
Introduction to the HPCChallenge Benchmark Suite∗

Jack J. Dongarra† Piotr Luszczek‡

December 13, 2004

Abstract

The HPCChallenge suite of benchmarks will examine
the performance of HPC architectures using kernels
with memory access patterns more challenging than
those of the High Performance Linpack (HPL) bench-
mark used in the Top500 list. The HPCChallenge suite
is being designed to augment the Top500 list, provide
benchmarks that bound the performance of many real
applications as a function of memory access character-
istics e.g., spatial and temporal locality, and provide a
framework for including additional benchmarks. The
HPCChallenge benchmarks are scalable with the size of
data sets being a function of the largestHPL matrix for a
system. The HPCChallenge benchmark suite has been
released by the DARPA HPCS program to help define
the performance boundaries of future Petascale com-
puting systems. The suite is composed of several well
known computational kernels (STREAM, High Perfor-
mance Linpack, matrix multiply –DGEMM, matrix
transpose,FFT, RandomAccess, and bandwidth/latency
tests) that attempt to span high and low spatial and tem-
poral locality space.

1 High Productivity Computing
Systems

The DARPA High Productivity Computing Sys-
tems (HPCS) [1] is focused on providing a new gen-
eration of economically viable high productivity com-
puting systems for national security and for the indus-

∗This work was supported in part by the DARPA, NSF, and
DOE though the DAPRA HPCS program under grant FA8750-04-
1-0219.

†University of Tennessee Knoxville and Oak Ridge National
Laboratory

‡University of Tennessee Knoxville

trial user community. HPCS program researchers have
initiated a fundamental reassessment of how we define
and measure performance, programmability, portabil-
ity, robustness and ultimately, productivity in the HPC
domain.

The HPCS program seeks to create trans-Petaflop
systems of significant value to the Government HPC
community. Such value will be determined by assess-
ing many additional factors beyond just theoretical peak
flops (floating-point operations). Ultimately, the goal is
to decrease the time-to-solution, which means decreas-
ing both the execution time and development time of an
application on a particular system. Evaluating the capa-
bilities of a system with respect to these goals requires a
different assessment process. The goal of the HPCS as-
sessment activity is to prototype and baseline a process
that can be transitioned to the acquisition community
for 2010 procurements.

The most novel part of the assessment activity will
be the effort to measure/predict the ease or difficulty
of developing HPC applications. Currently, there is no
quantitative methodology for comparing the develop-
ment time impact of various HPC programming tech-
nologies. To achieve this goal, the HPCS program is
using a variety of tools including

• Application of code metrics on existing HPC
codes,

• Several prototype analytic models of development
time,

• Interface characterization (e.g. programming lan-
guage, parallel model, memory model, communi-
cation model),

• Scalable benchmarks designed for testing both per-
formance and programmability,

1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
13 DEC 2004 2. REPORT TYPE

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Introduction to the HPCChallenge Benchmark Suite

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Defense Advanced Research Projects Agency,3701 North Fairfax
Drive,Arlington,VA,22203-1714

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

11

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

• Classroom software engineering experiments,

• Human validated demonstrations.

These tools will provide the baseline data necessary
for modeling development time and allow the new tech-
nologies developed under HPCS to be assessed quanti-
tatively.

As part of this effort we are developing a scalable
benchmark for the HPCS systems.

The basic goal of performance modeling is to mea-
sure, predict, and understand the performance of a com-
puter program or set of programs on a computer system.
The applications of performance modeling are numer-
ous, including evaluation of algorithms, optimization
of code implementations, parallel library development,
and comparison of system architectures, parallel system
design, and procurement of new systems.

2 Motivation

The DARPA High Productivity Computing Sys-
tems (HPCS) program has initiated a fundamental re-
assessment of how we define and measure perfor-
mance, programmability, portability, robustness and,
ultimately, productivity in the HPC domain. With this
in mind, a set of kernels was needed to test and rate a
system. The HPCChallenge suite of benchmarks con-
sists of four local (matrix-matrix multiply,STREAM,
RandomAccess and FFT) and four global (High Per-
formance Linpack –HPL, parallel matrix transpose
– PTRANS, RandomAccess and FFT) kernel bench-
marks. HPCChallenge is designed to approximately
bound computations of high and low spatial and tem-
poral locality (see Figure 1). In addition, because HPC-
Challenge kernels consist of simple mathematical op-
erations, this provides a unique opportunity to look at
language and parallel programming model issues. In
the end, the benchmark is to serve bothe the system user
and designer communities [2].

3 The Benchmark Tests

This first phase of the project have developed, hardened,
and reported on a number of benchmarks. The collec-
tion of tests includes tests on a single processor (local)

and tests over the complete system (global). In partic-
ular, to characterize the architecture of the system we
consider three testing scenarios:

1. Local – only a single processor is performing com-
putations.

2. Embarrassingly Parallel – each processor in the en-
tire system is performing computations but they do
no communicate with each other explicitly.

3. Global – all processors in the system are perform-
ing computations and they explicitly communicate
with each other.

The HPCChallenge benchmark consists at this time
of 7 performance tests: HPL [3], STREAM [4],
RandomAccess, PTRANS, FFT (implemented us-
ing FFTE [5]), DGEMM [6, 7] and b eff La-
tency/Bandwidth [8, 9, 10]. HPL is the Linpack
TPP (toward peak performance) benchmark. The test
stresses the floating point performance of a system.
STREAM is a benchmark that measures sustainable
memory bandwidth (in GB/s),RandomAccess mea-
sures the rate of random updates of memory.PTRANS
measures the rate of transfer for larges arrays of data
from multiprocessor’s memory. Latency/Bandwidth
measures (as the name suggests) latency and bandwidth
of communication patterns of increasing complexity be-
tween as many nodes as is time-wise feasible.

Many of the aforementioned tests were widely used
before HPCChallenge was created. At first, this may
seemingly make our benchmark merely a packaging
effort. However, almost all components of HPCChal-
lenge were augmented from their original form to pro-
vide consistent verification and reporting scheme. We
should also stress the importance of running these very
tests on a single machine and have the results available
at once. The tests were useful separately for the HPC
community before and with the unified HPCChallenge
framework they create an unprecendented view of per-
formance characterization of a system – a comprehen-
sive view that captures the data under the same condi-
tions and allows for variety of analysis depending on
end user needs.

Each of the included tests examines system perfor-
mance for various points of the conceptual spatial and
temporal locality space shown in Figure 1. The ra-
tionale for such selection of tests is to measures per-

2

S
pa

tia
ll

oc
al

ity

PTRANS HPL
STREAM DGEMM

CFD Radar X-section

Applications

TSP DSP

RandomAccess FFT
0 Temporal locality

Figure 1: Targeted application areas in the memory access locality space.

formance bounds on metrics important to HPC appli-
cations. The expected behavior of the applications is
to go through various locality space points during run-
time. Consequently, an application may be represented
as a point in the locality space being an average (pos-
sibly time-weighed) of its various locality behaviors.
Alternatively, a decomposition can be made into time-
disjoint periods in which the application exhibits a sin-
gle locality characteristic. The application’s perfor-
mance is then obtained by combining the partial results
from each period.

Another aspect of performance assesment addressed
by HPCChallenge is ability to optimize benchmark
code. For that we allow two different runs to be re-
ported:

• Base run done with with provided reference imple-
mentation.

• Optimized run that uses architecture specific opti-
mizations.

The base run, in a sense, represents behavior of legacy
code because it is conservatively written using only
widely available programming languages and libraries.
It reflects a commonly used approach to prallel pro-
cessing sometimes referred to as hierachical parallelism
that combines Message Passing Interface (MPI) with
threading from OpenMP. At the same time we recog-
nize the limitations of the base run and hence we al-
low (or even encourage) optimized runs to be made.
The optimizations may include alternative implemen-
tations in different programming languages using par-
allel environments available specifically on the tested

system. To stress the productivity aspect of the HPC
Challange benchmark, we require that the information
about the changes made to the orignial code be submit-
ted together with the benchmark results. While we un-
derstand that full disclosure of optimization techniques
may sometimes be impossible to obtain (due to for ex-
ample trade secrets) we ask at least for some guidence
for the users that would like to use similar optimizations
in their applications.

4 Benchmark Details

Almost all tests included in our suite operate on either
matrices or vectors. The size of the former we will de-
note below asn and the latter asm. The following holds
throughout the tests:

n2'm' Available Memory

Or in other words, the data for each test is scaled so that
the matrices or vectors are large enough to fill almost
all available memory.

HPL is the Linpack TPP (Toward Peak Performance)
variant of the original Linpack benchmark which mea-
sures the floating point rate of execution for solving a
linear system of equations.HPL solves a linear system
of equations of ordern:

Ax= b; A∈ Rn×n; x,b∈ Rn

by first computing LU factorization with row partial
pivoting of then by n+1 coefficient matrix:

P[A,b] = [[L,U],y].

3

Since the row pivoting (represented by the permutation
matrix P) and the lower triangular factorL are applied
to b as the factorization progresses, the solutionx is ob-
tained in one step by solving the upper triangular sys-
tem:

Ux = y.

The lower triangular matrixL is left unpivoted and the
array of pivots is not returned. The operation count
for the factorization phase is23n3− 1

2n2 and 2n2 for the
solve phase. Correctness of the solution is accertained
by calculating scaled residuals:

‖Ax−b‖∞
ε‖A‖1n

,

‖Ax−b‖∞
ε‖A‖1‖x‖1

, and

‖Ax−b‖∞
ε‖A‖∞‖x‖∞

,

whereε is machine precision for 64-bit floating-point
values.

DGEMM measures the floating point rate of execution
of double precision real matrix-matrix multiplication.
The exact operation performed is:

C← β C+α AB

where:
A,B,C∈ Rn×n; α,β ∈ Rn.

The operation count for the multiply is 2n3 and cor-
rectness of the operation is accertained by calculating

scaled residual:‖C−Ĉ‖
εn‖C‖F (Ĉ is the result of reference im-

plementation of the multiplication).
STREAM a simple synthetic benchmark program that

measures sustainable memory bandwidth (in GB/s) and
the corresponding computation rate for four simple vec-
tor kernels:

COPY: c ← a

SCALE: b ← α c

ADD: c ← a+b

TRIAD: a ← b+α c

where:
a,b,c∈ Rm; α ∈ R.

As mentioned earlier, we try to operate on large data
objects. The size of these objects is determined at run-
time which contrasts wit the original version of the
STREAM benchmark which uses static storage (deter-
mined at compile time) an size. The original benchmark
gives the compiler more information (and control) over
data alignment, loop trip counts, etc. The benchmark
measure GB/s and the number of items transferred is
either 2m or 3m depending on the operation. The norm
of differnce between reference and computed vectors is
used to verify the result:‖x− x̂‖.

PTRANS (parallel matrix transpose) exercises the
communications where pairs of processors communi-
cate with each other simultaneously. It is a useful test of
the total communications capacity of the network. The
performed operation sets a random ann by n matrix to
a sum of its transpose with another random matrix:

A← AT +B

where:
A,B∈ Rn×n.

The data transfer rate (in GB/s) is calculated by divid-
ing the size ofn2 matrix entries by the time it took to
perform the transpose. The scaled residual of the form
‖A−Â‖

ε n verifies the calculation.
RandomAccess measures the rate of integer random

updates of memory (GUPS). The operation being per-
formed on an integer array of sizem is:

x← f (x)

f : x 7→ (x⊕ai); ai– pseudo-random sequence

where:
f : Zm→ Zm; x∈ Zm.

The operation count ismand since all the operations are
in integral values using Galois field they can be checked
exactly with a reference implementation. The verifica-
tion procedure allows 1% of the operations to be incor-
rect (either skipped or done in the wrong order) which
allows loosening concurrent memory update semantics
on shared memory architectures.

FFT measures the floating point rate of execution
of double precision complex one-dimensional Discrete
Fourier Transform (DFT) of sizem:

Zk←
m

∑
j

zje
−2πi jk

m ; 1≤ k≤m

4

where:
z,Z ∈ Cm.

The operation count is taken to be 5mlog2m for the cal-
culation of the computational rate (in GFlop/s). Ver-
ification is done with a residual‖x−x̂‖

ε log(m) where x̂ is
the result of applying a refernce implementation of in-
verse transform to the outcome of the benchmarked
code (in infinite-precision arithmetic the residual should
be zero).

Communication bandwidth and latency is a set of
tests to measure latency and bandwidth of a number of
simultaneous communication patterns. The patterns are
based onb eff (effective bandwidth benchmark) – they
are slightly different from the originalb eff. The oper-
ation count is linearly dependant on the number of pro-
cessors in the tested system and the time the tests take
depends on the parameters of the tested network. The
checks are built into the benchmark code by checking
data after it has been received.

5 Rules for Running the Bench-
mark

There must be one baseline run submitted for each com-
puter system entered in the archive. There may also ex-
ist an optimized run for each computer system.

1. Baseline Runs
Optimizations as described below are allowed.

(a) Compile and load options
Compiler or loader flags which are supported
and documented by the supplier are allowed.
These include porting, optimization, and pre-
processor invocation.

(b) Libraries
Linking to optimized versions of the follow-
ing libraries is allowed:

• BLAS

• MPI

Acceptable use of such libraries is subject to
the following rules:

• All libraries used shall be disclosed with
the results submission. Each library

shall be identified by library name, re-
vision, and source (supplier). Libraries
which are not generally available are not
permitted unless they are made avail-
able by the reporting organization within
6 months.

• Calls to library subroutines should have
equivalent functionality to that in the re-
leased benchmark code. Code modifi-
cations to accommodate various library
call formats are not allowed.

• Only complete benchmark output may
be submitted – partial results will not be
accepted.

2. Optimized Runs

(a) Code modification
Provided that the input and output specifica-
tion is preserved, the following routines may
be substituted:

• In HPL: HPL pdgesv(), HPL pdtrsv()
(factorization and substitution functions)

• no changes are allowed in theDGEMM
component

• In PTRANS: pdtrans()

• In STREAM: tuned STREAM Copy(),
tuned STREAM Scale(),
tuned STREAM Add(),
tuned STREAM Triad()

• In RandomAccess:
MPIRandomAccessUpdate() and
RandomAccessUpdate()

• In FFT: fftw malloc(),
fftw free(), fftw create plan(),
fftw one(), fftw destroy plan(),
fftw mpi create plan(),
fftw mpi local sizes(),
fftw mpi(),
fftw mpi destroy plan() (all these
functions are compatible with FFTW
2.1.5 [11, 12] so the benchmark code
can be directly linked against FFTW
2.1.5 by only adding proper compiler
and linker flags, e.g.-DUSING FFTW)

• In Latency/Bandwidth component alter-
native MPI routines might be used for

5

Figure 2: Sample results page.

communication. But only standard MPI
calls are to be preformed and only to the
MPI library that is widely available on
the tested system.

(b) Limitations of Optimization

i. Code with limited calculation accuracy
The calculation should be carried out in
full precision (64-bit or the equivalent).
However the substitution of algorithms
is allowed (see Exchange of the used
mathematical algorithm).

ii. Exchange of the used mathematical al-
gorithm
Any change of algorithms must be fully
disclosed and is subject to review by the
HPC Challenge Committee. Passing the
verification test is a necessary condition
for such an approval. The substituted al-
gorithm must be as robust as the base-
line algorithm. For the matrix multiply
in the HPL benchmark, Strassen Algo-

rithm may not be used as it changes the
operation count of the algorithm.

iii. Using the knowledge of the solution
Any modification of the code or input
data sets, which uses the knowledge of
the solution or of the verification test, is
not permitted.

iv. Code to circumvent the actual computa-
tion
Any modification of the code to circum-
vent the actual computation is not per-
mitted.

6 Software Download, Installa-
tion, and Usage

The reference implementation of the benchmark may
be obtained free of charge at the benchmark’s web site:
http://icl.cs.utk.edu/hpcc/. The reference im-
plementation should be used for the base run. The in-

6

Figure 3: Sample kiviat diagram of results for two generations of hardware the same vendor with different number
of threads per MPI node.

stallation of the software requires creating a script file
for Unix’s make(1) utility. The distribution archive
comes with script files for many common computer ar-
chitectures. Usually, few changes to one of these files
will produce the script file for a given platform.

After, a succesful compilation the benchmark is

ready to run. However, it is recommended that a
changes be made to the benchmark’s input file that de-
scribes the sizes of data to use during run. The sizes
should reflect the available memory on the system and
number of processors available for computations.

We have collected a comprehensive set of notes on

7

the HPCChallenge benchmark. They can be found at
http://icl.cs.utk.edu/hpcc/faq/.

7 Example Results

Figure 2 show a sample ren-
dering of the results web page:
http://icl.cs.utk.edu/hpcc/hpcc results.cgi.
Figure 3 show a sample kiviat diagram generated using
the benchmark results.

8 Conclusions

No single test can accurately compare the performance
of HPC systems. The HPCChallenge benchmark test
suite stresses not only the processors, but the mem-
ory system and the interconnect. It is a better indica-
tor of how an HPC system will perform across a spec-
trum of real-world applications. Now that the more
comprehensive, informative HPCChallenge benchmark
suite is available, it can be used in preference to com-
parisons and rankings based on single tests. The real
utility of the HPCChallenge benchmarks are that archi-
tectures can be described with a wider range of metrics
than just Flop/s fromHPL. When looking only atHPL
performance and the Top500 List, inexpensive build-
your-own clusters appear to be much more cost effec-
tive than more sophisticated HPC architectures. Even
a small percentage of random memory accesses in real
applications can significantly affect the overall perfor-
mance of that application on architectures not designed
to minimize or hide memory latency. HPCChallenge
benchmarks provide users with additional information
to justify policy and purchasing decisions. We expect to
expand and perhaps remove some existing benchmark
components as we learn more about the collection.

References

[1] High Productivity Computer Systems.
(http://www.highproductivity.org/).

[2] William Kahan. The baleful effect of computer
benchmarks upon applied mathematics, physics
and chemistry. The John von Neumann Lecture at

the 45th Annual Meeting of SIAM, Stanford Uni-
versity, 1997.

[3] Jack J. Dongarra, Piotr Luszczek, and Antoine Pe-
titet. The LINPACK benchmark: Past, present,
and future.Concurrency and Computation: Prac-
tice and Experience, 15:1–18, 2003.

[4] John McCalpin. STREAM: Sustainable Mem-
ory Bandwidth in High Performance Computers.
(http://www.cs.virginia.edu/stream/).

[5] Daisuke Takahashi and Yasumasa Kanada. High-
performance radix-2, 3 and 5 parallel 1-D com-
plex FFT algorithms for distributed-memory par-
allel computers.The Journal of Supercomputing,
15(2):207–228, 2000.

[6] Jack J. Dongarra, J. Du Croz, Iain S. Duff, and
S. Hammarling. Algorithm 679: A set of Level
3 Basic Linear Algebra Subprograms.ACM
Transactions on Mathematical Software, 16:1–17,
March 1990.

[7] Jack J. Dongarra, J. Du Croz, Iain S. Duff, and
S. Hammarling. A set of Level 3 Basic Linear Al-
gebra Subprograms.ACM Transactions on Math-
ematical Software, 16:18–28, March 1990.

[8] Alice E. Koniges, Rolf Rabenseifner, and Karl
Solchenbach. Benchmark design for char-
acterization of balanced high-performance
architectures. InProceedings of the 15th
International Parallel and Distributed Pro-
cessing Symposium (IPDPS’01), Workshop
on Massively Parallel Processing (WMPP),
volume 3, San Francisco, CA, April 23-
27 2001. In IEEE Computer Society Press
(http://www.computer.org/proceedings/).

[9] Rolf Rabenseifner and Alice E. Koniges. Effec-
tive communication and file-i/o bandwidth bench-
marks. In J. Dongarra and Yiannis Cotronis
(Eds.), Recent Advances in Parallel Virtual Ma-
chine and Message Passing Interface, Proceed-
ings of the 8th European PVM/MPI Users’ Group
Meeting, EuroPVM/MPI 2001, pages 24–35, San-
torini, Greece, September 23-26 2001. LNCS
2131.

8

[10] Rolf Rabenseifner. Hybrid parallel programming
on HPC platforms. InProceedings of the Fifth
European Workshop on OpenMP, EWOMP ’03,
pages 185–194, Aachen, Germany, September 22-
26 2003.

[11] Matteo Frigo and Steven G. Johnson. FFTW: An
adaptive software architecture for the FFT. In
Proc. 1998 IEEE Intl. Conf. Acoustics Speech and
Signal Processing, volume 3, pages 1381–1384.
IEEE, 1998.

[12] Matteo Frigo and Steven G. Johnson. The design
and implementation of FFTW3.Proceedings of
the IEEE, 93(2), 2005. special issue on ”Program
Generation, Optimization, and Adaptation”.

import numarray, time
import numarray.random_array as naRA
import numarray.linear_algebra as naLA
n = 1000
a = naRA.random([n, n])
b = naRA.random([n, 1])
t = -time.time()
x = naLA.solve_linear_equations(a, b)
t += time.time()
r = numarray.dot(a, x) - b
r_n = numarray.maximum.reduce(abs(r))
print t, 2.0e-9 / 3.0 * n**3 / t
print r_n, r_n / (n * 1e-16)

Figure 4: Python code implementing Linpack bench-
mark.

Appendices

A Collaborators

• David Bailey NERSC/LBL

• Jack Dongarra UTK/ORNL

• Jeremy Kepner MIT Lincoln Lab

• David Koester MITRE

• Bob Lucas ISI/USC

• John McCalpin IBM Austin

• Rolf Rabenseifner HLRS Stuttgart

• Daisuke Takahashi Tsukuba

B Reference Sequential Imple-
mentation

Figures 4, 5, 6, 7, 8, and 9 show reference implementa-
tions of the tests from the HPCChallenge suite. Python
was chosen (as opposed to, say, Matlab) to show that
the tests can be easily implemented in a popular general
purpose language.

9

import numarray, time
import numarray.random_array as naRA
import numarray.linear_algebra as naLA
m = 1000
a = naRA.random([m, 1])
alpha = naRA.random([1, 1])[0]
Copy, Scale = "Copy", "Scale"
Add, Triad = "Add", "Triad"
td = {}

td[Copy] = -time.time()
c = a[:]
td[Copy] += time.time()
td[Scale] = -time.time()
b = alpha * c
td[Scale] += time.time()
td[Add] = -time.time()
c = a * b
td[Add] += time.time()
td[Triad] = -time.time()
a = b + alpha * c
td[Triad] += time.time()
for op in (Copy, Scale, Add, Triad):

t = td[op]
s = op[0] in ("C", "S") and 2 or 3
print op, t, 8.0e-9 * s * m / t

Figure 5: Python code implementingSTREAM bench-
mark.

from time import time
from numarray import *
m = 1024
table = zeros([m], UInt64)
ran = zeros([128], UInt64)
mupdate = 4 * m
POLY, PERIOD = 7, 1317624576693539401L

def starts(n):
n = array([n], Int64)
m2 = zeros([64], UInt64)

while (n[0] < 0): n += PERIOD
while (n[0] > PERIOD): n -= PERIOD
if (n[0] == 0): return 1

temp = array([1], UInt64)
for i in range(64):

m2[i] = temp[0]
for j in range(2):

v = 0
if temp.astype(Int64)[0] < 0: v = POLY
temp = (temp << 1) ˆ v

for i in range(62, -1, -1):
if ((n>>i) & 1)[0]: break

ran = array([2], UInt64)
while (i > 0):

temp[0] = 0
for j in range(64):

if ((ran>>j) & 1)[0]: temp ˆ= m2[j]
ran[0] = temp[0]
i -= 1
if ((n>>i) & 1)[0]:

v = 0
if ran.astype(Int64)[0] < 0: v = POLY
ran = (ran << 1) ˆ v

return ran[0]

t = -time()
for i in range(m): table[i] = i
for j in range(128):

ran[j] = starts(mupdate / 128 * j)
for i in range(mupdate / 128):

for j in range(128):
v = 0
if ran.astype(Int64)[j] < 0: v = POLY
ran[j] = (ran[j] << 1) ˆ v
table[ran[j] & (m - 1)] ˆ= ran[j]

t += time()

temp = array([1], UInt64)
for i in range(mupdate):

v = 0
if temp.astype(Int64)[0] < 0: v = POLY
temp = (temp << 1) ˆ v
table[temp & (m - 1)] ˆ= temp

temp = 0
for i in range(m):

if table[i] != i: temp += 1

print t, 100.0 * temp / m

Figure 6: Python code implementingRandomAccess
benchmark.

10

import numarray, time
import numarray.random_array as naRA
import numarray.linear_algebra as naLA
n = 1000
a = naRA.random([n, n])
b = naRA.random([n, n])
t = -time.time()
a = numarray.transpose(a)+b
t += time.time()
print t, 8e-9 * n**2 / t

Figure 7: Python code implementingPTRANS bench-
mark.

import numarray, numarray.fft, time, math
import numarray.random_array as naRA
m = 1024
a = naRA.random([m, 1])

t = -time.time()
b = numarray.fft.fft(a)
t += time.time()

r = a - numarray.fft.inverse_fft(b)
r_n = numarray.maximum.reduce(abs(r))
print t, 5e-9 * m * math.log(m) / t, r_n

Figure 8: Python code implementingFFT benchmark.

import numarray, time
import numarray.random_array as naRA
n = 1000
a = naRA.random([n, n])
b = naRA.random([n, n])
c = naRA.random([n, n])
alpha = a[n/2, 0]
beta = b[n/2, 0]
t = -time.time()
c = beta * c + alpha * numarray.dot(a, b)
t += time.time()
print t, 2e-9 * n**3 / t

Figure 9: Python code implementingDGEMM bench-
mark.

11

