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Solar Thermal Propulsion for Small Spacecraft 
- Engineering System Development and Evaluation - 

Takashi Nakamura* and Robert H. Krech† 
Physical Sciences Inc., Andover, MA  01810-1077 

James A. McClanahan‡ and James M. Shoji§  
Rocketdyne Propulsion & Power, The Boeing Company, Canoga Park, CA 91309 

and 

Russell Partch¶ and Skylar Quinn# 
Air Force Research Laboratory, Kirtland AFB, NM 87117 

This paper discusses results of a program to develop an innovative solar thermal 
propulsion system for application to orbit change and mobility for small spacecraft. In this 
system, solar radiation is collected by the concentrator which transfers the concentrated 
solar radiation to the optical waveguide cable consisting of low-loss optical fibers. The 
optical waveguide cable transmits the high intensity solar radiation to the thermal receiver 
for efficient, high performance thrust generation.  Through the course of the preceding 
program, we have demonstrated the base for the system hardware.  This paper discusses 
results of the program to develop and evaluate an engineering model of the solar thermal 
propulsion system based on the OW technology.   

I. Introduction 
olar thermal propulsion has been considered to be an efficient propulsion method for orbit transfer from LEO to 
GEO. A large technical database has been developed under solar rocket technology programs with funding from 

the Air Force, NASA and other agencies since the 1970's.1-10 For solar thermal rocket application, a set of large-
scale, lightweight inflatable parabolic mirrors is to be used to focus solar radiation into the thruster's absorber cavity. 
The propellant gas, heated by the concentrated solar radiation, achieves specific impulse, Isp, on the order of 850 to 
1100 s. 

During the Air Force sponsored program in 1979, the off-axis inflated concentrator solar thermal propulsion 
system was developed. In this design configuration as shown in Figure 1, the concentrator and the absorber/thruster 
are optically coupled with the absorber located at the concentrator focus. Due to its large-size inflated concentrators 
and non-rigid support structure, the optically coupled concentrator-absorber configuration can be sensitive to 
structural deformations caused by concentrator subsystem rotation or acceleration. These deformations could create 
problems of blurred concentrator focus or misalignment. If the thruster can be decoupled from the concentrator, the 
absorber/thruster can be placed at a site best suited for effective thrust generation, and the high intensity solar beam 
can be directly transmitted via flexible optical waveguide transmission lines to the solar absorber/thruster. Such a 
solar thermal thruster can satisfy a wide variety of spacecraft propulsion needs. 

 Physical Sciences Inc. (PSI), in collaboration with Rocketdyne Propulsion & Power, The Boeing Company, 
is developing an innovative solar thermal propulsion system for application to small spacecraft with funding support  
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by the Air Force Research Laboratory. In this 
system, as schematically presented in Fig. 2, 
solar radiation is collected by the concentrator 
which transfers the concentrated solar radiation 
to the optical waveguide transmission line 
consisting of low-loss optical fibers. The optical 
waveguide cable transmits the high intensity 
solar radiation to the thermal receiver for 
efficient, high performance thrust generation. 
Part of the solar radiation can be switched to 
attitude control thruster as necessary. The 
features of the proposed system are: 
 
1. Highly concentrated solar radiation (~103 

suns) can be transmitted via flexible optical 
waveguide transmission line to the thruster's 
absorber cavity; 

2. The flexible optical waveguide linkage 
de-couples the thruster from the concentrator 
to provide freedom from the constraints 
imposed on previous solar propulsion system 
designs; 

3. The configuration of the solar receiver can 
be optimized for efficient heat transfer with 
minimal re-radiation loss;  

4. Aiming and tracking for the concentrator become significantly easier by moving the termination of the optical 
fiber cable to follow the focal point of the primary concentrator; and 

5. High intensity solar radiation can be switched to different receivers to deploy several thermal thrusters as 
necessary.  

II. Technology Development Program 
In this section we will discuss results of the SBIR Phase I and the ongoing Phase II program to develop and 

evaluate engineering prototype of the proposed system shown in Fig. 2.  

Phase I Summary 
During the Phase I program we 

conducted proof of principle 
experiment to validate the basic 
concept using the PSI Optical 
Waveguide (OW) Solar Thermal 
Facility.  Figure 3 shows the Phase I 
experiment.  The experimental 
facility consists of two solar tracking 
units each with two 50 cm parabolic 
concentrators. The two concentrators 
are mounted on a rotating frame to 
track the sun. The optical fiber cable 
placed at the focal point of the 
concentrator transmits the 
concentrated solar radiation to the 
solar receiver located at the center of 

facility.  The optical fiber cable (4 m long) consists of 37 fused silica fibers (1.2-mm dia). The four optical fiber 
cables deliver about 200 W of solar power into the receiver. The solar receiver is located at the center with four 
optical fiber cables connecting it to four concentrators. The configuration of this experimental setup simulates the 
solar thermal propulsion system described in Fig. 2.  

Figure 1. The off-axis inflated concentrator solar thermal 
propulsion system.

Spacecraft

Thermal Thruster
(Attitude Control)
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(Main Propulsion)
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Figure 2. Solar thermal propulsion system for small spacecraft. 
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The hardware components that we developed 
in this program include: optical waveguide 
transmission line; interface optical components; 
and the solar thermal receiver.    
The optical waveguide transmission line 

The optical waveguide transmission line is the 
key component to integrate the concentrator 
system with the solar thermal receiver. The cable 
inlet interfaces with the concentrator system and 
the cable outlet interfaces with the solar thermal 
receiver. The cable inlet design we used in this 
program is based on our heritage: the quartz 
secondary concentrator collecting the solar 
radiation and injecting it to the optical fibers. 
Figure 4 shows the inlet portion of the four 
optical fiber cables used for this program. All four 
cables are 4 m long and each consists of 37 high 
numerical aperture (NA = 0.48), low-OH polymer 
clad optical fibers (HWF1200/1235/1600 T48) 
manufactured by CeramOptec.  The fiber has an 
excellent off-axis transmission up to 25 degrees.  

 The design of the cable outlet was developed for optimum interface with the high temperature solar receiver. 
A photo of the fiber cable outlet is given in Fig. 5. The 37 optical fibers transfer the solar radiation to the 10 mm 
quartz rod. The quartz rod, by the principle of total internal reflection, transfers the solar radiation to the thermal 
receiver. The tip of the quartz rod is placed close to the receiver high temperature heat exchanger in order to deliver 
the solar power directly to the receiver heat exchanger elements. 

Solar Receiver 
One of the important objectives of this program was to 

demonstrate the basic solar receiver heat transfer mechanisms: 
• Transport of high intensity solar flux from the concentrator to 

the solar receiver via optical fiber cable; 
• Efficient delivery of high intensity solar flux to the solar 

receiver heating element; 
• Achievement of high temperature via radiative heat transfer; and 
• Viability of optical components. 

A schematic of the solar thermal receiver is given in Fig. 6. 
The solar receiver core is made of graphite cylinder (diameter = 
1.75 cm; height = 2.54 cm), because of (i) high solar absorptivity 
(α = 0.7~0.9), (ii) excellent thermal-mechanical stability, and 
(iii) ease of fabrication. The gas was injected tangentially into the 
graphite cylinder and flows out through the molybdenum tube. 
The graphite core is surrounded by the molybdenum radiation 
shields. Solar power (~200 W) was delivered to the graphite core 
by four quartz rods (dia. = 1 cm).  

The solar receiver housing with four optical fiber cables is 
shown in Fig. 7. The construction of this housing was similar to 
the materials processing experiment conducted in the previous 
NASA Program.11 The propellant gas flows from the bottom of 
the housing, flows through the heat exchanger, and flows out of 
the housing. 

  
 

Figure 3. Experimental setup for the solar thermal test 
conducted in Phase I. 

 

 
Figure 4. The inlet of the optical fiber cable.

 

 
Figure 5. The optical fiber cable outlet made
of quartz rod. 
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Results 
A total of 9 hours of tests was conducted 

with argon and helium as working gases.  In 
the experiment with argon at the atmospheric 
pressure, the maximum temperature reached 
for the graphite receiver was 1502 K, and that 
for the argon gas was 1357 K.  Figure 8 shows 
the temperature plot for the graphite receiver 
vs. solar power for argon gas at the 
atmospheric pressure.  

We conducted the experiment with argon 
under reduced pressure to achieve the highest 
temperature within the limited solar power 
available.  For the low pressure experiments, 
the solar receiver housing was connected to the 
vacuum pump. The configuration of the solar 
receiver and the gas flow pattern were the 
same as those for the atmospheric pressure 
tests. The results showed that the receiver 
temperatures for both cases are nearly 
identical. We conclude from the results that, at 
least for argon, the dominant factor in the 
receiver is the radiation flux intensity and the 
convective heat loss is relatively small.  

During the experiment all components of 
the system functioned properly.  After the 
series of experiments, the apparatus was 
disassembled and each component inspected 
for possible damage. No deterioration was 
observed.   It is noteworthy that the Quartz 
rods in the receiver have been placed only 5 
mm away from the receiver wall which was 

heated to 1500 K (see Fig. 6). These positive findings underscore an important attribute of the system: that the 
optical waveguide can deliver the concentrated solar radiation to the location best suited for efficient heating of the 
propellant. 

Phase II Program 
The purpose of the Phase II program is to develop and evaluate an engineering model of the solar thermal 

receiver based on the optical waveguide (OW) technology.  The specific tasks to be conducted in this proposed 
Phase II program are: 
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Figure 6. Schematic side view of solar receiver. 

 
Figure 7. The solar receiver housing 
with four fiber cables connected. 
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1. Develop the key components of the optical waveguide solar thermal propulsion system. 
2. Integrate the components to establish the engineering model of the optical waveguide solar thermal 

propulsion system and evaluate the performance.  
3. Develop the conceptual design for a proto-flight model of the solar thermal propulsion system for small spacecraft 

and evaluate its performance. 
4. Perform a system level comparison of the optical waveguide solar thermal propulsion system with a conventional 

solar thermal propulsion system. 
At the writing of this paper, development of key components is proceeding.  Integration of the components and 

testing of the system will start as key elements of the engineering model are integrated.  In parallel with hardware 
development effort, system level comparison of the optical waveguide solar thermal propulsion system with 
conventional system has been made.  In the following section we will present a brief analysis of such comparison. 

III. System Application 
The optical waveguide (OW) system can be applied to any system in which solar radiation is collected, 

concentrated, and transmitted to a single location, or multiple locations, for use as a high temperature thermal energy 
source.  Currently the potential uses are: lunar material processing using solar energy and high energy space solar 
thermal propulsion (interplanetary injection and orbit transfer propulsion).  This paper focuses on a Low Earth Orbit 
(LEO) to Geosynchronous Equatorial Orbit (GEO) transportation system using an OW solar thermal propulsion 
system. 

The potential benefits of the OW solar thermal propulsion system compared to a conventional solar thermal 
propulsion system for an orbit transfer vehicle include reduced total launch mass as a result of: (1) a reduced 
primary propulsion system mass due to an increase in optical train efficiency (this tends to be offset by the added 
mass of the OW subsystem) and (2) a lower attitude control system (ACS) mass (inert system and propellant mass) 
through the integration of an OW subsystem into the ACS using “hot” hydrogen or ammonia (compared with 
monopropellant hydrazine ACS).  In addition, the OW solar thermal propulsion system offers an innovative 
operational flexibility in which the concentrator, receiver/thruster, and spacecraft can be independently oriented. 

LEO-to-GEO Transfer: System Trade Guidelines and Assumptions 
The mission chosen for this system evaluation 

was an orbit transfer from LEO (400 km, 28.5 
degree inclination) to GEO with an assumed 
payload and spacecraft bus mass of 151.5 kg.  The 
primary orbit transfer engine thrust was assumed to 
be 1.0 N from a single solar thermal engine 
(2,300 K propellant design temperature) with four 
facets on a single boom structure as shown in Fig. 9.  
The propulsion configuration and design conditions 
were similar to those used in other Air Force 
programs.  The OW solar thermal propulsion 
system was compared to a conventional direct gain 
solar thermal propulsion system with the above 
design conditions.  Both thrusters had a delivered 
specific impulse of 795 sec. 

Using projected optical element efficiencies, the 
OW system optical train efficiency was 0.575 
compared to the conventional solar thermal 
propulsion system value of 0.531. 

The reference attitude control system (ACS) was a fixed (ten monopropellant hydrazine thrusters) thruster 
system (specific impulse of 220 sec.).  The OW ACS was an integrated system with either “hot” hydrogen or 
ammonia thrusters (two thrusters) with individual receivers and separate ACS propellant tanks as shown in Fig. 10. 

Circular Reflective
Facet (1 of 4)

Solar Thermal Engine Deployment Boom

Propellant Tank
Satellite Payload

Circular Deployable
Facet Concentrator Center Post

Deployed View

H-1946

Figure 9. Solar Thermal Propulsion System Configuration.
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Mission Analysis Results 
Mission analyses were 

performed for: (1) incorporating 
the OW system for the primary 
LEO-to-GEO propulsion system, 
and (2) a complete integrated OW 
solar thermal propulsion for both 
the primary propulsion and ACS.  
ACS capability from approxi-
mately 5,000 to 45,000 kg-sec 
were considered.  This ACS capa-
bility would enable the spacecraft 
to conduct missions in the GEO 
vicinity. 

Bottoms up subsystem mass 
estimates were determined for the 
various spacecraft elements and a 
30% inert mass margin was 
assumed.   

Primary Propulsion Comparison 
Considering the OW system for 

only the primary propulsion 
system, the system did not provide 
a net mass savings with off-axis 

concentrators, but did realize a net launch mass savings (initial mass in LEO, IMLEO) with on-axis concentrators.  
The OW system resulted in approximately a 36 % mass reduction in the concentrator mass, but the added mass of 
the OW guide system offset this savings and a net mass savings was only achieved if the concentrator areal density 
was greater than 3.1 kg/m2 as shown in Fig. 11.  As discussed previously, the OW solar thermal propulsion system 
enables a complete independent movement of the concentrator, receiver/thruster, and spacecraft. This provides the 
operational flexibility of the spacecraft to orient its antenna or other instruments independent of the orientation 
required by the propulsion system (sun tracking and thrust orientation). The OW system increases the system 
complexity due to the addition of the OW components. 

Primary and Integrated ACS 
Propulsion Comparison 

The results of an OW solar thermal 
propulsion system with an integrated OW 
ACS are presented in Figure 12 and 13 
for hydrogen and ammonia ACS, 
respectively.  

For this portion of the study, 
concentrator areal density of 3.002 kg/m2 
was assumed for the conventional solar 
thermal propulsion system.  As shown in 
Fig. 12, an integrated OW ACS system 
with hydrogen resulted in a launch mass 
savings of 8 to 35 % which increased 
with total ACS impulse.  With ammonia 
as the ACS propellant (Fig. 13), the 
launch mass savings was 5 to 23 % also 
increasing with increase in total ACS 
impulse.  Of course, the mass savings  
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Figure 10. Conventional Monopropellant ACS and Integrated OW 
Guide ACS. 
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with ammonia were less due to the lower 
thruster specific impulse (386 sec 
compared with 795 sec).  The OW ACS is 
limited to “on-sun” operation which 
should not be a significant impact at high 
altitudes where the eclipse time is a small 
percentage of the orbit time.  For 
hydrogen ACS, long term propellant 
storage will be an issue. 

 
IV. Summary 

In light of the experimental results and 
analyses of the system in Phase I study, 
we believe that we have an opportunity to 
provide the key enabling technology for 
solar thermal propulsion for application to 
small spacecraft.  System comparison 
study conducted to date pertaining to LEO 
to GEO orbit transfer indicates potential 
savings in launch mass.  More 
experimental and analytical studies 
pertaining to the engineering aspects of 
the system are being prepared.   
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