are matter for 

future work. 

Despite the financial, temporal and technological limitations, normally present in 

any research, the objective of this thesis was successfully accomplished. However, fur-

ther work needs to be done to finalize the devices’ fabrication and testing and to improve 
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the mathematical models and the numerical algorithms to be able develop optimal detec-

tors. This is summarized as follows. 

 

B. FUTURE WORK 
The natural follow-on task of this research is the GaAs-based devices’ fabrication. 

The designed configurations allow the analysis of the NIR absorption, through the photo-

current spectroscopy. In addition, figures of merit can be analyzed along with several ef-

fects such as: MWIR and LWIR grating efficiency, MWIR grating influence in LWIR de-

tection, LWIR grating influence in MWIR detection, uniformity of grating patterns, inci-

dent radiation polarization effects, direction of incidence effects, etc. All the results can 

be used to optimize the design methodology and models to improve the design accuracy. 

Another important aspect is the characterization of the InP-based sample. Since 

that design incorporates modifications induced by the feedback of the GaAs sample 

measurements, this would be the natural way to test and validate the new approach. 

In addition, the models’ weakness and points of improvement identified in the 

text can be summarized as following: 

a. The numerical computations were done considering the valence non-

degenerate with respect to the heavy and light holes’ bands. The sim-

plest way to include the degeneracy effects is to solve numerically the 

4x4 k pi  Hamiltonian described in Equation (2.16) to obtain the valence 

band confined levels. 

b. The heterostructure electrostatic potential was computed without ac-

counting for the strain effects. This can be included in the model follow-

ing the approach discussed in [53]. 

c. The absorption coefficient for interband transitions were computed only 

for the TE mode. The TM absorption can be included using a more rig-

orous approach suggested in [24]. 
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d. The Stark shift, included in the absorption coefficient algorithms was 

not properly verified against experimental results. This can be done 

along with the GaAs-based devices’ responsivity measurements. 

e. The photocurrent as well as the figures of merit estimation should be in-

cluded in the computational tools. The mathematical models can be re-

fined after the GaAs-based devices characterization. 

 

Finally, the work done through the models, computational tools and design ap-

proach discussed in this thesis, corroborated by the experimental results, can be itera-

tively improved by fabrication and characterization of new devices.  
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