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Abstract
In this papera reactive andconcurrentcontrol framework

for viewpointcontrolis developed.Theviewpointcontroltask
is decomposedinto threecontrol objectivesnamely;obstacle
avoidance,visibility andprecision.A moving objectis tracked
in two panoramicsensorsusingcolor, anda scalaruncertainty
metricof theobjectpositionestimateis introduced.Individual
control objectivesare accomplishedby planningpathsusing
harmonicfunctionsandthe taskis accomplishedusinga new
subject-tocompositionoperator. It is shown thatthesystemis
stableunderthis composition.Thesystemis demonstratedfor
trackinga humansubjectusinga fixed panoramicsensorand
anotherpanoramicsensormountedon a mobileplatform.

1 Introduction
Theobjective of this paperis to demonstratea reactive and

concurrentcontrol framework for viewpoint control. In the
context of thispaper, viewpointcontrolis definedastheability
of mobile robotsto acquireandmaintaina well-conditioned
kinematicconfigurationbetweenthemselvesandamoving tar-
get.As such,viewpointcontrolis essentialfor severalapplica-
tions.

For example,an essentialelementof the emerging smart
roomsapplication[1, 9, 16] is theability of asensornetwork to
locateandtrackmobileobjects(people,robots,etc). Sincein-
doorenvironmentsarepopulatedby severaloccludingfeatures
(suchasfurniture,partitions,walls) anapproachthatutilizesa
largenumberof sensors(articulatedor stationary)to cover the
freespaceis, often,an expensive proposition.Insteadmobile
sensorscanoffer a significantadvantage. Mobile platforms,
with appropriatesensorpayloads,canbeusedwith othermo-
bile or stationarysensor(s)to estimatepositionof moving ob-
jects and, in doing so, can provide sensorservicesacrossa
largeareaof space.

Mobile robot teamsthatsearchenvironmentsfor mapping,
or for locating objectsof interest[5], is anotherexampleof
viewpoint control. Coordinationbetweenrobots,which is es-�
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sentialto achieve thesearchtask,assumesthat the robotscan
maintaindesiredkinematicconfigurations.In the absenceof
externalsensorsto measurerobot positionsthe taskof local-
izationfalls on therobot themselveswhile simultaneouslyac-
complishingthe teamobjectives. This calls for some(at least
two) of theteammembersto performviewpoint control.

Irrespective of whetherthetarget is a leaderbeingtriangu-
latedby two otherson the teamor a personbeingtracked by
anensembleof mobileandstationarysensorsin a smartenvi-
ronment,themobileobserver(s)will have to keepup with the
target. That is, the mobile observer, in general,will have to
plantrajectoriesthataresafe(obstacleavoiding),correct(visi-
bility at all timesfrom target),andconvergeto avantagepoint
(kinematicallywell-conditionedconfiguration).

In this paper, theapproachto viewpoint controlconsistsof
threesteps.First, thetaskis decomposedinto threecontrolob-
jectivesnamelyobstacleavoidance, visibility, and precision.
Second,individual control objectivesareaccomplishedusing
harmonicfunctionpathplannerswith boundaryconditionsap-
propriatefor the objective. Finally, the task is accomplished
by composingindividual controllersinto a stable(in thesense
of Lyapunov) task controller. This approachavoids inherent
complexities that arisewhenbuilding a monolithic taskcon-
troller. Further, individual controllersare reactive, and can
handlechangesin theenvironmentwhile thetaskis beingex-
ecuted[10, 11]. Finally, control compositionis doneusing
a systematicframework that is provably stablein contrastto
otherregimes[4, 7, 18].

Ourapproachis demonstratedwith experimentsonasystem
thatconsistsof a mobileplatformwith a panoramiccamera,a
stationarypanoramiccamera,anda moving target.Theobjec-
tive is to trackthis moving targetpositionon thegroundplane�����
	��

, andpositiona robotat agoodviewpoint. Thecontribu-
tionsof theproposedapproacharethefollowing: First, visual
correspondencebetweenobjectfeaturesin multiplepanoramic
camerasusingcolor. Second,ascalarprecisionmetricfor atar-
getandobserver pair configurationis introducedandusedfor
viewpoint control. Third, a velocity control law thatperforms
well in the presenceof shallow gradientstypical in harmonic
potentialfields (with Dirichlet boundaryconditions)is intro-
duced. This law is shown to yield asymptoticstability in the
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senseof Lyapunov. Fourth,ageneralframework for concurrent
controlborrowing from priority-basednull-spacecontrolof re-
dundantmanipulatorsis described.Finally, animplementation
of concurrentcontrolasa mappingof constraintsbetweenin-
dividual controllersis demonstrated.

2 Related Work
This work is relatedto four separaterelatedthemesin the

literature.Thefirst relationshipis to theuseof visual features
to establishcorrespondence.Visual correspondenceis neces-
sary for triangulationand, in this paper, is basedon a varia-
tion of thehistogramintersectiontechniquepresentedby [19].
However, therearea few differences.First, thehistogramsare
constructedin normalizedRGB space,makingthemmoretol-
erantto colordistortionsdueto illumination changes.Second,
insteadof usingamulti-dimensionalhistogram,histogramsare
constructedalongeachindividualdimensionandconcatenated.
Thisprovidessignificantspeed-upandis sufficiently accurate.

Thesecondrelatedthreadconcernsviewpointplanning[21,
13]. The closestwork in this regard is presentedby Zhu et.
al. [21]. Thedifferencebetweenthetwo approachesis thatthe
derivationfor erroruncertaintyin their paperis basedon a ge-
ometricanalysisof error in depthmeasurementthat assumes
that oneobservation is accurateand their techniqueinvolves
somefairly complicatedderivations.In contrast,theerrorun-
certaintymetric presentedherehasa simple interpretationin
termsof theconditioningof a Jacobian,makesno assumption
aboutobservationaccuracies,andis quitesimpleto implement
for onlineplanningandcontrol.

Third, thereis a strongrelationbetweentheexisting work,
path planningand redundantmanipulatorkinematics. Indi-
vidual control objectives are accomplishedin this paperus-
ing pathplanningbasedonharmonicfunctions[11]. However,
the synthesisof a control law is somewhat different and re-
latedto anenergy basedformulation[12]. Theformulationfor
velocity control is alsomotivatedby the generalizedpseudo-
inverseformulation of inversekinematicsfor redundantma-
nipulators[17]. Specifically, the introductionof an equiva-
lenceclassof control actionsfrom a given stateis basedon
thenotionthat thesteepestdescent(flowline) pathto a goal is
not necessarilythe only solutionand, in fact, by introducing
alternatepossibilities,concurrentcontrolbecomesfeasible.In
thispaperweshow thatthispolicy is asymptoticallyLyapunov
stable.

Finally, thereis arelationbetweenthiswork andotherwork
on reactive robotcontrolarchitectures.TheAuRA system[4]
is one suchexample. The differencefrom AuRA and other
similararchitectures[18] is thatcontrolcompositionis notex-
pressedasa linear superpositionof individual controllersbe-
cause,in general,thesafetyof suchcompositions,or theircor-
rectnesscannotbe guaranteed.The approachpresentedhere
relies on the hypothesisthat coordinatedcontrol is only fea-
sible whenonecontroller doesnot violate the stability char-
acteristicsof the other. The equivalenceclassformulationof

controllawsandthesubject-tocompositionoperator(seeSec-
tion 7) areemployed to synthesizecontrol compositionsand,
to the bestof our knowledge,suchusein mobile roboticsis
unique. Thesubject-toformulationis alsorelatedto theSub-
sumptionarchitecture[7] in thesensethat thereis an implicit
prioritization of control. However, thereareno hand-crafted
implementationsof prioritization. Oncethe tasklevel priori-
tiesarespecified,a concurrentcontrolexpressioncanbesyn-
thesizedby automaticanalysisof the individual control laws,
by usingthesubject-tooperator.

3 Visual Correspondence
A pair of observerscanbe usedto triangulatethe position�����
	���

of the tracked object,given the baseline� andhead-
ings ��� and ��� . This is calculatedasfollows:� � 	����������! #"%$& 
'$#() 
'+*, #"!-��$& #"%$& 
'$#() 
'+*, #"!-

.
(1)

However, in order to determinethe position of the object
therelative poseof thetwo observers,theposeof at leastone
observer with respectto the world coordinateframe,and the
headingcorrespondences

� ��� � ��� � to thetrackedobjectmustbe
known.

In this paper, correspondencesaredeterminedusingvisual
features.Panoramiccameras,which offer a /10�243 field of view
anda straightforward conversionfrom imagecoordinatesto
headings[21], are used. Additionally, one panoramiccam-
era is held stationaryand its poserelative to the world coor-
dinateis assumedto be known. The secondpanoramiccam-
era is mountedon a mobile robot whoseposition is obtained
eitherthroughdeadreckoningor Monte-Carlolocalizationus-
ing sonar[14]. Thus, the baselinebetweenthe two cameras
is known. Thecorrespondingheadingsof a moving objectbe-
tweenthetwo camerasis determinedasfollows.

In the stationarycameramotion detection[3, 16] is used
to obtaina region of interest. Then,a onedimensionalcolor
histogramin 576 (normalizedRGB) spaceis constructedby
building thehistogramsalongindividual dimensionsandcon-
catenatingthemtogether. This histogramis transmittedto the
mobile cameraasa referencefeaturevector, and is searched
within thesecondimageusingawindowedhistogramintersec-
tion approach[19]. Oncea matchis obtained,thecorrespond-
ing headingsareusedin Equation1 to obtainthe positionof
the target. In Section8 the performanceof this algorithmis
discussed.

4 Harmonic Function Path Planning
Having obtainedthe targetposition,themobile robotmust

executea trajectorythat is obstacleavoiding, remainsvisible,
andterminatesatawell-conditionedvantagepoint. Theseindi-
vidual controlobjectivesareimplementedusingpathplanning
basedon harmonicfunctions[2, 10, 11] discussedbelow:

Harmonic functions are solutions to Laplace’s equa-



tion [11]. Giventhestate8 � ���9��	��
onecanwrite:: �7; ��< � ;< � �>= < � ;< 	 � � 2 (2)

Harmonicfunctionshave beenwidely appliedin robotics[2,
10, 11, 12]. In the presentimplementation,Dirichlet bound-
ary conditionsareassertedin the form of fixed potentialsfor
goalsand obstacles(or other constraints)and numericalso-
lutions are obtainedusing successive over-relaxation. Upon
convergencea path to a goal configurationis available from
anywherewithin entiremappedspacewithout theexistenceof
localminima(subjectto grid resolution).In contrastto off-line
methods[6, 8] Harmonicfunctionscanbe computedrapidly
makingthemsuitablefor reactiveplanning.

Thegradientof theharmonicpotentialfunction
: ;

, though
attractiveat first glance,makesapoorchoicefor velocitycon-
trol. WhenDirichlet conditionsareusedtheharmonicfunction;

often possessesshallow gradientsin a large portion of the
mappedspace,andthis oftenresultsin difficulties in comput-
ing derivativesbetweenneighboringpoints.
4.1 Control Law Synthesis

Insteadof using
: ;

, a differentapproachto velocity con-
trol is adopted.First,heuristically, thepotential

; �@?A�
of astate

is madeavailableaskinetic energy to the system. Thus, the
referencevelocity input dependson the potentialitself which
varies smoothly between B at obstacleboundariesand 2 at
goals. Second,insteadof choosingthe flowline direction as
theonly availablecontrolchoice,anequivalenceclassof con-
trol actionsspanningtheentiresub-spaceof negativegradients
is allowed. This flexibility is key for accomplishingmultiple
control objectives concurrently, and is discussedin detail in
Section7.

Formally, thevelocitycontrollaw canbewrittenasC �EDGF?IH �KJMLON ; ��?G��PQ R PQTS : ;VU PQXW 2
0 otherwise

(3)

Here L is anarbitraryconstant,and
PQ is aunit vector, and

C
is a

continuoussetof permissiblecontrolactions,from which any
singleactionmay be chosen.It is straightforward to seethat
this law yieldsasymptoticstability in thesenseof Lyapunov.

Define the scalarfunction Y �@?I��Z
� � ; �@?A�
, andobserve

that
;
, the harmonicfunction, is positive definite. Note that[Y � LE\ ; : ;]U PQ_^ 2 . Further note that for any path,` �@?bac�
Z!d1e
Z
� , to thegoalconfiguration,

[Y � ` �f?bac�
Z!d1e
Z
�,��Z
� does
not identicallyvanishto zero.It only vanishesatsaddlepoints.
Thus,onecanconcludethattheproposedvelocity control law
in Equation3 is asymptoticallystable.

Whenonly onesinglecontrolobjectiveneedsto besatisfied
thesteepestdescentversionof Equation3 canbeimplemented.
In thiscase

Chg �iF? � Lj\ ;lkGmn kGm n if o : ; oqp� 2 , 2 otherwise.
The conditionwhere F? � 2 is eithera goal or a saddle. By
checkingthe potentialvaluewhen this happens,saddlesand
goalscan be distinguished. To escapefrom saddles,simply

continueusing the previous velocity referencecommand. In
practice,saddlesrarelyoccur.

5 Visibility
The visibility control objective requiresthat the target re-

main visible from the mobile robot at all times,and it is as-
sumedthatin theinitial configurationthetargetis visible from
bothcameras(otherwiseit is impossibleto triangulate).A vis-
ibility controllerthat is alsoobstacleavoiding canbe synthe-
sizedusinga harmonicfunction

;sr
by mappingthe obstacle

boundariesand locationsin the configurationspaceinvisible
from the target asobstacles.Goal pointsareselectedfrom a
subsetof the visible points, and the remaininglocationsare
designatedasfreespace.Not all visible pointsaremappedas
goalsbecausethis givesthe robot enoughfree spaceto keep
up with an evolving target trajectoryinsteadof facingwith a
suddenfailureof visibility.

6 Precision
The precisioncontrol objective is aboutselectingvantage

pointsthatarekinematicallywell conditionedin thesensethat
the triangulationuncertaintyis minimum. This can be for-
malizedusing the notion of a viewpoint Jacobian. The er-
ror

�utv�9�#tv	��&
in the triangulationestimateof

���9��	��
dueto an

observation error
�wt � � ��t � � �
 can be obtainedby linearizing

Equation1 aroundthe currentoperatingpoint
� � � � � � �& . A

first order approximation,
�@tv��tv	q�
 �yx �@t � � t � � �
 , yields

thefollowing formula.

xz� �{ � � �v�j|}��� � � L ��� { ��� | L ��� { ���{ � �v� | { � ��� � (4)

Theexpressionx , hereshown to mapobservationerrorsto
positionerrorscan,infact,beinterpretedastheJacobianwhich
mapsobservationvelocitiesto Cartesianvelocityof thetracked
object.Sincethetwo observersaretrackingthis target from a
certainviewpoint,we call x , theviewpointJacobian.

6.1 Conditioning of the Viewpoint Jacobian
The viewpoint Jacobianis useful for viewpoint control

wherethe objective is to placeobservers(pairs) in a relative
geometrythatmaximizestheprecisionof theestimatedtarget
position. Letting

t � � �wt ��� t �v� �  be the observation uncer-
tainty vectorthenormof observationuncertaintycanbewrit-
tenas: o t �~o � � �wtv�~tv	��G� xbx b� * � � tv�tv	 � (5)

If it is assumedthattheobservationuncertaintiesareconfig-
uration independent(a reasonableassumptionfor panoramic
sensors)and bounded(wlog the unit circle, o t ��o � ^ B )

then Equation5 shows that
� xAx  � * � acts as a configura-

tion dependentamplifier of observation uncertaintiesto po-
sition uncertainties.Akin to the manipulability metric [20],� � N S � xAx  � S servesasa scalarmetric thatdefines,instan-
taneously, how uncertainagiventriangulationis.



Figure1: The � scalarmetricfor uncertaintyfor agivencamera
targetconfiguration

Figure1 depictsthemetric � for a configurationof thesta-
tionarycamera(CAM1) andtargetover thefreespace.In this
figure, the stationarycamera(CAM1) andthe target aresep-
aratedalong the horizontal( � ) axis. The gray-scalebright-
nessat any point indicatesthe scalaruncertaintyin estimated
targetpositionwhenthesecondcamerais placedat that loca-
tion. For example,the brightnessat the point markedCAM2
indicatesthe position uncertaintyusing the CAM1-CAM2-
TARGET configuration.Brighter regionsmeangreateruncer-
tainty. Thebrightnessfunction(or equivalentlythescalarmet-
ric � ) is abimodaldistributionseparatedby asingularityalong
theline connectingthestationarycameraandthetarget.

In practice,the singularity is just that, a very thin line of
infinite uncertaintyjoining thecamera(CAM1) andthetarget.
It shouldalsobenotedthat,aroundthetarget,thesingularline
is immediatelysurroundedby the mostpreciseregion. This
situationcouldsometimesleadto aproblem,in thatit suggests
anextremelyclosedistancebetweentherobotandthetargetas
thegoalconfiguration.This issueis addressedby introducing
the target (correctly so) asan obstaclefrom which the robot
mustremainacertaindistanceaway.

The uncertaintyplot suggestsat leastone methodto im-
plementa precisioncontroller; a controller that would servo
CAM2 to a location which offers little triangulationuncer-
tainty. In our implementationa small setof � mostprecise
pointsaremappedasgoals,andthesingularityline is mapped
asanobstacle.Additionally all otherobstaclesin theC-space
arealsomapped,sothattheprecisioncontrolleralsobecomes
obstacleavoiding. Theseboundaryconditionsuponrelaxation
producetheharmonicfunction

;��
from which a velocity con-

trol law
C �

is synthesized.

7 Synthesis of Stable Concurrent Control
Thevelocitycontrollawsfor thevisibility

C r andprecisionC �
areobtainedfrom their correspondingharmonicpotential

fields
;sr

and
; �

respectively. Eachcontrolleris obstacleavoid-

ing becausetheobstacleboundariesarepartof theirmaps.The
viewpointcontrollermustsatisfy, in orderof priority, visibility
andtheprecisionconstraint.

A naturalframework for expressingsuchformsof concur-
rent control is the subject-tooperatorwritten as � . The ex-
pression

;�� � ; r mustbereadrun precisionsubjectto visibil-
ity. The motivation for � compositionrule is drawn from the
generalizedpseudo-inverseformulationfor inversekinematics
of a redundantmanipulator[17], wherethe end-effector can
be maintainedin a Cartesianconfigurationwhile introducing
joint motionsthat lie within thenull spaceof themanipulator
Jacobian.Likewise,thesubject-toconstraintis designedto as-
serttherule that thesubordinatecontroller(precision)canrun
in the null spaceof the dominantcontroller. But, how do we
formalizethis notion?

Kv = 0?

Y        N

Saddle?

Y        N Y        N

Kp Kv

U = 0?

Kp= 0?

Y        N

Saddle?

Y        N

GOAL
(11)

Kp*

Kp*
−

K*v
K*v

−
Kp Kv

U

(0*_) (0*_)

(10*)

(0*0*)

(10*)

Figure2: Conditionsfor compositionusingthesubject-tocon-
straint

In Section4, apartof thismechanismwasdescribed,where
anequivalenceclassof controlactionswereintroducedby ex-
pandingthe possiblechoicesfrom the flowline to all negative
gradientdirectionsfrom the currentstate. The intuitive no-
tion is thatthisallowsthedominantcontrollerto accommodate
a subordinatecontroller by picking alternate,albeit instanta-
neouslysub-optimal,control actionsbut yielding a composi-
tion thatis guaranteedto resultin convergenceof boththecon-
trollers.

In the context of this paper,
;�� � ; r is formalizedin the

decisiontree shown in Figure 2. The leaf nodesof this tree
indicatethe statusof individual controllersandwhat thecon-
vergencepropertiesof the compositionmay be. For example2�� indicatesthat thevisibility controlleris not convergedand
is running,andthe precisioncontrollercannotbe run. B�B in-
dicatesthat the taskis accomplished,2��v2�� indicatesthatboth
controllersarerunning,andnot converged. The symbol

C �r
indicatesthat thevisibility controlleris runninga steepestde-
scentversion,and

C � *r implies that control choicesfrom a
previouscontrol cycle arebeingused.This is essentialto es-
capesaddles.Notethat this decisiontreemustbeevaluatedat



everycontrolstep.
While thedecisiontreeprovidesageneralbasisfor priority-

basedconcurrentcontrol for multiple objectives, in practice,
the subject-toconstraint is implementedby mapping con-
straintsfrom onecontrol objective onto another. This is ac-
complishedby mappinggoals,obstacles,and/orfreespace.In
the

;�� � ; r implementation,invisibleregionsandfreespaceof;sr
aremappedasobstaclesinto theboundaryconditionsof

; �
,

anduponconvergence
; �

is executed.Thusthecompositionis
stable,safe(obstacleavoiding), correct(maintainsvisibility),
andthegoalconfigurationis well-conditioned.

8 Experiments
Experimentsare conductedwith the following hardware.

Themobilepanoramiccamera[15] is mountedonaRealWorld
Interface(RWI) ATRV Mini platform. Imagesare digitized
usinga LeutronVision PCI framegrabberandprocessedon-
boardusing the Pentium-II (350MHz) system(robot) and a
VMIC 850MHzsingleboardcomputer(stationarycamera).In
this sectiontwo aspectsof our systemaredemonstrated.The
first is theperformanceof thevisualcorrespondencealgorithm
and,thesecond,is theperformancetheviewpoint controller.

8.1 Visual Correspondence
The modelhistogramof the most significantmotion blob

from thestationarycamerais transmittedto themobile robot.
At themobilerobotsite,at initialization, themodelhistogram
is comparedwith theacquiredimageacquiredby windowing a� 2j� � 2 pixel maskovertheentireimage.At eachstep,thehis-
togramof themobilerobotimagewindow iscomparedwith the
modelhistogramusingthe Swain& Ballard intersectiontech-
nique[19]. Thewindow with themaximalmatchvalueis used
to obtain the headingestimateof the object. After initializa-
tion, searchis limited to a ��2�2V��B � 2 pixel areain the neigh-
borhoodof thelastknown imagecoordinateof theobject.

In Figure 3 a snapshotof the matchingprocessis shown.
Thetop imagecorrespondsto the(unwarped)stationaryview,
and the bottom, to the mobile view. The detectedobject is
usedto computethe color histogramand, in this instance,is
matchedin a ��2�2���B � 2 searchwindow of themobilecamera’s
view (seeboundingbox in bottomimage). The maximumof
the scaledoutputof the intersectionmeasure(seegray-scale
inset,markedmatch distribution) is usedto locatethemodelin
thesecondcamera(seewhite squarein window of thebottom
image).

8.2 Viewpoint Control
In Figure8.1showsaseriesof snapshotsof a trajectoryex-

ecutedby theviewpoint controller. Note that this depictionis
not a simulation,but the actualrobot andtriangulatedobject
trajectory. In the experiments,this dataappearson the inter-
facein real-time.

The first (left) imagedepictsthe room,with the stationary
camera( �>B ) andobstacles(black). The mappedspaceis di-
videdinto a �qB��~�qB grid with eachcell spanning/�2X��/�2 L+� � .

Thestationarycamerais placedat (8,3)grid locationand,ini-
tially, therobotis at (14.5,3).

A single human subject is tracked along an accurately
known pathshown asasolid line betweenthetwo dottedguide
lines and the triangulationsproducedby the systemas the
viewpoint controlleris executingis shown asthesmallcircles
within the two dottedlines. The robot’s path itself is shown
to theright. As canbeseenin thefirst image,thehumanpath
requiresthe robot to move so it canremainvisible, avoid ob-
staclesandconvergeto agoodviewpoint. Theremainingthree
imagesof Figure8.1show snapshotsalongtherobottrajectory.
In theseimageswhite representsgoals,blackrepresentsobsta-
clesandinvisible locations,andgray representstheharmonic
potential(brighteris smaller).

9 Conclusions & Future Work
In this papera reactive andconcurrentcontrol framework

for viewpointcontrolis demonstrated.Thetaskis decomposed
into threecontrol objectivesnamely;obstacleavoidance,vis-
ibility andprecision. Individual objectivesareaccomplished
by path-planningusing harmonicfunctions,and a task con-
troller is synthesizedusing an interpretationof the subject-
to, � , priority-basedconcurrentcontrol compositionrule. A
generalframework for analyzingthe rule is describedin the
form of a decisiontree, and an example implementationin
the form of

;�� � ; r wasshown by mappingconstraintsfrom
oneobjective into another. Thecompositionis shown to yield
stable,safe(obstacleavoiding), correct(maintainsvisibility),
andwell-conditionedgoalconfigurations.Trackingis accom-
plishedby establishingvisualcorrespondencesusingcolor. A
scalaruncertaintymetric,similar to themanipulabilitymetric,
wasintroducedto computegoalsetstheprecisioncontroller. A
velocitycontrollaw thatallowsanequivalenceclassof control
actionswasintroduced.Thesystemwasdemonstratedusinga
mobilepanoramicsensor, a stationarypanoramicsensoranda
moving humansubject.

Oneof theavenuesthat is beingexploredis to improve the
speedof computingvisual correspondenceusingmotion esti-
mationin the moving camera.The seconddirectionthat this
work is being extendedis in showing Lyapunov stability by
alsoconsideringthe dynamicalparametersof the robot. The
third direction involves extending the current framework to
multiple moving sensorplatforms. Finally, we areexploring
waysfor learningoptimalcontrolsequencesfor multiple con-
trol objectivesusingthe equivalenceclassformulationof the
velocitycontrollaw.
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