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Abstract

Graph partitioning is an enablingtednology for
parallel processingas it allows for the effective
decompositiorof unstructued computationsvhose
datadependenciesorrespondo a large sparseand
irregular graph. Eventhoughthe problemof com-
puting high-quality partitionings of graphsarising
in scientificcomputationdgs to a large extentwell-
understood this is far from being true for emeg-
ing HPC applicationsvhoseunderlyingcomputation
involvesgraphswhosedegree distribution follows a
powekrlaw curve Thispaperpresentiew multilevel
graph partitioning algorithmsthat are specifically
designedfor partitioning sud graphs. It presents
new clustering-basedoarseningschemeghatiden-
tify and collapse togethegroupsof verticesthat are
highly connected. An experimentalevaluation of
theseschemeson 10 different graphsshowthat the
proposedalgorithms consistentlyand significantly

*This work was supportedin part by NSF EIA-
9986042 ACI-0133464 ACI-0312828and11S-0431135;
the Digital TechnologyCenterat the University of Min-
nesota; and by the Army High PerformanceComput-
ing ResearchCenter (AHPCRC) under the auspicesof
the Departmenbf the Army, Army Research._aboratory
(ARL) underCooperatie AgreementnumberDAAD19-
01-2-0014. The contentof which doesnot necessarily
reflectthe positionor the policy of the government,and
no official endorsemenshouldbe inferred. Accessto re-
searchandcomputingfacilitieswasprovidedby the Digi-
tal TechnologyCenterandthe MinnesotaSupercomputing
Institute. Relatedpapersare availablevia WWW at URL:
http://www .cs.umn.edu/ karypis

outperformexistingstate-of-the-arapproades.

1 Introduction

Graphpartitioningis anenablingtechnologyfor
parallel processingas it allows for the effec-
tivedecompositiomf unstructuredomputations
whosedatadependenciesorrespondo a large
sparseandirregular graph. Effective decompo-
sition of suchcomputationganbe achieved by
computinga p-way partitioningof thegraphthat
minimizesvariousquantitiesassociatedavith the
edgesof the graphsubjectto variousbalancing
constraintsassociatedvith the vertices[28, 9].
The simplerversionof the problembalanceshe
numberof verticesassignedto each partition
while minimizingthenumberof edgeghatstrad-
dle partitionboundariegi.e., arecutby theparti-
tioning). However, a numberof alternateobjec-
tives and constraintshave been deelopedthat
aresuitablefor addressinghe characteristic®f
differentapplicationsand/orparallelcomputing
architecture$12, 3].

Researchn the lastfifteen yearshasresulted
in anumberof high-qualityandcomputationally
efficient algorithms[28]. Among them, multi-
level graphpartitioningalgorithmg[2, 15, 11,4,
21] are currently consideredo be the state-of-
the-artandareusedextensvely.

One limitation of existing multilevel graph
partitioningalgorithmsis thatthey aredesigned
to operateprimarily on graphsthat are derived
from finite elementmesheqthey eithercapture



the topology of the meshor the sparsitystruc-
ture of the matricesdefinedon them). These
graphs,even thoughthey areirregular, they do

have somelevel of regularity. Specifically the

degreedistribution of suchgraphsis relatvely

uniform, which is a direct consequencef the

geometricconstraintf the underlyingmeshes.
This is becausen orderfor the numericalmeth-
odsto corverge meshelementsare requiredto

have goodaspectatios,which imposesanover-

all regularity onthegraph.

However, asthe field of parallel processing
expandsto include a numberof emeging ap-
plicationsbeyond scientificcomputing,applica-
tions have emeged whoseunderlyingdatade-
pendenciesare describedwith graphsthat are
significantly more irregular  One such exam-
ple arethe parallelexecutionof page-rank-style
computationsthat are typically appliedon ei-
ther web-graphsor other graphsobtainedfrom
varioussocialnetworks(co-authorshipgitation,
protein-proteininteractions,etc). The degree
distribution of thesegraphsfollows a power-law
curwe, in which the numberof verticesof a cer
tain degreedecreasesxponentiallywith the de-
gree.

As we will seein Section 3 these power-
law graphsimpose new challengesto multi-
level graphpartitioningalgorithms,as someof
the key algorithmsthat they employ for their
various phaseswere simply not designedfor
such graphs—causinghem to produce poor
quality solutionsand also require a relatively
highamountof time andmoreimportantlymem-
ory.

In this paperwe presennew multilevel graph
partitioning algorithmsthat are specificallyde-
signedfor partitioninggraphswhosedegreedis-
tribution follows a powerlaw curve. Our re-
searcHocusegrimarily onthecoarseninghase
of the multilevel paradigmand presentnew
clustering-basedoarseningschemeshat iden-
tify andcollapse togethegroupsof verticesthat
arehighly connectedWe presentwo classef
clusteringschemes. The first utilizes local in-
formationwhile trying to identify the clustersof

verticeswhereaghe secondclassalsoincorpo-
ratesinformationobtainedfrom a corenumber
ing, which canbe consideredas providing non-
local informationaboutthe graphsoverall clus-
terstructure We experimentallyevaluateourap-
proache®on a 10 differentgraphsobtainedfrom
varioussourcesand comparetheir performance
againsttraditionalmultilevel andspectralgraph
partitioning algorithms. Our resultsshav that
the proposedalgorithmsconsistentlyandsignif-
icantly outperformexisting approaches.

The rest of this paperis organizedas fol-
lows. Section2 provides somekey definitions
usedthroughoutthe paperand provides a brief
overview of the multilevel graph partitioning
paradigm. Section3 discusseghe limitations
inherentin the current multilevel graph parti-
tioning algorithmsand provides someillustra-
tive examples. Section4 providesa motivation
and detaileddescriptionof the new clustering
algorithmsdevelopedin this work. Section5
provides a detailed experimentalevaluation of
theseschemesndcomparethemagainstexist-
ing state-of-the-arlgorithms.Finally, Section6
provide someconcludingremarksand outlines
futureresearctdirections.

2 Background Material

Definitons ~ An undirectedgraph G = (V, F)
consistof a setof verticesV anda setof edges
E, suchthat eachedgeitself is a setof a dis-
tinct pair of vertices.Verticesu andv of an edge
(u,v) aresaidto beincidentto theedge.If there
arefunctionsf and/org thatmapeachvertex v €
V' and/oreachedge(v,u) € E to arealnum-
ber, thenthe graphis consideredo be weighted
with f andg determiningthe vertex- andedge-
weights,respectiely. Throughouthediscussion
we will assumehatthegraphis weightedandin
casedn whichtheoriginal graphis unweighted,
we assumehateachvertex/edge haaweightof
one.

A power-law graphis a graphwhosedegree
distribution follows a power-law function. More
preciselyafunctionof theform f = ad®, where
f isthenumberof verticeswhosedegreeis d and



£ < 0 (i.e.,anexponentiallydecayingiunction).
Thesegraphshave alarge numberof vertices
with verylow degreeandafew verticeswith rel-

atively highdegreeg[24]. Thesetypesof graphs
arealsoreferredto asscale-freegraphs Exam-
ples of suchgraphsinclude the Internetgraph,
instantmessengegraphs,biological networks,
andvarioussocialnetworks.

A partitioningof the setof verticesV into &
disjoint subsets{V;, V,...,V}} is calleda k-
way partitioning of V. Eachof thesesubsets
arecalledthe partitions of GG. A partitioningis
representedby a vector P calledthe partition-
ing vector, suchthat P[i] storesthe partition-id
thatthe ith vertex is assignedo. A partitioning
is saidto cut andedgee, if its incidentvertices
belongto differentpartitions. The edge-cutof
a partitioning P, denotedby £C(P) is equalto
the sumof the weightsof the edgesthatarebe-
ing cut by the partitioning. The partition weight
of the ith partition,denotedby w(V;) is equalto
the sumof the weightsof the verticesassigned
to that partition. The total vertex weight of a
graph,denotedby w(V') is equalto the sum of
theweightsof all the verticesin the graph. The
load-imbalanceof a k-way partitioning P, de-
notedby LI (P) is definedto be theratio of the
highestpartition weight over the averagepatrti-
tion weight.

Graph Partitioning Problem Formulation Three
distinctgraph-partitioningprroblemformulations
have beenusedto map computationsonto the
processoref a parallelcomputer Thesearethe
staticgraph partitioning, thegraph repartition-
ing, and the multi-constraint, multi-objective
graph-partitioning[14, 13, 28].

This paperprimarily focusonthe staticgraph
partitioning problemwhoseinput is a weighted
undirectedgraphG = (V, E). The weighton
the verticescorrespondo the (relatve) amount
of computationrequiredby the corresponding
meshnode/elementwhereasthe weight on the
edgecorrespondso the(relative) amountof data
(or communicationtime) that needsto be ex-
changedn orderfor the computatiorassociated

with vertex to proceed. The goal of the static
graph-partitioningoroblemis to computea k-
way partitioning P, suchthatfor asmallpositive
numbere, LI(P) < 1+ e andEC(P) is mini-
mized. In mostcases) < ¢ < .02 [19, 22],
ensuringthat the overall partitioningwill incur
at mosta 2% load imbalance.Staticgraphpar
titioning is usedto maptraditionalstaticsingle-
phasesimulationsontothe processorsf a paral-
lel computer

Overview of the Multile vel Paradigm The key
idea behind the multilevel approachfor graph
partitioningis fairly simpleandstraightforward.
Multilevel partitioning algorithms, instead of
trying to computethe partitioningdirectly in the
original graph, first obtain a sequenceof suc-
cessve approximationsof the original graph.
Eachone of theseapproximationgepresenta
problemwhosesize is smallerthanthe size of
the original graph. This processcontinuesun-
til alevel of approximations reachedn which
the graphcontainsonly a few tensof vertices.
At this point, thesealgorithmscomputea par
titioning of that graph. Sincethe size of this
graphis quite small, even simple algorithms
suchas Kernighan-Lin(KL) [23] or Fiduccia-
Mattheyses (FM) [7] lead to reasonablygood
solutions. The final stepof thesealgorithmsis
to take the partitioning computedat the small-
estgraphanduseit to derive apartitioning of
theoriginalgraph.Thisis usuallydoneby prop-
agatingthe solutionthroughthe successie bet-
terapproximation®f thegraphandusingsimple
approacheso further refinethe solution. Since
thesuccessie finer graphshave moredegreesof
freedom,suchrefinementamprove the quality
of theresultingpartitioning.

In the multilevel partitioningterminology the
above processis describedin terms of three
phases. The coarseningphase in which the
sequenceof successiely approximategraphs
(coarse) is obtained, the initial partitioning
phase inwhichthesmallesgraphis partitioned,
andtheuncoarseningand refinementphase in
which the solutionof the smallestgraphis pro-



Co
¥
=

o)

Initial Partitioning Phase

Coarsening Phase

aseld juswaulyay pue Buluasreosun

Figurel: Thethreephaseof the multilevel graphparti-
tioning paradigm. During the coarseningphase the size
of the graphis successiely decreasedDuring the initial
partitioningphasea bisectionis computedPuringtheun-
coarseningandrefinementphase the bisectionis succes-
sively refinedasit is projectedto the largergraphs.Gy is
theinputgraph,whichis thefinestgraph.G;+; is thenext
level coarsemgraphof G;. G4 is thecoarsesgraph.

jectedto the next level finer graph,andat each
level an iterative refinementlgorithmis usedto
further improve the quality of the partitioning.
Thevariousphase®f multilevel approachn the
contet of graphbisectionareillustratedin Fig-
urel.

A commonlyusedmethodfor graphcoarsen-
ing is to collapse togethethe pairs of vertices
thatform a matching. A matchingof the graph
is a setof edges,no two of which areincident
on the samevertex. Vertex matchingscan be
computedby a numbermethods,such as ran-
dommatching heary-edgematching[18], max-
imum weightedmatching[8], andapproximated
maximumweightedmatching(LAM) [25]. For
example, Figure 2(a) shavs a random match-
ing alongwith the coarsenedjraphthat results
from collapsingtogetheverticesincidenton ev-
ery matchededge. Figure 2(b) showvs a heavy-
edgematchingthat tendsto selectedgeswith

Random Matching Heavy-edge Matching

O
edge weight: 37

4

edge weight: 37

4

[2]

8 6 4

2 2 2

[2]
1 5

5 3 [2]

3

o e & 2 5 °n

edge weight: 30 edge weight: 21

(@) (b)

Figure2: A randommatchingof a graphalong with

the coarsenedgraph (a). The samegraphis matched
(andcoarsenedyvith the heary-edgeheuristicin (b). The
heary-edgematchingminimizestheexposededgeweight.

higherweights[18].

A classof partitioningrefinementalgorithms
that are effective in quickly refining the parti-
tioning solution during the uncoarseninghase
arethosebasedon variationsof the Kernighan-
Lin andFiduccia-Matthgsesalgorithms[15, 1,
5,21,20, 10].

This paradigmwas independentlystudiedby
Bui and Jones|[2] in the contet of comput-
ing fill-reducingmatrixreorderingpy Hendrick-
sonandLeland[15] in the context of finite ele-
mentmesh-partitioningandby HauckandBor-
riello [11] (called Optimized KLFM), and by
Cong and Smith [4] for hypergraphpartition-
ing. KarypisandKumarextensvely studiedthis
paradigmin [19, 17, 21] for the partitioning of
graphs. They presentedhovel graphcoarsening
schemesand they shaved both experimentally



andanalyticallythateven agoodbisectionof the
coarsesgraphaloneis alreadya very good bi-
sectionof the original graph. Thesecoarsening
schemeanadethe overall multilevel paradigm
veryrobustandmadeit possibleio usesimplified
variantsof KL or FM refinementschemeglur-
ing the uncoarseninghase which significantly
speededip the refinemenprocessvithoutcom-
promisingoverall quality.

Multilevel recursve bisectionpartitioningal-
gorithmsare availablein several public domain
libraries, suchas Chaco[16], MENS [19], and
SCOICH [26], and are used extensvely for
graphpartitioningin a varietyof domains.

3 Motiv ation

The succes®f the multilevel graphpartitioning
algorithmsis primarily dueto the synepy of the
coarseningandrefinemenphasesin particular
agoodcoarseningchemecanhidealargenum-
ber of edgeson the coarsesgraph. Figure?2 il-
lustratesthis point. The original graphsin Fig-
ures2(a)and (b) have total edgeweightsof 37.
After coarsenings performedneachtheirtotal
edgeweightsarereduced. Figures2(a) and(b)
show two possiblecoarseningdpeuristicsyandom
andheary-edge. In both casesthe total weight
of the visible edgesin the coarsenedyraphis
lessthan that on the original graph. Note that
by reducingtheexposededgeweight, thetaskof
computinga good quality partitioningbecomes
easier For example, a worst casepartitioning
(i.e., one that cuts every edge)of the coarsest
graphwill be of higher quality than the worst
casepartitioningof the original graph. Also, a
randombisectionof the coarsesgraphwill tend
to bebetterthana randombisectionof the origi-
nal graph. Similarly, beingableto performre-
finementat different coarserepresentationsf
thesamegraphsignificantlyincreaseshe power
of partitioningrefinemenalgorithms- allowing
themto climb out of local minima by moving
groupsof verticesatatime.

However, the effectivenessof the coarsen-
ing schemesmployedby currentstate-of-the-
art multilevel graphpartitioningalgorithmsdra-
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Figure 3: The reductionon (a) the numberof vertices,
(b) the numberof edgesand(c) the exposededgeweight
during the coarseningorocessfor two power-law graphs
(GoogleandActor) anda finite element-basedraph.



matically diminishesin the context of power-
law graphs. This is becausexisting coarsen-
ing schemegdependon being able to find suf-
ficiently large vertex matchingso obtaina non-
trivial fractionalreductiononthe numberof ver-
ticesin successiely coarsegraphs.Graphsaris-
ing in traditional scientific computingapplica-
tions tendto producesuchmatchings. In most
casesthe size of the matchingis very closeto
half thenumberof vertices(i.e., mostof thever-
ticesgetmatchedwith othervertices),resulting
in graphsizereductionghatarevery closeto a
factorof two.

On the otherhand, in powerlaw graphs,be-
causeof the uneven degree distribution, there
are a large numberof low-degree vertices at-
tachedto a relatively few high-degree vertices
that dramaticallylimits the size of the match-
ings that can be computed. This is becauseas
soon as a high-deyree vertex gets matched,it
cannotget matchedwith anothervertex in the
currentlevel. This inability of the matching-
basedcoarseningapproachto find sufficiently
largematchingshastwo importantimplications.
First,thenumberof exposededgedendto shrink
at a very slow rate—eliminatinga key adwvan-
tage ofthemultilevel paradigm.Secondthesize
of successiely coarsergraphsdoesnot reduce
guickly—increasinghe amountof memoryre-
quired to storethesegraphs. As a result, the
coarsenings usuallyterminatedat a muchear
lier point (otherwisehe memorycompleity of
theseschemeswill be quadraticon the number
of vertices) resultingin agraphwhosesizeis in
generalsmallerthanthe original one by a con-
stantfactor.

Figure3illustratesthesepointsby comparing
threekey parameterf the coarseninghistory
of threegraphs(Google,Actor, andAuto). The
parametersare the numberof vertices,number
of edges,and the exposededgeweight of the
successiely coarsergraphs. Among the three
graphs,the first two correspondo powerlaw
graphswhereasthe third one correspondgo a
graphobtainedfrom a 3D finite elementmesh.
Theseplotsillustratethatunlike the mesh-based

6

graphfor which all three parameterslecrease
rapidly during the courseof coarseningthese
parametersendto decreaseery slow andonly
by a smallfactor forthe power-law graphs.
Theseresultssuggestthat in orderto lever-
agethe key conceptsand power of the multi-
level graphpartitioningparadigmfor power-law
graphs,new coarseningnethodsneedto be de-
velopedthatdo notexhibit thelimitationsof cur-
rentmatching-basedpproaches.

4 Clustering-Based
Schemes

Coarsening

The approachthat we took in order to cor
rect the limitations of matching-basedoarsen-
ing schemess to allow arbitrarysizesetsof ver-
ticesto be collapsediogether By doing so, we
try to directly attackthe sourceof the problem
and ensure(up to a point) thatthe size of each
successie coarsegraphwill decreaséy anon-
trivial fraction.

Since our goal is to producea sequenceof
successiely coarsegraphghatarebothsmaller
and also have a much smaller exposededge-
weight, the problemof finding the setsof ver-
ticesto be collapsedtogethercanbe thoughtof
as a specialcaseof finding a larger numberof
small and highly connectedsubgraphs. Find-
ing such subgraphss a well-studied problem
in the context of graph-basedlusteringin data-
mining[6] andanumberof algorithmshave been
developedfor solvingit.

However, oneof our initial designconsidera-
tionswasto develop coarseningsgchemesvhose
compleity is not significantly higherthan that
of existing matching-basedchemes. For this
reason,the primary focus of our researchwas
on developing rathersimple but fast clustering
approaches. Towards this goal we considered
extensionsof the heuristicmatching-basedlgo-
rithmsthat allav the discovery of arbitrarysize
subgraphs.

The operation of most of the existing
matching-basedchemesanbe summarizeds
follows [28]. They usea certainpolicy to order
the edgesof the graphandconsiderthemfor in-



clusionin the matchingbasedon this ordering.
For eachedge(v, u) thatthey considey if both

v andu areunmatchedthenthe pair of vertices
getsmatchedwith eachotherandarecombined
in the next level coarsergraph. However, if ei-

therv or u hasalreadybeenmatchedwith an-

othervertex, thenthisedgeis ignoredandit does
not contributeto the matching.If afterconsider

ing all edgessomeverticesremainunmatched,
thenthey arejust copiedto thenext level coarser
graph.

Within this framework, all the methodsthat
we considerin this paperallow an unmatched
vertex v to potentially be matdhed with one of
its adjacentverticesu even if u hasalreadybeen
matched.By allowing this, we essentiallyasso-
ciatev with theclusterof verticesthatu belongs
to; thus, incrementallyconstructingthe various
clustersof verticesthat will form the nodesof
thenext level coarsegraph.

Specifically we considera numberof algo-
rithms that differ alongtwo orthogonaldimen-
sions. The first is the overall stratgy that is
usedto visit the edgesof the graphand second
is the schemethat is usedto order the edges
within eachstratgyy—giving a preferencéo cer
tain clusteringsover others.

4.1 Edge Visiting Strategies

We considertwo generalstratgies for visiting
the variousedgesof the graphduring the pro-
cess ofidentifying the clustersof verticesto
collapse together Thesestratgies will be re-
ferredto as the globally greedystratgy (GG)
andasthe globally random-locallygreedystrat-
egy (GRLG).For therestof thediscussionn this
sectionwe assumehatthereis a functionto or-
der a setof edgesE in somepreferenceorder
F(E). Thesefunctionswill be describedater
in Section4.2, but the motivation behindthem
is to allow the coarseningalgorithmsto identify
clustersof highly connectedrertices.
Algorithms that follow the GG stratgy will

orderall theedgesof G = (V, E)) accordingto
F(FE) andthenvisit them basedon this order
ing. The motivation behindthis stratgy is to

fully takeadwvantageof theinformationencapsu-
latedin theselectegreferencerderby allowing
the algorithmto considerfor groupingtogether
verticesthataremostlikely to be partof agood
cluster

Onthe otherhand,algorithmsthatfollow the
GRLG stratgy will visit theverticesof thegraph
in arandomorderandfor eachvertex v they will
useF to locally ordertheedges!/ (v) thatarein-
cidentonv. The motivationbehindthis stratgy
is to eliminatethe potentiallyexpensve stepof
computinga global orderingof all the edgeshut
still retainkey elementsof the greedynatureof
the GG strata@y.

Additional Considerations A potentialproblem
thatcanarisewith theabose schemess thatthe
may endup constructinga relatively smallnum-
berof ratherlarge clusters.As aresult,the num-
berof verticesof thesuccessiely coarsegraphs
candecreas#y afactorthatis muchgreatethan
two. Suchrapid coarseningsanadwerselyim-
pactthe effectivenessof multilevel refinement,
asthenumberof levelsthatit operate®n canbe
small. The GG and GRLG stratgiesovercome
this problemby employingtwo constraints.

First, during the cluster discovery process,
boththe GG and GRLG stratgjieskeeptrack of
the currentnumberof verticesin the next-level
coarsemgraph. Thatis, the sizeof the graphas-
sumingthat no further clusteringhasbeenper
formed andary unmatchederticesweresimply
copiedto the coarsergraph. If that size drops
bellow half of the size of the currentgraph,no
further clusteringis being performed,and the
next-level coarsergraphis constructedrom the
currentinformation. This constrainensureghat
the size of successie coarsergraphsdecreases
by at mosta factorof two.

Second,they seta limit on the size of the
clusterthat can be formedanywhereduring the
coarseningrocess.Thislimit is specifiedn the
form of a maximumvertex weight (MaxVWgj
thatary clustercanhave. Duringthecoarsening
phasejf an edgewill resultin the creationof a
clusterwhosesizeis greatethanMaxVWgt then



that particularclusterdoesnot get formed and
the edgeis skipped. The value of MaxVWgtis

setto be 1/20thof the total vertex weightof the

original graph,which essentiallylimits the size
of the coarsesgraphat least20 ertices. The

effect of this constraintis two fold: (i) it throt-

tles the coarseningate, and (ii) it ensureghat
the size of the coarseswerticesdo not become
solargesothatit will beinfeasibleto computea

balancedwo-waypartitioning.

4.2 Edge Ordering Criteria

Our experiencewith multilevel graphpartition-
ing algorithmsin the contet of scientificcom-
puting applications[17] shaved that the effec-
tivenessof the various matchingschemeswas
relatedwith (i) their ability to collapse together
regions of the graphthat correspondedo well-
connectecgubgraphand(ii) theirability to pro-
ducecoarsemgraphswhoseverticeshave arela-
tively uniform sizedistribution.

Guidedby thesetwo principleswe developed
anumberof differentorderingcriteriathatcom-
bine variouspiecesof information. This infor-
mationis obtainedoy eitheranalyzingeachedge
in the contet of its local ervironment(i.e., the
edgeandits incidentvertices)or in a somavhat
largercontext derived bytakinginto accountcer
tain aspect®of its nearbytopology

Local Environment For eachedgee = (v,u)
we consideredhree piecesof informationthat
canbeobtainedby analyzinge, v, andu. These
arethe weightof the edge(w(e)), the weightof
the vertices(w(v) andw(u)), andthe degreeof
thevertices(d(v), d(u)).

The weight of the edgeis importantbecause
it providesinformationaboutthe strengthof the
connectionbetweenverticesv and . In addi-
tion, since during the coarseningprocess,the
weightsof the edgesare setto be equalto the
sum of the weights of the edgesof the origi-
nal graphthat connectverticesencapsulateh
v with vertices encapsulatedn wu, they pro-
vide importantinformation on whetheror not
the subgraphobtainedby combiningv and u

is well-connected. Thus, everything else be-
ing equal,we will preferedgesthat have high
edge-weighover edgesthat do not. Note that
this is also the primary motivation behind the
heary-edge matchingschemeusedin existing
matching-basedoarseningchemes.

The sumof theweights(w(v) + w(u)) isim-
portantas it affects the size distribution of the
verticesin the coarsergraphs. In particular if
w(v) +w(u) is veryhigh, thenthiswill decrease
the effectivenes=f the KL/FM-type refinement
algorithmsasit will preventthemfrom moving
it acrossthe partition boundary(assumingthat
suchmovesimprove thecut). Thereasorfor this
is thatdueto its size, sucha move may leadto
a highly unbalancedi.e., infeasible)bisection.
Thus, everything elsebeing equal,we will pre-
fer edgesavhosesumof vertex weightsis small.

The dggree of eachvertex is importantas it
providesinformationasto how mary otheredges
exist in the graphthatcanbe usedto clusterei-
therv or w. For example,if min(d(v),d(u)) is
one, then this edgeis the only way by which
one of the verticescanbeincludedin a cluster
Everything else being equal, we should prefer
edgesthat have at leastone vertex with a very
smalldegreeassuchedgesrovide the best(and
in mary caseghe only) opportunityfor the low
degreevertex to be includedin a cluster Note
thatif suchedgesarenotbeengiven priority, by
the time they will endbeingconsideredijt may
bethatthe sizeof the resultingclusterwill have
growntoo large, preventingtheformationof this
cluster

Non-local Environment To obtain information
aboutthe non-localervironmentof eachedge
we usetheconcepif thegraphcore,whichwas
firstintroducedoy Seidmari27]. Given agraph,
G = (V, E), asubgraphH inducedby C' C V
is a core of orderk, written as Hy, iff for every
v e C,dy(v) > k,wheredy (v) is thedegreeof
vertex v in H. The core number of a vertex v
(I'(v)) isthe maximumorderof a corethatcon-
tainsthatvertex. Coresexhibit thefollowing two
propertied29]:



e Nestedelationfori < j, H; C H;.

e For any core,H;, itisnotnecessaryhat H;
beaconnectedomponent.

The core numberof a vertex v andthe prop-
erties of the cores provide information as to
whetheran edgee = (v,u) is part of well-
connectedsubgraplor not. In particular dueto
the nestedrelation, for every edgee = (v, u)
we know thatthereis aninducedsubgraphthat
containse whose minimum degreeis at least
min(I'(v),I'(u)). Thus, everything else being
equal,we will preferedgesthat have high core
numberspr edgesvhosecorenumbersarecom-
parable Thereasonwhy the secondsetof edges
are of interestis becausethe representsome
of the bestpotentialclustersof the verticesin-
volved.

Note that the notion of the graph core has
beenextendedbeyond just the degreeof a ver-
tex to alsoinclude moregeneralfunctionssuch
as the sum-of-the-edge-weightf29].  Since
we are dealingwith weightedgraphs,we used
this latter core numberingdefinition. Note that
thereis a O(|V|)-time algorithmto computethe
corenumberingin the contect of degreesanda
O(]V]log |V|)-timealgorithmfor the caseof the
sum-of-the-edge-weights.

4.3 Putting Everything Together

A large numberof coarseningapproachexan
be derelopedby combiningthe two edgeuvisit-
ing stratgies and the four edgeorderingcrite-
ria. Dueto spaceconstraints,n this paperwe
focuson asubsef themthatourinitial studies
shaved to represensomeof the bestcombina-
tions. The key characteristic®f theseschemes
aresummarizedn Tablel.

5 Experimental results
5.1 Dataset Description

We evaluatedthe performancef the new coars-
eningschemen ten differentgraphsobtained
from various sources. The characteristicsof

thesegraphsareshavn in Table2.

Globally GreedyStrategies
Orderingschemes$or edges: = (v, u)

CoarserScheme Description Order
GDCS Sortedlist of edgesdy

1. d(v) + d(u) Ascending

2. w(e) Descending
GFC Sortedlist of edgesdy

1. w(e) Descending

2. w(u) + wv) Ascending
GHELD Sortedlist of edgesdy

1. w(e) Descending

2.d(v) + d(u) Ascending
GCORE Sortedlist of edgesdy

1. sqrt(T(u)) + sqrt(I'(v)) | Descending

2. w(e) Descending
GFCDC Sortedlist of edgedy

1. w(e) Descending

2. w(v) +w(u) Ascending

3. abs(T'(u) — T'(v)) Ascending
GFCC Sortedlist of edgedy

1. w(e) Descending

2. w(u) + wv) Ascending

3.T(u) + I'(v) Descending

GloballyRandom] ocally GreedyStrategies
Schemeso ordertheedges: = (v, u) incidentonv

CoarserScheme Description Order
LDHE 1.d(uw) Minimum
2. w(e) Maximum
HELD 1. w(e) Maximum
2.d(u) Minimum
FC 1. w(e) Maximum
2. w(u) Minimum
FCC 1. w(e) Maximum
2. w(u) Minimum
3.T(u) Maximum
FCDC 1. w(e) Maximum
2. w(u) Minimum
3. abs(I'(u) — I'(v)) Minimum
CORE 1. sgrt(T(u)) Maximum
2. w(e) Maximum

Table 1. The variouscoarseningschemedlevelopedby
combiningdifferentedgevisiting stratgies and ordering
criteria. The orderof the criteriadeterminegheir role as
theprimary, secondaryor tertiaryimportance.

The Citation datasetvascreatedrom the ci-
tationgraphusedin KDD Cup2003. Eachver-
tex in this graphcorresponds$o a documeniand
eachedgecorrespondso acitationrelation.Be-
causethe partitioningalgorithmsdealwith undi-
rectedgraphsthedirectionof thesecitationswas
ignored. The DBLP datasetwas createdfrom
the co-authorshipinformation from Computer
Scienceresearchpublications. Verticesin the
graphrepresenauthorsandedgesxistsif apair

Ihitp://www.cs.cornell.edu/pregts/kddcup/
datasets.html
2http://wwwinformatik.unttrier.de/ley/db/index.html



Degree f=ad® fit
Dataset #vertices| #nedges| pu o min | max @ 8
Citations 27400 | 352504 | 25.73 | 4556 | 1 2468 |3.34 |-7.92
DBLP 310138 | 1024262| 6.61 | 9.94 | 1 344 |6.33|-8.81
Actor 498925 | 1460791| 586 | 11.39| 1 646 | 2.51 |-1.89
Google 198782 | 295063 | 2.97 |12.14| 1 1471 | 1.35|-2.28
NDwww 325729 | 1090107| 6.69 | 42.82| 1 |10721|1.62|-5.83
Overture 75002 | 411013 | 10.96|53.93| 1 6619 |3.51|-1.43
PPI 59191 160737 | 543 | 1230 1 1116 | 2.42 | -1.55
Scan 228263 | 320149 | 281 | 836 | 1 1937 | 1.34 | -1.77
Lucent 112969 | 181639 | 3.22 | 493 | 1 423 | 4.37 | -1.19
Scan+Lucent 284772 | 449228 | 3.16 | 9.05 1 1978 | 1.47 | -5.36

Table2: Characteristicef thedifferentgraphsusedto evaluatethe multilevel partitioningalgorithm.

of authorshave co-authoredtleastonepublica-
tion. The Googledatasewasobtainedirom the
2002GoogleProgrammingContest. Theorigi-
nal datasetontainsvariousweb-pagesndlinks
from various“edu” domain. We corvertedthe
datasetnto an undirectedgraphin which each
vertex correspondso aweb-pageindan edgeo
a hyperlinkbetweernweb-pagesin creatingthis
graph,we keptonly thelinks betweerfedu” do-
mainsthatconnecteditesfrom differentsubdo-
mains. The NDwww dataseis a completemap
of the nd.edudomairf. Eachvertex represents
a web pageand an edgerepresents link be-
tweentwo pages.The Overtue datasetvasob-
tainedfrom Overturelnc (now part of Yahoo!)
and is similar in natureto the Google dataset
andcorrespondso a three-level deepcrawl out
of ten seedCS homepageof major Universi-
ties. The PPI datasets createdfrom Database
of InteractingProteins(DIP)°. Each vertex in
thisgraphcorrespondgo aparticularproteinand
thereis an edgebetweena pair of proteinsif
theseproteinshave beenexperimentallydeter
mined to interactwith eachother The SCAN
datasetorrespondso theInternetmapobtained
using the Mercatorsoftware. Eachvertex rep-
resentsan Internetrouter and an edgeimplies
thatthetwo routersattheendpointsareadjacent.
The Lucentdatasetwas constructedvia tracer
outerscollectedby the InternetMappingproject

Shttp://www.googk.com/programming-coest/
4http://www.nd.eduhetworks/resources.htm
Shttp://dip.doe-mbi.ucla.edu/
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at Lucentlaboratories.Eachvertex represents
routerandan edgeandicatesadjaceng between
therouters. The SCAN+Lucentdataseiwasob-
tainedby the memging of informationfrom the
Lucentand SCAN datasets The Actor dataset
wasconstructedrom the actordata ofthe Inter-
netMovie Databas¢IMDB) ‘. Verticesrepresent
actorsandmovies. Eachedgehasanactorasone
endpointanda movie asthe otherandindicates
thattheactorplayedin themovie.

Since the original version of the above
datasetscontaineda large numberof singleton
vertices and/or very small connectedcompo-
nents,we first extractedfrom eachdatasetthe
largestconnectecdcomponenandusedit for our
evaluation. The statisticspresentedn Table 2
correspondo the largestconnecteccomponent
andnottheoriginal dataset.

5.2 Experimental Methodology

Sincemary of the schemesinderconsideration
arerandomizedn nature,in orderto ensurethat
the resultsare not biasedin ary way, we com-
puted 100 different bisectionsfor each graph
andreportthe averagecuts. In the caseof the
schemesgollowing the GRLG strateyy, eachdif-
ferentrun was performedusinga differentran-
domly obtainedorderingof the vertices. In the
caseof the GG stratgies,randomizatiorwasin-
troducedasatie-breakingmechanism.

SAll three of these datasetscan be obtainedfrom
http://www isi.edu/d¥7/scan/mercator/maps.html.
"http:/lwww.nd.eduhetworks/resources.htm.



Theperformancef thedifferentschemegre-
sentedn this paperwere comparecdagainsttwo
existing partitioningalgorithms. Thefirst is the
bisectionalgorithmprovided by MeTIS [19] (us-
ing the pmetis program)and the secondis
the spectralpartitioning algorithm provided by
Chaco[16]. Note that the bisectionsproduced
by spectralwere further refinedby usinga KL
refinementalgorithm (i.e., the SPECTRAL-KL
optionof Chaco).

Notethatdueto spaceconstraintspur exper
imentalevaluationwaslimited to only two-way
partitionings.However, therelative performance
of the differentschemesemainsthe samefor
largernumberof partitions.

5.3 Results

The cutsobtainedoy thevariousschemescross
thedifferentdataset@areshavn in Table3. This
table shavs the performanceof 12 different
schemesthe tenintroducedn this paperandde-
scribedin Table 1 alongwith the performance
achieved by MENS and Spectral. The last row
of the table containsthe minimum cut achieved
over thedifferentschemeswhereaghelastcol-
umn (labeled*ACRB”) shaws the Average Cut
Relativeto the Best For a particularscheme,
this measures obtainedby computingthe ratio
of the cutobtainedon a particulargraphover the
minimumcut obtainedby thedifferentschemes,
averagedover the differentdatasets.The value
of ACRB will be greaterthanor equalto one.
A value closeto oneindicatesthat a particular
schemeobtainscutsthat are eitherthe smallest
or very closeto the smallestobtained,whereas
a large valueindicatesthat the cutsobtainedby
a schemearemuchworsethanthe best cutob-
tainedby the differentschemes.

In addition to the direct cut-basedcompar
isons, Table4 compareghe variousschemesy
analyzingthe extent to which the differencein
performancebetweeneach pair of schemess
statistically significantor not. For our statisti-
cal significanceestingwe usedthe Wilcoxon'’s
paired signed rank test using a 5% signifi-
cancelevel. Note thatthe last column (labeled
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“Win-Loses”) displaysthe differencebetween
the numberof schemesin which a particular
schemes statisticallybetterandthe numberof

schemesin which the schemesis statistically
worse.Thus,apositive valueindicatesascheme
that doeswell whereasa negative value repre-
sentsa schemehatdoespoorly.

Discussion  Looking at the resultsfrom these
tableswe can makea numberof obsenations.
First, comparingthe GG with the GRLG strate-
gies we can seethat the GG schemesdo not
performas well asthe GRLG ones. The best
globally greedyschemehasan ACRB value of
1.57 as comparedto the best locally greedy
ACRB value 0f1.06. Moreover, the advantage
of GRLG over GGisalsostatisticallysignificant.
In factalmostall GRLG schemesutperfornthe
GG schemes.
Secondgcomparingorderingschemeshatuse
local information againstschemeghat also in-
corporatenon-localinformationprovide by the
corenumberingwe canseethatcorenumbering
aloneleadsto poorly performingschemege.g.,
CORE/GCORE) However, the combinationof
local informationwith core numberingleadsto
improved results.In fact,theFCDC,whichis the
bestperformingschemean termsof ACRB com-
binesinformationaboutthe edgeweight, vertex
weights,andcores.However, the differencebe-
tweenFCDCandFC (whichusesonly edge-and
vertex-weights)is not statisticallysignificant.
Third, comparingthe performanceachieved
by the variousschemesproposedn this paper
we can seethat threeof them, FCDC, FC, and
HELD produceresultsthatarequitecomparable
(the schemesre not statistically differentfrom
eachother)andarethebestperformingschemes.
Fourth, comparingthe performanceachieved
by theabove threeschemesgainsthatachieved
by MENS andSpectralwe canseethatall three
of themproduceesultsthataresubstantiallybet-
ter than either one of them. Also, in addition
to the above threeschemesMETIS is alsobeing
outperformedby FCC, whereasSpectralis also
outperformedy FCCandLDHE.



Citations | DBLP Actor | Google | NDwww | Overture | PPI Scan | Lucent | Scan+Lucent| ACRB
FC 17122 51972 | 42376 6791 1813 25855 9286 4404 2378 7779 1.07
FCDC 15868 | 52405 | 42404 6867 1866 26029 8926 | 4560 2387 7594 1.06
HELD 20264 | 51967 | 40000 6725 1863 25740 8845 | 4370 2490 7762 1.08
FCC 17836 | 53246 | 42985 6913 1827 26498 9226 | 4537 2464 7829 1.09
LDHE 22829 55387 | 39762 7159 3546 26321 9772 6019 2904 10176 1.31
GCORE 15196 56923 | 57796 | 10934 8121 30752 | 11535 | 5817 3754 10291 1.69
GDCS 23786 56628 | 40809 8006 6425 28044 | 10177 | 7096 3142 11889 1.57
GFC 15191 71846 | 51568 8922 5410 30073 | 10552 | 7847 3699 12343 1.59
GFCDC 15503 | 71347 | 51776 | 10395 9480 27992 | 10272 | 7409 3673 11905 1.80
GHELD 28395 61672 | 49103 7540 6270 32046 | 10529 | 7953 3096 12563 1.66
CORE 23466 80620 | 47579 | 13506 9505 33141 | 12629 | 7604 4908 13957 2.05
GFCC 14914 85087 | 50714 | 19596 10610 34036 |13788 |15747 | 5039 24463 2.54
METIS 14925 61242 | 113962 | 14758 6638 34973 12853 (11575 | 4323 6411 1.94
Spectral 25765 72450 | 78342 7144 8120 33588 7469 4950 3874 22047 1.91
Minimum 14914 51967 | 39762 6725 1813 25740 7469 4370 2378 6411
Table3: The cutsof thedifferentcoarseningschemeswveragedover 100runs.
FC FCDC HELD FCC LDHE GCORE GDCS GFC GFCDC GHELD CORE GFCC METIS Spectral| Win-Loses
FC = = = > > > > > > > > > > > 11
FCDC = = = > > > > > > > > > > > 11
HELD = = = = > > > > > > > > > > 10
FCC < < = = = > > > > > > > > > 7
LDHE < < < = = = > > > > > > = > 4
GCORE < < < < = = = = = = = > = = -3
GDCS | < < < < < = = = = > > > = = -2
GFC < < < < < = = = = = > > = = -3
GFCDC | < < < < < = = = = = > > = = -3
GHELD < < < < < = < = = = = = = = -6
CORE | < < < < < = < < < = = = = = -8
GFCC | < < < < < < < < < = = = = = -9
METIS < < < < = = = = = = = = = = -4
Spectral | < < < < < = = = = = = = = = -5

Table4: Resultsof statisticalsignificancetestingusingWilcoxon’s pairedsignedrank testusing5% significanceevel.

The entriesmarkedwith a “<” (“>") indicatethat the schemeof the row performsstatisticallyworse (better)thanthe
schemeof the column.Entriesmarkedwith a “="
significant. The last columndisplaysthe differencebetweenthe numberof schemesn which the schemen therow is
statisticallybetterandthe numberof schemesn whichthe schemess statisticallyworse.
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indicatethatthe differencebetweerthetwo schemess not statistically



Finally, to illustrate how the coarsening
schemedevelopedin this paperovercomethe
limitations of the matching-basedcoarsening
schemeslescribedn Section3, Figure4 showvs
therateatwhichthenumberof vertices,number
of edgesandtheexposededge-weightlecreases
for the FC coarseningschemeand the heavy-
edgematching-base(HEM) schemdor Google
and Actor. Note that the resultsfor HEM are
identicalto thoseshawn in Figure3. As we can
seefrom theseplots, thecoarseningchemesre
quite effective in producingsuccessie coarser
graphsin which all threeof thesequantitiesre-
duceatamuchhigherratethanHEM.

6 Conclusions and Directions for Fu-
ture Research

This paperfocusedon the problemof develop-
ing graphpartitioningalgorithmsfor power-law
graphs. Towardsthis goal it presenteda num-
ber of new algorithmsbasedon the multilevel
graphpartitioning paradigmthat were designed
to leveragethe strengthsinherentto theseap-
proachesandto addresghe challengesmposed
due to the uneven degree distribution of these
graphs.

The comprehense experimentalevaluation
shaved that threeof the methodsintroducedin
this paperachiese consistentlysomeof the best
results outperformingoothexisting state-of-the-
art multilevel methodsas well as more tradi-
tional partitioningapproachebsasedon spectral
methods.

The researchin this papercan be extended
along a numberof directionsincluding the de-
velopmentof even bettercoarseninggchemess
well asthe developmentof effective paralleliza-
tion stratgiesfor them. In addition,one of the
issuesthat needto be furtherinvestigateds the
extentto which the informationprovided by the
graphcorescanalsobe usedto improve the per
formanceof traditionalmatching-basedoarsen-
ing schemes.

Ratio of number of edges to initial number of edges Ratio of number of vertices to initial number of vertices

Ratio of exposed edge weight to initial exposed edge weigh'
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Figure 4. The reductionon (a) the numberof vertices,
(b) the numberof edgesand(c) the exposededgeweight
during the coarseningorocessfor two power-law graphs
(Google and Actor) using coarseningschemesFC and
HEM



References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

9]

[10]

C. AshcraftandJ. Liu. Usingdomaindecompo-
sitionto find graphbisectors.Technicalreport,
York University, North York, Ontario, Canada,
1995.

T. Bui andC. Jones. A heuristicfor reducing
fill in sparsematrix factorization. In 6th SIAM
Cont Parallel Processingfor ScientificCom-
puting pagest45-4521993.

U. Catalyurekand C. Aykanat. Hypemgraph-
partitioning based decompositionfor paral-
lel sparse-matrixvector multiplication. |IEEE
Transactionson Parallel and Distributed Sys-
tems 10(7):673—6931999.

J.CongandM. L. Smith. A parallelbottom-up
clusteringalgorithmwith applicationgo circuit

partitioningin visi design.In Proc. ACM/IEEE

Design Automation Confeence pages 755—
760,1993.

R. Diekmann,B. Monien, and R. Preis. Us-
ing helpful setsto improve graphbisections.In
D. Hsu,A. Rosenbey, andD. Sotteaugditors,
InterconnectionNetworks and Mapping and
SdedulingParallel Computationsvolume 21,
pages7-73 AMS PublicationsPIMA CSVol-
umeSeries,1995.

R.O.Duda,PE. Hart, andD.G. Stork. Pattern
Classification JohnWiley & Sons,2001.

C. M. FiducciaandR. M. Mattheyses.A linear
time heuristicfor improving networkpartitions.
In In Proc. 19thIEEE DesignAutomationCon-
ference pagesl75-1811982.

H. Gabav. Datastructuregor weightedmatch-
ing andnearestommonancestorsvith linking.
In Proc. of the 1st Annual ACM-SIAM Sympo-
siumon Discrete Algorithms pages434-443,
1990.

AnanthGrama,AnshulGupta,Geoge Karypis,
andVipin Kumar Introductionto Parallel Com-
puting: DesignandAnalysisof Algorithms 2nd
Edition. AdisonWeslg/ PublishingCompay,
RedwoodCity, CA, 2003.

W. Hager S. Park, and T. Davis. Block ex-
changein graph partitioning. In P. Pardalos,
editor, Approximationand Compleity in Nu-

14

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

mericalOptimization:ContinuousndDiscrete
ProblemsKluwer AcademicPublishers1999.

S. Hauck and G. Borriello. An evaluation
of bipartitioningtechnique. In Proc. Chapel
Hill Confeenceon AdvancedReseachin VLS|,
1995.

B. HendricksonGraphpartitioningandparallel
solvers: Hasthe emperomo clothes? In Proc.
Irregular'98, pages218-2251998.

B. HendricksorandK. Devine. Dynamicload
balancingn computationamechanicsCompu-
tationalMethodsn AppliedMedanics& Engi-
neering 184:485-5002000.

B. Hendricksonand T. Kolda. Graph parti-
tioningmodelsfor parallelcomputing.Parallel
Computing(to appear) 2000.

BruceHendricksorandRobertLeland. A mul-
tilevel algorithmfor partitioninggraphs.Tech-
nical Report SAND93-1301, SandiaNational
Laboratories1993.

Bruce Hendricksonand RobertLeland. The
chacousers guide,version2.0. TechnicalRe-
port SAND94-2692 SandiaNationalLaborato-
ries,1994.

G. KarypisandV. Kumar Analysisof multi-
level graphpartitioning. In Proceeding®of Su-
percomputing 1995. Also availableon WWW
atURL http://www.cs.umn.edu/ karys.

G. KarypisandV. Kumar A fastandhigh qual-
ity multilevel schemefor partitioningirregular
graphs.SIAMJournalon ScientificComputing
20(1):359-3921998.

G. Karypis and V. Kumat MEeIS 4.0: Un-
structuredgraph partitioning and sparsema-
trix orderingsystem.Technicalreport,Depart-
mentof ComputerScience University of Min-
nesota,1998. Availableon the WWW at URL
http://wwwcs.umn.edu/"metis

G. KarypisandV. Kumar Multilevel k-waypar
titioningschemdor irregulargraphsJournal of
Parallel and DistributedComputing 48(1):96—
129, 1998. Also availableon WWW at URL
http://www.cs.umn.edu/ karypis

G. KarypisandV. Kumar A fastand highly
quality multilevel schemdor partitioningirreg-



[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

ular graphs. SIAM Journal on ScientificCom-
puting, 20(1),1999.Also availableon WWW at
URL http://www.cs.umn.edu/"karyp. A short
versionappearsn Intl. Conf. on Parallel Pro-
cessingl995.

G. Karypis, Kirk Schlogyel, and V. Kumatr
PARMETS 3.0: Parallel graphpartitioningand
sparsemnatrix orderinglibrary. Technicakeport,
Departmenof ComputeiScience Universityof
Minnesota,2002. Available on the WWW at
URL http://wwwcs.umn.edu/"metis

B. W. Kernighanand S. Lin. An efficient
heuristicprocedurdor partitioninggraphs.The
Bell SystenTednical Journal, 49(2):291-307,
1970.

et. al.L. Li. Towardsa theory of scale-free
graphs:definitionpropertiesandimplications.

B. Monien,R. Preis,andR. Diekmann.Quality
matchingandlocal improvementfor multilevel
graph-partitioningTechnicalreport,University
of Paderborn1999.

F. Pellggrini andJ. Roman. SCOTCH:A soft-
warepackageor staticmappingby dualrecur

sive bipartitioning of processand architecture
graphs. HPCN-Euppe, SpringerLNCS 1067,

pages493-498,1996.

SeidmanS.B. Networkstructureandminimum
degree. SocialNetworks 5:269-2871983.

Kirk Schlogel, GeogeKarypis,andVipin Ku-
mar. Graphpartitioningfor high-performance
scientific simulations. In Jack Dongara,lan
Foster Geofrey Fox, William Gropp, Ken
KennedyLindaTorczon,andAndy White, edi-
tors, Soucebookon Parallel Computing chap-
ter 18, pagesA91-541 MorganKaufmann,San
FranciscoCA, 2002.

M. Zaversnik V. Batagelj. Generalizedcores.
Journal of the ACM, V(N):1-8,2002.

15



