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1 Overview

When a person gives a task to another person there are at least two sorts of
very human processes at work. At the surface level, each person both displays
and perceives cross-cultural cues which regulate the interaction. Through fa-
cial expressions, body posture, and utterances, the student unconsciously
speeds or slows the rate at which the instructor is teaching and directs the
instructor to provide more information when necessary. At a deeper level,
the transfer of information is successful because both student and instructor
share a common sense of how the world works. Both student and teacher
share not only knowledge about how objects behave (an intuitive physics)
but also knowledge about how other people behave (an intuitive psychology).
Our challenge is to make commanding robots as intuitive and natural as com-
manding professional soldiers by providing a natural and intuitive interface
that capitalizes on a person’s intuitive understanding of how to communi-
cate, and by instilling into robots that same deep understanding of the world
which is shared by people.
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2 Approach

We proposed developing the perceptual and intellectual abilities of robots so
that in the field, war-fighters can interact with them in the same natural ways
as they do with their human cohorts. To illustrate our goals and illuminate
the technical problems that we must solve to achieve these goals, we will
outlined three scenarios:

1. Showing a robot how to open the gas tank of an unfamiliar captured
enemy vehicle.

2. Instructing a robot to carry out a reconnaissance mission ranging a few
hundred meters from the command post within a strife-torn downtown
urban environment.

3. Instructing a dextrous forklift-like robot to load a truck by showing it
how the particular bulk food sacks should be stacked together, one by
one.

Our approach was based on two key ideas; imitation and social interac-
tion.

Imitation involves the robot watching and listening to a person perform
some task and then equivalently executing it. From its observations the robot
must extract which aspects of the person’s motions and utterances are essen-
tial to actually carrying out the task, which are part of the instruction but
not part of the actual task, and which are simply connective or coincidental.

Social interaction involves the robot engaging a person in the same dy-
namic two-way communication processes which two people could share. Each
participant gives the other subconscious cues that carry messages such as “I
understand that”, “you’re going too fast”, “I don’t know what you mean”,
“I already know that”, “look at what’s important”, “no, it’s more like this”,
“you don’t understand it”, and “now you get it!”. The mechanisms for these
signals are complex and often interrelated and involve such indications as gaze
direction, eye contact, averting eye contact, nodding, body posture shifts,
facial expressions, head motions, pre-linguistic verbalizations (“hmmm” or
“uh-huh”), and codified verbalizations (“Sir!”).
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The principles of development, embodimen and integration contributed
to our approach. The process of development wherein humans perform in-
crementally more difficult tasks in complex environments as they mature
inspires a developmental methodology for our robots. Embodiment empha-
sizes human-like aspects of our robots’ bodies. The integration of multiple
sensory modalities, physical degrees of freedom and behavioral systems all
a single robot to imitate and interact with humans in a more sophisticated
manner.

3 Research Questions

In trying to use imitation and social interaction techniques for human-robot
communication and for tasking robots in the field, there arise at least six
deep and difficult questions, each of which has many technical components
which form the topics on which we propose

1. Knowing what aspects of behavior to imitate.

2. Mapping from one body to another.

3. Implementing corrective actions and recognizing success.

4. Chaining pieces of action together into larger tasks.

5. Generalizing imitated actions to different and more complex tasks.

6. Making the interactions intuitive for the human.

The chart below displays examples of using the principles of social inter-
action, development, embodiment and system integration to address the six
major research questions we have identified.
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4 Student Output

Students supported by this effort for the PhD degrees have gone on to a
number of positions:

• Artur M. Arsenio, researcher, Siemens.

• Cynthia Breazeal, Assistant Professor of Media Arts and Sciences,
MIT.

• Paul Fitzpatrick, Lecturer, Electrical Engineering and Computer Sci-
ence, MIT.

• Charles C. Kemp, post-doctoral associate, CSAIL, MIT.

• Matthew Marjanovic, researcher, ITA Software.

• Brian Scasselatti, Assistant Professor of Computer Science, Yale.

• Matthew Williamson, research, Sana Security.

Postdoctoral students supported by this effort have moved on to new
positions:
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• Martin C. Martin, researcher, Icosystems.

• Giorgio Metta, Lecturer, University of Genoa.

A number of students who started work under this effort continue their
PhD studies at MIT:

• Bryan Adams

• Lijin Aryananda

• Jessica Banks

• Aaron Edsinger-Gonzales

• Eduardo Torres-Jara

• Paulina Varchavskaia

5 Results for 1999–2000

Flexible Turn-Taking based on eye contact and head motion. We
have demonstrated robust and flexible vocal turn-taking on our robot, Kismet.
Kismet can engage in a proto-dialog with a single person as well as with two
people. Kismet determines when it should take its turn based on pauses in
speech and the current phase of the turn-taking interaction. Through exper-
iments with naive subjects, we have found that people intuitively read the
robot’s physical and vocal cues (change of gaze direction, shifts of posture,
and pauses in vocalizations) and naturally use these cues to time their own
response. As a result, the proto-dialog becomes smoother over time, with
fewer accidental interruptions or pauses.

Detect Prosody in human speech and show appropriate facial re-
sponses. We have demonstrated a robust technique for recognizing affec-
tive intent in robot-directed speech. By analyzing the prosody of a person’s
speech, Kismet can determine whether it was praised, prohibited, soothed,
or given an attentional bid. The robot can distinguish these affective intents
from neutral robot-directed speech. The output of the recognizer modulates
the robot’s emotional models, inducing an appropriate affective state with
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a corresponding facial expression (an expression of happiness when praised,
sorrow when prohibited, interest when alerted, and a relaxed expression for
soothing). In multi-lingual experiments with naive female subjects, we found
that the robot was able to robustly classify the four affective intents. In ad-
dition, the subjects intuitively inferred when their intent had been properly
understood by Kismet’s expressive feedback.

Expressive feedback through face, voice, and body posture. We
have implemented expressive feedback in multiple modalities on Kismet. The
robot is able to express itself through voice, facial expression, and body pos-
ture. We have evaluated the readability of Kismet’s expressions for anger, dis-
gust, fear, happiness, interest, sorrow, surprise, and some interesting blends
through numerous studies with naive human subjects.

Visual attention and gaze direction. We have implemented a visual
attention system on Cog and Kismet based on Jeremy Wolfe’s model of hu-
man visual search. We have tested the robustness of the attention system on
these robots. By matching the robot’s visual system to what humans find to
be inherently salient, the robot’s attention is often drawn to the same sorts of
stimuli that humans do. In studies with naive subjects, we found that people
intuitively use natural attention-grabbing cues to quickly direct the robot’s
attention (motion, proximity, etc.). The subject’s intuitively use the robot’s
gaze and smooth pursuit behavior to determine when they have successfully
directed the robot’s attention.

Papers on this work included: [1], [47], [4], [35], [30], [37], [38], [85], [86],
[48], [84], [39], [40], [98].

Presentations on this work included: [43], [31], [42].

6 Results for 2000-2001

Detecting Head Orientation. We have implemented and evaluated a
system that detects the orientation of a person’s head from as far as six
meters away from the robot. To accomplish this, we have implemented a
multi-stage behavior. Whenever the robot sees an item of interest, it moves
its eyes and head to bring that object within the field of view of the foveal
cameras. A face finding algorithm based on skin color and shape is used to
identify faces and a software zoom is used to capture as much information
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as possible. The system then identifies a set of facial features (eyes and
nose/mouth) and uses a model of human facial structure to identify the
orientation of the person’s head.

Mimicry. Cog’s torso was retrofitted with force sensing capabilities in or-
der to implement body motion via virtual spring force control. In addition,
we developed a representational language for humanoid motor control in-
spired by the neurophysiological organizing principle of motor primitives.
Both endeavors allowed Cog to broadly mimic the motions of a person with
whom it interacts using its body or arms. In the arm imitation behavior, the
robot continuously tracks many object trajectories. A trajectory is selected
on the basis of animacy and the attentional state of the instructor. Motion
trajectories are then converted from a visual representation to a motor rep-
resentation which the robot can execute.The performance of this mimicry
response was evaluated with naive human instructors.

Distinguishing Animate from Inanimate. We have implemented a sys-
tem that distinguishes between the movement patterns of animate objects
from those of inanimate objects. This system uses a multi-agent architecture
to represent a set of naive rules of physics that are drawn from experimental
results on human subjects. These naive rules represent the effects of gravity,
inertia, and other intuitive parts of Newtonian mechanics. We have evaluated
this system by comparing the results to human performance on classifying
the movement of point-light sources, and found the system to be more than
85% accurate on a test suite of recorded real-world data.

Joint Reference. Using its new 2-DOF hands that exploit series elastic
actuators and rapid prototyping technology, Cog demonstrated basic grasp-
ing and gestures. The gestural ability was combined with models from human
development for establishing joint reference, that is, for the robot to attend to
the same object that an instructor is attending to. Objects that are within
the approximate attention range of the human instructor are made more
salient to the robot. Information from head orientation is the primary cue
of attention in the instructor.

Simulated Musculature. Cog’s arm and body are controlled via sim-
ulated muscle-like elements that span multiple joints and operate indepen-
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dently. Muscle strength and fatigue over time are modulated by a biochemical
model. The muscle-like elements are inspired by real physiology and allow
Cog to move with dynamics that are more human-like than conventional
manipulator control.

Vocabulary Management. Kismet needs to acquire a vocabulary rele-
vant to a human’s purpose. Towards this goal, first, we have implemented a
command protocol for introducing vocabulary to Kismet. Second, we have
developed an unsupervised mechanism for extracting candidate vocabulary
items from natural continuous speech. Third, we have analyzed the speech
used in teaching Kismet words in order to determine whether humans natu-
rally modify their speech in ways that would enable better word learning by
the robot.

Head Pose Estimation. We developed a fully automatic system for re-
covering the rigid components of head pose. The conventional approach of
tracking pose changes relative to a reference configuration can give high ac-
curacy but is subject to drift. In face-to-face interaction with a robot, there
are likely to be frequent presentations of the head in a close to frontal orien-
tation, so we used that to make opportunistic corrections. Tracking of pose
was done in an intermediate mixed coordinate system chosen to minimize the
impact of errors in estimates of the 3D shape of the head being tracked. This
is vital for practical application to unknown users in cluttered conditions.

Papers on this work included: [2], [36], [32], [33], [34], [41], [53], [51], [78],
[89], [88], [87], [96].

Presentations on this work included:
[3], [44], [52], [75], [79], [90], [91], [94].

7 Results for 2001-2002

Cog

Adaptation of Arm Stiffness. Cog learns a feed forward command force
function that is dependent on arm posture but independent of stiffness. This
adaptation of stiffness parallels human reaching in which there is higher stiff-
ness at the endpoints and lower stiffness during the middle of a reach. It
allows Cog to reach to points in the arm’s workspace with greater accuracy,
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gives Cog a more human-like range of dynamics and allows for safer and more
intuitive physical interaction with humans.

Reflex Inhibition. Inhibition of extreme movements prevents robotic fail-
ure. Cog uses learned reflex inhibition for coordinated joint movement and
distribution of a movement over as many degrees of freedom as possible,
avoiding saturation of a few joints. During learning Cog explores the gross
limits of its torso workspace by the action of reflexive movements. As it
reaches joint extremities, a simulated pain model results in modification of
a reflex to constrain its movements to avoid physically harming itself and to
operate the torso primarily in a state of balance.

Dynamic Configuration of Multi-joint Muscles. To facilitate devel-
opment of a multi-joint muscle model for controlling Cog, a graphical user
interface (GUI) displays the movement of Cog in terms of Cog’s muscle model
overlaying Cog’s joints. The muscle model is reconfigurable at run time
through the GUI.

Hand Reflex. Cog’s two degrees of freedom hand, equipped with tactile
sensors, has a reflex that grasps and extends in a manner similar to primate
infants. Contact inside the hand causes a short term grasp, contact to the
back of the hand causes an extensive stretch.

Arm Localization. It is difficult to visually distinguish the motion of a
robot’s own arm as distinct from similar motion by humans or objects. Cog
discovers and learns about its own arm by generating a motion and then
correlating the associated optic flow with proprioceptive feedback. It ignores
any uncorrelated movements and visual data. Once Cog can track its own
arm, when it contacts an object, it discounts its own movement in order to
isolate object properties.

Object Tapping for Segmentation. There are cases when solely visual
based object segmentation poorly or completely fails to disambiguate an ob-
ject from its background. Cog can determine the shape of simple objects
by tapping them. This physical experimentation augments visual based seg-
mentation.
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Mirror-Neuron Model. Cog is able to perform manipulative actions:
poking an object away from its body and poking an object towards itself.
It uses its attentional system to locate and fixate an object and its track-
ing system to follow the object trajectory. It maps visual perception into a
sequence of motor commands to engage the object. These abilities: vision
driven manipulation and mapping perception to action are prerequisites of a
mirror neuron model.

On the left, the robot establishes a causal connection between commanded
motion and its own manipulator, and then probes its manipulator’s effect on
an object. The object then serves as a literal “point of contact” to link robot
manipulation with human manipulation (on the right), as is required for a
mirror-neuron-like representation.

Module Integration. Cog has a modular architecture with components
responsible for sensing, acting and processing higher level aspects of vision
and manipulation. Cog integrates modules responsible for 14 degrees of free-
dom (head, torso and arm axes) in order to reach out and poke an object.
It coordinates its head control and arm control with its visual attention,
tracking, and arm localization subsystems.

Face Tracking. Cog’s attentional system is updated with an imported
face detector that has greater accuracy. The detector is coupled with a face
tracker that copes with non-frontal face presentations despite the detector
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operating slower than frame rate. The combined systems allow Cog to engage
in tasks requiring shared attention and human-robot interaction.

M4

7.1 Macaco.

The M4 robot consists of an active vision robotic head integrated with a
Magellan mobile platform. The robot integrates vision-based navigation with
human-robot interaction. It operates a portable version of the attentional
systems of Cog and Lazlo with specific customization for a thermal camera.
Navigation, social preferences and protection of self are fulfilled with a model
of motivational drives. Multi-tasking behaviors such as night time object
detection, thermal-based navigation, heat detection, obstacle detection and
object reconstruction are based upon a competition model.

Kismet

Dynamic Subjective Response. Kismet has the ability to learn to rec-
ognize and remember people it interacts with. Such social competence leads
to complex social behavior, such as cooperation, dislike or loyalty. Kismet
has an online and unsupervised face recognition system, where the robot
opportunistically collects, labels, and learns various faces while interacting
with people, starting from an empty database.

Proto-linguisitc Capabilities. Kismet uses utterances as a way to ma-
nipulate its environment through the beliefs and actions of others. It has a
vocal behavior system forming a pragmatic basis for higher level language ac-
quisition. Protoverbal behaviors are influenced by the robot’s current percep-
tual, behavioral and emotional states. Novel words (or concepts) are created
and managed. The vocal label for a concept is acquired and updated.

Papers on this work included:
[28], [68], [55], [81], [83], [97], [95].
Presentations on this work included:
[6], [45], [54], [80].
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8 Results for 2002-2003

Guided Training via a Modular Software System for Learning from
Interaction with the Environment and People. Cog learns simple arm
and end effector tasks via a combination of self-exploration and explicit train-
ing. With tactile reinforcement signals, Cog is taught by a human trainer
to perform simple postural arm and hand actions. Subsequently, the trainer
teaches the robot to perform such learned actions in response to tactile (touch
to particular fingers) and visual (objects of particular colors) stimuli.

Expoiting a Model of Muscle Fatique for Human-like Movement.
Cog has a fatigue model for its virtual musculature. This simulation of
biological muscle fatigue provided signals that modulated motor performance
and provided negative reinforcement to the learning module to guide the
acquisition of more natural human-like motor movement.

Learning How Joints Move in Relation to Virtual Muscle Groups.
Starting simply, from an inclination to randomly move its virtual muscles,
Cog learns to activate its muscle model so it can move to particular points in
joint angle space. Cog acquires an unsupervised linear dependency model be-
tween joint velocities and controller modules that supervise multiple muscles
in combination.

Active segmentation. Cog uses active exploration to resolve visual am-
biguity in its workspace. Objects can sometimes be difficult to locate if their
visual appearance is similar to the general background. Cog solves this prob-
lem by sweeping its arm through regions of interest. If no object is there, the
arm passes unimpeded. If an object is present, the impact between it and
the robot’s arm causes the object to move, revealing its boundary.

Cog uses a mirror neuron model to learn how different objects
respond to the actions it can perform. If the robot taps an object and
it slips and rolls, it learns to predict the direction of slip based on visaul
evidence, and can then use that information to deliberately trigger or avoid
rolling an object while tapping it. The mirror neuron model allows the robot
to mimic an action demonstrated by a human relative to the natural behavior
of the object, rather than pure geometry.
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Open object recognition. With open object recognition, the set of ob-
jects Cog can recognize grows over time, as it accumulates experience through
active segmentation and other experimental methods. The robot clusters
episodes of object interaction to learn the properties of novel, unfamiliar
objects. An operator can introduce names for objects to facilitate further
task-related communication.

Perceptual cycle. Cog uses the constraints of known activities to learn
about the objects used within those activities – for example, during manip-
ulation. Cog can track known objects to learn about activities they occur
in, such as a sorting task or object search. By combining the ability to learn
about objects through activity constraints and activities through tracking
objects, the robot can achieve a virtuous cycle of perception.

Adaptive control of Cog’s arm using a nonlinear sliding-modes con-
troller. Two degrees of freedom on Cog’s arm operate via non-parametric
adaptive control using a nonlinear sliding-modes controller. This sufficiently
mitigates the high signal to noise ratio arising in Cog’s arm (due to a small
strain gauge signal that experiences capacitive coupling with other signals)
and allows semi-autonomous, task adequate control.

Learning actions and objects from observed use. While Cog watches
an event involving someone’s arm handling an object (e.g. filing a surface,
swinging a pendulum), its vision system extracts both the nature of the arm
movement and derives a predictive dynamical model of the object.

A compact linear series elastic actuator design for human-like neck
joint. For a new robotic head, two new coupled neck axes were designed
and built using linear series elastic actuators aligned in parallel. The design
is compact: the two axes have intersecting centers of rotation. Force control
in combination with elastic actuation provides safe, human like compliancy.

The ALIVE architecture. The ALIVE architecture consisting of a stack
and the CreaL software development environment controls the new robotic
head. The stack is a special purpose, extensible, real-time, small form-factor
hardware architecture of controller boards, sensor boards, network board,
and off-the-shelf processor. CreaL, which is retargetable, extracts efficient
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computational power to allow many lightweight threads from the relatively
cheap off-the-shelf processor via efficient software scheduling, compilation
and language abstraction. The ALIVE architecture facilitates complete de-
signer control over startup and failure sequences which is essential for con-
tinuous, safe robot operation.

Papers on this work included: [8], [9], [11], [12], [10], [7], [57], [58], [69],
[60], [62], [63], [67], [70], [72], [76], [77], [82].

Presentations on this work included:
[5], [56], [61], [64], [59].

9 Results for 2003-2004

Accomplishments are on 7 robotic platforms: Cog, Cardea, Coco, a robot
head named Mertz, a new humanoid named Domo, a human wearable/hybrid
system named Duo and an unnamed 5 DOF hand. This work was done
between July 2003 and July 2004.

The ’Yet Another Robot Platform’ open software library is used on
6 platforms. Software written in C and C++ that provides routines for
robot platform development in terms of inter-process communication, vision
and control and has operating system services support for Windows NT and
QNX4 and QNX6 is running on multiple robotic platforms at MIT: Cog,
Coco, Domo, Mertz, Cardea and Duo, and in Europe.

Door Shoving by A Self-Balancing Mobile Humanoid. Cardea , a
prototype humanoid based on a Segway RMP extended with contact and
IR sensing, simple torso and 3 DOF arm manipulation, vision using 1 fixed
mounted camera and a single DOF camera and entirely on-board computa-
tion, can navigate an office corridor, find a partially closed door, shove it
open and pass through.

Emergency Kickstands within Safety System for Segway RMP base.
Two emergency kickstands for Cardea deploy when a ’sniffer’ detects soft-
ware definable error conditions indicating the platform is falling over. They
are part of a complete safety system that overrides robotic control when
the RMP over-tilts. First, the system relies on RMP self-balancing. When
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self-balancing fails, the kickstands eject. Safety is also ensured via radio
controlled Emergency stop (E-stop).

A Lightweight Computational Hardware Architecture Supporting
Humanoid Mobility and Manipulation. A computational hardware ar-
chitecture consisting of a network of distributed, onboard lightweight 8-bit
computational elements that supports behavior, sensorimotor and RMP con-
trollers, power circuitry and debugging demonstrates humanoid navigation
and manipulation.

A Prototype Camera-Arm Platform Integrating a Visual System
and a Motor System Running on an Embedded Architecture The
design of embedded brushless motor amplifiers, DSP motor controllers and
sensor conditioning is integrated with the ALIVE hardware and software
architecture. A 5 DOF force controllable prototype arm, with series elastic
actuators, a differentially driven shoulder and a virtually centered elbow,
runs on the embedded architecture using virtual spring control and a ’CreaL’
(creature language) behavioral controller. It can track in conjunction with
a 2 DOF active vision system running on a laptop. It can reach towards
and poke an object using visual and color information and estimating the
position of its hand via forward kinematics in visual coordinate space.

A Creature-based Approach to Robotic Existence. Mertz, an active-
vision humanoid head platform, fulfills an immediate goal of running continu-
ously for days without supervision at a variety of locations. Mertz is designed
with fault prevention strategies in mind, It can instantly startup and perform
joint calibration. It has circuitry to protect against power cycles and abrupt
shutdown. Its vision system is adaptable to different lighting conditions and
backgrounds.

Domo: A Force Sensing and Compliant Humanoid Platform. Com-
pleted the design, fabrication and assembly of a new force sensing and com-
pliant humanoid platform, named Domo, for exploring general dextrous ma-
nipulation, visual perception and learning. Domo incorporates force sensors
and compliance in most of its joints to act safely in an unstructured environ-
ment. It consists of a two 6 DOF arms, two 4 DOF hands, a 7 DOF head, a
2 DOF neck, 58 proprioceptive sensors and 24 tactile sensors. Twenty-four
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DOF use force controlled compliant actuators. Its realtime sensorimotor
system is managed by an embedded network of DSP controllers. Its vision
system, which (2 cameras, 3 DOF) utilizes the YARP software library, and
its cognitive system run on a small, networked cluster of PC’s.

Overcoming Mechanical Modes of Failure. Domo achieves mechanical
robustness: geartrain failures are mitigated by using ball screws and elastic
spring elements, motor winding reheating is avoided by current limits in
its brushless DC motor amplifiers and prevention of stall currents, cable
breakage and wire strain susceptibility have been reduced, and maintenance
is easier by the design of modular subsystems.

Two Force Controlled Arms. Domo’s arm design focuses on force con-
trol. An arm is passively or actively compliant and able to directly sense
and command torques at each joint. This design forgoes the conventional
emphasis on end effector stiffness and precision to, instead, mimic human
capabilities. It relies on advanced linear Series Elastic Actuators.

A Robust Multi-Layered Sensorimotor and Cognitive System. Domo
has been designed with four layers of sensorimotor and cognitive systems:
physical for sensors, motors and interface electronics, DSP for real time con-
trol, a sensorimotor abstraction layer for interfacing between the DSP and
cognitive layers, and a cognitive layer. It emphasizes robustness to common
modes of failure, real-time control of time critical resources and expandable
computational capability. This runs on a combination of special purpose
embedded hardware communicating through a CAN bus or Firewire, in the
case of cameras, to a cluster of Linux nodes.

Advanced Design of Elastic Force Sensing Actuators with Embed-
ded Amplifiers. Design of new version of SEA using a) linear ball screws
for greater efficiency and shock tolerance b) a cable drive transmission al-
lowing actuator mass to be moved far from the end point reducing energy
consumption and hence needing lower wattage motors, plus allowing modular
and standardized packaging implying easier maintenance and reuse. A novel
force sensing compliant (FSC) actuator places the spring element between
the motor housing and the chassis ground which allows continuous rotation
at the motor output. The FSC actuator is compact due to use of torsion
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springs. Embedded custom brushless motor amplifiers and sensory signal
amplifiers that reduce wiring run-length and thus simplify cable routing and
lead to better robustness are incorporated.

A 5 DOF Sensor Rich hand with Series Elastic Actuation. Design,
fabrication and assembly a 5 DOF sensor rich hand with simple, scalable
force actuators . Three fingers with 8 force sensing axes and 5 position sen-
sors , each consisting of 2 coupled and decoupling links driven by a compact,
inexpensive rotary series elastic actuator which makes the hand mechani-
cally compliant and force controllable. The last two links of each finger are
equipped with dense arrays of force sensing resistors.

DUO: A Human/Wearable Hybrid for Learning About Common
Manipulable Objects. Duo consists of a glasses mounted digital camera
connected to a backpack holding a laptop which communicates wirelessly
to a computer cluster. It also has four orientation sensors that are head,
wrist, upper arm and torso mounted. Duo passively and actively observes the
manipulation of objects in natural, unconstrained environments. It measures
the kinematic configuration of its wearer’s head, torso and dominant arm
while watching its wearer’s workspace through a head mounted camera. It
requests helpful actions from its wearer through speech via headphones. It
can segment common manipulable objects with high quality.

Using Cast Shadows for Visually-Guided Touching. The shadow
cast by a robot’s own body is used to help direct its arm towards, across,
and away from an unmodeled surface without damaging it. The shadow is
detected by a camera and used to derive a time-to-contact estimate which,
when combined with the 2D tracked location of the arm’s endpoint in the
camera image is sufficient to allow 3D control relative to the surface.

Exploiting Amodal Cues for Robot Perception. Rhythmically mov-
ing objects, such as tools and toys, are detected, segmented and recognized by
the sounds they generate as they move. This method does not require accu-
rate sound localization but can complement that information. It is selective
and robust in the face of distracting motion and sounds. This perceptual tool
is required for a robot to learn to use tools and toys through demonstration.
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Object Segmentation by Demonstration. A human teaches Cog how
to segment objects from arbitrarily complex non-static images by waving the
object to introduce it. An algorithm detects the skin color of the human’s
arm, and tracks its motion. Then the object’s compact cover is extracted
using the periodic trajectory information.

Figure/Ground Segmentation from Human Cues. In order to in-
fer large scale depth and build 3-dimensional maps, Cog exploits its human
helper’s arm as a reference measure while measuring the relative size of ob-
jects on a monocular image. It is also able to perform figure/ground segre-
gation on typical heavy objects in a scene, such as furniture and perform 3D
object and scene reconstruction. This argues for solving a visual problem
not simply by controlling the perceptual system, but actively changing the
environment through experimental manipulation.

A Learning Framework for a Humanoid Robot Inspired by Devel-
opmental Learning. For Cog to learn about its physical surroundings, a
human helps Cog to correlate its own senses, to control and integrate sit-
uational cues from its surrounding world and to learn about out-of-reach
objects and the different representations in which they might appear. The
strategies for this learning are inspired by child development theory which
defines a separation and individuation developmental phase.

On-line Parameter Tuning of Neural Oscillators. Cog employs neural
oscillators in its arm that are capable of adapting to the dynamics of the arm’s
controlled system. After using a time-domain analysis to intuitively tune the
parameters of neural oscillators, Cog plays a rhythmic musical instrument
such as a drum or tamborine.

Learning Task Sequences from Scratch. Task sequencing requires rec-
ognizing an object, identifying it with some associated action then learning
the sequence of events and objects that characterize the task. For example,
a saw must be recognized and moved back and forth on the correct plane to
complete the task of sawing. Cog can learn task sequences from human-robot
interaction cues. A human teaches the robot new objects such as tools and
toys and their functionality. The robot explores the world and extends its
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knowledge of the objects’ properties. It acquires recognition of multi-modal
percepts by manipulating the tools and toys.

Papers on this work included: [13], [20], [15], [22], [21], [24], [25], [26],
[19], [16], [23], [14], [17], [18], [50], [49], [46], [27], [29], [65], [66], [71], [73],
[93],

Presentations on this work included: [92], [74].
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