Technical Report

Department of Computer Science
and Engineering
University of Minnesota
4-192 EECS Building
200 Union Street SE
Minneapolis, MN 55455-0159 USA

TR 03-032

MPI-based Adaptive Parallel Grid Services

Lakshman Abburi Rao and Jon Weissman

August 26, 2003

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display acurrently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
26 AUG 2003 2. REPORT TYPE _
4. TITLEAND SUBTITLE 5a. CONTRACT NUMBER

MPI-based Adaptive Parallel Grid Services £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Army Resear ch L aboratory,2800 Powder Mill REPORT NUMBER
Road,Adelphi,MD,20783-1197

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

seereport

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18 NUMBER | 19a NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 13
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

MPI-based Adaptie Paallel Grid Services

LakshmanAburi Rao ad bn B. Weissman

Depatmentof Compuer Scienceard Engneeing
University of Minnesota, Twin Cities
(jon@csumn.e&lu)

Abstract

This report preents the desgn and implemendtion of an adiptive MPI implmentation (@deptive-
MPI) that dlows anMPI applcation to adapt to respondto changing CPU awilability. An adptive MPI
application @n gart soong with fewer procesors, opportunistically add processas later shoud they
becomeavaiable andreleaseprocessas to awid supenson shauld theresouice owrer take them bak.
The bénavior of adgptiveMPI is wel-suited to the ungredictable and dynamic nature of the Grid. We
presertsresults that indicate the systems eerhead of adagive MPI is smal, andthat performanceberefits

in terms of reducad waiting time and educed completion time can be achkied ©lative to taditional MPI.

1.0 Introduction

The Message Pasng Interface MPI) is pehaps he most widely adbpted paallel progamming
standad andhas besn impkemerted on a lage variety of paallel machinesfrom clugers o pall el super-
computers [10]. The central abstraction within MPI is the commuiicator, a gructure that maintains the set
of (potentially) communicating processes. In standard MPI, the communicator is stic and established
when the MPI program i launchedon afixed st of processors. The static naure of MPI programsplaces
two limitations on them: (1) when a node fails, the communicator fails, and the gpplication must be
aborted and @) resource alocaion issetatthe beginning oftheprogam and camot be ctangel. Inretro-
sped, theseproperties ae rea®nable onreliable, dedcaed, pasgllel machne platforms.In nondedcaed
compuing environmens with more dynamt resouce shaing, eg. Comptational Grids [6][7], or dektop
cycle steaing [9], a more dynamic programmning mode is beneficial. In this paper, we preentthe design

and implemenétion of a more dynamicMPI that doesna suffer from these limitations Ou dynamic MPI

1. Thiswork was tinded in pat by the Dertmert of Enegy DE-FG02-03ER25554 ard Naional Science Foundition NSF-
0305641.

maintains the stardard MPI library interface but allows MPI programs to be more adaptive to their envi-
ronmen. In paticular, they can recmve from nock failure and # ow proces®rs to bedynamicdly added or
removed while they are runring. Theberefits of adgtive-MPI arethree-fold: (1) the &dility to opportunis-
ticdly add resourcesif they beeome awailable, (2) the alility to releag resurces to pevent preamption
should ahigherpriority job require a subsé of its resaurces, and(3) the ability to cortinuerunning in the
faceof nodefailure. Thealility to acquire resourceslater also hasthe sde-effed of allowing jobsto start
ealier ance hey neal notwait for a “full allocaion” atthe start. We coud have opted b design abrand
new paralel programming modeltha suppoted adativity as a coe alstradion am ended up wih a
cleanermodé. Howeve, the devdopmentof anadative MPI canimmeditely impad the large numbe of
legacy MPI apgicatonsalready written. An adgtive MPI can dso promotemoreefficientsdeduling d
multiple MPI jobs [12], and more efficient exeaution of MPI-basel parallel network services [8]. Other
approactes b adapive MPI have beenproposedsuch asAMPI [2], but these schemes generally refer to
dynamic load bakndng within a set of siatic proessesor are limited to thread-level adapttion [3], or are
limited only to fault recovely [1][4]. We are unaware of an MPI implemenétion that can dynamicdly add
or remo\e resources atruntime.In prior work, we have established the costs and benefits of adapta-
tion for non-MPI parallel applications[11].

In this pager, we desribe he deggn and impkemengtion of adgtive-MPI, andpeformanceresuts
for anillustrative MPI appicaton, aJaobi iterative lver. In addtion, in a Clugered-Grid envronment,
MPI may na be unning by déaut, and may equire on-demandlaunching whenan MPI application is
submitted for execution. We preserts results that compare the cost of on-demandyvs. predinstantiation of
our MPI infradructure. We also presaent results for the cost of MPI adativity atthe sygem-level, i.e.add
ing andremoving praessors from the MPI ring. Overdl, theresults demostrate that acipive MPI can
promot low latency (i.e. amal wait time)andhigh performance(i.e reduced finishing time) a acceptable
cost.

2.0 Adaptive MPI Architecture

We hawe developed an adptive MPI arditedure that allows MPI applicaionsto have resouces
dynamicaly adced and removed (Figure 1) We hawe sarted with animplemenétion of MPI called Fault
Tolerant MPI (FT-MPI) [12] as ts more modubr desgn endled ou changes © be essily integrated. h
paticular, addng suppat for dynamic communcaors wasvery sraightforward. Our adapive-MPI intro-
ducesseveral new camponerts, oneinternd to MPI call edthe watchdog and the other external, cdled the
resource mana@r. The resouice manage malkes dedsionsalout resouce availability. How the resaurce
mareger makes sich desisions, dscovers new resouces, kes awg resouces, is ouside the MPI model

At present, it geneatestwo adgtive everts, add_resource andrelease_resource . The® ewens

are propayaked tothe wathdog praes that is started when theapplication is submited. Thewatchdogis a
separate processthat recavesadapive everts dong aTCPconnetion ard delivers themto the application

via Urix signalsz.

RESOURCE MANAGER

APPLICATION INTERFACE

RESOURCE
MANAGER

ADAPTIVE LIBRARY

Zo-+4>0-rvv>
0oUTOA>S

(a) Layered View (b) MPI comporents

Figurel: Adaptive MPIArchitedure.

When anadaptive event is generated to the goplication, the MPI appli cation must detectthe evert and
respond ina mannethat isspedfic to the apglication. In paticular, the apgicaion mug perform any nee
essary data distribution to rebalance the applicaion. However, the adaptive-MPI automaticaly spawns
new processes(if the evert is add_resource), and dyramically adjusts the caonmunicator to accourt

for newly ariving ordepaiting rodes(Figure 2.

Adding
processesors ?

Removing
processors ?

Analyze the
adaptation event

i)

Spawn the application Gracefully release
onto incoming processors the outgoing processors

l)

H k t I h ifi H k t
‘ S data ditbution) F aﬂi)hcaﬂon'SDGlelC—»‘ Yo data ditrbution) ‘

\)
)

Rebuild the comm unicator
(shrinks in case of removing processors,
expands in case of adding processors)

)

Recompute the ranks,size

Figure2: Adaptationlogic.

2. Future optimizaionsincludeathreaced wathdogard the use of shaed menory communicaion.

The dynamics of the ddfault communicator MPI_COMM_WORIi¥shavn for procesor addition and
remova (Figure 3. Before the communicaor is modified, the goplication must respondto the adaptive
eventand redistribute ary dat for load alance

A1

RESOURCE | | RESOURCE
MANAGER MANAGER

“

Figure 3: Dynamicsof the Communtabr.

To illustrate Adaptive-MPI in action, we use a canonicd Jacobi sdver in which the grid is decom-
posedby row to the séected pocessas. Initialy the grid is on dik anddecompaedaaoss 4 pocesors as
shown (Fgure 4). When an adaptive eveat ocaurs, al processes write back ther updaed patition of the
grid to disk in a syrhronots fashion at he sameteration (Figure 5). After the commurgator is repaired
(in this caseto adda processa), the shves restart by retrieving their newly updded patition of the grid
from disk reflecing the new number of procesrs (in this case 5). An alternative and more optimized
adaptation mechanism would allow the slaves to communicate the updated partition directly using
messages, rather than through the disk. However we stow that even with alessopimized impemerna-

tion, the owerthead of acapivity are easily managed.

;

pppppppp N

DATA i 2\
s [SO
999 799
. 1

i~

Qo
~——799
T

7 ~—1599

@@

~—3999

Figure4: Ja®bi Exampe.Data distribution

Paraneters. number of proceses, appication size, equired number of iterations.
1. Initialize MPI. Compute Raks & Size d the canmunicator.
2. Checkif this proces is creded byanadaptatiorevent.
2a.lf yes, receiwe piece ofthe problemfrom the reighboring proceses.
Else receiwe piece ofthe problemasinput from the user.
3. Iterate until dne
4. theckfor adaptatiorevents from the Watchdog or if adaptation has tdbe done in this iteration.
4a. Ifyes, goto geps5 Else go to gep-15.
5. Checkfor adaptatiorevents from Watchdog
5a. If yes, communicatewith neighbors Find nex posside neaest itegtion in future for adaptation.
Go b step-15.
Els this is adaptiwe iteration Ched if removing processas. If yes, go to step-6. Elsegoto step-11.
6.Write piece othe problen that hasto be disributed (if any) onto the disk.
7. (heckif | (this proces) have to exit.If yes, Exit my Watchdog then Exit mysef.
8. (heckif | am the top praces (rank= 0). If yes, cal MPl _Renove_Pr ocessor s (number)
9. Rebuild the canmunicatbr. Reconpute Ranks & Size.
10.Get ny new piece ofthe problernfrom the dik. Go to $ep-15.
11.Write the piece othe problenthat has to bedigributed orto the dik. /*Adding Processors */
12.Checkif | am the op pioces (rark = 0). Ifyes, cal MPl _Add_Pr ocessor s (humber).
13.Rebuild the canmunicaor. Reconpute Ranks & Size:MPI_Comm_Dup/Rank/Size/ (...);
14.Get ny new piece ofthe problen(if any) from the disk.
15.Communicatke to/from neighbors /* From here usual Jacobi*/
16.Compute local dat dormain.
17.Perform convergerce deckperiodicaly.
18. End iterate.

Figure5: P=ud-code br adapive-MPI version of Jacobi. Cals provided by alapive-MPI shavnin
courier.

3.0 Results

Our adcapive-MPI infrastucture wasdegoyed a a shaed netvork of 10 UltraSPFARCs (lle - 502
Mhz, 512 MB RAM, and lli - 333 Mhz, 18 MB RAM) all ruming Sokris 5.8 conrecedby 100 Mb eth-
ernet. The first queston we examined wa the basc overheals inherent in adative MPI at the g/stem
level. This includesthe adding and removing of proces®rs and proceessesard rebuilding internal daa
structuressuchasthe coommunicator (Table 1). In these experiments, weasumethat the MPI infragructure
is already runnng. Reluilding thecommunicata canbe exgnsve asit requiresnetwork communcaion.
Adding a pocesshas an adlitional cost, anappicaion-level process mus be creded via fork-exec
The curent systemis notfully opimized aghe addition orremovd of multiple piocesse atthe same time
is esentially serializedreallting in added overhead Tha is, asead processis addedor removedthe com-

municaor is rebuilt. In spte of this, the benefits of adaptation we sill be demongrated.

One d the motivating environments for future experimentation is the Grid and the ability to launch
MPI “on-demand” is something that we aso suppot (Figure 6). For on-demand,we shav the st of
bringing up MPI (but not ary applicaion proceses. This cost consegts of bringing up the undedying MPI
server daemonviassh . The ost of ondemand instaniation of MPI is low becaisethe startup piocedure

bringsup the deemonsin paalel ard there is no neal to rebuild the communcaor (Table 2). The st of

Architecture of On-demand Infrastructure Setup

oooooooooooo

Figure6: On demand Infrastructure.A barrier is formedto ensure that all M Pl daemons are launched
an running before the application is initiated.

ondemand a@piation can be ppraximated by simply adling up corespording cels from bath tables.For

exampk, he sydem mst of anon-demam addtion of 8 pocesrs to a munning MPI application woud be

approximately 27.7 + 1.5= 292 se. With mog paadlel jobs unnng in the 100s range or more on

demand eeaution is definitely viable.

To evaluate the peformane of adative-MPI from theperspedive of the appicaion, we deignel

two adapition modds and @plied them b the modified Jaobi applicaion. The first model modéd-1 is

largely syntheic andusedto meaure the coss and fenefits d opportunistic adapation (only adding pioc-

essors) to an MPI application. The second model mockl-2 is more realistic and uses measured workstation

tracesto drive to placementof adatation events, boh adlition and emovd. Using thesemodels, we then

compae adpive-MPI to a satic MPI thatis unable to adaptto changing resaurce availahility.

Table 1: Cog of AddingandRemoving

Table2: Cod of On-Demarnl Exeation

of processors cost (sec)

1 32

44

64

83

99

12

14

15

OO N0 | B~ WIN

18

Processor s
cost of cost of
adding removing
of processors (sec) (se0)
1 17 .8
2 36 2.0
3 59 3.3
4 8.7 46
5 nzr 6.5
6 154 8.0
7 19.7 106
8 217 13.7

=
o

1.9

In modé-1, we asume hat a fixed se of resources be&eomesavalable atregular intervals throughou
the execution of he appicaton. Inthis pape we s¢ that interval to every 20 Ja&obiiteratons. At the out
set, two processorsare available and & additiond processor becomes avalable evely 20 iterations. With
adapive-MPI, the gplication is ale to start immediatdy and expnd asresources be&eomeavadlable. With
static-MPI, the gplication must either start and finishwith a smaller number of resources (2 in this case)
or wait urtil amore desreale nunber becmes available. Theresuts indicate that adapive-MPI can pro-
vide berefits for the appicaton (Hgure 7). The xaxs refers to the total nunber of proces®rs (TP) that
will evenually becomeaval able to the gplication. Forexampke, P=2 atiter=0, P=3atiter=20, .. P=TP at
iter=20*(TP-2)). At the first x-axis point, P=2 fr the erire expe@iment ard atthe net x-axis point P=2up
to iter=20 andP=3for the rest of the run, and 2 on. P=2 is abaslinefor this problem instane and proces

sor availability patem, andrepreent the worst-case rformance of siaticMPI. For the oher points,

Adaptive vs Static MPI Performance
(4000 x 4000)
2000
1500
time (secs) 1000 o G
adaptive (total time
500 = p ())
0 M static (total time)
2 3 4 5 6 7 8 9 10
no. of processors (p)
Adaptive vs Static MPI performance
(5000 x 5000)
3000
2500
2000
time (secs) 1500 - -
1000 @ adaptive (total time)
508 W static (total time)
2 3 4 5 6 7 8 9 10
no. of processors (p)

Figure7: Comparative Performance for modé-1: Adapive vs. $atic MPI. For Adaptive-MPI results
includeadagtation ovetheal. For Static-MPI results include wat time.

staticcMPI will wait for the number of processars thatwill evertually be avail able. Sofor P=3, static-MPI
will wait for 20 iterations (of red time) ard then run with P=3 for the ertire run, and so on. So as the X-
axis increases (1) static-MPI will incur greaer wait time and (2) adagtive-M Pl will incur greaer adapa

tion overhead due the nunbe of adatation evaits. This is the furdamertal trade-off. Theseresuts

deperd, of caurse, on the model of resouce availahility and the appication, butif the overhead of adapta-
tion is smaller than te wait time or if the bendit of adapaton ouweighsthe “cog” of ruming oone
with fewer resources then adgtation isa winnea. In many pagllel camputing ervironmerts, wait times

will dominate any adapition overhead [12].

In modé-2, we condder a more realistic network environment in which the MPI applicaion shares
resaurces dynamialy with other applications This moddl is mosttypicd of a cusker or workstation net-
work environment. In prior work, we used availability data from supercomputer workloads [5] but applied
to theproblem of pb scheuling adagive appicaions butin a smulation study only. We have analyzed 4-
day traces fom ourl10 wokstatons. A worlkstation was corsidered tobe awailable if the average badwas
bdow a cetain threshold (0.3) for duration of 5 minutes. In 3 of the 4 traces the initial pool size wa
smaller since long+unning CPUintersive locd jobs acupied 1 or 2 madines The results of the four

tracesis shovn (Table 3).

Table 3: Availability

Available # Available # Available # Available
(trace-1) (trace-2) (trace-3) (trace-4)
Time (min) | pool size=9 | pool size=9 pool size=8 | pool size=10
T 4 2 8 7
T+5 5 5 6 8
T+10 5 6 7 10
T+15 7 5 6
T+20 7 7 7
T+25 9 9 7
T+30 8 6 8
T+35... 9 9 8 10

We assune tha the vdue measuredat T+35 holds for the remainde of the application. Theadaptive-
MPI appication isrun attime T andadats according the resource avaliability in the tracesabowe. Fo
exampk, intrace-2, it would add 3 pocesorsat T+5 (2->5), butat T+25it would release 3 praesors (9
>6). In other words, we treatthe background jpbs & having geder priority in madel2. We alsoprovide a
more realstic model for apgicaion resouce requirements We benchmarked Jacob off-line b deermine
theideal of processas within our testbed of 10 macthines. We also sé a minimum rumberbelow which the
application mus be sispended. A minimum s nomally required to enforce other resaurce corstraints sud
as mamory. In our expeliments, we deemined the idealnumberto be 9 for most problem s$zes,andwe sd
the minmum tobe 2. Satic-MPI mug wait for the ided number of resouices tobegin exeution and f the
available resouces fal below the ided numbey it woud be suspende urtil the ideal number $ avdl able

again. Forexampg, in trace-3 theappicaton was wat until T+10 (when 10 ae awilable), is superded a

T+15 (Wwhen8 is awailable), andthen resumesat T+20 (when9 are available) andruns until completion.

This captures he ndion that static-MPI runs onafixed, typicdly pre-speified, ided numbe of resources.

The results indicate that adaptive-MPI far outperforms static-MPI in model2 (Figure 8. We hawe

Adaptive vs Static MPI Performance

6000

5000
- 4000
§ 3000 O adaptive (total time)
¥ Wideal (total time)
-E 2000 A

1000 +

0 , : :

1 2 3 4

experiments

Figure 8. Conparatve Peformancefor model2: Adapive vs SaticMPI. For Adative-MPI resuts
include aapation overhead For StaticcMPI results include wdt andsugpenson time. Adaptation
overhead is dashed lox atthe top d the adapive bar grgphs

boostd the rumber of iterationsto dlow the applicaion to run duing a racewindow @25+ minutes)to
erable adaptations to occur. The principle reason that adaptive-MPI is superior in this environment is that
in a $ared network, the wait and sispend imesfar exceal the st of adapation. Fo instane, consder
trace-l. In the ase of staic-MPI, orly 4 free pocessors are available atT ard 9 free processas (ided
number) are nd available for thenext25 minues. Sahejob must wat for 25 minues unil 9 are available.
Oncethe job starts attime T + 25, the ided number of processors are available only for 5 minutes. So the
job ha o suispend agin attime T +30, uril the ided numberof procesors becomeavalable orce ajain.
Whenthe idealnumberof procesors becomesavailable a timeT + 35, the job resumesdts exeation, and
finishesWith edaptive-MPI, the job neednot wait or stspend if the ided numbe of procesors are nat
avail able. It can start with the avail able processors if the available number of procesors is greder thanthe
minimumnumberof procesors. It can corsumethe proces®rs later as they becomeavailable. Thereisan
overheadin adapgtion, but we doseved the overhead to be vey smal compaed to the high wait and sus
pend times instatic-MPI for this appication and these traces. Itshould be noed that adative-MPI incurs
minimal addtional ovehead oer saticc-MPI unless a@pitions areneeded. Asingle conditiond statemen
is addel to tre main loop andaninitial extra praces isadded atthe outsd (this will be cowerted to a

thread in the nex version). Giventhe granukrity of MPI applcations tha we expet to bendit from adap

tive MPI (100's d semndsor more), this overheadis nat noticeable. Becaiseadapttion is an orderly proc-

ess (nlike fault recovely) no dhedkpoints ordaa movementare reeded uriess @apationsoccu.

In genem, it is beter to run onfewe resources(and male progress) then to wait for anideal numbe
of resources which may bespordicdly avalable. Ths kind of adapitionbecanes even moreimpottant in
a Grid. We believe that & programmers mowve onto the Grid, they would like b take their MPI programs
with them Even for spaceshared paallel machines there is a lage benéit to adgtation [12]. Cetainly,
the hidden cost is the need to provide adaptivity within the application and we are ultimately interested in
ways to reduce this burden Howe\er, the benefits areclea: the aility to addresouces oppatunistically
has obvous berefits for high peformane canputing, and the abiity to relea® resources toavoid sugpen

sion, also has merit.

4.0 Acknowledgements

This work was sippated inpart by the Minnesda Sugrcompuing Inditute and the Army Hich Per
formance Compuing Reseach Certer unde the awspicesof the Depatmentof the Army, Army Resarch
Laboratay cooperaive ggreemennumber DAAD19-01-2-0014 the cantent of which doesnotneessarily

refled the postion or the policy of the govemment ard no dficial endbrsementshould beinferred.

5.0 Summary and Future Work

We preseaited the design and implemenétion of an adapive MPI library that allows MPI appicatons
to dynamcaly adaptto changngresource avalability in ashaed environment, e.g.clusers or Grids. The
resuts establishedthat the baic costs of adgtation ae man@edle ard that real paformanceberefits can
beprovided to MPI applcatons. Adapitve MPI applcations neeal not wait for an icealor spesified numbe
of resouces asin traditional MPI, ard cantheaefore ahievedrediced latercy or wait time. Sieh aplica
tions can ako dotain additiond resaurces & runtime futherbooging peformance Findly, adapive MPI
applications can rdeaserelessesto prevent sugpersion if higher piiority usersor jobs engr the system.
This is paticuarly impottant for Grid compuing - local site aubnamy may require tat resources be
released to sdisfy locd users.

Future work includes gotimizations adgtive MPI whenmultiple proces®rs are addedor removed.
Currently theseare doneserially in the runtime library. We arealso investigating techniques to “inset”
adaptivity into MPI applications auomaticdly. Compil er-generated adaptive code and pre-built libraries
for common pedll el dat-structures are o avenueswe ae exploring. Finally, we are exploring the wse o

adaptive MPI as a basis for constructing adaptive paralel network services Such services can adapt to

10

concurent use demand by shaing resaurces ketween compeing requeds. The dility to dynamically add

and removeresouces is needed to support dynamic resaurce sharing in this environment.

6.0 Bibliography

[1]

[2]

(3]

[4]

(3]

6]

[7]

(8]

[9]

[10]
[11]

[12]

FT-MPI: http://icl.cs.utk.edu ficlprojects/source/ftmpi.htmi , 2002
AMPI: http://c harm.cs.uiuc.ed u/papers/AmpiSC02.html , 2002.

K. Shen,H. Tang,andT. Yang, “Adaptive Two-level Thread Maragement for Fast MPl Execution
on Shaed Memory Macdhines; Proceedingsof ACMIEEE SC'®, 199.

G Bosilca & d., “MPICH-V: Toward a Sdable Fault Tolerant MPI for Volatile Nodes,” Proceed
ingsof ACM/IEEE SC'02 20(®.

D. Feielsan, Paallel Workload Archive, http://www.cs .huji.ac.il/llab s/paral-
lel/w orkload/logs.ht m 1999

I. Foser and C. Kesslman, “Gbbus A Metacomputng Irfrastucture Toolkit,” International
Journal of upeicompuing Appications 11(2), 1997.

A.S.Grimshav ard W. A. WuIf, “The Legion Vision of a Worldwide Virtual Compuer,” Comnu-
nicationsof the ACM, Vol. 40(1), 197.

B. Lee and J.B. Wssman “Adaptive Reurce Schduling for Network Sewices," to appearin
the IEEE 3d Internatioral Workshopon Giid Computing, 2002

M.J. Litzkow etd., “Condor - a tunter of idle workstations,” In Proceadings of the 8th Interna-
tional Conkrence on Distributed Compuing Sysems, Juine 1988.
MPI1 2.0Standad: http://w ww-unix.mcs.anl .gov/mpi , 2002.

J.B. Weissnan, “Predicting andCost andBendit of Adaping Data Pawllel Applicaions n Clus
ters” Journal of Pardlel and Dstributed Canputing, 62@8), August2002.

JB. Weissma, D. Velegaleti, D. England andL. Raq “Integrated Sdediling: The Beg of Both
Worlds"in review for the Journal of Parallel and Distributed Compuing, 2002.

11

