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1 INTRODUCTION

The Large Millimeter Telescope, LMT, is composed of a set of devices and instruments
that are controlled in a coordinated scheme to perform scientific tasks and collect cor-
responding data. The status of these devices must be monitored in real-time to assure
safety and scientific integrity. This is what typically describes a telescope monitor and
control system.

The traditional approach to creating a monitor and control system has been to im-
plement individual device level controllers and then attach them to a client/server sys-
tem to achieve the desired coordination. The problems in this approach are twofold:
complexity and inflexibility. Synchronization and communication protocols must be
implemented, and any upgrades or additions require code modification and perhaps
even design changes.

Our solution is to automate the creation of a framework for monitor and control by
describing the system components in XML and then automatically generating source
code for extendible base classes and user interfaces. This enables the monitor and
control system to be both flexible and adaptable, and greatly simplifies the design com-
plexity. It also allows the system to be reusable in many different applicable problem
domains.

To simplify the coordination mechanism among the different subsystems, we have
employed a global state system for the communication model. A single global state
object containing references to all of the components of the system is described in XML
and corresponding source code is automatically created to implement global object
access.

1



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
21 DEC 2004 

2. REPORT TYPE 
N/A 

3. DATES COVERED 
  -   

4. TITLE AND SUBTITLE 
The Large Millimeter Telescope Monitor & Control System 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
University of Massachusetts, Amherst, MA 01003, USA 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release, distribution unlimited 

13. SUPPLEMENTARY NOTES 
See also ADM001773, Large Millimeter Telescope Project. , The original document contains color images. 

14. ABSTRACT 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 

UU 

18. NUMBER
OF PAGES 

15 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



2 Object Oriented Design and Automation

2.1 Object Oriented Design

The LMT consists of a large number of complex control systems: the main axes servo
system (16 motors in azimuth, 4 motors in elevation), the subreflector positioner (Stew-
art platform configuration) and wobbler (2 degree-of-freedom system), the active sur-
face panel actuators (720 actuators), and tertiary optics (large flat mirror and several
additional smaller mirrors). In addition, the LMT has a collection of scientific instru-
ments such as receivers, spectrometers, backends, and data acquisition systems.

Since the telescope system is naturally comprised of real-world objects, an object
oriented design for the monitor and control system logically follows. Each subsystem
can be defined as a software object with attributes that describe the properties of the
real object and methods that alter the state of these attributes.

2.2 Automation and XML

Due to the complexity of the LMT system, the traditional approach of hand coding
the classes describing the objects is both tedious and repetitive. Automation is highly
desired to eliminate unnecessary labor and insure a common syntax.

XML[1], the extensible markup language, was the choice for automation. XML is
a set of rules for structuring data such as spreadsheets, address books, and configuration
parameters. XML simplifies the computer’s task of generating and reading data, and
ensures that the data structure is unambiguous.

To eliminate the tedious programming of similar class definitions and methods,
the properties of each telescope subsystem are specified in an XML configuration file.
Each XML file describes an object class including field types and access methods.
These XML files are processed to automatically generate extensible base classes and
communication methods in C++ and Java; and IDL interface definitions to generate
CORBA communication code.

An example of such an XML file is listed below:

<config xmlns=’http://www.lmtgtm.org’>
<class>

<name>Telescope</name>
<comment>The Telescope class</comment>

</class>
<fields>

<field>
<name>AzAct</name>
<type>double</type>
<set>degreeToRadian</set>
<get>radianToDegree</get>
<comment>Actual azimuth angle</comment>

</field>
<field>
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<name>ElAct</name>
<type>double</type>
<set>degreeToRadian</set>
<get>radianToDegree</get>
<comment>Actual elevation angle</comment>

</field>
</fields>

</config>

An additional XML file describes the system as a whole by enumerating the in-
stances of each object. This XML file is processed to generate a container object that
holds access to all objects in the system.

<config xmlns=’http://www.lmtgtm.org’>
<class>

<name>System</name>
<comment>The system: contains all objects</comment>

</class>
<object>

<name>TimePlace</name>
<comment>The system clock and observatory location</comment>

</object>
<object>

<name>Telescope</name>
<comment>The telescope main axis servo</comment>

</object>
<object>

<name>Sequoia</name>
<comment>The sequoia frontend</comment>

</object>
<object>

<name>Correlator</name>
<comment>The correlator backend</comment>

</object>
<object>

<name>Calibration</name>
<comment>The observing method calibration</comment>

</object>
<object>

<name>Position</name>
<comment>The observing method position switching</comment>

</object>
<object>

<name>Otf</name>
<comment>The observing method on-the-fly mapping</comment>

</object>
</config>
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The use of XML in astronomy was initiated by work done at NASA’s Goddard
Space Flight Center[2].

2.3 The LMT XML to Monitor & Control Compiler

The LMT XML to monitor and control compiler (LMT-XMLMC) is a software tool
that, given a set of XML configuration files, creates extendible base classes and user
interfaces to form a framework for monitor and control. The software was designed
around radio telescopes but can be used to monitor and control any system with similar
requirements.

The LMT-XMLMC compiler processes the XML configuration files, and generates
Java, C++, JNI, and CORBA base classes, as in Figure 1.

Antenna.xml
XMLMC

Compiler

Antenna.h

Antenna.cc

Antenna.idl

AntennaJNI.java

AntennaCORBA.java

AntennaServant.h

AntennaServant.cc

Antenna.java

AntennaServant.java

Figure 1: The LMT XMLMC Compiler.

Java [3] is the language of choice for user interfaces. By using the Java Foundation
Classes and Swing GUI components, the deployment of user interface applications is
greatly simplified and a customizable look and feel is permitted without relying on any
specific windowing or operating system.

C/C++ is still the main language to implement device drivers and device con-
trollers. C++ has the advantage of built-in object oriented technology.

JNI[4], the Java Native Interface is the native programming interface for Java, it
allows Java code to operate with applications and libraries written in other languages,
such as C or C++. The use of JNI is not practical outside of a local area network (LAN)
due to bandwidth limitations, hence CORBA.
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CORBA [5] is the acronym for Common Object Request Broker Architecture. It
is a vendor-independent architecture and infrastructure that computer applications can
use to work together over networks. Using the standard protocol IIOP, a CORBA-based
program from any vendor, on almost any computer, operating system, programming
language, and network, can interoperate with a CORBA-based program from the same
or another vendor, on almost any other computer, operating system, programming lan-
guage, and network.

Therefore, the Java base classes are used to drive the Java user interface, the C++
bases classes drive the real-time system device drivers and controllers, the JNI classes
enable communication between the Java and C++ classes on the LAN, and the CORBA
classes enable communication between the Java and C++ classes among any comput-
ers.

In addition, the LMT-XMLMC compiler creates a single object in Java and C++
that contains references to all of the elements of the system to implement a global state
system. Any object can read the state of any other object by acquiring a reference to
that object from the global state object.

It is important to note that the LMT-XMLMC compiler does not generate device
driver or controller code, but provides for extendible base classes that share a common
interface and provide a basis for further development.

2.4 Automation and User Interface XML

To guarantee a consistent look and feel to the LMT monitor and control system, a set
of XML configuration files are used to describe the user interface and layout of the
monitor and control panels. One XML file defines each panel as a Monitor, Control, or
MonitorControl panel. Java Swing code is generated from these XML files at run time
to layout the panels and display the system status and allow for user input.

An example of a UI XML file follows.

<Panel xmlns=’http://www.lmtgtm.org’>
<Tab/>
<Label>

<value>Actual Position</value><align>Center</align>
</Label>
<Label>

<value>Desired Position</value><align>Center</align>
</Label>
<Return/>
<Label>

<value>Azimuth</value>
</Label>
<Text>

<field>AzAct</field><align>Right</align>
</Text>
<Text>

<field>AzDes</field><align>Right</align>
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</Text>
<Return/>
<Label>

<value>Elevation</value>
</Label>
<Text>

<field>ElAct</field><align>Right</align>
</Text>
<Text>

<field>ElDes</field><align>Right</align>
</Text>
<Return/>

</Panel>

This results in the following panel:

Figure 2: An Example LMT Monitor & Control Panel.

3 Global State System

As mentioned above, a global state system was used to facilitate access among the
different system components and simplify the communication protocol.

3.1 Global State System Motivation

The common approach to telescope control is to define communication paths between
the different subsystems and implement a message/data passing scheme to achieve the
desired coordination.

An example scenario is presented in Figure 3. The arrows indicate communication
channels between servo systems and instruments, and control modules. The picture
illustrates the complexity of the problem. For instance, as the beam is tracking the
source, data are being collected and recorded, and the behavior of the system is be-
ing monitored. The source tracker effectively controls the position of the antenna, the
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subreflector, the active surface, and requires information about the environment tem-
perature, humidity, and wind speed. Concurrently, the data acquisition system controls
the activation of the instruments. It also records data and tags each sample with the
exact position of the beam and the environment conditions. Finally, as the source is
being tracked and data is being recorded, the condition of the system is being overseen
by the monitoring system.

Collect
Data

Monitor

Source
Track Antenna

Subreflector

Active Surface

Instrument

Environment

Precision Pointing

Figure 3: A Typical Information Exchange Between Telescope Subsystems.

The approach we proposed is a global state system. Each subsystem posts its state
to the global state and retrieves the state of other subsystems from the same global
state. A finite state machine controller coordinates the activities between the different
subsystems through that same global state. This approach is illustrated in Figure 4.

The only requirement to make this approach feasible is that for each element in
the global state, only one writer can exist. This ensures that two or more processes
cannot simultaneously write or update a given element. On the other hand, an unlimited
number of readers can access the same global state element.

3.2 Implementation of the Global State System

3.2.1 Shared Memory

On a single computer system, the global state space can be implemented using shared
memory − each object is assigned a unique key, therefore a unique memory space. In
a distributed computing system, a replicated shared memory system is used.

Replicated shared memory is implemented by installing an individual memory
board in each computing system and interconnecting these memory boards using a
fiber optic link. Memory writes to a replicated shared memory board at one computer
are instantly sent to all other replicated shared memories on the network.

7



Antenna

Subreflector

Active Surface

Precision Pointing

Environment

Instrument

Track
Source

Monitor

Collect
Data

Global System State

Figure 4: Global State Approach.

3.2.2 CORBA

When direct access to the replicated shared memory is not available, as in remote ob-
serving, a CORBA server is used to provide access to the shared memory. The CORBA
server is automatically generated using the LMT-XMLMC compiler and provides ac-
cess to all of the objects in the system.

ACE/TAO [6] and JacORB [7] are used in the implementation of the CORBA
server.

The idea to use CORBA for the control system of the LMT is based on GTC’s
control system [8].

3.3 Computing Environment

Choosing the correct computing environment for the LMT was a difficult task. The
final choice was to use a host/target system: a Sun workstation running Solaris, and a
VME-based Motorola PowerPC embedded computer running VxWorks. This configu-
ration was chosen for the following reasons:

• Sun Microsystems is a leader in the field of vendor supported Unix-based com-
puters; the hardware failure rates are minimal and security and bug support for
Solaris are readily available from Sun. The use of Linux on an Intel platform was
investigated, however, due to the continuous effort in keeping Linux up-to-date
and the occasional lack of backward compatibility, it was decided to pay the ad-
ditional cost to purchase and use vendor-supported software and hardware rather
than provide that support in-house. This enabled the concentration on develop-
ing the application and saved time with respect to supporting the development
environment
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• The VME bus remains a powerful and stable bus system for control applications.
While the cost of VME-based devices is higher than other alternatives, the ex-
pandability of such systems and the availability of a wide choice of third party
products for the VME system makes the additional cost more easily justified.

• Motorola PowerPC embedded computers were chosen due to the continuity of
the Motorola embedded computers product line. The expected life-time of the
LMT is 30 years and Motorola is committed to providing consistency in the
upgrade path of their processors.

• VxWorks is one of the market leaders in real-time operation systems. While the
purchase cost for VxWorks remains high, the direct mapping between Unix and
VxWorks and the wide availability of device drivers in that environment justifies
the initial cost.

4 The Large Millimeter Telescope Monitor & Control
System

The system described so far is used to build the LMT monitor and control system
(LMTMC). The LMTMC, Figure 5, is composed of several modules including an ob-
serving tool, monitoring tools, a finite state machine controller, and a scheduler.

4.1 Observing Tool

The observing tool provides the means for the user to create observing programs. These
observing programs can then be executed on-line or submitted to the scheduler for
optimal execution. They can also be saved to or loaded from a file, and can be manually
edited using any text editor.

Each observing program must contain scheduling constraints, target positions, a
receiver, a backend instrument, and a data collection method.

In turn, the observing tool generates commands to control the different subsystems
based on the observing program. The generated commands are implemented using a
keyword-value pair method that manipulates the parameters of each subsystem.

The observing tool can also be used to deliver commands directly to the system in
a more interactive manner for both scientific and engineering purposes.

The observing tool provides the following scientific functions:

• source definition: (az/el; ra/dec; l/b; ephemeris)
• pointing offsets
• radiometer control: selecting a detector, changing frequency, doppler tracking
• spectrometer control: selecting a spectrometer, multiple IFs, bandwidth, resolu-

tion
• wobbler control: frequency, magnitude
• observing mode: pointing system modeling, calibration, position switching, fre-

quency switching, beam switching, five point mapping, pointed maps, scanned
maps, on-the-fly mapping
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Data Collection

Telescope Instruments

Global System State

FSM

Scheduler

Monitor Tool Observing Tool

Figure 5: The LMT Monitor & Control System.

• integration time

In addition to the scientific functions, a set of engineering functions can be accessed
from the observing tool. These engineering functions are the building blocks for the
scientific functions.

• antenna azimuth and elevation control
• subreflector control
• active panel control
• tertiary optics control
• instrument control

The following resources are made available to the user:
• online help
• source catalogs
• line catalogs
• previewers (ex. map configuration)
• estimates of time overheads
• weather conditions: atmospheric opacity over previous 12 hours, wind speed and

direction, phase monitor

Many of the ideas including the look of the observing tool were inspired by Gem-
ini’s observing tool [9].
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4.2 Scheduler

Once observation plans are defined, they get submitted to the scheduler. The plans are
thereafter scheduled based on two different policies:

• dynamic scheduling: observations are scheduled based on meteorological condi-
tions and scientific priorities.

• manual scheduling: observation times are assigned manually to observers.

4.3 FSM Controller

A finite state machine controller translates the observing programs into desired tele-
scope and instrument states. It steps through the science program and executes each
command while monitoring the error state of the system.

4.4 Monitoring Tool

The monitoring tool is used to oversee the state of the system in real-time while ob-
serving commands are being executed, and scientific and engineering data are being
collected.

The purpose of the monitoring tool is to provide a running check on data integrity
and proper system operation by displaying the state of the system to the user.

The following information can be displayed using the monitoring tool:

• observation state: schedule step, elapsed time, time to completion, ...
• telescope state: position, temperature, ...
• instrument state: current configuration, bandwidth, sampling rate, ...
• current pointing model
• active surface state
• subreflector state
• weather conditions
• error signals
• logs

The concepts for the monitoring tool were based on OVRO’s Java windows [10].

5 Adapting to Existing Telescopes

To prepare for launching the monitor and control system on the LMT, several systems
were built or upgraded to use the LMTMC architecture. These diverse systems demon-
strate the reusability and adaptability of the LMTMC framework.

5.1 LMT Simulator

As a first approach to verify the operation of the LMTMC system, a simulator of the
LMT was developed. The simulator assumes the behavior of the real telescope and
instruments and provides a teaching ground for future users of the system.
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5.2 IOTA

IOTA [11], the Infrared Optical Telescope Array on Mount Hopkins in Arizona is a
three element optical interferometer with four delay lines, a three-beam combiner, and
a complex data acquisition system. The control system was a non-networked collection
of Apple Macintosh computers. Each Mac controlled a different device of the system
and it was up to the observer to coordinate the operation of the devices. The old IOTA
system was replaced by a Sun-Solaris/VME-PowerPC-VxWorks system running the
LMTMC software as part of a general IOTA upgrade [11, 12]. This upgrade provided a
proving ground for the LMTMC system before launching on the LMT. A single VME
cage with three embedded PowerPC processors runs all three telescopes, the delay
lines, and all of the instruments. The IOTA system has been in operation for three
years.

5.3 FCRAO Narrowband Spectrometer

The LMTMC software was used to develop the control architecture of the Five College
Radio Astronomy Observatory narrowband spectrometer. It is a spectrometer with 64
input channels, 1024 lags per channel, with on-the-fly mapping capability.

5.4 FCRAO 14m Telescope

The FCRAO is the Five College Radio Astronomy Observatory which consists of a 14
meter radio telescope enclosed in a radome [13]. The FCRAO control system was a
Modcomp computer networked using a special purpose parallel I/O to ethernet bridge.
This system uses the same instruments that will be used at the LMT and is a facility
run by the University of Massachusetts. The FCRAO control system was replaced by
a Sun-Solaris/VME-PowerPC-VxWorks system running the LMTMC software and the
resulting system will be directly used on the LMT.

6 Conclusion

Modern observatory telescopes are complex distributed systems. We have devised a
reusable, automatically generated software system that simplifies the implementation
of monitor and control systems for such telescopes. The described system takes ad-
vantage of advances in computing technology to facilitate the development of control
software, ease the integration of new devices and instruments, and shorten the path to
scientific production.
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Figure 6: The LMT Monitor & Control System.
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Figure 7: Monitor & Control Panels of the FCRAO Telescope.
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