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Abstract

In this papera reactize and concurrentcontrol framework
for viewpoint controlis developed.Theviewpoint controltask
is decomposedhto threecontrol objectvesnamely; obstacle
avoidanceyisibility andprecision.A moving objectis tracked
in two panoramicsensorsisingcolor, anda scalaruncertainty
metric of the objectpositionestimates introduced.Individual
control objectives are accomplishedy planning pathsusing
harmonicfunctionsandthe taskis accomplishedisinga new
subject-tocompositionoperator It is showvn thatthe systemis
stableunderthis composition.The systemis demonstratefbr
trackinga humansubjectusinga fixed panoramicsensorand
anothepanoramicsensomountedon a mobile platform.

1 Introduction

The objective of this paperis to demonstrata reactive and
concurrentcontrol framework for viewpoint control. In the
context of this paperviewpointcontrolis definedastheability
of mobile robotsto acquireand maintaina well-conditioned
kinematicconfiguratiorbetweerthemselesandamoving tar
get. As such,viewpointcontrolis essentiafor severalapplica-
tions.

For example, an essentiaklementof the emeging smart
roomsapplication[1, 9, 16] is theability of asensonetwork to
locateandtrack mobile objects(people robots,etc). Sincein-
doorervironmentsarepopulatecby severaloccludingfeatures
(suchasfurniture, partitions,walls) anapproactthatutilizesa
large numberof sensorgarticulatedor stationary}o coverthe
free spaceis, often, an expensve proposition. Insteadmobile
sensorgcan offer a significantadvantage. Mobile platforms,
with appropriatesensompayloads canbe usedwith othermo-
bile or stationarysensor(sjo estimatepositionof moving ob-
jectsand, in doing so, can provide sensorservicesacrossa
large areaof space.

Mobile robotteamsthat searchernvironmentsfor mapping,
or for locating objectsof interest[5], is anotherexample of
viewpoint control. Coordinationbetweerrobots,which is es-
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DABT63-99-1-0004, DABT63-99-1-0022, NSF 11S-0100851 and NSF
CDA9703217. Any opinions,findings and conclusionsor recommendations
expressedn this materialare the author(s)and do not necessarilyrepresent
thoseof the sponsors.

sentialto achieve the searchtask,assumeshatthe robotscan
maintaindesiredkinematicconfigurations.In the absenceof
externalsensordo measuraobot positionsthe task of local-
izationfalls on the robotthemseleswhile simultaneoushac-
complishingthe teamobjectives. This callsfor some(at least
two) of theteammembergo performviewpoint control.

Irrespectve of whetherthetargetis aleaderbeingtriangu-
lated by two otherson the teamor a personbeingtracked by
anensembleof mobile andstationarysensorsn a smartervi-
ronment,the mobile obsener(s)will have to keepup with the
target. Thatis, the mobile obsener, in general,will have to
plantrajectorieghataresafe(obstacleavoiding), correct(visi-
bility atall timesfrom target),andcorvergeto avantagepoint
(kinematicallywell-conditionecconfiguration).

In this paper the approacho viewpoint control consistsof
threesteps.First, thetaskis decomposeéhto threecontrolob-
jectives namely obstacleavoidance visibility, and precision
Second,ndividual control objectvesare accomplishedising
harmonicfunctionpathplannerswith boundaryconditionsap-
propriatefor the objective. Finally, the taskis accomplished
by composingndividual controllersinto a stable(in thesense
of Lyapunaw) task controller This approachavoids inherent
compleities that arisewhen building a monolithic task con-
troller. Further individual controllersare reactive, and can
handlechangesn the ervironmentwhile the taskis beingex-
ecuted[10, 11]. Finally, control compositionis doneusing
a systematidramework thatis provably stablein contrastto
otherregimes[4, 7, 18].

Ourapproachs demonstratedith experimentonasystem
thatconsistsof a mobile platformwith a panoramiccameraa
stationarypanoramiccameraanda moving target. The objec-
tiveis to track this moving targetpositionon the groundplane
(z,y), andpositionarobotat agoodviewpoint. The contriku-
tions of the proposedapproacharethefollowing: First, visual
correspondendeetweerobjectfeaturesn multiple panoramic
camerasisingcolor. Secondascalamprecisionmetricfor atar-
getandobsener pair configurationis introducedandusedfor
viewpoint control. Third, a velocity controllaw that performs
well in the presenceof shallov gradientstypical in harmonic
potentialfields (with Dirichlet boundaryconditions)is intro-
duced. This law is shavn to yield asymptoticstability in the
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sensef Lyapuna. Fourth,ageneraframenork for concurrent
controlborrowing from priority-basechull-spacecontrolof re-
dundanimanipulatorss describedFinally, animplementation
of concurrentontrolasa mappingof constraintsbetweenin-
dividual controllersis demonstrated.

2 Reated Work

This work is relatedto four separateelatedthemesn the
literature. Thefirst relationshipis to the useof visualfeatures
to establishcorrespondenceVisual correspondencis neces-
sary for triangulationand, in this paper is basedon a varia-
tion of the histogramintersectiortechniquepresentedby [19].
However, therearea few differencesFirst, the histogramsare
constructedn normalizedRGB spacemakingthemmoretol-
erantto color distortionsdueto illumination changesSecond,
insteadof usingamulti-dimensionahistogramhistogramsare

constructecdlongeachindividualdimensiorandconcatenated.

This providessignificantspeed-ug@ndis sufficiently accurate.

Thesecondelatedthreadconcernsiewpointplanning[21,
13]. The closestwork in this regardis presentedy Zhu et.
al. [21]. Thedifferencebetweerthetwo approachess thatthe
derivationfor erroruncertaintyin their paperis basednage-
ometricanalysisof errorin depthmeasuremerthat assumes
that one obsenation is accurateand their techniqueinvolves
somefairly complicatedderivations. In contrastthe errorun-
certaintymetric presentecherehasa simpleinterpretationin
termsof the conditioningof a Jacobianmakesno assumption
aboutobsenationaccuraciesandis quitesimpleto implement
for online planningandcontrol.

Third, thereis a strongrelationbetweerthe existing work,
path planning and redundantmanipulatorkinematics. Indi-
vidual control objectives are accomplishedn this paperus-
ing pathplanningbasedn harmonicfunctions[11]. However,
the synthesisof a control law is somavhat differentand re-
latedto anenegy basedormulation[12]. Theformulationfor
velocity control is alsomotivatedby the generalizedpseudo-
inverseformulation of inversekinematicsfor redundantma-
nipulators[17]. Specifically the introductionof an equiva-
lenceclassof control actionsfrom a given stateis basedon
the notionthatthe steepestlescen{flowline) pathto a goalis
not necessarilythe only solutionand, in fact, by introducing
alternatepossibilities,concurrentcontrolbecomedgeasible.In
this paperwe shaw thatthis policy is asymptoticallyLyapunw
stable.

Finally, thereis arelationbetweerthis work andotherwork
on reactive robotcontrolarchitecturesThe AURA system[4]
is one suchexample. The differencefrom AuRA and other
similar architecture$18] is thatcontrolcompositionis not ex-
pressedasa linear superpositiorof individual controllersbe-
causeijn generalthe safetyof suchcompositionsor their cor-
rectnesannotbe guaranteed.The approachpresentechere
relies on the hypothesighat coordinatedcontrol is only fea-
sible when one controller doesnot violate the stability char
acteristicsof the other The equivalenceclassformulation of

controllaws andthe subject-tocompositionoperator(seeSec-
tion 7) areemployed to synthesizecontrol compositionsand,
to the bestof our knowledge,suchusein mobile roboticsis
unique. The subject-toformulationis alsorelatedto the Sub-
sumptionarchitecturg?] in the sensehatthereis animplicit
prioritization of control. However, thereare no hand-crafted
implementationf prioritization. Oncethe tasklevel priori-
ties arespecified,a concurrentcontrol expressioncanbe syn-
thesizedby automaticanalysisof the individual control laws,
by usingthe subject-tooperator

3 Visual Correspondence

A pair of obsenerscanbe usedto triangulatethe position
(, y)T of the tracked object, giventhe baselineB andhead-
ingsé, andf,. Thisis calculatedasfollows:

z B(gél_ga)g
(2)-( W
Y 5(02—01)

However, in orderto determinethe position of the object
therelative poseof the two obserers,the poseof at leastone
obsener with respectto the world coordinateframe, andthe
headingcorrespondencd$; , 6-) to thetrackedobjectmustbe
known.

In this paper correspondenceare determinedusingvisual
featuresPanoramiccameraswhich offer a 360° field of view
and a straightforward corversionfrom image coordinatego
headings[21], are used. Additionally, one panoramiccam-
erais held stationaryandits poserelative to the world coor
dinateis assumedo be known. The secondpanoramiccam-
erais mountedon a mobile robot whosepositionis obtained
eitherthroughdeadreckoning or Monte-Carlolocalizationus-
ing sonar[14]. Thus,the baselinebetweenthe two cameras
is known. The correspondindgneadingsf a moving objectbe-
tweenthetwo camerags determinedasfollows.

In the stationarycameramotion detection[3, 16] is used
to obtaina region of interest. Then,a one dimensionalcolor
histogramin rg (normalizedRGB) spaceis constructedby
building the histogramsalongindividual dimensionsandcon-
catenatinghemtogether This histogramis transmittedo the
mobile cameraas a referencefeaturevector, andis searched
within the secondmageusingawindowedhistogramintersec-
tion approacH19]. Oncea matchis obtainedthe correspond-
ing headingsareusedin Equationl to obtainthe position of
the target. In Section8 the performanceof this algorithmis
discussed.

4 Harmonic Function Path Planning
Having obtainedthe target position,the mobile robot must
executea trajectorythatis obstacleavoiding, remainsvisible,
andterminatestawell-conditionedsantaggoint. Thesandi-
vidual controlobjectvesareimplementedisingpathplanning
basedn harmonicfunctions[2, 10, 11] discussedelow:
Harmonic functions are solutions to Laplaces equa-



tion [11]. Giventhestatep = (z,y) onecanwrite:

V3¢ = 32 T2 =0 )

Harmonicfunctionshave beenwidely appliedin robotics[2,
10, 11, 12]. In the presenimplementationDirichlet bound-
ary conditionsare assertedn the form of fixed potentialsfor
goalsand obstacleqor other constraints)and numericalso-
lutions are obtainedusing successie over-relaxation. Upon
corvergencea pathto a goal configurationis available from
anywherewithin entiremappedspacewithout the existenceof
localminima(subjectto grid resolution).In contrasto off-line
methods[6, 8] Harmonicfunctionscan be computedrapidly
makingthemsuitablefor reactive planning.

Thegradientof theharmonicpotentialfunctionV ¢, though
attractive atfirst glance makesa poor choicefor velocity con-
trol. WhenDirichlet conditionsareusedtheharmonicfunction
¢ often possesseshallonv gradientsin a large portion of the
mappedspace andthis oftenresultsin difficultiesin comput-
ing derivativesbetweemeighboringpoints.

4.1 Control Law Synthesis

Insteadof using V¢, a differentapproachto velocity con-
trol is adopted First, heuristically thepotentialg (p) of astate
is madeavailable askinetic enepgy to the system. Thus, the
referencevelocity input dependson the potentialitself which
varies smoothly between1 at obstacleboundariesand 0 at
goals. Second,insteadof choosingthe flowline direction as
the only availablecontrolchoice,anequivalencelassof con-
trol actionsspanningheentiresub-spacef negative gradients
is allowed. This flexibility is key for accomplishingmultiple
control objectives concurrently andis discussedn detail in
Section7.

Formally, the velocity controllaw canbewritten as

I ENAOR
K=o} ={ VI

Herecis anarbitraryconstantandé is aunitvector andK is a
continuoussetof permissiblecontrolactions,from which ary
singleactionmay be chosen.lt is straightforvardto seethat
this law yieldsasymptoticstability in the senseof Lyapuna.

Define the scalarfunction V (p,t) = ¢ (p), andobsene
that ¢, the harmonicfunction, is positive definite. Note that
V = ¢ v/éVé - é < 0. Furthernote that for any path,
s (po, to; t), to thegoal configuration,V (s (po, to; t) , t) does
notidenticallyvanishto zero. It only vanishesitsaddlepoints.
Thus,onecanconcludethatthe proposedrelocity controllaw
in Equation3 is asymptoticallystable.

Whenonly onesinglecontrolobjective needgo besatisfied
thesteepestlescentersionof Equation3 canbeimplemented.
InthiscaseK* = p = ¢ /¢ 1% ||V¢|| if || V& ||# 0, 0 otherwise.
The conditionwherep = 0 is eithera goal or a saddle. By
checkingthe potential value when this happenssaddlesand
goalscan be distinguished. To escaperom saddles simply

Vé|Vo-é<0
otherwise

®3)

continueusing the previous velocity referencecommand. In
practice saddlegarelyoccur
5 Visibility

The visibility control objective requiresthat the target re-
main visible from the mobile robot at all times, andit is as-
sumedthatin theinitial configuratiorthetargetis visible from
bothcameragotherwiseit is impossibleto triangulate).A vis-
ibility controllerthatis alsoobstacleavoiding canbe synthe-
sizedusinga harmonicfunction ¢, by mappingthe obstacle
boundariesand locationsin the configurationspaceinvisible
from the target as obstacles.Goal points are selectedrom a
subsetof the visible points, and the remaininglocationsare
designatedsfree space.Not all visible pointsaremappedas
goalsbecausehis givesthe robot enoughfree spaceto keep
up with an evolving target trajectoryinsteadof facingwith a
sudderfailure of visibility.

6 Precision

The precisioncontrol objective is aboutselectingvantage
pointsthatarekinematicallywell conditionedn the sensehat
the triangulationuncertaintyis minimum. This can be for-
malized using the notion of a viewpoint Jacobian The er-
ror (6z,0y)” in the triangulationestimateof (z,y) dueto an
obsenation error (66;,356-)” can be obtainedby linearizing
Equation1 aroundthe currentoperatingpoint (6y,6:)". A

first order approximation,(6z dy)” = J (36, 86,)", yields
thefollowing formula.
B 092802 —001801
S — 4
J 82 (02 — 01) ( 8292 _8201 ) ( )

TheexpressionJ, hereshovn to mapobsenationerrorsto
positionerrorscan,infact,beinterpretedasthe Jacobiarwhich
mapsobsenationvelocitiesto Cartesiarvelocity of thetracked
object. Sincethe two obsenersaretrackingthis targetfrom a
certainviewpoint, we call J, theviewpointJacobian
6.1 Conditioning of the Viewpoint Jacobian

The viewpoint Jacobianis useful for viewpoint control
wherethe objectie is to placeobsenrers(pairs)in a relatve
geometrythat maximizesthe precisionof the estimatedarget
position. Letting 66 = (5616,)" be the obsenation uncer
tainty vectorthe norm of obsenation uncertaintycanbe writ-
tenas:

Voo P= @z ) ()@

If it isassumedhatthe obsenationuncertaintiesreconfig-
uration independenta reasonablessumptiorfor panoramic
sensors)and bounded(wlog the unit circle, || §0 [|>°< 1)

then Equation5 shawvs that (JJT)_1 acts as a configura-
tion dependentamplifier of obsenation uncertaintiesto po-
sition uncertainties. Akin to the manipulability metric [20],

k = /| (JJT) | senesasascalarmetricthatdefinesjnstan-
taneouslyhow uncertaina giventriangulationis.
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Figurel: Thex scalametricfor uncertaintyfor agivencamera
targetconfiguration

Figurel depictsthe metric x for a configurationof the sta-
tionary camera(CAML1) andtargetover thefree space.In this
figure, the stationarycamera(CAM1) andthe target are sep-
aratedalongthe horizontal (X) axis. The gray-scalebright-
nessat ary point indicatesthe scalaruncertaintyin estimated
target positionwhenthe secondcamerais placedat thatloca-
tion. For example,the brightnessat the point marked CAM2
indicatesthe position uncertaintyusing the CAM1-CAM2-
TARGET configuration.Brighter regionsmeangreateruncer
tainty. Thebrightnesdunction (or equivalentlythe scalamet-
ric k) is abimodaldistribution separatethy asingularityalong
theline connectinghe stationarycameraandthetarget.

In practice,the singularityis just that, a very thin line of
infinite uncertaintyjoining the camerg( CAM1) andthetarget.
It shouldalsobe notedthat,aroundthe target,the singularline
is immediatelysurroundedby the mostpreciseregion. This
situationcouldsometimedeadto aproblem,in thatit suggests
anextremelyclosedistancebetweertherobotandthetargetas
the goal configuration.This issueis addressedy introducing
the target (correctly so) as an obstaclefrom which the robot
mustremaina certaindistanceaway.

The uncertaintyplot suggestsat leastone methodto im-
plementa precisioncontroller; a controller that would seno
CAM2 to a location which offers little triangulationuncer
tainty. In our implementatiora small setof N mostprecise
pointsaremappedasgoals,andthe singularityline is mapped
asanobstacle.Additionally all otherobstaclesn the C-space
arealsomappedsothatthe precisioncontrolleralsobecomes
obstacleavoiding. Theseboundaryconditionsuponrelaxation
producethe harmonicfunction ¢, from which a velocity con-
trol law K, is synthesized.

7 Synthesis of Stable Concurrent Control
Thevelocity controllawsfor thevisibility K, andprecision

K, areobtainedfrom their correspondindnarmonicpotential

fields¢, andg, respectiely. Eachcontrolleris obstaclevoid-

ing becaus¢heobstacléboundariegrepartof theirmaps.The
viewpointcontrollermustsatisfy in orderof priority, visibility
andthe precisionconstraint.

A naturalframework for expressingsuchforms of concur
rent control is the subject-tooperatorwritten as<. The ex-
pressionp, < ¢, mustbereadrun precisionsubjectto visibil-
ity. The motivationfor < compositionrule is dravn from the
generalizegseudo-inerseformulationfor inversekinematics
of a redundantmanipulator[17], wherethe end-efector can
be maintainedin a Cartesianconfigurationwhile introducing
joint motionsthatlie within the null spaceof the manipulator
JacobianL ik ewise,the subject-toconstraints designedo as-
serttherule thatthe subordinatecontroller(precision)canrun
in the null spaceof the dominantcontroller But, how do we
formalizethis notion?

K, =0?
Y
Saddle? Kp nKy= 0?
/\ A
K KT e konk,

\"
©0*) /\ )  (0°0%

2 *
Saddle? Kp

Y (10"
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Figure2: Conditionsfor compositiornusingthe subject-tacon-
straint

In Sectiord, a partof this mechanismvasdescribedwhere
anequivalenceslassof controlactionswereintroducedby ex-
pandingthe possiblechoicesfrom the flowline to all negative
gradientdirectionsfrom the currentstate. The intuitive no-
tion is thatthis allows thedominantcontrollerto accommodate
a subordinatecontroller by picking alternate,albeit instanta-
neouslysub-optimal,control actionsbut yielding a composi-
tion thatis guaranteetb resultin corvergenceof boththecon-
trollers.

In the context of this paper ¢, < ¢, is formalizedin the
decisiontree shavn in Figure 2. The leaf nodesof this tree
indicatethe statusof individual controllersandwhat the con-
vergencepropertiesof the compositionmay be. For example
0*_ indicatesthatthevisibility controlleris not corvergedand
is running,andthe precisioncontrollercannotbe run. 11 in-
dicatesthatthe taskis accomplished)*0* indicatesthatboth
controllersare running, and not corverged. The symbol K
indicatesthatthe visibility controlleris runninga steepestie-
scentversion,and K~ implies that control choicesfrom a
previous control cycle are beingused. This is essentiato es-
capesaddles Notethatthis decisiontreemustbe evaluatedat



every controlstep.

While thedecisiontreeprovidesa generabasisfor priority-
basedconcurrentcontrol for multiple objectives, in practice,
the subject-to constraintis implementedby mapping con-
straintsfrom one control objective onto another This is ac-
complishedby mappinggoals,obstaclesand/orfree space.In
the ¢, < ¢, implementationinvisible regionsandfree spaceof
¢, aremappedasobstaclesnto theboundaryconditionsof ¢,,,
anduponcorvergencep, is executed.Thusthecompositionis
stable,safe (obstacleavoiding), correct(maintainsvisibility),
andthe goal configurationis well-conditioned.

8 Experiments

Experimentsare conductedwith the following hardware.
Themobilepanoramicamerd15] is mounteconaRealWorld
Interface(RVI) ATRV Mini platform. Imagesare digitized
using a Leutron Vision PCI framegrabberand processen-
board using the Pentium-1l (350MHz) system(robot) and a
VMIC 850MHzsingleboardcomputer(stationarycamera)ln
this sectiontwo aspectof our systemaredemonstratedThe
firstis the performancef thevisualcorrespondencalgorithm
and,the secondjs the performanceheviewpoint controllet

8.1 Visual Correspondence

The model histogramof the most significantmotion blob
from the stationarycamerais transmittedo the mobile robot.
At the mobilerobotsite, at initialization, the modelhistogram
is comparedvith theacquiredmageacquiredby windowing a
50 x 50 pixel maskovertheentireimage.At eachstep,thehis-
togramof themobilerobotimagewindow is comparedvith the
modelhistogramusingthe Swain& Ballard intersectiontech-
nigue[19]. Thewindow with themaximalmatchvalueis used
to obtainthe headingestimateof the object. After initializa-
tion, searchis limited to a 200 x 150 pixel areain the neigh-
borhoodof thelastknown imagecoordinateof the object.

In Figure 3 a snapshobf the matchingprocessis shavn.
Thetop imagecorrespondso the (unwarped)stationaryiew,
and the bottom, to the mobile view. The detectedobjectis
usedto computethe color histogramand, in this instance,is
matchedn a200 x 150 searctwindow of themobilecameras
view (seeboundingbox in bottomimage). The maximumof
the scaledoutput of the intersectionmeasurgseegray-scale
inset,markedmatd distribution) is usedto locatethemodelin
the secondcamera(seewhite squarein window of the bottom
image).

8.2 Viewpoint Control

In Figure8.1 shavs a seriesof snapshotef atrajectoryex-
ecutedby the viewpoint controller Notethatthis depictionis
not a simulation,but the actualrobot andtriangulatedobject
trajectory In the experimentsthis dataappearn the inter-
facein real-time.

Thefirst (left) imagedepictsthe room, with the stationary
camera(C'1) and obstaclegblack). The mappedspaceis di-
videdinto a21 x 21 grid with eachcell spanning30 x 30cm?.

The stationarycamerais placedat (8,3) grid locationand,ini-
tially, therobotis at (14.5,3).

A single human subjectis tracked along an accurately
known pathshavn asa solid line betweerthetwo dottedguide
lines and the triangulationsproducedby the systemas the
viewpoint controlleris executingis shavn asthe smallcircles
within the two dottedlines. The robot’s pathitself is shovn
to theright. As canbe seenin thefirst image,the humanpath
requiresthe robotto move soit canremainvisible, avoid ob-
staclesandcorvergeto agoodviewpoint. Theremainingthree
imagesf Figure8.1shav snapshotalongtherobottrajectory
In theseimageswhite representgoals,blackrepresentsbsta-
clesandinvisible locations,andgray representshe harmonic
potential(brighteris smaller).

9 Conclusions& Future Work

In this papera reactive and concurrentcontrol framework
for viewpointcontrolis demonstratedThetaskis decomposed
into three control objectvesnamely; obstacleavoidance vis-
ibility andprecision. Individual objectvesare accomplished
by path-planningusing harmonicfunctions, and a task con-
troller is synthesizedusing an interpretationof the subject-
to, <, priority-basedconcurrentcontrol compositionrule. A
generalframavork for analyzingthe rule is describedn the
form of a decisiontree, and an exampleimplementationin
the form of ¢, < ¢, wasshavn by mappingconstraintsrom
oneobjective into another The compositionis shown to yield
stable,safe (obstacleavoiding), correct(maintainsvisibility),
andwell-conditionedgoal configurations.Trackingis accom-
plishedby establishingrisual correspondencassingcolor. A
scalaruncertaintymetric, similar to the manipulabilitymetric,
wasintroducedo computegoalsetstheprecisioncontroller A
velocity controllaw thatallows anequialenceclassof control
actionswasintroduced.The systemwasdemonstratedsinga
mobile panoramicsensoya stationarypanoramicsensoranda
moving humansubiject.

Oneof theavenueghatis beingexploredis to improve the
speedof computingvisual correspondencasing motion esti-
mationin the moving camera. The seconddirectionthat this
work is being extendedis in shaving Lyapuna stability by
also consideringthe dynamicalparameter®f the robot. The
third direction involves extending the current framework to
multiple moving sensormlatforms. Finally, we are exploring
waysfor learningoptimal control sequencefor multiple con-
trol objectvesusingthe equivalenceclassformulation of the
velocity controllaw.
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