
 

 

REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the 
data needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing 
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-
4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently 
valid OMB control number.  PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY)
14-09-2005 

2. REPORT TYPE
Conference Paper Preprint 

3. DATES COVERED (From - To)
 2005 

4. TITLE AND SUBTITLE 
Optical Dynamic Assignment for Low Earth Orbit Satellite 

5a. CONTRACT NUMBER 
 

Constellations 
 

5b. GRANT NUMBER 
 

 5c. PROGRAM ELEMENT NUMBER 
 

6. AUTHOR(S) 
Alexander Melin, R. Scott Erwin*, VijaySekhar Chellaboina 

5d. PROJECT NUMBER 
 

 5e. TASK NUMBER 
 

 5f. WORK UNIT NUMBER
 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
AND ADDRESS(ES)

8. PERFORMING ORGANIZATION REPORT   
    NUMBER

Mechanical, Aerospace &  
Biomedical Engineering Dept 
University of Tennessee 
Knoxville, TN 37900 
 

*Air Force Research Laboratory 
 Space Vehicles 
 3550 Aberdeen Ave SE 
 Kirtland AFB, NM 87117-5776 

 
 
 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)
Air Force Research Laboratory  AFRL/VSSV 
Space Vehicles   
3550 Aberdeen Ave SE  11. SPONSOR/MONITOR’S REPORT 
Kirtland AFB, NM 87117-5776        NUMBER(S)
   
12. DISTRIBUTION / AVAILABILITY STATEMENT 
 
Approved for public release; distribution is unlimited. 
 
 

13. SUPPLEMENTARY NOTES
Submitted to 2006 American Control Conference, Minneapolis, MN. 
Government Purpose Rights 

14. ABSTRACT
In this paper we investigate autonomous task assignment for a group of low-earth orbit 
satellites that don’t necessarily have prior knowledge of the targets of interest.  
Specifically, we consider the optimal assignment problem for dynamic weighted bipartite 
graphs.  First, we present necessary and sufficient conditions for the existence of a perfect 
matching in a given bipartite graph.  Next, we present an algorithm to construct a virtual 
graph based on the original graph that guarantees the existence of a perfect matching.  These 
results are then used to solve the optimal assignment problem for dynamic weighted bipartite 
graphs.  Finally, we apply this algorithm to a constellation of low-earth orbit satellites. 

15. SUBJECT TERMS
Linear Programming, Dynamic Assignment Problem, Dynamic Graph Topology, Dynamic Task 
Allocation, Graph Theory, Satellite Constellations 

16. SECURITY CLASSIFICATION OF: 
 

17. LIMITATION  
OF ABSTRACT

18. NUMBER 
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
R. Scott Erwin 

a. REPORT 
Unclassified 

b. ABSTRACT
Unclassified 

c. THIS PAGE
Unclassified 

Unlimited 8 
 

19b. TELEPHONE NUMBER (include area 
code)
505-846-9816 

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 239.18



Optimal Dynamic Assignment for Low Earth
Orbit Satellite Constellations

Alexander Melin, R. Scott Erwin, and VijaySekhar Chellaboina

Abstract— In this paper we investigate autonomous task
assignment for a group of low-earth orbit satellites, that don’t
necessarily have prior knowledge of the targets of interest.
Specifically, we consider the optimal assignment problem for
dynamic weighted bipartite graphs. First, we present necessary
and sufficient conditions for the existence of a perfect matching
in a given bipartite graph. Next, we present an algorithm to
construct a virtual graph based on the original graph that
guarantees the existence of a perfect matching. These results
are then used to solve the optimal assignment problem for
dynamic weighted bipartite graphs. Finally we apply this
algorithm to a constellation of low-earth orbit satellites.

Index Terms— Linear programming, dynamic assignment
problem, dynamic graph topology, dynamic task allocation,
graph theory, satellite constellations

Fig. 1. Depiction of satellites tracking ground based targets

I. I NTRODUCTION

In recent years there has been increased interest in the use
of constellations of satellites and satellite formations. Con-
stellations of satellites are used when global or nearly-global
coverage are needed. Some applications include voice com-
munication, satellite radio, broadband networking, remote
sensing, and laser communications. Satellite formations, on
the other hand, employ close range formations and the
functionality of the satellites depends on the configuration
of the formation.

Alexander Melin and VijaySekhar Chellaboina are with the Mechanical,
Aerospace and Biomedical Engineering Department at the University of
Tennessee, Knoxville, TN.
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A lot of research has been focused on the control of
satellite formations. This is, in part, due to the novelty of
the applications, such as the Terrestrial Planet Finder. For
applications such as radar and imaging, the effective aper-
ture of the satellite can be increased without a corresponding
increase in the weight and size of the satellite due to the
replacement of the majority of the structural elements with
virtual structures. Much of the research has concentrated
on controlling the geometry of the constellation and more
recently on dynamic reconfiguration [1].

Controlling formation geometry lends itself to a simple
graph theoretic interpretation. In general, a satellite constel-
lation or UAV formation is considered as a directed graph
where the nodes of the graph are the satellites or UAV’s, the
arcs of the graph are the communications channels and the
physical position of the nodes corresponds to the physical
position of the satellites or UAV’s [2], [3].

On the other hand, satellite constellations such as Glob-
alStar do not rely on the relative formation to provide
their functionality, but the specific orbits but the orbits
the satellites are placed in. These constellations are gen-
erally used for global radio-frequency communication. RF
communication can achieve global or near-global coverage
with a relatively small number of satellites due to the wide
coverage area of an individual satellite and overlapping
footprints.

Laser communication and most remote sensing satellites
have a narrow beamwidth so simultaneous global coverage
would require a prohibitively large number of satellites. To
achieve global coverage with narrow beamwidth satellites,
one solution is to place the satellites into a global coverage
constellation with overlapping footprints and assign the
satellites to look at targets in their footprint in some an
manner.

Currently, for many remote sensing systems, the assign-
ment of targets to a satellite assumes that the target and
satellite positions are known ahead of time. This allows
a schedule to be calculated ahead of time and passed to
the relevant satellites. In the case of laser communications
this means that a pre-determined time window is scheduled
for a connection. A more effective laser communications
system would autonomously reconfigure itself to allow the
user bandwidth-on-demand.

Performing this scheduling on the ground means that the
system is not quickly adaptable to changes, in addition, de-
lays are introduced by the need to recalculate and retransmit
the assignments.



A. Problem Assumptions

This paper proposes a method based on the optimal
assignment problem in linear programming that allows
a group of satellites to autonomously change their task
assignments in a distributed process. In order to make the
problem more concrete, we will look at a general group of
satellites and make some assumptions on their properties
and abilities.

Specifically, we will look at groups of satellites whose
tasks are to acquire and track specific targets on the surface
of the earth for purposes of communication, imaging, etc.
The satellites must have the ability to communicate with
each other. Since we are concerned with high level task
assignment, the satellites are assumed to have a stable
attitude controller, and be able to track a point on the earth
given the target’s position.

We will assume that each satellite has the capability
to perform any task assigned to it (i.e. track any target
that is in range). Because of the overlapping nature of the
satellites’ abilities to perform the tasks, the objective of the
dynamic scheduling problem is to keep satellites from trying
to perform the same task simultaneously, while choosing the
tasks that maximize the overall efficiency of the group.

A purely decentralized control architecture for this prob-
lem would require no communication between satellites,
and each satellite would require knowledge of only its own
internal states. We will assume an architecture which is
predominantly decentralized but allows for minimal com-
munication between the satellites, as follows: the satellite
must be able to calculate three pieces of information and
must transmit and receive one piece of this information.

i) Each satellite must know all the potential targets and
their locations.

ii) Each satellite must be able to determine which targets
are in range and which are out of range.

iii) Each satellite must be able to calculate a performance
metric that describes the efficiency of the satellite
tracking each target in its own range.

iv) Each satellite must be able to transmit this vector of
performance metrics to all other satellites.

The control objective is to maximize the time each satel-
lite spends tracking targets over an interval of time, subject
to the limitations of the satellites’ abilities. This problem
also has many other similar applications such as missile
tracking and can significantly reduce operator workload, and
is especially valuable in time-critical military applications
[4]. Because of the assumptions on the homogeneity of
the satellites’ abilities and the tasks to be assigned, the
problem can be described by a graph theoretic approach,
or an equivalent problem in linear programming known as
the assignment problem.

B. Dynamic Graphs and the Assignment Problem

The assignment problem in graph theory and linear
programming has been well understood since 1955 when

Kühn used a theorem by the Hungarian mathematician
König to create an algorithm, known as the Hungarian
method, that finds an optimal perfect assignment [5]. A
more precise definition of an optimal perfect assignment
will be given later. Since this algorithm yields the exact
solution to this problem, later work in this field is concerned
with improving the speed of the algorithm [6], [7]. In graph
theoretic notation, this problem is a matching on an edge
weighted bipartite graph where one set of nodes corresponds
to the satellites, the other set of nodes corresponds to the
targets, the edges of the graph connect the satellites and
targets that are in range, and the weights on the edges
correspond to a performance metric for a satellite to track
that target.

The solution to the optimal assignment problem assumes
that the graph is static, however this problem cannot be
described by a static graph. The number of satellites and
targets are constantly changing, and the edges of the graph
also change as the satellites orbit the earth and targets move
in and out of range of satellites. Finally the edge weights
are changing as the satellite’s attitude changes to track a
specific target.

Unfortunately very little is known about dynamic graphs
[8], however, some research is being done in the area
of combinatorics and graph theory applied to spacecraft
formation flying [1], [9].

The problem of controlling large groups of autonomous
vehicles has been studied in many forms. This is an ex-
tremely complex problem. Even finding a universal model
for these distributed systems has not been accomplished
[10]. One related problem is the scheduling problem. The
most common uses for this formulation are in flexible
manufacturing systems, computer networks, and processor
resource allocation. In general this problem is NP-complete
[11]. Some simplified cases have been solved in polynomial
time, but due to the complexity of the problem heuristic
methods are the preferred solution to this problem. The
scheduling problem consists of allocating tasks or jobs to
resources so that an optimality condition is satisfied. The
most common optimality condition is minimizing the total
job time [11], [12].

Another approach to controlling groups of autonomous
vehicles is cooperative control. This approach is concerned
with controlling the interactions between the elements of
the system so that a goal is accomplished. The tasks stud-
ied in coordinated control generally require very complex
interactions, such as RoboFlag [10]. Generally a ”best”
solution to these problems cannot be determined. Most of
the literature on cooperative control deals with languages
to program the interactions between the robots so that
the interactions are stable and heuristic strategy algorithms
can be implemented to achieve the desired behavior. Many
applications of cooperative control also use decentralized
control as part of their control paradigm.

The problem most similar to this problem is the design of
network routing protocols. The main difference being, that



there is a cost associated in reconfiguring a satellite constel-
lation, while reconfiguring a network does not involve any
loss of performance. Reconfiguration of network is done
mainly to prevent channel overloads and reconfigure in the
event of a channel failure.

One main similarity in these approaches is that all the
goals of the problem require a high level of interaction
between the separate elements of the system for the goal
to be accomplished. In flexible manufacturing, some jobs
must be completed before others. In many instances a single
agent cannot complete the goal. In cooperative control
the formation and interaction between the agents is also
necessary for the completion of the task. In autonomous
formation flying, for example, the function of the spacecraft
depends on the formation itself.

The organization of the remainder of the paper is as
follows. In Section II we will introduce some notation
and cover the concepts of graph theory required for the
remainder of the paper. We also introduce the optimal
assignment problem and discuss the solutions to it that exist
in the literature, and prove the existence of a solution. In
Section III we introduce the concepts of the dynamic graph
and discuss how applying optimal assignment problem to a
dynamic graph affects the behavior of the algorithm.

II. M ATHEMATICAL PRELIMINARIES

In this section, we introduce notation and some key
results necessary for developing the main results of this
paper. LetR (resp.,Z) denote the set of real numbers (resp.,
positive integers), letRn×m (resp.,Zn×m denote the set of
real (resp., positive integer) matrices, and letAT denote the
transpose ofA.

Let G = (V, E) denote abipartite graph where V =
X × Y is the set of vertices andE is the set of edges. It
is convenient to assume that the elements ofX andY are
enumerated for{1, . . . , n} and {1, . . . , m} so thatX and
Y may be assumed to belong toZn andZm, respectively.
Furthermore,E can be represented by the connectivity (or
adjacency) matrix given by

Eij =
{

1, if (i, j) is an edge
0, otherwise

(1)

for all i ∈ {1, . . . , n} and j ∈ {1, . . . , m}. Next, let G =
(V,E, W ) denote aweighted bipartite graphwhere(V, E)
is a bipartite graph withW ∈ Rn×n denoting the weight
matrix associated with the edges. We assume thatWij ≥ 0,
if Eij = 1 andWij = ∞ if Eij = 0.

A vertex i ∈ X (resp.,j ∈ Y ) is incident to an edge if
there existsj ∈ Y (resp.,i ∈ X) such that(i, j) is an edge.
In this case,(i, j) are adjacent. A set of verticesU ⊆ V
is a vertex coverof G if the set {(i, j) : Eij = 1, i ∈
{1, . . . , n}, j ∈ {1, . . . ,m}} ⊆ U that is, if every edge in
E is incident with a vertex inU . A minimum vertex coveris
a vertex cover ofG with the minimum number of vertices.
The existence of such a minimum vertex cover is easy to
establish.

Two edges of a graph areindependentif they do not
have any common incident vertices. Amatchingof G is a
set M ⊆ E which is asubgraphof independent edges in
a graphG = (V, E). SinceG is bipartite it follows that
the set of incident verticesU of a matching will be of the
form X̂ × Ŷ such thatX̂ and Ŷ have the same number of
vertices. Amaximum matchingof G is a matching ofG
that has the largest number of edges (and hence the largest
number of incident vertices). Aperfect matchingof G is
a (maximum) matching ofG such that the set of incident
vertices isX × Y (see Figure 2).

X

X

Y

Y

1

X

Y

1 11 0

0 0 10

1 00 0

00 1

Fig. 2. A complete bipartite graph, a matching on a bipartite graph and
the equivalent edge matrix

By definition, if a graphG has a perfect matchingM
then m = n, that is X and Y have the same num-
ber of vertices. Furthermore,Me = MT e = e where
e =

[
1 1 1 . . .

]T
. Note that these conditions are

only necessary but not sufficient for the existence of a
perfect matching. Hence, it follows that if a bipartite graph
G = (V,E) has a perfect matching thenEe ≥≥ e and
ET e ≥≥ e. However, note that these conditions are not
sufficient (for example, consider the graph given in Figure
3). The following result provides a necessary and sufficient
condition for the existence of a perfect matching. First,
however, we introduce the following notation. LetND :
Rm×n → R be defined by

ND(E) , eT
mDen (2)

whereD ∈ Rm×n is given by

Dij =
{

Eii, if i = j
0, otherwise

(3)

1

1

1

10

0

0 0

0E

Fig. 3. A minimum line covering on an edge matrix

Note that if m = n thenND(E) denotes the number
of one on the diagonal. Next, letνmax : Rm×n → R be
defined by

νmax(E) , max
Pm∈Πm,Pn∈Πn

ND(PmEPn) (4)



where Πm ⊆ Rm×m and Πn ⊆ Rn×n denote the set of
m×m andn× n permutation matrices[?], respectively.

Theorem 2.1:Consider a bipartite graphG = (V, E)
where E ∈ Rm×n. The size of the maximum matching
is νmax(E). Furthermore, ifm = n then G has a perfect
matching if and only ifνmax = n.

Proof: Let M denote a maximum matching ofG. In
this case it is easy to show that there exists permutations of
X andY such that the edge matrixMΠ of the permutations
XΠ andYΠ is such thatMΠij = 0, i 6= j and the size of the
matchingMΠ is given byeT

mMΠen = eT
mMen. The result

now follows from the fact that there existPm ∈ Πm and
Pn ∈ Πn such thatMΠ = PmMPn andND(PmEPn) =
eT
mMΠen.
Next, if m = n it follows thatG has a perfect matching if

and only ifνmax(E) = n by noting that a perfect matching
is a maximum matching of sizen.

Remark 2.1:It follows from Königs theorem [13] that
νmax(E) is the size of the minimum vertex cover. Hence,
νmax(E) denotes the minimum number of lines (drawn
across rows and columns) that are sufficient to cover all
the 1’s inE which implies thatνmax(E) is the maximum
number of 1’s no two of which are in the same line (row
or column) ofE

Remark 2.2:Although Theorem 2.1 gives necessary and
sufficient conditions for the existence of a perfect matching
it is in general more computationally efficient to use Königs
theorem to computeνmax(E).

Next, we consider thevirtual perfect matching problem
where given a graphG = (V, E) that does not have a perfect
matching we provide a method for constructing thevirtual
graph Ĝ = (V̂ , Ê) such thatĜ has a perfect matching and
G is a projectionof Ĝ, that is,G is a subgraph of̂G such
that when all the vertices in̂V \V are eliminated (along
with their edges) then the resultant graph isG. Note that if
E ∈ Rm×n then by choosinĝV = X̂×Ŷ ⊆ Rm×n×Rm×n

such that all then additional (virtual) vertices of̂X and the
m additional virtual vertices of̂Y are connected with every
other vertex ofŶ andX̂, respectively, it can be shown that
Ĝ has a perfect matching. The following result provides
a constructionĜ that has the minimum number of virtual
vertices.

Theorem 2.2:Let G = (V, E) be a bipartite graph. Then
there existsĜ = (V̂ , Ê) such thatG is a projection ofĜ,
Ĝ has a perfect matching, and

νmax(Ê) = (m + n)− νmax(E) (5)

Furthermore, there does not existG̃ = (Ṽ , Ẽ) such that
G is a projection ofG̃, G̃ has a perfect matching, and
νmax(Ẽ) < νmax(Ê).

Proof: Let M be a maximum matching and assume
without loss of generality thatMij = 0, i 6= j. Now, it can
be shown that by addingn− νmax(E) andm− νmax(E)
virtual vertices toX and Y the resultantĜ has a perfect
matching. The minimality ofνmax(Ê) given by (5) can be
shown in a similar manner.

Remark 2.3:Note that ifG has a perfect matching, that
is, νmax(E) = m = n is follows thatνmax(Ê) = νmax(E)
and henceG = Ĝ (sinceG is a projection ofĜ)

1

1

1

1 1

1

1

1111

0

0

0 0

0
E

Fig. 4. Augmented edge matrix with the new minimum line cover

Finally, we consider theoptimal assignement problem.
Specifically, letG = (V, E,W ) be a weighted bipartite
graph that has at least on perfect matching. The optimal
assignment problem is the problem of finding a perfect
matching that has theminimum weight, that is, findingM
such that

M = min
M∈M

eT (M◦M)e (6)

whereM denotes the set of all perfect matchings ofG.
More generally, letG = (V, E, W ) be a weighted bipartite
graph such thatE ∈ Rm×n which may not have a perfect
matching. In this case, the optimal assignment problem is
given by

M = min
M̂∈M̂

eT (Ŵ ◦ M̂)e (7)

where M̂ denotes the set of perfect matchings ofĜ, the
virtual graph ofG, and Ŵ denotes the weighting matrix
of Ĝ such thatŴij = 0 if i or j correspondes to a virtual
vertex andŴij = Wij otherwise.

Note that the construction of̂G can be performed using
the algorithm described in [16] and the optimal assignment
problem given by (7) can be solved by using the Hungarian
method [5], [13], [16].

III. D ECENTRALIZED DECISION ALGORITHM

The Hungarian Method was meant to solve for a mini-
mum weight perfect matching on a static graph, but a more
relevant problem with regards to the application of interest
in this paper is finding a minimum weight perfect matching
as a graph is dynamically changing. In this section we will
define the problem of minimizing the total edge weight for
a dynamic graph. We will also discuss the conditions for
applying this algorithm to a dynamic graph.

A dynamic graphis a graph where the vertices, vertex
weights, edge matrix, and edge weight are changing with
time. Since we are dealing with a matching on a bipartite
graph, vertex weights are not used and can be assumed
constant. We will denote a dynamic graph byG(t) =
(V(t), E(t),W(t)) whereE(t) andW(t) aren×n matrices.

In the static case, the edge weight matrix is a matrix of
positive constants. In the dynamic caseW depends on time
and the time-varying edge matrix. This leads to the general
definition of a time-varying weight matrix for a bipartite
graph given by

Wij(t, E(t)) ,
{

fij(t) Eij(t) = 1
∞ Eij(t) = 0 (8)



where fij(t) : R → I ⊂ R+ are a set of functions that
describe the weight function for a particular edge ofG and
are not necessarily smooth or continuous, andI is a closed
bounded interval.

The choice of the weight function is determined by the
problem objective. In the case of LEO sensing or imaging
constellations, the objective is to maximize the time that
the satellites are tracking a target. This is equivalent to
minimizing the time a the satellites spend moving between
targets. For this problem the optimal assignment problem is
to minimize the integral of the total weight of the matching
over an interval of time.

The total weight of the matching is given by

w(M) ,
n∑

i=1

n∑

j=1

Wij(t, E(t))Mij (9)

This leads to the continuous optimal assignment problem
given by

M(t) =
∫ tf

t1

min
M

w(M)dt (10)

=
∫ tf

t1

min
M

n∑

i=1

n∑

j=1

Wij(t)Mij (11)

whereM(E ,W) is the set of admissible matchings at time
t.

Equation 9 shows that the behavior of the total weight
function is dependent on the matching and the edge weight
functions. For example, if the matching does not change
on the time interval and the edge weight functions are
continuously differentiable, then the total weight function
will be continuously differentiable on the interval. On the
other hand, if the edge weight function is constant on the
time interval, the matching will only change when the edge
matrix changes. This means that the matching and edge
weight functions must be “well behaved” for the integral to
behave nicely.

In the following we show that if the total edge weight is
bounded on the time interval, then the solution is optimal
and the finite time version of the problem approaches the
optimal solution in the limit. This is equivalent to a perfect
matching existing andfij(t), i, j = 1, 2, . . . , n bounded on
[t1, tf ].

In actual implementation, the algorithm will be applied
in a discrete manner with the matching changing only at
discrete times. In the following we show that as the time
between the matching updates decreases, the algorithms
behavior approaches the continuous time solution.

We will start by defining a discrete time version of the
optimal assignment problem. We will allow the matching
to be made at discrete times in the time interval. LetP =
{tk}f

k=1 be a sequence of times that partition the interval
(t1, tf ). Now let

wk(M) ,
n∑

i=1

n∑

j=1

Wij(tk)Mij (12)

be the total edge weight of a matching at timetk whereM
are admissible matchings. The total edge weightwk(M)
is constant on the interval[tk, tk+1). The minimum weight
matching is calculated at the beginning of each time interval
and remains constant over the interval and is given by

M(tk) = min
M

wk(M) , min
M

n∑

i=1

n∑

j=1

Wij(tk)Mij (13)

The total weight of the matching over the interval is the
weight at the beginning of each subinterval time the length
of the interval, and the optimization problem becomes

f−1∑

k=0

min
M

wk(M)(tk+1 − tk) (14)

=
f−1∑

k=0

min
M

n∑

i=1

n∑

j=1

Wij(tk)Mij(tk+1 − tk) (15)

=
f−1∑

k=0

M(tk)(tk+1 − tk) (16)

(17)

Next, to show that as the partition gets finer, the discrete-
time problem approaches the continuous time problem, we
must show that the total edge weight is Riemann integrable.
Let

g(tk) = min
M

n∑

i=1

n∑

j=1

Wij(tk)Mij = M(tk) (18)

and let

I(g) = lim
‖P‖→0

f∑

k=1

g(tk)(tk − tk−1) (19)

= lim
‖P‖→0

f∑

k=1

M(tk)(tk − tk−1) (20)

where‖P‖ = maxP |tk − tk−1|. SinceM(tk) is constant
and finite on the interval[tk, tk + 1), I(g) exists and is
finite. Hence, by Riemann integrability

M(t) =
∫ tf

t1

min
M

w(M)dt (21)

= lim
‖P‖→0

f∑

k=1

M(tk)(tk − tk−1) (22)

which shows that in the limit, the discrete time case
approaches the continuous time optimal solution.

IV. SATELLITE APPLICATION

In the following we will provide additional practical
details to applying the Hungarian method to the problem of
interest. Applying this algorithm to a dynamic system in-
volves selecting the weight functions based on the dynamics
of the system that capture the behavior to be optimized. The
dynamic system of interest in this paper is a constellation



of low-earth orbit (LEO) satellites. The function of these
satellites is to track a specific location on the earth for
communications, imaging, etc.

We consider, the problem where the targets are not nec-
essarily known and changing with time. Another dynamic
aspect of this problem, that arises because of the low-earth
orbit, is that targets are constantly moving in and out of
range of a satellite changing the edges of the graph.

We start by defining the satellite target system as a
weighted bipartite graph. The set of all available targets
will be denoted byT (t) and the set of all satellites will
be denoted byS(t). Due to the dynamics of the problem
each satellite will only have a subset of the targets in
range at any time. Also, at any given time, there may be
satellites with no targets in range and targets that are not
in range of any satellite. These targets and satellites cannot
be matched so they have no bearing on the solution and
just add to the computational load, so we define the subset
of targetsT (t) ⊆ T (t) as the instantaneous set of targets
{T1, . . . , Tm} that are in range of a satellite, similarly we
define S(t) ⊆ S(t) as the instantaneous set of satellites
{S1, . . . , Sm} with at least one target in range.

Fig. 5. Removing the targets and satellites with no edges incident

We will assume that there arei = 1, . . . , n(t) satellites
and j = 1, . . . , m(t) targets inS(t) and T (t) at time t ∈
[t1, tf ].

Next we want to describe the targets inT that are in range
of a specific satellite inS at any time. We defineT i(t) ⊆ T
as the set of targets that are in range of theith satellite.
Using Fig 5 as an exampleT 1 = {T1}, T 2 = {T1, T2, T3},
T 3 = {T1, T3}, andT 4 = {T2}.

Note that ⋃

j=1,...,n

T j(t) = T (t), t ∈ [t0, tf ]

The definition of T i(t) allows us to define the edge
matrix

Eij(t) =
{

0 Tj 6∈ T i(t)
1 Tj ∈ T i(t) (23)

wherei = 1, . . . , n(t), j = 1, . . . , m(t). For Fig. 5 the edge
matrix is

E =




1 0 0
1 1 1
1 0 1
0 1 0


 (24)

The edge matrix defines the set of valid matchings at that
instant in time. We will define the weight matrix by

Wij(t, E(t)) ,
{

fij(t) Eij = 1
∞ Eij = 0 (25)

where Wij : [t1, tf ] × {0, 1} → R+. For this satellite
system, we want to maximize the time that the satellites
spend looking at a target or minimize the time that the
satellite spends changing its attitude to track a target. The
time that a satellite takes to make an attitude maneuver is
proportional to the angle that the satellite must slew through
which we will denote byθ(t).

For each target in range of a satellite there is a slew
angle to look at that target based on the target location and
the satellite’s current attitude. We will denote this angle
by θij(t). Because the range of the weight assignment
functions is the positive real space we define the functions
by

fij(t) = (θij(t))2 (26)

For a given weight matrix the total weight of a matching
at time t ∈ [t1, tf ] given by

w(M) =
n∑

i=1

m∑

j=1

(θij(t))2Mij (27)

is proportional to the sum of the total angle that each
satellite must slew to track a given matching of targets.
This means that the optimal assignment perfect matching
with yield the matching that minimizes the sum of the slew
angles that the satellites must move through to track those
targets.

Assuming that the satellite has an asymptotically stable
attitude controller, this means that for a constant matching
the total matching weight is going asymptotically to zero.
The speed with which the satellite can acquire a target can
effect the algorithm adversely. If the attitude control system
is slow, it may take longer to slew to track the target, then
the time the target is in range. Figure 6 shows a simulation
of how the total weight of the matching varies with time.
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Fig. 6. The total weight of the matching versus time

V. SIMULATION SETUP

In the following we will discuss the simulation of the
algorithm on various LEO satellite constellations used for



Fig. 7. GlobalStar satellite consellation screenshot from the simulation

sensing, and the simplifying assumptions used in the simu-
lation. The simulation was used to validate the algorithm
with satellite attitude and orbital dynamics added. The
simulation was also used to look for computational issues
with the algorithm and test situation that might lead to
the algorithm becoming “unstable” for example, dithering
between two targets without tracking either. Using real-
istic parameters and orbits is given less emphasis than
providing a scenario where the behavior of the graph is
rich and complex enough to thoroughly test the algorithm.
To achieve this, some of the test orbits were chosen to
have a group of satellites converging on a region of the
earth with multiple targets. Many of these orbits would
be impractical to launch a satellite into, but all orbits are
feasible. The algorithm was also tested on various global
coverage satellite constellations. The orbital propagation
uses standard Keplarian two body dynamics and accounts
for the earth’s oblateness but not J2 effects.

For simplicity, the satellites simulated are assumed to be
axisymmetric where the dynamics are given by

ẋ(t) = I




θ
φ
ψ


 + u(t) = Ix(t) + u(t), I ∈ R3×3 (28)

whereθ, φ, andψ are Euler angles. The satellite is assumed
to have a maximum slew angle giving the satellite a clearly
defined footprint where it can track targets. This is done
to prevent the satellite from looking at a target with a low
angle of incidence.

A proportional integral attitude controller was chosen
with gains that provide an average slew time of 10 seconds.
When the satellite does not have a target to track, it tracks
its ground track to return the attitude to the center of the
footprint.

The simulation was also used to test the robustness of

the algorithm to communication failures. The algorithm was
implemented in a distributed fashion which improves the ro-
bustness of the algorithm. In the event of a communication
failure, the behavior of the algorithm becomes suboptimal,
but the overall objective of the satellite constellation is still
accomplished. In all cases tested the algorithm performed
as planned.

VI. CONCLUSION

In this paper we investigate the optimal assignment of
targets to LEO satellites with narrow beamwidths. We ex-
tend the optimal assignment problem to dynamic weighted
bipartite graphs and show the conditions on the edge weight
assignment functions that lead to the optimal solution of the
assignment problem for dynamic graphs. We also provide
conditions for the existence of a perfect matching on a
given bipartite graph, and a method for constructing the
smallest virtual graph that does not change the minimum
matching on the original graph and guarantees the existence
of a perfect matching. Finally we apply the algorithm to a
constellation of LEO satellites and verify by simulation the
effectiveness of the algorithm.

Future extensions to this work include investigating the
effects of time delay on the optimality of the algorithm and
investigating the behavior and uses of different edge weight
functions.
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