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ABSTRACT   
 
Numerical simulations are performed using the Fluent Computational Fluid Dynamics code 
and the various turbulence models to simulate the horseshoe vortex formed in a typical wing-
junction turbulent flow experiment. Simulations were conducted using the renormalizable k-ε 
model, the Reynolds Stress Model, the V2F model, the Spalart-Allmaras model and the k-ω 
model. The calculated results were compared with experimental results obtained from an 
extensive database available on the internet [3]. The realizable k-ε model was noticeably less 
accurate than all other models in simulating the mean velocity components, while the 
remaining models all displayed similar levels of accuracy. None of the models were able to 
accurately simulate the correct behaviour of the mean kinetic energy as a function of position. 
The V2F model however came closest to predicting the correct behaviour, and offers the best 
combination of computational accuracy, computational efficiency, and ease of use.       
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Simulation of a Wing-Body Junction Experiment  
using the Fluent Code     

 
 

Executive Summary 
The horseshoe vortex formed at the sail/hull junction on a submarine has a number of 
characteristics which are undesirable for efficient submarine performance. These 
include the generation of unwanted noise, increased local surface shear stress and 
drag, as well as incoherent fluid loading on the propellers which can lead to 
narrowband sound generation. An increased understanding of the fluid behaviour in 
these types of flows would lead to improvements in submarine performance through 
increased stealth, reduced vulnerability and improved hydrodynamic performance. 

A detailed experimental study of the horseshoe vortex formed in the vicinity of the 
nose of a modified NACA 0020 airfoil in a fully developed turbulent boundary layer 
has recently been reported in the literature by Devenport and Simpson. The data 
obtained in this experiment are of a particularly high quality and are readily available 
in electronic format on the internet. This report documents results obtained using the 
Fluent Computational Fluid Dynamics code to simulate the horseshoe vortex formed in 
this experiment. It forms part of an overall study aimed at understanding and 
characterizing the vortex near the sail and at downstream locations so that designs may 
be implemented to minimize the adverse effects of the vortex structure on submarine 
performance.  
Simulations were conducted using five different turbulence models contained within 
the code to ascertain the effectiveness of each model. The calculated results were 
compared with experimental results obtained from the database available on the 
internet. The simulations showed that the realizable k-ε model was noticeably less 
accurate than all other models in simulating the mean velocity components. The 
remaining models, which consisted of the Reynolds Stress Model,  V2F model,  Spalart-
Allmaras model and the k-ω model, all displayed similar levels of accuracy. None were 
able to accurately simulate the correct behaviour of the mean kinetic energy as a 
function of position close to boundaries, although all were able to simulate the time-
averaged velocity components at most locations within the flow to within an 
acceptable accuracy. The V2F model came closest to predicting the correct behaviour 
overall, and offers the best combination of computational accuracy, computational 
efficiency, and ease of use for further studies of this type of turbulent flow. 
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Glossary 
 

CFD  Computational Fluid Dynamics 

Fluent   Commercial CFD software 

RANS  Reynolds Averaged Navier Stokes Equations  

LES  Large Eddy Simulation 

RSM  Reynolds Stress Model  

Re   Reynolds number.  Re = ρUL/μ 

Cp   Pressure coefficient. Cp  = Pressure/(0.5ρU2) 

L    Characteristic body length. 

ρ   Fluid density 

μ   Fluid viscosity 

U   x- component of mean fluid velocity 

V   y- component of mean fluid velocity 

W   z- component of mean fluid velocity 

Uref  Initial reference speed upstream of the flow 

k   Turbulent kinetic energy 

ε   Rate of dissipation of the tubulent kinetic energy 

ω   Defined most simply by ω  = ε / k 

νT   Turbulent viscosity 

y+   Walll normal distance normalized by friction velocity and viscosity 

u   x-component of rapidly varying part of fluid velocity  

v   y-component of rapidly varying part of fluid velocity 

w   z -component of rapidly varying part of fluid velocity 

v   component of the fluctuating velocity normal to a time-averaged 
   streamline 
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1. Introduction 

The Hydrodynamics Group within Maritime Platforms Division (MPD) performs computational 
fluid dynamics (CFD) studies on underwater flow problems relevant to submarine design. These 
studies examine and aim to improve the performance of these platforms through increased stealth, 
reduced vulnerability and improved hydrodynamic performance. Problems of interest involve the 
simulation of flow around a manoeuvring submarine, hydrofoil studies, hull/propeller 
interactions, viscous bluff body modelling, stores release modelling, and the study of the 
horseshoe vortex formed in the boundary layer at the hull/sail junction. These studies are carried 
out using a variety of CFD codes including the finite volume codes Fluent [1] and CFX [2]. 

The horseshoe vortex formed at the sail/hull junction on a submarine has a number of 
characteristics which are undesirable for efficient submarine performance. The vortex is subject to 
large-scale low-frequency bistable unsteadiness which appears to be generated in the nose region 
and which leads to the generation of unwanted noise. The vortex entrains high-momentum free-
stream fluid into the corner between the hull and sail and greatly increases the local surface shear 
stresses and drag. The trailing legs of the vortex persist very far downstream of the sail and can 
maintain coherence as they are ingested into the propellers. This provides a source of unsteady 
loading, whose adverse side effect may be narrowband sound generation.  

Devenport and Simpson [4] carried out a detailed study of a horseshoe vortex in the vicinity of the 
nose of a modified NACA 0020 airfoil for a fully developed turbulent boundary layer and were the 
first to report the bistable nature of the flow. Fleming et al. [5], Olcman and Simpson [6] and 
Devenport et al. [7] conducted further experiments on the same wing geometry to further elucidate 
details on the formation and structure of the vortex near the appendage. The velocity field 
downstream of the appendage has not been studied to the same extent however, and to address 
this shortfall Anderson and Huyer [8] recently used particle image velocimetry (PIV) to measure 
the full three-dimensional mean and turbulent velocity field at various stations downstream of a 
standard NACA 0020 airfoil.  

This report documents results obtained using the Fluent code to simulate the horseshoe vortex 
formed in the Devenport-Simpson experiment [4]. It forms part of an overall study aimed at 
understanding and characterizing the vortex near the sail and at downstream locations so that 
designs may be implemented to minimize the adverse effects of the vortex structure on submarine 
performance. The advantages of studying this particular experiment are the extensive set of high-
quality measurements obtained, the ready availability of this data in electronic format [3] and the 
detail with which the turbulent boundary layer in the approach flow has been characterised.  
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2. The Devenport-Simpson Experiment  

Devenport and Simpson [4] studied the behaviour of a turbulent boundary layer on a flat plate as 
it encountered the nose of a cylindrical wing mounted normal to the plate. The wing cross-section 
consisted of a 3:2 elliptical nose (with its major axis aligned with the chord) and a NACA 0020 tail 
joined at the maximum thickness. The chord length was 30.5 cm, maximum thickness 7.17 cm and 
the height was 22.9 cm. The wing was mounted on the test wall of an open-circuit type wind 
tunnel powered by a centrifugal blower. The test section was 91 cm wide and 25.5 cm high. The 
boundary layer on the test wall was tripped by a 0.63 cm high step prior to entering the test section 
so that the inlet conditions were clean and well defined. The shape of the wind tunnel leading into 
the test section was such that the streamwise pressure gradient was effectively zero, thus 
producing an equilibrium turbulent boundary layer on the test wall. The turbulence intensity was 
0.2% at the reference speed (Uref) of 27 m/s and the value of the Reynolds number, based on 
momentum thickness, was 6700. Figure 1. shows a schematic of the test geometry. 

A right-handed coordinate system was used where X is in the direction of the free-stream flow, Y 
is normal to the flat plate and Z is normal to the wing symmetry plane. The origin of the 
coordinate system is at the upstream foot of the wing and T is the maximum thickness of the wing. 
The corresponding time-averaged velocity vectors are denoted by U,V,W and the instantaneous 
velocities by u,v,w. A three-component laser Doppler velocimeter was used to measure all non-
zero mean-velocity and Reynolds-stress components at eleven stations in the plane of symmetry 
upstream of the wing. The most upstream station was located at X/T = -0.86 and the closest station 
to the wing was located at X/T = -0.05. At each station measurements were made along a line in 
the Y direction covering the range 0.001 < Y/T < 1.0. 

 
 

Figure 1. Perspective view of the wing-body junction. 
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The adverse pressure gradient in the streamwise direction imposed by the presence of the wing 
causes the approaching boundary layer to separate and form a horseshoe vortex which wraps 
around the wing. The experiment by Devenport and Simpson studied both the time-dependent 
and time-averaged turbulence structure near the nose of the wing-body junction. Their time-
averaged velocity measurements showed a single vortex, roughly elliptical in shape, centred near 
X/T = -0.2, Y/T = 0.05. The vortex generated an intense backflow with a maximum mean velocity 
of 0.48Uref and then decelerated to the separation point at X/T = -0.47. From the most upstream 
station to the vicinity of the separation point the measurements showed a flow developing in a 
manner similar to that of a two-dimensional turbulent boundary layer in an adverse pressure 
gradient. In the vicinity of the junction vortex however, between X/T = -0.3 and -0.15, the profiles 
of the mean and turbulence quantities ceased to bear much resemblance to those in an adverse 
pressure gradient. In this region the turbulence stresses were much greater and reached values 
many times larger than those normally observed in turbulent flows. Examination of the time-
dependent data showed that these large stresses were associated with bimodal (double-peaked) 
histograms of velocity fluctuations produced by a bistable velocity variation. Figure 2 shows a 
schematic of the mean-time velocity vectors in the plane of symmetry which illustrate the overall 
nature of the flow.  

 

Figure 2. Mean-time velocity vectors in the plane of symmetry 

 Simpson [9] has discussed the time-dependent nature of the flow in the junction region in detail 
and summarises much of the experimental work on such systems prior to the detailed experiments 
of Devenport and Simpson. Initially one large horseshoe vortex exists in the junction region. As 
this vortex is stretched and weakened a secondary separation vortex is formed downstream of the 
separation and sometimes even tertiary vortices can be formed. These vortices appear to merge 
with the original weakened vortex at some stage and temporarily strengthen it, then the whole 
structure becomes unstable and is replaced by a new large-scale  horseshoe vortex and the cycle 
repeats, although the process never becomes periodic.  

3. Previous Computational Studies 

Apsley and Leschziner [10] reported the results of a computational study of the predictive 
performance of twelve turbulence models, within three distinctly different classes, for the wing-
body junction flow experimentally studied by Devenport and Simpson [4].The turbulence models 
consisted of five linear eddy viscosity models (including variants of both the k-ε and k-ω models), 
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three non-linear eddy viscosity models (all of the k-ε type), and four Reynolds Stress Models. The 
computations were performed as part of a collaborative turbulence-model-validation study 
involving six partners: UMIST, Loughborough University, BAE Systems, DERA, ARA and Rolls-
Royce Aeroengines. Model performance was judged by comparing solutions with experimental 
data for pressure fields on the plane wall and around the aerofoil; for velocity, turbulence energy, 
shear stress and streamwise normal stress in the upstream symmetry plane; and for velocity, 
turbulence energy and shear stress in cross-flow planes downstream of the aerofoil leading edge. 
The main finding of the study was that Reynolds Stress Models offered predictive advantages over 
the other models examined, especially in terms of the far-field structure of the horseshoe vortex, 
although no model achieved close agreement with the experimental data in respect of both mean 
flow and turbulence quantities. 

Parneix et al. [11] used the V2F turbulence model to simulate three complex three-dimensional 
turbulent flows: the infinitely swept bump, flow in a U-bend, and the appendage-body junction 
flow of Devenport and Simpson [4]. The V2F model makes use of the standard k-ε model but 
extends it by incorporating near-wall turbulence anisotropy and non-local pressure-strain effects, 
while retaining a linear eddy viscosity assumption. It uses fewer equations than a full Reynolds 
Stress Model and is more numerically robust than these models. The V2F simulation was able to 
accurately calculate the separation location as well as the intensity of the back-flow. The computed 
U and V profiles in the symmetry plane showed excellent agreement with experiment. In contrast 
with all the k,ε and RSM models surveyed by Apsley and Leschziner [10], the V2F model was also 
able to accurately simulate the location, shape and size of the region where the high levels of 
turbulence existed, and the calculated values for k were only about 30% lower than the 
experimental values.  

Rodi et al. [12] surveyed the results of computations submitted to two ERCOFTAC Workshops on 
Turbulent Flow Calculations for five test cases, including the Devenport -Simpson experiment. The 
calculations were made using a wide variety of turbulence models including the standard k-ε 
model with wall functions, various low-Reynolds-number versions of the k-ε model, the RNG 
version of the k-ε model, various non-linear versions, the k-ω model, various versions of Reynolds-
stress models and an algebraic stress model. The general conclusion for all the test cases 
considered was that the more complex Reynolds-stress models and intermediate algebraic-stress 
and non-linear k-ε models were not consistently better than the simpler linear eddy viscosity 
models for the practically relevant mean quantities, but in some cases they were found to give 
superior predictions of the details of the turbulence quantities.  

For the specific case of the Devenport-Simpson experiment five calculations used versions of the k-
ε model and one used a Reynolds-stress model. All of the calculations reproduced reasonably well 
the pressure distributions on the ground plate and the wing as well as the general flow pattern, 
although for most models the size of the vortex was predicted to be too small, particularly for the 
RSM model. The strength of the horseshoe vortex as it swept around the wing was also under 
predicted by all the models. Experimentally the highest turbulent kinetic energy occurs in the 
centre of the vortex. However all the calculations, except those using the RNG version of the k-ε 
model, predicted the maximum value of k to be very close to the corner, with excessive production 
of k in the stagnation region in front of the leading edge. This is a well known problem with the 
standard k-ε model, and also occurred with the RSM model. Only the RNG version of the k-ε 
model did not have this problem and predicted the maximum value of k in the vortex core, 
although with a much smaller value than in the experiment. 

Chen [13] analysed the performance of two turbulence models: a two-layer isotropic eddy viscosity 
model and a near-wall Reynolds-stress model. The RSM model is a low Reynolds number 
extension of the high Reynolds number model of Speziale et al. [14] which is valid all the way to 
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solid walls. The calculations clearly demonstrated the superior performance of the RSM model 
over the simpler isotropic eddy viscosity model. In particular, the RSM model successfully 
resolved the detailed turbulence structures associated with the development of the appendage 
boundary layer, the formation of the spiral primary horseshoe vortex and the corner secondary 
horseshoe vortex, and the evolution of both vortices around the appendage/flat-plate junction. 

Fu et al. [15] studied the behaviour of a standard linear eddy viscosity with two quadratic non-
linear eddy viscosity models: the Gatski-Speziale model [16], and a realizable version of the 
Gatski-Speziale model due to Fu et al. [17]. All three models gave close results for the mean flow 
velocities, but significant differences appeared in the Reynolds stresses. The two non-linear eddy 
viscosity models provided overall better performance than the linear version, with the 
renormalized version providing marginally better performance. The three-dimensional boundary 
layer skewness was not calculated correctly however and Fu et al. concluded that three-
dimensional anisotropic effects could not be modelled using a quadratic non-linear eddy viscosity 
model.  

4. The Fluent Code 

Fluent Version 6.1 is a CFD computer code developed and marketed by Fluent Inc. [1]. The code 
solves the equations for conservation of mass, momentum, energy and other relevant fluid 
variables using a Finite Volume technique. First the fluid domain is divided into a large number of 
discrete control volumes (also known as cells) using a  pre-processor code which creates a 
computational mesh on which the equations can be solved. The meshing software available with 
Fluent is called Gambit. This software  can create a two-dimensional (2D) surface mesh using 
triangular or quadrilateral elements, or a three-dimensional (3D) volume mesh using a 
combination of hexahedral, tetrahedral or prism elements. 

Once the fluid domain has been meshed the governing equations (in integral form) for the 
conservation of mass, momentum, energy and any other relevant variables are applied to each 
discrete control volume and used to construct a set of non-linear algebraic equations for the 
discrete dependent variables. Fluent then solves the complete set of coupled equations for all the 
control volumes on the mesh using either a segregated solver or a coupled solver. In all the 
calculations reported here only the segregated solver has been used. In this approach the 
governing equations are solved sequentially. Since these equations are non-linear they first have to 
be linearized. This can be done either implicitly or explicitly, although when using the segregated 
solution method within Fluent the code automatically linearises each discrete governing equation 
implicitly with respect to that equation’s dependent variable. This produces a scalar system of 
equations containing only one equation per computational cell. A point implicit (Gauss-Siedel) 
linear equation solver is then used in conjunction with an algebraic multigrid (AMG) method to 
solve the resultant scalar system of equations for the dependent variable in each cell. Since the 
equations are non-linear several iterations of the solution loop must be performed before a 
converged solution is obtained. 

 The segregated solver thus solves for a given fluid variable (for example U – the  x component of 
velocity) by considering all cells at a single time. It then solves for the next fluid variable (for 
example V – the y component of velocity) by again considering all cells at the same time. Each 
iteration of the solution loop thus consists of the following steps:  

1. The values of the fluid variables at the cell centres are updated based on the current solution 
values. 



 
DSTO-TR-1731 

6 

2. The U, V and W velocity components of the momentum equation are each solved in turn 
using the current values for the pressure and the mass fluxes through each of the cell faces. 

3. The pressure correction equation (a form of the continuity equation) is then solved to obtain 
the necessary corrections to the pressure and velocity fields so that the continuity equation is 
satisfied.  

4. Where appropriate, additional scalar equations (such as those describing transport of 
turbulence quantities) are solved. 

5. A check for convergence is made.  

6. The above steps are repeated until the convergence criteria are met (all residuals less         
than 10-6) 

4.1 Pressure-Velocity Coupling 

As described above, an equation for each component of the momentum equation and then the 
continuity equation are solved sequentially. Once the three components of velocity have been 
calculated for each cell using this sequential system the velocities may not satisfy the continuity 
equation and so a “Poisson-type” equation for a pressure correction is derived from the continuity 
equation and the linearized momentum equations. This pressure correction equation is then solved 
to obtain the necessary corrections to the pressure and velocity fields such that continuity is 
satisfied.  

Although the pressure variable appears in each of the component momentum equations each of 
these equations is solved by treating the relevant component of velocity as the unknown variable 
and the pressure field in the equation is taken to be that from the previous iteration. In this 
sequential procedure the continuity equation is used as an equation for the pressure. However 
pressure does not appear explicitly in the continuity equation for incompressible flows (which are 
the only flows considered in this report) and so a procedure must be devised to introduce pressure 
into this equation. Fluent provides methods based on the SIMPLE (Semi-Implicit Method for 
Pressure-Linked Equations) family of algorithms to do this [37].  

The basic SIMPLE algorithm uses a relationship between velocity and pressure corrections to 
enforce mass conservation and to obtain the pressure field. The SIMPLEC algorithm (SIMPLE-
Consistent) is a variation of the SIMPLE algorithm which uses a more refined expression for the 
variable flux through each of the cell faces and which can accelerate convergence in some 
problems where the pressure-velocity coupling is the main deterrent to obtaining a solution [38]. 
The PISO pressure-velocity coupling scheme (Pressure-Implicit with Splitting of Operators) is also 
part of the SIMPLE family of algorithms and is based on a higher degree of approximation for the 
relation between the corrections for pressure and velocity [39]. The PISO algorithm takes a little 
more CPU time per solver iteration but it can dramatically decrease the number of iterations 
required for convergence, especially for transient problems. The PISO algorithm also allows Fluent 
to obtain solutions on highly skewed meshes in approximately the same number of iterations as 
required for more orthogonal meshes. Since all the simulation results described here were obtained 
on fairly regular meshes using time-independent calculations only the SIMPLE algorithm was 
employed in the calculations. 

4.2 Spatial Discretization 

Fluent stores discrete values of the variables at the cell centres, however values of the variables are 
required at the cell faces for the convection terms in the equations and these must be interpolated 
from the cell centre values. This is accomplished using an upwind scheme and Fluent allows a 
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choice of several different upwind schemes: first-order upwind, second-order upwind, power law, 
and QUICK.  

In the first-order upwind scheme quantities at cell faces are determined by assuming that the cell-
centre values of any variable represent a cell-average value and hold throughout the entire cell. 
Hence the face quantities are identical to the cell quantities. The Power-Law scheme is an 
improvement which interpolates the face value of a variable by using the exact solution to a one-
dimensional convection-diffusion equation [40]. When the flow is dominated by convection this 
implies that the face value of the variable is effectively equal to the cell value in the upwind 
direction. If the flow is weak and diffusion stronger then the Power-Law scheme amounts to a 
simple linear average of the value of the variable at the current cell location and the upstream cell. 
The Second-Order Upwind Scheme provides true second order accuracy by performing a Taylor 
series expansion of the cell-centred solution about the cell centroid. The QUICK scheme also 
allows calculation of a higher-order value of the convected variable at the cell face by using a 
weighted average of second-order upwind and central interpolation [41]. This scheme is 
particularly accurate on structured quadrilateral and hexahedral meshes where the flow is aligned 
with the grid direction. The Second-Order Upwind scheme was employed in all of the simulations 
described here.  

5. Turbulence Models 

Turbulent flows are characterized by velocity fields which fluctuate rapidly both in space and 
time. Since these fluctuations occur over several orders of magnitude it is computationally very 
expensive to construct a grid which directly simulates both the small scale and high frequency 
fluctuations for problems of practical engineering significance. Two methods can be used to 
eliminate the need to resolve these small scales and high frequencies: Reynolds Averaging and 
Filtering.  

In the Reynolds Averaged approach all flow variables are divided into a mean component and a 
rapidly fluctuating component and then all equations are time averaged to remove the rapidly 
fluctuating components. For the continuity equation the new equation is identical to the original 
equation, except that the transported variables now represent the mean flow quantities. In the 
Navier-Stokes equation however new terms appear which involve mean values of products of 
rapidly varying quantities. These new terms are known as the Reynolds Stresses, and solution of 
the Reynolds Averaged Navier-Stokes (RANS) equation initially involves the construction of 
suitable models to represent these Reynolds Stresses. One approach to this problem is to treat the 
time averaged terms as additional viscous stresses produced by the turbulence in the flow. In the 
Boussinesq approach the Reynolds Stresses are assumed to have a form identical to the viscous 
stresses in the momentum equation, apart from a multiplicative term known as the turbulent 
viscosity, μT . Note that this approach assumes that the Reynolds Stresses are isotropic, which is 
known to be untrue in many cases. The problem then reduces to finding an expression for μT . 

Fluent provides several turbulence models based on the Boussinesq approach: the Spalart-
Allmaras model, the k-ε model, and the k-ω model. The Spalart-Allmaras model is a relatively 
simple one-equation model which involves solving an additional model transport equation for μT . 
Both the k-ε model and the k-ω models are inherently more complicated and involve finding 
solutions to two additional model transport equations, one for  the turbulent kinetic energy k, and 
one for the rate of dissipation of the tubulent kinetic energy ε, or in the case of the k-ω model, an 
equation for ω (where ω is defined by ω = ε / k). The turbulent viscosity μT  is then calculated from 
an expression involving  k and ε for the k-ε model, or k and ω for the k-ω model. There are in fact 
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three different versions of the k-ε model in Fluent and two different versions of the k-ω model, and 
these will be discussed in more detail in the subsequent sections.  

A turbulence model which avoids making the isotropic Boussinesq approximation is the Reynolds 
Stress Model (RSM). This is the most elaborate turbulence model that Fluent provides and finds a 
solution to the Reynolds-Averaged Navier-Stokes equation by solving additional transport 
equations for each of the individual Reynolds stresses, as well as an equation for the dissipation 
rate. This means that four additional transport equations are required in 2D flows and seven 
additional transport equations must be solved in 3D flows. Since the RSM accounts for the effects 
of streamline curvature, swirl, rotation, and rapid changes in strain rate in a more rigorous manner 
than one-equation (Spalart-Allmaras) and two-equation (k-ε and k-ω) models it has greater 
potential to give accurate predictions for complex flows. The accuracy of the RSM predictions is 
still limited, however, by the closure assumptions used to model various terms in the exact 
transport equations for the Reynolds stresses. For this reason the RSM does not always provide 
results which are superior to those of simpler models for all classes of flows. It is, of course, 
necessary to use the RSM when the flow features of interest are the result of anisotropy in the 
Reynolds stresses.  

An alternative approach to Reynolds averaging is filtering. The idea behind this approach is to 
filter the time-dependent Navier-Stokes equation in either Fourier (wave-number) space or 
configuration (physical) space. This filtering process effectively filters out turbulent eddies whose 
scales are smaller than the filter width, which is usually taken to be the mesh size. As with 
Reynolds averaging however, the filtering process creates additional unknown terms which must 
be modelled in order to provide closure to the set of equations. This approach is known as Large 
Eddy Simulation (LES) because the fluctuations of the large scale eddies (those having a size 
comparable to the main geometry of the flow) are numerically resolved, rather than being 
averaged out as in the  RANS approach. The attraction of LES is that, by modelling less of the 
turbulence (and solving more), the error introduced by the turbulence model will be reduced. 
Fluent provides two methods to model the subgrid-scale stresses resulting from the filtering 
operation: the Smagorinsky-Lilly model and the RNG (ReNormalization Group) subgrid-scale 
model. All LES simulations require a lengthy time-dependent run so that statistics of the mean 
flow quantities can be gathered. LES simulations also require a relatively fine grid, and so the 
computational cost of LES simulations can be quite prohibitive.  

 

6. Computational Grid  

The degree of resolution required of the computational grid depends to some extent on the choice 
of turbulence model to be used in the simulation. The k-ε models, RSM, and LES models are 
primarily valid for turbulent core flows, i.e. for flow in the regions somewhat far from walls, while 
the Spalart-Allmaras and k-ω models were designed to be applied throughout the boundary layer, 
provided that the near-wall mesh resolution is sufficient. The k-ε models can still be applied to wall 
bounded flows, however, by using the concept of wall functions. In this approach use is made of 
the universal behaviour of equilibrium boundary layer flows. It is well known that the near-wall 
region in an equilibrium boundary layer can be divided into several distinct regions [18]. Very 
close to the wall the flow is almost laminar and the molecular viscosity plays a dominant role in 
momentum transfer. This region is known as the “viscous sublayer”. At much greater distances 
from the wall, but still well within the boundary layer, molecular viscosity plays no part and the 
velocity profile is determined purely by the turbulent viscosity. This is known as the outer layer, or 
fully-turbulent layer. In between the viscous sublayer and the fully turbulent layer there is an 
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interim layer where the effects of molecular viscosity and turbulence are equally important.  This is 
known as the buffer layer or blending region.  

When standard wall functions are used the viscosity affected inner region (viscous sublayer and 
buffer layer) is not resolved. Instead, semi-empirical formulas are used to bridge the viscosity 
affected region between the wall and the fully turbulent region. The use of wall functions thus 
obviates the need to modify the turbulence model to account for the presence of the wall. In 
practice, this means that the centre of the cell closest to the wall must lie above a certain height. If 
y+ denotes the (scaled) co-ordinate direction normal to a solid wall and P denotes the centre point 
of the cell closest to the wall, then y+P should lie in the range 30< y+P<100. If this criterion is satisfied 
then the boundary conditions can be satisfied at the point P by using the universal “log-law” for 
the mean velocity. Appropriate values for the other variables can also be derived at this location 
from the universal nature of the flow in this region.  

With the above considerations in mind the first computational mesh consisted of a structured 
hexahedral mesh in which the cell centres closest to the wall were on average 2 mm above the flat 
plate and the surface of the wing. A total of 1.6 million hexahedral cells were used. This mesh was 
used to run simulations using the three different k-ε models available in Fluent: original k-ε, RNG 
k-ε, and renormalizeable k-ε, all using the standard wall functions. Because the resolution of the 
mesh was somewhat coarser than the resolution of the measurements used to characterize the 
input flat plate boundary layer none of these simulations used these measured values as input 
data. For each of these runs the y+ values varied between 40 and 60 over the surface of the plate 
and between 40 and 100 over the leading edge of the wing. Each of the simulations was able to 
accurately calculate the pressure distribution over the surface of the wing, but none of the 
simulations showed the presence of either a vortex or any reversed flow.  

Since the first mesh proved to be too coarse a finer mesh was constructed so that the boundary 
layer profile measured upstream of the wing could be used as part of the inlet boundary 
conditions in the simulation. Because the aerofoil section had its major axis aligned with the free-
stream flow a symmetry plane was created along the chord of the wing and only one half of the 
test section was meshed. 

Devenport et al. [4] measured inflow conditions 1.31 m upstream of the leading edge of the wing 
(x/T = -18.24). These consisted of velocity profiles measured at 29 locations along the Y axis 
between Y/T = 0.00354 and Y/T = 0.87 at Z = 0.0. The measured quantities were U/Uref and mean 
values of u2/ U2

ref , w2/ U2
ref  and uw/ U2

ref . These measurements showed that the boundary layer 
had an initial thickness of approximately 2 cm and a structure very similar to that of a two-
dimensional boundary layer under zero pressure gradient conditions. The height of the first data 
point above the flat plate was 0.2 mm and the average spacing between data points was 0.8 mm.  

The computational grid extended from X = - 1.3 m to X = 1.3 m in the X direction (X/T = -18.13 to 
X/T = 18.13) , Y = 0.0 to Y = 0.25 m in the Y direction (Y/T = 3.49) and Z = 0.0 to Z = 0.5 m in the Z 
direction (Z/T = 6.97). The Y coordinate was divided into 100 intervals with the first grid point 
located at a height of approximately 0.1 mm above the flat plate. The size of successive intervals 
increased with a ratio of 1.04 so that the last interval had a height of approximately 1.0 cm. The 
surface of the wing along the X direction was meshed using 110 intervals. The first 20 intervals 
were of equal length (2.1 mm) and covered the elliptical part of the nose while the remaining 90 
elements were of varying length (average length of 3.4 mm) and covered the NACA 0020 tail of the 
wing. The first 20 cm of the X coordinate upstream of the wing was meshed using elements of 2.15 
mm length and similar griding was used immediately downstream of the wing. At more distant 
locations grading was employed so that the length of the elements increased slowly to 
approximately 1 cm at the edges of the mesh. The mesh contained a total of 5 million hexahedral 
elements. The experimentally measured values of the velocity profile in the incoming boundary 
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layer flow (obtainable in digital form from [3]) were used for the velocity inlet boundary condition 
by constructing a Fluent Profile file which was read from the Velocity Inlet boundary panel. 

 

7. Simulation Results 

As well as the standard wall functions described in the previous section Fluent also provides both 
non-equilibrium wall functions and enhanced wall functions. The two key ingredients of the non-
equilibrium wall functions are: (1) the log-law for the mean velocity is sensitised to pressure-
gradient effects, (2) a two-layer zonal model is used to compute the budget of turbulent kinetic 
energy in the wall-neighbouring cells. In a standard wall function it is assumed that the cell-
averaged rate of production of turbulent kinetic energy is identical to the cell-averaged dissipation 
rate of kinetic energy. The two-layer zonal model employed in the non-equilibrium wall functions 
relaxes this assumption by dividing each of the wall-neighbouring cells into a viscous sublayer and 
a fully turbulent layer and then computing the production and dissipation rates in each of the 
sublayers. Non-equilibrium wall functions therefore extend the applicability of the wall function 
approach by including the effects of pressure gradients and non-equilibrium kinetic energy 
production and can give improvements in the prediction of wall shear stress and heat transfer in 
flows where such effects occur. 

Both standard wall functions and non-equilibrium wall functions become inappropriate when the 
flow contains either strong pressure gradient effects which result in boundary layer separation, or 
strongly skewed three-dimensional boundary layers. In this situation a near-wall modelling 
approach combined with adequate mesh resolution in the near-wall region must be used. Fluent 
provides an enhanced wall treatment for these situations and this approach can be used with all 
three k-ε models as well as the RSM model. The enhanced wall treatment is a near-wall modelling 
method that combines a two-layer model with enhanced wall functions. In this approach the near-
wall cells are divided into a viscosity-affected region and a fully-turbulent region. The 
demarcation between the two regions is determined by a wall distance based turbulent Reynolds 
number. In the fully turbulent region either the k-ε model or the RSM model is employed, while in 
the viscosity-affected near wall region the one-equation model of Wolfstein [19] is used. In this 
method the momentum equations and the k equation is retained but the turbulent viscosity is 
computed from a simple expression involving k and an appropriate length scale. The exact details 
can be found in the Fluent 6.0 User’s Guide Volume 2 [1]. When using the enhanced wall treatment 
with either the k-ε models or the RSM model it is recommended that the y+ value at the wall 
adjacent cells should satisfy  y+ =1, although higher y+ values are acceptable as long as y+ < 5. 

7.1 k-ε Model 

The k-ε model is the most widely used complete turbulence model and is incorporated in most 
commercial CFD codes. Fluent provides both the original k-ε model as developed by Jones and 
Launder [20] and Launder and Sharma [21], as well as the RNG k-ε model of Yakhot and Orszag 
[22] which is based on the application of the renormalization group method to the Navier-Stokes 
equation, and the realizable k-ε model of Shih et al. [23] which is based on the application of certain 
constraints to the normal stresses to ensure that these remain positive at all times.  

The standard k-ε model is a semi-empirical model based on transport equations for the turbulent 
kinetic energy k and its dissipation rate ε. The transport equation for k was derived from the exact 
transport equation while the equation for ε was obtained using physical reasoning and cannot be 
justified on an exact mathematical basis. The turbulent viscosity is then specified by the equation  
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νT = Cμ k2/ε, where Cμ =0.09 is one of five model constants. The RNG k-ε model is derived from 
the instantaneous Navier-Stokes equation using the mathematical technique known as the 
renormalization group method. This results in a model with constants different from those in the 
standard k-ε model and additional terms in the transport equation for ε .  

The realizable k-ε model of Shih et al. [23] was designed to remove two significant failings of 
previous k-ε models, these being the tendency for the mean normal stresses (by definition these are 
positive quantities) to become negative in highly strained flows, and the rather empirical nature of 
the model transport equation for the dissipation rate ε. They achieved this by introducing a new 
eddy-viscosity formula in which Cμ is no longer a constant but has a variable value which is a 
function of various flow parameters, and by introducing a new model equation for dissipation 
based on the dynamic equation for the mean-square vorticity fluctuation. Hence in the realizable k-
ε model the form of the k equation is identical to those in both the standard k-ε model and the RNG 
k-ε model, except for the model constants, while the form of the ε equation is quite different from 
those in the standard and RNG k-ε models.  

Since it is well known that the realizable k-ε model consistently outperforms both the standard k-ε 
model and the RNG k-ε model in anything but the simplest flow geometries [18], only the 
realizable k-ε model has been used for the simulation results described here. This version was run 
on the grid described in the previous section using enhanced wall functions and the second order 
Upwind scheme for the solution of the momentum, k and ε equations. The pressure-velocity 
coupling used the SIMPLE scheme and the boundaries simulating the wind tunnel walls were 
defined as solid walls with specified zero shear stress. The y+ values along the centre line of the 
wind tunnel floor upstream of the wing satisfied y+ = 3 while downstream of the wing they 
satisfied y+= 4 and away from the centre line approached y+ = 6. Along the wing surface the y+ 

values varied from approximately 8 on the nose to 4 along the trailing edge. These values are 
reasonably consistent with those specified above and described in the Fluent 6.0 User’s Guide 
Volume 2 [1]. The model constants used for this particular implementation are: C1ε = 1.44, C2 = 1.9, 
σk = 1.0 and σε = 1.2.  

Figures 3 and 4 show the pressure coefficient around the wing surface, from the leading edge to 
the trailing edge, at two horizontal sections, i.e. Y/T = 0.133 and Y/T = 1.726. An interesting 
feature of these plots is that agreement with experiment is better closer to the wall (Fig.3) than 
away from it (Fig. 4). Apsley and Leschziner [10] found exactly the same behaviour in their 
simulations and also showed that this result was not due to grid dependent solutions. They 
concluded that the most likely cause of the difference between the simulated and experimental 
peak pressure shown in Fig. 4 was a discrepancy between the prescribed and experimental flow 
conditions at the upper boundary of the computational domain. In the real flow there was a gap 
between the top of the wing and the upper tunnel wall while in the computation (both in Apsley 
and Leschziner’s and those reported here) the wing extended to touch the upper surface of the 
wind tunnel. In our view this explanation is unlikely as the pressure profile at Y/T = 1.46 is 
identical to the value at Y/T = 1.726, and the value at Y/T = 0.400 also shows a peak at this point.  
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Figure 3.  Pressure coefficient along the wing surface at a height of Y/T = 0.133 for the Realizable k-ε 
model. 
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Figure 4.  Pressure coefficient along the wing surface at a height of Y/T = 1.726 for the Realizable k-ε 
model. 

Figures 5 through 9 show a comparison between the  simulated and experimental values of U/Uref 
versus Y/T at  selected X/T values. For X/T values removed from the centre of the vortex, i.e. 
those in the range between –0.860 and –0.404, there is fairly good agreement between the 
simulated and experimental values. Even at the station closest to the nose of the wing, at X/T = -
0.050, there is still quite good agreement between the experimental values and the simulated 
values over most of the range of Y/T.  At X/T =  -0.103 there is still reasonable agreement, but 
from X/T = -0.154 up to X/T = -0.351 there is significant disagreement between simulation and 
experiment. The Realizable k-ε model essentially underestimates the strength of the reverse flow in 
the vortex region, and this is the same result as noted by Apsley and Leschziner [10] when using 
the standard k-ε model. 
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Figure 5. Comparison of simulated and experimental values of U/Uref versus Y/T at  X/T  = -0.050 and 
X/T = -0.860 for the Realizable k-ε model. 
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Figure 6.  Comparison of simulated and experimental values of U/Uref versus Y/T at  X/T = -0.103 and 
X/T = -0.667 for the Realizable k-ε model. 
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Figure 7.  Comparison of simulated and experimental values of U/Uref versus Y/T at  X/T = -0.154 and 
X/T = -0.461 for the Realizable k-ε model. 
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Figure 8.  Comparison of simulated and experimental values of U/Uref versus Y/T at  X/T = -0.251 and 
X/T = -0.404 for the Realizable k-ε model. 
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Figure 9. Comparison of simulated and experimental values of U/Uref versus Y/T at  X/T = -0.300 and 
X/T = -0.351 for the Realizable k-ε model. 

Figures 10 and 11 show the experimental and calculated values for V/Uref versus Y/T at all the 
X/T stations. The simulated results clearly show the same trend as the experimental values, with 
those X/T locations closest to the wing displaying the largest negative values of velocity. 
Noticeably absent however are the positive components of the velocity for those stations closest to 
the centre of the vortex, those at X/T = -0.204 and X/T = -0.251 for example, where the 
experimental results show positive velocity components above Y/T = 0.1, while the simulated 
results are unable to capture this behaviour to any extent. A more detailed comparison between 
the experimental and simulated values is shown in Figures 12 and 13. These show that at some of 
the X/T stations there is quite reasonable agreement. For example, at X/T = -0.050, -0.204, -0.251, -
0.300, -0.404, and  –0.461 the simulated curves follow the experimental curves quite closely, while 
at X/T = -0.103 and –0.154 there is considerable disagreement.  

Figure 14 shows a comparison between the simulated and experimental values of the turbulent 
kinetic energy as a function of Y/T for selected X/T values. Experimentally the peak value of the 
turbulent kinetic energy occurs close to the centre of the vortex at X/T = -0.351 and Y/T = 0.05, 
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with the values either side of the vortex, at X/T = -0.050 and X/T =  –0.860, being considerably 
lower than those near the centre. The simulated results display quite a different trend. The kinetic 
energy increases continuously as the distance to the wing decreases, and the maximum value 
occurs not at the vortex centre but rather at the closest point to the wing surface. This behaviour 
also occurs in the simulations of Apsley and Leschziner [10], Parneix et al. [11], and Rodi et al. [12], 
and is a known fault with all k-ε models. 
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Figure 10.  Experimental values of V/Uref versus Y/T at all X/T stations. 
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Figure 11.  Simulated values of V/Uref versus Y/T at all X/T stations for the Realizable k-ε model. 
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Figure 12.  Comparison of simulated and experimental values of V/Uref versus Y/T at selected X/T values for 
the Realizable k-ε model. 
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Figure 13.  Comparison of simulated and experimental values of V/Uref versus Y/T at selected X/T values for 
the Realizable k-ε model. 
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Figure 14.  Comparison of simulated and experimental values of k/U2ref versus Y/T at selected X/T values 
for the Realizable k-ε model. 

 

7.2 Reynolds Stress Model 

This is the most elaborate RANS turbulence model provided in Fluent and since it avoids making 
the isotropic Boussinesq approximation by solving additional transport equations for each of the 
individual Reynolds stresses it is expected to provide superior results to any of the other models. 
The model constants used for this particular implementation are: C1 = 3.4, C*1 = 1.8, C2 = 4.2,        
C3 = 0.8, C*3 = 1.3, C4 = 1.25 and C5 = 0.4. 

Figures 15 through 19 show a comparison between the  simulated and experimental values of 
U/Uref versus Y/T at  selected X/T values.The level of agreement between simulation and 
experiment at X/T locations  –0.050, -0.103, -0.154, -0.461, -0.667 and –0.860 is very similar to that 
found for the Realizable k-ε model. At locations close to the vortex however, for X/T values of        
–0.251, -0.300 and –0.351, the RSM model provides considerably better agreement than the 
Realizable k-ε model. The only location at which the Realizable k-ε model provides better 
agreement than the RSM model occurs at X/T = -0.404. 

Figures 20 through 22 compare the experimental and calculated values for V/Uref versus Y/T at all 
the X/T stations. Comparison with Figures 12 and 13 show that the RSM model provides 
significant improvement over results obtained using the Realizable k-ε model for all of the V/Uref  
plots. There is now much better agreement between the simulated and experimental values at   
X/T = -0.103 and –0.154,  while at locations close to the centre of the vortex, such as X/T = -0.251 
and X/T = -0.300 for example, the RSM model captures the positive components of the velocity 
which occur above Y/T = 0.1. 

Figure 23 shows a comparison between the simulated and experimental values of the turbulent 
kinetic energy as a function of Y/T for selected X/T values. The results are similar to those shown 
in Figure 14 for the Realizable k-ε model in that the peak in the kinetic energy again occurs at the 
location closest to the wall, but at least the level of agreement between the simulated and 
experimental value at X/T = -0.351 is considerably improved. In summary, the RSM model seems 
to provide better agreement with experiment for the mean velocity components than does the 
Realizable k-ε model, but the turbulent kinetic energy is still poorly predicted. 
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Figure 15.  Comparison of simulated and experimental values of U/Uref versus Y/T at  X/T  = -0.050 and 
X/T = -0.860 for the RSM model. 
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Figure 16.  Comparison of simulated and experimental values of U/Uref versus Y/T at  X/T  = -0.103 and 

X/T = -0.667 for the RSM model. 
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Figure 17.  Comparison of simulated and experimental values of U/Uref versus Y/T at  X/T  = -0.154 and 

X/T = -0.461 for the RSM model. 
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Figure 18.  Comparison of simulated and experimental values of U/Uref versus Y/T at  X/T  = -0.251 and 

X/T = -0.404 for the RSM model. 
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Figure 19.  Comparison of simulated and experimental values of U/Uref versus Y/T at  X/T  = -0.300 and 
X/T = -0.351 for the RSM model. 
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Figure 20.  Comparison of simulated and experimental values of V/Uref versus Y/T at selected X/T values for 
the RSM model 
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Figure 21.  Comparison of simulated and experimental values of V/Uref versus Y/T at selected X/T values for 
the RSM model 
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Figure 22.  Comparison of simulated and experimental values of V/Uref versus Y/T at selected X/T values for 
the RSM model 
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Figure 23.  Comparison of simulated and experimental values of k/U2ref versus Y/T at selected X/T values 
for the RSM. 
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7.3 V2F Model 

This model was developed by Durbin in a number of publications [24-27] during the period 1991- 
1995 and is available in Fluent by payment of an additional licence fee. Conceptually the model lies 
somewhere between the simplicity of an isotropic k-ε model and the full anisotropy provided by a 
Reynolds Stress model. It arose out of a desire to eliminate the need to use wall functions or the 
two-layer approach to specify how turbulence varies near a wall. It was developed from a 
simplified Reynolds Stress model and successfully includes the anisotropy of near-wall turbulence 
while continuing to use an eddy viscosity assumption. The model is valid throughout the whole 
flow domain and automatically becomes a near-wall model close to solid surfaces. It uses the 
standard k-ε equations as well as an additional transport equation for the mean value of v2, where 
v represents the component of the fluctuating velocity normal to the time-averaged streamline, 
and an elliptic relaxation equation for the function f, which can be taken to represent the 
redistribution of turbulent intensity from the streamwise component of the flow. The elliptic 
equation models pressure-velocity correlations and accounts for the non-local effect of blocking by 
the wall, ensuring that the velocity component normal to the wall is inviscidly brought to zero at 

the wall. The turbulent viscosity is then given by the expression νT = Cμ
2v k/ε, where Cμ has the 

value 0.2. The model has a built-in realizability limiter (Durbin [28]) and does not require any 
damping or wall functions to correctly capture near-wall turbulence.  

Figures 24 through 28 show a comparison between the  simulated and experimental values of 
U/Uref versus Y/T at  selected X/T values.The level of agreement between simulation and 
experiment is certainly better than that shown by the Realizable k-ε model and comparable with 
that shown by the full RSM model. In fact at X/T = -0.050, -0.103, -0.154 and -0.404 there is better 
agreement between the simulated and experimental results, with the only location showing 
slightly worse agreement being at X/T = -0.251.  

Figures 29 through 31 compare the simulated and experimental values for V/Uref versus Y/T at all 
the X/T stations. Comparison with Figures 12 and 13 for the Realizable k-ε model and Figures 20 
through 22 for the RSM model show that the V2F model provides far better agreement with the 
experimental values than the Realizable k-ε model and a similar degree of agreement as the RSM 
model.  At X/T = -0.050 and –0.103 for example the RSM model provides better agreement with 
experiment than the V2F model, while at X/T = -0.204, -0.251 –0.300 and –0.351 the V2F model 
provides better agreement than the RSM model. These figures show that the V2F model, similar to 
the RSM model, is capable of capturing the positive components of the velocity which occur above 
Y/T = 0.1 in the area of the vortex centre.  

Figure 32 shows the simulated and experimental values of the turbulent kinetic energy as a 
function of Y/T for the same X/T locations shown in Figure 14 for the Realizable k-ε model and 
Figure 23 for the RSM model. The results here are an improvement on those calculated using either 
the Realizable k-ε model or the RSM model close to the wall, but agreement is worse near the 
centre of the vortex. The V2F model however still shows the peak turbulent kinetic energy close to 
the wall, rather than at the vortex centre. 
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Figure 24.  Comparison of simulated and experimental values of U/Uref versus Y/T at  X/T  = -0.050 and 
X/T = -0.860 for the V2F model. 
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Figure 25.  Comparison of simulated and experimental values of U/Uref versus Y/T at  X/T  = -0.103 and 
X/T = -0.667 for the V2F model. 
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Figure 26.  Comparison of simulated and experimental values of U/Uref versus Y/T at  X/T  = -0.154 and 
X/T = -0.461 for the V2F model.  
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Figure 27.  Comparison of simulated and experimental values of U/Uref versus Y/T at  X/T  = -0.251 and 
X/T = -0.404 for the V2F model. 
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Figure 28.  Comparison of simulated and experimental values of U/Uref versus Y/T at  X/T  = -0.300 and 
X/T = -0.351 for the V2F model. 
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Figure 29.  Comparison of simulated and experimental values of V/Uref versus Y/T at  selected X/T values 
for the V2F model. 
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Figure 30.  Comparison of simulated and experimental values of V/Uref versus Y/T at  selected X/T values 
for the V2F model. 
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Figure 31.  Comparison of simulated and experimental values of V/Uref versus Y/T at  selected X/T values 
for the V2F model. 
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Figure 32.  Comparison of simulated and experimental values of k/U2ref versus Y/T at selected X/T values 
for the V2F model. 
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7.4 Spalart-Allmaras Model 

This is the simplest turbulence model provided in Fluent. It solves the RANS equations for the 
mean velocity components and pressure and uses the Boussinesq hypothesis to relate the Reynolds 
stresses to the mean velocity gradients. The turbulent viscosity is then found from the solution of 
one additional transport equation. The derivation of this equation is explained in detail in the 
original paper by Spalart and Allmaras [29]. Rather than being derived in a more or less 
fundamental way from moments of the Navier-Stokes equation, as are the equations for k and ε in 
the k-ε model, the transport equation for the turbulent viscosity is simply postulated, based on a 
combination of empiricism, dimensional analysis, Galilean invariance, and selective dependence 
on the molecular viscosity. In its original formulation it contains production, destruction and 
diffusion terms, with both the production and destruction terms being a function of the distance to 
the wall, and the production term also being a function of the magnitude of the vorticity. The 
model was designed specifically for aerospace applications involving wall-bounded flows and has 
been shown to give good results for boundary layers subjected to adverse pressure gradients. 

Fluent contains both the original version of the model as well as a modified form which takes into 
account the effect of mean strain on the turbulence production. This modification combines 
measures of both rotation and strain tensors in the definition of the production term. Including 
both the rotation and strain tensors reduces the production of eddy viscosity and consequently 
reduces the eddy viscosity itself in regions where the measure of the vorticity exceeds that of the 
strain rate. This is typically found in vortical flows near the core of a vortex subjected to pure 
rotation where turbulence is known to be supressed. This is the opposite of the case under study 
here, where the turbulence production in the core of the vortex is considerably enhanced, and so 
only the original version of the model has been used in this report. 

The original Spalart-Allmaras model was effectively a low Reynolds number model and required 
fine resolution in the viscosity affected region of the boundary layer. In Fluent, however, the 
model has been implemented to use wall functions when the mesh resolution is not sufficiently 
fine. Guidelines for the use of this model, as described in the Fluent 6.1 Tutorial Guide Number 3 
[30], indicate that the y+ value of the wall adjacent cells should be either very small (on the order of 
y+ = 1), or approximately 30 or greater. Paciorri et al. [31] used the Spalart-Allmaras model to 
simulate flow around a hollow-cylinder flare problem and found excellent agreement with the 
experimental data provided that the wall y+ value did not exceed a value of 2. On a more coarse 
mesh, where the  y+ value exceeded 6, the agreement with experiment was severely degraded. 
Since the  y+ values on the present grid were of the order of 5 and 6, a new mesh was constructed 
with finer resolution in the areas close to the wall. The height of the first layer of cells above the 
solid surfaces was changed from 0.1mm to approximately 0.03 mm and stronger growth ratios 
were used so that the cell sizes at the edges of the mesh were approximately 2 cm. The resulting y+ 

values around the base of the wing varied between 0.5 to 1.5, while over the leading edge of the 
wing the maximum y+ value was approximately 2. The model constants used for this particular 
implementation are:     Cb1 = 0.1335, Cb2 =  0.622, σν =  2/3, Cv1 = 7.1, Cw1 = Cb1/κ2 + (1+Cb2)/ σν , 
Cw2 = 0.3, Cw3 = 2.0 and κ  = 0.4187.  

Figures 33 through 37 show a comparison between the  simulated and experimental values of 
U/Uref versus Y/T at  selected X/T values. The level of agreement between simulation and 
experiment is again noticeably better than that shown by the Realizable k-ε model and comparable 
with that shown by the full RSM model or the V2F model. At X/T = -0.050, -0.103, -0.154, -0.461, -
0.667 and -0.860 all the models show very similar levels of agreement, although at X/T = -0.251, -
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0.404 and -0.461 both the V2F model and the Spalart-Allmaras model show better agreement with 
experiment, and the Spalart-Allmaras results are remarkably similar to those of the V2F model. At 
X/T = -0.300 and –0.351 however the Spalart-Allmaras results are inferior to those of either the 
RSM or V2F models, although they are still better than those calculated by the Realizable k-ε 
model.  

Figures 38 through 40 compare the simulated and experimental values for V/Uref versus Y/T at all 
the X/T stations. These demonstrate again that the level of agreement between simulation and 
experiment is noticeably better than that shown by the Realizable k-ε model and comparable with 
that shown by the full RSM model or the V2F model. Only at X/T = -0.251 does the Spalart-
Allmaras model fail to predict the positive velocity component which occurs close to the wall in 
the area of the vortex centre. Note that since the Spalart-Allmaras model solves a transport 
equation for the turbulent viscosity rather than the turbulent kinetic energy we are unable to make 
a comparison between simulated and experimental values of the turbulent kinetic energy as a 
function of Y/T at the X/T locations. 
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Figure 33.  Comparison of simulated and experimental values of U/Uref versus Y/T at  X/T  = -0.050 and 
X/T = -0.860 for the Spalart-Allmaras model. 
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Figure 34.  Comparison of simulated and experimental values of U/Uref versus Y/T at  X/T  = -0.103 and 
X/T = -0.667 for the Spalart-Allmaras model. 
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Figure 35.  Comparison of simulated and experimental values of U/Uref versus Y/T at  X/T  = -0.154 and 
X/T = -0.461 for the Spalart-Allmaras model. 
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Figure 36.  Comparison of simulated and experimental values of U/Uref versus Y/T at  X/T  = -0.251 and 
X/T = -0.404 for the Spalart-Allmaras model. 

 

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0.0010.010.11

Y/T

U
/u

re
f

U/Uref at X/T = -0.300 calc
U/Uref at X/T = -0.300 expt
U/Uref at X/T = -0.351 calc 
U/Uref at X/T = -0.351 expt

 

Figure 37.  Comparison of simulated and experimental values of U/Uref versus Y/T at  X/T  = -0.300 and 
X/T = -0.351 for the Spalart-Allmaras model. 
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Figure 38.  Comparison of simulated and experimental values of V/Uref versus Y/T at  selected X/T values 
for the Spalart-Allmaras model. 
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Figure 39.  Comparison of simulated and experimental values of V/Uref versus Y/T at  selected X/T values 
for the Spalart-Allmaras model. 
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Figure 40.  Comparison of simulated and experimental values of V/Uref versus Y/T at  selected X/T values 
for the Spalart-Allmaras model. 
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7.5 k-ω Model 

The k-ω model is the second most widely used two equation model. It was developed by Wilcox in 
1988 [32], although an improved version appeared in the book by Wilcox in 1998 [33]. In this 
model the expression for the turbulent viscosity and the equation for the turbulent kinetic energy 
are the same as those used in the k-ε model. The difference between the two models lies in the 
second equation, which Wilcox writes as an equation for the variable ω, which is the dissipation 
per unit turbulence kinetic energy and is defined simply as ω ≡ ε / k. Wilcox has shown that, for 
boundary layer flows, the k-ω model is superior to the k-ε model both in its treatment of the 
viscous near wall region and in its accounting for the effects of streamwise pressure gradients. The 
original model had problems near non-turbulent free stream boundaries because a non-zero (non-
physical) boundary condition is required for ω and the calculated flow was found to be sensitive to 
the value specified. The modified k-ω model described by Wilcox in 1998 [33] has removed this 
problem. 

A different version of the k-ω model, the shear-stress transport (SST) k-ω model, was described by 
Menter in 1994 [34]. In this model the turbulent viscosity is modified to account for the transport of 
the principal turbulent shear stress. This feature gives the model an advantage in terms of 
performance over both the standard k-ω and k-ε models. Other modifications include the addition 
of a cross-diffusion term in the ω equation and the use of a blending function. Close to walls the 
blending function is zero, whereas remote from walls the blending function is unity and the model 
reverts to the standard k-ε model. Hence the SST k-ω model blends the k-ω model, which is 
superior in the near-wall region, with the k-ε model, which is less sensitive to the level of 
turbulence in the free stream.  

Fluent provides both the original k-ω model as well as the SST k-ω model and also provides each 
of these models as low-Reynolds number models (fine grids) as well as high-Reynolds number 
models (coarse grids). Only the low-Reynolds number SST k-ω model has been used in this report 
as this represents the most refined version of the model to date. The simulation was performed 
using the grid described in the previous section to ensure maximum resolution in the near wall 
region. The model constants used for this particular implementation are: α*∞ =1, α∞ =0.52, α0 = 
1/9, β*∞ =0.09, βi =0.072, Rβ = 8, Rk = 6, Rω = 2.95, ζ* = 1.5, Mt0 = 0.25, σk = 2.0, σω = 2.0.  

Figures 41 through 45 show a comparison between the simulated and experimental values of 
U/Uref versus Y/T at  selected X/T values. The level of agreement between simulation and 
experiment is again noticeably better than that shown by the Realizable k-ε model but perhaps not 
quite as good as that shown by the full RSM model. The calculated results appear on average to 
have the same level of agreement with experiment as those calculated by either the V2F model or 
the Spalart-Allmaras model.  

Figures 46 through 48 compare the simulated and experimental values for V/Uref versus Y/T and 
the results show a similar trend to those shown by the U/Uref  calculations; the simulated results 
are again better than those calculated by using the Realizable k-ε model but not as accurate as those 
calculated using the full RSM model. The level of accuracy again seems to be similar to that 
obtained when using either the V2F model or the Spalart-Allmaras model.  
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Figure 41.  Comparison of simulated and experimental values of U/Uref versus Y/T at  X/T  = -0.050 and 
X/T = -0.860 for the SST k-ω model 
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Figure 42.  Comparison of simulated and experimental values of U/Uref versus Y/T at  X/T  = -0.103 and 
X/T = -0.667 for the SST k-ω model. 
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Figure 43.  Comparison of simulated and experimental values of U/Uref versus Y/T at  X/T  = -0.154 and 
X/T = -0.461 for the SST k-ω model. 
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Figure 44.  Comparison of simulated and experimental values of U/Uref versus Y/T at  X/T  = -0.251 and 
X/T = -0.404 for the SST k-ω model. 
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Figure 45.  Comparison of simulated and experimental values of U/Uref versus Y/T at  X/T  = -0.300 and 
X/T = -0.351 for the SST k-ω model. 

 
Figure 49 shows the simulated and experimental values of the turbulent kinetic energy as a 
function of Y/T for the same X/T locations shown in Figure 14 for the Realizable k-ε model, Figure 
23 for the RSM model and Figure 32 for the V2F model. Given that the SST k-ω model was 
designed to be integrated through the viscous sublayer the results here are disappointing; the 
simulated result at X/T = -0.050 is worse than that calculated by any of the other models and the 
results at X/T = -0.351 and –0.860 are comparable to those calculated using any of the other 
models. The simulated results still show the same incorrect trend, with the peak turbulent kinetic 
energy occuring closest to the wall, rather than at the vortex centre. 
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Figure 46.  Comparison of simulated and experimental values of V/Uref versus Y/T at  selected X/T values 
for the SST k-ω model model. 
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Figure 47.  Comparison of simulated and experimental values of V/Uref versus Y/T at  selected X/T values 
for the SST k-ω model model. 
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Figure 48.  Comparison of simulated and experimental values of V/Uref versus Y/T at  selected X/T values 
for the SST k-ω model. 
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Figure 49.  Comparison of simulated and experimental values of k/U2ref versus Y/T at selected X/T values 
for the SST k-ω model. 

 

8. Grid Independence 

To ensure that the results presented in the previous sections were grid independent, simulations 
for each of the turbulence models were run on either two or three different grids having varying 
degrees of refinement. In this section we discuss the accuracy of the simulation results for each of 
the turbulence models separately.  

Simulations using the realizable k-ε model were performed on both the second mesh described in 
Section 6.0 (henceforth referred to as the coarse grid) and the mesh described in Section 7.4, which 
was constructed for the Spalart-Allmaras model (which will be referred to as the fine mesh).  

Figures 50 and 51 show plots of U/Uref and V/Uref as a function of Y/T at several representative 
X/T locations for simulations performed on both the coarse and fine meshes. Figure 50 shows that 
the U/Uref  velocity profiles calculated on the two meshes are identical, even in the highly 
turbulent region near the vortex core, i.e. at  X/T = -0.300. The V/Uref velocity profiles shown in 
Figure 51 however show that grid independence has not been completely achieved. The profiles at 
X/T = -0.050 and X/T = –0.103 for example, while very similar, show differences of up to 10% at 
certain Y/T locations. Strangely enough the profiles closer to the vortex core, for example at X/T = 
-0.154, are again almost identical. To achieve complete grid independence for this model would 
probably require a finer mesh than that described in Section 7.4. Such a mesh would be expected to 
improve the accuracy of the simulations by only a few percent however, and the experimental 
values shown in Figure 51 for X/T = -0.050 and X/T = –0.103 show that improvements to the 
simulated results of this order would have little effect on the overall agreement between the 
simulated and experimental results. We conclude that the results presented in Section 7.1 for the 
realizable k-ε model show sufficient grid independence as to make the results representative of the 
degree of agreement between simulation and experiment which can be achieved using this model.  
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Figure 50.  Plots of U/Uref versus Y/T at selected X/T locations for simulations on the coarse and fine meshes 
for the realizable k-ε model. 

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.001 0.01 0.1 1

Y/T

V/
U

re
f

V/Uref at X/T = -0.050 fine
V/Uref at X/T = -0.050 coarse
V/Uref at X/T = -0.050 expt
V/Uref at X/T = -0.860 fine 
V/Uref at X/T = -0.860 coarse
V/Uref at X/T = -0.103 fine 
V/Uref at X/T = -0.103 coarse
V/Uref at X/T = -0.103 expt
V/Uref at X/T = -0.154 fine
V/Uref at X/T = -0.154 coarse

 

Figure 51.  Plots of V/Uref versus Y/T at selected X/T locations for simulations on the coarse and fine meshes 
for the realizable k-ε model. 

For the V2F model simulations were performed on both the coarse and fine grids and comparisons 
between the results obtained on both grids are shown in Figures 52 and 53, which show plots of 
U/Uref and V/Uref respectively versus Y/T at selected X/T locations. Figure 52 shows that the 
U/Uref  velocity profiles calculated on the two meshes are virtually identical. There is a very slight 
difference in the region of the vortex centre, near X/T = -0.300, but this only on the order of a few 
percent. The V/Uref velocity profiles in Figure 53 show a similar degree of convergence as that 
achieved using the realizable k-ε model. Away from the vortex centre the simulated velocity 
profiles on the two grids are almost identical, but at X/T = -0.300 there is again a difference of a 
few percent over part of the Y/T range. Although the simulated profiles on the coarse and fine 
meshes are not identical everywhere the differences are no more than a few percent in isolated 
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regions and are certainly significantly less than the scatter in the experimental data in these 
regions, and so we conclude that the results shown in Section 7.3 for the V2F model are again 
representative of the degree of agreement between simulation and experiment which can be 
achieved using this model.  
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Figure 52.  Plots of U/Uref versus Y/T at selected X/T locations for simulations on the coarse and fine meshes 
for the V2F model. 
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Figure 53.  Plots of V/Uref versus Y/T at selected X/T locations for simulations on the coarse and fine meshes 
for the V2F model. 

Figures 54 and 55 show plots of U/Uref and V/Uref  versus Y/T at selected X/T locations for the 
Spalart-Allmaras model. For this model simulations were run on three different grids; the coarse 
and fine grids referred to previously, as well as an even finer grid which was obtained from the 
fine grid using the Fluent grid adaption feature. Using the hanging node method cells marked for 
refinement are refined by isotropically subdividing each cell, so that a hexahedral cell for example 
is split into eight equivalent hexahedra. Cells can be marked for refinement using a number of 
criteria, but in this case, knowing the location of the vortex, the cells were refined in a region which 
completely encapsulated the vortical flow. This effectively doubled the number of cells in the 
mesh, from approximately 1 million hexahedral cells to approximately 2 million cells.   
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From the plots shown in Figure 54 it could be concluded that grid convergence has been achieved 
on the fine mesh, but inspection of the velocity profiles in Figure 55 show that there are very small 
differences between the profiles calculated on the fine and adapted meshes over part of the Y/T 
ranges for some of the X/T locations. These again occur very close to the vortex core, at X/T = -
0.204 for example. Elsewhere there is excellent agreement between the profiles calculated on the 
three different grids. Considering the level of agreement between the experimental results and the 
V/Uref velocity profiles shown in Figures 38 to 40 however it was considered that further grid 
refinement in the region of the vortex core was unnecessary as it was unlikely to significantly 
increase the overall level of agreement between the simulated and the experimental results for the 
Spalart-Allmaras model.  
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Figure 54.  Plots of U/Uref versus Y/T at selected X/T locations for simulations on the coarse, fine and 
adapted meshes for the Spalart-Allmaras model. 
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Figure 55.  Plots of V/Uref versus Y/T at selected X/T locations for simulations on the coarse, fine and 
adapted meshes for the Spalart-Allmaras model. 
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For the k-ω model simulations were performed on the fine mesh and the adapted mesh described 
in the preceeding paragraphs. Figure 56 shows plots of U/Uref versus Y/T at X/T = -0.050, X/T = 
-0.404 and X/T = -0.860 and the profiles calculated on the two grids are identical. Figure 57 shows 
plots of U/Uref versus Y/T at X/T = -0.154 and   X/T = -0.251. At X/T = -0.154 the profiles on the 
two different meshes are again identical, but at X/T = -0.251 there are differences of a few percent 
at the smallest Y/T values. Examination of the experimental data at this X/T station however 
shows that there is little point in further refining the grid in this region as the velocity profile 
simulated on this even finer grid would be unlikely to provide significant improvement in the 
agreement between the simulated and experimental data. 

 

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0.0010.010.11

Y/T

U
/U

re
f

U/Uref at X/T = -0.050 fine
U/Uref at X/T = -0.050 adapted 
U/Uref at X/T = -0.860 fine
U/Uref at X/T = -0.860 adapted
U/Uref at X/T = -0.404 fine
U/Uref at X/T = -0.404 adapted 

 

Figure 56.  Plots of U/Uref versus Y/T at selected X/T locations for simulations on the fine and adapted 
meshes for the k-ω model 

Figure 58 for the plots of V/Uref versus Y/T at X/T = -0.050, X/T = -0.154, X/T = -0.300 and       
X/T = -0.404 shows a similar trend. There is excellent agreement between the velocity profiles 
calculated on the two grids for X/T = -0.050, X/T = -0.154 and X/T = -0.404, but at X/T = -0.300 
there is a significant difference between the profiles over a considerable part of the Y/T range. 
Again, examination of the experimental data for this X/T location shows that further grid 
refinement in this region is unlikely to significantly improve the agreement between the simulated 
and experimental data.  
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Figure 57.  Plots of U/Uref versus Y/T at selected X/T locations for simulations on the fine and adapted 
meshes for the k-ω model 
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Figure 58.  Plots of V/Uref versus Y/T at selected X/T locations for simulations on the fine and adapted 
meshes for the k-ω model 

The simulations on the different meshes presented so far in this section have demonstrated 
effective grid convergence for both the realizable k-ε model and the V2F model on the coarse mesh, 
and for the Spalart-Allmaras model and the k-ω model on the fine mesh. For the RSM model 
however the situation is more complex. Figures 59 through 66 show simulations for the RSM 
model on both the coarse and fine meshes using both non-equilibrium wall functions as well as 
advanced wall functions. Both wall functions were trialed because the Fluent 6.0 User’s Guide 
states “Using the RSM creates a high degree of coupling between the momentum equations and 
the turbulent stresses in the flow, and thus the calculation can be more prone to stability and 
convergence difficulties than with the k-ε models.” [35]. The following recommendation is also 
noted “When calculating with RSM it is recommended that the Non-Equilibrium Wall Functions 
are used” [36]. Whilst the reason for this recommendation was not given, it was certainly noted 
that convergence of the RSM on both the coarse and fine mesh was easily obtained using non-
equilibrium wall functions, while convergence on any mesh using enhanced wall functions was 
extremely difficult to obtain. Also, it should be noted that much better convergence from the point 
of view of residuals was obtained using non-equilibrium wall functions. On either the coarse or 
fine grid the residuals were observed to reduce by up to six orders of magnitude using the non-
equilibrium wall functions, whilst when using the enhanced wall functions the residuals typically 
reduced by only three orders of magnitude and then the calculation became unstable. Hence, 
whilst a calculation using enhanced wall functions on the fine grid might be expected to give 
superior results to a calculation on the coarse grid using non-equilibrium wall functions, this is not 
necessarily the case because of the poor convergence (from the residuals view point) of the 
calculation on the fine mesh using enhanced wall functions. 

Examination of Figures 59 through 66 shows some interesting features. For many of the X/T 
locations away from the centre of the vortex, for example at X/T = -0.050, -0.103,  -0.154 and -0.860 
there is fairly good agreement between simulations performed on the coarse and fine grids using 
the non-equilibrium wall functions and those on the fine grid using the enhanced wall functions. 
Even at X/T = -0.204 and –0.404 the agreement between these three simulations is still reasonable. 
Only at X/T =-0.300 for U/Uref and at X/T = -0.251 for V/Uref are there significant differences 
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between the three simulations. In both these cases however it is interesting to note that the 
experimental results agree more closely with the simulation performed on the coarse mesh using 
the non-equilibrium wall functions. This was also found to be the case at other X/T locations. 
These simulations are obviously not fully converged, but pursuing convergence on more and more 
refined grids using non-equilibrium wall functions is questionable in any case,  and it is also not 
apparent that convergence can be obtained using enhanced wall functions. For these reasons the 
results presented in Section 7.2 use the simulations performed on the coarse mesh using the non-
equilibrium wall functions. 
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Figure 59.  Plots of U/Uref versus Y/T at X/T = -0.050 and X/T = -0.860 for simulations on the coarse and 
fine meshes for the RSM model. 
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Figure 60.  Plots of U/Uref versus Y/T at X/T = -0.204 for simulations on the coarse and fine meshes for the 
RSM model. 
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Figure 61.  Plots of U/Uref versus Y/T at X/T = -0.300 for simulations on the coarse and fine meshes for the 
RSM model. 
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Figure 62.  Plots of U/Uref versus Y/T at X/T = -0.404 for simulations on the coarse and fine meshes for the 
RSM model. 
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Figure 63.  Plots of V/Uref versus Y/T at X/T = -0.050 for simulations on the coarse and fine meshes for the 
RSM model. 
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Figure 64.  Plots of V/Uref versus Y/T at X/T = -0.103 for simulations on the coarse and fine meshes for the 
RSM model. 
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Figure 65.  Plots of V/Uref versus Y/T at X/T = -0.154 for simulations on the coarse and fine meshes for the 
RSM model. 
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Figure 66.  Plots of V/Uref versus Y/T at X/T = -0.251 for simulations on the coarse and fine meshes for the 
RSM model. 
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9. Discussion and Conclusion 

The aim of this report was to investigate and document the accuracy with which the Fluent CFD 
code and the various turbulence models contained within it could simulate the horseshoe vortex 
formed in the Devenport-Simpson experiment [4]. Simulations were conducted using each of the 
turbulence models and the calculated results were compared with experimental results obtained 
from an extensive database of results available at the University of Surrey’s website [3]. In all cases 
comparisons were made in the plane of symmetry upstream of the wing for the mean components 
of velocity in the direction of the free-stream and normal to the flat plate at eleven stations 
upstream of the wing, as well as the pressure distribution along the surface of the wing at selected 
locations. 

All of the calculations accurately reproduced the pressure distributions around the wing and only 
results for the k-ε  model were presented as the remaining models displayed identical results, 
which was as expected. The mean velocity components in the free-stream direction and normal to 
the flat plate were reasonably well simulated by all the turbulence models, except in the vicinity of 
the vortex core. The realizable k-ε model and the Spalart-Allmaras model were less accurate than 
the other models in simulating velocity components in the vortex core, while the remaining 
models, the RSM, the V2F model and the k-ω model all displayed similar levels of accuracy with 
regard to simulations of the mean velocity components in the vortex core. None of the models was 
able to accurately simulate the correct trend  for the behaviour of the mean kinetic energy as a 
function of Y/T at selected X/T values. Experimentally the peak value of the turbulent kinetic 
energy occurs close to the centre of the vortex, while all the simulated results showed a different 
trend, with the  kinetic energy increasing continuously as the distance to the wing decreased, with 
the maximum value occuring not at the vortex centre but at the closest point to the wing surface. 
The V2F model however came closest to predicting the correct behaviour close to the wall. This is 
similar to the result found by Parneix et al. [11]. 

Apsley and Leschziner [10] noted that RSM offered predictive advantages over other models 
examined in their study, especially in terms of the far-field structure of the horseshoe vortex. Chen 
[13] also found that the RSM gave a superior performance over that of the simpler isotropic eddy 
viscosity model. In contrast to this, Rodi et al. [12] found that the RSM and intermediate algebraic-
stress and non-linear k-ε models were no better than the simpler linear eddy viscosity models for 
the practically relevant mean quantities. Our own conclusion is that the RSM in Fluent can be 
particularly unstable and that convergence can be difficult to achieve. Despite this, the results 
shown in Section 7.2 calculated using non-equilibrium wall functions on the coarse grid, even 
though not fully converged, show agreement with experiment as good as that obtained using the 
V2F, Spalart-Allmaras or k-ω model. The RSM is computationally more expensive than any of the 
other models however. Both the Spalart-Allmaras and k-ω models require fine resolution close to 
any boundaries, and this can also lead to computationally expensive simulations compared to 
either the k-ε model or the V2F model. Based on the above considerations, it would appear that the 
V2F model offers the best combination of computational accuracy, computational efficiency, and 
ease of use.  
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