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1. Objectives

The main focus of the work was the development of a fast time-domain algorithm for solv-
ing Maxwell’s equations in the integral form for general dispersive media with both penetrable
and impenetrable surface and bulk volumetric properties. The main motivation for this work
was the need for an integral equation solver applicable to the description of propagation
of wide-band pulses through different types of dispersive media including those which are
of interest in the context of foliage penetration.

During the course of the project we have been working closely on related applications
of the fast integral equation solver with the Brooks Air Force Base Mathematical Products
Group lead by Dr. R. Albanese.

2. Main accomplishments
We summarize the main developments carried out on this project.

We constructed a new time-domain algorithm which is particularly well suited to gen-
eral dispersive media with both penetrable and impenetrable surface and bulk volumetric
properties. The algorithm is described in [5] and in the first yearly report. The main
features of the algorithm are as follows:

(i) The algorithm complexity does not depend on the degree of dispersion. Its small com-
putational cost (O(N, N, log N, log N,) and O(N, Ny /3 log N, log N,) for volume and
surface problems respectively, where N, and N, denote the number of temporal and
spatial samples) is achieved through the simultaneous application of Fast Fourier Trans-
Jorms in space and time. We stress that algorithm is applicable to both

(i1) conventional volumetric integral (involving free space Green’s function and volu-
metric discretization) equations for dispersive media

and to

(i2) ( much more difficult in terms of formulation, analytical and numerical imple-
mentation, but significantly more beneficial in terms of algorithm complexity)
equivalent current surface integral equations for a general piecewise homogeneous
dispersive dielectric medium with dispersive thin sheet material interfaces. (We
note that the main part of our effort was devoted to such integral equations.)

(i) The algorithm is based on a new formulation of integral equations specially tailored to
problems involving dispersive media. The formulation is both general and significantly
simpler than the conventional approaches: instead of using the customary integral
equation operators involving the Green function and its derivatives, we construct
supplemental integral equation operators equal (a) to the Fourier transform of
the dispersive medium Green function, (b) to the Fourier transform of the product of
the dispersive medium Green function with the frequency dependent dielectric per-
mittivity, and, (c) to the Fourier transform of the product of the dispersive medium
Green function with the inverse of the dielectric permittivity. An important bene-
fit of such an approach is that the resulting integrals involve only single (and not




double) time convolutions. The formulation is applicable to systems involving bulk
dispersive regions and thin dispersive sheets represented as interfaces. We have car-
ried out complete analytical calculations and corresponding numerical procedures for
the evaluation of matrix elements of the integral operators, executed in the frame-
work of the full Galerkin scheme in space and time variables, for the “conductive
Debye medium” (i.e., for a medium with the electric permittivity given by the Debye
formula supplemented with a term responsible for the medium conductivity). The
procedure employs a suitable contour integration around singularities of the effective
Green function operators in the complex frequency plane.

(11i) The algorithm does not require analytical representation of the (dispersive) medium Green
Sfunction and, in particular, can be used with a medium Green function given in a tabular
Sform.

(iv) Our formulation provides a framework and a practical tool for an accurate numerical
simulation framework for a variety of problems involving wide band pulse propaga-
tion, including wide band antenna pattern simulation or propagation of narrow pulses
through dispersive media. Such applications require the numerical capability of prop-
agating an ultrawideband pulse in a dispersive environment over several absorption
lengths. In particular, such numerical capability appears to be necessary in studies
of an intriguing phenomenon of a Brillouin precursor, a propagating structure which,
because of its non-exponential peak decay, may lead to multiple potential applications,
including detection of objects in cluttered environments.

We note that our work on this project had a significant impact on the CEM academic
and industrial community. In particular an early version of the block Toeplitz time-domain
integral equation solver we proposed has been independently verified and adopted as the
Time Domain Adaptive Integral Equation Method by the University of Illinois researches
who constructed a code based on this formulation [3]. Also researches in Motorola and
Cadence [4] apply the method in the context of electronic packaging.




3. Technical details

In this Section we describe in more detail the relevant aspects associated with the
formulation and implementation of the approach.

(A.) Time-domain electric-field integral equations for dispersive media

The integral equation formulation we developed is particularly suitable to problems involving
dispersive media. We constructed a general set of integral equations, significantly simpler than
the conventional formulation; instead of using the customary integral equation operators
equal to the Green functions g(w,r) and their derivatives, we use supplemental integral
equation operators K,(t,r), K,(t,r), and K,(t,r) equal to the Fourier transforms of the
Green function of the dispersive medium and their products with frequency dependent
dielectric permittivity

g(t,r)=/%‘:— e ' g(w,r), (3.1a)
g,(t,x) = / _~(1) e 5w 1) | (3.1)
plt1) = [ 2 Ew) e Glwr) (319

An important benefit of such formulation is its generality, simplicity and efficiency. The
resulting integrals involve only single (not double) time convolutions, i.e., the resulting
integral equations have the schematic structure [ K (¢t — ¢') X(t')dt’ = B(t), instead of
JK,(t—t")Ky(t" —t') X(t") dt" dt' = B(¢) .

In terms of g(t,r), g,(t,r), and g,(¢,r) the surface integral equations for a general
piecewise homogeneous dispersive dielectric medium with dispersive thin sheet material
interfaces take the form

1 /dt' R(t—t'r) U(t—t,r)n(r) x J(t',r)
U(

¢ t—1t,r)n(r)x S(t—t,r) M(t',r)
t—thr—r) Kj,t-t,r—r J@t',r Ei(t,r
/dt'/d25' Ky ( 12( ) (t',r’) _ ( ) (3.2)
Ky(t—thr—r) Kyit-t,r—r) || M, 1) H'(t,r)

with the kernels K;; given by
K ,t-t,r—r)= c% 0,9(t—t,r—r')-VV- / drg,(r -t ,r-1'),

Kot—tr-1v)= c¢'Vxgt-t,r-r),

Ky (t—tr—v)=-c'Vxgt-t,r-r),

Kzz(t—t',r—r’)z—cl—ﬁtgz(t—t',r—r')—%VV-/dTg(T—t',r—r’), (3.3)



In the above equation fé(t, r), 5 (t,r), and 5’(7&, r) represent the Fourier transforms of the
respective functions R(w,r), S(w,r), and U(w, ) representing the dimensionless electric,
magnetic, and “cross-” resistivities of the mathematically infinitely thin sheet material
interfaces [1] between two homogeneous volumetric regions, and J(¢,r) and M(¢,r) are the
unknown vector functions: equivalent electric and magnetic currents on material interfaces.

We note that in (3.3) we assumed, for simplicity, that zi{w) = const. Generalization
to dispersive zi{w) is straightforward.

An alternative set of equations, obtained by taking the negative time derivative of
(3.2) is

1 /d ) O,R(t—t',r) o,U(t—t,r)n(r)x || J({,r)
- t
¢ o.U(t —t',r)n(r)x 0,S(t—t',r) M(t',r)
K ,t—-tr—1r) Kpolt-tr—r Jt,r Ei(t,r
—l—/dt'/d2S' 11( ) 12( ) ( ) 5 ( )
E Kzl(t - tl, r— I") Kzz(t - t/, r— I‘,) M(t,, I") Hl(t, I‘)

with

Ky(t—t,r—1)= giafg(t—t',r—r') —VV-gt—t,r—1),
Koit—tr—1)= c'Vxogt-—t,r-r),
Kyt—thr—1r)=-ct'Vx 0,gt-t,r—r),
1 1
Kyt-tr—1')= Egafgz(t—t’,r—r') - EVV- git—tr—r). (3.5)
We stress that both the fast FFT solution scheme [5] and the complete Galerkin

discretization method in space and time which we discuss below, are applicable to Egs. (3.2)
as well as (3.4).




(B.) Complete Galerkin discretization procedure in spatial and temporal vari-
ables

We developed an accurate method of the treatment of the causal behavior of the time-domain
Green function achieved through the utilization of the complete Galerkin procedure in spatial
and temporal variables in the evaluation of impedance matrix elements.

It has been known, in general, that the use of the Galerkin method constitutes a key
element in achieving numerical stability of the solution schemes for time-domain integral
equation approaches. Although for one-dimensional wave propagation problems implemen-
tation of the causality of the Green function in the context of the Galerkin discretization
is relatively straightforward, implementation of the causality in three dimensions presents
a much more complicated task for the following two reasons:

(a.) The Green function depends on the relative time 7 and distance r = |r; — ra|. If
the basis functions have a certain spatial extent, the signal from one basis function
may, in general, arrive only to a portion of the other basis function. Implementation
of causality requires careful implementation of all relevant radial integrals over the
spatial coordinates r; and ry associated with the basis functions entering the matrix
element.

(b.) The three-dimensional Green function has a singular term associated with 1/r =
1/|ry — ra|, which is in practice rather difficult to take into account in the context of
three-dimensional integrals over vector variables r; and r,.

We implemented routines for an efficient and accurate evaluation of the spatial separation
densities (p,4(r)) (defined as angular averages of convolutions of pairs of spatial basis
functions) for Rao-Glisson-Wilton basis functions. In Figs. 1la through 1f below we display
some numerical results for the separation densities calculated according to our prescription,
associated with various components of the Green function. Numerical values of the sepa-
ration densities obtained using our approach compare almost exactly with the analytically
equivalent but numerically much more intensive expressions involving direct 3-dimensional
numerical integration quadratures.
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the configuration of 2 adjacent triangles
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More details on this part of the project were reported in the second yearly progress report

and published in [5].
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(C.) Formulation for a conductive Debye medium

We have carried out complete analytical calculations for a specific, and general model of
a “conductive Debye medium”, with the electric permittivity given by the Debye formula
supplemented with a term responsible for conductivity,

€ — € v

% Lz (3.6)

fw) = € l-itTw  w

In Eq.(3.6) ¢, and €., are the static and optical relative permittivities, 7 is the relaxation
time, and v = o /¢y = ¢ Z,, 0 is a parameter proportional to the conductivity o, having the
dimension of frequency. Analyticity requires real ¢, and €., and we assume, additionally,
that €, > €,

The parameterization (3.6) reduces to the following cases:

(non-dispersive medium) for v =0, 7 =00,

o\ €5 — €oo . _
€w) =1 € + 1o (Debye medium) for v =0, (3.7)
oo +1 g (lossy medium) for 7 = o0 .

To exhibit the analytic structure of the electric permittivity function we now rewrite
Eq.(3.6) as

) = ), (3.8)
where
L= 26; [+ v+ Ve — v+ (e — e v (3.92)
) = 5217 [t vr) = VG — v 4 —e) v (3.9b)
wy=—1 . (3.90)

Thus, as required by the analyticity (causality) properties, €(w) is analytic in the upper
half-plane of w; it has two poles (at zero and on the negative imaginary axis, at ws), as
well as two zeros, also located on the negative imaginary axis.

The wave number is then

o) ) = \/w wy) (w— wz), (3.10)

W — Wy

where ¢ = 1/,/€g o and

c

Ve
8

(3.11)

v =




The expression (3.10) has thus branch points at w =0 and w = w,,, n =1,2,3.
Since, for typical parameters, we have

0 < |w| < |ws| £ Jwyl (3.12)

it is convenient to define branch cuts in the w plane as in Fig. 2.

We have constructed both analytical representations and numerical procedures for
computing matrix elements of the integral operators for the above mentioned medium,
employing full Galerkin procedure in space and time.

The analytical calculations are reported in Appendix Al of the second yearly report.
The final result is a set of expressions for matrix elements of the Green functions g, g,,
and g, of Eq.(3.1) which can be represented, schematically, as

Al = /dtl d?ry 2, d%ry TH(8,) Wy (ry) - gty — by, 11— 13) TO(t,) Tg(ry)

oo

= [ar st 120 (313)

0

Here A‘;ﬁ is the matrix element computed between temporal basis functions T of time
separation pu At (where At is the time step), and spatial basis functions ¥ associated with
current elements (edges of the discretization) « and 8. The actual matrix elements may
also involve Green functions g, and g,, or their time derivatives or integrals, and spatial
differential operators (divergence and curl) acting either on the Green functions or on the
spatial basis functions.

Eq.(3.13) represents the matrix element as a space integral of the “spatial separation
density” (f,(r)) (expressible in terms of the basis functions ¥, and ¥) and functions f*
constructed from the Green function and the spatial basis functions. All the dependence
on the medium properties and its dispersion is thus contained in the functions f*.

In Appendix Al of the second yearly report we described in detail evaluation of the
spatial separation densities () and provide semi-analytic expression for their efficient com-
putation. We also give a details of the procedure for computing the functions f#: in the
general case of the conductive Debye medium (Eq.(3.6)) they are given as frequency in-
tegrals over the frequency-domain Green functions and Fourier transforms of “temporal
Separation densities” n*(t), defined in analogy to ([)aﬂ) as convolutions of temporal basis
functions. The frequency integrals are evaluated by deforming the integration contour to
one encircling singularities of €(w) and y/€(w), which are located on the imaginary w axis;
hence the expressions involve also Laplace transforms of the temporal separation densi-
ties n#(t), which can be evaluated analytically. The resulting frequency integrals can be
efficiently and accurately computed as numerical quadratures. Some of these integrals,
however, have to be treated with special care: this applies to cases when a pole in the
integrand coincides with a branch point (which is also an essential singularity).
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Fig. 2: The singularity structure of the electric permittivity function and the integration
used in evaluation of the Green function.

We present here more details of the computation of the time-domain Green functions
g(t,r), 91(t,r) and g2(¢,r) of Egs. (3.1) in the case of the conductive Debye medium
(Eq.(3.6)). First we consider the function g(¢,r) of Eq.(3.1a) defined as

L 1 o |
g(t,r) = / %ﬂ et G(w,r) = — dw R Ol (3.14)
T

4rr 27

It is convenient to start with evaluating the corresponding Green function in one
spatial dimension, where, in frequency domain

ot — ; ik(w)r
g(w,7) 25 (@) ° , (3.15)

and thus the corresponding Green function in three dimensions is

glw,r) = i e =~5— % glw,r) . (3.16)

Now, for the one-dimensional case, the integral
i
¢ — —iwt Jik(w)r
4t = / 27 2k(w) ¢ e

- % / \/w (w wwl w:) Wy) e exp (i \/;J e _wwi)g: = %) (317)

is convergent, and can be evaluated by deforming the original integration contour along
the real axis on the w-plane into the contours C’/ and C” of Fig. 2. In the latter con-
tours we include circles around singular points; in some cases these circles give nonzero
contributions.
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By analyzing the phase changes on encircling the branch points, we find that the
square root appearing in the exponential of Eq.(3.17) is real positive just to the right of
the branch cuts, and real negative just to the left of these cuts. Then, by changing the

integration variable to u = iw, and denoting w, = —iu,, with Reu, > 0, n = 1,2, 3, we
g n " -
obtain
g t,T t—— /-——____ —utelf(”)r/v+/ e—utelf(u)r/v
= { m f( 2r f(u)
0 g
u
/ d_u _.l_ et o1 fu)rfv _ / d_u ____1_ e ut e—if(u) r/v
2r f(u 27 f(u)
0

Uz

Ug

=v@(t— %) {0/1;1_:}—(117)6—“)& cos (f(u) %) +/g—;—ﬁe"”t oS (f(u)%)} , (3.18)

Ug

where © is the Heaviside step function and

flu) = \/-u(u_ul) (1 = vy) (3.19)

U_U3

is defined to be positive in the u intervals occurring in Eq.(3.18).
According to Eq.(3.16), the corresponding Green function in three dimensions is then

g(t,r) =g(t,r) = 27rr t—— {/ /}d_u}_l__e —u COS(f(U)%)
+2_71T_7:@(t—£-) {/1+/2} g—ze‘“t sin(f(u) %) . (3.20)
0w,

Although the integrands in Eq.(3.20) are singular, these singularities are only of one-over-
square-root type, and are thus integrable.

As we can see from Egs. (3.3) and (3.5), we also need the spatial derivative of the
function g¢(¢,7). It is given by

O g(t,r) =~ 27rlv'r v {/ /} 2 f( )  cos (f(U) %)

11




—Erlr—z (t—— { } * sin (u)g)

42 @(t—— { }‘21— u)e“cos(f(u)v), (3.21)

2mur

where the integrals are again convergent.
We consider next the Green function g,(¢,r) of Eq.(3.1b) and write it in the form

dw _. 1 1 dw 1 P
¢ —_ W —iwt — ~ — 3 = —iwt ik(w)r 3.99
gl( ’T) 27re 6((.4)) g(war) lat drr M we(w)e € ) ( )
where the last integral is convergent for w — 0o. More explicitly,
gy(t,r) =18, —— / dwo  woWs it gike)r (3.23)
t 47re rJ 27 (w—wp)(w—w,) ' '

In this integral we can deform the integration contour as before and obtain

Ame T 27 p(u) 27 p(u)

Ug

Ug
gu(t,r) = 19, 2E=1/v) ’"/'”){ / du 1 utgir@rso o [ 98 1wt gy

Ug
_ / du 1wt i@y [ 1wt iy
p(u) 27 p(u)

Ug

~_p, 2’;’"7/”” {/ /}gzpl e sin (f(u) ") | (3.24)

where
(u =) (u—uy) .

p(u) = —% fu) = (3.25)

12




The integrand of Eq.(3.24) is singular at u = u; and u = u,, but, because of the behavior
of f(u), the singularities are integrable.
Finally, we consider the Green function g,(¢,r) of Eq. (3.1c):

(1) = [ 5o e Ew) o). (3.26)

Since €(w) — €., = const for w — oo, it is necessary to subtract the constant term, which
yields a delta-type contribution to the Green function. We have thus

1 dw .
ga2(t,7) = 6oog(t”r)+—_/ 2 (W) — e et e k)T

drwr J 2w
€ [ [(W—w)(w—w,) —iwt i (iw) r/v
—_ 0 el — 1 1f{1w) T 3‘2
€0 96 7) + 7 4rr / 27 [ w(w— wy) He™e , (3:27)

where Eq.(3.8) was used to express ¢(w) and the function f(iw) is given by Eq.(3.19).
Evaluation of the last integral presents a certain difficulty, because, at w = wj, there is
a coincidence of the pole in the integrand with the essential singularity in the exponen-
tial, resulting from the one-over-square-root singularity in f(iw). As before, based on the
asymptotic behavior of the integrand for w — oo, we can deform in the integration contour
in Eq.(3.27) to the contours of Fig. 2. In this case, however, we observe that the contribu-
tion from the part of the contour encircling the singularity at wy is nonzero. Therefore we
break up the contour C” into two parts: the part encircling the smgulamty, C5(n), where
n — 0+ is the radius of the circle, and the remaining part of the contour, C, (see Fig. 2).
Now, by changing as before the integration variable, u = iw, we can wrlte

gt ) = ey glt, r)+ Soo {/ / } [(U—t(:i) (1;3—)%) 1] o=t gin (f(u)%)

uz+n

—i iog_ / l:(u — ul) (’LL U’Z) 1:' e~ ut eif(u) r/v
o

4mr u(u — ug)
Cy(m)

= e g(t,r)+ 2—°‘i{/+/}@-[1¥—1] e_“tsin(f(u)%>

u+71

0
i feo / [p(U) 1] e~ut gi F(w) /v (3.28)

4rr U
C,(n)

By changing the variable to z = 1/4/u — u5, we can show that both integrals, over C5(n)
and C’:’, are finite in the limit of n — 0+. However, despite the fact that the integrals
are well defined, their numerical evaluation requires special care. We discuss details of the
analytical evaluation and the numerical implementation of Eq.(3.28) in the Supplement to
Appendix A1 of the second yearly report.

More details on this part of the project were reported in the second yearly progress
report and published in [6].
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(D.) Formulations based on the pulse temporal basis functions and band-limited
temporal basis functions

Temporal separation densities constitute an important element of the full Galerkin pro-
cedure we use in the evaluation of all of the matrix elements of the components of the
integral equation kernel for general dispersive media. We have constructed all pertinent
temporal separation densities in the analytical form for pulse basis functions and in terms
of one dimensional integrals for band-limited basis functions.

The temporal separation density functions

™) (t) = (¢, - ta) (3.29)

depend 6nly on the relative time t = t, —%,, and on one relative temporal index m = p—v,
where p and v are the indices of the temporal basis functions.
For the non-overlapping pulse temporal basis functions given by

pin 1 t—t, t,—t
T(t)_—A—t@( = )@( ~ ) (3.30)

where t,, = p At, the expressions for the temporal separation density functions (3.30) are
quite simple. We find

() = o [T - ()] = E@ s(€) = ~ (cit)z s (t - )(3 31a)
() = ¢ / dr O (r) = H(¢) = H <——-t ;zm> , (3.31b)
OO = s MO = s (a2 ) (3319
() = —TlAtT 25(6) ~ 8(6 1) ~ (¢ + 1))
~ A 20— t) = 6t~ ) = 3t =t )] (3.314)
m(1) m(1)
@T(t) = - () = é @‘T@) (3.31e)
%nm(z)(t) —en™3 (), (3.31f)
m(3)
on - (&) _ = ™), (3.31g)
where ; :
=g m=x~ k-1, (3.32)
s(§) =20() -06(§-1) - 0({+1), (3.33)
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R(&) = (1 —E)o - [¢)), (3.34)
0 for£ > 1,
s(1-¢) for 0<£<1,
HE)= 1-3(1+¢)? for—-1<€£<0, (3.35)
1 for £ < —1
225(6) = 20(6) - 8(€ = 1) = 56 + 1), (3.36)
o
Feh(€) = =s(0), (3.37)
0
5eHE) = =h(©). (3.38)

In Fig. 3 we display graphs of the the first three temporal separation density functions.
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0
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etas for pulse basis functions

Fig. 3: m,n2, and n3 functions for the pulse basis functions.

In the following we discuss aspects of the derivation of the temporal separation density
functions (3.29), in terms of the band-limited basis functions (APSWFs).

The rationale for using such basis functions is as follows: The block lower-triangular
structure of the impedance matrix in time indices from the causality of the Green function
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(G(t,r) = 0 for t < 0) provided the temporal basis functions T,(t) = T'(t — pAt) do
not overlap. Such as restriction of the function T' to short time support, however, is in
conflict with the assumption of its band-limited property, which is essential in ensuring
high-frequency stability of the solution.

In this situation the best possible solution appears to make the temporal basis func-
tions band-limited and approximately of finite (but not necessarily short) time support,
and restore the lower-triangularity of the impedance matrix by other means — namely,
by temporal extrapolation techniques. The required features can be satisfied to a good
accuracy by the approximate prolate spheroidal wave function (APSWF) [2].

We assume that the maximum frequency in the problem is f; = wy/(27). The time

step is then chosen as
1 T

- , (3.39)

- 25fy,  sw,

At

where s ~ 10 is the oversampling rate. This choice is dictated by the condition that At
should be of the order of ¢ Ar, where the spatial resolution Ar is of order of A\;/10, where
Ao is the wavelength corresponding to the maximum frequency f;.

With the parameters f, and s, the APSWEF T'(t) is defined as

Ty = Sa(rt/AY sin(a /(t/N At)Z - 1) (3.40)
wt/At  sinh(a) /({/NAD2 -1 '

where N > 1 is the APSWF width, and

s—1
s

a=nN (3.41)

is called the time-bandwidth product of the APSWF. As shown by Eq.(3.40), the APSWF is
the oscillatory sinc function modulated by a smooth factor, rapidly vanishing for [t| > N At.

Figs. 4a and 4b show the APSWF T'(¢) for f, = 1GHz, s = 10, and N = 5, for which
At = 0.05ns, and a = 14.14. The APSWF is plotted there as a function of t/At, in the
linear and logarithmic scales. '
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A difficulty arising when APSWF are used as temporal basis functions is that the basis
functions T, and T,, for different time steps p # v overlap. As a consequence, the resulting
impedance matrix is not block lower-triangular, i.e., A* # 0 for u < v, or, physically,
that the values of the current at a given times step p depend on current values for future
times, v > p. However, the block lower-triangularity may be recovered by extrapolating
the current from the past to future values. A good accuracy can be obtained due to the
fact that the current is a band-limited function of time. The result of the extrapolation is
that the original (not block lower-triangular matrix) can be replaced by a new matrix A*”
which is block lower-triangular. That matrix is computed as

R AP forv<p-N,,
AW = N (3.42)
ARV + Z‘;:m{l AHR HpRRTY forpy—N,+1<v<p. .

Here H*" is matrix of coefficients obtained by solving a set of least-squares equations
which, physically, represent the condition that future values of a set of periodic band-
limited functions are represented, with the minimum error, as linear combinations of their
past values. In Eq.(3.42) IV; is the number of required future values, and N the number
of past values used in the extrapolation. While N; (typically about 5) is determined by the
width of the temporal support of T'(t) (i.e., by the APSWF width), the number N, of past
steps can be adjusted to reduce the extrapolation error to the desired tolerance; a typical
value of N, is about 10. Higher values of N, provide a better accuracy, but increase the

computational cost of evaluating the modified matrix (3.42). On the other hand, AP has
to be computed only once, and the resulting computational cost is not significant.

In Figs. 5a to 5d we display the plots of the temporal separation densities computed
with the temporal basis functions (3.40).
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We note that, since the temporal separation densities () have the form

7D (@) = p°D (¢ - pAe),

j=1?273’4’

and the functions 7°)(¢) practically vanish outside certain interval [—Timax, Tmax]; it is
sufficient to tabulate them in that interval, and construct other functions by translation.
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Fig. 5a: The function 7" (t) plotted

with ¢ in units of At.
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Fig. 5b: The function 7°®(t) plotted
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Fig. 5c: The function 7°()(t) plotted

with ¢ in units of At.
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Fig. 5d: The function 7°*)(t) plotted

More details on this part of the project were reported in the third yearly progress
report and published in [8].
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(E.) Regularization of low-frequency solutions of integral equations.

We developed and implemented algorithms necessary for regularization of low-
frequency solutions of integral equations. Although these methods are originally
formulated in frequency domain, we have been motivated by their applicability to time-
domain (TD) integral equation methods.

One of the critical problems in the implementation of TD integral equations is their
stability for long evolution times. It is known that there are two types of TD integral
equations instabilities: those arising from high- and low-frequency phenomena.

The high-frequency instabilities manifest themselves as non-physical rapid oscillations
in the solution, of amplitude increasing with time. They can be reduced or eliminated by
limiting the bandwidth of the incident signal, and ensuring that no high frequency signals
are introduced as the result of time evolution.

The low-frequency instabilities are due the appearance of low- (“zero-”) frequency
(almost static) solenoidal solutions which do not generate tangential electric fields, and may
therefore contaminate the correct solution (at least in the formulation based on electric-
field equations, which are based on the boundary conditions for tangential electric field
components). Methods of eliminating these parasitic admixtures are based on separating
the solution space into two subspaces: (i) that spanned by divergence-free (solenoidal) basis
functions and the remainder space, and (ii) the remainder space. An effective procedure is
then to simply remove static solution components from the subspace (i) at each evolution
step.

Thus, the approaches to eliminating low-frequency instabilities in TD integral equa-
tions are based on the same solution space decomposition methods as those used in the
low-frequency limit in frequency domain.

Our main focus was on the development of efficient numerical methods of analyzing
topology of complex geometries and their surface meshes. These operations are exactly
the same in the context of frequency-domain and time-domain approaches, and in both
cases lead to construction of of solenoidal and remainder basis functions.

The main outcome of our work was an efficient algorithm for constructing basis func-
tions of the classes (i) and (ii), as mentioned above. It is applicable to triangular surface
meshes and basis functions associated with the mesh edges. For geometries characterized
by topologies with a limited number of connected components and “handles”, the compu-
tational cost of the construction is of order O(E), where E is the number of edges in the
mesh.

We have implemented the algorithm as a set of geometry processing functions carrying
out the required topological analysis (available also as free-standing utilities), and as a set
of functions for constructing a “low-frequency preconditioner” applicable to frequency-
domain integral equations. The topological analysis routines can be directly applied to the
analysis in time domain. Our implementation has been tested on many complex and large
size geometries of various topologies, including multiple components and many handles.

We believe that the developed algorithm methods are also of interest in the more
general context of computational topology, and its applications in biology and chemistry
(topology of macromolecules, etc.), as well as cosmology (structure of galaxies).
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As typical results, we show geometries created by our topological analysis routines
applied to the surface (of genus 4) displayed in Fig. 6. This geometry is triangulated with
about 240,000 edges.

Fig. 6: The geometry used in the topological analysis and construction of basis functions.

Fig. 7 exhibits the geometry created by our utility genloop, which constructs topo-
logically nontrivial loop paths. These paths are sequences of segments of the geometry
dual to the original geometry; they define a set of “nontrivial” solenoidal basis functions.
The other, “trivial”, loops are those encircling all interior vertices of the mesh.

Fig. 8 shows the geometry obtained by using the utility gentree, which creates tree
meshes. These meshes specify basis functions belonging to the “remainder” space of non-
solenoidal solutions. In this case, in order to be able to visualize the mesh, we used a much
coarser surface discretization, with less than 4000 edges.
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Fig. 7: The geometry showing nontrivial loops (defining solenoidal basis functions) for the
geometry of Fig. 6.

Fig. 8 The geometry showing trees, defining “remainder” basis functions for the geometry
of Fig. 6.
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(F.) Fast Solution Algorithms Applicable to Finite Periodic and Partially Peri-
odic Systems

We designed and partly implemented a set of fast solution algorithms applicable to finite
periodic and partially periodic systems, such as antenna arrays.

The algorithms take advantage of the block-Toeplitz structure of the impedance matrix
resulting from the periodicity of the scatterer. They can be applied either to the uncom-
pressed MoM impedance matrix or in conjunction with FMM or FFT-based compression,
resulting in what we call Toeplitz-MoM, Toeplitz-FMM, and Toeplitz-FFT solution pro-
cedures.

The main effect of the block-Toeplitz structure of the matrix is a dramatic reduction
in required memory, due to elimination of redundant matrix blocks and other storage
components associated with identical elements of the periodic array. The matrix-vector
multiplication complexity of the algorithms does not change significantly (except that it
is much reduced in the Toeplitz-MoM approach; that algorithm, however, is in practice
applicable only to relatively small small subsystems, with < 1000 unknowns).

We carried out a thorough analysis of the storage requirement and matrix-vector
multiplication complexity of the three block-Toeplitz algorithms, both theoretically (on
the basis of the structure of the algorithms) and empirically (based on our preliminary
algorithm implementation). A typical result is shown in Fig. 9: it is the required storage
in Toeplitz-FMM and Toeplitz-FFT algorithms as a function of the number of unknowns
n in a single array element, for several values of the number m of array elements.
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Fig. 9: Required storage in Toeplitz-FMM and Toeplitz-FFT algorithms as a function of
n for several values of m (corresponding, e.g., to 10 x 10, 30 x 30, and 50 x 50 arrays).

These plots show that the Toeplitz-FFT grows faster than for Toeplitz-FFT with the
increasing m, but slower (linearly, rather than quadratically) as a function of n.
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Results of this type and provide valuable information on the regions of applicability
of the individual Toeplitz methods. In particular, Fig. 10 shows the ratio of the required
storage for the Toeplitz-FMM algorithm to that of the Toeplitz-FFT algorithm.
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Fig. 10: Ratio of the required storage for Toeplitz-FMM and Toeplitz-FFT algorithms,
plotted as a function of m and 7 (in thousands). Contours for ratios 1 and 5 are also
plotted.

We can summarize the main results by stating that:

- The Toeplitz-MoM approach is preferable for a large number of small elements (small
number of unknowns per element), where it is much faster than the other methods,
and the required storage is still reasonable.

- The Toeplitz-FMM algorithm is preferable for a large number of “medium-size” ar-
ray elements; a large number of unknowns per element and highly sub-wavelength
discretization incur large costs due to the near-field storage.

- The Toeplitz-FFT procedure is preferable for a moderate number of elements with
a large number of unknowns per element and possibly sub-wavelength discretization,
approximately when the ratio n/m exceeds 10.

More details on this part of the projects were reported in the second yearly progress
report and published in [7].
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(G.) Generalization to incident waves given as superpositions of Hermite poly-
nomials

We have enhanced our frequency- and time-domain codes simulation capabilities to in-
clude numerically efficient modeling of specific time-localized waveforms, such as linear
combinations of Hermite polynomials or approximate prolate spheroidal wave
functions.

There is a need for such particular solver numerical capability in the context of several
current and future medical and military potential applications, involving, in particular,
detection of concealed small arms.

In order to be in a better position to analyze such problems, we derived compact
analytical expressions for the projections (on the spatial basis functions) of the incident
wave represented as a linear superposition of Hermite polynomials in temporal and spatial
variables.

A particular example of practical interest belonging to this class of waveforms is the
“Mexican hat” waveform, expressible as a linear superposition of Hermite polynomials up
to the second order.

We implemented the resulting formulation in the code module generating the incident
wave projection on the Rao-Glisson-Wilton (RWG) basis functions defined on triangular
patches, and on pulse or band-limited temporal basis functions. The RGW basis function
consists of a pair of “half basis functions” defined over a triangle 7' and associated with
the edge l,, (or, equivalently, with the vertex v,, facing the edge ,,)

T, (r) = f—( ) (1) (3.43)

where x is the characteristic function of the triangle.
The incident wave is assumed in the form of a linear superposition of Hermite poly-
nomials H,,

M
E®)(r,t) = ) amHn(y (ko -1 —ct)) (3.44)
m=0

of the argument v (ko - r — ct), with |ky| = 1, and with a scale parameter +.

Evaluation of the incident wave projection required an efficient and numerically stable
algorithm for computing convolutions of Hermite polynomials with the basis functions
(3.43). We have derived analytic expressions in the form which is easily amenable to
numerical implementation. Below we discuss the elements of the derivation for the m =0
term of the series (3.44). Each m-th term can be constructed in terms of the derivative of
the (m — 1)-th term.

The projection B, of the incident wave is given by

Bay = / a3 / dte™7 o m e @ (r) B,(t)
T
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where ®,(t) is a temporal basis function, chosen as a rectangular pulse or a band-limited
prolate spheroidal wave function.

We have carried out integrations over the barycentric coordinates (€1,§2) (with 0 <
€1 <1,0< & <1,0 <& + & < 1) analytically. In these coordinates the projection By,
is given by

‘ Boy=2A // d¢; dﬁz/dt o~ (a€1+bE2+c)? (a1 &1 +a2&2) D),
T

where A is the triangle area and a, b, and ¢ are expressible in terms of the parameters of
the incident wave and have quadratic dependence on t.

We note that the resulting expressions are difficult to program in the double limit
when the parameters a and b tend to zero simultaneously.

We have derived suitable, numerically stable Taylor expansions for these functions by
expressing them in terms of auxiliary functions Iy(a, b, ¢) and Fy(a,c),

1 1-¢;

Iy(a,b,c) = \/TE/dfl / déserf(aly +bé2+¢)
0 0

1 1-&
Il(a: b, c) = /dgl / déa &1 e_(a£1+b52+c)2 = %IO(a’b’ c) ’
0 0

1 1-¢
B0 = [d6 [ dabe ot = Sheho=hbad),
0 0

with . 2
2
a’i erf(z) = \/_E e
Io(a,b,c) = FO(a,cc)z : f‘o(b, c) ,
Fyfa, ) = Zer = HE)
and

H(z) = \/g erf(z) (222 + 1) + Ze—zz

For small arguments we used the following expansions of the functions H(z) and Fy(a, c):

11 1 1
H - _ >3 _ - .5 I 4
@) =32+57 ~ 57 Yoo T

1 1

Fola,c) = -~ + vr cerf(c) + i erf(c) a+ =e™° a?
2 2 4 6
1 e 3, 1 22 4
T +60ce (2cc—1)a*+---.
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knife geometry

Fig. 11: Representative display of the current distribution on a man with a knife.
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Fig. 12: Comparison of the preliminary results for the radar cross section for a 500 MHz
incident wave illuminating a man with and without a knife

We initiated calculations/analysis for representative scenario a man with a concealed
knife illuminated with different incident beams given in terms of superposition of Hermite
polynomials (Fig. 12 shows a representative display of the electric current induced on such
a geometry). This analysis is in progress.
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(H.) Work on aspects of foliage penetration problems

We performed several computations to verify the applicability of the developed code to
the analysis of SAR returns from scenes containing objects of military interest concealed
under foliage.

To perform more realistic simulations than the plane wave (or superposition of plane
waves) illumination, we added the antenna modeling option into our integral equation
solver. We model the transmitting and receiving elements as delta-gap structures built
into a Rao-Wilton-Glisson basis function. The transmitting element at an edge, say, o
is characterized by a voltage source Vp and a (connected in series) resistance R,. The
receiving delta-gap at an edge, say, B, is defined similarly to the transmitting one, but
without the voltage source, i.e., it represents only the resistive load Rg. The goal of the
MoM antenna modeling is to obtain predictions for the antenna parameters of a single
antenna or a system of antennas, interacting with themselves and/or with other objects.
Of main interest are parameters associated with the antenna transmitting or receiving
ports, such as the input impedance, received voltage, transfer function, etc.

We constructed geometries composed of irregularly shaped ground, trees, and a per-
fectly conducting object located under the trees. We also modeled the transmitting and
receiving horn antennas.

Below we present some of the relevant simulations.

Fig. 13 shows a scene composed of a ground, four trees and a perfectly conduct-
ing object of pyramidal shape. The scene is 20 m in size, the trees are approxi-
mately 10 m high, the size of the object is 1 m. The computations were performed
at 200 MHz. The computational problem size was approximately 450,000 unknowns.
The realistic material properties of wood, leaves and soil were assigned to all the ob-
jects in the scene. Figs. 14 and 15 show the bistatic and the backscattering cross
sections computed with and without the hidden object. Fig. 16 shows the influence
of leaves. As anticipated, this influence is negligible at the frequency of 200 MHz.
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Fig. 13: A scene with a pyramidal object concealed under the foliage.
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Fig. 14: Bistatic cross section at 200 MHz corresponding to the scene of Fig. 9.
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Fig. 15: Backscattering cross section at 200 MHz corresponding to the scene of Fig. 9.
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Fig. 16: Effect of leaves in the bistatic cross section at 200 MHz for the scene of Fig.13 .
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Subsequently, we constructed a scene composed of uneven ground, twelve trees and
a perfectly conducting object of pyramidal shape. The scene was 30 m in size. Two
horn antennas, a transmitter and a receiver were placed, one on top of each other, on
a 12 m track in front of the scene. The computational size of the problem, at 200
MHz, was approximately 1,000,000 unknowns. The scene is shown in Figs. 17 and 18.
Fig. 19 shows the backscattering cross section with and without the concealed object.
Figs. 20 and 21 show the voltage drop at the receiver and the transfer function for
the system of the transmitter/receiver antennas computed at six positions along the
12 m long track again, in the presence and in the absence of the concealed object.

side view top view

N eaiincacancananna

Fig. 17: A scene with a pyramidal object concealed under the foliage and two antennas (a
receiver and a transmitter) mounted on a track.
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Fig. 18: The same scene as in Fig. 13 with a typical surface current distribution.
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Fig. 19: Backscattering cross section at 200 MHz corresponding to the scene of Fig. 13.
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Fig. 20: Voltage drop at the receiver computed at 6 locations along the 12 m long track.
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Fig. 21: Transfer function computed at 6 locations along the 12 m long track.

The performed computations indicate the code capability to compute routinely scat-
tering from large, of the order of one million unknowns, scenes composed of objects of
complex shapes and realistic materials.

At present, the code is being used on an Air Force contract to compute SAR returns
and to identify material properties of the scene components. The scenes are approximately
30 m in size. The computations are being performed at the frequency range from 100 MHz
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to 1 GHz and for multiple (approximately 100) angles of incidence. The computational
problem size is approximately 1.5 M unknowns at the frequency of 1 GHz. A novel phase
interpolation algorithm (developed on the above mentioned contract and implemented into
the code) allows us to perform computations every 10 MHz and to accurately interpolate
to 1 MHz intervals. The phase interpolation algorithm allows us to synthesize results not
only for relatively narrow-band pulses traditionally used in SAR applications, but also for
wide-band pulses.
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Wideband Short-Pulse Electromagnetics, Kluver Academic/Plenum Publishers, 2003.

. E. Bleszynski, M. Bleszynski, and T. Jaroszewicz, “Fast Time-Domain Integral Equa-

tion Solver for Dispersive Media”, in Ultra-Wideband Short-Pulse Electromagnetics,
Kluver Academic/Plenum Publishers, 2006, in press.

. E. Bleszynski, M. Bleszynski, and T. Jaroszewicz, “Block Toeplitz Fast Integral Equa-

tion Solver for Large Finite Periodic and Partially Periodic Array Systems”, IECE
Trans Electronics, Vol. E87, No 9, pp. 1586-1594, 2004.

. E. Bleszynski, M. Bleszynski, and T. Jaroszewicz, “Fast Time Domain Integral Equa-

tion Solver for Dispersive Media with Auxiliary Green Functions”, in proceedings of
the ACES (Applied Computational Electromagnetics Society) Conference, Honolulu,
HW, 2005.

. E. Bleszynski, M. Bleszynski, and T. Jaroszewicz, “Application of Fast Time- And

Frequency-Domain Integral Equation Methods To Simulation Of Pulse Propagation
Through Foliage” in proceedings of the KIMAS 2003 (IEEE Conference on Knowledge
Intensive Multiagent Systems), Cambridge, MA, October 2003.

. E. Bleszynski, M. Bleszynski, and T. Jaroszewicz, “Simulation of Synthetic Aperture

(SAR) Returns from Complex Scenes”, in proceedings of the 2005 KIMAS (IEEE
Conference on Knowledge Intensive Multiagent Systems), Cambridge, MA, May 2005.

6. Interactions/Transitions

Presentations at meetings and conferences:

The following invited presentation were made during the grant period:
1. “Application of Fast Time- And Frequency-Domain Integral Equation Methods to

Simulation of Pulse Propagation Through Foliage” IEEE Conference on Knowledge
Intensive Multiagent Systems, Cambridge, MA, October 4, 2003,

. “Fast Time-Domain Integral Equations Approach for Wide Band Pulse Propagation

in Dispersive Media”, AMEREM Conference, Annapolis, MD , June 2003,

. “Block-Toeplitz Fast Integral Equation Solver for Large Periodic And Non-Periodic

Finite Antenna Array Systems”, IEEE Topical Conference on Wireless Applications,
Honolulu, HW, October 17, 2003,

. “Application of Wavefront-Based Method in High Frequency and Time Domain Scat-

tering and Propagation Problems”, IEEE Conference on Antennas and Propagation,
Dayton, OH, 2003,
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5. “Simulation of Synthetic Aperture (SAR) Returns from Complex Scenes”, IEEE Con-
ference on Knowledge Intensive Multiagent Systems, Cambridge, MA, May 2005,

6. “Fast Time-Domain Integral Equation Solver for Dispersive Media”, EUROEM Con-
ference, Magdeburg Germany July 2005.

7. “Fast Time Domain Integral Equation Solver for Dispersive Media with Auxiliary
Green Functions”, ACES (Applied Computational Electromagnetics Society) Confer-
ence, Honolulu, HW, April 2005,

Consultative and advisory functions:

1. Assistance to Air Force Research Labs, Brooks Air Force base in modeling and analysis
of problems in the area of EM interaction with human tissue and foliage penetration
(R. Albanese, S. Sherwood, and T. Campbell).

2. Assistance to Titan Corporation; development of the formulation and the code module
applicable to the performance analysis and optimization of wide band antennas with
dispersive elements (J. Riordan and H. Sze).

3. Assistance to University of Florida in numerical simulations of observables in the con-
text of problems involving detection of tanks under trees (S. Shabanov and T. Olson).

4. An early version of our block Toeplitz time domain integral equation solver has been
independently verified and adopted as the Time Domain Adaptive Integral Equation
Method by the University of Illinois researches who constructed a code based on this
formulation (A. Yilmaz, K. Aygun, J.M. Jin, and E. Michielssen, “Matching Criteria
and the Accuracy of Time Domain Adaptive Method”, in proceedings of the 2002 San
Antonio AP IEEE Conference, Vol. 2, pp. 166-169, July 2002).

Transitions:

The developed formulation and the corresponding solver provide a unique opportunity
for the simulation of such problems of interest to the Air Force and DOD as SAR
scenes or identification of objects concealed under foliage or, e.g., on a human body.
The developed technolody already resulted and was/is being used on two Air Force
contracts awarded to Monopole Research.

7. New discoveries

1. Formulation of a novel fast algorithm based on simultaneous compression in space
and time, and exhibiting the same competitive performance for dispersive as well as
non-dispersive media.

8. Honors/Awards

No honors or awards were received during the grant period.
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