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1  Scope 
This is a report on the XG Architecture and Protocol Development (XAP) project. The XAP project was 
funded under the DARPA neXt Generation (XG) Communications program (Phase 2), beginning in June 
2003, and ending in December 2004. XAP is a follow on to the Medium Access Control Protocols for 
XG (X-MAC) project that was funded under the DARPA XG program (Phase 1). 

This report contains an overview of the project accomplishments. We emphasize that this report is only 
an overview, and details can be found in a number of supporting documents and Request for Comments 
(RFCs) contained in the XAP distributions, including: 

1. The XG Vision RFC [XGV], which describes the vision and goals of the XG program in general 
and X-MAC in particular. 

2. The XG Architecture RFC [XGAF], which presents the architecture, system components, and a 
high level concept of operations for XG communications.  

3. The XG Abstract Behaviors RFC [XGAB], which identifies key behaviors that must be 
implemented by an XG system, organizes them, and describes the behaviors.  

4. The XG Policy Language Framework RFC [XGPLF], which describes the policy specification 
meta-language for implementing machine-understandable policies. 

5. The XG Policy Conformance Reasoner software and documentation [PCR], which describes a 
reference implementation based on the XG Policy Language Framework RFC v1.0. 

6. The XG Evaluation Platform [XEP], which describes the OPNET models of XG protocols and 
simulation results. 

Accomplishments under XAP can be classified into two broad categories – (a) the development of a 
framework for managing the key aspects of radio behavior through flexible application of policies, (b) 
design, modeling and simulation of key protocols for opportunistic spectrum access. Items (1)-(5) above 
fall under the framework, and (6) under the protocol modeling and simulation. For most of the project 
duration, these two sets of activities were conducted in parallel. 

The remainder of this document is organized as follows. In Section 2, we present the background and 
motivation for XAP. Further, we describe the XG vision and architectural framework that was 
developed largely in the earlier XMAC contract, and has been refined during the XAP effort through the 
working group process. In the XAP effort, we have developed specific technologies that can enable 
policy-agile opportunistic spectrum access by XG systems. These include the policy language 
framework and policy conformance reasoner software that we describe in Section 3, the abstract 
behavior specification that we describe in Section 4, and the XG evaluation platform and protocol 
simulation results that we describe in Section 5.  In Section 6 we discuss technical interactions related to 
the XG program both within the XG program including working group activities as well as external 
interactions including briefings to government, academia and industry. In Section 7, we conclude with a 
summary of lessons learned from the project, a roadmap for the XG policy-agile opportunistic spectrum 
access technology (status at the end of Phase 2 and projections for Phase 3 and beyond), and 
recommendations for future work. 
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2  Background 
There are two significant problems confronting wireless communications with respect to spectrum use: 
♦ Scarcity. The current method of allotting spectrum provides each new service with its own fixed 

block of spectrum. Since the amount of useable spectrum is finite, as more services are added, there 
will come a point at which spectrum is no longer available for allotment. We are nearing such a time, 
especially due to a recent dramatic increase in spectrum-based services and devices. 

♦ Deployment difficulty. Currently, extensive, frequency-by-frequency, system-by-system coordination 
is required for each country in which these systems will be operated. As the number, size, and 
complexity of operations increase, the time for deployment is becoming unacceptably long. 

Both problems are a consequence of the centralized, static nature of current spectrum allotment policy. 
This approach lacks the flexibility to aggressively exploit the possibilities for dynamic reuse of allocated 
spectrum over space and time, resulting in very poor utilization and apparent scarcity. It also mandates a 
priori assignment of spectrum to services before deployment, making deployment difficult. 

Preliminary data indicates that large portions of allotted spectrum are unused (refer the Spectrum Policy 
Task Force report [SPTF]). This is true both spatially and temporally. That is, there are a number of 
instances of assigned spectrum that is used only in certain geographical areas, and a number of instances 
of assigned spectrum that is only used for brief periods of time. This wastage of assigned spectrum is 
bound to increase in future – spatially, due to the increasing localization of propagation due to radio 
devices using higher frequencies, and temporally due to the proliferation of services that are highly 
bursty in nature.  

Studies have determined that even a very straightforward reuse of such “wasted” spectrum can provide 
an order of magnitude improvement in available capacity. It can be concluded that the issue is not so 
much that spectrum is scarce, but that we do not have the technology to effectively manage access to it 
in a manner that would satisfy the concerns of current licensed spectrum users. 

XG (neXt Generation Communications) is a DARPA-funded research program based on the (now 
generally accepted) premise described above that the historic (and current) method of authorizing 
spectrum use–static, administrative allocation–results in an apparent scarcity of spectrum that can be 
avoided by the proper application of dynamic spectrum sharing techniques. The goals of the XG 
program are: 

1. Demonstrate through technological innovation the ability to utilize available (unused, as opposed 
to unallocated) spectrum more efficiently. 

2. Develop the underlying architecture and framework required to enable the practical application 
of such technological advances. 

The XG program had several performers, including BBN. The goal of the other performers was to 
develop opportunistic spectrum access technologies. BBN’s role within the program was unique – we 
served as the developer of a framework within which such technologies could evolve.  

Specifically, XAP had two main technical goals (and accomplishments): 
1. Develop a long-lived framework for managing the key aspects of radio behavior through flexible 

application of policies. In order that the radio is policy-agile, we require a framework in which 
policies are written in a way that can be interpreted by the radio, and the radio is able to exploit 
such expression of policies. Furthermore we require a specification of key behaviors of an XG 
system so as to provide a common set of abstractions for policy administrators and XG system 
designers. 
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2. Develop protocols for XG communications and analyze them using modeling and simulation. 
The development of protocols gives insight into the right framework, and modeling captures the 
performance variations as a function of various system and environmental parameters. Further, 
our simulation system serves as a “proxy XG radio” in the framework. 

BBN Technologies also coordinated an XG Working Group comprised of Government and support staff, 
and the XG Phase 2 program participants. 

As part of the second goal the XG program, participants (known collectively as the XG Working Group 
or XG-WG) produced a series of Requests for Comments (RFC) that together describe the proposed XG 
architecture and framework. These documents are RFCs because the authors recognize that the final 
development of such an important technology cannot be accomplished by a small group of individuals. 
It requires input and participation from a broad representation of the affected community. Thus it is 
hoped these RFCs will spur that community to provide feedback in order to assure an organized and 
technically valid approach to the evolution of this architecture. BBN was the primary developer of all 
the RFCs to date, with inputs from DARPA, AFRL, and the other XG performers. 

The XG Vision RFC provides the motivation and scope of dynamic spectrum sharing envisioned by the 
XG program and describes an approach for developing the XG architecture. It is highly recommended 
that the XG Vision RFC be read before reading the others. The XG Architectural Framework RFC 
presents the XG architecture, system components, and a high level concept of operations for XG 
communications. The XG Policy Language Framework was the third to be released. The draft XG 
Abstract Behaviors RFC is being released (to the XG program participants) at the same time as this 
report. It provides an abstract view of the operation of XG radios, so that policies may be written to 
govern the operation of radios that are yet to be engineered. 

In order to address the scarcity and deployment difficulty problems, XG is pursuing an approach 
wherein static allotment of spectrum is complemented by the opportunistic use of unused spectrum on 
an instant-by-instant basis, in a manner that limits interference to primary1 users. In other words, the 
basic concept of operation is as follows: a device first “senses” the spectrum it wishes to use and 
characterizes the presence, if any, of primary users. Based on that information, and regulatory policies 
applicable to that spectrum, the device identifies spectrum opportunities (in frequency, time, or even 
code), and transmits in a manner that limits (according to policy) the level of interference perceived by 
primary users. We term this approach opportunistic spectrum access. 

Opportunistic spectrum access also provides far easier deployment, or rapid entry, into regions where 
spectrum has not been assigned. Only minimal prior coordination is necessary, greatly easing the 
restrictions to meet the deconfliction requirements. This is helpful both in civilian applications such as 
the entry of a wireless LAN technology in less developed regions, and in military operations requiring 
high tempo and quick reaction time. 

2.1 The XG Vision of Policy Agility 
The realization of opportunistic spectrum access is highly challenging. Several problems must be solved: 
sensing over a wide frequency band; identifying the presence of primaries and characterizing available 
opportunities; communication among devices to coordinate use of identified opportunities; and most 
importantly, definition and application of interference-limiting policies, and utilization of the 
opportunities while adhering to such policies.  

The true potential of this new approach can be exploited only if in addition to spectrum agility, we 
provide policy agility – that is, a way by which the policies controlling the behavior can be dynamically 

                                                 
1 Users that are licensed to use the spectrum in question, subject to regulatory constraints are called primary users. 
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changed. That is, policies are not embedded in the radio, but can be loaded “on-the-fly”. Policy agility 
allows adaptation to policies changing over time and geography. Further, technology (spectrum agility) 
can be developed in advance of policies. This is important for breaking the chicken-and-egg dilemma 
that exists today, where regulatory bodies must wait for technology before drafting policies and 
technology must wait to see what the polices will look like. 

The use of policy agility using machine understandable policies is depicted in Figure 1. Starting from 
the left, spectrum policies are encoded in a machine interpretable form and loaded into the XG device.  
The XG device then operates in accordance with its interpretation of these policies. Policies may be 
loaded using smart media or over the Internet. In order to change the policies we simply need to load a 
new version. For instance, operating in a different country would require merely downloading from a 
different website or new smart card. 

Although recent years have seen some of the components for opportunistic spectrum access mature (e.g. 
software radios), we are a long way from a prototypical system. Further, no work exists in the area of 
decoupling the policies from the implementation. This yawning gap between current state-of-the-art and 
what is required for opportunistic spectrum access is the motivation behind XG.  

XG node

XG node

Machine-readable 
Policies

Spectrum
Policies

Policy 
Repository

Internet

XG node

XG node

Machine-readable 
Policies

Spectrum
Policies

XG node

XG node

Machine-readable 
Policies

Spectrum
Policies

Policy 
Repository

Internet
Policy 
Repository
Policy 
Repository

Internet

 
Figure 1: Machine understandable policies. With this, changing the policy merely requires loading a 

different flash card or downloading anew. 

A more comprehensive discussion of the XG vision and motivation can be found in the XG Vision RFC 
[XGV]. 

2.2 The XG Architectural Framework 
The XG framework is based on a decoupling of three fundamental elements in the design of an XG 
system: policies, behaviors, and protocols. By this, we mean that policies, behaviors and protocols are 
developed separately with some kind of “connections” defined between them. This concept is illustrated 
in Figure 2.  

Decoupling allows adaptation to policies that vary over time and geography. Technology can be 
developed in advance of policies, and worldwide deployment would be greatly simplified. Furthermore, 
sub-policy management, as required for secondary spectrum markets, is easier. Policies no longer have 
to reflect the common denominator of competing technologies, and can be tailored to the diverse system 
capabilities expected for opportunistic spectrum access. Decoupling behaviors from protocols allows us 
to control what needs to be done separately from how it is implemented, resulting in a cleaner and more 
flexible architecture. Indeed, we argue that a decoupling approach is not just beneficial but pretty much 
a requirement for harnessing the full potential of opportunistic spectrum access. 
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Figure 2: This illustrates the decoupling of policies, behaviors, and protocols, along with traceability and 

the four components of our framework. 

A central notion in this approach, and a notion that is enabled by this approach, is that of traceability. 
Behaviors, preferably one or more of a core set of abstract behaviors, should be traceable to policies. 
This provides two advantages: first, it helps make the verification of new policies easier, and second, 
when an XG radio is deployed in a new region, it is easier to affirm that the XG system will behave in a 
certain way. It allows us to accredit based on ability to correctly interpret and implement policies. 

As shown in the figure, the task of decoupling policies, behaviors and protocols requires the definition 
of four components in the framework: policy language, abstract behaviors, protocols, and interfaces. We 
describe below our accomplishments on the definition of the policy language, abstract behaviors, and 
one interface – namely the policy language interface. Protocols were only developed as part of the 
parallel modeling and simulation effort within BBN (that is, unlike the language, behaviors and policy 
interface, this did not have program-wide scope and consequently did not involve participation of the 
XG working group members, namely, the Government and performers). We give a very brief overview 
of some of these protocols in Section 5. 

We reiterate that this report is only a summary. The reader should refer to the particular RFC (referenced 
in the respective section) for details. We also note that the development of the framework is an evolving 
process and this report reflects the current snapshot in that evolution. The follow on projects in Phase 3 
will further evolve the framework, and indeed, may modify some of the definitions given here. 

The XG Vision and Architectural Framework summarized in this section were largely developed within 
the earlier BBN XMAC effort in Phase 1 of the XG program.  These were specified in the form of two 
RFCs [XGV, XGAF], which we have refined during the XAP effort through the working group process.  

The XAP effort builds upon and significantly extends the work from the XMAC effort. We have 
developed specific technologies to enable policy-agile opportunistic spectrum access by XG systems. 
These include the policy language framework (policy ontologies and the policy conformance reasoner 
software) [XGPLF], the abstract behavior specification [XGAB], and protocol simulation results [XEP].  
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3 Policy Language Framework 
XG-enabled radios will be able to utilize available spectrum intelligently based on knowledge of 
actual conditions rather than using current conservative spectrum management methods (static 
spectrum assignments). In this way, XG technologies will utilize spectrum in a much more efficient 
manner than can be done today. Furthermore, without the need to statically allocate spectrum for 
each use, networks can be deployed much more rapidly. Today the military, for example, must make 
spectrum use requests to their spectrum managers, who must deconflict them, and make static 
assignments far in advance of deployment. With XG capabilities, this process can be significantly 
shortened or perhaps even eliminated beyond decisions made at the highest level. 

Radios must adhere to rules that apply to their operation. A major intent of such rules is to avoid or 
reduce interference among users. Such rules may cover both transmission and reception functions of 
a radio. Currently such rules are enumerated in spectrum policy as produced by various spectrum 
authorities such as the FCC or the NTIA in the U.S.A. In this document we use the term spectrum 
policy to refer to any externally (to the radio) imposed rules for spectrum use. 

A radio that is capable of dynamically utilizing spectrum must be able to adhere to rules 
corresponding to the many uses of which it is capable–not just one use as with most current radios. 
XG radios will be expected to operate over a wide range of frequencies and within different 
geopolitical regions. Therefore, they must incorporate a real-time adaptive mechanism for 
conforming to the policies applicable to each situation. In other words, XG radios must be policy-
agile, by which we mean both that the radios are situationally adaptive to the current policy, and that 
they allow policy to be dynamically updated as well. 

Spectrum policies relevant to a given radio may vary in several ways: 

1. Policies may be altered over time. 

2. The radio (along with its user) may move from one policy administrative domain to another 
(e.g. a military user may be deployed to a different country). 

3. Policies may be dependent on time of day or year. 

4. A spectrum owner/leaser may impose policies that are more stringent than those imposed by 
a regulatory authority. 

5. The spectrum access privileges of the radio may change in response to a change in radio user. 

To be truly versatile, the XG radios should be responsive to such changes in policy.  

Current radios support only a small number of modes of operation and a limited range of intended 
operating environments. With only limited hardware agility, all the relevant policy sets that apply 
can be hard-coded into the radio. However, with the increasing agility and programmability of radio 
hardware (as illustrated in Figure 3), especially when combined with the prospect of opportunistic 
spectrum sharing, both the number of modes of operation as well as the range of operating 
environments for the radio will increase tremendously. As a result, the number of different policy 
sets that apply to these various modes and environments will grow in a combinatorial fashion. This 
will make it impractical to hard-code into the radio discrete policy sets to cover every case of 
interest. The accreditation of each discrete policy set would also be a major challenge. In the case of 
software-defined radios, it would require the maintenance of downloadable copies of software 
implementations of each policy set for every radio platform of interest. 
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Figure 3: Machine understandable policies are necessary to exploit the emerging agility of devices and 
enable in-situ policy-based control of radio behaviors 

We need a more scalable way to express and enforce policy. The complexity of accrediting policy 
conformance for XG radios and the desire for policy agility lead to the conclusion that XG radios 
must be able to read and interpret policy. We must, therefore, be able to express policy in a well-
defined language framework. 

At this point we note the distinction between the policy language and the policy language 
framework. We use the term XG policy language to refer to the language elements (including the 
syntactic and semantic structure of the language, and the domain-specific keywords), as well as the 
external (lexical) representation of the language. Overall, in this document we emphasize the 
language elements; we defer the lexical representation to the appendices. For this purpose, we make 
use of a shorthand notation to illustrate the concepts. We use the term policy language framework to 
include the policy language itself, the concept of operations of creation and use of machine 
understandable policies, and the computational logic, tools, and techniques for policy processing. 

It is important not to confuse the policy language with its lexical representation or its syntax. We 
will use OWL representation (based on RDF and XML) as a basis of expression—these are not to be 
confused with the XG policy language. Rather, the XG policy language consists of terms (along with 
their precise meanings), interrelationships between the terms, some constructs and idioms that are 
required to express policy, and the mechanisms by which the language can be extended. 

In Section 3.1we describe a concept of operations–both how machine understandable policies are 
created and encoded by policy administrators, as well as how the encoded policy is used by policy-
agile radios. In Section 3.2, we provide a brief overview of the features of the policy language and 
the policy processing logic. In Section 3.3, we examine the requirements for policy language 
representations and we propose an extensible, standards-based machine-understandable 
representation for policies. 

3.1 Concept of Operations 
The concept of operations of the XG policy language framework describes how machine 
understandable policies are created and how they are used. First we will describe the actors involved, 
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their roles in creating and using policy, and the elements of the policy that they use or control. Then 
we describe how radios can interpret and use the encoded policy. 

3.1.1 Development of Machine Understandable Policies 
Three different types of actors are involved in the definition and use of the policy language and the 
policy rules: language designers, policy administrators, and spectrum users. These actors will 
interact with the policy language and policy rules using tools appropriate for their role as illustrated 
in Figure 4 and described below. 

Figure 4: Policy Language Actors 

Language designers create the language model, which defines the high-level objects of the language 
along with their semantics. This document describes an initial version of the language model. We 
expect that eventually a standards committee will draft future versions of the model. The language 
model is published at a well-known URI for policy administrators and policy users to access. The 
language designer may utilize tools (such as UML modeling tools, tools to convert UML to a 
machine-understandable language and other visualization tools yet to be developed) in order to 
facilitate the design process. 

A policy administrator (who is not necessarily the policy maker) is responsible for developing and 
encoding spectrum policy using the policy language produced by the language designers. The policy 
administrator makes the policy available to spectrum users. Administrators do not have to know all 
the details of the language presented here, as they will likely encode the policy by using a (perhaps 
graphical) tool, called an instance editor, which hides the notational complexity of the language. The 
administrator also uses analysis tools to verify in advance that the encoded policy will have the 
desired effect and is consistent with existing policies. 
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In the short term, policy may be described first in English using engineering and legal terms that are 
commonly understood by the community of interest. Policy administrators will likely continue to use 
established procedures to interpret spectrum policy prior to encoding. 

Given a policy expressed in English, the first step is to perform an analysis to determine how to 
structure the policy in a form best suited for machine understanding. Once this analysis is performed 
and the elements of the policy are mapped to the elements of the XG policy language, the policy can 
then be readily encoded in the XG policy language (XGPL). BBN has developed conversion tools 
that enable the use of a shorthand notation. Other tools to validate the syntactic and logical 
correctness of the policy represented are the subjects of future work. As this technology matures, we 
anticipate that a number of graphical and scripting tools will be developed to make the process 
easier. 

A spectrum user, such as an XG system, must be able to use the policy to assess whether policy 
allows identified potential spectrum opportunities and to understand the constraints the policy 
administrators have placed on their use. The next section details how the spectrum user uses the 
policy. 

3.1.2 Policy Usage 
In this section, we describe a concept of operations for how a policy-agile spectrum user, such as an 
XG radio system, can use machine-understandable policy.  A radio can use the machine-
understandable policies to assure that its use of spectrum conforms to policy, as well as to modify 
radio behaviors in order to identify and utilize spectrum opportunities that are authorized. In this 
section, we will focus on the former, namely, how to assure policy conformance. The draft XG 
Abstract Behaviors RFC [XGAB] describes XG radio behaviors related to acquiring and sharing 
spectrum awareness, as well as behaviors related to identifying, selecting, coordinating, and using 
available spectrum opportunities as authorized by policy. 

Figure 5 is a logical functional block diagram of the policy usage concept of operations. The 
placement of these functional blocks in hardware or software is to be determined by the designers of 
each individual system. 

There are four main components in this functional decomposition: 
• Sensor: provides situational information to the radio about the spectral environment at a 

given location and time. This information is key to being situationally aware of spectrum 
opportunities enabled by policy. We note that the sensor outputs need not be limited to the 
RF spectral environment; the outputs could include a variety of other information (e.g. geo-
location, temperature, and proximity to specific targets) that could be used as parameters for 
system policy. 

• Radio Platform: provides the basic hardware and primitives of a host radio system that 
enables opportunistic use of spectrum (e.g., RF front end, DSP hardware, system software 
including the OS, middleware, and libraries, and primitives for networking protocols, 
waveform agility, and beam forming). 

• Policy Conformance Reasoner: manages accredited policy information, which includes 
interpreting the policy language, and reasoning based on accredited policy (e.g., approved by 
a regulatory authority) and related background knowledge to determine whether the proposed 
spectrum use is policy-conformant or not; this key component to ensuring policy 
conformance is largely system independent and does not tell the radio platform or the system 
strategy reasoner what to do. 

• System Strategy Reasoner: determines the system's strategy for opportunistic spectrum 
sharing under regulatory and system policy constraints; this reasoner is aware of system-
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specific optimizations and tradeoffs and has control over the radio platform. In Figure 5 we 
show the system strategy reasoner as logically separated from the rest of the radio. This 
highlights the potential for reusability. 

We envision that the radio platform includes an accredited kernel, within which it implements 
(grounds) accredited parameters and processes governed by policy. We further envision that only the 
policy conformance reasoner, the sensor, and the accredited kernel of the radio platform are within 
the accreditation boundary (shaded portions in Figure 5). Parts of the system that lie within the 
accreditation boundary are both necessary and sufficient to ensure policy conformance. As per the 
XG vision [XGV], system and protocol innovations including the system strategy reasoner are 
outside the accreditation boundary. 

Figure 5: Policy-Agile Operation of XG Spectrum-Agile Radio 

This architectural separation of the regulatory policy conformance function from the system 
dependent optimizations and tradeoffs allows the policy conformance reasoner to be reused and 
eases accreditation. Rather than separately accredit each of n radio configurations for each of m 
policy sets for a total of m × n operations, this approach reduces the required number of operations 
to m+n+1. The policy conformance reasoner must be accredited once, each policy set once, and each 
radio configuration once. 

We describe the functions and interactions of the policy conformance reasoner in more detail here. 
The policy conformance reasoner performs three basic services:  

• First, it loads (and possibly revokes) and interprets accredited policy instances, such as 
policies specified by a regulatory body, which are represented using the machine-
understandable policy language. 

• Second, it makes use of the policy structure to respond to queries (by a system strategy 
reasoner) to filter policies based on selection criteria (e.g. to a specified radio, or intended 
operating environment). 

• Third, it determines whether or not the spectrum use proposed by the radio platform 
conforms to policy. 

In order to explain the operation of the conformance reasoner, we provide a brief overview of the 
structure of policy rules in the XG policy language. Each policy rule is composed of three parts: a 
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selector description, an opportunity description, and a usage constraint description. A description is a 
Boolean predicate expression that involves regulated parameters and methods (for which bindings 
and groundings are provided by the radio platform) and additional policy parameters (for which 
bindings are provided within the policy itself). An instance is a set of bindings that can be used to 
determine the truth-value of a description. 

A policy is selected and applied if the proposed selector instance satisfies the selector description. If 
the proposed opportunity instance matches the corresponding opportunity description, this provides 
authorization for the opportunity2. The proposed usage instance must fulfill certain obligations, i.e., 
it must satisfy the corresponding usage constraint descriptions. The use of selection, authorization, 
and obligation to structure policy rules is a paradigm that is used in other policy systems as well 
(e.g., KAoS). 

We now present a notional sequence of operations using the functional decomposition presented in 
Figure 5. After loading any configuration information, the radio platform in conjunction with the 
sensor (potentially using a sensing strategy determined by system strategy reasoner) acquires 
awareness of its situation. The system strategy reasoner has access to the configuration, state, and 
awareness acquired by the radio platform through means that are specific to the system 
implementation. Based on system and regulatory policy and knowledge of the radio platform, the 
system strategy reasoner enables the radio platform to identify and characterize available 
opportunities and a suitable use of those opportunities. The characterization can result in, for 
example, binding values to relevant parameters. 

Once an opportunity is identified and its intended use is characterized as a set of selector, 
opportunity, and usage constraint instances, the radio platform must present this set to the policy 
conformance reasoner for validation. In order to validate the instances, the policy conformance 
reasoner may need to obtain parameter bindings and invoke method groundings implemented within 
the accredited kernel of the radio platform. If the requested set of instances is validated, the XG 
radio may then use them to transmit. 

The system strategy reasoner has the function of influencing radio behaviors in response to policy 
(and situational knowledge) in order to identify and utilize available spectrum as authorized. We 
note that there is significant scope for design diversity, innovation, and optimization within the 
system strategy reasoner, as well a potential for its reuse across several radio platforms. A simple 
system strategy reasoner may try only a limited range of opportunities and uses known to work with 
the radio and typical policies. A more sophisticated system strategy reasoner can include dynamic 
constraint solving capabilities; for example, it can query the policy conformance reasoner for 
applicable policy constraints (based on the state of the environment and the capabilities of the radio 
platform), and then determine a strategy to traverse the policy decision space efficiently to find good 
opportunities for the radio platform to use. 

The design and specification of the interfaces between the radio platform and the policy 
conformance reasoner is a subject for future work. 

3.2 Language Overview 
This section provides a high-level overview of the XG policy language (XGPL) including the 
language elements, and the policy processing logic. In this section we also present the requirements 
that motivate the use of OWL as the machine-understandable representation for the XG policy 
language. 

                                                 
2Positive and negative authorizations are supported. 
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3.2.1 Language Elements 
An XG policy instance consists of a set of facts and rules. Facts define the policy and rules describe 
how to process the facts and hence how the facts relate to one another. 

A policy rule is a statement of policy consisting of a set of facts, but not the rules for interpreting 
those facts. All other facts either further explain a policy rule or make statements about a policy rule. 
Policy rules encode statements of policy, such as, “if peak received power is less than -80dBm then 
maximum EIRP is 10mW.” Most other facts either support the policy rules or refer to the policy 
rules. A policy rule links three facts: a selector description, an opportunity description, and a usage 
constraint description to describe a single statement in a policy, as illustrated in Figure 6. 

The first fact in a policy rule is a selector description. This fact is used to filter policy rules to the set 
of rules that may apply to a given situation. The selector description points to one or more facts 
describing the authority that has jurisdiction over the policy, the frequency, time, and region the 
policy covers, and a description of the radio to which the policy rule applies. For example, a selector 
description may include filters such as “applies to operation in England” or “applies to operations in 
the broadcast bands”. 
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Figure 6: Structure of Policy Facts 

 
The second fact in a policy rule is an opportunity description. This fact provides an expression that is 
used to evaluate whether or not a given environment and device state represents an opportunity for 
this policy rule. For example, it can express opportunities such as: “peak received power is less than 
-80dBm” or “if a beacon is heard at 823MHz.” The opportunity description is not evaluated unless 
the selector description from its policy rule matches. If a potential opportunity, called an opportunity 
instance, matches the opportunity description, a flag in the policy rule indicates if this is a valid or 
invalid opportunity. A valid opportunity indicates transmission that conforms to the usage constraint 
description is permitted. An invalid opportunity indicates that transmission is not permitted.  



 

  13

The final fact in a policy rule is a usage constraint description. This fact provides an expression that 
constrains the radio behavior, such as the emissions permitted and the corresponding sensing 
requirements when using the opportunity described in the policy rule. For example, it can express a 
usage such as: “transmit with a maximum EIRP of 10mW” or “maximum continuous on time must 
be 1 second and the minimum off time must be 100ms” 

3.2.2 Extensible Semantics of Policy Parameters and Processes 
As new radio platforms and policy sets are developed, they will have capabilities that were not 
envisioned when the policy language was developed.  However, we will need to represent facts 
about these radios to fully describe selector, opportunity, and usage constraint descriptions that 
constitute policy. The policy language supports two generic constructs, namely, parameters and 
processes to represent policy concepts. 

Parameter facts define all the values that are in the policy. They include values such as frequency 
bands, power levels, times and geographic areas. Parameters may be bound if the value is known, or 
unbound if the value is not yet known, such as a value that the radio platform is expected to bind. 
Some policy rules will require the radio to perform certain functions to provide the information 
necessary to match an opportunity or usage constraint description. These are described using process 
facts. The process fact describes inputs and output parameters for the function (analogous to a 
function prototype in a programming language such as C) and possibly expressions constraining the 
relationship between the inputs and outputs. The radio is responsible for providing an 
implementation of the process. If a radio doesn't support a needed process, then it cannot use the 
opportunity that the policy rule describes. 

In addition to these generic constructs, we have organized some of the key concepts in this domain 
into ontologies to provide a usable foundation. These ontologies include a structure of authority and 
delegation, frequency classifications, geopolitical regions and spatial descriptions, time, device 
capability descriptions, environment and device state descriptions, physical quantities, and units. 
For example, an authority is an entity that has jurisdiction over some frequency, region, time, and set 
of devices and is authorized to create policy for that jurisdiction. An authority may be, for example, 
a regulatory agency or a primary user who is authorized to lease their spectrum to other users. A fact 
defines the authority and states its jurisdiction. 

Some policy rules may apply only to a radio with a specific set of capabilities, either because the 
policy rule is designed for a specific type of radio or because it requires a particular set of parameter 
types or processes for the policy rule to be evaluated (e.g., supports geo-location, implements 
database access function, or maintains a history of parameter values). Such information is captured 
in a device description fact. 

3.2.3 Meta-Policies 
In absence of any other information, the set unions of the usage constraint descriptions from all the 
policy rules that represent valid opportunities apply.  However, meta-policy facts may state 
relationships between policy rules that modify this logic. We have included three types of meta-
policy facts: grouping, precedence, and disjunction. 

Grouping simply creates a named set of policies so they can be referenced as a group. The group 
may be described either by explicitly listing the member policy rules or by creating an expression 
that describes the policy rules that are members of the group. 

Precedence provides information on how to interpret conflicting policy rules. Two policy rules that 
have matching selector descriptions may also have opportunity descriptions that match a particular 
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opportunity instance.  If both these opportunities represent a valid opportunity the usage constraints 
for both policy rules apply. However, if the policy rules disagree on whether the opportunity 
instance is valid, there is a conflict and the rule with the higher precedence is applied. Precedence 
may be defined between two policy rules or two policy groups. If one policy group has higher 
precedence than another, then all its member policy rules have a higher precedence than the member 
rules of the other group. 

Finally, two policy groups may be disjunctive. If policy groups are disjunctive, then the policy rules 
in one or more of those otherwise applicable groups can be selected for application. 

3.2.4 Policy Processing Logic 
Policy processing, within the policy conformance reasoner for example, requires a set of rules 
describing how to process and interpret the policy facts. These rules govern the selection of policy 
rules that match a given selector instance; the selection of a policy rule that represents a valid 
opportunity given a selector instance and an opportunity instance; and the conformance of a given 
selector, opportunity, and usage constraint instance to the policy set. 

The processing rules allow regulators to create policy rules that build on existing rules. Unless 
modified by a meta-policy, the union of all usage constraints from policy rules that represent valid 
opportunities is required for transmission to occur in that opportunity. Therefore, policy 
administrators do not have to enumerate policies for each band but may, instead, create broad 
policies and refine them where necessary.  

For example, if a policy administrator wanted to constrain emission power in the television 
broadcast bands to –10dBm where an opportunity was detected, but additionally restrict emissions to 
have a 1MHz bandwidth in the frequencies3 represented by channels 58-63, only two policy rules 
need to be written. The first rule would set the –10dBm constraint on all television channels and the 
second rule would set the bandwidth constraint on channels 58-63. If a radio wanted to transmit on 
channel 61, it would have to conform to both emission constraints, as both policy rules apply. At a 
later stage, regulators may easily add a third policy rule that constrains new radios of a particular 
type from transmitting on channel 59 in selected regions, without modifying the other two rules. 

We believe that the union of simpler rules (logical implications) scales well and offers flexible 
management of policies. In contrast, the use of procedural structures such as if-then-else conditions 
and while-loops can result in brittle policy structures over time as policy evolves. For example, a 
small change in policy can result in a large number of changes that must be reflected across several 
if-then-else branches or require the entire policy to be rewritten. Furthermore, an if-then-else 
structure can artificially constrain the order in which conditions are tested by a particular radio. 

3.3 Policy Language Representation Requirements 
A standard representation for the XG policy language is necessary so that regulators can encode 
policies in one language and all XG radios understand the encoded policy. This section discusses the 
features required for representing XGPL, provides an overview for some representations considered 
and introduces the OWL Web Ontology Language, the standard representation used for XGPL. 
Spectrum policies have a complex structure with many dimensions and layers of exceptions that are 
difficult even for human interpretation. In selecting a language, one must ensure that the language is 
capable of capturing and potentially simplifying a number of aspects of this complex structure, 
including: 

                                                 
3 Supporting information such as the mapping of channel numbers to frequencies must exist elsewhere in the policy. 
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• Inheritance. Spectrum policy is very large and complex. The property of inheritance helps 
manage this complexity by enabling policy rules and properties to be extended and reduce 
the need for re-enumeration. For instance, rules for the 2.4GHz unlicensed band can inherit 
and extend rules for general unlicensed use.  

• Reification (rules about rules). Policy rules may make statements about other policy rules. 
For example, we can make a policy rule governing when or where a set of policies will 
apply. 

• Inference (derivable rules). There are rules that may not be explicitly stated, but follow from 
two or more rules. For instance, given that TV channels are 6 MHz wide, and that a policy 
exists to permit XG devices to transmit within a locally unallocated TV channel, one may 
infer that the maximum bandwidth for an XG device using an unallocated TV channel is 6 
MHz. More common languages such as XML and IDL, while perhaps more straightforward 
for humans, do not facilitate such inference. 

• Extensibility. It is imperative that the policy language be extensible in its vocabulary, 
structure, and semantics so that the language can adapt to express new types of policies as 
spectrum policy requirements change. Additionally, different countries may be concerned 
with different types of policies or different signal parameters, and it is crucial that the 
language be extensible to include their requirements. 

• Maintainability. Policy will evolve over time. Small changes in policy should require only 
small, localized changes in the policy encoding and should not have ripple effects throughout 
the policy. Additionally, the language should make it easy to select policies that apply to a 
particular situation (i.e. time, location, frequency bands, device type). This argues for a 
declarative approach based on facts and rules instead of a procedurally based language as 
exceptions. We discuss this more below. 

• Scalability. The policy language must scale to a wide range of devices that may have very 
different levels of resources available. The policy specification must be amenable to 
processing on devices with small memory and computational resources. 

• Standards. Using a standard language representation is preferred as it enables reuse of 
libraries, applications, and tools previously developed. These tools reduce the cost of 
developing and using the language and increase interoperability between different tools. It is 
also expected that using a standard representation will facilitate the international acceptance 
of XGPL. 

The language should be a declarative language based on facts and rules instead of a procedural 
language. One reason is maintainability as mentioned above. In a procedural language, policy would 
become a nested set of exceptions–many layers of if-then-else clauses. This creates two 
problems. First a small change in the policy may then affect many exception clauses, making it 
difficult to update policy. Second, the order in which exceptions are defined necessarily optimizes 
the policy for particular parameters. If a radio is concerned with other parameters, it will have a less 
optimal search. 

Additionally, regulatory policy does not tell the radio what to do; it only defines what constitutes 
authorized use of the spectrum. However, enforcing a policy may require the results of a function 
that may be implemented in the XG radio. Using a declarative language, the policy can describe the 
function and specify rules based on its inputs and outputs without specifying the particular 
implementation of the function. 
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3.3.1 OWL 
The World Wide Web Consortium’s Web Ontology Language is a machine-understandable, 
semantic markup language. It is an extension of the Extensible Markup Language (XML) and the 
Resource Description Framework (RDF). OWL is based on DAML+OIL, a combination of efforts in 
the US (DAML–the DARPA Agent Markup Language) and the European Union (OIL - the 
Ontology Inference Layer) to create a machine-understandable semantic markup language. OWL 
provides a rich language for representing an ontology4, that is knowledge about the interrelationship 
of objects, in a manner that allows a machine to make inferences. 

There are three variations of OWL. OWL DL provides the maximum expressiveness of OWL while 
providing well-understood complexity characteristics of description logics. OWL Lite is a subset of 
OWL DL that trades off expressiveness for processing complexity. For example, it restricts some of 
the constraints available in OWL DL, such as limiting cardinality restrictions to be 0 or 1, or the 
restriction of property constraints locally to a class. OWL Full supports the same language constructs 
as OWL DL, but relaxes some of OWL DL's restrictions that provide its computational guarantees. 
XGPL will use OWL DL as the computational guarantees are required and it needs more 
expressiveness than OWL Lite provides. 

3.3.2 Why OWL for XG? 
OWL provides a crucial set of features that match the requirements for representing the complex 
structure of spectrum policy. Specifically, OWL is extensible, and it supports reification, inference, 
and several object-oriented features such as multiple inheritance. 

Powerful tools are being developed to process OWL that build upon earlier research in the 
knowledge representation, logic, and theorem proving communities in order to support the semantic 
web. 
We chose to focus on markup languages for several reasons. First, the automatic conversion from a 
highly structured markup format to other non-markup formats is relatively easy; the reverse 
transformation is typically more difficult and non-uniform. Markup languages and tools to process 
them are widely adopted around the world and are continually evolving, as is evidenced by the Web. 
These Web markup standards satisfy the need for a representation that is suitable for cross-platform 
information exchange and processing across nations and organizations. 

In an earlier work, Mitola and Maguire investigated a wide variety of languages to represent policy 
for cognitive radios. They concluded, as we do, that a knowledge representation approach is the most 
suitable for radio policy. They recommended the development of a new language based on the 
Knowledge Query and Manipulation Language (KQML), a language that has limited exposure 
outside the knowledge-based systems community. Since the time of their study, the World Wide 
Web Consortium has developed the OWL Web Ontology Language. Using a language that is a W3 
Consortium Recommendation offers potentially wider adoption. 

OWL's predecessor, DAML, has also been demonstrated to be an effective technology in other 
complex policy domains. The KAoS Domain and Policy Services project has successfully used 
DAML to represent distributed logistics policies for the DARPA UltraLog program. 

In summary, OWL provides the features required to implement a machine-understandable semantic 
model. This enables the building of generic applications that depend on knowledge of the semantics 
of the content, including generic theorem provers and reasoning engines that enable deductive 

                                                 
4 An “ontology” is the knowledge about the relationships between objects. However, OWL also uses the term “ontology” 
to refer to an OWL file that encodes ontological information. 
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inference. OWL has the ability to represent the syntax of spectrum policy and the complex 
knowledge embedded in it. Additionally, OWL provides the ability to deduce policy constraints that 
are not explicitly stated for each specific case, but rather inferred from more general statements. 
Finally, we note that OWL is a Recommendation of the World Wide Web Consortium. Thus, we 
believe that OWL is an excellent long-term solution for the XG policy language.  

Therefore, we provide an OWL representation of the XG policy language ontologies. We further 
show how to use these ontologies to specify machine-understandable spectrum policy separately 
from the implementation of the policy within particular radios. 

3.4 Policy Ontologies 
A number of ontologies that represent knowledge related to XG policy have been developed and 
represented using OWL. These ontologies have been made publicly available through a website and 
are also distributed along with the policy conformance reasoner software [PCR]. The concepts in 
these ontologies provide the foundation for expressing machine understandable policies, and 
additional concepts can be added to these ontologies to enhance the range of policies that can be 
supported.  

We provide a summary of the ontologies here. Additional details on the content of these ontologies 
can be found in the XG Policy Language RFC [XGPLF]. 

• Policy Language: The “xgpl.owl” ontology specifies the central concepts for the XG policy 
language including classes and properties to represent policy specifications and how to group 
them. Policy specifications have a selector (specifying authority, frequency, region, time, and 
device class the policy pertains to), an opportunity description (an expression specifying the 
condition for an opportunity to exist), and a usage constraint description (an expression 
specifying constraints on the use of the opportunity). 

• Rules and Expressions: The “xgpl-rl.owl” ontology describes an expression language for 
specifying opportunity descriptions and usage constraint descriptions, and a rule language to 
express policy processing logic. OWL semantics does not natively include rules and 
expressions, and the World Wide Web Consortium (W3C) is currently developing additional 
standards such as the Semantic Web Rule Language to address this issue.  Future work 
should attempt to harmonize this ontology with such standards after they become available.  

• Parameters: The “xgpl-param.owl” ontology specifies the Parameter class; device 
parameters governed by policy and other environmental parameters specified by policy must 
be individuals of this class.  

• Processes: The “xgpl-proc.owl” ontology specifies the Process class; all functions and 
relations that are implemented by the device and used in policy specifications must be 
individuals of this class. Future work may attempt to harmonize this ontology with W3C the 
OWL Services ontologies being developed by the W3C. 

• Frequency: The “xgpl-freq.owl” ontology specifies concepts related to frequency. 

• Geography and Geometry: The “xgpl-regn.owl” ontology specifies concepts related to 
geographical and geometric regions. 

• Time: The “xgpl-time.owl” ontology specifies concepts related to time. 

• Device Types and Capabilities: The “xgpl-devc.owl” ontology specifies concepts related to 
device capabilities and device types. 
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• Authorities and Delegation: The “xgpl-auth.owl” ontology specifies concepts related to the 
structure of authority, their jurisdictions, and delegation relationships between authorities. 

• Physical Quantities: The “xgpl-physq.owl” ontology is a utility ontology that specifies 
concepts related to physical quantities that are used in policy specifications. 

• Units and Conversions: The “xgpl-physq.owl” ontology is a utility ontology that specifies 
concepts related to units and conversions. 

• Abstract Behaviors: The “xgpl-abs.owl” ontology specifies concepts related to abstract 
behaviors (in terms of Parameter and Process individuals) that XG devices must support.  

• Environment: The “xgpl-env.owl” ontology is a placeholder for specifying concepts related 
to the operational environment. 

• System-specific Extensions: The “xgpl-sysect.owl” ontology is a placeholder for specifying 
concepts related to system-specific extensions. 

 
These ontologies, currently populated with more than a hundred concepts, are able to support the 
encoding of a small range of notional XG policies. The above ontologies, represented using OWL, 
can be readily extended. Additional concepts can be imported from other standard ontologies as they 
become available.  These ontologies must be developed further and populated with a richer set of 
concepts, based on inputs from domain experts – policy administrators, spectrum planners, and XG 
device manufacturers – in order to support a wider range of policies required for eventual 
deployment and maintenance. 

3.5 Policy Conformance Reasoner (PCR) Software and Policy Utilities 
A key component of the XG Policy Language Framework is the Policy Conformance Reasoner 
(PCR), which ensures that spectrum use proposed by the XG device is authorized by policy.  BBN 
has developed a reference implementation of the PCR based on version 1.0 of the XG Policy 
Language Framework RFC. The source code for the PCR software and related utilities have been 
delivered to the participants of the XG program, and have also been publicly released with 
Government permission under a non-restrictive license. 
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Figure 7: Policy Conformance Reasoner Software Architecture 

The PCR performs the following three functions: 

1. Loads (fetches and interprets) policy content encoded in the XG policy language that is 
available locally or across the network. Both the OWL representation and the shorthand 
representation introduced in the XG Policy Language Framework RFC are supported. 

2. Validates the use of spectrum opportunities proposed by the XG device against the loaded 
policy content. The request must take the form of a fully bound opportunity, that is, all 
parameters that are required to validate the opportunity must be bound to values.  

3. Searches for spectrum opportunities based on device queries that contain partially bound 
opportunities, and optionally device-specific constraints. Currently the search capability has 
been implemented as a standalone research prototype, which is to be integrated with the rest 
of the PCR software in follow-on work. 

The PCR is based on a knowledge-based systems approach.  

Loading policy content essentially populates a knowledge base with fact assertions and inference 
rules. Policy content may depend on background knowledge (other fact assertions and inference 
rules) that can be imported from existing ontologies. Many, but not all, of these facts express 
constraints on various parameters governing spectrum use by a radio.  

Validation of proposed spectrum use involves making assertions based on what the device intends to 
do, applying the inference rules, and checking if the device’s assertions are consistent with (i.e. do 
not contradict) the facts asserted by the policy. More generally, one may view this as an automated 
theorem-proving procedure. 

Searching the knowledge base for potential opportunities that are authorized by policy involves 
making additional assertions on parameters that will satisfy the constraints specified by the policy. In 
general, one may view this as a constraint solving procedure. Several approaches are possible 
depending on the nature of the constraints (e.g. logical, integer arithmetic, real, linear, non-linear, or 
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a combination), performance requirements, and the desired solution quality. Typically no single 
approach works uniformly well across the range of constraints; therefore implementations must be 
customized to the requirements. 

In order to validate and search for opportunities, the PCR requires information about the capabilities, 
current configuration and state of the device and its environment. For this purpose the device must 
provide an interface through which the PCR can access device primitives related to capabilities, 
configuration, and state information. 

The software architecture of the PCR is illustrated in Figure 7.  The PCR is implemented using the 
C/C++ language, and the current implementation depends on three freely available software 
packages (also implemented in C/C++): 

1. Raptor, OWL/RDF parser libraries, which use the libxml2 libraries to parse XML and to 
fetch content over the Internet 

2. CLIPS, a rule-based inference engine 
3. Realpaver, a package for solving a range of non-linear real arithmetic constraints  

The PCR interacts with the rest of the XG Device through a clearly demarcated interface, which is 
currently based on text strings exchanged across BSD sockets. Alternative interfaces can be created 
by directly accessing the lower level functions implemented by the PCR. For convenience, the 
interface is provided over two different sockets: one for policy management functions such as 
loading, and another to serve validation and search requests. 

When the PCR receives a request for loading policy, it fetches and parses the policy using the Raptor 
libraries. Supporting ontologies that are imported by the policy and rules that encode the policy 
processing logic are also fetched and parsed. Sets of triples (RDF statements each containing a 
Subject, a Predicate, and an Object) are generated as a result of this processing.  These triples are 
then loaded into CLIPS, and OWL processing (e.g. type inference) is done subsequently using rules 
we have implemented in CLIPS. Additional rules then convert the policy represented in OWL into 
an internal representation (quite similar to the shorthand notation) that is suitable for processing 
validation requests. 

When the PCR receives a validation request, it asserts additional facts into CLIPS and runs the 
policy processing rules. If the assertions satisfy the loaded policy (i.e. there are no contradictions), 
then the request is validated. If the request fails to validate, diagnostic messages of conflicting facts 
in the policy can be output optionally. 

When the PCR receives a search request, the request must include relevant selector and opportunity 
parameters. When making a query, the device can optionally include additional constraints of its 
own (e.g. opportunities with a bandwidth of at least 1 MHz) in addition to those imposed by the 
policy. The constraint expressions from all selected policy rules are then extracted, and output (along 
with any device constraints) in a form suitable for input to a constraint solver.  

We have prototyped the search capability using the Realpaver software which can solve a set of non-
linear real arithmetic constraints. Realpaver produces output in the form of a paving, a collection of 
at most k (a user-specified number) INNER and OUTER boxes, the union of which approximate all 
possible solutions that satisfy the constraints. INNER boxes represent valid opportunities usable by 
XG systems as is, whereas OUTER boxes must be processed further to extract valid opportunities. 
Alternative approaches to search and the integration of this capability with the PCR software are the 
subject of future work. 

The PCR software can run either in the foreground or as a daemon in the background.  The policy 
language ontologies can be fetched directly from their respective URLs, or the PCR can be 
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configured to use locally cached copies. A test harness called the PCR Client is included in the 
distribution along with an encoded policy example and sample validation requests. 

In addition, format conversion utilities that enable the use of a shorthand notation (described in 
[XGPLF]) for representing policy have also been developed. General-purpose graphical editing 
environments for OWL are in their infancy. Until they mature and can be customized for editing XG 
policy, our conversion utilities offer a convenient text-based alternative to encoding XG policies. 

Details on how to use the software and the related utilities, and a syntax specification for the PCR 
interface can be found in the distribution.  

3.6 Encoded Policy Examples and PCR Tests 
In this section, we provide an overview of the capabilities of the Policy Conformance Reasoner 
software through a sampling of the variety of policies it can handle, and a characterization of its 
performance for validation. 

3.6.1 Opportunity Validation and Search using an Example Policy 
The first example we describe simple policies that provide traditional opportunities to the radio 
without requiring sensing. In this example, Policy set E1 sets up a maximum power spectral density 
profile over a range of frequencies between 1.433 and 1.445 GHz.  Additional constraints on the 
maximum continuous ON time and the minimum OFF time (between consecutive ON times) are also 
specified.  This policy is illustrated in the top left corner of Figure 8. 

We encoded this policy using the XG policy language and loaded it in the PCR. Using test scripts we 
emulated the behavior of an XG device by making opportunity validation requests to the PCR. The 
requests generated by the test scripts sampled the parameter space uniformly. The results of the 
validation test are illustrated in the top right corner of Figure 8 with green marks for valid 
opportunities and red marks for invalid opportunities. The PSD vs. Frequency plot indicates that the 
PCR is interpreting Policy E1 as expected. 

In order to demonstrate the ability to incrementally modify policy, we add Policy E2, which 
modifies Policy E1 by adding a notch-out band between 1.442 and 1.443 GHz where no emissions 
are allowed by XG devices. The combined policy is illustrated in the bottom left corner of Figure 8.  
We encoded Policy E2, loaded E1 and E2 combined into the PCR and ran validation tests.  The 
results plotted in the bottom right of Figure 8 show the presence of the notch-out band as expected. 

Next we output the constraints set by the policies E1 and E2 in a form suitable for input to the 
realpaver constraint solver. The solver inputs and output for our example are shown in Table 1. 
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Figure 8: Policy E1 with PSD Constraints Modified by E2 to introduce a Notch-out Band 

Table 1: Opportunity Search Based on Non-Linear Real Constraint Solving 
Solver Input Solver Output 

Bisection choice = mn, mode = paving; /* realpaver tool directives */ 
Constants 
 f0 = 1.433E9, f1 = 1.436E9, f2 = 1.440E9, 
 f3 = 1.442E9, f4 = 1.443E9, f5 = 1.445E9; 
Variables 
  XmitMin in [0.0, +oo[, XmitMax in [0.0, +oo[, 
  PSD in [0.0, +oo[, OnTime in [0.0, +oo[; 
Constraints 
  XmitMax >= XmitMin,                         /* background info */ 
  XmitMin >= f0,                                     /* selector */ 
  XmitMax <= f5,                                    /* selector */ 
 
  /* conjunctions and disjunctions encoded using min and max */   
  min(f4 - XmitMin, XmitMax - f3) <= 0.0,  /* notch-out */ 
  min( PSD - 1.0, 
   min(max(max(1.433E9 - XmitMin, XmitMax - 1.436E9), PSD - 2.0), 
     max(max(1.440E9 - XmitMin, XmitMax - 1.445E9), PSD - 2.0))) <= 0.0, 
  min(OnTime - 1.0, 
   max(max(1.433E9 - XmitMin, XmitMax - 1.436E9), OnTime - 5.0)) <= 0.0; 

Query: 
   (requestOpp) 
Response:  
   INNER BOX 1 
   XmitMin in [1437000000,1438111111.111111] 
   XmitMax in [1438666666.666667, 1440333333.333333] 
   PSD in [0, 1] 
   OnTime in [0, 1] 
 
   Precision: 1.67e+06, elapsed time: 10 ms 
 

The solver returns 1024 boxes (by default) that contain all the solutions.  The very first box is usable, 
but does not represent the best available opportunity for the radio. An issue for this approach is that 
when the problem in under-constrained, some solutions may be trivial or unusable by the device, and 
useful solutions contained within OUTER boxes require further narrowing. Although all solutions 
are contained within the 1024 boxes, subsets of combinations of the boxes are valid, but it is not 
practical to compute and test them all.   

A more useful approach is to pass constraints from the device to the solver through the opportunity 
query. For example, in the above case, if we add a constraint that the device requires a 9MHz 
opportunity, a unique solution is returned. 
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In the XG Policy Language, usage constraints are included in the UseDesc class and these 
constraints can be extracted automatically. Therefore the solver can be integrated with the PCR by 
writing some glue software. 

3.6.2 Other examples 
We will briefly describe four other sets of policy examples that we have encoded and tested the PCR 
for its ability to load these policies and validate opportunities. In all these cases, the PCR is able to 
load the policies and the results of the validation indicate the policy is interpreted correctly. 

3.6.2.1 Sensing-based Policies in Adjacent and Overlapping Frequency bands 

The purpose of this example was two-fold. First, spectrum opportunities of interest to XG will 
involve the sensing of primary signals, and policies that enable such sharing are required. Second, it 
is desirable to be able to combine policies in frequency bands that are either adjoining or 
overlapping. 

This example contains three sets: P1, P2, and P3. P1 applies to the frequency range 3.6-3.7 GHz, P2 
applies to the adjoining frequency range 3.5-3.6GHz, and P3 applies to the frequency range 3.45-
3.55 GHz, which overlaps P2. 

P1 authorizes XG devices to transmit with a maximum PSD of 1nW/Hz if the incumbent signal 
power is sensed to be –105dBm. The corresponding values for P2 are 2nW/Hz and –80dBm. The 
corresponding values for P3 are 1.5nW/Hz and –95dBm. 

All three policies impose additional constraints on the minimum look-through interval for sensing, 
maximum ON time, minimum OFF time, and maximum power leakage outside the band. 

3.6.2.2 Geographical Policies 
The purpose of this example was to specify policies for location-aware devices. Two policies P4 and 
P5 were specified that applied to the same frequency range but with different operational constraints 
within different regions (specified by latitude and longitude ranges). 

3.6.2.3 Time-based Policies – Opportunity Expiration 
The purpose of this example was to specify time-based policies. The ability to expire policies 
enables experimental policies that can then be replaced by other policies at a later time. Two policies 
T1 and T2 that applied to the same frequency and region were specified. T1 expired at midnight on a 
particular day and T2 (which relaxed transmission power constraints) took effect after T1 expired. 

3.6.2.4 Reuse of Television Spectrum 
The purpose of this example was three-fold. First, there is interest within the industry and the 
regulatory community to investigate the reuse of television spectrum, and therefore it is useful to 
consider policy examples for this scenario. Second, the ability to specify policies that involve a 
functional relationship between parameters is of interest. Third, it is useful to be able to specify 
policies with different constraints based on varying device capabilities. 

This example included two policies TV1 and TV2 that applied to television channels 60-69. TV1 
applied to devices based on simple energy sensing, and authorized a maximum PSD of –53 dBm/Hz 
if the sensed power was below -100 dBm.  TV2 applied to more capable devices that employ sub-
noise detection of DTV signals, and authorized a transmit PSD of (-160 – sensed power) dBm/Hz 
provided the maximum sensed power of the DTV signal was below –107dB/m, and the maximum 
transmit PSD did not exceed -40 dBm/Hz. 
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3.6.3 Policy Tools Capabilities Summary 
The capabilities of the policy tools developed in the XAP project are summarized in Table 2. With 
further development, we believe that the technology can be transitioned to XG systems in follow-on 
work. 

Table 2: Policy Tools Capabilities Summary 
Capability Status 

Adjacent band policies Yes, can express, validate, and have example 
Overlapping policies Yes, can express, validate, and have example 
Simple geographic constraints Yes, can express, validate, and have example 
Simple temporal constraints, expiration Yes, can express, validate, and have example 
Device capability based policies Yes, can express, validate, and have example 
Off-line merge of overlapping policies Yes, can validate, and have example 
Extensible, declarative, incrementally modifiable Yes, based on semantic web and rule engine 
Validation performance and scalability Yes, sub-second response on PC with 10s of policies and 

100s of facts, significant gains possible from 
straightforward implementation changes 

Disjunction and other meta-policies No, can express, but not validate, and complicates search 
(selectors are a practical workaround) 

Candidate crosses policy region (different set of rules 
apply to different parts of same candidate) 

No, but a practical workaround exists (use selectors, e.g. 
UWB specific selector), not a show-stopper 

Supporting background ontologies Yes, but quite sparse, and needs enhancement driven by 
further policy use cases, proposed for Phase 3 

On-line merge/revoke of policies No, but proposed for Phase 3 
Policy set inheritance No, but possible through language extension 
Authority delegation and user management structure No, but possible through language extension 
Validation engine Yes, software already available, more performance and 

robustness enhancements, and CORBA interface planned 
for Phase 3 

Search engine No, working prototype code, anticipate integration early in 
Phase 3 

Syntax and logical consistency checker Yes, offline based on OWL consistency checkers 
Human-friendly policy encoding tools No, have engineer-usable CLIPS-based surface notation 

along with tools to convert to/from OWL, but a graphical 
development environment friendly to spectrum-manager 
proposed for Phase 3 

Domain-specific policy interaction analyzer No, do not anticipate need for Phase 3, but needed 
eventually 

Trusted policy distribution and management system No, do not anticipate need for Phase 3, but needed 
eventually, may leverage trusted download for software-
defined radio 

3.6.4 Validation Performance 
In this section we report a preliminary evaluation of the current prototype PCR software. A purpose 
of the evaluation was to serve as a rough guideline for current capabilities while developing the XG 
policy technology roadmap described in Section 7. 

The results of loading various combinations of policy sets that we described earlier are shown in 
Figure 9. The combinations considered are  

• Sensing-based policies P1 (Section 3.6.2.1) 

• Sensing-based policies in adjoining and overlapping bands P1+P2+P3 (Section 3.6.2.1) 

• Geographic policies P4+P5 (Section 3.6.2.2) 

• Time-based policies T1+T2 (Section 3.6.2.3) 
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• Maximum PSD and Notch-out policies E1+E2 (Section 3.6.1) 

• Re-use of television spectrum policy TV1 (Section 3.6.2.4) 

• All of the above 

Metrics that we have plotted in Figure 9 include the number of common processing rules (tens), the 
number of policies, the number of precedence meta-policies after inference (tens), the number of 
selected policies for the opportunity to be validated, the total number of facts (tens), the time for 
preprocessing the encoded policy to the internal form, and the time for validate an opportunity. The 
experiments were preformed on a 800MHz Pentium III laptop with 256MB of RAM. 
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Figure 9: Validation Performance of the Policy Conformance Reasoner 

The key observations we made were the following: 
• PCR prototype is able to handle over a hundred concepts and over a thousand facts, covering 

an interesting range of policies of interest to XG, and provide a sub-second validation time 
response on with modest computing hardware requirements 

• The current prototype loads and processes the policies upon each request. By caching the 
results of preprocessing the policies (e.g. processing precedence meta-policies has a 
quadratic complexity in the number of policies), significant performance gains can be 
achieved. 

• It is beneficial to hierarchically organize policies so that we can limit the number of policies 
that are selected at any time. This will reduce the number of facts over which the inference 
rules must be run for each validation. 

Other software enhancements that can be considered in future work are documented in the TODO 
list included in the PCR software distribution. 
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4 Abstract Behaviors 
In order to facilitate the verification, validation, and accreditation process for a wide range of diverse 
XG systems, it is desirable to identify and formally specify the minimal set of behaviors that a system 
must implement to be able to safely share or use available spectrum and conform to the requirements of 
regulators and spectrum assignees.  In short, if a device meets this minimal set of requirements, its 
opportunistic use of the spectrum will be “safe” from the perspective of regulators and incumbent 
spectrum assignees. 

The challenge in specifying a minimal set of behaviors is, of course, that the range of envisioned XG 
systems is large.  An XG system could be a simple transceiver capable of employing IEEE 802.11 
signaling on any one of sixteen different frequencies, or an XG system could be a fully software-
programmable radio capable of transmitting at any frequency in the range from 3KHz to 300 GHz using 
any one of a hundred encoding techniques.  The challenge is how to specify behaviors, without requiring 
extraneous functionality for the simple system and without under-specifying the behavior of the fully 
programmable system.  At the same time, the set of behaviors should be all of those necessary and 
sufficient for regulators (and incumbent spectrum assignees) to deem a radio safe and compliant, so that 
a new set of guidelines is not required for certifying each new XG implementation. 

The solution to this challenge is to specify abstractions – behaviors, interfaces and information objects – 
that allow considerable flexibility in how the abstractions are implemented. An abstract behavior is a 
specification of the behavior of an XG system.  Abstract behaviors interact with each other and with the 
system via abstract interfaces. An abstract interface is an interface that specifies a set of functions (but 
not their implementations), and an abstract information object specifies the information that passes 
across the functional interface.  

In this document we specify a set of abstract behaviors that XG-compliant systems must implement; we 
include these behaviors in the accreditable kernel and argue that it is those behaviors that are necessary 
and sufficient to satisfy policy requirements and demands of spectrum assignees without requiring the 
development of a new set of guidelines for certifying each new XG implementation.  

Related to the notion of an accreditable kernel is the notion of traceability. An XG system 
implementation, therefore, must support a one-to-one mapping between the external physical behavior 
(e.g. emission profile) of the system and the instances of particular abstract behaviors that the system 
implements.  Linking external behavior (which is fundamentally what spectrum regulators and 
incumbent assignees care about) with internal abstract behavior provides both a standard for minimalism 
(if it doesn’t affect external behavior, it isn’t a function or behavior in the minimal set) and suggests an 
approach to auditing radio behavior, to ensure the radio is well behaved. 

Following this rationale, we have developed a set of guidelines to help determine whether a given 
abstract behavior must be included in the accreditable kernel or not.  In order to be included, the 
behavior must satisfy at least one of the following: 

• It is required to support opportunistic sharing of spectrum 
• It is required to support policy-defined operation 
• It provides traceability from policy through behavior to emissions 

The abstract behaviors are only intended to provide guidelines for the high-level system design of the 
individual XG systems. Although the abstract behaviors will cover the important attributes that 
characterize XG systems, they are not intended to be detailed design- or implementation-level 
specifications of particular XG systems. 
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In the following subsection, we present an UML model of an abstract XG radio system.  We present 
three kinds of abstractions - Interfaces, Behaviors, and Information Objects - in terms of which an 
abstract system can be described.  We provide a high level object-oriented description of the abstract 
XG radio system in terms of these three kinds of abstractions. For a more detailed treatment, please refer 
to the draft Abstract Behaviors RFC that not only describes each of the three kinds of abstractions in 
significant detail, but also describes a reference radio design based on the abstractions. 
 

4.1 An Abstract Model of the XG Radio System 
In this section, we present an abstract model of an XG radio system (radio plus software on it and its 
interactions with the outside world).  That may appear to be at odds with our goal in this document of 
defining a minimal set of essential behaviors, our accreditable kernel.  The abstract behaviors that reside 
within the accreditable kernel, however, interact (through XG Interfaces) with other portions of the XG 
radio system.  So in defining the accreditable kernel, we also need to present how it interacts with the 
portions of the radio outside the accreditable kernel.  That’s the focus of this section. 

Since our goal is to define the accreditable kernel, and leave the details of the rest of the radio 
completely open to innovation (and indeed, to keep the accreditable kernel open to innovation too), this 
abstract model is a careful combination of concreteness and vagueness.  In general, we seek to 
specifically describe what functionalities have to be present, yet we do not specify the details of how 
those functionalities are realized. 
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PolicyInterfacePolicyConformanceReasoner1

SystemStrategyReasoner AllocationInterface*
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Figure 10: XG Radio System Abstract Model 

In this section, we define a UML class for a radio, entitled XgRadioSystem.  This class is illustrated in 
Figure 10 and is composed of all the components that an XG radio might need.  Many components are 
optional, but some components must be present, and some components may be present one or more 
times. 

The purpose of this representation is to illustrate and represent the basic hardware and primitives of a 
host radio system that enables opportunistic use of spectrum (e.g., RF front end, DSP hardware, system 



 

  28

software including the OS, middleware, and libraries, and primitives for networking protocols, 
waveform agility, and beam forming). This configuration of components is only one of many ways that 
one might choose to modularize the functions of an XG radio. 

In general, each component of the XgRadioSystem class has a related interface.  (It is important to keep 
in mind, however, that other classes may also implement a particular interface.  The mapping shown in 
Figure 10 simply indicates that the class, if present, implements the associated interfaces).  The 
accreditable kernel interacts with the various components through these interfaces, using information 
objects.  So in this section we describe what each component does, and define a generic class, XG 
Interface, from which each component's interface will be derived. In anticipation of defining the 
behaviors of the accreditable kernel, we define a generic class of behaviors, XG Behavior. Finally, we 
define three generic classes of XG Information Objects from which all information objects used in the 
interfaces will be derived. 

4.1.1 Subsystems of the XG Radio System 
The various components of the XgRadioSystem class serve different purposes.  We describe each 
component and its function here. 

4.1.1.1 AccreditableKernel (required; one instance) 
The AccreditableKernel class has the following key functions: 

(i) Implement the included XG abstract behaviors and provide access to them;  
(ii) Manage access to the state, configuration, and capabilities of the radio; and 
(iii) Manage access to primitives implemented within the radio that can be governed by 

policy. 
Every instance of the XgRadioSystem must have an instance of the AccreditableKernel. 

The AccreditableKernel class implements an interface (the SystemCapabilitiesInterface) through which 
it provides access to primitives deemed necessary to ensure that control of the radio’s visible behavior 
is located in the AccreditableKernel and that the behavior is controlled in a fashion consistent with XG 
policies. These primitives include Parameters and Processes described within the XG Policy Language 
Framework (see [XGPLF]). 

The accreditable kernel also has an association with every other subsystem in the radio for each 
primitive implemented in that subsystem (these associations are not shown in the diagram above). 

4.1.1.2 Sensor (optional; may have more than one) 
The Sensor class provides situational information to the radio about the spectral environment at a given 
location and time. The sensor outputs need not be limited to the RF spectral environment; the provided 
information could include a variety of other values such as geo-location, temperature, and proximity to 
specific targets that could be used as parameters for system policy. 

Sensors are optional because radios may learn through other means, such as configuration or through 
dissemination protocols, what spectrum use local operating rules authorize.  Alternatively, the sensor 
functionality may be implemented within the transceiver subsystem. There may be more than one 
sensor because a radio may sense different information using different devices.  

The Sensor class implements the interface called SensorInterface. 
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4.1.1.3 Transceiver (required; at least one) 
The Transceiver class provides radio communications capabilities, including the RF front-end and the 
baseband signal processing functions.   In general, we expect these communications capabilities to be 
agile and that the interface to the Transceiver will reflect this agility. 

Instances of XgRadioSystem contain at least one Transceiver, by which we mean it must have at least a 
receiver or a transmitter capability.  (Without a transceiver, we don’t have a radio!). 

The Transceiver implements the interface called TransceiverInterface.  In cases where the transceiver is 
also a sensor, it may make sense for the transceiver to implement SensorInterface as well. 

4.1.1.4 PolicyConformanceReasoner (required; one instance) 
The PolicyConformanceReasoner class determines whether proposed spectrum use is consistent with 
accredited policy (e.g. approved by a relevant regulatory authority and incumbent spectrum assignee), 
knowledge of the local spectrum (e.g. information from the Sensor class), and other background 
knowledge.  Note that the PolicyConformanceReasoner primarily determines if proposed use is 
acceptable – the task of developing proposed usages is left to other subsystems, for example, the 
SystemStrategyReasoner. The PolicyConformanceReasoner may, however, perform additional policy 
functions. It can support queries on policy to extract authorized usages for a given situation, support 
filtering policy information to obtain a subset of policies that apply to a current situation, generate 
machine proofs that a given usage conforms to policy, and manage the loading and revocation of policy 
sets. 

Instances of XgRadioSystem must contain a PolicyConformanceReasoner, as the 
PolicyConformanceReasoner implements the functions that determine if the XG radio is in compliance 
with any policy restrictions and the abstract kernel depends on conformance reasoner to accredit usages 

The PolicyConformanceReasoner class implements the interface called PolicyInterface. 

4.1.1.5 SystemStrategyReasoner (optional; may have more than one) 
The SystemStrategyReasoner class determines the system's strategy for opportunistic spectrum sharing 
given the constraints of sensor information, regulatory and system policy constraints.  This reasoner is 
aware of system-specific optimizations and tradeoffs and has control over the radio platform. 

In many ways, the SystemStrategyReasoner is the complement of the PolicyConformanceReasoner.  
The conformance reasoner determines whether a particular type of spectrum use is authorized by policy 
in the current environment; the SystemStrategyReasoner determines what opportunities to use spectrum 
exist in the current environment that are suitable for the XG radio.  It is important to note that the 
strategy reasoner is not the only place in an XG radio that can identify or allocate opportunities: 
opportunities can be found from other nodes through an awareness dissemination protocol or this 
function can be incorporated within a medium access control protocol. 
The SystemStrategyReasoner class, therefore, is one of several classes that can perform the opportunity 
allocation function, and so it implements the interface called the AllocationInterface. This class can 
access the state, capabilities, and configuration information through the SystemCapabilitiesInterface. 

4.1.1.6 VirtualCoordinationChannel (optional; may have more than one) 
In many situations, XG radios need to communicate with neighboring XG radios to coordinate 
awareness of the spectrum (e.g. are a set of frequencies unused at both sender and potential receivers?) 
and coordinate use (e.g., jointly determine which frequency bands will be used). Coordination channels 
can be pre-configured, discovered, or created when needed. Furthermore, the channel may be 
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implemented using waveform-level signaling, as a specialized MAC layer, or even at the application 
layer using higher layer protocols using out-of-band network access. 

The VirtualCoordinationChannel class represents the logical communication channel used for this 
purpose.  

The VirtualCoordinationChannel class implements the interface called 
VirtualCoordinationChannelInterface. 

4.1.1.7 MediumAccessControl (optional; may have more than one) 
The MediumAccessControl class includes higher layer functionality such as neighbor discovery, 
topology management, and link scheduling and sends/receives Layer 2 protocol data units to the 
transceiver. In an opportunistic spectrum-sharing environment, the higher layers need to interact with 
the XG radio. For example, links must be scheduled such that communicating peers select and use 
common opportunities that are deconflicted from opportunities used by other nodes. 

The MediumAccessControl class implements the interface called XgToMediumAccessControlInterface. 

4.2 XG Interfaces 
In this subsection, we sketch the functions of generic Interface class and briefly mention the purpose of 
each of the major interfaces in XgRadioSystem.   

As illustrated in Figure 11, all XG interfaces extend the Interface abstract class, or its subclass 
ServiceAccessPoint.  In addition to the seven interfaces associated with the subsystems described in 
Section 4.1.1, we define two additional interfaces that are associated with the protocol behaviors 
included in the AccreditableKernel. 
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+removeObserver(b:Behavior):void
+notifyObservers():void
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+notifyObservers():void

SensorInterface TransceiverInterface

AllocationInterface

PolicyInterface

SystemCapabilitiesInterface VirtualCoordinationChannelInterface

XgToMediumAccessControlInterface

AwarenessDisseminationServiceAccessPoint

UseCoordinationServiceAccessPoint

ServiceAccessPoint

+send(p:ProtocolDataUnit):void
+receive():ProtocolDataUnit

 
Figure 11: XG Interfaces 
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The Interface class provides five methods: 
• getVersion, a method used to learn the version of the Interface; and 
• getCredential, a method used to get credentials of the class that implements the interface, for 

example, digital certificates that assert that the implementation has been accredited. 
getCredential allows trust establishment mechanisms to be established to work across XG 
interfaces. This enables various components of the radio to be accredited and enhanced 
separately, and the use of particular combinations to be governed by policy if needed. 

• a set of three methods that behaviors use to register and unregister at an interface and to be 
notified of events. Behaviors and Interfaces together implement an Observer–Subject design 
pattern [DP]. A behavior can register or unregister itself at an interface by calling the 
addObserver and removeObserver methods respectively. The notifyObservers method is called, 
which in turn calls the update methods on all instances of Behavior that are registered with the 
interface.  For example, the SpectrumAwarenessManagement behavior can register with the 
SensorInterface and the AwarenessDisseminationServiceAccessPoint in order to know when 
new sensed awareness information or protocol based awareness information is received. 

The ServiceAccessPoint class extends the Interface class with two additional methods: 
• send, a method to send a protocol data unit. Note that the definition of protocol data unit (PDU) 

is somewhat broader in this document than is traditional – in this context, a PDU is protocol data 
plus a set of associated attributes which often includes information about what channel the PDU 
is to be sent on 

• receive, a method to receive a protocol data unit, typically invoked by an observer in response to 
a notification 

XG abstract behaviors interact with each other and with the system through the following extensible 
interface set: 

1. SensorInterface: The interface through which sensed awareness (of the operational 
environment, i.e. information such as location and spectrum) is accessed and sensing behavior is 
controlled. 

2. TransceiverInterface: The interface through which the agile XG transceiver (i.e. parameters 
such as transmit power, frequency, waveform, and beamform) is controlled and emission 
constraints are conveyed. 

3. SystemCapabilitiesInterface: The interface through which the capabilities, the current 
configuration, and state of the XG system can be accessed. 

4. PolicyInterface: The interface through which opportunity instances are validated against 
applicable regulatory, incumbent spectrum assignee, and system policy.  This interface may 
additionally provide access to policy information and policy management directives. 

5. AllocationInterface: The interface through which a specific opportunity is allocated for use 
from all available opportunities. 

6. VirtualCoordinationChannelInterface: The interface through which virtual control channels 
(which carry XG protocol data) are managed and accessed. 

7. XgToMediumAccessControlInterface: The interface through which the MAC layer can 
interact with the XG abstract behaviors (for example, to support link setup and maintenance, 
contention management, and framing). 

8. AwarenessDisseminationServiceAccessPoint: The interface through which the 
AwarenessDissemination protocol behavior can be accessed. The information accessed through 
this interface is processed spectrum awareness that is acquired from or is to be disseminated to 
other nodes by the protocol (rather than the individual protocol data units exchanged by a 
protocol implementing this behavior over virtual coordination channels) 



 

  32

9. UseCoordinationServiceAccessPoint: The interface through which the UseCoordination 
protocol behavior can be accessed.  The information accessed through this interface include 
higher level protocol directives resulting in acquisition and release of opportunities (rather than 
the individual protocol data units exchanged by a protocol implementing this behavior over 
virtual coordination channels) 

XG systems that implement these interfaces are anticipated to inherit and extend these interfaces and the 
related classes in order to support real-time operation, access control, error or exception handling, 
enhanced features and system-specific optimizations. 

4.3 XG Behaviors 
XG systems implement the abstract behaviors necessary to enable opportunistic use of spectrum, policy-
defined operation, and traceability. As a guideline to identifying which abstract behaviors are necessary, 
we use the following rationale. XG systems must minimally agree on how they characterize spectrum 
conditions (spectral awareness) and on the opportunities available to use spectrum (opportunity 
instances), and must support behaviors that enable the dissemination of spectral awareness and 
opportunity information. In addition, for traceability, they must account for emissions they make in 
terms of the policies that authorize each emission, and the valid opportunities that were identified to 
enable the emission.  Finally, they must support behaviors that allow systems to coordinate the use of 
opportunities either to form a data communications channel (at Layers 2 and above), or to avoid 
opportunities selected by other XG systems. 

XG abstract behaviors extend the Behavior abstract class. As illustrated in Figure 12, the subclasses of 
Behavior include: 

 InternalBehavior, the class of behaviors that are internal to the XG system 
 ProtocolBehavior, the class of behaviors that involve communications with agents external to an 

XG system. The protocol behaviors use virtual coordination channels to exchange XG protocol 
information, and access to the protocol behaviors can be made through a ServiceAccessPoint 
interface. 

Behaviors interact with other behaviors and the rest of the system through Interfaces. Behaviors and 
Interfaces implement the Observer-Subject design pattern. A behavior can register itself at an interface, 
and the behavior implements a generic update method that can be called by the interface to notify the 
behavior of any state changes. 

We have identified the following four XG abstract behaviors: 
1. SpectrumAwarenessManagement: an InternalBehavior, which describes how opportunity 

information is acquired, identified, represented and disseminated within and across XG systems.  
This behavior encompasses awareness information gained from sensing, configuration, and 
through AwarenessDissemination instances. 

2. AwarenessDissemination: a ProtocolBehavior, which can be used by XG systems to share 
opportunity awareness information. 

3. UsageAccountingManagement: an InternalBehavior, which enables emissions to be traced to a 
valid opportunity enabled by policy. This behavior is responsible for ensuring that every 
opportunity is validated for policy conformance prior to its use.  This behavior is also responsible 
for ensuring that all parameters governing operation are correctly bound to the values specified 
within the validated opportunity. 

4. UseCoordination: a ProtocolBehavior, which allows XG systems to coordinate the use of 
selected opportunities with other (XG and non-XG) systems. 



 

  33

A natural question to ask is why these four behaviors in particular are included in the accreditable kernel 
and why some others (notably, allocation) not included. Recall from Section 1 that abstract behaviors 
must satisfy at least one of the following to be included in the accreditable kernel: 

• It is required to support opportunistic sharing of spectrum 
• It is required to support policy-defined operation 
• It provides traceability from policy through behavior to emissions 
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Figure 12: XG Internal and Protocol Behavior Classes 

A radio without awareness of opportunities will cease to be an XG radio (i.e. it cannot perform 
opportunistic spectrum sharing); therefore, SpectrumAwarenessManagement is included within the 
accreditable kernel. 

UsageAccountingManagement addresses the policy-defined operation and traceability requirements 
directly, and is included within the accreditable kernel. 

In addition, traceability requires that trustable dissemination and coordination protocol behaviors 
(though not necessarily particular protocols) may be required by policy in some circumstances. An 
example of this requirement can be found in proposed approaches for the reuse of public safety bands 
through the use of beacon signals that authorize use. These two protocol behaviors (one for trusted 
dissemination of what's available to share and another for trusted signaling of opportunity acquisition 
and release) are therefore included in the accreditable kernel because they relate to policy conformance. 
Clearly, these behaviors are required only in those XG radios that make use of particular opportunities 
enabled by policy due to the implementation of these protocols. 
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Identification and allocation of opportunities need not be a trusted function.  A tool for finding 
opportunities which devises wonderful spectrum use most of the time and occasionally suggests 
something infeasible/illegal is perfectly reasonable, provided that the infeasible opportunities are never 
instantiated.  It is the barrier to instantiation that is the accreditable kernel’s function – not the 
exploration of opportunities. And leaving the exploration of opportunities outside the accreditable kernel 
allows for freer innovation. 

4.4 XG Information Objects 
We organize XG Information Objects into three abstract classes as illustrated in Figure 13: 
PolicyDefinedJoinPoint5, Expression, and ProtocolDataUnit. 

The PolicyDefinedJoinPoint, (described further in the [XGAB]) is a generalization of two abstract 
classes: Parameter and Process.  Instances of the PolicyDefinedJoinPoint class are primitives that are 
described using the XG Policy Language Framework (see [XGPLF]), and implemented within the XG 
radio system. The AccreditableKernel through the XG System Capabilities Interface provides access to 
these primitives.  

Instances of the Parameter class are parameters that govern the operation of the XG radio system, and 
instances of the Process class are methods, procedures, or relations that are implemented by the XG 
radio system.  

The ParameterCollection is an abstract (and arbitrary) collection of Parameter instances.  Subclasses of 
ParameterCollection include Credential, Awareness, UsageRequest, and OpportunityInstance.  
Instances of the Credential class encapsulate security and trust management information such as 
cryptographic keys and authentication information. Credential instances are exchanged across XG 
interfaces for trust management.  The specification of the security and trust management architecture is 
not within the scope of this document. 

The Awareness class encapsulates situational awareness information including spectral awareness, 
network awareness, and possibly temporal and geo-spatial information as well.  Instances of the 
Awareness class are created and managed by the XG Spectrum Awareness Management behavior.  
Subclasses of the Awareness class include SensedAwareness that encapsulates awareness gained by the 
XG system through sensing, and ProtocolBasedAwareness, which encapsulates awareness acquired by 
the XG system through the use of awareness dissemination protocols. 

The UsageRequest class and OpportunityInstance class respectively encapsulate information in the 
request for, and in the characterization of, spectrum use.  OpportunityInstanceCollection is an abstract 
collection of instances of the OpportunityInstance class. Instances of UsageRequest can be sent (to the 
SystemStrategyReasoner, for example) over the AllocationInterface, and an 
OpportunityInstanceCollection that includes a list of opportunities may be returned. The radio system 
can choose opportunities from this collection, and then pass the selected instance of OpportunityInstance 
over the PolicyInterface to have it validated (i.e. checked whether it is authorized by applicable policy). 
A ValidOpportunityInstance object encapsulates validation status and associated credential information 
of an OpportunityInstance object that it contains.  The XG Usage Accounting Management behavior 
ensures that operation (e.g. emission) conforms to the parameter values set within the 
ValidOpportunityInstance with the appropriate status and credentials returned by the PolicyInterface.  

                                                 
5 In computer science, a join-point is a point in the flow of a program. In Aspect Oriented Programming, a pointcut is a set of 
join-points. Whenever program execution reaches one of the join points defined in the pointcut, a piece of code (called 
advice) associated with the pointcut is executed. We envision a PolicyDefinedJoinPoint to be points within the XG radio 
where behavior governed by policy is accessible. 
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The Expression abstract class encapsulates predicate expressions that involve PolicyDefinedJoinPoint 
instances. The expression language can be specific to the particular XG implementation. Subclasses of 
the Expression class include the PolicyFilterSpecification class, which encapsulates expressions that 
specify a filter on policy instances based on arbitrary criteria of interest, and the PolicyConstraints class, 
which encapsulates expressions that specify constraints that apply to the XG radio system.  These 
expressions can be, for example, used by the SystemStrategyReasoner to interact with the 
PolicyConformanceReasoner. 
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Figure 13: XG Information Objects and Their Associations 

The ProtocolDataUnit is an abstract class that encapsulates information exchanged across 
ServiceAccessPoint interfaces (and any attributes of that information, required to effect an exchange).  
In particular, two subclasses of ProtocolDataUnit, namely, the 
AwarenessDisseminationProtocolDataUnit and UseCoordinationProtocolDataUnit are exchanged over 
the VirtualCoordinationChannelInterface by instances of the XG protocol behaviors 
(AwarenessDissemination and UseCoordination). The extension and implementation of these abstract 
classes are specific to the protocols used by the particular XG radio system. 

4.5 XG System Interactions 
There are three key system interactions that relate to opportunity awareness, allocation, and use. 

The SpectrumAwarenessManagement behavior creates and manages Awareness objects, objects that 
provide information about the environment around the XG radio.  To get the information necessary to 
create, update, modify, or delete Awareness objects, the behavior acquires SensedAwareness objects via 
the SensorInterface and ProtocolBasedAwareness objects from the 
AwarenessDisseminationServiceAccessPoint interface.  The latter interface is implemented by the 
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AwarenessDissemination behavior, which exchanges spectrum information (abstractly modeled as 
AwarenessDisseminationProtocolDataUnit instances) with other systems via communications channels 
modeled by the VirtualCoordinationChannelInterface.  These interactions are illustrated in Figure 14. 
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Figure 14: Spectrum awareness is gained through sensing and protocol behaviors 

Once awareness of opportunities is acquired, the next step is to identify and allocate opportunities for 
use by the radio system under policy constraints.  As illustrated in Figure 15, the 
SystemStrategyReasoner performs this function.  The SystemStrategyReasoner can access policy 
information through the PolicyInterface, and it can access the capabilities, configuration, state, and 
primitives within the radio system through the SystemCapabilitiesInterface. In particular, this includes 
access to the XG SpectrumAwarenessManagement behavior. 
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Figure 15: The System Strategy Reasoner identifies and allocates Opportunity Instances for the Radio; it 

may additionally access radio primitives to modify system behavior 

Once opportunities have been identified and allocated based on awareness of opportunities, one or more 
can be selected and used in a manner that is authorized by policy.  The UsageAccountingManagement 
behavior performs the function of ensuring that OpportunityInstance objects are presented to the 
PolicyInterface prior to use, and that only ValidOpportunityInstance objects returned by the 
PolicyInterface with proper validation status and credentials are actually used. 

The UsageAccountingManagement behavior through the SystemCapabilitiesInterface asserts that 
subsystems actually use the parameter values contained within the ValidOpportunityInstance, before 
providing it to the TransceiverInterface.  Furthermore, authorized use of spectrum may entail the 
employment of a protocol to coordinate with other nodes.  For this purpose, the 
UsageAccountingManagement behavior interacts with the UseCoordination protocol behavior through 
the UseCoordinationServiceAccessPoint. 
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The interactions related to the use of opportunities are illustrated in Figure 16. 
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Figure 16: Opportunity instances are allocated, validated against policy, then used after asserting that all 

parameter values are set appropriately and after coordination with peers 

A design sketch for a  reference implementation of an XG system based on these abstractions is 
provided in the draft XG Abstract Behaviors RFC [XGAB]. 
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5 Modeling and Simulation of Protocols for XG 
During the XAP effort, we have refined and enhanced the XG Evaluation Platform (originally developed 
during the earlier XMAC effort). This software, developed in the OPNET environment, along with 
documentation, has been made available to all XG performers.  The XG models and simulations 
developed by BBN in the context of this platform have also served the role of a proxy XG system for 
developing the XG framework, the abstract behaviors in particular.   

5.1 XG Evaluation Platform (XEP) 
XEP is an interacting set of modular mechanisms for opportunistic spectrum access. It consists of 
several new mechanisms working cohesively to implement a complete opportunistic spectrum access 
(OSA) system. In designing XEP, our objectives were: 

• Backward compatibility. To develop a complete system solution, capable of exploiting 
opportunistic spectrum access even if the upper layers are not aware of this capability (e.g. using 
legacy MACs).  

• Simplicity.  The goal was a straightforward realization of opportunistic spectrum access that 
forced us to develop all the essential mechanisms and none of the optimizations.  A simple 
system is a good benchmark against which to test optimizations, and provides a clear starting 
point. 

• Modularity. We have sought to divide up the functionality such that adding new features or 
optimizations is easy, without destroying the general architecture. 

Figure 17 shows the XEP system architecture. From the XEP perspective, the node is divided into three 
layers:  physical, XEP Management, and MAC-and-above layers.  

XMAC or
Legacy CSMA

Opportunity
Identification

Kernel

- ND
- HIP
- RMAC

TRANSCEIVERS

XG Opportunity API

My HIA Nbr list, nbr HIAs

My IDLE CHANNEL,
my HIA

Information Flow

Control Flow

FFT

MAC

ND-HIPSense Interface

- Idle Channel 
Selection

XMAC or
Legacy CSMA

Opportunity
Identification

Kernel

- ND
- HIP
- RMAC

TRANSCEIVERS

XG Opportunity API

My HIA Nbr list, nbr HIAs

My IDLE CHANNEL,
my HIA

Information Flow

Control Flow

FFT

MAC

ND-HIPSense Interface

- Idle Channel 
Selection

 
Figure 17: XG Evaluation Platform System Architecture 

The physical layer consists of two transceivers. The first transceiver is frequency agile and can be tuned 
to different frequencies and waveforms by the XEP management layer. The second transceiver is tuned 
to the coordination channel. We assume that the coordination channel is allocated a priori and is known 
to all nodes.  Each transceiver is capable of successfully decoding (receiving) one packet at a time. In 
addition, the physical layer includes a sensing device that periodically reports to the XEP management 
layer the primary nodes' energy over the frequency bands of interest. 
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Above the physical layer sits the XEP management layer.  Among its functionalities are: 
• Estimating the available frequencies in the node's neighborhood (opportunity identification). 
• Discovering other XG nodes in the neighborhood and selecting those of them that are appropriate 

neighbors. 
• Informing other XG nodes of this node's frequency observations. 
• Selecting a default set of frequencies to become the node's IDLE channel. The IDLE channel is 

the frequency band(s) and waveform(s) that the node is tuned to when it is not transmitting, 
receiving, or preparing for reception of a pre-scheduled packet. 

• Sharing this opportunistic node's IDLE channel identity with its neighbors so that neighbors 
know how to reach it. 

• Serving as a front-end for the MAC layer. Beyond simply transmitting and receiving, the 
interface between XEP and the MAC layer allows the MAC layer to take an active role in 
channel selection and management. 

The XEP management layer divides these functions across three modules: XEP kernel, Sensing 
Interface, and Neighbor Discovery and Hole Information Protocol (ND-HIP). The XEP kernel module 
centralizes this layer's decisions and presents a well-defined interface to the MAC layer.  It also handles 
most physical layer functions. The Sensing Interface module is in charge of determining the presence of 
transmission opportunities. And the ND-HIP module is in charge of disseminating OSA information 
among opportunistic nodes. 

In the experimental results in Section 5.3 we assumed the MAC layer was unaware of XG  (e.g. a legacy 
MAC) and XEP was entirely responsible for finding spectrum to meet the MAC layer's needs.  
However, we expect that in many cases the MAC will be XG-aware and that the MAC will indicate to 
the XEP kernel the capacity the MAC needs. 

Figure 17 also shows the information flow in XEP. The physical layer reports measured energy in 
various frequency bands. The Sense Interface module receives this information and converts it into a 
Hole Information Array (HIA).  The HIA is a vector where each entry corresponds to a frequency band 
and indicates if the band can be opportunistically used. One should view the HIA as a joint product of 
the physical sensors and the Sense Interface, as the physical layer may have to be programmed by the 
Sense Interface to detect transmissions. The Sense Interface reports the HIA to the XEP kernel.  

Concurrently, the NDHIP module exchanges HIA information with other opportunistic nodes and 
provides the HIA information from the node's neighbors (and perhaps peers farther away). Combining 
its local HIA information with that of its neighbors, the XEP kernel develops a map of how the spectrum 
is being used in its area, and selects the node's IDLE channel(s). 

The XEP kernel provides the NDHIP module with both its HIA and IDLE channel information for the 
NDHIP to propagate it to other opportunistic nodes. This environment is described in greater detail in 
the software documentation [XEP]. 

5.2 Protocols for Opportunistic Spectrum Access 
In this section, we describe a set of protocols for supporting spectrum agility in a Mobile Ad Hoc 
Network (MANET). These protocols were developed at BBN as part of the DARPA neXt Generation 
(XG) program, and have been implemented within an OPNET simulation model. Our main objective is 
to study the benefits of spectrum agility, not necessarily to design the most robust or efficient solution. 
We shall also briefly discuss some insights based on our experience using this simulation model. 
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Figure 18: Idle Channel Selection from Hole Information Arrays 

 

The target scenario consists of a set of primaries emit radio signals in a band, which is segmented into 
channels (we call them frequency slots), and a set of secondaries seek to self-organize into an ad hoc 
network using “holes” in the spectrum assigned to the primaries. As mentioned above, the problem has 
many variants and is very hard in general. Therefore, we shall make assumptions and design choices to 
simplify the problem. We assume that the primaries are chatty6, that XG secondaries have two 
transceivers, one of which is always tuned to a dedicated coordination channel, and that they have a 
mechanism that can tell a secondary node from a primary one. Finally, we use a contention-based 
protocol for medium access rather than a scheduled scheme (e.g. TDMA) for reasons of simplicity. 

An XG secondary node senses the channel and maintains a time-varying Hole Information Array  (HIA). 
The HIA contains, for each channel in the band, an entry 0 or 1 indicating, respectively, whether the 
channel is free (a “hole”) or is occupied (a “wall”).  

Each node periodically broadcasts its HIA as part of a control message called the Hole Information 
Protocol (HIP) packet. One purpose of the HIP packet is to serve as “beacons” or “Hello” messages for 
the purpose of discovering neighbors, as in many ad hoc routing protocols (e.g. OLSR). Specifically, a 
node considers another node as its neighbor if the moving window average of the number of received 
HIP packets exceeds a threshold. The HIP packets are sent on the dedicated coordination channel 
assumed allotted to the secondary nodes. 

The HIP packet is also used for selecting the idle channel. Recall that this is the channel to which a node 
is tuned when it is not transmitting. Clearly, the idle channel for a node M must be chosen such that all 
1-hop neighbors of M can transmit to M on it. That in turn implies that if c is an idle channel, then M 
and all of its 1-hop neighbors should have a hole in c. Thus, each node collects the HIA’s from its 
neighbors, and finds overlapping holes, and assigns the idle channel for itself. This is illustrated in 
Figure 18. As shown there, the idle channel need not be a single frequency slot. It can be a contiguous 
set of slots. 

Once the idle channel is selected, it is included in the HIP packet so that all its neighbors know. Also 
included is the transmission power of the HIP packet so that neighbors can estimate the path loss (based 
on received power) and the waveform used to listen to packet preambles. The selection procedure is 
specified in more detail in [XEP]. 

                                                 
6 We assume primary nodes are not silent for extended periods, and therefore, XG nodes can discover their presence. 
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We now describe briefly our MAC protocol. It is based on the well-known idea of Carrier Sense 
Multiple Access (CSMA), but the basic algorithm needs considerable modification in the presence of 
spectrum agility. A brief description is as follows. When a node S wants to send a data packet to node R, 
S first picks a set of frequency slots F that it perceives as holes (based on R’s HIP packet) for both R and 
S. It then tunes to R’s idle channel, say I(R), and performs carrier sensing. If I(R) is free for more than a 
certain amount of time, S sends a Ready-To-Send (RTS) on I(R) and tunes to F and waits.  R ensures 
that F does indeed reflect its holes and responds (if appropriate) with a Clear-To-Send (CTS) on F. R 
remains tuned to F for the DATA packet. Once S gets the CTS, it responds with the DATA packet and R 
responds with the ACK.  

Unlike IEEE 802.11 MAC, the RTS/CTS is not effective for collision avoidance since each node may 
listen on a different idle channel. A node does not maintain a Node Allocation Vector (NAV) table 
based on the RTS/CTS packets overheard because it is not likely to hear such packet unless it is the 
intended recipient (RTS/CTS packets to nearby nodes will be transmitted over different frequency slots). 
Despite this, the RTS/CTS exchange is important for the selection of frequency slots and traffic flow 
coordination. However, better methods, perhaps based on TDMA are required going forward. 

An issue that arises for large dense networks when the coordination channel is of low capacity is that the 
HIP packets may saturate it. To mitigate the problem, we have designed a lightweight protocol called 
Rendezvous MAC (R-MAC). In R-MAC, a sender makes a prediction of the next time it will send a HIP-
packet and includes this information as part of the HIP packet. Neighbors avoid transmitting on the 
“reserved time”. No carrier sensing, RTS/CTS or complex backoff procedures are needed. The 
simplicity is possible due to the largely periodic, and hence predictable nature of the HIP packets. 

While the above solution sketch for spectrum agility does enable opportunistic spectrum access, it is 
clearly leaves something to be desired. The need for an a priori dedicated coordination may not be 
realistic in many environments, and the question is if we can design a protocol that does not require it. It 
is also clear that CSMA has fundamental limitations with spectrum agile protocols and we need to 
investigate TDMA based algorithms, which is quite challenging. And if TDMA is used, there would be 
a need to disseminate hole information further than just 1 hop and this brings into question scalability 
issues. 

5.3 Simulation Results 
We used OPNET to simulate our XG system model and protocols running underneath a `legacy' MAC 
system. The results are presented here. 

We used a CSMA MAC to test that our system – while being simple – provides a complete solution that 
is able to work with any existing and future MAC implementing the opportunity API specified in [XEP]. 
For example, a legacy MAC that is sensitive to timing information tied to the packet's transmission rate 
will need to specify their desired transmission rate to XG. If this rate is achievable, XG will create IDLE 
channels with that rate. 

For simplicity, we implemented an unreliable MAC (no ACK) when a node transmits a packet if the 
channel is free or backs off for a random time if the channel is busy. Nodes also backoff upon 
completing a packet transmission to prevent some nodes from capturing the channel. Even with this very 
simple MAC we were able to show a good performance enabled by using XG. 

Table 3 summarizes the default simulation parameters for both primary and opportunistic nodes. Unless 
stated otherwise, our simulations consist of 60 opportunistic and 10 primary nodes placed randomly in a 
square area of 0.6 miles by 0.6 miles. The primary nodes are fixed and not always active. When they are 
active, they continuously transmit packets using the ON/OFF cycle shown, and record the period of time 
that they experienced interference by opportunistic nodes beyond the maximum tolerance. Their 
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transmission range is equal to 2 km, which is consistent, for example, with current cellular systems. A 
random mobility model is supported for the XG nodes; their speed can vary from 0 - 10 mph, with nodes 
bouncing back each time they reach the area boundary. The results we present in this section, however, 
are limited to static XG nodes. Their transmission range is 250m, which is consistent with current 
WLANs such as those based on 802.11.  Opportunistic nodes generated a new packet to transmit as soon 
as the previous transmission is completed. This corresponds to a saturation case, particularly challenging 
for an unregulated CSMA MAC without feedback-based load balancing. Each packet's destination is 
chosen randomly among the one-hop neighbors. We collect statistics on the total number of packets 
successfully received by each node. 

Thus, we collect two main figures of merit: the total aggregated one-hop throughput (sum of all bits 
received by each node), and the maximum interfered time (the time a primary node measured 
interference above its tolerance). 

Table 3: Default simulation parameters 
General Parameters Primary Node Parameters Opportunistic Node Parameters 

Name Value Name Value Name Value 

Simulation area  0.6 x 0.6 miles Bandwidth  19MHz Speed  0-10 mph 

Simulation time  200 s Transmit PSD -26 dBm/Hz Coordination Channel  200 kHz 
Base Frequency  2.3 GHz Avg. On time  160 ms Max Transmit PSD 23 dBm 
Total Bandwidth  100 MHz Avg. OFF time 180 ms Target PSD (policy) -62dBm/Hz 
Unassigned Bandwidth  5 MHz Transmit range 2km Transmit PSD  0.625 mW/MHz 
Background noise  -174 dBm/Hz   Transmit range 250 m 

    Target SNR 12 dB 
    Sensing period  8 ms 
    Sensing history 256 ms 
    Sense threshold -138 dBm/Hz 

Finally, the physical layer assumes some capabilities such as sub-noise detection (enabled by a DSP 
intensive synchronization stage). Thus, if a large processing gain is used, the sensing range could be 
smaller than the transmission range. The propagation model assumes an attenuation model proportional 
to the fourth-power of the distance. 

 
Figure 19: Spectrum utilization by Legacy (upper left) and XG (lower left) systems given the primary 

system utilization is 40%. A more detailed snapshot of the spectrum utilization by the XG system is shown 
on the right. Bandwidth is measured in terms of number of 100kHz channels used. 

To show how our system exploits unused spectrum, experiments were conducted on a very simple 
network consisting of 4 nodes in a line, separated by 250m each. The primary nodes' tolerance was 
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decreased so that all the opportunistic nodes were inside the area where the primaries are protected by 
policy. Since we wanted to accentuate the negative impact of the coordination channel and modulation-
type requirement, we increased the size of the coordination channel to 1.5MHz and the maximum 
transmit power of the opportunistic nodes to 40dBm. 

Figure 19 shows how our algorithms take advantage of the unused portion of the spectrum. For these 
plots, we have divided the time into 40ms intervals and consider a frequency band used if a transmission 
occurred over any part of the 40 ms interval.   

The upper left plot shows the way a legacy (i.e. current, fixed spectrum allocation) system – running the 
same MAC – used the frequency. The primary nodes are assigned 95 MHz of spectrum, so the legacy 
radios can use only the remaining 5 MHz. The frequency band has been divided in frequency slots of 
100 KHz each, and the number of frequency slots occupied by each – and not the actual frequencies – is 
shown. The lower area represents the primary nodes utilization. For example, in the interval <0, 3> two 
primary nodes are active occupying 380 slots (i.e. 38 MHz). Similarly, in the interval <16, 21> no 
primary node is active. Averaging over the interval <1, 21> (i.e. after initialization) and over their 
assigned frequency bands, the primary nodes' present an utilization of 40%. Looking at the legacy node's 
bandwidth utilization, we can see the legacy nodes always use the same amount of bandwidth (the 
unassigned 5 MHz) and are constantly transmitting, with the exception of the interval <0, 1> 
(initialization) when they are only active for short bursts sending neighbor discovery beacons. 

The lower left plot illustrates the way XG radios exploit the available spectrum. After the one-second-
initialization period is completed, we see that XG fills the spectrum gaps almost completely, except for 
minute periods of time. Dark lines represent the periods where XG radios interfere with primary nodes. 
This interference is due to the latency on sensing the channel. It may take up to two sensing intervals (8 
ms each) for the radio to detect that a primary node has become active, resulting on interference periods 
of up to 16 ms per each time a primary node becomes active. However, since our time step is 40 ms, we 
paint the whole 40 ms interval as `interfered'. 

The right plot is a `zoom' of the lower left plot (XG spectrum utilization) for the interval <2, 8>. This 
allows a more detailed examination of the XG system’s behavior. First, we may notice that our XG 
system does not occupy the entire 1000 frequency slots all the time. Typically there will be a small gap, 
corresponding to the coordination channel's 15 slots. Only when HIP packets are sent (periodically every 
second and also event-driven upon primary nodes' activation at times 3s and 5s) XG will occupy the 
entire spectrum. Thus, the coordination channel and XG control packets reduces the DATA throughput 
achieved. Second, we see that upon a primary node's activation (for example at time 3 sec.), XG 
transmissions will interfere with primary nodes until their local sensors detect the primary node signal, 
and before any control packet is sent they will stop transmitting on the primary node's frequency band. 
This implies that they will not be able to communicate with any neighbor whose IDLE channel contains 
parts of that band (all the 4 nodes in our example). The XG nodes will then recompute their IDLE 
channel and include it together with their new HIA information in a HIP packet that is broadcasted after 
some random time (to avoid collisions from all opportunistic nodes sensing the primary node's signal at 
the same time).  

Thus, in Figure 19 (right) we notice that the coordination channel is used after the interference period 
ends. So, from the time the primary node is detected until a HIP packet with new IDLE channel 
information is received, the nodes will not be able to reach neighbors (due to invalid IDLE channels).  

The fact that we don't see white gaps in the spectrum occupancy at times 3 sec. and 5 sec. indicates that 
the nodes recover new information and resume transmission in less than 40 ms Thus, the periods of 
communication disruption in XG are small. Third, when at time 7 sec. primary nodes become inactive, 
we see that there is a period (around 300 ms) when the system is unable to fully occupy the spectrum. 
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Locally detecting this opportunity is not enough to use it - we need the neighbor nodes to be able to 
transmit over it. Therefore, XG nodes must wait until receiving neighboring nodes' HIA updates (in this 
case once every second) declaring the opportunity before recomputing their IDLE channel. In the figure, 
around time 7.3 sec. we see the HIP packets being sent, and only after that the IDLE channels are 
recomputed, another round of HIP packets with the new IDLE channel information are sent, and the XG 
nodes start using the new opportunities. Note that during this transition there is no transmission 
interruption since XG nodes tune to the new IDLE channel only after the HIP packet transmission has 
been completed. In between (i.e. after waiting for a spreading time to avoid collision, for the 
coordination channel to become free, and for the transmission delay) the XG nodes are still tuned to 
their last-advertised IDLE channel. Overall, XG reacts fast to new opportunities. It could even react 
faster if HIP packets are sent immediately after detecting new opportunities, similar to the case of losing 
opportunities being used by someone's IDLE channel, but this is not advisable since it may lead to 
congestion on the coordination channel. Thus, only critical (i.e. causing communication disruption) 
events trigger extra HIP transmissions. 

The two lower curves of Figure 20 plot the total throughput achieved by the legacy and XG systems for 
different levels of bandwidth utilization by the primary nodes.  For example, the experiment shown in 
Figure 19 corresponds to the 40% utilization data points. Since we set a large coordination channel of 
1.5 MHz, it is expected that when the primary nodes utilization approaches 100%, the legacy system 
(able to transmit over 5 MHz) outperforms the XG network, which can only use 3.5 MHz for data 
transmission. It can be seen that under a bandwidth utilization of 40%, XG gives an order of magnitude 
performance improvement over legacy systems, even when assuming a generous allocation bandwidth 
allocation for the latter (5 MHZ of exclusive spectrum usage). 

 
Figure 20: Comparing throughput achieved by XG and Legacy systems.  The maximum achievable using a 
theoretical bound (based on Shannon capacity), and the maximum achievable if only QPSK modulation is 

allowed are also shown. 

For comparison we are also plotting the maximum achievable throughput (i.e. capacity) computed using 
a theoretical model we developed, and described in an accompanying draft paper.  We can see that our 
XG system is far from achieving the optimal value. In general, there are several factors preventing XG 
from achieving the maximum. Among them includes fairness (i.e. the optimal solution in the theoretical 
model gives exclusive access to the shortest links, which may not match the actual traffic demand), 
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using energy-inefficient modulation, not using long and highly efficient but computationally expensive 
codes. In this example, the main reason for the difference was our use of energy-efficient modulation. 

We assumed bandwidth efficiency of 1 bps/Hz or less, therefore saving energy and extending the 
network lifetime, an important factor in mobile networks. To corroborate this, we are also plotting the 
maximum throughput achieved if the waveforms used are restricted to QPSK modulation. As we see, 
our system is within reason of the maximum achievable by an energy-efficient system for this simple 
topology. The impact of more complicated topologies on this MAC is the subject of future work. 

The above results are representative of the types of studies that can be performed using the XEP. Using 
the XEP, we have investigated the relative merits of underlay vs. overlay, and the impact of topology 
control and the interference tolerance of the primaries on the overall network throughput. Preliminary 
results from these studies are available in the form of a draft report included with the deliverables. 
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6 Technical Interactions 
In support of the DARPA XG program goals of transitioning the technology developed to GOTS and 
COTS systems, BBN had numerous interactions with the XG working group, industry, academia, and 
regulatory bodies.  We present a brief summary of significant interactions and related activities below. 

6.1    Working group meetings and other briefings to XG performers 
BBN has engaged the XG Working Group participants in the development and refinement of the XG 
RFCs. We participated in and provided briefings in two working group meetings, one of which was 
hosted by BBN in our Cambridge, MA facility. The working group process was an integral part of the 
development and release of the XG RFCs; it provided the primary mechanism through which to capture 
the concerns of the stakeholders (XG Government and SI team participants).   

A notable benefit of the WG process was the generation of policy use cases, which provided concrete 
contexts for the development of the policy language as well as useful test cases for the policy 
conformance reasoner software. 

In addition we have had several interactions via phone and email with all three SI teams, as well as with 
Alion Science, in regard to the policy conformance software.  In addition, we gave several briefings to a 
team from Shared Spectrum Corporation that visited BBN for a daylong discussion on implementation 
and integration of the policy technology. 

6.2     Website and mailing lists 
BBN maintains a website to support the XG working group activities as well as to disseminate to the 
public, with Government approval, key results of the XMAC and XAP contracts.  The policy 
conformance reasoner software has been made publicly available through this website.   

In addition, BBN maintains three mailing lists for XG in order to promote discussions and in order to 
make announcements related to software and RFC releases: 

• xg: limited to XG Working Group members 

• xg-panel: limited to XG Industry Panel members 

• xg-public: open to the public 

6.3    External briefings and interactions 
FCC: BBN provided a briefing to the FCC in support of DARPA’s XG policy technology briefing to 
the FCC.  We received a favorable response, and the audience expressed interest in seeing 
demonstrations of XG policy technology. 

NSF Programmable Wireless Networks: BBN has briefed the academic research community at the 
NSF Programmable Wireless Networks workshop.  

XG Industry Panel: BBN participated in the discussions of the XG Industry Panel in which DARPA 
briefed the industrial research community on XG policy technology. 

Philips Research: We have a technical interchange with a group at Philips Research that is actively 
doing research in the area of spectrum sharing etiquette, and spectrum measurements in the context of 
IEEE 802.11 standardization activities.   
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6.4   Academic collaborations  
Northeastern University: We have been working with Prof. Karl Lieberherr and Prof. Ravi Sundaram 
of Northeastern University in the area of investigating the application of Aspect Oriented Programming 
techniques in XG systems.  Another area of discussion involved the modeling of secondary spectrum 
markets using truth-telling auction mechanisms.  Pengcheng Wu, a student of Prof. Lieberherr, 
participated in the XAP effort as a summer intern at BBN.  Overall, this interaction has positively 
influenced our development of the XG Abstract Behaviors. 

Virginia Tech: We have collaborated with Prof. Amitabh Mishra of Virginia Tech to develop a 
proposal to the NSF to apply XG policy technology in the context of reuse of 3G cellular spectrum.  

Lehigh University: Recently, towards the end of XAP contract, we have had brief email interactions 
with Prof. Donald Hillman of   Lehigh University. The area of discussions included the further 
development of the XG ontologies (the structure of authority in particular) and the formulation of the 
dynamic spectrum assignment problem as a deductive database problem.  The ideas from these 
discussions are worthy of further exploration in Phase 3. 
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7 Summary and Future Work 
The current practice of statically allocating spectrum is widely recognized as inefficient. Although 
virtually the entire spectrum has been allocated to services and much of it is assigned to users, 
measurements within the XG program and elsewhere have demonstrated that large portions of spectrum 
are not being used at any given time or location.  Regulatory agencies are now considering opening up 
spectrum for opportunistic access. 

Furthermore, while opportunistic access is of tremendous value in the civil sector, it is vital for the 
military. Since the military is increasingly in need of (and reliant upon) high bandwidth 
communications, maximizing use of spectrum is an essential military capability. 

 
The primary objective of XG is to increase spectrum utilization by enabling devices to opportunistically 
utilize spectrum whenever and wherever it is available. A secondary effect of this capability will be to 
greatly reduce spectrum-planning time prior to deployment.  The XG program is developing 
technologies that fall in two classes: 

1. Spectrum Agility: Actual spectrum usage varies with location and time.  Devices must, 
therefore, possess spectrum agility:  

a. They must be able to acquire awareness of the spectral environment 
b. They must be adaptive in the use of spectrum 
c. They must be able to coordinate the use of spectrum with other devices.   

The XG program has developed new technologies and systems that leverage recent 
advances such as wideband sensing and software radio technology to provide spectrum 
agility to wireless devices. 

2. Policy Agility:  The use of available spectrum is subject to policy rules that vary with 
frequency, type of service, type of operator, location, and the regulatory jurisdiction. 
Furthermore, it is a challenge to manage the accreditation of agile devices for all the uses 
they are capable of across regulatory regimes. Thus devices that make use of 
opportunistic spectrum access must possess policy agility: They must be able to adapt 
their operation to opportunities that are authorized by policy, using verifiable approaches. 
The XG program has, therefore, developed a trusted policy language framework to 
provide policy agility to wireless devices.     

7.1 BBN’s Accomplishments in the XG Program 
BBN Technologies is performing the role of architect in the XG program. BBN has developed a series 
of XG Requests for Comments (RFCs) that document the vision, architecture, as well as technical 
specifications for XG systems.  Following are a few of our accomplishments during XG Phases 1 & 2: 

• Produced four RFCs that define aspects of the XG architecture 

• Developed a policy language framework that will eventually enable XG-capable radios to adhere 
to relevant policies as they dynamically choose where and how to use available spectrum.  An 
additional benefit of this machine-readable policy language is the ability to define “temporary” 
policies to which radios would conform – thus encouraging experimental use of spectrum. 

• Developed reference Policy Conformance Reasoner (PCR) software that demonstrates how a 
radio system can check whether its intended emissions conform to policy (as specified in the 
defined policy language). The PCR can also search the policy constraint space for opportunities 
that are allowed by policy. A version of this software has been delivered to all XG performers 
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and at least one system integration team has integrated the PCR with their system and 
demonstrated the combined capabilities in a limited form. 

• Produced a simulation environment that allows us to estimate the possible performance gains of 
various XG spectrum sharing algorithms and protocols. 

In addition BBN has supported DARPA’s goals of dissemination of key aspects of the XG architecture 
to the public through briefings at the FCC, NSF Programmable Wireless Networks community, and the 
XG Industry panel. BBN has also briefed, DARPA personnel from other offices (IPTO), and researchers 
from the industry (Philips Research), and academia (Northeastern University and Virginia Tech). 
Furthermore, BBN has worked with the XG system integration teams to support transition of the XG 
policy technology, by providing access to BBN-developed software as well as through briefings. BBN 
has maintained a website and three mailing lists for this purpose. 

In Phase 2 BBN developed an architectural framework for XG systems, and investigated the core 
research issues for policy-agile XG operation.  We demonstrated proofs-of-concept of the technologies 
we developed through a prototype policy conformance reasoner software, notional XG policy examples, 
and basic ontologies populated with concepts that are sufficient for a small range of interesting XG 
policies. Effectively transitioning the XG policy technology into DoD systems requires further 
development effort that can directly build upon our results and deliverables from Phase 2. 
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Figure 21: XG Policy Technology Roadmap 

As the XG program enters system integration, test, and demonstration in Phase 3, we have developed a 
roadmap for XG policy technology, in consultation with the DARPA PM for XG. The roadmap, 
illustrated in Figure 21, summarizes the current status of the technology, and traces the development 
needed in Phase 3 and beyond.  The key milestones on the roadmap for this technology in Phase 3 are 
integration and demo with XG systems.  The integration and eventual transition to DoD systems must be 
accompanied by further development of the language framework, in particular, through population of 
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the policy ontologies with a larger repertoire of relevant concepts, and the creation of tools suitable for 
policy administrators and defense spectrum planners. 

We have also converged on a proposed architecture for XG system integration during Phase 3 illustrated 
in Figure 22. This architecture clearly identifies the relationship of the policy engine (shown in green) 
within the XG system – we believe that BBN’s XG policy conformance reasoner technology fits cleanly 
into this architecture. Also note that the clean architectural separation of policy from the system enables 
changes and innovations in either side to proceed independently. 
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Figure 22: XG System Integration Architecture 

This architecture suggests that it would be desirable to develop additional primitives to access the sensor 
database and integrate them with the policy conformance reasoner. 

7.2 Future Work 
Follow-on work that builds on our existing work will be required in order to support the XG program in 
Phase 3 and beyond. We believe the following tasks are critical during Phase 3 of the XG program: 

• Policy Conformance Reasoner (PCR) Software Enhancements: The current policy 
conformance reasoner (PCR) software was developed as a set of functional prototypes.  
It includes an initial release of the Policy Validation Engine (PVE) software and an 
early proof of concept for the Policy Search Engine (PSE).  Both of these systems 
require further development to add robustness, provide programmatic interfaces, and 
demonstrate substantial performance enhancements as we make them ready for 
integration into a target XG system. Furthermore, they must be tailored to the 
requirements of the particular XG system platform of the down-selected Phase 3 system 
integration team. 

• Policy Language and Content Representation Framework Enhancements and 
Authoring Support Tools: As the XG policy technology leaves the laboratories of the 
XG performers and is transitioned into DoD systems, it is critical that basic tools exist 
to enable domain users such as system administrators and spectrum managers to create, 
manage, check, and provision policies for XG systems. Templates for common policy 
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idioms can make it easier for policy creation and management. Furthermore, the 
ontologies must be populated with enough content, and reorganized for more 
processing efficiency if needed, so that a wide range of useful policies for XG systems 
can be readily expressed. 

In addition, the following important tasks must be considered before XG technology would be ready for 
transition and deployment into DoD networks. 

• Certification Roadmap: Before XG systems can be deployed in the field - both within 
the US and in other countries - they must be certified for use by the relevant authorities. 
A study, possibly modeled on prior work on the certification of software defined radios, 
is required to identify the issues involved in certifying XG systems. 

• Embedded PCR Study: A study is needed to analyze the feasibility and benefits of 
building a reasoning and inference engine in low-cost embeddable hardware instead of 
software. An embedded implementation may potentially offer performance, cost, or 
ubiquity benefits. 

• Security and Trust Model Evaluation: A study is required to investigate security and 
trust threat models for XG policy.  While XG radios are inherently as secure as 
software radios and their host OS and networking stacks, we need authentication to 
ensure that the rules for how the radio may operate in different conditions are indeed 
the policies issued by the responsible authorities. 

• Network Strategy Reasoner: As policy-agile XG systems are deployed and integrated 
into the network-centric force, a study on how to extend XG methodologies to the 
realm of a dynamic network (beyond just spectrum) management will be beneficial. 
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1 About this document 
 
This document describes the vision for the DARPA neXt Generation (XG) communications program. It lays out 
the motivation for XG and its scope, presents the key concepts underlying XG, and describes an approach for 
defining XG.  

This document is a Request For Comments (RFC). Accordingly, an important purpose of this document is to 
obtain feedback from the community at large, and refine the ideas here based on the feedback. In other words, the 
XG vision will evolve, and this document reflects a snapshot in that evolution. 

A number of other RFCs related to XG exist, or are being planned. The complete XG family will include the 
following: 

1. XG Vision RFC. This document. 

2. XG Architectural Framework (AF) RFC. The AF RFC presents the architecture, system components, and a 
high level concept of operations for XG communications. 

3. XG Abstract Behaviors RFC. The abstract behaviors RFC identifies key behaviors that must be implemented 
by an XG system, organizes them, and describes the behaviors.  

4. XG Policy Language RFC. The XG policy language RFC describes the policy specification meta-language for 
implementing machine-understandable policies.  

This document is the “highest level” RFC, and should be read before any of the others. Its focus is on what XG is, 
in terms of its capabilities and scope, rather than on how XG will work. In a sense, this may be considered an 
evolving “executive summary” of the DARPA XG program. In short, it is intended to be a one-stop-shop for 
answering “What is XG” type questions. 
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2 An Introduction to XG 
 
The Defense Advance Research Projects Agency (DARPA) neXt Generation (XG) communications program is developing a 

new generation of spectrum access technology. This section presents the motivation behind XG and its overall goals. 
 

2.1 Motivation 
 

There are two significant problems confronting wireless communications with respect to spectrum use: 

♦ Scarcity. The current method of allotting spectrum provides each new service with its own fixed block of 
spectrum. Since the amount of useable spectrum is finite, as more services are added, there will come a point 
at which spectrum is no longer available for allotment. We are nearing such a time, especially due to a recent 
dramatic increase in spectrum-based services and devices. 

♦ Deployment difficulty. Currently, extensive, frequency by frequency, system by system coordination is 
required for each country in which these systems will be operated. As the number, size, and complexity of 
operations increase, the time for deployment is becoming unacceptably long. 

Both problems are a consequence of the centralized, static nature of current spectrum allotment policy. This 
approach lacks the flexibility to aggressively exploit the possibilities for dynamic reuse of allocated spectrum over 
space and time, resulting in very poor utilization and apparent scarcity. It also mandates a priori assignment of 
spectrum to services before deployment, making deployment difficult. 

Preliminary data indicates that large portions of allotted spectrum are unused (refer the Spectrum Policy Task 
Force report). This is true both spatially and temporally. That is, there are a number of instances of assigned 
spectrum that is used only in certain geographical areas, and a number of instances of assigned spectrum that is 
only used for brief periods of time. This wastage is bound to increase in future – spatially, due to the increasing 
localization of propagation due to radio devices moving up in frequency, and temporally due to the proliferation 
of services that are highly bursty in nature.  

Studies have determined that even a straightforward reuse of such “wasted” spectrum can provide an order of 
magnitude improvement in available capacity. It can be concluded that the issue is not so much that spectrum is 
scarce, but that we do not have the technology to effectively manage access to it in a manner that would satisfy 
the concerns of current licensed spectrum users. 

In order to address the scarcity and deployment difficulty problems, XG is pursuing an approach wherein static 
allotment of spectrum is complemented by the opportunistic use of unused spectrum on an instant-by-instant 
basis, in a manner that limits interference to primary7 users. In other words, the basic idea is this: a device first 
“senses” the spectrum it wishes to use and characterizes the presence, if any, of primary users. Based on that 
information, and regulatory policies applicable to that spectrum, the device identifies spectrum opportunities (in 
frequency, time, or even code), and transmits in a manner that limits (according to policy) the level of interference 
perceived by primary users. We term this approach opportunistic spectrum access. 

Opportunistic spectrum access also provides far easier deployment, or rapid entry, into regions where spectrum 
has not been assigned. Only minimal prior coordination is necessary, greatly easing the restrictions to meet the 
deconflicting requirements. This is helpful both in civilian applications such as the entry of a wireless LAN 
technology in  less developed regions, and in military operations requiring high tempo and quick reaction time. 

 

                                                 
7 Users that are licensed to use the spectrum in question, subject to regulatory constraints. 
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The fundamental change from legacy systems is that the management of spectrum is now placed in each radio, where it can 
assess the actual situation at each instant in time, rather than have to be deconflicted in advance for any possible situation of   
time, position, signal, propagation, etc.  Only a few of these constraining conditions will be present at any one time, and these 
are the only ones that need be considered in developing interference avoidance tactics.  The radio itself is best positioned to 
be aware of these conditions.  

 

 

While conceptually simple, the realization of opportunistic spectrum access is highly challenging. Several 
problems must be solved: sensing over a wide frequency band; identifying the presence of primaries and 
characterizing available opportunities; communication among devices to coordinate use of identified 
opportunities; and most importantly, definition and application of interference-limiting policies, and utilization of 
the opportunities while adhering to such policies.  

Let us consider the last point further, as it is complex and significantly impacts the scope of our vision and 
approach. The ability to sense and transmit on unused spectrum, or spectrum agility, is doubtless the central 
capability required. However, the true potential of this new approach can be exploited only if in addition to 
spectrum agility, we provide policy agility – that is, a way by which the policies controlling the behavior can be 
dynamically changed. That is, policies are not embedded in the radio, but can be loaded “on-the-fly”. Policy 
agility allows adaptation to policies changing over time and geography. Further, technology (spectrum agility) can 
be developed in advance of policies. This is important for breaking the chicken-and-egg dilemma that exists 
today, where regulatory bodies must wait for technology before drafting policies and technology must wait to see 
what the polices will look like. 
The central role of regulatory policy in achieving opportunistic spectrum access suggests that a fresh look at the process by 
which policies are conceived, specified, and applied is needed. This is where XG is unique. The XG vision includes not only 

AutonomousAutonomous
Dynamic Dynamic 
SpectrumSpectrum
UtilizationUtilization

ReactReactReact

CharacterizeCharacterizeCharacterize

SenseSenseSense

AdaptAdaptAdapt

All Spectrum May Be Assigned, But…

Maximum Amplitudes

Frequency (MHz)
A

m
pl

id
ue

 (d
B

m
)

Heavy Use

Sparse Use

Heavy Use

Medium Use

Less than 6% OccupancyLess than 6% Occupancy

…Most Spectrum Is Unused!

XG Provides Spectrum Access… 
Worldwide.

Dynamically Locate Spectrum, Organize Networks, 
and Implement Policies to Ensure No Interference.

Maximum Amplitudes

Frequency (MHz)

A
m

pl
id

ue
 (d

B
m

)

Incise New Users

Figure 23: Spectrum is wasted. Opportunistic spectrum access can provide 10x 
improvement by reusing wasted spectrum.



 

              57

the development of technology for opportunistic spectrum access, but also the development of the concepts, tools and 
standards for incorporating a totally new “software-based” policy regime that allows policies to be decoupled from the 
implementation and changed dynamically. 

The use of policy agility using machine readable or machine understandable policies is depicted in figure 24. 
Starting from the left, spectrum policies are encoded in a machine interpretable form and loaded into the XG 
device.  The XG device then operates in accordance with its interpretation of these policies.. Policies may be 
loaded using smart media or over the Internet. In order to change the policies we simply need to load a new 
version. For instance, operating in a different country would require merely downloading from a different web-
site or new smart card. 

In general, if a radio were not policy agile – even if it is a software-defined radio that is capable of doing 
opportunistic spectrum access – then each policy change would require re-design, re-implementation, and re-
accreditation. And this potentially needs to be done for each configuration of a system (e.g JTRS UAV, JTRS 
vehicle mount, etc.). Further, accreditation is an m x n problem, that is, for each of m policies, and each of n radio 
types/configurations, a separate accreditation needs to be done. On the other hand, with policy agile radios 
regulators need to accredit once (accredit based on ability to correctly interpret machine-understandable policies), 
and can change policy dynamically as the situation changes. 

Although recent years have seen some of the components for opportunistic spectrum access mature (e.g. software radios), we 
are a long way from a prototypical system. Further, no work exists in the area of decoupling the policies from the 
implementation. This yawning gap between current state-of-the-art and what is required for opportunistic spectrum access is 
the motivation behind XG. XG will develop the enabling concepts and technology for opportunistic spectrum access in an 
interference limiting manner. Further, it will develop an architectural framework for specifying and applying XG policies to 
XG devices. With these developments, XG anticipates revolutionary advances in network capacity and ease of entry while 
enabling a novel, highly flexible regulatory regime by providing the languages, idioms, tools, and concepts for the 
specification and application of machine-readable policies. 

2.2 Goals 
 
The goal of the XG program is to solve the problem of opportunistic spectrum access in its totality. At 
the highest level, there are two sets of goals. 
1. Develop the enabling technologies for opportunistic spectrum access. This includes providing certain key 

behaviors such as sensing and characterizing the environment, identifying and distributing spectrum 
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opportunity information, and allocating and using these opportunities commensurate with the demand. Such 
solutions would typically be implemented as part of an XG radio device. 

2. Develop a long-lived framework for managing the key aspects of radio behavior through flexible application 
of policies. In order that the radio be policy-agile, we require a framework in which policies are written in a 
way that can be interpreted by the radio, and the radio is able to exploit such expression of policies. 

The remainder of this section elaborates on these goals, with particular emphasis on the second goal. 

For each of the behaviors mentioned in item 1 above, it is likely that there is more than one solution. Therefore, 
one objective is to ensure that our framework is flexible enough to permit multiple solutions within a single 
abstraction of how XG should operate.  In other words, the framework should allow diverse solutions to co-exist 
while sharing a core set of behaviors. 

Another goal is to keep the core behaviors distinct from the innovations that may implement the mechanisms in 
different ways. This would be analogous to secure kernels – that is, inside the boundary, we can be sure of what is 
happening and can trust it whereas outside this boundary there is room for innovation. The challenge is to make it 
so that only the core set of behaviors “inside the boundary” is relevant for regulatory approval. This idea will be 
discussed in more detail in section 10.2.   

Achieving policy agility requires the decoupling of policies from behaviors and their implementations. This 
implies the need for a standard way of expressing policies across the XG program, and in future, across the XG-
compliant nodes. Thus, a goal is to develop a language that can provide a suitable mechanism for policy 
expression and interpretation. 

A key goal of the XG vision is traceability, that is, the ability to associate each emission with a policy or a set of 
policies that permit this emission. Traceability would be a valuable feature that will help address the thorny 
verification and validation problem. 

Information assurance, while important, is not a focus of the XG effort. The goal is to be consistent with existing 
information assurance architectures (such as red/black separation), and not invalidate existing constructs. 
However, denial of service issues, at least on the XG control channel, must be considered. Design of protocols 
must pay heed to at least the well-known denial of service threats. 

Finally, a challenging goal is to ensure that XG is not unduly influenced by how we plan to implement the 
solution today, and is instead a flexible framework that can be used for decades after the XG project is completed 
at DARPA.  In other words, we need an overarching technology that can be separated from, and be managed 
above the level of individual radio approvals. The longevity of the Internet Protocol is proof that such frameworks 
are possible. 
 
In sum, our vision is to enable two new regimes: 

♦ A new spectrum access behavioral regime consisting of technologies that sense, characterize, and utilize 
spectrum opportunities in an interference-limiting manner. 

♦ A new regulatory control regime consisting of methods and technologies for controlling such opportunistic 
spectrum access behaviors in a highly flexible, traceable manner using machine understandable policies. 

 

3 The XG Approach 
A key facet of our approach is the decoupling of policies from behaviors and behaviors from protocols. To 
illustrate this, consider current practice, for instance IEEE 802.11. The 802.11 developer has the IEEE standard as 
the reference point for the physical and MAC layer implementation. The IEEE 802.11 standard describes the 
physical- and MAC-layer protocols. The behavior (the “what”), is implicit in, and tied to the protocol (the 
“how”). Similarly, the policy of sharing the unlicensed band, in particular the “good citizen rules” such as 
maintenance of power spectral density to within a certain value, is expressed as part of the power control and 
spreading mechanisms and is “embedded” within the implementation.  
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Our approach is to decouple these elements as shown in figure 25. By this, we mean that policies, behaviors and 
protocols are defined separately with some kind of “connections” defined between them. For instance, in the 
context of the above 802.11 example, using this approach, there would be three “specifications” – one defining 
the usage policy, one defining the behaviors, and one defining one or more protocols that implement each 
behavior. Each specification would be independently changeable within the bounds of its parent abstraction’s 
specification. 

While this might be overkill for 802.11 and other legacy “static spectrum” systems, it is of great value for  

opportunistic spectrum access. Decoupling allows adaptation to policies that vary over time and geography. 
Technology can be developed in advance of policies, and worldwide deployment would be greatly simplified. 
Furthermore, sub-policy management, as required in secondary markets, is easier. Policies no longer have to 
reflect the common denominator of competing technologies, and can be tailored to the diverse system capabilities 
expected for opportunistic spectrum access. Decoupling behaviors from protocols allows us to control what needs 
to be done separately from how it is implemented, resulting in a cleaner and more flexible architecture. Indeed, we 
argue that a decoupling approach is not just beneficial but pretty much a requirement for harnessing the full 
potential of opportunistic spectrum access. 

Thus, a key aspect of the XG approach is that it is policy controlled. Policies are the only things that XG users, 
regulatory bodies, and foreign governments need to concern themselves with in order to control and predict the 
behavior of an XG system. As mentioned earlier, when an XG system is to be deployed in, say, a foreign country, 
we only need to supply a policy script (say in a memory card) as input to the XG system and the XG system 
behaves accordingly. This is similar in operational detail to the loading of a new configuration file, except that the 
policies are far more general and complex than the assignment of parameters to variables and the policy meta 
language needs far more expressive power than a typical configuration file.  

We see policy as constraining (but not specifying) either the implementation details of the protocol or radio, or 
their performance. For example, a policy constraint could be that one must vacate an occupied frequency in t 
seconds.  This policy is not dictating the performance of the protocol, or the design of the MAC, but it is 
constraining the solution. If for example, it takes an XG radio more than t seconds to acquire the signal, or to 
sample the band, the XG radio would not be able to abide by the stated policy, and would therefore have to avoid 
the band that was so constrained.  In many ways, policies specify what “not to do”. The XG radio and protocol 
implementations are free to operate in any way they want as long as they abide by policy.  

A central notion in this approach, and a notion that is enabled by this approach, is that of traceability. Behaviors, 
preferably one or more of a core set of abstract behaviors, should be traceable to policies. This provides two 
advantages: first, it helps make the verification of new policies easier, and second, when an XG radio is deployed 
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Figure 25: This illustrates the decoupling of policies, behaviors, and protocols, along 
with traceability and the four components of our framework.
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in a new region, it is easier to affirm that the XG system will behave in a certain way. It allows us to accredit 
based on ability to correctly interpret and implement policies. In other words, traceability ensures that abstract 
behaviors (implemented by a specific XG system) can be validated against the policy – this is key to 
accreditation. Lack of traceability is a weakness of today’s software-defined radios. For instance, JTRS radios on 
UAV, handheld, and vehicle-mounted systems have to accredit independently.  By being policy controlled, XG 
systems will allow a single accreditation to cover all cases. 

The XG approach has a number of advantages in comparison to the traditional way of architecting systems (such 
as SUO). First, the user of XG-enabled radios has far more and far easier control of the system behavior which 
can be quickly adapted to the diverse environments that are likely to be encountered. Second, as mentioned 
earlier, it provides for traceability to help the accreditation process. Third, one can use systems based on different 
set of assumptions simply by incorporating these assumptions in the policy (e.g., an XG system that relies on 
chatty primaries for sensing can be used with a policy that allows its use only in bands with known chatty nodes). 
This allows incremental development by progressive relaxation of assumptions. Finally, any misgivings about the 
use of XG with  respect to existing services within a particular band (for example when there is zero tolerance for 
interference) can be mitigated by simply having a policy that forbids the use of non-primary emitters in that band, 
rather than redesign the hardware and software to do that. 

We note that an alternative approach for XG would be to develop waveforms that optimized the performance of a 
radio, and to embed the control protocols within the radio as part of its design.  This is similar to the approach 
adopted for several other DARPA communications programs, such as the Small Unit Operations (SUO) radio and 
Future Combat System Communications (FCS-C).  While this approach would demonstrate the feasibility of the 
XG technology, it would not provide a framework that would enable the implementation of these features within a 
broad range of radios, nor would it establish a basis from which broad regulatory approval could be obtained.  The 
process would still be one radio at a time, and would not advance our objective of an overarching technology that 
could be managed above the level of individual radio approvals. 

Our approach requires the definition of four key components, as shown in the bottom of figure 26: policy 
language framework, abstract behaviors, protocols, and interfaces. National and international regulatory 
environment is a long-term process, and one that can not instantly adapt to changing concepts and approaches.  
Therefore we want to approach these communities with a simplified and generic set of abstract behaviors. We 
also need to characterize the control over XG policies – thresholds and rules of operation – by a policy language. 
Policies are expressed in a machine-understandable language. Abstract behaviors are instantiated by protocols, the 
specification of which will allow for interoperability. Fourth, in order that the framework be agnostic to the “best” 
solution for each function, and to allow for progressive, independent refinement of each function, interfaces 
(APIs) are a key element of the framework.  

In the remainder of this section, we shall look more closely at our vision for the policy language framework, and 
abstract behaviors. We note however, that this is only an overview, and that further detail will be presented in the 
other RFCs in the XG RFC family. 

3.1 Policy Language Framework 
 
The policy language framework has four objectives: developing a language structure that is rich enough to 
adequately express XG use cases, allow for machine “understandability”, support inference and reasoning 
capabilities, and be flexible/extensible enough to be long-lived. We note that it is not the intent of our 
framework/language to be able to capture all spectrum policies, only XG related policies. 
To set the context for the policy language, we first consider the “big picture” – that is, the actors and roles 
involved in policy based control of radios. Our vision is depicted in Figure 26. 
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Figure 26: XG Policy Language Framework -- actors and roles 

 
The policy language designer creates the language model that defines the high-level objects of the language along 
with the language syntax and semantics and publishes it (e.g. at a well-known URI) for the policy designers and 
policy users to access.   

The policy administrator is responsible for developing and encoding spectrum policy as expressions in the policy 
language produced by the language designers.  The policy administrator must then make the policy available to all 
spectrum users.  The administrator does not have to know all the details of the language as they may use a 
graphical tool to encode the policy, called an instance editor, and hide the notational complexity of the language.  
The administrator also may also validate the policy set to ensure that there are no conflicts. 

The spectrum user (an XG system), must then be able to use the policy to understand usage constraints (as 
specified by the policy administrators) on spectrum that may be available for its use.  While the spectrum user 
needs to be able to understand the policy encoded in the language, the degree of language knowledge necessary to 
extract the policy information may vary greatly.  The most limited interaction would be a policy interface that 
completely hides the language complexity, but may limit the type of information that may be extracted from the 
policy. The choice of the appropriate mechanism to extract information (from policy instances represented in an 
openly specified language representation) is therefore up to the system designer.  If necessary, the policy may be 
transformed into a more compact format that an XG radio may use instead of the adopted standard language 
representation.  An XG radio may also take advantage of the full power of the XG policy language and use 
policies encoded in it directly.  In all cases, users must have the ability to access the policy and verify the XG 
system’s conformance to the policy before using the spectrum.   

For the reminder of this subsection we consider the development of the policy language. The first question is: Can 
it be done? After all, we are attempting to encode information that has traditionally been developed for human 
consumption. Further, there is a vast diversity in the primitive objects that make up regulatory policy domain – 
from concepts of frequencies to power spectral density, mathematical formulae, geographical concepts, time 
concepts including zoning, possible database access etc. Finally, it is not sufficient to be able to just express the 
information – it must be done in a manner that conveys the structural relationships amongst the objects so that a 
machine can reason about policies so that every single fact does not have to be encoded. 

Although admittedly daunting, there are recent advances in a couple of fields that can be leveraged. First, the 
general area of knowledge representation has yielded tools, techniques and insight into representing human 
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consumable information. Second, there has been considerable research into languages and tools for the semantic 
web, in particular, markup languages that encode the semantic content along with the data that are also relevant 
for our purposes.  

Another observation is that most (though certainly not all) of the spectrum policy domain is hierarchical in nature. 
The hierarchy stems from progressive narrowing along several dimensions: from general to specific, and along 
geographical regions. For instance, a general policy could be “not allowed to transmit on band B”. This may be 
tightened as “not allowed to transmit in band B, except in frequencies f1 and f2”. Policies regarding general TV 
bands, HDTV band(s) and ATSC lend themselves to hierarchical nesting. Similarly, national policies may be 
“inherited” and made more specific in certain regions (e.g. U.S states). And devices with highly directional 
antennas may be able to operate under a specific (less restrictive) policy where similar devices with omni-
directional antennas would need to operate under a more general (more restrictive) policy. 

Finally, although the current policies are largely unstructured and disorganized from an information-scientific 
viewpoint – as would be expected given the lack of a formal structure before policies were written – this doesn’t 
necessarily have to be the case with XG policies, which is the domain for our language. Establishing a framework 
and a language structure can help guide the specification of policies in a “cleaner” way. 

These observations lead us to an approach that, at the highest level, could be termed a structured declarative 
language approach. It is declarative in the sense that the policies are expressed mainly in terms of facts and rules, 
and structured in the sense that the facts and rules are organized in an object-oriented fashion that exploits the 
power of inheritance to simplify the relationships.  

Within this overall approach, it is instructive to dwell briefly on the requirements of our policy language. These 
include: inheritance and polymorphism – to enable policy rules and properties to extend others and reduce the 
need for enumeration; reification (rules about rules), for example, to make a policy rule governing when or where 
a set of policies will apply; inference, to infer facts that may not be explicitly stated; extensibility in its 
vocabulary, structure and semantics so that the language can adapt to express new types of policies as spectrum 
policy requirements change; and finally, standards based, so that adoption is easy and tools continue to be 
available. 

The use of policy language allows us to isolate the general framework within which XG needs to operate, from 
the details of establishing and advocating specific thresholds and rules of operation.  We will develop this 
language so that we can demonstrate that it can support the types of operational controls that national regulatory 
authorities would wish to impose.  Initially, conservative rule sets and thresholds may be imposed, but these can 
be broadened and tailored as experience is gained.  These changes would not affect the design of the underlying 
XG systems, as the policies would be isolated from the XG implementing behaviors.   

This approach allows policies to be written in advance of technology. It also allows for lower cost XG variants 
that do not have the capability to enforce certain conditions, and trade cost for potential performance.  If a radio 
has a "better" FFT, then it can play closer to the edge.  We avoid a single definition of XG functionality – rather, 
we embrace a set of design choices that implementers can match to spectrum and policy conditions.  

 

3.2 Abstract Behaviors 
 
When considering policy-based control of an XG radio, we believe that control must be limited to what the radio 
does, rather than how the radio does it. For instance, it makes sense for a policy to say that the transmit power 
must be no more than 10 mW, but mandating that the radio use a particular automatic gain control (AGC) 
mechanism or even use AGC does not seem appropriate. In order to capture this in our framework, it is essential 
that we decouple the how from the what – this naturally leads to the concept of abstract behaviors as distinct from 
protocols that implement such behavior. 

An abstract behavior is an abstraction of a mechanism that hides details of one or more aspects of its 
functionality. For instance, an “interference limiting” abstract behavior could be for a node to “not introduce a 
signal that increases the interference over any point beyond 400 meters of the node by more than 8%”. As a 
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further example, consider that TCP is a mechanism which implements the transport layer functionality defined by 
the OSI reference model.  TCP exhibits two abstract behaviors: setting up, and maintaining a connection between 
networked applications.  

The abstraction of behaviors could be done at several levels, and so a particular protocol may correspond to 
several abstract behaviors. For instance, consider the IEEE 802.11 MAC Distributed Coordinated Function. A 
protocol for this involves specifying the frames (RTS/CTS/DATA/ACK), their formats (waveforms), timers, 
finite state machines, and so on. An abstract behavior might be to simply say “… use RTS/CTS/DATA/ACK 
handshake for collision avoidance…”. This behavior might be implemented by a variety of protocols that might 
differ in packet format or how the NAV is handled. An even higher level abstraction might be to say  “… must 
avoid collisions…” allowing different kinds of algorithms, including TDMA. For XG, we will choose appropriate 
levels on a per protocol basis, based on standardization and regulatory considerations. 

An XG system is comprised of a number of mechanisms working in unison. Each of these mechanisms may be 
seen as solving a particular problem, which typically has more than one solution, and correspondingly, more than 
one protocol. Each solution has its own advantages and disadvantages, and may be appropriate for different 
scenarios. However, it is very difficult to regulate every possible mechanism. On the other hand, mandating a 
select few mechanisms stifles innovation.  

How then can we allow innovation, and a variety of protocols, while assuring regulatory conformance? We 
propose to accomplish this by specifying a core set of abstract behaviors. Each mechanism within the XG system 
can be thought of as composed of two parts: one part that falls within regulatory purview, and one that doesn’t. 
Typically the part that falls within regulatory purview is likely to be small and the one that doesn’t is likely to be 
large and, moreover, is the one in which much of the scope for innovation lies. We envision that a behavior from 
the core set of specified abstract behaviors will be associated with each mechanism as the regulatable part, while 
preserving the freedom for the mechanism to make optimizations as desired in the unregulated part. Specifically, 
we shall first establish a set of behaviors that ensure systems are interference limiting.   

We shall develop a framework that assures that optimizing methods lie outside of the regulatable kernel, as this 
will enable the continued progression of XG capability and performance, without requiring that these actions be 
addressed within a regulatory process.  A generalized framework is optimal for DoD interests, as it provides a 
means to address a large number of systems within a single context – a context that may well have been adopted 
to enable civil uses as much, or more, than military ones.  

This subset or the “core set” within the boundary will be referred to as the regulatable kernel. It is illustrated in 
figure 27, which shows four abstract behaviors A,B,C,D, and three mechanisms that incorporate these behaviors. 
Those portions of the XG system that are within the core set (indicated by the thick circle) should be of interest to 
the regulatory community, as these contain the functions that achieve the objectives subject to regulation.   

By isolating this subset of the XG system, we hope to provide a focus for regulatory consideration that is 
compact, and does not necessitate the regulatory community becoming involved in all aspects of XG 
implementations. 

This approach is similar to the way security systems work today. In the security realm, we have adopted methods 
that isolate the critical aspects of the larger system into a small, and highly controlled subset, sometimes referred 
to as the “trusted security kernel”. Typically this provides a Trusted Kernel, Physical Red/Black isolation, 
cryptographic or a similar mechanism that enables us to think of the bulk of the system as outside of the security 
boundary.  As long as we know, prove, and trust the mechanisms within this trusted kernel, other parts of the 
security system can evolve to meet different cost-performance tradeoffs. We need a similar framework for XG. 

Mechanisms outside of the kernel may extend the functionality to apply it to specific situations. For instance, a 
regulatory kernel behavior might be to dictate an upper limit to the field intensity at any point (omnidirectionally) 
beyond some specified distance from the transmitter. Outside the regulatory kernel would be a behavior that 
assures the limit is met at each environmental system by recognizing a capability for the transmitter to know 
where each environmental system is and to limit the transmission in that direction so as to meet the regulatory 
kernel requirement at that point. This “directional sensing and control” behavior would be an extension of  the 
“interference limiting” behavior beyond the Regulatable Kernel.   
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There are a number of challenges to be addressed in the realization of this vision.  First, we need to identify a 
suitable set of abstract behaviors. If there are too few, it will restrict the scope of XG mechanisms.  On the other 
hand, if there are too many behaviors, the regulatory process might become too complex.  A guiding principle is 
to keep as little as possible within the core behaviors, subject to traceability of policies into those behaviors.  
Second, the level of detail of each abstract behavior must be determined.  If it is too detailed, it might be difficult 
to obtain regulatory approval and to achieve consensus between two XG implementers.  If it is too general, an 
approver may need to look at the implementation in order to determine whether or not it is interference 
preserving. Further, it will increase the risks of producing non-interoperable implementations.   

Specific instantiations of abstract behaviors will permit interoperability among XG systems, and the abstract 
behaviors allow for fine grained optimizations within a group of XG nodes. However, correct definition and a 
suitably clean partitioning between core/non-core behaviors rather than interoperability is the primary goal of 
abstract behaviors. 

The need for progressive layers of abstraction, the need to hide details, and the need to allow multiple ways of 
implementing a particular defined behavior strongly suggest the use of an object-oriented approach. Object-
oriented design and specification are increasingly being recognized as the cleanest and most efficient way of 
system design and development, and use of this approach can benefit the development of XG. 

In our object-oriented analysis framework, the basic XG classes have defined interfaces and high-level behaviors, 
and the details are left for instantiation by the behavior implementation.  For example, there is an XG class that 
manages information about spectrum occupancy.  Regardless of its implementation, we will require that it have 
access methods that address energy and frequency.  Different implementations may have different noise floors, 
frequency resolution, scan rate, etc.  The interference methods will need to understand how these parameters 
affect the ability to determine non-interfering opportunities, but need not be specific to these values. 

Similarly, we can describe an abstraction of the process of using a set of spectrum occupancies to select a 
spectrum opportunity for a given spectral power density, time, bandwidth, etc.  Actual implementations will vary, 
but must be constrained to ensure compliance with the policy-based language controls.  So long as the XG 
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operation can ensure this compliance, we will leave the implementers free to develop and evolve ever more 
capable instantiations of these behaviors. 

In many cases, the behaviors have a natural hierarchical structure. Using an object oriented framework, this 
structure can be elegantly represented by means of “inheritance” of classes. For instance, consider the process of 
identifying a set of opportunities. This may involve using only local sensing information (“uncoordinated”) or be 
based on the sensing information from neighboring nodes (“coordinated”). The latter would be useful, for 
instance, if a deep fade is the reason that local sensing shows up an opportunity and in reality the opportunity is 
not there. For each case, one may augment the process by adding “probe” transmissions to perhaps trigger a 
response from a primary receiver (“active sensing”). With an object oriented framework, the top level class would 
be inherited in the requisite way to specify the different solutions to the same problem. 

An example set of core abstract behaviors is as follows. Note that each is a class of behaviors that can be inherited 
and instantiated in a number of ways – details are given in the XG Abstract Behaviors RFC. 

1. The XG Spectrum Awareness Management (XG-SAM) behavior, which describes how opportunity information 
is acquired, identified, represented and disseminated within and across XG systems.  XG-SAM encompasses 
awareness information gained from sensing, policy (including configuration), and through XG Opportunity 
Dissemination Protocol (XG-ODP) instances, as well as opportunity identification. 

2. The XG Opportunity Dissemination Protocol (XG-ODP) behavior, which is a class of protocol behaviors that 
can be used by XG systems to share opportunity awareness information.  An XG system should participate in one 
or more instances of XG-ODP classes. 

3. The XG Usage Accounting Management (XG-UAM) behavior, which enables every emission to be traced to a 
valid opportunity and a set of policy rules that allows this usage.  Therefore each emission must be tagged with an 
opportunity object and a policy object. 

3. The XG Use Coordination Protocol (XG-UCP) behavior, which allows XG systems to coordinate 
the use of selected opportunities with other (XG and non-XG) systems.  XG systems should 
participate in one or more instances of one or more XG-UCP classes. 

 
4 XG Operation 
 
In this section we discuss interaction between different XG networks, layering issues involved in the 
dissemination of XG information, operational modes, and other concepts involved in the operation of an XG 
network.  

Consider an XG node that enters a geographical area populated by other spectrum users. There are several 
possibilities for such users: they may be licensed “primaries” with right-of-use, or unlicensed. If they are 
unlicensed, they may or may not be XG (or more generally, opportunistic spectrum access capable) nodes. And if 
they are, they may or may not be able to interact with the XG network in question. Finally, there may be several 
levels of interaction – from just deconflicting to complete participation in spectrum allocation and use. 

The following definitions are helpful in discussing such interactions. From the perspective an XG node X, there 
are three kinds of “other” nodes: 

♦ Non-XG. These are “traditional” non-XG-capable nodes, or are running a different (incompatible) set of 
protocols. Node X will be able to sense their radio energy, and possibly identify physical layer waveforms 
(with appropriate feature detectors), but that is the limit of the interaction. 

♦ XG-aware.  These are nodes that implement some common protocol—that may or may not be part of the XG 
suite of protocols – that enables the exchange of spectrum usage information that allows deconflicting. That 
is, for instance, node X can determine which opportunities are being used by such nodes and “stay away” 
from those. Depending upon the nature of the common protocol, the exchange may be one-way or two-way – 
for example, node X may be able to determine the opportunities used by an XG-aware node Y, but 
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not vice-versa. However, they do not cooperate in terms of opportunity allocation/assignment, and 
are not required to know about which opportunities are sensed/used by each other.  

♦ XG-cooperative. These are nodes with which our protocols can coordinate the use of spectrum. That is, XG-
cooperative nodes implement a set of protocols that allow them to exchange opportunity information, perhaps 
over multiple hops of XG-cooperative nodes, and to negotiate allocation of opportunities. In other words, XG 
cooperative nodes sense opportunities, disseminate and receive such opportunity information from other 
nodes, and jointly allocate such opportunities. We also simply call these XG nodes and a collection of XG 
nodes an XG network. 

Orthogonal to the above categories is the classification into licensed and unlicensed. Licensed nodes have right-
of-use and node X must be interference limiting with them. Unlicensed nodes may not have such protection but 
node X is likely governed by policy that requires “good citizenship” in the sharing (a “commons” model). Thus, in 
our vision, there are 6 modes of possible interactions that XG will accommodate. 

We now consider the scope of interaction between XG nodes. We first define the concept of an XG domain, 
which influences the nature and scope of our protocols. An initial vision of an XG domain is a collection of XG-
cooperative nodes that form a connected (at layer 1) network.  That is, there is a layer 1 path (could be multi-
segment) from every node in the XG domain to every other, and each node in that path implements a common 
protocol for awareness, dissemination and use of opportunities. 

This concept is illustrated in Figure 28. The straight lines indicate connectivity between nodes. Note that the 
concept of a subnet (a layer 3a functionality) is independent of the XG network. Indeed, if XG nodes from two 
different layer 3 subnets are within range of each other, they can belong to the same domain (beneath layer 3) 
crossing the subnet boundary, as illustrated in the figure. What this means is that an XG node in one subnet may 
know the frequencies used by an XG node in another subnet if there is a path through other XG nodes from one to 
the other. 

 

XG networks in the presence of non-XG nodes and router-connected subnets  
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Figure 28: Concept of an XG domain. A domain is the set of nodes within a shaded region. A line between 

two nodes indicates the existence of a physical layer connection between the nodes. Note that network-layer 
connectivity may be different, and is not shown. 

In this vision, an XG domain is not a packet or data centric network, but one that operates as a Layer 2 
information fusion and dissemination structure.  Several instantiations of this general idea are possible – from 
simply relaying or “flooding” the opportunity information to all nodes in a domain, to merely maintain awareness 
of certain content (such as spectrum usage at their location), some neighboring nodes, and local frequency 
planning.  In general, information may be provided only on a “need to know” basis with other nodes, but 
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reprocessing it only to provide the minimal set of awareness.  For instance, information can be correlated so that 
each node does not report common blocked frequencies, and only candidate frequencies are relayed.  This can 
both eliminate significant overhead bandwidth, while ensuring that enough information is available for the 
decision process at each node. Exchange of opportunity information across a domain should not be confused with 
layer 3 “routing”even if flooding is used – we are merely talking about layer 2 exchange of control packets 
beyond a single-hop. 
This framework does not require routing information to be distributed, as each node joins only to other nodes that are within 
the same RF environment.  No XG unique address management is needed. 

How are nodes in the domain organized? Broadly speaking, two opportunistic spectrum access usage models are 
possible, as briefly described below: 

♦ Centralized. In this approach, the management of spectrum opportunities is controlled by a single entity 
or node, called the bandwidth manager, or spectrum broker. This node is responsible for sensing, and 
deciding which opportunities can be used, and by which nodes. This is relevant in real-time secondary 
spectrum markets. 

♦ Distributed. In this approach, the interaction is “peer to peer”. In other words, the XG nodes are 
collectively responsible for sensing and sharing the opportunities. This is most relevant in military 
networks.  

There can also be models that share properties of both these types. Another spectrum sharing model that is related 
but does not quite fit in the broad classification is the “interruptible” model. In this model, spectrum is allocated 
subject to revocation by the primary holder of the spectrum. One may think of this as a special case of the more 
general XG model – there is either no primary or a primary all the time (recognized by, say, a signature “get out, I 
need it right away” continuous signal). Interruptible spectrum may be seen as a policy issue where the 
requirements for using the spectrum are very stringent. 

Our XG approach is applicable to both centralized and distributed architectures. Indeed, policy may decide 
whether or not the system functions in a centralized or a distributed manner.  

Within each approach, a number of possibilities exist. An example taxonomy is shown in Figure 29. There are 
three possible implementations of the centralized model: 1) there is no sensing, and the band manager has a block 
of spectrum that it owns that is given to secondary users in real-time based on requests; 2) only the band manager 
senses the spectrum, identifies opportunities dynamically and allocates it to XG nodes; 3) like (2), but 
additionally, XG nodes sense and provide information to the band manager to help in decisions.  

The XG framework should accommodate all of these possibilities. Some of these, such as the spectrum handout 
approach are a special case of the general one – in this case, there is a “null” sensing and identification behavior. 
 
 
5 Summary 
 
The current policy of statically assigning spectrum for services can be inefficient in terms of spectrum utilization 
and cumbersome in terms of deployment agility. Opportunistic spectrum access, that is, the idea of 
opportunistically using assigned spectrum in an interference-limiting manner holds great promise. 

The XG program is developing the concepts, framework and enabling technologies for opportunistic spectrum 
access. Specifically, the program has two goals: develop the enabling technologies for opportunistic spectrum 
access, including solutions to the problem of sensing, characterizing, identifying, distributing, and allocating 
spectrum opportunities; and develop a long-lived framework for managing key aspects of radio behavior through 
flexible application of policies. Our vision encompasses not only spectrum agility, but also policy agility – that is, 
the use of machine understandable policies for controlling the behavior of an XG radio. 

The XG framework decouples policies, behaviors and protocols. The decoupling is enabled using two key 
concepts: the use of a policy language, and the definition of (core) abstract behaviors.  
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Spectrum policies are expressed using policy scripts based on an XG policy meta language that the XG program 
will define. By having policy scripts tailored to reflect national and regional considerations, considerable control 
can be exercised over the behavior of the XG system. Traceability of policies to behaviors is an important goal of 
the XG framework and will help the accreditation process.  
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Figure 29: Taxonomy of XG approaches 

 
A core set of interference limiting abstract behaviors will be defined. This core set is the necessary and sufficient 
set of mechanisms for regulatory approval. Optimizations are best left to commercial innovation arising from 
competition. By separating the innovations from the core set of behaviors, we enable the continued progression of 
XG capability and performance, without requiring that these actions be addressed within a regulatory process. The 
specification of the behaviors will be done at several levels of abstraction, using an object-oriented approach. 

The XG vision encompasses more than a point solution to the problem of dynamic spectrum sharing. Rather, its 
goal is to develop a framework for diverse solutions to co-exist while sharing a core set of behaviors.  

A number of network interaction and organization possibilities and spectrum management exist within the XG 
context. XG will accommodate interactions with non-XG, XG-aware (deconflicting use), and XG-cooperative 
(coordinating use) nodes.  Organization models include the centralized “band manager”, distributed “peer-to-
peer”, interruptible and others. Our goal is to accommodate as many of these diverse implementation as 
reasonable within the policy-centric and behavior-oriented framework. 

In sum, our vision is to enable two new regimes: a new spectrum access regime consisting of technologies that 
sense, characterize, and utilize spectrum opportunities in an interference-limiting manner; and a new regulatory 
control regime consisting of methods and technologies for controlling such opportunistic spectrum access in a 
highly flexible, traceable manner using machine understandable policies. We shall enable the latter by defining an 
XG framework whose key components include the definition of a policy language and the definition of abstract 
behaviors. 
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1  Purpose 
 
 
This document describes the architectural framework for the development of XG. It also summarizes the 
main features of XG protocols, interfaces and policies, each of which are detailed in separate documents. 
This document may be thought of as the “overview” document for the XG protocols. Specifically, the 
following are addressed:  

♦ Requirements of XG protocols 

♦ Where and how XG functionality fits within a typical networking system 

♦ Layering issues 

♦ Functional decomposition into modules, and interfaces 

♦ Summary of protocols, APIs and policies 
This document is a Request for Comments (RFC). Accordingly, an important purpose of this document 
is to obtain feedback from the community at large, and to refine the ideas described here based on that 
feedback. The development of the XG architectural framework is an evolutionary process, and this 
document reflects a snapshot in that evolution. 

A number of other RFCs related to XG exist, or are being planned. The complete XG family will consist 
of the following: 

1. XG Vision RFC. This lays out the motivation for XG and its scope, presents the key concepts 
underlying XG, and describes an approach for defining XG.  

2. XG Architectural Framework (AF) RFC. This document. 

3. XG Protocol RFCs. Each XG protocol RFC specifies an abstract behavior, and when appropriate, 
details of individual protocols.  

4. XG Policy RFC. The XG policy RFC describes the syntax of a policy specification meta-language 
and a set of example policy specifications.  

5. XG Interface RFCs. We currently envisage two interface RFCs – XG Transceiver API and XG 
Opportunity API. These detail the primitives corresponding to these interfaces. 

We recommend that this document be read after the XG Vision RFC and before any of the other RFCs. 

An important purpose of this document is to articulate, at the highest level, a viable solution that 
addresses the needs outlined in the XG Vision RFC. In turn, this document is the blueprint to be 
followed by the protocol, policy and interface RFCs, each of which details a particular aspect of the 
architecture. 
There are, of course, several ways of approaching and defining an XG architecture that realizes the XG 
vision. Furthermore, the near-term needs are somewhat different from the longer-term needs. In the 
near-term, the emphasis should be on simplicity and in the longer-term on completeness and lasting 
value. Therefore, in this document, we have outlined two architectures – near-term and long-term. These 
will be refined in parallel and merged at a future date – that is, the near-term architecture will evolve and 
be subsumed within the longer-term architecture to result in a single architecture going forward. 
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2  Requirements 
The design of any system should be guided by a clear set of requirements. This section identifies 
requirements for the XG architecture and protocols. Every aspect of the architecture and protocols 
should be traceable to one of these requirements, and eventually, every requirement should be supported 
by some aspect of the protocols. 
 
Requirements include (we don’t include obvious requirements, such as “must provide dynamic spectrum 
access with interference mitigation”, which follow directly from the XG vision). 

1. It must be possible to add XG to a legacy system. Such an addition should not require extensive 
modifications to the legacy MAC mechanisms. 

2. Legacy systems without XG extensions should interoperate with XG-enhanced systems. 

3. There must be a provision to incorporate spectrum policies, priorities, and exclusions into the 
functioning of the protocols and/or abstract behaviors. 

4. The XG protocols must be largely agnostic to the MAC layer technologies. They must not depend 
upon how a MAC layer functionality is implemented. The general behavior of an XG system should 
be largely independent of the nature of the MAC layer, though a particular XG implementation may 
be aware of and exploit particular MAC layer technologies. 

5. The XG protocols must be largely agnostic to the physical layer technologies. That is, it must not depend 
upon how a physical layer functionality is implemented. The general behavior of an existing XG system 
should be largely independent of the nature of the physical layer. A particular XG implementation may be 
aware of and exploit particular physical layer technologies.  

6. A core set of behaviors must be identified in such a manner that a viable architecture where only the core set 
needs to be considered for regulatory approval is possible. 

7. The framework and protocols should be flexible enough to support XG-like capabilities long after 
the initial DARPA XG implementation(s). 

 
A major goal of the RFCs is to present an abstract view of XG. In particular, the problem statement is 
not with respect to any one existing protocol, nor will the solution be simply an embellishment of an 
existing protocol, such as 802.11. While it is likely that such embellishments will prove useful for the 
initial implementations of XG, the RFCs themselves will be at “one level higher” and solve the generic 
XG problem. 
 
Another goal is to keep the core behaviors distinct from the innovations that may implement the 
mechanisms in different ways. This would be analogous to secure kernels – that is, inside the boundary, 
we can be sure of what is happening and can trust it whereas outside this boundary there is room for 
innovation. The challenge is to make it so that only the core set of behaviors “inside the boundary” is 
relevant for regulatory approval. 
 

3 Preliminaries 
The description of the XG architecture will employ several concepts, such as layers, modules, interfaces, 
behaviors, and interference and XG domains. In this section, we define these concepts precisely so that 
all readers may interpret the rest of the document uniformly. 
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3.1 Layering 
A layer is a level of abstraction that captures some important aspect of the system, provides an interface 
that can be manipulated by other components of the system, and hides the details of how the 
encapsulated functionality is implemented. A protocol is a set of rules governing the format and 
meaning of messages that are exchanged by the peer entities at the same layer. A protocol provides a 
communication service that higher-layer objects use to exchange messages. The basic idea of layered 
protocols is for a lower layer to provide services to the layer above it. 
 
A layer can be divided into smaller logical substructures called sublayers. Sublayers abstract 
functionality within a layer in just the same way that layers abstract functionality within a system. 
Clearly, this definition can be generalized recursively. 
 
When two adjacent layers (or sublayers) differ in some aspect of functional perspective, and we need to 
make the differences transparent to the higher layer (or sublayer ), the concept of a convergence layer or 
“adaptation” layer is useful. A classic example is the layering of IP over ATM, where the variable-
length IP packets need to be segmented into fixed length ATM cells. A convergence layer is introduced 
that does segmentation and reassembly. The convergence layer is similar to a layer, but is used when a 
simple, specific functionality is targeted in relation to “mapping” between two adjacent layers. In other 
words, there is no new significant functionality introduced, but a kind of “translation” happens. In our 
case, the diversity of technologies at the physical and MAC layers and the need to map between them 
motivates the use of convergence layers. 

3.2 Modules and Interfaces 
Layers, sublayers, and convergence layers are connected by service interfaces, or APIs (we use the latter 
term). An API provides a set of primitives using which the service provided by a (convergence/sub)layer 
can be suitably abstracted. Use of APIs provides a means for modular development of system 
components, perhaps by different performers. APIs between layers/sublayers are termed vertical APIs. 
In contrast, horizontal APIs are interfaces between modules at the same layer.  

3.3 Domains and Regions 
The application of XG principles and techniques is concerned with maintaining predictable levels of 
interference among potentially competing radio systems.  We distinguish between the radio systems 
themselves and the locations in space that they occupy with the following definitions. 
 
The terms set and domain refer to collections of individual radio systems (sometimes called nodes).  The 
term region refers to a geographic area in which one or more nodes may be located. There are different 
types of sets, domains and regions. 
 
The interference set of a node consists of all nodes with whom that node may interfere.  An interference 
domain is the transitive closure of the interference sets of one or more nodes. 
 
An interference region is the contiguous area occupied by an interference domain, extended to include 
the area that would be occupied by “would-be” interferers with members of that domain.  That is, the 
area subject to the interference of/by members of the interference domain. 
 
An XG domain, on the other hand, refers to a collection of nodes that are able to exchange opportunity 
information for the purpose of making choices about the use of spectrum or other transmission-related 
resources.  Members of an XG domain are able to cooperate in the utilization of spectrum-related 
resources. 
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3.4 Channels and Opportunities 
 
We assume that the operational spectrum for XG can be partitioned into non-overlapping channels, 
which is the fundamental “unit” of spectrum for dynamic management. For instance, a 100 MHz band 
could be partitioned, for XG purposes, into 10000 channels of 10 KHz each. It is not necessary to have 
channels of equal width. Properties (such as presence of a primary signal) are determined on a per 
channel basis. A channel is the smallest unit for which such properties can be described. 
 
An opportunity exists if an XG node can transmit using some combination of operating parameters such 
that existing primary nodes (if any) do not perceive interference, for a given threshold of such 
interference.  We note that the definition of the opportunity is node and threshold dependent (amongst 
other things), and so the same “sensing” information may or may not represent an opportunity. 

3.5 XG Nodes 
The XG nodes and the networking context were discussed in detail in the Vision RFC. Here we reiterate 
the terminology for the different kinds of nodes that play a role in the architecture. 

♦ Non-XG. These are “traditional” non-XG-capable nodes, or are running a different (incompatible) set 
of protocols. Our XG protocols must be interference preserving with respect to such nodes under the 
assumption that they are operating legally. 

♦ XG-aware.  These are nodes that can exchange information about what frequencies they are using 
and may make use of information about the frequencies that our node/network is using. However, 
they do not cooperate in terms of frequency assignment. Our XG protocols must find out and avoid 
frequencies used by such nodes, and should inform them about the frequencies we use. 

♦ XG-cooperative. These are nodes that can use the XG protocols to coordinate the use of spectrum. 
They run an interoperable implementation of the XG protocols. These are nodes with which 
distributed dynamic spectrum sharing typically works. We often call these simply XG nodes. 

3.6 Abstract Behaviors 
Finally, we discuss the concept of abstract behaviors. An abstract behavior is an abstraction of a protocol that 
hides details of one or more aspects of its functionality. This hiding could be done at several levels, and so one 
could have several levels of abstract behaviors. For instance, consider the IEEE 802.11 MAC Distributed 
Coordinated Function. A protocol for this involves specifying the frames (RTS/CTS/DATA/ACK), their formats 
(waveforms), timers, finite state machines, and so on. A first level abstract behavior might be to simply say “… 
must use RTS/CTS/DATA/ACK handshake for collision avoidance…”.  This behavior might be implemented by 
a variety of protocols that might differ in packet format or how the NAV is handled. An even higher level 
abstraction might be to say “… must avoid collisions…” allowing different kinds of algorithms, including 
TDMA. For XG, we will choose appropriate levels on a per protocol basis, based on standardization and 
regulatory issues. 

 

4 XG Framework 
The XG system is a complex one. Architecting complex systems has long been recognized as a problem 
that is best addressed using a formal framework. One of the approaches that has become popular is the 
Zachman Framework for Enterprise Architecture. In this section, we adapt the ideas behind the Zachman 
Framework to present an XG framework. Such a framework is helpful in providing a panoramic view of 
XG that puts in perspective the material presented in this and other RFCs. 
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4.1 The Zachman Framework 
The key idea behind the Zachman Framework is that a complex system may be viewed at different 
levels, by different “players”. The classic example, and one that was introduced in the original paper by 
Zachman [Zach], refers to the construction of a house. In this, the owner often gives broad requirements 
for the house; the architect prepares architect’s drawings that depict the house from the owner’s 
perspective. These are then made into formal plans that are a designer’s representation of the final 
product which would be used by the contractor, who in turn makes detailed engineering plans to be used 
by the builder, and so on. Each of these levels is important and used by a particular person in the 
development process. 
 
The crux of the Zachman framework is a matrix where each row represents a different perspective of the 
system. These views include contextual (scope), conceptual (business model), logical (system model), 
physical (technology model), and detailed representations. Each column represents a different 
description of the system. Descriptions include what (data), how (function), where (network), who 
(people), when (time), and why (motivation). Thus, each cell in the matrix captures a unique aspect of 
the system, and is explictly differentiable from all other cells in the matrix.  
 
The Zachman Framework does not indicate a methodology for filling out the cells, nor does it offer any 
guidelines on what should be done with the matrix. Rather, it appears to be a tool for enhancing clarity 
of thought, and as a structure that ensures that all aspects of the system are covered. 

4.2 XG Framework 
Like many other complex system, XG also needs to be understood at many “levels”, from conceptual to 
detailed implementation. Each “player” in the development of the XG system has a different view of 
XG, according to his or her requirements. For instance, the FCC has a view that is largely focused on 
regulatory issues and on ensuring interference preservation, which is quite different from the system 
integrators view which needs to consider performance and other aspects. All of these different views are 
important. It is helpful at this stage to consider the broadest picture of XG and look at these different 
views, so that each RFC, including this one can be put in perspective. 
 
The Zachman Framework was designed for an enterprise, and XG is not an enterprise. Thus, it is not 
directly applicable for our purposes. However, the key idea behind the framework – namely, that there 
are different perspectives and descriptions – may be taken and adapted to our context. Such an 
adaptation is presented in Table 4 below. We have changed the semantics of the rows slightly and 
considered only the three most relevant items in the descriptions. 
 
The XG program benefits from such an architectural framework because the operational views provide a 
means for communicating with high-level decision makers, e.g., DoD, commercial and FCC executives.  
The conceptual and design views allow the design of core behaviors that can be used by the high-level 
decision makers for regulatory purposes. The system views allow engineers to understand the XG 
system functions and interfaces, and the technical views show how XG fits into the existing standards 
and how it adapts to changing standards in the future. 



 

 75

 
 
 WHAT WHY HOW 
 
Scope 
(DoD/FCC) 
 

♦ Dynamic spectrum 
management 

♦ Increased capacity 
♦ Better use of spectrum 
♦ Zero setup time 
♦ Regulatory simplicity 

♦ Build a system that uses 
unused frequencies in an 
interference preserving way 

 
Concept 
(XG PM) 
 

♦ Abstract (core) behaviors 
♦ Protocols 
♦ Policy language 

♦ Long-term impact 
♦ Regulatory approval 
♦ Flexibility 

♦ RFC process 
♦ Performer participation 
♦ Industry feedback 
♦ FCC/DSO involvement 

 
Design 
(Contractor: BBN 
and working 
group) 
 

♦ Architectural framework (near 
and far). 

♦ Behavior specs – sensing, 
identification, allocation, use. 

 

♦ Long-term impact 
♦ Regulatory approval 
♦ Flexibility 

♦ AF RFC 
♦ Behavior RFCs 
♦ Policy RFC 
♦ API RFC 
♦ WG interaction 

 
Technology 
(Contractors: SS, 
Raytheon, LM) 

 

♦ Sensing algorithms 
♦ Transmit power estimation 

behaviors 
♦ Allocation algorithms 
♦ Morphed waveforms 
♦ Tieing up with existing 

protocols (e.g 802.11) 
♦ Component technology 

♦ Interference preservation 
♦ Noise temperature control 
♦ Backward compatibility 

with legacy 
♦ Future upgrades in a 

competitive manner 

 
 
 
PROPREITARY 

Table 4 

5 XG Layering Issues 
In our vision, XG is implemented as a layer 2 process as shown in Figure 30. A legacy stack (left) may 
be upgraded to use XG without modification to the legacy MAC protocol. The legacy Transceiver API 

                                          
Figure 30 - XG Process in Stack Context 

 
 
may be enhanced to include certain XG-specific primitives to provide an XG-enhanced Transceiver API 
as shown in the figure (right). Note however that this does not require a change in the legacy MAC 
protocol as it continues to use the subset of the API that it originally used. Thus, the legacy MAC need 
not be aware of XG. There is no change to the network layer and above – the scope of XG is entirely 
restricted to physical and MAC layers.  
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The physical layer implements a minimal “XG control”, in that it recognizes that some of the MAC 
requests may imply XG-specific action. The XG process communicates with peer XG processes at other 
nodes to exchange spectrum information, and other XG control information (Figure 31).  
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Figure 31: XG peer interaction 

We note that the XG process being at layer 2 is with respect to application data packets. This does not 
preclude XG control messages from reusing some of the higher layer functionality – for instance, using 
TCP to communicate to a peer XG process in the same domain. We do not consider this a layer violation 
since the layering of functionality applies to data packets8. Our stack model does not imply that routing, 
transport, encryption has to be re-implemented at layer 2. 
 
The XG processes coordinate with each other to implement a dynamic spectrum sharing procedure 
amongst themselves in a manner that is designed to control interference to existing primary users. The 
XG process then creates the “state” in the physical layer for appropriate handling of packets consistent 
with decisions made in the XG process. This is achieved by certain control primitives implemented as 
part of the XG enhancement of the Transceiver API. For example, the XG process might have 
determined that frequency channels f1 through f2 may be used by this node at this time. MAC packets 
then are transmitted on these channels. The state may also contain instructions on any modifications that 
may need to be made to the outgoing and/or incoming packets on behalf of XG. In other words, the XG 
control at the physical layer executes data packet processing on behalf of the layer 2 XG process9.  
 
The XG process utilizes the physical layer to communicate and exchange spectrum utilization 
perceptions, and then to coordinate frequency assignments for the radios in the physical network.  This 
exchange is essential because we need to both ensure that the selected frequency is usable at the 
receiver, and is not likely to jam signals from the environment of the transmitter. 

  

                                                 
8 This is similar to the use of TCP for control message delivery by BGP (Border Gateway Protocol) which is considered to be 
a layer 3 protocol. 
9 This avoids having to actually pass the data packets “up the stack” to the XG process – doing so is a “layer violation”. 
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Figure 32 - Evolution from Legacy, through co-existing XG/Legacy, to Optimized XG 

This approach has the advantage that it allows the use of XG with existing MAC designs. In other 
words, it should be capable of supporting legacy MAC code before the transition to XG-Optimized 
MAC and Physical layers is made. The transition from current day practice to “full XG” is shown in 
Figure 32.  
 
In some cases, it is likely that the XG protocols cannot use the native physical layer.  This is true when 
this layer has unique characteristics, or when there is no common mode of operation, such as in linking 
heterogeneous networks.  It is also true in cases where the XG protocols require an appropriately XG-
enhanced physical layer. In the most extreme case, one of the XG-enabled systems may not be a 
communications system at all, but may be a sensor that communicates and/or coordinates spectrum 
usage with communications or other sensor systems.   In such cases, we perceive that we will need to 
define a physical layer standard for an XG interoperability path, which can be selected as part of the XG 
standard, or negotiated among the radios.  Since Software Defined Radios are the likely implementation 
platforms for XG, the introduction of an additional physical layer is not as significant as it would be 
with discrete implementations, but is still a complexity we would like to avoid.  Some means of 
determining a common mode of operation could be a more suitable solution.  This is a technology that 
DARPA is investigating in other programs, and may remain outside of the current XG work. 
 
The above representation is only the simplest form of XG. Clearly there are very significant benefits to 
the system’s ability to be aware of, and to utilize network topology information that is only accessible in 
the upper layers, such as the membership data that likely resides in the network layer.  We will be 
investigating these, and similar, opportunities for enhanced performance later in the program. We 
intend, if possible, to develop this functionality in the context of the same set of abstract behaviors that 
are used in the core architecture. We envision that with the above mentioned and other features, an 
“ultimate” XG architecture would have XG optimized MAC and physical layers with the network layer 
being made aware of XG features by means of an API (which could be used to supply network topology 
information, for instance). This is illustrated in the rightmost diagram in Figure 32. 
 

6 XG Modules 
In this section, we present a first-level modular decomposition of XG functionality. We begin by 
recalling the broad architectural vision presented in the companion document “XG Vision RFC”, and 
then work our way through a decomposition.  
 
We shall use the rightmost diagram in Figure 32 as a starting point for the decomposition as it is the 
most general, and also allows us to focus on the XG functionality. Note that this choice does not in any 
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way detract from the vision of having the legacy MAC and XG MAC coexist without changes to the 
legacy system. To see this, simply imagine that a legacy MAC box is placed alongside the XG-
optimized MAC box in the rightmost diagram, and note that the XG-enhanced Transceiver API contains 
all of the primitives that the legacy system used (since it is an “enhancement”). Now, having affirmed 
this, we ignore the legacy MAC in order to concentrate on XG. Thus, without loss of generality, we use 
the rightmost diagram as the conceptual basis for the development of the architecture.  
 
We now consider a first-level decomposition of the XG MAC and physical layer functionality. XG is 
mostly a MAC level system, however, some of the key pieces it requires are arguably at the physical 
layer10. One example is sensing – the collection, and possible averaging of received signal strengths, 
perhaps over a wide bandwidth. This requires some consideration of cross-layer issues. A goal is to 
cleanly manage such issues using the XG Transceiver API. 
 
The modular decomposition is given in Figure 33 below.  There are three high-level modules: 
Opportunity Awareness, Opportunity Allocation, and Opportunity Use. We define their functions briefly 
below, and elaborate them later.  

♦ Opportunity Awareness. This determines the set of available opportunities and associated constraints 
on their use. This set is dynamic, that is, changes as a function of time. The opportunity availability 
is determined for a subset of XG nodes, typically in the neighborhood (within a certain radius) of the 
given node. The opportunity awareness function is a distributed procedure that may include any or  
all of  the following – sensing of spectrum opportunities, identification of usable opportunities and 
associated constraints, and the dissemination of this information to an appropriate neighborhood.  

♦ Opportunity Allocation. This is a distributed procedure that allocates the available opportunities (as 
determined by the opportunity awareness module) for transmission amongst the XG nodes. The 
allocation is dynamic, that is, changes with time. The opportunity allocation may be done based on 
any medium access control approach – CSMA/CA, FDMA, TDMA, CDMA, or a combination 
thereof. Clearly, the mechanism depends upon which approach is used, but the functionality itself is 
agnostic to the actual mechanism. However, the mechanisms that can be used depends upon the 
awareness information available (for instance, if no code opportunity information is available, one 
cannot exploit code opportunities and allocate them). 

♦ Opportunity Use. This refers to the physical layer mechanism that achieves transmission of a set of 
packets over the set of indicated opportunities. That is, its job is to ensure that a packet is transmitted 
as quickly as possible subject to constraints supplied to it (e.g., transmit on frequencies f1-f7, at 
power level not to exceed p, and a spreading of at least k chips/bit). Clearly, a large number of 
possible opportunity use mechanisms exist, from sequential channel access to morphed waveforms. 
Again, the module does not dictate how it should be done, merely what is to be done. 

                                                 
10 One may ask: why do we need to bother about which layer something is? Why not simply treat the entire XG system as 
one big “box” and think about a decomposition. This is possible – in the same way that it is possible to think of a router 
without using layers. The  fact is that layering allows conceptual clarity and a certain relationship to existing functions which 
is helpful. 
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Figure 33: XG Modules in a layering context 

Figure 33 also shows an API – the opportunity API – between the allocation and awareness modules. 
This API helps to cleanly separate two functions – determining opportunities, and using them. This 
allows independent progressive refinement of each, and a large number of solutions for each within the 
same framework. Although it is an XG-internal API, it is a significant one because it separates the 
behaviors that are likely to have regulatory implications from those that will largely be outside of 
regulatory purview.  
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Figure 34: Top-level XG modules 

Figure 34 above shows an example of the interaction between modules and an example of information 
resident in each. 
 
The opportunity awareness module tracks the opportunities in the XG domain (refer to section 3.3), and 
its dynamism, including perhaps information to predict the availability of opportunities. It also tracks the 
constraints on the opportunities, such as time window, maximum power and other transmitter 
parameters that need to be used to use that opportunity. The identification of opportunities is controlled 
by policies. 
 
The opportunity allocation module uses the opportunity information and constraints from the awareness 
module and creates a dynamic allocation map. The allocation map is essentially a distributed database of 
frequency, and possibly time slot or code assignments to XG nodes. This module also tracks information 
such as the power and beamforming to use for that assignment, etc. For a given packet, it then provides 
the assignment of opportunity to the opportunity use module. 
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The opportunity use module tracks current preference of usage method (if there are multiple), and 
maintains a set of lower and upper bounds on transceiver parameters for interference preservation. Such 
bounds are created using information from the awareness module which can supply usage constraints. 
Arguably, the allocation module can provide this information too, as it knows (and has to know) the 
usage constraints. However, the flow of information in the architecture is more streamlined if this 
information were given directly. Furthermore, this information relates directly to behaviors that are 
closely associated with interference preservation. By removing this from the allocation module, we 
allow for the possibility that all of allocation is “non-core”, that is outside of regulatory purview. This 
would be a step in the direction of our having a small set of core behaviors within a boundary and 
allowing innovation outside of it (see the Vision RFC for more on this). 
 
We emphasize that the information depicted in Figure 34 is only an example. A number of other pieces 
of information are relevant and will be presented in a more detailed version of the design. 
 
6.1 Opportunity Awareness 
 
We now consider the opportunity awareness module in more detail. This is the key module for XG, and 
undeniably the most significant from an architectural viewpoint. A natural decomposition of this module 
is in terms of sensing, identification and dissemination.  

♦ Sensing. This is the process of sampling the channel in order to determine occupancy. We note that 
there is no fixed definition of when a channel is occupied – it depends upon the receiver (its 
sensitivity for instance), the sampling window, the average and peak values within the window, 
thresholds on discriminating noise from signals etc. The criteria for declaring a channel occupied 
may also change with time. However, the basic notion is to determine if there is a signal, and if so, 
what the characteristics of the signal are. 

♦ Identification. This is the process of determining whether a channel is an opportunity. Note that 
sensing merely tells you the characteristics of the channel. Identification, on the other hand, uses this 
information to determine whether or not it can be used by XG. If a channel is sensed free, it may or 
may not be prudent to use it (maybe we are in a deep fade). Similarly, even if a channel is occupied, 
it may be acceptable to transmit within a power level. Thus, identification contains the algorithms to 
convert sensed information to  be useful to XG. 

♦ Dissemination. As mentioned earlier, opportunity awareness needs to include not just the node but 
also some subset of its k-hop neighbors. This is because allocation mechanisms often do much better 
with somewhat global knowledge. Dissemination is the process of distributing the information to 
other nodes so that opportunity awareness to the extent necessary is achieved. The phrase “to the 
extent necessary” captures a whole slew of possible mechanisms, each interacting with a possible 
allocation mechanism. This is deliberate, and is an example of the range of innovations possible and 
the need to support such innovations in the regulatable kernel. 

 
Figure 35 below shows an example of the interactions between the submodules of opportunity 
awareness. As in Figure 34 the information held by each and the interaction between the submodules is 
also depicted. 
 
The sensing submodule tracks the signal level characteristics in the channel, perhaps even identifying it 
as primary or secondary. It might also keep track of the activity statistics, or the most recent history of 
activity. If the sensitivity threshold can be adjusted, it may store the current value used. The sensing 
submodule provides the identification submodule channel activity information to help determine 
whether or not it is an opportunity.  At some logical, goal-specific level, the information that flows from 
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sensing to identification is the set of possible opportunities. The identification submodule determines 
which of these are real opportunities, and how they can be used. Accordingly, the marking of a channel 
as an opportunity is tracked by the identification submodule, as is the expected lifetime of the 
opportunity and constraints on its use (such as maximum power).  
 
The “real” opportunities are then passed to the dissemination submodule that is responsible for 
collecting the local opportunity information at various nodes. Accordingly, it maintains the local 
opportunity information as well as opportunity information for the relevant sub-domain in the XG 
node’s neighborhood, and related constraints. This is the data that is provided to the opportunity 
allocation module. Dissemination takes time and network resources. Therefore, the architecture supports 
multiple maps of the relevant sub-domain, for instance, an accurate (up-to-date) view of coarse 
granularity and an approximate (out-of-date) map of fine granularity. Different allocation schemes may 
want to use these different levels of information. 
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Figure 35: Submodules of  Opportunity Awareness 

Finally, the identification and dissemination processes may provide information to the sensing module to 
enable better or more efficient sensing. For instance, if it is determined that a channel is likely to be an 
opportunity for the next several hours, or if it is determined that a channel should be left alone for a 
period of time, the sensing module can skip that channel and save time.  
 
We emphasize that the information depicted in Figure 35 is only an example. A number of other pieces 
of information are relevant and will be presented in a more detailed version of the design. 
 

7 XG Architecture: Near-Term Usage Examples 
Recent measurements have shown that a typical geographical region has wide swathes of spectrum 
where there are no users at all. Thus, even without sophisticated predictor-corrector or dynamic 
management techniques, one can dramatically improve system capacity and enable rapid entry into an 
area without apriori frequency assignment.  
 
The “near term usage examples” in this section is aimed at plucking such “low hanging fruit”. Another 
way of looking at the goal of this architecture is: what is the simplest set of techniques/protocols for 
opportunistic use of spectrum? In particular, the goal here is not the optimum use of resources, but the 
easiest way to reasonably utilize gaps in spectral occupancy. XG must be able to function along with 
existing technologies without requiring any modification of them. XG functionality must be inserted as  
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unobtrusively as possible into current architectures. The near-term usage examples are based on the 
middle diagram in Figure 32. We will refer to this as the XG near term architecture and reiterate it 
below in Figure 36. 
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Figure 36: XG near term architecture 

 
As envisaged in the Vision RFC, the near-term XG architecture allows the co-existence of the XG 
process with a legacy MAC. Specifically, we consider a CSMA/CA (as in 802.11 a/b/g) MAC and give 
examples of how the XG process might inject a modicum of dynamic spectrum management using very 
simple strategies.  
 
In this framework, the XG control detects Legacy MAC (L-MAC) frames that have XG implications. 
These generate requests through the XG-enhanced Transceiver API to the XG process that triggers 
certain behaviors in order to satisfy the L-MAC requests. Such behaviors may involve the 
encapsulation/decapsulation of the L-MAC packets (transparently to L-MAC), or simply the selection of 
appropriate XG physical layer services for the transmission/reception of the L-MAC packets. The XG 
process may also exchange opportunity information with peer XG processes to do intelligent, 
coordinated sensing. It might also use it for disseminating opportunity information for resource 
allocation purposes. 
 
We illustrate the concept of operations with this architecture using a few examples, identified as XG-less 
fallback, Zero control, Frequency selection, and Frequency negotiation. In each case, we identify the 
peer interactions and packet modifications that might be necessary. For these examples, we assume a 
802.11-like CSMA/CA protocol. However, we note that this is only for illustration and the architecture 
by no means restricts the kind of legacy protocol. Also, we emphasize that these are only examples – the 
fact that embellishments of 802.11 are suggested does not alter our goal of keeping the architecture, and 
this RFC at a general level. 
 
XG-less Fallback 
When used with other legacy radios, the architecture defaults to a “no operation” with respect to XG 
functionality as follows. All L-MAC protocol data units (PDUs) are simply sent out without any 
processing by the XG control. This could happen based on configuration or set as the default case, with 
XG functionality being invoked only upon discovering the presence of one or more XG-capable nodes. 
 
Zero Control 
In this example concept of operations, we assume that the transceiver has wideband tuning capability on 
receive and frequency agility on transmit. The XG process senses a contiguous set S of channels that are 
completely unoccupied in that geographical area. When receiving, the node listens on all of the channels 
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in the contiguous set S and when detecting a packet on one of the channels, it tunes to that channel. 
When transmitting, XG picks one of the channels at random and sends the packet. The state for this 
behavior is placed in the XG control by the XG process, so that the packet does not have to travel back 
up to the MAC layer. The RTS/CTS/DATA/ACK packets are sent as-is, except that a selection of 
channel from among those unoccupied is made via the XG Transceiver API.  
 
This could allow multiple parallel communications on different channels to occur within a geographical 
area in the simplest possible manner. We note that the legacy MAC, for example 802.11, can be 
completely oblivious of the XG functionality. 
 
Several behaviors are possible upon collision of, say the RTS, due to two nodes picking the same 
channel. The XG process could simply not take any action, but rely on the L-MAC retransmissions 
(which might result in a new unoccupied channel being picked by the random process). Or the XG 
process could, through the XG control,   itself attempt retransmissions, or proactively send multiple 
RTSs on different random channels. We note that some of these behaviors may have interactions with a 
legacy MAC. For instance, if XG attempts its own retransmissions, an XG-unaware L-MAC would 
timeout on the RTS. 
 
Frequency Selection 
This assumes the existence of an a priori dedicated control channel that is known to all nodes. The 
RTS/CTS are sent on the control channel and used to select a channel for the DATA/ACK. The XG 
process identifies the set of possible channels by sensing. There is no need for the channels to be 
contiguous. There is also no need for the transceiver to be wideband tunable, but it should be frequency 
agile. When in idle, the transceiver is tuned to the control channel. 
 
In the context of the architecture, the operation is as follows. The XG control encapsulates the RTS into 
a new packet, say, X-RTS. The X-RTS contains the suggested channel number c for the DATA/ACK 
communications, chosen randomly from among those available. The peer XG control of the receiver 
decapsulates the X-RTS and sends it to its L-MAC. It also notes whether the channel c is usable or not. 
If it is, then the corresponding CTS is encapsulated into an X-CTS, conveying that this channel is fine. 
For the DATA and ACK, no encapsulation is necessary, but the physical layer is directed to select the 
channel c (similar to zero control). Peer XG control modules of nodes that receive the X-RTS or X-CTS 
simply decapsulate and pass it to their L-MACs that perform the usual NAV operations. Additionally, 
they also note which channels have been chosen or in the process of being chosen, so that they can avoid 
those channels for selection to put into the X-RTS or X-CTS. 
 
Once again, we note that the architecture allows for the above concept of operations to happen without 
the legacy MAC being XG-aware. 
 
Multiple Frequency Negotiation 
This is similar in spirit to the frequency selection, except that multiple frequencies are chosen, and there 
is scope for the receiver to pick a subset of the frequencies it is offered. As in frequency selection, we 
assume the existence of an a priori dedicated control channel that is known to all nodes, transceiver 
should be frequency agile, and we assume that sensing is done independently by the XG process. The 
identified frequencies may be non-contiguous. The frequencies negotiated for communication may be 
contiguous or non-contiguous – if the latter, then it is assumed that the physical layer has the capability 
to send a packet over non-contiguous frequencies. 
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In the context of the architecture, the operation is as follows. The XG layer encapsulates the RTS into X-
RTS, listing a number of possible channels that can be used. The X-CTS is returned with a subset of 
these channels, and the DATA and ACK use one or more (if non-contiguous frequencies can be used) of 
these channels. As before, nodes other than the transmitter and receiver keep track of the chosen 
channels using the overheard X-CTS.  
 
Once again, we note that the architecture allows for the above concept of operations to happen without 
the legacy MAC being XG-aware. 
 
This transparency, however, may lead to sub-optimal performance. Consider for instance the case when 
a morphed waveform is used to transmit the DATA over multiple frequencies, thereby shortening its 
transmission time. Ideally, this should allow other nodes start their pending transmissions sooner than if 
the DATA had been sent on a single channel. However, the fact that the L-MAC is XG-unaware means 
that the NAV period will not be adjusted, and hence the nodes will continue to be backed off for a time 
equal to if a single channel had been used. 
 

8 Abstract Behaviors 
A key goal of the RFC process is to specify a set of abstract behaviors for XG.  The first step toward 
that, of course, is to decide: what are the abstract behaviors that should be specified? This section “gets 
the ball rolling” by identifying a set of possible behaviors. Recall that the specifications of the behaviors 
themselves are part of the protocol RFCs. 
 
Following our modular breakup, we can identify five top-level behaviors: sensing, identification, 
dissemination, allocation and use of opportunities. Each of these behaviors may be represented as an 
abstract class with resident data and methods for access. At a second (lower) level of abstraction, we can 
identify behaviors that correspond to different ways of achieving the desired top-level behavior. These 
include:  

♦ Uncoordinated Sensing. The sensing here is completely local to the node, and the opportunity is 
identified based solely on spectrum occupancy as seen by this node. 

♦ Coordinated Sensing. Control messages are exchanged between nodes in order to implement a 
“quorum” based decision on opportunities. 

♦ Uncoordinated Opportunity Selection. The selection of an opportunity for DATA transmission is 
done without consultation with the peer(s) involved in the communication. For example, Zero 
Control employs this. 

♦ Coordinated Opportunity Selection. The selection of an opportunity for DATA transmission is done 
based on one or more handshakes that might involve XG control messages. For example, the X-RTS 
and X-CTS control messages are used in the Frequency Selection approach. 

♦ Opportunity Information Dissemination (OID). Dynamic opportunity information is exchanged 
between nodes in a neighborhood so as to help coordinated opportunity selection. This might involve 
control messages that convey such information over multiple hops so as to make more efficient 
allocations. 



 

 85

USense CSense UncOppSelect CrdOppSelect OppInfoDiss 

Zero Control 
Frequency 
Selection XG-enhanced 

 TDMA 

As an example, the mechanisms described in section 7 can be seen as combinations of some of the 
above behaviors. This is illustrated in the figure below. 

 
Each mechanism is appropriate for a different set of hardware and assumptions: e.g., zero control when 
no control channel, but wideband tuning on listen; multiple frequency negotiation when control channel 
and ability to spread a packet over multiple non-contiguous frequencies etc.  
 
The total number of possible mechanisms is potentially large, but the set of core behaviors could be 
much smaller. By itself, a core behavior may not provide all the XG functionality required to 
dynamically use spectrum. However, if regulatory bodies approve each behavior, then the entire 
mechanism’s behavior is approved. For instance, if one can show that all of the core behaviors are 
interference preserving – that is, the introduction of a signal will not degrade the performance of any 
then operating system by more than a set threshold – then the mechanisms constructed out of these 
behaviors will also be interference preserving. 
 
Another advantage of this approach is that given the core behaviors, perhaps the mechanism best suited 
for the assumptions and hardware can be constructed on the fly.  
 
We note that these are just initial ideas for how to identify the right set of behaviors to specify, and 
expect them to change as thinking evolves. Abstract behaviors will be specified in more detail in the 
protocol RFCs. 
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1  Introduction 
 
1.1 Purpose and Scope 
This document describes the abstract behaviors of XG systems.   
 
This document is a Request for Comments (RFC). Accordingly, an important purpose of this document 
is to obtain feedback from the community at large, and to refine the ideas described here based on that 
feedback. The development of the XG abstract behaviors is an evolutionary process, and this document 
reflects a snapshot in that evolution. 
 
This RFC is one of a series of documents intended to describe the basic elements of an XG system.  We 
recommend that this document be read after the XG Vision RFC [XGV]. The XG Vision RFC lays out 
the motivation for XG and its scope, presents the key concepts underlying XG, and describes an 
approach for defining XG. This RFC also refers to the XG Architectural Framework RFC [XGAF] and 
the XG Policy Language Framework RFC [XGPLF].  The XG Architectural Framework RFC [XGAF] 
presents the architecture, system components, and a high level concept of operations for XG 
communications. The XG Policy Language Framework RFC presents a language framework to express, 
interpret, and enforce spectrum policies for XG systems. 
 
1.2 Document Organization 
 
The rest of this document is structured as follows.  In this section, we provide a motivation for, and an 
overview of, abstract behaviors of XG radio systems.  We also present a notional XG radio system 
model, and describe the notation uses. 
 
In Section 2, we present an UML model of an abstract XG radio system.  We present three kinds of 
abstractions – Interfaces, Behaviors, and Information Objects – in terms of which an abstract system can 
be described.  We provide a high level object-oriented description of the abstract XG radio system in 
terms of these three kinds of abstractions. 
 
The next three sections describe each of the three kinds of abstractions in detail, namely Interfaces in 
Section 3, Behaviors in Section 4, and Information Objects in Section 5. 
 
In Section 6, we describe a reference radio design based on the abstractions described in this document.  
We conclude with a summary and a discussion of future work required in this area in Section 7. 
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1.3 Motivation 
 
The goal of the DARPA neXt Generation communications program (XG) is to enable the use of wireless 
communications platforms that opportunistically share the wireless spectrum.  Opportunistic sharing 
requires radios to be able to adapt their behavior to the current wireless environment, including 
respecting local rules regarding spectrum use and co-existing with legacy emitters.  
 
XG systems are expected to use highly adaptive and agile transceivers.  This agility enables new and 
efficient use of spectrum, through a wide range of design and implementation choices. At the same time, 
this agility poses a major challenge to regulators charged with protecting other spectrum users from 
interference, who must test and certify these systems for policy compliance, and system implementers, 
who wish to ensure that their XG device is well behaved. Additionally, spectrum assignees that may 
wish to rent unused capacity will likely want assurances that devices follow the incumbent assignee’s 
restrictions on how unused capacity is accessed and shared. 
 
In order to facilitate the verification, validation, and accreditation process for a wide range of diverse 
XG systems, it is desirable to identify and formally specify the minimal set of behaviors that a system 
much implement to be able to safely share or use available spectrum and conform to the requirements of 
regulators and spectrum assignees.  In short, if a device meets this minimal set of requirements, its 
opportunistic use of the spectrum will be “safe” from the perspective of regulators and incumbent 
spectrum assignees. 
 
The challenge in specifying a minimal set of behaviors is, of course, that the range of envisioned XG 
system is large.  An XG system could be a simple transceiver capable of employing IEEE 802.11 
signaling on any one of sixteen different frequencies, or an XG system could be a fully software-
programmable radio capable of transmitting at any frequency in the range from 3KHz to 300 GHz using 
any one of a hundred encoding techniques.  The challenge is how to specify behaviors, without requiring 
extraneous functionality for the simple system and without under-specifying the behavior of the fully 
programmable system.  At the same time, the set of behaviors should be all of those necessary and 
sufficient for regulators (and incumbent spectrum assignees) to deem a radio safe and compliant, so that 
a new set of guidelines is not required for certifying each new XG implementation. 
 
The solution to this challenge is to specify abstractions – behaviors, interfaces and information objects – 
that allow considerable flexibility in how the abstractions are implemented.  
 
An abstract behavior is a specification of the behavior of an XG system.  Abstract behaviors interact 
with each other and with the system via abstract interfaces. 
 
An abstract interface is an interface that specifies a set of functions (but not their implementations), and 
an abstract information object specifies the information that passes across the functional interface.  
 
A useful way to think of an abstract interface is as a checklist: for each function in the abstract interface, 
an XG system developer needs to show their system implements that function. The function may be 
implemented using modularity very different from the specification in this document. Indeed, in some 
systems, there will be functions that are implicit.  For instance, consider an 802.11 radio with sixteen 
channels; if the abstract interface has functions to select signaling and encoding schemes, these 
functions are implicitly implemented, in the sense that the radio can only make one choice (802.11). 
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In this document we specify a set of abstract behaviors that XG-compliant systems must implement; we 
include these behaviors in the accreditable kernel and argue that it is those behaviors that are necessary 
and sufficient to satisfy policy requirements and demands of spectrum assignees without requiring the 
development of a new set of guidelines for certifying each new XG implementation.  
 
Related to the notion of an accreditable kernel is the notion of traceability. An XG system 
implementation, therefore, must support a one-to-one mapping between the external physical behavior 
(e.g. emission profile) of the system and the instances of particular abstract behaviors that the system 
implements.  Linking external behavior (which is fundamentally what spectrum regulators and 
incumbent assignees care about) with internal abstract behavior provides both a standard for minimalism 
(if it doesn’t affect external behavior, it isn’t a function or behavior in the minimal set) and suggests an 
approach to auditing radio behavior, to ensure the radio is well behaved. 
 
Following this rationale, we have developed a set of guidelines to help determine whether a given 
abstract behavior must be included in the accreditable kernel or not.  In order to be included, the 
behavior must satisfy at least one of the following: 

• It is required to support opportunistic sharing of spectrum 
• It is required to support policy-defined operation 
• It provides traceability from policy through behavior to emissions 

 
The abstract behaviors are only intended to provide guidelines for the high-level system design of the 
individual XG systems. Although the abstract behaviors will cover the important attributes that 
characterize XG systems, they are not intended to be detailed design- or implementation-level 
specifications of particular XG systems.  
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1.4 Abstract Behaviors Overview 
 
The fundamental requirement of XG systems is to sense and use underutilized (or unused) spectrum as 
authorized by applicable policy. At the highest level this requirement leads to the following three classes 
of abstract behaviors for XG systems as identified by the XG Vision RFC [XGV]: 
 
Awareness: XG systems must determine the set of available opportunities to utilize portions of the 
spectrum and the associated constraints on exercising those opportunities. This set is dynamic, that is, it 
changes as a function of time. An available opportunity is determined for a subset of XG nodes, 
typically in the neighborhood (within a certain radius) of the given node. 
 
The awareness function can be either a local or a distributed procedure, and may include any or all of the 
following: – sensing of spectrum opportunities, identification of usable opportunities and associated 
constraints, and the dissemination of this information to an appropriate neighborhood. 
 
Awareness behavior is decomposed into two parts: internal behavior (spectrum awareness) and external 
facing behavior (awareness dissemination).  
 
Allocation: XG systems must allocate the available opportunities for transmission amongst the XG 
nodes, either explicitly through communication among the nodes, or implicitly by following local rules 
intended to ensure consistent (or non-conflicting) behavior. The opportunity allocation may be done 
based on any medium access control approach: CSMA/CA, FDMA, TDMA, CDMA, or a combination 
thereof. 
 
Clearly, the mechanism for allocation depends upon which approach is used, but the functionality itself, 
the fact that an allocation must be made, is agnostic to the mechanism used to realize the allocation. At 
the same time, it is important to observe that the mechanisms that can be used depend upon the 
awareness information available (for instance, if no code opportunity information is available, one 
cannot allocate code opportunities). 
 
Allocation behavior is concerned with choosing a specific opportunity among the available 
opportunities.  Because the range of opportunities will change over time, as new transmission methods 
and new sensing technology is developed, it is desirable to seek to keep allocation out of the accreditable 
kernel.  The fact that opportunities will change also makes allocation behavior a poor choice for policy 
regulation.  So, this description takes the view that as long as the opportunities identified conform to 
policy, and the opportunity allocated by this behavior is used in a manner that conforms to policy, this 
behavior can be kept outside the accreditable kernel.  Quite simply, this behavior offers the most room 
for innovation (e.g. novel spectrum arbitration and brokerage mechanisms) and potential for 
optimization (e.g. scheduling algorithms). Therefore we do not seek to itemize this behavior; and instead 
only identify the need for an interface through which opportunity allocations may be obtained from 
system-specific procedures. 
 
Use: Use refers to the physical layer mechanism that achieves transmission of a set of packets over the 
set of indicated opportunities. That is, its job is to ensure that a packet is transmitted as quickly as 
possible subject to constraints supplied to it (e.g., transmit on frequencies f1-f7, at power level not to 
exceed p, and a spreading of at least k chips/bit). Clearly, a large number of possible opportunity uses 
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mechanisms exist, from sequential channel access to morphed waveforms. Again, the module does not 
dictate how it should be done, merely what is to be done.  
 
Use behavior is decomposed into an internal behavior (Usage Accounting) and a protocol behavior (Use 
Coordination). 



 

   92

1.5 Tools and Notation 
We describe the XG abstract behaviors through an object-oriented specification. We make use of the 
popular Unified Modeling Language (UML) notation for a visual representation of the concepts (see 
[UML]). 

 
 

An abstract class expanded to show the attributes
with their types in one box, and method signatures
in another box. Abstract methods are italicized.
The symbols + and – respectively indicate public
and private visibility. Type can be any class or 
one of the following primitive types: boolean, void,
int, double, String, Object, Collection, or URI. Type[] 
denotes an array of Type.

AbstractClassName

InterfaceName

ClassName

AbstractClassName
-attribute:Type
+ method(arg:Type <, …>):returnType
+ abstractMethod(arg:Type <, …>):returnType

Some useful text

A class

An abstract class has name in italics

An interface, also has an alternative 
“lollipop” notation shown later

A note

ClassName

ClassName

A diamond denotes that the association is an
aggregation of classes. 

A filled diamond denotes that the association is a
composition of classes, and deleting the class will
cause the associated classes to be deleted.

An abstract class expanded to show the attributes
with their types in one box, and method signatures
in another box. Abstract methods are italicized.
The symbols + and – respectively indicate public
and private visibility. Type can be any class or 
one of the following primitive types: boolean, void,
int, double, String, Object, Collection, or URI. Type[] 
denotes an array of Type.

AbstractClassNameAbstractClassName

InterfaceNameInterfaceName

ClassNameClassName

AbstractClassName
-attribute:Type
+ method(arg:Type <, …>):returnType
+ abstractMethod(arg:Type <, …>):returnType

AbstractClassName
-attribute:Type
+ method(arg:Type <, …>):returnType
+ abstractMethod(arg:Type <, …>):returnType

Some useful textSome useful text

A class

An abstract class has name in italics

An interface, also has an alternative 
“lollipop” notation shown later

A note

ClassNameClassName

ClassNameClassName

A diamond denotes that the association is an
aggregation of classes. 

A filled diamond denotes that the association is a
composition of classes, and deleting the class will
cause the associated classes to be deleted.  

Figure 37: Basic UML notation used in the RFC 
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 A class diagram showing an association between 

two classes using a solid line. A dotted line would
indicate a dependency. The arrowhead indicates
navigability of the association. The multiplicity
(range) of the association is shown on the line 
using m (m-n), which can be the wildcard  *.

Class_A Class_Bm-*1

A class diagram showing an abstract super class,
and a concrete sub class that implements two 
Interfaces, shown in lollipop notation. Another
class that uses the interface is also illustrated.

SubClass

AbstractSuperClass

AnotherClass
Interface_2

Interface_1

SuperType

SubType1 SubType2

A class diagram showing the generalization of
subtypes by a supertype. The subtypes inherit
and extend the attributes and methods of the
supertype.

A class diagram showing an association between 
two classes using a solid line. A dotted line would
indicate a dependency. The arrowhead indicates
navigability of the association. The multiplicity
(range) of the association is shown on the line 
using m (m-n), which can be the wildcard  *.

Class_AClass_A Class_BClass_Bm-*1

A class diagram showing an abstract super class,
and a concrete sub class that implements two 
Interfaces, shown in lollipop notation. Another
class that uses the interface is also illustrated.

SubClass

AbstractSuperClass

AnotherClass
Interface_2

Interface_1

A class diagram showing an abstract super class,
and a concrete sub class that implements two 
Interfaces, shown in lollipop notation. Another
class that uses the interface is also illustrated.

SubClassSubClass

AbstractSuperClassAbstractSuperClass

AnotherClassAnotherClass
Interface_2

Interface_1

SuperType

SubType1 SubType2

A class diagram showing the generalization of
subtypes by a supertype. The subtypes inherit
and extend the attributes and methods of the
supertype.

SuperTypeSuperType

SubType1SubType1 SubType2SubType2

A class diagram showing the generalization of
subtypes by a supertype. The subtypes inherit
and extend the attributes and methods of the
supertype.

 
Figure 38: UML class diagram notation used in this RFC 

Object1:Class_A

method argument1:Type …

return value:Type 

Object2:Class_B
A sequence diagram showing a method being
invoked by Object1 on Object2 with arguments
of specified type and the return being shown
with arrows. Method calls can be nested and
multiple objects can be involved in a sequence
diagram. The sequence of method calls and
returns follows their order in the diagram from
top to bottom.

Object1:Class_A

method argument1:Type …

return value:Type 

Object2:Class_B
A sequence diagram showing a method being
invoked by Object1 on Object2 with arguments
of specified type and the return being shown
with arrows. Method calls can be nested and
multiple objects can be involved in a sequence
diagram. The sequence of method calls and
returns follows their order in the diagram from
top to bottom.  

Figure 39: UML sequence diagram notation used in this RFC 
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1.6 Notional XG Radio System model 
We present a general high-level block diagram of a notional XG radio system for the purpose of setting 
a context for this RFC. In Figure 40 we illustrate this notional model showing the logical location of the 
XG abstract behaviors with respect to the key subsystems.  
 
The XG radio system includes sensors to acquire spectral awareness, agile transceivers, and logical link 
control/medium access control (LLC/MAC) layers. The XG abstract behaviors are implemented within 
an accreditable kernel, which provides access to system capabilities, configuration, and state. The 
accreditable kernel interacts with a policy conformance reasoner subsystem to ensure compliance to 
regulatory policy. A system strategy reasoner provides opportunity allocation function.  XG protocols to 
acquire and disseminate awareness of spectrum and for coordination of spectrum use make use of virtual 
coordination channels that may be implemented at any layer. 
We will use this model throughout this RFC, and we will elaborate on the subsystems and interfaces in 

Section 4.1 Adherence to this notional model itself is not required. However, any XG system must 
demonstrate that it implements the abstract behaviors and interfaces surrounding the accreditable kernel, 
as described below. 
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Figure 40: A Notional XG Radio System Model 
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2 An Abstract Model of the XG Radio System 
 
In this section, we present an abstract model of an XG radio system (radio plus software on it and its 
interactions with the outside world).  That may appear to be at odds with our goal in this document of 
defining a minimal set of essential behaviors, our accreditable kernel.  The abstract behaviors that reside 
within the accreditable kernel, however, interact (through XG Interfaces) with other portions of the XG 
radio system.  So in defining the accreditable kernel, we also need to present how it interacts with the 
portions of the radio outside the accreditable kernel.  That’s the focus of this section. 
 
Since our goal is to define the accreditable kernel, and leave the details of the rest of the radio 
completely open to innovation (and indeed, to keep the accreditable kernel open to innovation too), this 
abstract model is a careful combination of concreteness and vagueness.  In general, we seek to 
specifically describe what functionalities have to be present, yet we do not specify the details of how 
those functionalities are realized. 
 
In this section, we define a UML class for a radio, entitled XgRadioSystem.  This class is illustrated in 
Figure 41 and is composed of all the components that an XG radio might need.  Many components are  
optional, but some components must be present, and some components may be present one or more 
times. 

 
The purpose of this representation is to illustrate and represent the basic hardware and primitives of a 
host radio system that enables opportunistic use of spectrum (e.g., RF front end, DSP hardware, system 

XgRadioSystem

Sensor SensorInterface*

Transceiver TransceiverInterface1-*

PolicyInterfacePolicyConformanceReasoner1

SystemStrategyReasoner AllocationInterface*

AccreditableKernel SystemCapabilitiesInterface1

MediumAccessControl XgToMediumAccessControlInterface*

1-*1-* UsageAccountingManagementSpectrumAwarenessManagement

* UseCoordinationAwarenessDissemination

UseCoordinationServiceAccessPointAwarenessDisseminationServiceAccessPoint

*

VirtualCoordinationChannel VirtualCoordinationChannelInterface*

XgRadioSystem

Sensor SensorInterface*

Transceiver TransceiverInterface1-*

PolicyInterfacePolicyConformanceReasoner1

SystemStrategyReasoner AllocationInterface*

AccreditableKernel SystemCapabilitiesInterface1

MediumAccessControl XgToMediumAccessControlInterface*

1-*1-* UsageAccountingManagementSpectrumAwarenessManagement

* UseCoordinationAwarenessDissemination

UseCoordinationServiceAccessPointAwarenessDisseminationServiceAccessPoint

*

VirtualCoordinationChannel VirtualCoordinationChannelInterface*

 
Figure 41: XG Radio System Abstract Model 
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software including the OS, middleware, and libraries, and primitives for networking protocols, 
waveform agility, and beam forming). This configuration of components is only one of many ways that 
one might choose to modularize the functions of an XG radio. 
 
In general, each component of the XgRadioSystem class has a related interface.  (It is important to keep 
in mind, however, that other classes may also implement a particular interface.  The mapping shown in 
Figure 41 simply indicates that the class, if present, implements the associated interfaces).  The 
accreditable kernel interacts with the various components through these interfaces, using information 
objects.  So in this section we describe what each component does, and define a generic class, XG 
Interface, from which each component's interface will be derived. In anticipation of defining the 
behaviors of the accreditable kernel, we define a generic class of behaviors, XG Behavior. Finally, we 
define three generic classes of XG Information Objects from which all information objects used in the 
interfaces will be derived. 
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2.1 Subsystems of the XG Radio System 
 
The various components of the XgRadioSystem class serve different purposes.  We describe each 
component and its function here. 
 
2.1.1 AccreditableKernel (required; one instance) 
The AccreditableKernel class has the following key functions: 

(iv) Implement the included XG abstract behaviors and provide access to them;  
(v) Manage access to the state, configuration, and capabilities of the radio; and 
(vi) Manage access to primitives implemented within the radio that can be governed by 

policy. 
Every instance of the XgRadioSystem must have an instance of the AccreditableKernel. 
The AccreditableKernel class implements an interface (the SystemCapabilitiesInterface) through which 
it provides access to primitives deemed necessary to ensure that control of the radio’s visible behavior 
is located in the AccreditableKernel and that the behavior is controlled in a fashion consistent with XG 
policies. These primitives include Parameters and Processes described within the XG Policy Language 
Framework (see [XGPLF]). 
The accreditable kernel also has an association with every other subsystem in the radio for each 
primitive implemented in that subsystem (these associations are not shown in the diagram above). 
 
2.1.2 Sensor (optional; may have more than one) 
The Sensor class provides situational information to the radio about the spectral environment at a given 
location and time. The sensor outputs need not be limited to the RF spectral environment; the provided 
information could include a variety of other values such as geo-location, temperature, and proximity to 
specific targets that could be used as parameters for system policy. 
Sensors are optional because radios may learn through other means, such as configuration or through 
dissemination protocols, what spectrum use local operating rules authorize.  Alternatively, the sensor 
functionality may be implemented within the transceiver subsystem. There may be more than one sensor 
because a radio may sense different information using different devices.  
The Sensor class implements the interface called SensorInterface. 
 
2.1.3 Transceiver (required; at least one) 
The Transceiver class provides radio communications capabilities, including the RF front-end and the 
baseband signal processing functions.   In general, we expect these communications capabilities to be 
agile and that the interface to the Transceiver will reflect this agility. 
Instances of XgRadioSystem contain at least one Transceiver, by which we mean it must have at least a 
receiver or a transmitter capability.  (Without a transceiver, we don’t have a radio!). 
The Transceiver implements the interface called TransceiverInterface.  In cases where the transceiver is 
also a sensor, it may make sense for the transceiver to implement SensorInterface as well. 
 
2.1.4 PolicyConformanceReasoner (required; one instance) 
The PolicyConformanceReasoner class determines whether proposed spectrum use is consistent with 
accredited policy (e.g. approved by a relevant regulatory authority and incumbent spectrum assignee), 
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knowledge of the local spectrum (e.g. information from the Sensor class), and other background 
knowledge.  Note that the PolicyConformanceReasoner primarily determines if proposed use is 
acceptable – the task of developing proposed usages is left to other subsystems, for example, the 
SystemStrategyReasoner. The PolicyConformanceReasoner may, however, perform additional policy 
functions. It can support queries on policy to extract authorized usages for a given situation, support 
filtering policy information to obtain a subset of policies that apply to a current situation, generate 
machine proofs that a given usage conforms to policy, and manage the loading and revocation of policy 
sets. 
Instances of XgRadioSystem must contain a PolicyConformanceReasoner, as the 
PolicyConformanceReasoner implements the functions that determine if the XG radio is in compliance 
with any policy restrictions and the abstract kernel depends on conformance reasoner to accredit usages 
The PolicyConformanceReasoner class implements the interface called PolicyInterface. 
 
2.1.5 SystemStrategyReasoner (optional; may have more than one) 
The SystemStrategyReasoner class determines the system's strategy for opportunistic spectrum sharing 
given the constraints of sensor information, regulatory and system policy constraints.  This reasoner is 
aware of system-specific optimizations and tradeoffs and has control over the radio platform. 
In many ways, the SystemStrategyReasoner is the complement of the PolicyConformanceReasoner.  The 
conformance reasoner determines whether a particular type of spectrum use is authorized by policy in 
the current environment; the SystemStrategyReasoner determines what opportunities to use spectrum 
exist in the current environment that are suitable for the XG radio.  It is important to note that the 
strategy reasoner is not the only place in an XG radio that can identify or allocate opportunities: 
opportunities can be found from other nodes through an awareness dissemination protocol or this 
function can be incorporated within a medium access control protocol. 
The SystemStrategyReasoner class, therefore, is one of several classes that can perform the opportunity 
allocation function, and so it implements the interface called the AllocationInterface. This class can 
access the state, capabilities, and configuration information through the SystemCapabilitiesInterface. 
 
2.1.6 VirtualCoordinationChannel (optional; may have more than one) 
In many situations, XG radios need to communicate with neighboring XG radios to coordinate 
awareness of the spectrum (e.g. are a set of frequencies unused at both sender and potential receivers?) 
and coordinate use (e.g., jointly determine which frequency bands will be used). Coordination channels 
can be pre-configured, discovered, or created when needed. Furthermore, the channel may be 
implemented using waveform-level signaling, as a specialized MAC layer, or even at the application 
layer using higher layer protocols using out-of-band network access. 
The VirtualCoordinationChannel class represents the logical communication channel used for this 
purpose.  
The VirtualCoordinationChannel class implements the interface called 
VirtualCoordinationChannelInterface. 
 
2.1.7 MediumAccessControl (optional; may have more than one) 
The MediumAccessControl class includes higher layer functionality such as neighbor discovery, 
topology management, and link scheduling and sends/receives Layer 2 protocol data units to the 
transceiver. In an opportunistic spectrum-sharing environment, the higher layers need to interact with 
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the XG radio. For example, links must be scheduled such that communicating peers select and use 
common opportunities that are deconflicted from opportunities used by other nodes. 
The MediumAccessControl class implements the interface called XgToMediumAccessControlInterface. 
 
2.1.8 Comments on the XgRadioSystem class 
The subsystems contained within the XgRadioSystem class are meant only to provide an overall system context. 
They are not intended to suggest the adoption of a particular system design. In order to allow significant room for 
innovation and diversity of design, in the rest of the document we will focus on extensible specifications of the 
XG Behaviors, the XG Interfaces, and the XG Information Objects that XG systems must inherit, extend, and 
implement concretely. 
Particular XG radio system instantiations will extend and implement concrete instances of these abstractions. XG 
system designs, however, need not adhere to the rest of this abstract model or the system decomposition presented 
here. They can be based on alternative system decompositions, and they can also integrate multiple functions into 
fewer subsystems. For example, a particular design might integrate sensor functionality within transceivers. It is 
important however that each XG system design maintains a clearly identifiable accreditation boundary such that 
spectrum policy concerns are within the boundary, and to the extent possible, other concerns are left outside the 
boundary.
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2.2 XG Interfaces 
 

In this subsection, we sketch the functions of generic Interface class and briefly mention the purpose of 
each of the major interfaces in XgRadioSystem.  A full description of each interface is provided in 
Section 3. 
 
As illustrated in Figure 42, all XG interfaces extend the Interface abstract class, or its subclass 
ServiceAccessPoint.  In addition to the seven interfaces associated with the subsystems described in 
Section 4.1.1, we define two additional interfaces that are associated with the protocol behaviors 
included in the AccreditableKernel. 
 
The Interface class provides five methods: 

• getVersion, a method used to learn the version of the Interface; and 
• getCredential, a method used to get credentials of the class that implements the interface, for 

example, digital certificates that assert that the implementation has been accredited. 
getCredential allows trust establishment mechanisms to be established to work across XG 
interfaces. This enables various components of the radio to be accredited and enhanced 
separately, and the use of particular combinations to be governed by policy if needed. 

• a set of three methods that behaviors use to register and unregister at an interface and to be 
notified of events. Behaviors and Interfaces together implement an Observer–Subject design 
pattern [DP]. A behavior can register or unregister itself at an interface by calling the 
addObserver and removeObserver methods respectively. The notifyObservers method is called, 
which in turn calls the update methods on all instances of Behavior that are registered with the 

Interface

+getVersion():String
+getCredential():Credential
+addObserver(b:Behavior):void
+removeObserver(b:Behavior):void
+notifyObservers():void

SensorInterface TransceiverInterface

AllocationInterface

PolicyInterface

SystemCapabilitiesInterface VirtualCoordinationChannelInterface

XgToMediumAccessControlInterface

AwarenessDisseminationServiceAccessPoint

UseCoordinationServiceAccessPoint

ServiceAccessPoint

+send(p:ProtocolDataUnit):void
+receive():ProtocolDataUnit

Interface

+getVersion():String
+getCredential():Credential
+addObserver(b:Behavior):void
+removeObserver(b:Behavior):void
+notifyObservers():void

SensorInterface TransceiverInterface

AllocationInterface

PolicyInterface

SystemCapabilitiesInterface VirtualCoordinationChannelInterface

XgToMediumAccessControlInterface

AwarenessDisseminationServiceAccessPoint

UseCoordinationServiceAccessPoint

ServiceAccessPoint

+send(p:ProtocolDataUnit):void
+receive():ProtocolDataUnit

 
Figure 42: XG Interfaces 
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interface.  For example, the SpectrumAwarenessManagement behavior can register with the 
SensorInterface and the AwarenessDisseminationServiceAccessPoint in order to know when 
new sensed awareness information or protocol based awareness information is received. 

 
The ServiceAccessPoint class extends the Interface class with two additional methods: 

• send, a method to send a protocol data unit. Note that the definition of protocol data unit (PDU) 
is somewhat broader in this document than is traditional – in this context, a PDU is protocol data 
plus an a set of associated attributes which often includes information about what channel the 
PDU is to be sent on 

• receive, a method to receive a protocol data unit, typically invoked by an observer in response to 
a notification 

 
XG abstract behaviors interact with each other and with the system through the following extensible 
interface set: 

1. SensorInterface: The interface through which sensed awareness (of the operational 
environment, i.e. information such as location and spectrum) is accessed and sensing behavior is 
controlled. 

2. TransceiverInterface: The interface through which the agile XG transceiver (i.e. parameters 
such as transmit power, frequency, waveform, and beamform) is controlled and emission 
constraints are conveyed. 

3. SystemCapabilitiesInterface: The interface through which the capabilities, the current 
configuration, and state of the XG system can be accessed. 

4. PolicyInterface: The interface through which opportunity instances are validated against 
applicable regulatory, incumbent spectrum assignee, and system policy.  This interface may 
additionally provide access to policy information and policy management directives. 

5. AllocationInterface: The interface through which a specific opportunity is allocated for use 
from all available opportunities. 

6. VirtualCoordinationChannelInterface: The interface through which virtual control channels 
(which carry XG protocol data) are managed and accessed. 

7. XgToMediumAccessControlInterface: The interface through which the MAC layer can 
interact with the XG abstract behaviors (for example, to support link setup and maintenance, 
contention management, and framing). 

8. AwarenessDisseminationServiceAccessPoint: The interface through which the 
AwarenessDissemination protocol behavior can be accessed. The information accessed through 
this interface is processed spectrum awareness that is acquired from or is to be disseminated to 
other nodes by the protocol (rather than the individual protocol data units exchanged by a 
protocol implementing this behavior over virtual coordination channels) 

9. UseCoordinationServiceAccessPoint: The interface through which the UseCoordination 
protocol behavior can be accessed.  The information accessed through this interface include 
higher level protocol directives resulting in acquisition and release of opportunities (rather than 
the individual protocol data units exchanged by a protocol implementing this behavior over 
virtual coordination channels) 
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XG systems that implement these interfaces are anticipated to inherit and extend these interfaces and the 
related classes in order to support real-time operation, access control, error or exception handling, 
enhanced features and system-specific optimizations. 
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2.3 XG Behaviors 
 
XG systems implement the abstract behaviors necessary to enable opportunistic use of spectrum, policy-
defined operation, and traceability. As a guideline to identifying which abstract behaviors are necessary, 
we use the following rationale. XG systems must minimally agree on how they characterize spectrum 
conditions (spectral awareness) and on the opportunities available to use spectrum (opportunity 
instances), and must support behaviors that enable the dissemination of spectral awareness and 
opportunity information. In addition, for traceability, they must account for emissions they make in 
terms of the policies that authorize each emission, and the valid opportunities that were identified to 
enable the emission.  Finally, they must support behaviors that allow systems to coordinate the use of 
opportunities either to form a data communications channel (at Layers 2 and above), or to avoid 
opportunities selected by other XG systems. 

XG abstract behaviors extend the Behavior abstract class. As illustrated in Figure 43, the subclasses of 
Behavior include: 

 InternalBehavior, the class of behaviors that are internal to the XG system 
 ProtocolBehavior, the class of behaviors that involve communications with agents external to an 

XG system. The protocol behaviors use virtual coordination channels to exchange XG protocol 
information, and access to the protocol behaviors can be made through a ServiceAccessPoint 
interface. 

ServiceAccessPoint

Behavior

+getVersion():String
+update(i:Interface):void

InternalBehavior ProtocolBehavior

UsageAccountingManagement

SpectrumAwarenessManagement

UseCoordination

AwarenessDissemination

UseCoordinationServiceAccessPoint

AwarenessDisseminationServiceAccessPoint

ServiceAccessPoint

Behavior

+getVersion():String
+update(i:Interface):void

Behavior

+getVersion():String
+update(i:Interface):void

InternalBehavior ProtocolBehavior

UsageAccountingManagement

SpectrumAwarenessManagement

UseCoordination

AwarenessDissemination

UseCoordinationServiceAccessPoint

AwarenessDisseminationServiceAccessPoint

 
Figure 43: XG Internal and Protocol Behavior Classes 
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Behaviors interact with other behaviors and the rest of the system through Interfaces. Behaviors and 
Interfaces implement the Observer-Subject design pattern. A behavior can register itself at an interface, 
and the behavior implements a generic update method that can be called by the interface to notify the 
behavior of any state changes. 
 
We have identified the following four XG abstract behaviors: 

1. SpectrumAwarenessManagement: an InternalBehavior, which describes how opportunity 
information is acquired, identified, represented and disseminated within and across XG systems.  
This behavior encompasses awareness information gained from sensing, configuration, and 
through AwarenessDissemination instances. 

2. AwarenessDissemination: a ProtocolBehavior, which can be used by XG systems to share 
opportunity awareness information. 

3. UsageAccountingManagement: an InternalBehavior, which enables emissions to be traced to a valid 
opportunity enabled by policy. This behavior is responsible for ensuring that every opportunity is 
validated for policy conformance prior to its use.  This behavior is also responsible for ensuring that all 
parameters governing operation are correctly bound to the values specified within the validated 
opportunity. 

4. UseCoordination: a ProtocolBehavior, which allows XG systems to coordinate the use of 
selected opportunities with other (XG and non-XG) systems. 

 
A natural question to ask is why these four behaviors in particular are included in the accreditable kernel 
and why some others (notably, allocation) not included. Recall from Section 1 that abstract behaviors 
must satisfy at least one of the following to be included in the accreditable kernel: 

• It is required to support opportunistic sharing of spectrum 
• It is required to support policy-defined operation 
• It provides traceability from policy through behavior to emissions 

 
A radio without awareness of opportunities will cease to be an XG radio (i.e. it cannot perform 
opportunistic spectrum sharing); therefore, SpectrumAwarenessManagement is included within the 
accreditable kernel. 
 
UsageAccountingManagement addresses the policy-defined operation and traceability requirements 
directly, and is included within the accreditable kernel. 
 
In addition, traceability requires that trustable dissemination and coordination protocol behaviors 
(though not necessarily particular protocols) may be required by policy in some circumstances. An 
example of this requirement can be found in proposed approaches for the reuse of public safety bands 
through the use of beacon signals that authorize use. These two protocol behaviors (one for trusted 
dissemination of what's available to share and another for trusted signaling of opportunity acquisition 
and release) are therefore included in the accreditable kernel because they relate to policy conformance. 
Clearly, these behaviors are required only in those XG radios that make use of particular opportunities 
enabled by policy due to the implementation of these protocols. 
 
Identification and allocation of opportunities need not be a trusted function.  A tool for finding 
opportunities which devises wonderful spectrum use most of the time and occasionally suggests 
something infeasible/illegal is perfectly reasonable, provided that the infeasible opportunities are never 
instantiated.  It is the barrier to instantiation that is the accreditable kernel’s function – not the 
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exploration of opportunities. And leaving the exploration of opportunities outside the accreditable kernel 
allows for freer innovation. 
 
We describe these behaviors in more detail in Section 0. The details of the architecture, design, and 
implementation of these behaviors and interfaces, however, are left open to innovation subject to policy, 
technology, and other business constraints. 
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2.4 XG Information Objects 
 
We organize XG Information Objects into three abstract classes as illustrated in Figure 44: 
PolicyDefinedJoinPoint11, Expression, and ProtocolDataUnit. 

 
The PolicyDefinedJoinPoint, described further in Section 0 is a generalization of two abstract classes: 
Parameter and Process.  Instances of the PolicyDefinedJoinPoint class are primitives that are described 
using the XG Policy Language Framework (see [XGPLF]), and implemented within the XG radio 
system. The AccreditableKernel through the XG System Capabilities Interface provides access to these 
primitives.  
 
Instances of the Parameter class are parameters that govern the operation of the XG radio system, and 
instances of the Process class are methods, procedures, or relations that are implemented by the XG 
radio system.  
 
 
 
The ParameterCollection is an abstract (and arbitrary) collection of Parameter instances.  Subclasses of 
ParameterCollection include Credential, Awareness, UsageRequest, and OpportunityInstance.  
                                                 
11 In computer science, a join-point is a point in the flow of a program. In Aspect Oriented Programming, a pointcut is a set of 
join-points. Whenever program execution reaches one of the join points defined in the pointcut, a piece of code (called 
advice) associated with the pointcut is executed. We envision a PolicyDefinedJoinPoint to be points within the XG radio 
where behavior governed by policy is accessible. 
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PolicyFilterSpecification
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PolicyConstraints

ParameterCollection
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ValidOpportunityInstance
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ProtocolBasedAwareness
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UseCoordinationProtocolDataUnit
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Figure 44: XG Information Objects and their associations 
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Instances of the Credential class encapsulate security and trust management information such as 
cryptographic keys and authentication information. Credential instances are exchanged across XG 
interfaces for trust management.  The specification of the security and trust management architecture is 
not within the scope of this document. 
 
The Awareness class encapsulates situational awareness information including spectral awareness, 
network awareness, and possibly temporal and geo-spatial information as well.  Instances of the 
Awareness class are created and managed by the XG Spectrum Awareness Management behavior.  
Subclasses of the Awareness class include SensedAwareness that encapsulates awareness gained by the 
XG system through sensing, and ProtocolBasedAwareness, which encapsulates awareness acquired by 
the XG system through the use of awareness dissemination protocols. 
 
The UsageRequest class and OpportunityInstance class respectively encapsulate information in the 
request for, and in the characterization of, spectrum use.  OpportunityInstanceCollection is an abstract 
collection of instances of the OpportunityInstance class. Instances of UsageRequest can be sent (to the 
SystemStrategyReasoner, for example) over the AllocationInterface, and an  
OpportunityInstanceCollection that includes a list of opportunities may be returned. The radio system 
can choose opportunities from this collection, and then pass the selected instance of OpportunityInstance 
over the PolicyInterface to have it validated (i.e. checked whether it is authorized by applicable policy). 
A ValidOpportunityInstance object encapsulates validation status and associated credential information 
of an OpportunityInstance object that it contains.  The XG Usage Accounting Management behavior 
ensures that operation (e.g. emission) conforms to the parameter values set within the 
ValidOpportunityInstance with the appropriate status and credentials returned by the PolicyInterface.  
 
The Expression abstract class encapsulates predicate expressions that involve PolicyDefinedJoinPoint 
instances. The expression language can be specific to the particular XG implementation. Subclasses of 
the Expression class include the PolicyFilterSpecification class, which encapsulates expressions that 
specify a filter on policy instances based on arbitrary criteria of interest, and the PolicyConstraints class, 
which encapsulates expressions that specify constraints that apply to the XG radio system.  These 
expressions can be, for example, used by the SystemStrategyReasoner to interact with the 
PolicyConformanceReasoner. 
 
The ProtocolDataUnit is an abstract class that encapsulates information exchanged across 
ServiceAccessPoint interfaces (and any attributes of that information, required to effect an exchange).  
In particular, two subclasses of ProtocolDataUnit, namely, the 
AwarenessDisseminationProtocolDataUnit and UseCoordinationProtocolDataUnit are exchanged over 
the VirtualCoordinationChannelInterface by instances of the XG protocol behaviors 
(AwarenessDissemination and UseCoordination). The extension and implementation of these abstract 
classes are specific to the protocols used by the particular XG radio system.  
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2.5 XG System Interactions 
There are three key system interactions that relate to opportunity awareness, allocation, and use. 
 
The SpectrumAwarenessManagement behavior creates and manages Awareness objects, objects that 
provide information about the environment around the XG radio.  To get the information necessary to 
create, update, modify, or delete Awareness objects, the behavior acquires SensedAwareness objects via 
the SensorInterface and ProtocolBasedAwareness objects from the 
AwarenessDisseminationServiceAccessPoint interface.  The latter interface is implemented by the 
AwarenessDissemination behavior, which exchanges spectrum information (abstractly modeled as 
AwarenessDisseminationProtocolDataUnit instances) with other systems via communications channels 
modeled by the VirtualCoordinationChannelInterface.  These interactions are illustrated in Figure 45. 

Once awareness of opportunities is acquired, the next step is to identify and allocate opportunities for 
use by the radio system under policy constraints.  As illustrated in Figure 46, the 
SystemStrategyReasoner performs this function.  The SystemStrategyReasoner can access policy 
information through the PolicyInterface, and it can access the capabilities, configuration, state, and 
primitives within the radio system through the SystemCapabilitiesInterface. In particular, this includes 
access to the XG SpectrumAwarenessManagement behavior. 
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Figure 46: The System Strategy Reasoner identifies and allocates Opportunity 
Instances for the Radio; it may additionally access radio primitives to modify 
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Figure 45: Spectrum awareness is gained through sensing and protocol behaviors 
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Once opportunities have been identified and allocated based on awareness of opportunities, one or more 
can be selected and used in a manner that is authorized by policy.  The UsageAccountingManagement 
behavior performs the function of ensuring that OpportunityInstance objects are presented to the 
PolicyInterface prior to use, and that only ValidOpportunityInstance objects returned by the 
PolicyInterface with proper validation status and credentials are actually used. 
 
The UsageAccountingManagement behavior through the SystemCapabilitiesInterface asserts that 
subsystems actually use the parameter values contained within the ValidOpportunityInstance, before 
providing it to the TransceiverInterface.  Furthermore, authorized use of spectrum may entail the 
employment of a protocol to coordinate with other nodes.  For this purpose, the 
UsageAccountingManagement behavior interacts with the UseCoordination protocol behavior through 
the UseCoordinationServiceAccessPoint. 
 
The interactions related to the use of opportunities are illustrated in Figure 47. 
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Figure 47: Opportunity instances are allocated, validated against policy, then used after 

asserting that all parameter values are set appropriately and after coordination with peers 
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3 XG Interfaces 
In this section, we describe the following XG abstract interfaces: 

 SensorInterface 
 TransceiverInterface 
 SystemCapabilitiesInterface 
 PolicyInterface 
 AllocationInterface 
 VirtualCoordinationChannelInterface 
 XgToMediumAccessControlInterface 
 AwarenessDisseminationServiceAccessPoint 
 UseCoordinationServiceAccessPoint 

 
For each interface, we discuss its methods and the semantics of those methods (what the interface seeks 
to do). 

We also discuss common error situations for each interface.  Because this document does not specify 
how errors are handled (whether by exceptions or return values or some other means) the error 
discussion is intended simply to highlight errors that must be addressed. 
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3.1 SensorInterface 

The SensorInterface provides methods to enable sensed awareness to be requested and received from a 
sensor.  The information that has been sensed is accessed through the returned SensedAwareness 
object(s). The SensedAwareness class is described later in Section 0. 
 
The SensorInterface extends Interface; therefore, it includes the getVersion, getCredential, addObserver, 
removeObserver, and notifyObservers methods. A behavior, such as an instance of 
SpectrumAwarenessManagement, can register itself at a SensorInterface, be notified of changes to 
sensed information, and obtain SensedAwareness objects through the getSensedAwareness method. 
 
We note here that sensor primitives (e.g. parameters such as look-through interval, integration time and 
frequency resolution) can be accessed through the SystemCapabilitiesInterface. Particular 
implementations may choose to provide access to these parameters by extending the SensorInterface and 
implementing additional methods. 
 
Implementations can extend this interface further, for example, to provide more advanced control over 
the sensor tasking.  For example, extensions can include methods to tailor sensing requests by providing 
a sensor mask that specifies the information to include in the response, and a notification condition 
expression that determines when (and how often) to provide notification.  Whenever the notification 
condition is true (having fulfilled constraints and having applied the sensor mask) this method will 
provide sensed awareness by calling the invoker's notifyObservers method. 
 
Error Conditions:  There are no important error conditions to worry about in this interface.  The only 
challenging case is how to handle cases where no sensed data can be made available, due to 
configuration errors, sensor failure, and the like.  The expectation, in this interface, is that the result is a 
particular SensedAwareness object that indicates a lack of data or inability to get it. 
 
 
 
 

SensorInterface
+getSensedAwareness():SensedAwareness

Interface

SensorInterface
+getSensedAwareness():SensedAwareness

SensorInterface
+getSensedAwareness():SensedAwareness

InterfaceInterface

 
Figure 48: SensorInterface methods 
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3.2 TransceiverInterface 
 
 

TransceiverInterface

+use(v:ValidOpportunityInstance):void
+release(v:ValidOpportunityInstance):void

Interface

ServiceAccessPoint

TransceiverInterface

+use(v:ValidOpportunityInstance):void
+release(v:ValidOpportunityInstance):void

TransceiverInterface

+use(v:ValidOpportunityInstance):void
+release(v:ValidOpportunityInstance):void

InterfaceInterface

ServiceAccessPointServiceAccessPoint

 
 
 

Figure 49:  Transceiver Interface methods 
 
Recall that the ServiceAccessPoint interface extends the basic Interface to support send and receive methods.  The 
TransceiverInterface in turn extends ServiceAccessPoint to specify the opportunity (the ValidOpportunityInstance 
object) to use when sending and receiving instances of the ProtocolDataUnit object.  (Recall that Interface, in this 
context, is not a network interface but a class definition). 

The interface also provides a method to stop using an opportunity, through the release method. 

We note here that transceiver primitives can be accessed uniformly through the SystemCapabilitiesInterface. 
Particular implementations can, however, extend the TransceiverInterface to provide more advanced control over 
transceiver operation or to provide access to its parameters. 

 

Error Conditions: The important error conditions in this interface involve situations where the 
ValidOpportunityInstance is either, not usable from the start, or becomes unusable. 

In general, because ValidOpportunityInstance objects are generated and/or verified by policy software, the 
expectation is that most errors will take place at the time of sending, when send is invoked.  So a perfectly 
reasonable error handling approach is to handle all errors related to ValidOpportunityInstance at the time of 
sending.  Such error handling would include checking that the opportunity is indeed authorized, and that the 
conditions under which the opportunity is valid still obtained (or, by changing radio configuration, can be 
restored). 
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3.3 SystemCapabilitiesInterface 
 

The SystemCapabilitiesInterface provides access to the capabilities, the configuration, and the state of 
the XG radio system. XG system capabilities include sensing capabilities (e.g., spectral power 
characterization, specific signal identification, and location sensing), transceiver capabilities (e.g., 
frequency agility, power control, waveform agility, and beam-forming), and other system capabilities 
(such as encryption support, and emulation of legacy PHY and MAC layers).  
 
As envisioned in the XG Policy Language Framework RFC, access to XG system capabilities, 
configuration, and state are provided through primitives (Parameter and Process) described in a 
common Web ontology, and therefore, have an associated Web Universal Resource Identifier (URI).  
Policies are expressed in terms of these primitives that are implemented within various subsystems of 
the XG radio systems. As XG technology evolves, new systems with increasingly sophisticated 
capabilities will be developed, and therefore the SystemCapabilitiesInterface and its associated classes 
must be extensible. 
 
Central to the SystemCapabilitiesInterface is the getPrimitivebyName method, which provides access to 
the primitives implemented in the radio in terms of their URI by returning a PolicyDefinedJoinPoint 
instance. The PolicyDefinedJoinPoint class, which we describe in Section 25.1, generalizes the 
Parameter and Process classes, and enables the SystemCapabilitiesInterface remain extensible to future 
developments. 
 
In addition, four utility methods to access the implemented behaviors – 
getSpectrumAwarenessManagement, getAwarenessDissemination, getUseCoordination, and 
getUsageAccountingManagement  – are provided by SystemCapabilitiesInterface. 
 
The SystemCapabilitiesInterface follows the Singleton and Facade design patterns [DP]: it serves as a 
one-stop shop for a SystemStrategyReasoner instance to register itself (through the Observer pattern 
methods inherited from Interface), and access primitives and key behaviors implemented within various 
subsystems of the XG radio system. 

SystemCapabilitiesInterface

+getPrimitivebyName(n:URI):PolicyDefinedJoinPoint
+getSpectrumAwarenessManagement():SpectrumAwarenessManagement
+getUsageAccountingManagement():UsageAccountingManagement
+getAwarenessDissemination():AwarenessDissemination[]
+getUseCoordination():UseCoordination[]

Interface

SystemCapabilitiesInterface

+getPrimitivebyName(n:URI):PolicyDefinedJoinPoint
+getSpectrumAwarenessManagement():SpectrumAwarenessManagement
+getUsageAccountingManagement():UsageAccountingManagement
+getAwarenessDissemination():AwarenessDissemination[]
+getUseCoordination():UseCoordination[]

SystemCapabilitiesInterface

+getPrimitivebyName(n:URI):PolicyDefinedJoinPoint
+getSpectrumAwarenessManagement():SpectrumAwarenessManagement
+getUsageAccountingManagement():UsageAccountingManagement
+getAwarenessDissemination():AwarenessDissemination[]
+getUseCoordination():UseCoordination[]

InterfaceInterface

 
Figure 49: SystemCapabilitiesInterface methods 
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Error Conditions:  Obviously, there is a range of possible errors involving URIs.  For instance, the 
specified capability may not be present or the URI may be malformed. Errors can also result if the 
implementation of the accessed primitive has an internal error condition. 
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3.4 PolicyInterface 

The PolicyInterface provides a validateOpportunity method to validate the conformance of proposed 
spectrum usage to applicable policies. It accepts an OpportunityInstance object that contains attribute-
value pairs that fully characterize the proposed spectrum use, and returns a ValidOpportunityInstance 
object that indicates whether the proposed spectrum use conforms to policy and includes credentials 
from the PolicyInterface. The UsageAccountingManagement behavior can propose an 
OpportunityInstance object through this method, and then assert various system parameters based on the 
returned ValidOpportunityInstance object. These information objects are described further in Section 
25.3.   
 
The PolicyInterface also provides five additional methods: 

1. loadPolicy to retrieve and load machine-understandable policy sets from a repository 

2. revokePolicy to convey the revocation of loaded policy sets 

3. filterPolicy  to extract policies that apply to a particular situation 

4. requestOpp that searches for opportunities that are authorized by policy 

5. generateProof that provides a machine proof that a given ValidOpportunityInstance conforms to 
applicable policy 

 
The filterPolicy method accepts a PolicyFilterSpecification object and returns a PolicyConstraints 
object.  The PolicyFilterSpecification object can be based upon a particular situation (e.g. location, 
frequency bands, time) or a particular device description (e.g. transceiver tuning range, capable of 
beamforming, supports morphed waveforms, particular level of certification).  The returned 
PolicyConstraints object can be used, for example, by a SystemStrategyReasoner instance to reason 
about policy and identify opportunities in the context of the particular system. The design of the 
PolicyFilterSpecification and PolicyConstraints objects is specific to particular implementations.  
 
The requestOpp method is used to search for opportunities that are allowed by policy without 
considering particular requirements of the radio. The returned list of opportunities may be further 
constrained or a subset selected from the list by a system-specific allocation procedure. 

PolicyInterface

+loadPolicy(p:URI):void
+validateOpportunity(o:OpportunityInstance):ValidOpportunityInstance
+revokePolicy(p:URI):void
+filterPolicy(pfs:PolicyFilterSpecification):PolicyConstraints
+requestOpp(pfs:PolicyFilterSpecification):OpportunityInstanceCollection
+generateProof(v:ValidOpportunityInstance):Object

Interface

PolicyInterface

+loadPolicy(p:URI):void
+validateOpportunity(o:OpportunityInstance):ValidOpportunityInstance
+revokePolicy(p:URI):void
+filterPolicy(pfs:PolicyFilterSpecification):PolicyConstraints
+requestOpp(pfs:PolicyFilterSpecification):OpportunityInstanceCollection
+generateProof(v:ValidOpportunityInstance):Object

PolicyInterface

+loadPolicy(p:URI):void
+validateOpportunity(o:OpportunityInstance):ValidOpportunityInstance
+revokePolicy(p:URI):void
+filterPolicy(pfs:PolicyFilterSpecification):PolicyConstraints
+requestOpp(pfs:PolicyFilterSpecification):OpportunityInstanceCollection
+generateProof(v:ValidOpportunityInstance):Object

InterfaceInterface

 
Figure 50: PolicyInterface methods 
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The generateProof method outputs a machine proof – a sequence of assertions deduced using policy-
processing rules and based on awareness and policy axioms – that a given opportunity conforms to or 
violates applicable policy. Such a proof can be used for diagnostic purposes and the format of the 
machine proof is implementation specific. 
 
Error Conditions:  Error conditions can result during loading of policy if the encoded policy is either 
unavailable or inaccessible. Furthermore syntactic or logical inconsistencies resulting from loading or 
revocation of policies can also result in error conditions.  Malformed policy filter specifications can also 
result in errors. 
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3.5 AllocationInterface 
 

The Allocation Interface provides a method called getOpportunities that takes as input a UsageRequest 
object and returns an OpportunityInstanceCollection object.  The class that implements this interface 
must therefore perform the function of identifying and allocating opportunities that are suitable for the 
XG radio system in a particular situation. In contrast to the PolicyInterface, which only validates 
whether an opportunity conforms to policy, the AllocationInterface provides a list of suitable 
opportunities for the radio system. 
 
For example, in our notional system model, the SystemStrategyReasoner class performs the allocation 
procedure and implements the AllocationInterface. In some XG systems, the MediumAccessControl 
may perform the allocation procedure and this subsystem may implement the AllocationInterface in 
addition to the XgToMediumAccessControlInterface. The UsageAccountingManagement behavior can 
access this interface to obtain opportunities, chooses one or more opportunities, and then presents them 
to the PolicyInterface for validation prior to using those opportunities.  
 
The problem of identifying and allocating opportunities among nodes is closely related to the 
coordination among various nodes that must share spectrum. The class that implements the allocation 
procedure (and the AllocationInterface) must therefore ensure that: (i) unrelated transmissions do not 
interfere with each other beyond what is allowed by policy, and (ii) nodes that wish to form a link are 
able to do so, for example, the transmitter and the receivers that are involved in a communication are 
tuned to the same opportunity. The UseCoordination behavior described later in Section 0 provides a 
mechanism for XG systems to share this allocation. 
 
Error Conditions: Malformed usage requests can result in errors.  
 
 

AllocationInterface

+getOpportunities(u:UsageRequest):OpportunityInstanceCollection

Interface

AllocationInterface

+getOpportunities(u:UsageRequest):OpportunityInstanceCollection

AllocationInterface

+getOpportunities(u:UsageRequest):OpportunityInstanceCollection

InterfaceInterface

 
Figure 51: AllocationInterface methods 
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3.6 VirtualCoordinationChannelInterface 

The VirtualCoordinationChannelInterface provides methods to configure and access logical control 
channels for use by the XG protocol behaviors. At a minimum, logical coordination channels can be 
created and destroyed using the setup and teardown methods. (The assumption is that the radio knows 
how the control channels are to be created/destroyed and this interface simply says “do it”). This 
interface inherits from the ServiceAccessPoint interface two methods – send and receive – that can be 
used by the protocol behaviors to exchange ProtocolDataUnit objects. 
Virtual coordination channel primitives can be accessed uniformly through the SystemCapabilitiesInterface. 
Particular implementations can, however, extend the VirtualCoordinationChannelInterface to provide more 
advanced control over the operation of a virtual coordination channel or to provide access to its parameters. 

Error Conditions:  There’s one clear error case: that the radio system is not configured to have a coordination 
channel in its current operating mode.  This error can either be detected and signaled as a result of invoking setup, 
or when the channel is first used by send or receive. 

 

 

 

VirtualCoordinationChannelInterface

+setup():boolean
+teardown():void

Interface

ServiceAccessPoint

VirtualCoordinationChannelInterface

+setup():boolean
+teardown():void

VirtualCoordinationChannelInterface

+setup():boolean
+teardown():void

InterfaceInterface

ServiceAccessPointServiceAccessPoint

 
Figure 52: VirtualCoordinationChannelInterface methods 
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3.7 XgToMediumAccessControlInterface 

The XgToMediumAccessControlInterface provides access methods to coordinate XG operation with the 
medium access control layer: 
1. Exchange ProtocolDataUnit objects (to be passed to the transceiver interface) through the send and receive 

methods inherited from ServiceAccessPoint 

2. Notify the medium access control layer when the transceiver is ready to send or receive frames (e.g. after any 
transceiver reconfiguration that was requested is completed) through the notifyObservers method inherited 
from Interface 

One additional method release is defined for the XgToMediumAccessControlInterface.  This method may be 
called by UsageAccountingManagement to notify an XG-aware MediumAccessControl instance of the expiration 
or invalidation of a previously requested opportunity. 
 
Medium access control primitives (parameters) can be accessed uniformly through the 
SystemCapabilitiesInterface. Particular implementations can, however, extend the 
XgToMediumAccessControlInterface to provide more advanced control over medium access control 
operation or to provide access to its parameters. 
 
Error Conditions:  Calling the release method on a legacy MediumAccessControl instance (that is not 
XG-aware) is an error. Calling the release method for a ValidOpportunityInstance not already known to 
the MediumAccessControl is another potential error condition. Implementations must include suitable 
mechanisms to handle these error conditions. 
 

XgToMediumAccessControlInterface

Interface

ServiceAccessPoint

+release(v:ValidOpportunityInstance):void

XgToMediumAccessControlInterfaceXgToMediumAccessControlInterface

InterfaceInterface

ServiceAccessPointServiceAccessPoint

+release(v:ValidOpportunityInstance):void
 

Figure 53: XgToMediumAccessControlInterface methods 
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3.8 AwarenessDisseminationServiceAccessPoint 
 

The AwarenessDisseminationServiceAccessPoint provides methods to enable disseminated awareness to 
be requested and received from other XG nodes. An instance (e.g., of SpectrumAwarenessManagement) 
can register itself at an AwarenessDisseminationServiceAccessPoint, be notified of changes to 
disseminated awareness information, and can obtain ProtocolBasedAwareness objects through the 
getProtocolBasedAwareness method. The ProtocolBasedAwareness class is described later in Section 
25.2. 
 
The AwarenessDisseminationServiceAccessPoint also implements a disseminate method to enable 
requests to distribute spectral awareness information. 
 
Obvious possible extensions to this interface include facilities to filter the information returned in 
ProtocolBasedAwareness objects, or to limit when notifyObserver is invoked.  Such extensions could be 
used to limit the nodes with which awareness is shared (or received), or to limit the frequency bands 
about which an instance wishes to be kept aware, or the frequency of information updates. 
 
Error Conditions:  The absence of awareness is not an error.  Communications outages and the like can 
cause this condition and systems must deal with it gracefully.  The inability to disseminate information 
is also not an error (for similar reasons), however, there must be some way for the system to discover its 
inability to disseminate. 
 
 

AwarenessDisseminationServiceAccessPoint

+getProtocolBasedAwareness():ProtocolBasedAwareness
+disseminate(a:Awareness):void

Interface

ServiceAccessPoint

AwarenessDisseminationServiceAccessPoint

+getProtocolBasedAwareness():ProtocolBasedAwareness
+disseminate(a:Awareness):void

AwarenessDisseminationServiceAccessPoint

+getProtocolBasedAwareness():ProtocolBasedAwareness
+disseminate(a:Awareness):void

InterfaceInterface

ServiceAccessPointServiceAccessPoint

 
Figure 54: AwarenessDisseminationServiceAccessPoint methods 
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3.9 UseCoordinationServiceAccessPoint 

The UseCoordinationServiceAccessPoint provides the acquireOpportunity and the releaseOpportunity 
methods to signal the acquisition and release of opportunities to external devices (e.g. other XG radios) 
in a manner that conforms to policy.  The UsageAccountingManagement method can pass relevant 
parameters to this interface through a ValidOpportunityInstance object. 
The difference between this interface and TransceiverInterface is that TransceiverInterface purely affects internal 
workings of the radio, while UseCoordinationServiceAccessPoint involves coordinating use with external radios.  
To implement an opportunity, in many cases, will require using both interfaces (to configure the radio and to 
coordinate that configuration with other radios). 
 
Error Conditions:  All the error conditions that TransceiverInterface must worry about are relevant 
here as well.  In addition, attempts to coordinate with other radios may fail or still be underway at a time 
when an attempt is made to utilize the opportunity.  Care in designing the error interface is called for, as 
errors may be transient (e.g., negotiations in progress) rather than permanent. 
 
 
 

Interface

ServiceAccessPoint

UseCoordinationServiceAccessPoint

+acquireOpportunity(v:ValidOpportunityInstance):void
+releaseOpportunity(v:ValidOpportunityInstance):void

InterfaceInterface

ServiceAccessPointServiceAccessPoint

UseCoordinationServiceAccessPoint

+acquireOpportunity(v:ValidOpportunityInstance):void
+releaseOpportunity(v:ValidOpportunityInstance):void

UseCoordinationServiceAccessPoint

+acquireOpportunity(v:ValidOpportunityInstance):void
+releaseOpportunity(v:ValidOpportunityInstance):void

 
Figure 55: UseCoordinationServiceAccessPoint methods 
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4 XG Behaviors 
 
In this section, we will describe the following four XG abstract behaviors: 

 SpectrumAwarenessManagement 
 Awareness Dissemination 
 UsageAccountingManagement 
 UseCoordination 

 
In the following subsections, we describe these behaviors, which are essential in order to ensure that (i) 
spectral awareness information is acquired and disseminated in order to make adaptive use of available 
spectrum, and (ii) such use is made in a manner that conforms to policy and is coordinated with other 
nodes as required. 
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4.1 SpectrumAwarenessManagement 

Central to the idea of a XG radio is spectrum awareness.  This awareness can come from a number of 
sources.  The purpose of the SpectrumAwarenessManagement behavior is to provide a single trusted 
entity that distributes, manages, consolidates and disseminates spectrum information.  
 
SpectrumAwarenessManagement manages spectrum awareness from SensedAwareness acquired 
through the SensorInterface and from ProtocolBasedAwareness acquired through the 
AwarenessDisseminationServiceAccessPoint.   In turn, SpectrumAwarenessManagement provides 
access to its acquired awareness through the getAwareness method, which returns an instance of the 
Awareness class, described further in Section 0.  The information provided by this behavior can be used 
by other behaviors in order to make decisions regarding opportunity identification, allocation, and 
dissemination. 
 
Note that as part of its role in managing awareness, SpectrumAwarenessManagement may edit, filter or 
combine awareness objects.  (For instance, if the radio is only interested in information about television 
frequency bands, it may edit all awareness information to only contain information about these bands).  
It is the ability to edit and alter which makes it essential that SpectrumAwarenessManagement be a 
trusted piece of the accreditable kernel.  (Note that, even though trusted, the behavior is expected to 
track where information is learned, for purposes of audit and verification). 
 
The SpectrumAwarenessManagement behavior registers itself to receive notifications from the 
SensorInterface and AwarenessDisseminationServiceAccessPoint through the respective addObserver 
methods. As a result, the update method will be invoked whenever new sensed or protocol-based 
awareness information is received. The SpectrumAwarenessManagement behavior must then call the 
getSensedAwareness or the getProtocolBasedAwareness method on the respective interface and process 
the awareness information returned to form a common picture.  The behavior may also call disseminate 
to distribute its spectrum awareness to others. 
 

SpectrumAwarenessManagement
-si:SensorInterface[1-*]
-adsap:AwarenessDisseminationServiceAccessPoint[*]

+getAwareness():Awareness

Behavior

InternalBehavior

SpectrumAwarenessManagement
-si:SensorInterface[1-*]
-adsap:AwarenessDisseminationServiceAccessPoint[*]

+getAwareness():Awareness

SpectrumAwarenessManagement
-si:SensorInterface[1-*]
-adsap:AwarenessDisseminationServiceAccessPoint[*]

+getAwareness():Awareness

BehaviorBehavior

InternalBehaviorInternalBehavior

 
Figure 56: SpectrumAwarenessManagement class 
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A notional sequence of operations for the SpectrumAwarenessManagement behavior is illustrated 
in Figure 57. 
 

:SystemStrategyReasoner

:AwarenessDisseminationServiceAccessPoint:SensorInterface:SpectrumAwarenessManagement

addObserver this:Behavior

return

return a:Awareness

addObserver this:Behavior

return

getProtocolBasedAwareness

return p:ProtocolBasedAwareness

getSensedAwareness

return s:SensedAwareness

disseminate a:Awareness

return

getAwareness

:SystemStrategyReasoner

:AwarenessDisseminationServiceAccessPoint:SensorInterface:SpectrumAwarenessManagement

addObserver this:Behavior

return

return a:Awareness

addObserver this:Behavior

return

getProtocolBasedAwareness

return p:ProtocolBasedAwareness

getSensedAwareness

return s:SensedAwareness

disseminate a:Awareness

return

getAwareness

 
Figure 57: A notional sequence diagram for the SpectrumAwarenessManagement behavior 
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4.2 AwarenessDissemination 

The AwarenessDissemination protocol behavior allows XG systems to acquire protocol-based 
awareness. As part of this awareness, this behavior must discover neighboring systems that can be 
reached through virtual coordination channels. AwarenessDissemination implements the 
AwarenessDisseminationServiceAccessPoint interface, and is associated with an instance of the 
VirtualCoordinationChannelInterface. AwarenessDissemination implements the getAccessPoint method, 
which returns the AwarenessDisseminationServiceAccessPoint 
 
AwarenessDissemination protocols can have diverse implementations. The protocols may be 
centralized, decentralized, or distributed.  Furthermore, they can be implemented at different networking 
layers depending on how the virtual coordination control channel is implemented.  For example, an 
interruptible spectrum model that permits reuse of public-safety channels through a use-permitted 
beacon signal is an example of a centralized, 1-hop, physical-layer AwarenessDissemination subclass.  
A taxonomy of AwarenessDissemination protocols is shown in Figure 59. 

AwarenessDissemination

implementation-layer dissemination-scope locus-of-control

1-hop global otherk-hops

linkphysical network application

centralized decentralized distributed

spanning-tree diffusionflooding

AwarenessDissemination

implementation-layer dissemination-scope locus-of-control

1-hop global otherk-hops

linkphysical network application

centralized decentralized distributed

spanning-tree diffusionflooding  
Figure 59: Awareness Dissemination Taxonomy 

AwarenessDissemination
-vcc:VirtualCoordinationChannelInterface

+getAccessPoint():AwarenessDisseminationServiceAccessPoint

AwarenessDisseminationServiceAccessPoint VirtualCoordinationChannelInterface

Behavior

ProtocolBehavior

AwarenessDissemination
-vcc:VirtualCoordinationChannelInterface

+getAccessPoint():AwarenessDisseminationServiceAccessPoint

AwarenessDissemination
-vcc:VirtualCoordinationChannelInterface

+getAccessPoint():AwarenessDisseminationServiceAccessPoint

AwarenessDisseminationServiceAccessPoint VirtualCoordinationChannelInterface

BehaviorBehavior

ProtocolBehaviorProtocolBehavior

 
Figure 58: AwarenessDissemination class 
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4.3 UsageAccountingManagement 

The UsageAccountingManagement behavior is responsible for ensuring that opportunities are validated though 
the PolicyInterface prior to their use. This behavior is also responsible for ensuring that parameters governing 
operation are bound to the values specified within the ValidOpportunityInstance object to be used. 
 
Based on either a potential or an actual requirement for spectrum use within the radio system, the 
UsageAccountingManagement behavior requests opportunity allocations by providing a UsageRequest 
object to the AllocationInterface.  In response, the AllocationInterface returns an 
OpportunityInstanceCollection object that contains opportunity allocations.  The 
UsageAccountingManagement behavior presents one or more of the allocated opportunities to the 
PolicyInterface for validation in order to obtain a ValidOpportunityInstance object. 
 
Upon receiving a request for spectrum use, the UsageAccountingManagement behavior uses the 
ValidOpportunityInstance object resulting from validation to assert parameters governing spectrum use 
through the SystemCapabilitiesInterface. This behavior also invokes the acquireOpportunity and 
releaseOpportunity methods on the UseCoordinationServiceAccessPoint if policy requires coordination 
of use through protocols. UsageAccountingManagement therefore maintains needed associations to the 
five interfaces mentioned above. 
 
The UsageAccountingManagement behavior is key to realizing the traceability goals of the XG 
program. XG systems must account for emissions they make, which means that they should  
characterize the emission, and also include information about the specific opportunity identified for  
this use including the source of this opportunity (sensing, policy, or learned from an external source 
though a protocol), as well as information about policy that permits such usage. Such information is 
contained within the ValidOpportunityInstance object described later in Section 25.3. 
 

UsageAccountingManagement
-ai:AllocationInterface
-pi:PolicyInterface
-ti:TransceiverInterface[1-*]
-ucsap:UseCoordinationServiceAccessPoint[*]
-sci:SystemCapabilitiesInterface

+requestUse(u:UsageRequest):ValidOpportunityInstance
+use(u:UsageRequest,v:ValidOpportunityInstance):void

Behavior

InternalBehavior

UsageAccountingManagement
-ai:AllocationInterface
-pi:PolicyInterface
-ti:TransceiverInterface[1-*]
-ucsap:UseCoordinationServiceAccessPoint[*]
-sci:SystemCapabilitiesInterface

+requestUse(u:UsageRequest):ValidOpportunityInstance
+use(u:UsageRequest,v:ValidOpportunityInstance):void

UsageAccountingManagement
-ai:AllocationInterface
-pi:PolicyInterface
-ti:TransceiverInterface[1-*]
-ucsap:UseCoordinationServiceAccessPoint[*]
-sci:SystemCapabilitiesInterface

+requestUse(u:UsageRequest):ValidOpportunityInstance
+use(u:UsageRequest,v:ValidOpportunityInstance):void

BehaviorBehavior

InternalBehaviorInternalBehavior

 
Figure 60: UsageAccountingManagement class 
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The UsageAccountingManagement behavior provides a use method that: 
• Associates a UsageRequest with the corresponding ValidOpportunityInstance that was used 
• Asserts system parameters are set to the values specified in the ValidOpportunityInstance  
• Calls the use method of the TransceiverInterface, and if needed, the acquireOpportunity and 

releaseOpportunity methods of the UseCoordinationServiceAccessPoint. 
 
The decoupling of the requestUse and use methods is worth noting – the former ensures that an 
opportunity is validated by the policy conformance reasoner prior to use, and the latter method ensures 
that all parameters are actually bound to the values contained in the validated opportunity.  This enables 
the XG radio to use a validated opportunity just once or multiple times as long as all parameters can be 
asserted to have the appropriate values.  Opportunity expiration can be controlled by any number of 
parameters, including possibly, explicit parameters for the maximum reuse count before validation or an 
opportunity expiration time. 
 
A notional sequence of operations for the UsageAccountingManagement behavior is illustrated in  
Figure 60. In the case of XG-aware MediumAccessControl instances, the release method of the 
XgToMediumAccessControlInterface may also be invoked (not shown in Figure 61). 

:PolicyInterface:AllocationInterface :MediumAccessControl:UsageAccountingManagement

(potential
use of 

spectrum
determined
by system 

algorithms)

getOpportunities u:UsageRequest
return o:OpportunityInstanceCollection

validateOpportunity o:OpportunityInstance

return v:ValidOpportunityInstance

requestUse u:UsageRequest

return v:ValidOpportunityInstance

use u:UsageRequest v:ValidOpportunityInstance

return

:TransceiverInterface

return
use v:ValidOpportunityInstance

(expiration,
invalidation

due to change
in asserted
parameters,
or release of
opportunity
by system)

:SystemCapabilitiesInterface

(assert parameters)
return

send p:ProtocolDataUnit
return

[or receive]

return
release v:ValidOpportunityInstance

:UseCoordinationServiceAccessPoint

acquireOpportunity v:ValidOpportunityInstance

releaseOpportunity v:ValidOpportunityInstance

return

return

:PolicyInterface:AllocationInterface :MediumAccessControl:UsageAccountingManagement
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use of 

spectrum
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by system 

algorithms)

getOpportunities u:UsageRequest
return o:OpportunityInstanceCollection

validateOpportunity o:OpportunityInstance

return v:ValidOpportunityInstance

requestUse u:UsageRequest

return v:ValidOpportunityInstance

use u:UsageRequest v:ValidOpportunityInstance

return

:TransceiverInterface

return
use v:ValidOpportunityInstance

(expiration,
invalidation

due to change
in asserted
parameters,
or release of
opportunity
by system)

:SystemCapabilitiesInterface

(assert parameters)
return

send p:ProtocolDataUnit
return

[or receive]

return
release v:ValidOpportunityInstance

:UseCoordinationServiceAccessPoint

acquireOpportunity v:ValidOpportunityInstance

releaseOpportunity v:ValidOpportunityInstance

return

return

 
Figure 61: A notional sequence diagram for the UsageAccountingManagement behavior 
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4.4 UseCoordination 

The UseCoordination protocol behavior communicates the specific opportunity selected for use by an 
XG system.  This behavior enables XG systems to coordinate the use of selected opportunities with 
other systems (both XG and non-XG), including acquisition and release of the opportunity. 
UseCoordination implements the UseCoordinationServiceAccessPoint interface, and is associated with 
an instance of the VirtualCoordinationChannelInterface. UseCoordination implements the 
getAccessPoint method, which returns the UseCoordinationServiceAccessPoint 
 
The XG-UCP can be used under two distinct settings: 
• XG systems that wish to communicate with each other (i.e. form a physical and/or a MAC layer link that may 

be either point-to-point or broadcast) must implement at least one common subclass of UseCoordination. 
• XG systems that do not wish to form associations with each other at Layers 2 or higher, and merely wish to 

deconflict selected opportunities can also implement a common subclass of UseCoordination.  For example, a 
cordless phone and a wireless data network interface may share a UseCoordination behavior even though they 
do not share a MAC layer and may not communicate (we mean data, not XG control signaling) with each 
other. A taxonomy of UseCoordination protocols is shown in Figure 63. 

 

UseCoordination
-vcc:VirtualCoordinationChannelInterface

+getAccessPoint():UseCoordinationServiceAccessPoint

UseCoordinationServiceAccessPoint VirtualCoordinationChannelInterface

Behavior

ProtocolBehavior

UseCoordination
-vcc:VirtualCoordinationChannelInterface

+getAccessPoint():UseCoordinationServiceAccessPoint

UseCoordination
-vcc:VirtualCoordinationChannelInterface

+getAccessPoint():UseCoordinationServiceAccessPoint

UseCoordinationServiceAccessPoint VirtualCoordinationChannelInterface

BehaviorBehavior

ProtocolBehaviorProtocolBehavior

 
Figure 62: UseCoordination class 

-UseCoordination
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-UseCoordination
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opportunity-selectionopportunity-use

 
Figure 63: UseCoordination taxonomy 
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5 XG Information Objects 
 
In this section, we describe the following XG information objects: 

 PolicyDefinedJoinPoint, Parameter, and Process classes 
 Awareness, SensedAwareness, and ProtocolBasedAwareness classes 
 OpportunityInstance and ValidOpportunityInstance classes 

 
Our goal in this RFC is not to specify any particular design of these classes, but rather to identify 
abstractions that are common to XG systems. We describe details of these classes only to the extent that 
is required in order to develop the abstract interfaces and behaviors in later sections. XG instantiations 
can extend these classes, and add additional classes as needed.  
 
Other classes identified in Section 2.4 (including the ProtocolDataUnit class and its subclasses, the 
Expression class and its subclasses, the Credential class, the UsageRequest class, the 
ParameterCollection class, and the OpportunityInstance class) are open to implementation. We develop 
these classes further and provide example instances in Section 0 
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5.1 PolicyDefinedJoinPoint, Parameter, and Process 
 

The AccreditableKernel implements the SystemCapabilitiesInterface, through which access to all 
primitives (parameters and methods) implemented by the radio system is provided to the system strategy 
reasoner and the policy conformance reasoner. For this purpose, we propose an information object 
abstraction called PolicyDefinedJoinPoint that generalizes the Parameter and Process classes described 
in the XG Policy Language Framework RFC [XGPLF]. 
 
The PolicyDefinedJoinPoint class has a publicName attribute that takes a value of type Universal 
Resource Identifier (URI) corresponding to the primitive within the ontology that describes the 
capability of the XG radio system. Each such primitive must be grounded by an implementation within 
the radio, and a reference to this implementation is stored in the grounding attribute.  It is important to 
note here that the actual implementation of the primitive may reside within any part of the system (e.g., 
sensor, transceiver, medium access control), but if the primitive is governed by regulatory or system 
policy (and specified externally through an ontology), then it must be accessible through the 
SystemCapabilitiesInterface. 
 
The Parameter class extends the PolicyDefinedJoinPoint class by providing the getValue and setValue 
methods to access the value of radio parameters.  The Process class extends the PolicyDefinedJoinPoint 
class by providing an invoke method in order to access a particular function implemented within the 
radio.  

PolicyDefinedJoinPoint
-advices:Object[*]
-grounding:Object
-publicName:URI

+canGetValue():boolean
+canSetValue():boolean
+canInvoke():boolean
+canCut():boolean
+canSetGrounding():boolean
+getGrounding():Object
+setGrounding(g:Object):void
+addAdvice(a:Object):boolean
+removeAdvice(a:Object):boolean

Parameter
-value:Object

+getValue():Object
+setValue(v:Object):void

Process

+invoke(args:Collection):Collection

PolicyDefinedJoinPoint
-advices:Object[*]
-grounding:Object
-publicName:URI

+canGetValue():boolean
+canSetValue():boolean
+canInvoke():boolean
+canCut():boolean
+canSetGrounding():boolean
+getGrounding():Object
+setGrounding(g:Object):void
+addAdvice(a:Object):boolean
+removeAdvice(a:Object):boolean

PolicyDefinedJoinPoint
-advices:Object[*]
-grounding:Object
-publicName:URI

+canGetValue():boolean
+canSetValue():boolean
+canInvoke():boolean
+canCut():boolean
+canSetGrounding():boolean
+getGrounding():Object
+setGrounding(g:Object):void
+addAdvice(a:Object):boolean
+removeAdvice(a:Object):boolean

Parameter
-value:Object

+getValue():Object
+setValue(v:Object):void

Parameter
-value:Object

+getValue():Object
+setValue(v:Object):void

Process

+invoke(args:Collection):Collection

Process

+invoke(args:Collection):Collection

 
Figure 64: The PolicyDefinedJoinPoint class and its subclasses 
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We envision that extensible XG radio systems will provide the flexibility to modify certain behaviors 
that are embedded within the system, for example, to take advantage of new opportunities enabled by 
policy.  Modification of behaviors embedded within the system will require this ability to pre-empt (or 
cut) access to parameters and method invocations within the system, and then augmenting the program 
with additional logic. A unique feature, therefore, of the PolicyDefinedJoinPoint class (inspired by 
Aspect-Oriented Programming) is that it allows cuts – advice code can be inserted before, after, or 
around parameter accesses and process invocations. Two methods, addAdvice and removeAdvice are 
supported for this purpose. The actual implementation of the grounding and advice mechanisms are left 
to particular system design.  
 
In addition the PolicyDefinedJoinPoint class provides methods that return a boolean value depending on 
whether the grounding of the primitive can be altered, and whether the implementation of the primitive 
supports access or modification of values, invocation of functions, or cuts where advice code can be 
inserted. 
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5.2 Awareness, SensedAwareness, and 
ProtocolBasedAwareness 
 

The Awareness class encapsulates information that is acquired (or disseminated) by a 
radio regarding its spectral environment. Instances of the Awareness class must 
implement the merge method that enables information contained in one Awareness 
instance to be combined with another instance. This information consists of spectral 
profile elements, where each spectral profile element is a relationship between four 
entities: (i) a frequency specification, (ii) a time specification, (iii) a location 
specification, and (iv) a signal specification. For example, a spectral profile element can 
express the following relation: in the frequency interval 788-794 MHz (UHF TV channel 
number 67) during the time interval between 9:55:55.456789 and 9:56:55.437692 EDT 
on August 26, 2004, at latitude 42.3583, longitude 71.0603, and altitude 2m, observed a 
NTSC TV signal with 0.14mV/m.  An Awareness instance could contain several such 
relations that span a wide range of frequencies. A concrete implementation is described in 
Section 0. 
 
In order for the XG system to compose a composite awareness picture, each spectral 
profile element must be tagged with additional parameters that correspond to the source 
of the information, such as a sensor, or another node that provided the information. 
 
The SensedAwareness class extends Awareness class with methods that provide access to 
the parameters governing the sensor and the sensing antennae.  For example, such 
information can include the passband, integration time, and the frequency resolution 
settings of the sensor. The encapsulated sensed information can consist of raw samples in 
the time or frequency domain. Furthermore, sensed information can be energy-based and 
feature-based. Energy-based sensed awareness involves spectral characterization that 
does not take into account selectivity for specific signal features.  For example, the power 
spectral density observed within a frequency spectrum can be reported. Feature 
characterization, on the other hand, takes into account specific features of the signal, 
emitter, or protocol. 
 
The ProtocolBasedAwareness class extends the Awareness class with methods that 
provide access to parameters related to the identity of the nodes (that provided the 
spectral profile elements), and additional information provided those nodes regarding 
their capabilities and preferences for spectrum use. For example, a neighboring node 
could provide information regarding an idle channel, the spectrum that the neighbor will 
be listening to, when not actively transmitting to or receiving from other nodes.  As 

Awareness

+merge(a:Awareness):boolean ProtocolBasedAwareness

SensedAwareness
Awareness

+merge(a:Awareness):boolean

Awareness

+merge(a:Awareness):boolean ProtocolBasedAwarenessProtocolBasedAwareness

SensedAwarenessSensedAwareness

 
Figure 65: Awareness and its subclasses 
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another example, in a secondary spectrum market context, a spectrum broker can include 
information about which frequency, time, or code slots, that the broker is willing to sell, 
or a node could present an auction bid for a particular frequency, time, or code slot. 
Protocol based awareness is acquired from other systems by interaction with the 
AwarenessDissemination behavior.  Any environmental information acquired from other 
nodes is classified as disseminated even if the source of the information acquired it via 
sensing.  
 
5.3 OpportunityInstance and ValidOpportunityInstance 
 

The OpportunityInstance class must contain parameters that govern the authorized use of 
spectrum. These include parameters for sensor, transceiver, medium access control, 
awareness dissemination, use coordination, and other functions that are applicable to the 
particular XG system. No parameters or methods are defined for this abstract class, but a 
concrete implementation is described in Section 0. 
 
ValidOpportunityInstance objects are returned by the validateOpportunity method of the 
PolicyInterface. A ValidOpportunityInstance class contains an OpportunityInstance class 
and provides three methods: 
• The isValid method that returns whether the contained parameters conform to policy 
• The getCredential method that returns a Credential object generated by the policy 

conformance reasoner 
• The getOpportunity method that returns the contained OpportunityInstance object 
 
 
6 Reference System Design Based on XG Abstract Behaviors 
 
In this section, we describe a design sketch of a concrete XG radio system based on the 
abstractions described in the earlier sections.  This particular design is only intended as 
an example to illustrate one way in which some of the key abstractions can be realized.  
Numerous other approaches to the design of XG systems than the one presented here are 
indeed possible. 
 
The reference radio system extends and concretely implements the XgRadioSystem 
described in Section 4.1.1. The reference radio system contains implementations of 
concrete classes that extend each of the subsystems, behaviors, interfaces, and 

OpportunityInstance

ValidOpportunityInstance

+isValid():boolean
+getOpportunity():OpportunityInstance
+getCredential():Credential

-o:OpportunityInstance
-c:Credential OpportunityInstanceOpportunityInstance

ValidOpportunityInstance

+isValid():boolean
+getOpportunity():OpportunityInstance
+getCredential():Credential

-o:OpportunityInstance
-c:Credential

ValidOpportunityInstance

+isValid():boolean
+getOpportunity():OpportunityInstance
+getCredential():Credential

-o:OpportunityInstance
-c:Credential

 
Figure 66: OpportunityInstance and ValidOpportunityInstance classes 
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information objects described earlier. A complete specification of each of these concrete 
classes is beyond the scope of this document.  
 
Rather, our goal in this section is to illustrate how multiple instances of the reference 
radio system can establish and maintain data communications within an opportunistic 
spectrum-sharing environment under policy constraints.  For this purpose, we restrict our 
focus to the XG Behaviors within the AccreditableKernel subsystem, and their 
interactions with the MediumAccessControl subsystem. As an example, we describe a 
protocol based on the CSMA family of protocols that we have extended to operate within 
the XG environment. 
 
We introduce concrete classes that extend each of the four XG Behaviors described in 
Section 0, and are contained within the AccreditableKernel, and describe how these XG 
Behaviors interact with various XG Interfaces described in Section 0. As part of the 
description, we will introduce as needed concrete classes that extend three XG 
Information Objects described in Section 0. 
 
In this section, we describe the design and operation of the reference radio system in five 
steps: 
1. Acquisition of spectrum awareness through sensing:  We introduce the 

HoleVector that extends Awareness, which is central to the acquisition, management, 
and dissemination of spectral awareness information, and the 
HoleInformationManagement class that concretely implements the 
SpectrumAwarenessManagement behavior. We also introduce a second class, 
SensorUpdate, which extends SensedAwareness. 

2. Topology management and awareness dissemination through a protocol: We 
introduce the NeighborTable class that extends ProtocolBasedAwareness. We 
describe the NeighborDiscoveryAndHoleInformationProtocol that extends 
AwarenessDissemination; information is exchanged between radio systems using this 
protocol through instances of the NeighborPacket class that extends 
ProtocolDataUnit. The NeighborPacket contains a NeighborUpdate, which may be 
compressed, encrypted, and may carry integrity and authenticity checks. 

3. Opportunity allocation and use under policy constraints: We describe the 
HoleUseManagement class that concretely implements the 
UsageAccountingManagement behavior. We introduce the ChannelRequest class that 
extends UsageRequest as well as the AllocatedChannel class that extends 
OpportunityInstance. 

4. Coordination of use through idle channel selection: We present the 
IdleChannelSelection that concretely implements the UseCoordination behavior.  In 
our approach, this behavior works in close coordination with the medium access 
control. 

5. Medium access control within an opportunistic spectrum-sharing environment:  
We present the XMediumAccessControl that concretely implements the 
MediumAccessControl subsystem.  XMediumAccessControl works closely with the 
behaviors implemented within the AccreditableKernel of the radio system, in 
particular, the HoleUseManagement and IdleChannelSelection behaviors. 
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6.1 Acquisition of Spectrum Awareness Through Sensing 
 

We introduce the Hole class that stores information about a frequency interval.  The Hole 
class has start and end fields to store the limits of the interval, a feature field that stores 
information about the feature being detected within that interval, such as an incumbent 
signal type, an amplitude field to store information such as the received signal strength or 
power spectral density corresponding to the feature, and an occupied field to indicate that 
this interval is unavailable for use by the XG system.  
 
The Hole class implements a disjoint method to determine if another instance provided as 
an argument has any overlap with the given instance, an equals method to determine if 
another instance equals the given instance, and an updateOccupancy method which 
updates the occupancy field based on another instance provided.  For illustration, we 

provide pseudo-code (in Java-like syntax) for these methods. 
 
Instances of the Hole class are contained within a HoleVector, a class that extends 
Awareness.  The HoleVector class implements a getHoles method that returns the Vector 
containing instances of the Hole class.  HoleVector also implements a merge method 

Awareness

+merge(a:Awareness):boolean

HoleVector

+merge(a:Awareness):boolean
+getHoles():Vector

-holes:Vector

Hole

+disjoint(h:Hole):boolean
+equals(h:Hole):boolean
+updateOccupancy(h:Hole):int
+occupied():boolean

-start:int
-end:int
-feature:int
-amplitude:int
-occupied:boolean

*

Awareness

+merge(a:Awareness):boolean

Awareness

+merge(a:Awareness):boolean

HoleVector

+merge(a:Awareness):boolean
+getHoles():Vector

-holes:Vector

HoleVector

+merge(a:Awareness):boolean
+getHoles():Vector

-holes:Vector

Hole

+disjoint(h:Hole):boolean
+equals(h:Hole):boolean
+updateOccupancy(h:Hole):int
+occupied():boolean

-start:int
-end:int
-feature:int
-amplitude:int
-occupied:boolean

Hole

+disjoint(h:Hole):boolean
+equals(h:Hole):boolean
+updateOccupancy(h:Hole):int
+occupied():boolean

-start:int
-end:int
-feature:int
-amplitude:int
-occupied:boolean

*

 
Figure 67: HoleVector is a concrete class extending Awareness 

  boolean disjoint(Hole h) { 
    return ((start > h.end) || (end < h.start)); 
  } 
 
  boolean equals(Hole h) { 
    return ((start == h.start) && (end == h.end)  
            && (feature == h.feature)); 
  } 
 
  int updateOccupancy(Hole h) { 
    if(disjoint(h)) { return 0; } 
    if((occupied == true) || (h.occupied == false)) { return 1; } 
    occupied = true; 

return 2;
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(illustrated in the pseudo-code below) that processes a Vector of Hole instances provided.  
For each element in the Vector, the updateOccupancy method is called.  New information 
(if any) is added to this instance, and the method returns a boolean value indicating 
whether the HoleVector was changed as a result of the merge.  The 
HoleInformationManagement class calls this method whenever new awareness is 
received from either 
the sensor or through a dissemination protocol. 

 
HoleInformationManagement concretely implements the 
SpectrumAwarenessManagement behavior.  This class has a myAwareness field that is 
initialized by the constructor to hold an instance of HoleVector.  This instance is returned 
by the getAwareness method. The constructor also initializes references to a 
SensorInterface and an AwarenessDisseminationServiceAccessPoint. The 
HoleInformationManagement class has another field called idleChannel that stores a 
Vector of Hole instances.  The purpose of this field is to determine a set of opportunities 
to which the XG system is listening when it is not actively transmitting or receiving so 
that other systems may contact it. The IdleChannelSelection class described later does the 
computation of this field.  

  boolean merge(Awareness a) { 
    boolean sc = false; 
    for(Hole i : a.getHoles()) { 
      boolean newinfo = true; 
      for(Hole j : holes) { 
        int result = j.updateOccupancy(i); 
        if (result == 2) { sc = true; } 
        if (result > 0) { newinfo = false; } 
      } 
      if (newinfo == true) { holes.add(i); } 
    } 
    return sc; 
}
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The update method of HoleInformationManagement behavior (see pseudo-code below) 
implements the key operations of this behavior, which consists of (i) merging the 
awareness information received through sensing or through a protocol when notified, and 
(ii) recomputing the idle channel as well as disseminating the awareness if there is a 
change as a result of the merging. 
The SensorUpdate class we present below is an example of what a sensor may provide 
either periodically or in an event-driven fashion.  The SensorUpdate class has a 
freqSamples field to hold frequency samples and a timeSamples field to optionally carry 
  void update(Interface i) { 
    boolean sc = false; 
    if (i instanceof SensorInterface) { 
      sc = myAwareness.merge(i.getSensedAwareness()); 
    } else if (i instanceof AwarenessDisseminationServiceAccessPoint) { 
      sc = myAwareness.merge(i.getProtocolBasedAwareness()); 
    } 
    if (sc) {  
      idleChannel = IdleChannelSelection.recomputeIdleChannel(myAwareness); 
      adsap[0].disseminate(myAwareness);  
    } 
}

SensedAwareness
SensorUpdate

+merge(a:Awareness):boolean
+getHoles():Vector

-timeStamp:int
-integrationTime:int
-lookThroughInterval:int
-startFrequency:int
-endFrequency:int
-attenuation:int
-sampleSize:int
-processing:int
-freqSamples:HoleVector
-timeSamples:Vector

SensedAwarenessSensedAwareness
SensorUpdate

+merge(a:Awareness):boolean
+getHoles():Vector

-timeStamp:int
-integrationTime:int
-lookThroughInterval:int
-startFrequency:int
-endFrequency:int
-attenuation:int
-sampleSize:int
-processing:int
-freqSamples:HoleVector
-timeSamples:Vector

SensorUpdate

+merge(a:Awareness):boolean
+getHoles():Vector

-timeStamp:int
-integrationTime:int
-lookThroughInterval:int
-startFrequency:int
-endFrequency:int
-attenuation:int
-sampleSize:int
-processing:int
-freqSamples:HoleVector
-timeSamples:Vector

 
Figure 69: SensorUpdate a concrete class extending SensedAwareness 

SpectrumAwarenessManagement
-si:SensorInterface[1-*]
-adsap:AwarenessDisseminationServiceAccessPoint[*]

+getAwareness():Awareness

HoleInformationManagement

+getAwareness():Awareness
+update():void

-myAwareness:Awareness
-idleChannel:Vector

SpectrumAwarenessManagement
-si:SensorInterface[1-*]
-adsap:AwarenessDisseminationServiceAccessPoint[*]

+getAwareness():Awareness

SpectrumAwarenessManagement
-si:SensorInterface[1-*]
-adsap:AwarenessDisseminationServiceAccessPoint[*]

+getAwareness():Awareness

HoleInformationManagement

+getAwareness():Awareness
+update():void

-myAwareness:Awareness
-idleChannel:Vector

HoleInformationManagement

+getAwareness():Awareness
+update():void

-myAwareness:Awareness
-idleChannel:Vector

 
Figure 68: HoleInformationManagement extends SpectrumAwarenessManagement 
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raw time samples. Additional fields store related sensor parameters such as the time 
stamp, the sample size, the type of processing (such as FFT using a Hanning window, or 
ATSC TV signal detection), the time interval between successive samples, the integration 
time for the sensor, the start and end frequency of the band covered by the sensor, and the 
attenuation setting.  
 
The SensorUpdate class has a merge method that may be called by the sensor for 
example to perform smoothing and averaging of the sample prior to presenting it to 
HoleInformationManagement. 
 
We describe a class to encapsulate protocol based awareness and a concrete subclass of 
the AwarenessDissemination behavior next. 
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6.2 Topology Management and Awareness Dissemination 
 
The NeighborTable class extends and concretely implements ProtocolBasedAwareness. 
Instances of NeighborTable contain instances of the NeighborUpdate class. Each instance 
of NeighborUpdate encapsulates topology and sensed spectral information from a single 
XG system. The NeighborUpdate includes the neighbor’s identifier, a time stamp, the 
transmit power used by the neighbor so that path loss information can be computed, the 
processing gain, the signal type used by the neighbor to communicate, and the idle 
channel where the neighbor will listen when it is not actively transmitting or receiving. 
NeighborUpdate optionally includes topology information as a vector of Adjacency 
instances containing the neighbors of the node sending the update, whether those 

neighbors are up or down, and additional parameters such as datarate and delay.  
NeighborUpdate also includes a SensorUpdate instance based on its sensed awareness.  
Information is exchanged between radio systems using instances of the NeighborPacket 
class. The NeighborPacket class extends ProtocolDataUnit contains a NeighborUpdate, 
which may be compressed, encrypted, integrity and authenticity checks. NeighborPacket 
includes typical protocol header information such as addresses, sequence numbers and 
time to live fields. 
 

ProtocolDataUnit

NeighborUpdate

NeighborPacket

+NeighborPacket(a:Awareness)
+getNeighborUpdate():NeighborUpdate

-transmitterAddress:int
-receiverAddress:int
-sequenceNumber:int
-timeToLive:int
-n:NeighborUpdate
-c:Credential

ProtocolDataUnitProtocolDataUnit

NeighborUpdate

NeighborPacket

+NeighborPacket(a:Awareness)
+getNeighborUpdate():NeighborUpdate

-transmitterAddress:int
-receiverAddress:int
-sequenceNumber:int
-timeToLive:int
-n:NeighborUpdate
-c:Credential

NeighborPacket

+NeighborPacket(a:Awareness)
+getNeighborUpdate():NeighborUpdate

-transmitterAddress:int
-receiverAddress:int
-sequenceNumber:int
-timeToLive:int
-n:NeighborUpdate
-c:Credential

 
Figure 72:  NeighborPacket extends ProtocolDataUnit for Awareness Dissemination 

ProtocolBasedAwareness NeighborUpdate

-timeStamp:int
-nodeId:int
-transmitPower:double
-noiseFigure:double
-processingGain:double
-signalType:int
-adjacencies:Vector
-sensorUpdate:SensorUpdate
-idleChannel:Vector

Adjacency
-nodeId:int
-up:boolean
-datarate:int
-delay:int

*

NeighborTable

+merge(a:Awareness):boolean
+getHoles():Vector
+getPeerIdleChannel(n:int):Vector

-neighborUpdates:Vector *

ProtocolBasedAwarenessProtocolBasedAwareness NeighborUpdate

-timeStamp:int
-nodeId:int
-transmitPower:double
-noiseFigure:double
-processingGain:double
-signalType:int
-adjacencies:Vector
-sensorUpdate:SensorUpdate
-idleChannel:Vector

NeighborUpdate

-timeStamp:int
-nodeId:int
-transmitPower:double
-noiseFigure:double
-processingGain:double
-signalType:int
-adjacencies:Vector
-sensorUpdate:SensorUpdate
-idleChannel:Vector

Adjacency
-nodeId:int
-up:boolean
-datarate:int
-delay:int

Adjacency
-nodeId:int
-up:boolean
-datarate:int
-delay:int

**

NeighborTable

+merge(a:Awareness):boolean
+getHoles():Vector
+getPeerIdleChannel(n:int):Vector

-neighborUpdates:Vector

NeighborTable

+merge(a:Awareness):boolean
+getHoles():Vector
+getPeerIdleChannel(n:int):Vector

-neighborUpdates:Vector **

 
Figure 70: Classes for protocol-based awareness 
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The NeighborDiscoveryAndHoleInformationProtocol class concretely implements the 
AwarenessDissemination behavior. The constructor of this class initializes the vcc field 
with an instance of a VirtualCoordinationChannelInterface to be used for dissemination, 
and a neighborTable field that stores protocol based awareness. This behavior also 

includes a timer field and a random number generator that are also initialized by the 
constructor. 
 
The key functionality of this class is implemented by the update method and the 
disseminate method.  Pseudo-code for these methods is provided below.  The virtual 
coordination channel calls the update method whenever a new NeighborPacket is 
received, causing the contained NeighborUpdate to be merged with the NeighborTable.  
If there is a change as a result of the merge registered observers (e.g. 
HoleInformationManagement) are notified.  
 
The disseminate method is called either by HoleInformationManagement when there is a 
change as a result of a merge, or periodically when the timer fires.  When called, this 
method cancels any pending timer request, constructs and sends a NeighborPacket 
through the VirtualCoordinationChannelInterface, and sets a timer again to fire after a 
time with a small random jitter added.  In order to construct the NeighborPacket the 

AwarenessDissemination
-vcc:VirtualCoordinationChannelInterface

+getAccessPoint():AwarenessDisseminationServiceAccessPoint

AwarenessDisseminationServiceAccessPoint

NeighborDiscoveryAndHoleInformationProtocol

+getProtocolBasedAwareness():ProtocolBasedAwareness
+getAccessPoint():AwarenessDisseminationServiceAccessPoint
+disseminate(a:Awareness):void
+update():void

-him:HoleInformationManagement
-neighborTable:ProtocolBasedAwareness
-timer:java.util.Timer
-rng:java.util.Random
-period:long
-jitter:long

AwarenessDissemination
-vcc:VirtualCoordinationChannelInterface

+getAccessPoint():AwarenessDisseminationServiceAccessPoint

AwarenessDissemination
-vcc:VirtualCoordinationChannelInterface

+getAccessPoint():AwarenessDisseminationServiceAccessPoint

AwarenessDisseminationServiceAccessPoint

NeighborDiscoveryAndHoleInformationProtocol

+getProtocolBasedAwareness():ProtocolBasedAwareness
+getAccessPoint():AwarenessDisseminationServiceAccessPoint
+disseminate(a:Awareness):void
+update():void

-him:HoleInformationManagement
-neighborTable:ProtocolBasedAwareness
-timer:java.util.Timer
-rng:java.util.Random
-period:long
-jitter:long

NeighborDiscoveryAndHoleInformationProtocol

+getProtocolBasedAwareness():ProtocolBasedAwareness
+getAccessPoint():AwarenessDisseminationServiceAccessPoint
+disseminate(a:Awareness):void
+update():void

-him:HoleInformationManagement
-neighborTable:ProtocolBasedAwareness
-timer:java.util.Timer
-rng:java.util.Random
-period:long
-jitter:long

 
Figure 71:NeighborDiscoveryAndHoleInformationProtocol behavior 
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idleChannel and the SensorInterface fields of the HoleInformationManagement instance 
may be accessed.  
 
 
A utility class Dissemination has been defined to define a run method to be executed 
when the timer fires.  The run method calls the disseminate method. 
 

 
 
 
 
 

  class Dissemination extends java.util.TimerTask() { 
    public void run() { disseminate(mp); } 
  } 
 
  void update(Interface i) { 
    boolean sc = false; 
    if (i instanceof ServiceAccessPoint) {  
      Object p = i.receive(); 
      if (p instanceof NeighborPacket) {  
        sc = neighborTable.merge(p.getNeighborUpdate());  
      } 
    } 
    if (sc) { notifyObservers(); } 
  } 
 
  void disseminate(Awareness a) {  
    timer.cancel(); 
    vcc.send(NeighborPacket(a));   
    timer.schedule(new Dissemination(), period + rng.nextLong(jitter));
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6.3 Opportunity Allocation and Use under Policy Constraints 
 
We describe the HoleUseManagement class that concretely implements the 
UsageAccountingManagement behavior.  We note that the allocation functionality is 
embedded  within HoleUseManagement and this class implements the 
AllocationInterface. 
 

The ChannelRequest class extends the UsageRequest class to enable concrete requests for 
opportunities using the requestUse method. The ChannelRequest class contains fields to 
specify whether an opportunity to transmit or receive data is requested, and the type and 
length of the frame to be transmitted. Optionally the peer to whom communications is 
intended, the particular channels requested, and the transmit power spectral density can 
also be specified. 

UsageAccountingManagement
-ai:AllocationInterface
-pi:PolicyInterface
-ti:TransceiverInterface[1-*]
-ucsap:UseCoordinationServiceAccessPoint[*]
-sci:SystemCapabilitiesInterface

+requestUse(u:UsageRequest):ValidOpportunityInstance
+use(u:UsageRequest,v:ValidOpportunityInstance):void

HoleUseManagement
-xgmac:XgToMediumAccessControlInterface
-nt:NeighborTable
+requestUse(u:UsageRequest):ValidOpportunityInstance
+use(u:UsageRequest,v:ValidOpportunityInstance):void
+getOpportunities(u:UsageRequest):OpportunityInstanceCollection

AllocationInterface

UsageAccountingManagement
-ai:AllocationInterface
-pi:PolicyInterface
-ti:TransceiverInterface[1-*]
-ucsap:UseCoordinationServiceAccessPoint[*]
-sci:SystemCapabilitiesInterface

+requestUse(u:UsageRequest):ValidOpportunityInstance
+use(u:UsageRequest,v:ValidOpportunityInstance):void

UsageAccountingManagement
-ai:AllocationInterface
-pi:PolicyInterface
-ti:TransceiverInterface[1-*]
-ucsap:UseCoordinationServiceAccessPoint[*]
-sci:SystemCapabilitiesInterface

+requestUse(u:UsageRequest):ValidOpportunityInstance
+use(u:UsageRequest,v:ValidOpportunityInstance):void

HoleUseManagement
-xgmac:XgToMediumAccessControlInterface
-nt:NeighborTable
+requestUse(u:UsageRequest):ValidOpportunityInstance
+use(u:UsageRequest,v:ValidOpportunityInstance):void
+getOpportunities(u:UsageRequest):OpportunityInstanceCollection

HoleUseManagement
-xgmac:XgToMediumAccessControlInterface
-nt:NeighborTable
+requestUse(u:UsageRequest):ValidOpportunityInstance
+use(u:UsageRequest,v:ValidOpportunityInstance):void
+getOpportunities(u:UsageRequest):OpportunityInstanceCollection

AllocationInterface

 
Figure 72: HoleUseManagement implements UsageAccountingManagement and 

AllocationInterface 
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ChannelRequest and the HoleUseManagement behavior are tailored for use with 
XMediumAccessControl that we describe in Section 0.  
 
When the requestUse method is invoked with a ChannelRequest for receiving ANY 
frame (including an RTS) from any unspecified neighbor, the computed idle channel for 
this radio is returned in an AllocatedChannel instance. When the requestUse method is 
invoked with a ChannelRequest for transmitting an RTS to a peer, the peer’s idle channel 
as well as a channel for communicating data with the peer are calculated from the 
neighbor table and returned. In the case of sending a CTS or ACK to a peer, the peer’s 
RTS would contain the channels requested for transmission. These channels must be 
validated as being unoccupied against the sensed and protocol based awareness prior to 
use. Prior to returning an AllocatedChannel within a ValidOpportunityInstance, it is 
always validated by submitting it to the PolicyInterface to ensure that the opportunity 
(described by the channels and other parameters such as the transmit power spectral 
density) is authorized by policy.  
 
When the use method of HoleUseManagement is invoked, the channels to be used are 
validated against the sensed and protocol based awareness to ensure they are unoccupied. 
Then the transceiver is notified of the channels to tune into by calling the use method of 
TransceiverInterface. 
 
In order to concretely describe opportunities that are allocated and authorized, we 
introduce the AllocatedChannel class that extends OpportunityInstance. 
 
 

UsageRequest

ChannelRequest

+frameType:int
+direction:int
+frameLength:int
+transmitPSD:int
+reqChannel:Vector
+peerId:int

0:ANY
1:RTS
2:CTS
3:DATA
4:ACK

0:ANY
1:SEND
2:RECEIVE

UsageRequest

ChannelRequest

+frameType:int
+direction:int
+frameLength:int
+transmitPSD:int
+reqChannel:Vector
+peerId:int

ChannelRequest

+frameType:int
+direction:int
+frameLength:int
+transmitPSD:int
+reqChannel:Vector
+peerId:int

0:ANY
1:RTS
2:CTS
3:DATA
4:ACK

0:ANY
1:SEND
2:RECEIVE  

Figure 73:ChannelRequest extends the UsageRequest class 
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6.4 Use Coordination Through the Selection of an Idle Channel 
 
We present the IdleChannelSelection that concretely implements the UseCoordination 
behavior.  
 In our example, coordination between communicating nodes is done by the use of an idle 
channel.  Each node tunes to, and listens on, the idle channel whenever the node is not 
actively transmitting or receiving data packets.  Furthermore, each node conveys its idle 
channel to its neighbors using the NeighborDiscoveryAndHoleInformationProtocol; 

therefore, neighbors can contact the node whenever it is available. 
The IdleChannelSelection class implements the recomputeIdleChannel method, which 
computes and returns the largest contiguous set of unoccupied Hole instances contained 

UseCoordination
-vcc:VirtualCoordinationChannelInterface

+getAccessPoint():UseCoordinationServiceAccessPoint

UseCoordinationServiceAccessPoint

IdleChannelSelection

+recomputeIdleChannel(Awareness a):Vector
+getAccessPoint():UseCoordinationServiceAccessPoint
+acquireOpportunity(v:ValidOpportunityInstance):void
+releaseOpportunity(v:ValidOpportunityInstance):void
+update():void

UseCoordination
-vcc:VirtualCoordinationChannelInterface

+getAccessPoint():UseCoordinationServiceAccessPoint

UseCoordination
-vcc:VirtualCoordinationChannelInterface

+getAccessPoint():UseCoordinationServiceAccessPoint

UseCoordinationServiceAccessPoint

IdleChannelSelection

+recomputeIdleChannel(Awareness a):Vector
+getAccessPoint():UseCoordinationServiceAccessPoint
+acquireOpportunity(v:ValidOpportunityInstance):void
+releaseOpportunity(v:ValidOpportunityInstance):void
+update():void

IdleChannelSelection

+recomputeIdleChannel(Awareness a):Vector
+getAccessPoint():UseCoordinationServiceAccessPoint
+acquireOpportunity(v:ValidOpportunityInstance):void
+releaseOpportunity(v:ValidOpportunityInstance):void
+update():void

 
Figure 75: IdleChannelSelection behavior 

OpportunityInstanceValidOpportunityInstance

+isValid():boolean
+getOpportunity():OpportunityInstance
+getCredential():Credential

-o:OpportunityInstance
-c:Credential

AllocatedChannel

+allocChannel:Vector
+authPSD:int
+request:ChannelRequest

OpportunityInstanceValidOpportunityInstance

+isValid():boolean
+getOpportunity():OpportunityInstance
+getCredential():Credential

-o:OpportunityInstance
-c:Credential

ValidOpportunityInstance

+isValid():boolean
+getOpportunity():OpportunityInstance
+getCredential():Credential

-o:OpportunityInstance
-c:Credential

AllocatedChannel

+allocChannel:Vector
+authPSD:int
+request:ChannelRequest

AllocatedChannel

+allocChannel:Vector
+authPSD:int
+request:ChannelRequest

 
Figure 74: AllocatedChannel extends OpportunityInstance 
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in the HoleVector that is passed to the method as an argument. As discussed in Section 0, 
the recomputeIdleChannel method is invoked with the merged awareness, therefore, the 
computed idle channel will include only those holes that are available to all neighbors. 
When new spectrum awareness is acquired through sensing or a dissemination protocol, 
the update method of HoleInformationManagement invokes the recomputeIdleChannel 
method with a HoleVector instance as argument. This HoleVector instance contains 
merged occupancy information both from sensing locally and information provided by 
neighbors. Effectively, this results in the node choosing an idle channel that is the largest 
contiguous spectrum available to all of its neighbors. 
 
In our example XG system, the signaling for coordination between neighbors to establish 
communications is done by the medium access control as described in Section 26.5.  The 
update, acquireOpportunity and releaseOpportunity methods of IdleChannelSelection are 
currently empty. They may however be modified to invoke any coordination procedures 
that are required by policy. In this case, the names of these coordination procedures and 
related parameters will be contained within the validated opportunity instance. For 
example, the reuse of public safety bands based on the reception of an authorization 
beacon, the acquireOpportunity procedure must receive and decode the authorization 
beacon. 
 
6.5 Medium Access Control for Opportunistic Spectrum-Sharing 
 
In this section, we present XMediumAccessControl that concretely implements the 
MediumAccessControl subsystem.  XMediumAccessControl (XMAC) works closely with 
the behaviors implemented within the AccreditableKernel of the radio system, in 
particular, the HoleUseManagement and IdleChannelSelection behaviors. XMAC is 
derived from the CSMA family of protocols and represents one of many possible 
approaches. 

XgToMediumAccessControlInterface

MediumAccessControl

XMediumAccessControl

+send(p:ProtocolDataUnit):void
+receive():ProtocolDataUnit
+release (v:ValidOpportunityInstance):void
+discardData():void
+deliverData():void
+sendFrame(frameTyp:int):void
+setTimer(duration:int):void
+setRetryTimer(duration:int):void
+tune(frameTyp:int, dir:int, peerId:int, peerChan:Vector):void

-peerChan:Vector
-peerId:int
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Figure 76: XMediumAccessControl extends MediumAccessControl 
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Next we define the XMediumAccessControlFrame class that extends the 
ProtocolDataUnit for use with XMediumAccessControl. 

The frameType field can take four different values: RTS, CTS, Data and ACK. Before 
XMediumAccessControlFrame instances can be sent are received the 
XMediumAccessControl must construct corresponding ChannelRequest objects and 
invoke the requestUse method of HoleUseManagement to obtain AllocatedChannel 
instances. 
We provide a state transition diagram for XMAC in Figure 77. Some details (such as 
handling errored frames and other error conditions including release of opportunities e.g., 
when idle channel is recomputed) are not shown here for clarity. 

ProtocolDataUnit

XMediumAccessControlFrame

-transmitterAddress:int
-receiverAddress:int
-sequenceNumber:int
-timeToLive:int
-frameType:int
-frameLength:int
-reqChannel:Vector
-transmitPSD:int
-payload:Object

ProtocolDataUnitProtocolDataUnit

XMediumAccessControlFrame

-transmitterAddress:int
-receiverAddress:int
-sequenceNumber:int
-timeToLive:int
-frameType:int
-frameLength:int
-reqChannel:Vector
-transmitPSD:int
-payload:Object

XMediumAccessControlFrame

-transmitterAddress:int
-receiverAddress:int
-sequenceNumber:int
-timeToLive:int
-frameType:int
-frameLength:int
-reqChannel:Vector
-transmitPSD:int
-payload:Object

 
Figure 77: XMediumAccessControlFrame is a ProtocolDataUnit 
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Upon initialization, the tune method is invoked to receive ANY frame from any neighbor.  
This in turn calls the requestUse method of HoleUseManagament, which allocates the 
idle channel of the node, validates the idle channel against policy and returns a 
ValidOpportunityInstance. Upon receiving this, the tune method calls the use method of 
HoleUseManagement, which instructs the transceiver to tune to and receive the idle 
channel after asserting the idle channel is not occupied by the node and its peers. Then 
XMAC enters the Listen state. Whenever the node is not actively transmitting or 
receiving, this step is repeated and the transceiver is tuned to the idle channel, and 
XMAC returns to the Listen state. 
 
The tune method manages the interaction between XMediumAccessControl and 
HoleUseManagement and therefore plays a critical role in the operation of this XG 
implementation. 
 
The left hand portion of the state diagram contains states involved in the reception of 
data. Upon receiving an RTS from a neighbor (peerId), a UsageRequest containing the 
requested channels for communication contained in the RTS (peerChan) is sent to 
HoleUseManagement. If these channels are allocated and validated, then the transceiver 
is instructed to tune to these channels. Then XMAC sets a timer by calling 
setTimer(CTSTxDuration) and enters the WaitTxCTS state.  In this state, the node must 
continue to sense the channel for other communications (e.g. incumbent signals) in its 
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Figure 78: State Transition Diagram for XMediumAccessControl 
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vicinity, and if any such activity is detected XMAC returns to the Listen state.  This time 
also ensures that a sufficient interframe spacing is achieved to account for propagation 
delays within the network. If no other activity is detected until the timer fires, XMAC 
sends a CTS message to peerId using peerChan, sets a timer using 
setTimer(DataRxDuration), and enters the WaitRxData state. Upon receiving the CTS, 
the peer will send a Data packet.  If a Data frame is not received before the timer fires, 
XMAC returns to the Listen state.  When a Data frame is received, XMAC sets a timer 
(for interframe spacing) by calling setTimer(ACKTxDuration), delivers the data to the 
higher layers by calling deliverData() and enters the WaitTxACK state.  When the timer 
fires, XMAC sends an ACK frame to the peer and returns to the Listen state. 
 
The right hand portion of the state diagram contains states involved in the transmission of 
data. Whenever a higher layer provides a frame to be transmitted to another node 
(peerId), the data frame is stored in the dataToSend field, and the retries variable is set to 
the maximum retry count (a configurable positive integer). A retry timer is set to fire 
immediately by calling setRetryTimer(0) – the event of receiving a data frame from the 
higher layer is not shown in the state diagram. When XMAC is in the Listen state, if a 
data frame is waiting to be sent and the retry timer has expired, then a UsageRequest is 
made to HoleUseManagement for sending an RTS to peerId. This request results in both 
the idle channel of the peer and also allocated another (possibly larger or less crowded) 
set of channels for communicating with this peer (peerChan). The returned peerChan will 
be included in the RTS frame. 
 
The transceiver is instructed to tune to the idle channel of the neighbor (peerId) to whom 
the data frame must be sent.  XMAC sets a timer by calling setTimer(RTSTxDuration) 
and enters the WaitTxRTS state.  If the channel is never free until the timer fires, XMAC 
decrements the retries variable and returns to the Listen state.  If the retries variable is 
zero, then the frame is discarded.  If the channel is free, XMAC sends an RTS to peerId 
with the requested channel for the communication (peerChan).  After the RTS has been 
sent, the transceiver is instructed to tune to peerChan. XMAC then sets a timer by calling 
setTimer(CTSRxDuration), and enters the WaitRxCTS state. If a timeout occurs, it 
increments the retries and returns to the Listen state. If a CTS frame is received, then 
XMAC sets a timer by calling setTimer(DataTxDuration) to enforce an interframe 
spacing, and enters the WaitTxData state.  When the timer fires, XMAC sends the Data 
frame to the peer, sets a timer by calling setTimer(ACKRxDuration) and enters the 
WaitRxACK state. If an ACK frame is received before the timeout occurs, the data has 
been successfully transmitted and acknowledged, and the stored copy is discarded. 
Otherwise, the retries field is decremented. If additional retries are permitted the retry 
timer is set, otherwise, the data frame is discarded. In both cases, XMAC returns to the 
Listen state. 
 
The description above is intended for illustration only and several optimizations are 
possible. For example, an obvious enhancement is to avoid the use of RTS/CTS exchange 
by directly transmitting in the idle channel of the peer in the case of small frames. 
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7 Summary and Future Work 
 
This document defines an abstract XG radio system in terms of three kinds of 
abstractions: 

• Interfaces 
• Behaviors 
• Information Objects 

 
We have defined nine interface classes, and four behavior classes (two internal behaviors, 
and two protocol behaviors) for XG systems.  In addition, we have developed three 
classes of abstractions for XG information objects – PolicyDefinedJoinPoint, Expression, 
and ProtocolDataUnit classes. We described in detail the key information object 
abstractions including the PolicyDefinedJoinPoint, the Awareness, and the 
OpportunityInstance classes. Taken together, these interfaces, behaviors, and information 
objects succinctly capture the characteristics envisioned of XG systems [XGV] – 
opportunistic spectrum sharing, policy-defined operation, and traceability of physical 
behaviors to a defined set of abstract behaviors. 
 
This RFC is focused on full-featured XG systems. In future work, we envision that 
specific XG system implementation profiles will be added, for example, to support 
decentralized spectrum broker architectures, or to support low-cost XG end systems 
which rely on other XG systems for opportunity awareness, allocation, and use. 
 
Formal description of radio instances is necessary in order to convey the goals, 
capabilities, and operational constraints of the radio to the system strategy reasoner. In 
future work, we envision the development of a formal description framework that will 
build upon the XG policy language framework. 
 
In the interest of achieving basic interoperability across all XG systems (to the extent 
necessary to bootstrap communications between disparate XG systems), we recommend 
that the community adopt at least one concrete subclass of the AwarenessDissemination 
and UseCoordination behaviors to be implemented by all XG systems.  The specific 
protocols to be standardized for this purpose are left for future work. Formal specification 
and verification of the abstract behaviors and the protocols (e.g., using formalisms such 
as Timed Automata) is also the subject of future work. 
 
Future versions of this document may also include another section that describes in detail 
a use-case for the XG implementation described in Section 0.  This use case should 
include particular network scenarios with incumbents and other XG nodes, the needed 
spectrum awareness and spectrum use primitives along with an explanation of how the 
primitives may be implemented as PolicyDefiunedJoinPoint instances within a XG radio, 
policy assertions and inference rules, and assertions regarding sensed and protocol-based 
awareness along with rules to infer valid idle channels for a node and communication 
channels for a pair of nodes. The use case should also include examples of opportunity 
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search and validation and explain how search and validation are instances of theorem 
proving within the knowledge base of policy and awareness (incuding assertions 
regarding use that result from the search). 
 
In order to better understand the abstract behaviors in the context of policy-driven 
operation, and in order to offer guidance to XG system designers, we plan to develop 
concrete instances of the behaviors.   
 
We plan to validate and incrementally refine the abstract behaviors using experience 
gained from BBN's XG system simulation platform.  Future versions of this document 
are expected to incorporate the results of these efforts. 
 
We seek feedback on this document from the government, the XG community, and the 
public though the RFC process, to be incorporated in future versions as appropriate. 
 

Acknowledgments 
This document was prepared by the Internetwork Research Department, BBN 
Technologies, with input from DARPA/ATO and the DARPA XG Working Group. 

Comments 
Comments on this RFC should be emailed to the document editors at xg-rfc-
comments@bbn.com, along with the commenter's name and organization.  

Bibliography 
[XGV] XG Vision RFC, http://www.darpa.mil/ato/programs/XG/rfc_vision.pdf  
[XGAF] XG Architectural Framework RFC, http://www.darpa.mil/ato/programs/XG/rfc_af.pdf  
[XGPLF] XG Policy Language Framework RFC, 

http://www.darpa.mil/ato/programs/XG/rfc_policylang.pdf 
[UML] The Object Management Group, Unified Modeling Language, 

http://www.omg.org/technology/uml/ 
[DP] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Reusable Object 

Oriented Software, ISBN: 0201633612, Addison-Wesley, 1995. 
 
 
 



 

 151

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Appendix D 
XG Policy Language Framework 

Request for Comments 
 

 
 

Version 1.0 
April 16, 2004 

 
 
 
 
 
 
 



 

 152

1  Introduction 
This section provides the context for this document. It consists of the following sections: 
 

• Background: describes the XG program in general as well as XG reference 
documents and how they are intended to evolve and to be used in the XG program 
and beyond. 

• Motivation: explains why machine understandable policies are required for 
spectrum agile radios. 

• Requirements: summarizes the underlying properties deemed necessary for the 
XG Policy Language framework to meet its objectives in the XG program. 

• Evolution: briefly describes how the policy language framework is designed to 
support future evolution. 

• Document Roadmap: provides a guide to later sections of this document. 
Definitions of certain terms and expansions of acronyms used in this document are 
provided in Appendix A.  Bibliographic citations in the document are enclosed in square 
brackets (e.g. [XGV]) and a list of references is provided later (see Bibliography). 

1.1  Background 
We briefly summarize the premise and goals of the XG program and the documents 
associated with that program. 

XG (neXt Generation Communications) is a DARPA-funded research program based on 
the (now generally accepted) premise that the historic (and current) method of 
authorizing spectrum use–static, administrative allocation–results in an apparent scarcity 
of spectrum that can be avoided by the proper application of dynamic spectrum sharing 
techniques. The goals of the XG program are: 

1. Demonstrate through technological innovation the ability to utilize available 
(unused, as opposed to unallocated) spectrum more efficiently. 

2. Develop the underlying architecture and framework required to enable the 
practical application of such technological advances. 

As part of the second goal the XG program, participants (known collectively as the XG 
Working Group or XG-WG) will produce a series of Requests for Comments (RFC) that 
together describe the proposed XG architecture and framework. This is one of those 
documents. These documents are RFCs because the authors recognize that the final 
development of such an important technology cannot be accomplished by a small group 
of individuals. It requires input and participation from a broad representation of the 
affected community. Thus it is hoped these RFCs will spur that community to provide 
feedback in order to assure an organized and technically valid approach to the evolution 
of this architecture. 

This RFC, XG Policy Language Framework, is the third to be released. The XG Policy 
Language Framework follows the XG Vision] and XG Architectural Framework]. The 
XG Vision RFC provides the motivation and scope of dynamic spectrum sharing 
envisioned by the XG program and describes an approach for developing the XG 
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architecture. It is highly recommended that the XG Vision RFC be read before (the rest 
of) the XG Policy Language Framework RFC. The XG Architectural Framework RFC 
presents the XG architecture, system components, and a high level concept of operations 
for XG communications. The XG Abstract Behaviors RFC will be released in the near 
future. It will provide an abstract view of the operation of XG radios, so that policies may 
be written to govern the operation of radios that are yet to be engineered. 

1.2  Motivation for Machine-Understandable Policy 
XG-enabled radios will be able to utilize available spectrum intelligently based on 
knowledge of actual conditions rather than using current conservative spectrum 
management methods (static spectrum assignments). In this way, XG technologies will 
utilize spectrum in a much more efficient manner than it is today. Furthermore, without 
the need to statically allocate spectrum for each use, networks can be deployed much 
more rapidly. Today the military, for example, must make spectrum use requests to their 
spectrum managers, who must deconflict them, and make static assignments far in 
advance of deployment. With XG capabilities, this process can be significantly shortened 
or perhaps even eliminated. 

Radios must adhere to rules that apply to their operation. A major intent of such rules is 
to reduce or avoid interference among users. Such rules may cover both transmission and 
reception functions of a radio. Currently such rules are enumerated in spectrum policy as 
produced by various spectrum authorities such as the FCC or the NTIA in the U.S.A. In 
this document we use the term spectrum policy to refer to any externally (to the radio) 
imposed rules for spectrum use. 

A radio that is capable of dynamically utilizing spectrum must be able to adhere to rules 
corresponding to the many uses of which it is capable–not just one use, as with most 
current radios. XG radios will be expected to operate over a wide range of frequencies 
and within different geopolitical regions. Therefore, they must incorporate a real-time 
adaptive mechanism for conforming to the policies applicable to each situation. In other 
words, XG radios must be policy-agile, by which we mean both that the radios are 
situationally adaptive to the current policy, and that they allow policy to be dynamically 
updated as well. 

Spectrum policies relevant to a given radio may vary in several ways: 

1. Policies may be altered over time. 

2. The radio (along with its user) may move from one policy administrative domain 
to another (e.g. a military user may be deployed to a different country). 

3. Policies may be dependent on time of day or year. 

4. A spectrum owner/leaser may impose policies that are more stringent than those 
imposed by a regulatory authority. 

5. The spectrum access privileges of the radio may change in response to a change in 
radio user. 

 

To be truly versatile, the XG radios should be responsive to such changes in policy.  
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Current radios support only a small number of modes of operation and a limited range of 
intended operating environments. With only limited hardware agility, all the relevant 
policy sets that apply can be hard-coded into the radio. However, with the increasing 
agility and programmability of radio hardware (as illustrated in Figure 79), especially 
when combined with the prospect of opportunistic spectrum sharing, both the number of 
modes of operation as well as the range of operating environments for the radio will 
increase tremendously. As a result, the number of different policy sets that apply to these 
various modes and environments will grow in a combinatorial fashion. This will make it 
impractical to hard-code into the radio discrete policy sets to cover every case of interest. 
The accreditation of each discrete policy set would also be a major challenge. In the case 
of software-defined radios, it would require the maintenance of downloadable copies of 
software implementations of each policy set for every radio platform of interest. 

Figure 79: Machine understandable policies are necessary to exploit the emerging agility of 
devices and enable in-situ policy-based control of radio behaviors 

We need a more scalable way to express and enforce policy. The complexity of 
accrediting policy conformance for XG radios and the desire for policy agility lead to the 
conclusion that XG radios must be able to read and interpret policy. We must, therefore, 
be able to express policy in a well-defined language framework. 

Note: This document addresses the means for expressing policies, to facilitate policy-
conformant operation of XG radios. It is not intended to address other, equally important 
issues related to XG, for example, how XG radios will identify, select, coordinate, and 
utilize spectrum opportunities that are authorized by the policy. The XG Abstract 
Behaviors RFC (XGAB) will address some of these other issues. 

1.3  Requirements for an XG Policy Language Framework 
Today spectrum policy is published (by a spectrum authority, such as FCC or NTIA in 
the U.S.A.) in a human readable form. This is entirely suitable for the current operational 
environment, in which humans interpret policies. As noted above, this will not be 

FCC Rule Book
Hardwired policy

Canned behaviors:
few/fixed modes
of operation

Radios with limited or 
no programmability

Agile behaviors: 
numerous modes 
of operation, not 
just legacy modes

Software-based policy

Machine-Understandable
Policies

Highly programmable 
and versatile radios

FCC Rule Book
Hardwired policy

Canned behaviors:
few/fixed modes
of operation

Radios with limited or 
no programmability

Agile behaviors: 
numerous modes 
of operation, not 
just legacy modes

Software-based policy

Machine-Understandable
Policies

Highly programmable 
and versatile radios
Highly programmable 
and versatile radios



 

 155

adequate in future XG environments. In such dynamic environments, policy will need to 
be interpreted by the radio without human intervention. In particular we posit the 
following requirements for an XG policy language framework based on the XG vision [. 

• Separation of policy and behaviors: It is a goal of the XG program to separate the 
policies that govern an XG system from the behaviors of the system. This will ease 
accreditation of XG systems by enabling regulators to accredit radios based on the ability 
to interpret policies correctly to obtain desired behavior, not (as today) by conformance 
of the implementation to specific pre-determined policies. These behaviors are discussed 
in the XG Abstract Behaviors RFC. In the absence of such separation, accreditation 
would need to be performed every time a policy was changed–even in a minor way. 

• Adaptation to changing policies: XG radios must be adaptive to changes in policy, that 
result from evolution over time or changes in operational locale or use. Since XG 
technology is being developed in advance of policies governing dynamic spectrum 
management, policies are likely to be in flux for the near future. Consequently, users and 
spectrum regulators need a flexible method for reconfiguring policy within XG radios–
one that does not require costly reengineering. 

• Policy Consistency: As spectrum policy for adaptive spectrum access radios evolves and 
becomes more complex, opportunities for encountering inconsistencies and conflicts will 
increase. Verification mechanisms are needed to identify the interactions between 
policies in advance–before they are used–and to check the logical consistency of the 
policies. A policy language framework must facilitate such consistency checking and 
conflict resolution. 

• New Capabilities: XG radios must be able to support a wide range of policies that 
correspond to their intended operational environments. These policies may depend on 
temporal, regional, or device parameters. Policies may permit XG underlay or overlay12 
of an existing spectrum use. Policies may also support authority delegation, enabling 
secondary spectrum markets where an authorized spectrum user may provide additional 
sub-policy inputs that allow use of the spectrum by non-primary users, including XG 
systems. 

The ability of an XG system to interpret policy automatically is highly desirable–perhaps critical–
for achieving the goals of the XG program. This ability in turn requires policy to be specified in a 
machine-understandable form. Hence, there is a need for a language framework to support 
machine-understandable policy. In the XG vision, policies (stored in a policy repository) will be 
supplied to XG devices in one or more “file(s)” on some media or downloaded from a network. 
The XG devices will read, understand, and conform to the policies reflected in the policy 
repository (or the appropriate portion thereof). Changing policy will require merely updating the 
policy repository and policy conformance will require that radios receive a current copy of 
relevant portions of the repository  

Thus, deployment of XG-enabled systems will depend on the existence of a well-defined policy 
language framework; regulatory policies must be encoded using this framework; and XG devices 
must be able to interpret the policies so encoded. XG needs a policy language framework that 
defines language constructs for expression of policy, a machine understandable representation, 
and a concept of operations for their use. 

Regulators will specify the policies that govern spectrum use by the radios. Regulators 
and policy makers may choose to encode and distribute machine-understandable 
                                                 
12 See Appendix A for an explanation of spectrum underlay and overlay. 
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encodings of policies, or they may instead choose to certify encodings that are produced 
by other organizations. This latter scenario opens up the potential for competition and 
innovation in the encoding, processing, and system administration of machine 
understandable policies. 

Regulatory policy will reflect the legal and/or contractual requirements for operating in a 
given jurisdiction. The designers or system administrators of an XG radio may provide 
additional policy inputs based on system-specific attributes of the radio to guide how it 
adapts to access the allowable spectrum. System policy governs radio actions within the 
boundaries specified by regulatory policies and can reflect administrative preferences or 
business strategy of the user’s organization. In the military context, the commander’s 
intent and the requirements of particular missions may govern the radio’s actions by 
requiring radio-silence in some situations or offering additional guidance regarding the 
use of certain waveforms in other situations. 

The policy language framework should allow both regulatory and system policy to be 
expressed, but must enable them to be enforced separately. The accredited portion of the 
radio must enforce the regulatory policy, while the system policy, which is enforced 
outside the accreditation boundary, will provide opportunities for innovation, including 
proprietary optimization techniques or other added value, by a radio manufacturer or 
service provider. 

1.4  Evolution 
This document provides an initial description of a policy language framework for 
expressing spectrum policy rules that addresses the above requirements. It is expected to 
evolve with changes in XG radio technology and policy. Furthermore, it is anticipated 
that a wide range of tools will be developed to facilitate the encoding of policy. 

The base language, consisting of only the elements presented here, is not intended to be 
able to express all conceivable spectrum policies. It is a foundation from which policy 
administrators (who encode the policies that are specified by the policy makers) can start 
encoding policies. The language is designed using an extensible ontological framework, 
so this base language can be easily extended to be able to express additional spectrum 
policy rules and related concepts. For example, this document includes some frequently 
used policy parameters, but these are by no means an exhaustive list, and we expect that 
many more will be added to the language, as needed. We also expect the language to 
adopt and reuse generic ontologies as they are developed and standardized. For example, 
the language may adopt generic time or unit ontologies. 

Note that the choice of a representation language does not mean that an originator of 
policy must directly use that language to express that policy. As an analogy, we note that 
few people now type HTML to create Web pages. Rather, they rely on fairly 
sophisticated graphical or scripting tools for Web page composition. These tools produce 
the HTML code that is eventually interpreted. In addition, other tools may be used to 
transform HTML to a form usable by particular vendors or platforms (e.g., Web 
clipping). Similarly, we envision that numerous tools will be developed to facilitate the 
writing and transformation of policy rules. In fact, some are available already. The 
shorthand notation introduced later in this document is a primitive example of such a 
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tool, and is intended primarily for the purposes of illustration and ease of understanding 
the language concepts described in this document. 

1.5  Document Roadmap 
The remainder of this document describes the XG Policy Language Framework in detail. 
 
Section 2 provides an overview of the XG Policy Language Framework. It describes the 
concept of operations for both creating and interpreting policy in the XG Policy 
Language (XGPL). It provides a high-level view of the language itself and proposes the 
use of OWL a World Wide Web Consortium Recommendation for knowledge 
representation on the Semantic Web, to be used as the machine understandable 
representation of XGPL.  
 
Section 3 provides a detailed ontology description of the language, including the concepts 
and keywords used in the language, and Section 4 defines the processing rules for the 
policy. Section 5 describes how the ontology presented in Section 3 can be extended. 
Readers who want only a broad overview of the language framework may skip these 
three sections.  
 
Section 6 illustrates some key features of XGPL by encoding several (notional) policy 
excerpts. Section 7 concludes the document with a discussion of related policy work, and 
our plans to refine and extend XGPL in future revisions of this document. 
 

Appendix A provides definitions of terms used in this document. Appendix B provides a 
list of hyperlinks (URLs) to an implementation of the XG policy language. Appendix C 
provides a notional policy along with an annotated encoding of the policy. Appendix D 
provides a formal specification of the shorthand notation used in this document. Finally, 
Appendix D also provides a mapping from the shorthand notation used in this document 
(and described in Sections 3.14 and 4.1) to the OWL representation of XGPL.  

Note: The examples shown in this document are intended only for illustrating language 
constructs. They are not intended to describe any past, present, or future policies of any 
spectrum authority. 
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2  Overview 
 
In this section we provide an overview of the XG policy language framework. At this 
point we note the distinction between the policy language and the policy language 
framework. We use the term XG policy language to refer to the language elements 
(including the syntactic and semantic structure of the language, and the domain-specific 
keywords), as well as the external (lexical) representation of the language. Overall, in this 
document we emphasize the language elements; we defer the lexical representation to the 
appendices. For this purpose, we make use of a shorthand notation to illustrate the 
concepts. We use the term policy language framework to include the policy language 
itself, the concept of operations of creation and use of machine understandable policies, 
and the computational logic, tools, and techniques for policy processing. 
 
As an analogy for understanding our concept of policy language, consider that a medical 
treatise may, on the surface, appear to be just text written using English terms and syntax 
and using the Roman alphabet for representation. However, the medical terms and their 
interrelationships take on specific meanings within the domain, so that it is no longer 
useful to think of the treatise as merely some text written in the English language. Rather, 
the treatise is written in a language that is specific to the domain of discourse, but uses 
English as a basis of expression and representation.  
 
Consider, for example, that the precise meaning of acute in medical terminology is 
different from its English meaning. Many other terms such as arrhythmia do not have 
meanings outside of the domain of medical discourse. Domain specific languages need to 
be extensible and enable the addition of new terms and interrelationships to their 
vocabularies. Furthermore, domain specific languages also typically include certain 
language constructs and idioms that are well understood by the users of that language. 
 
It is important not to confuse the policy language with its lexical representation or its 
syntax. We will use OWL representation (based on RDF and XML) as a basis of 
expression—these are not to be confused with the XG policy language. Rather, the XG 
policy language consists of terms (along with their precise meanings), interrelationships 
between the terms, some constructs and idioms that are required to express policy, and 
the mechanisms by which the language can be extended. 
 
In this section we describe a concept of operations–both how machine understandable 
policies are created and encoded by policy administrators, as well as how the encoded 
policy is used by policy-agile radios. We provide a brief overview of the features of the 
policy language and the policy processing logic. A detailed description of the language 
and the processing logic are provided later in Section 3 and 4 respectively. In Section 2.3 
we examine the requirements for policy language representations and we propose an 
extensible, standards-based machine-understandable representation for policies. 
 
A summary of features and benefits of the XG policy language framework is provided in 
Table 1. Examples illustrating some of these features are provided in Section 6. 
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Table 5: XG Policy Language Framework–Features and Benefits 

 

Features Benefits 
Policy agility–not just hardware 
agility 

Policy agility is the ability of a radio to interpret and conform to machine-
understandable policy inputs; this feature is critical in order to exploit the emerging 
agility of devices and to allow in-situ policy-based control of radio behaviors. The 
current approach of hard-coding policy (in hardware or software) into agile radios would 
make accreditation extremely difficult, since it would require re-accreditation each time 
policy changes for any of a radio’s operating modes. In addition, this feature enables the 
development of situational policies and time-dependent policies (e.g., an evolving 
“experimental” policy that is in effect for 3 months before being changed). 

Well-defined accreditation 
boundary 

The system components that check policy conformance are separate from those that are 
radio-specific and optimize performance. This feature enables regulatory concerns to be 
addressed separately from technology-specific optimizations, thus encouraging 
innovations in efficient spectrum sharing. As a result, the approach is more scalable; 
instead of needing to accredit each of n radios for each of m policies (m × n), each radio 
needs to be accredited once, and each policy must be accredited once, and a single 
policy conformance checker must be accredited once (m + n + 1). 

Use of international standards 
(W3C OWL) 

A standards-based design assures maximum leverage of the work of others (e.g. 
development tools), and encourages broad international acceptance. 

Extensible language The ability to extend the policy language to handle new technologies and policies that 
are yet to be developed is critical for deployment. Without extensibility, the language 
would risk lagging behind technology, and hinder innovation. This feature serves to 
“future-proof” the language. 

Multiple inheritance and 
polymorphism 

The ability to inherit and extend policy language elements eases the process of encoding 
rules and eliminates the need to “re-code” similar rules or parameters separately. 

Provable framework By leveraging logical reasoning and theorem proving technologies (based on decades of 
research, and being developed for Semantic Web use) we can develop tools to perform a 
priori analysis of policy consistency. 

Separation of policy from radio 
implementation via reusable 
abstractions 

Policy does NOT tell the radio what to do–only what constitutes authorized use. 
Therefore policy can be specified in a vendor-neutral manner. Policy need not be 
specified separately for each device; instead policy is specified in terms of commonly 
specified abstract behaviors, the semantics of which are grounded separately for each 
device. This enables multiple developers and distributors (perhaps an open market) for 
machine-understandable policies and tools to process them.  

Nesting of policies and sub-
policy management 

Nesting policy and sub-policy management provides the ability to inherit, extend, and 
combine policies from multiple authorities. It also enables incumbents (if authorized to 
reallocate spectrum) to manage policy for sub-leasing of spectrum.  Multiple policies 
(e.g. based on authority, geography, time, device properties, or user base) can be 
specified.   

Knowledge representation-based Use of accepted knowledge representation (KR) techniques enables future language 
development to take advantage of advances in the KR field. Well-tested ontologies 
generated by others can be reused as well. 

Separation of concerns via a rule-
based approach for better 
maintainability 

Use of a rule-based paradigm enables each rule to address an “aspect” of policy 
independently of others; rules can be incrementally added or deleted. This separation 
allows for more natural policy expression and is easier to maintain in comparison to 
rewriting programs of high complexity in a procedural language. 
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2.1  Concept of Operations 
The concept of operations of the XG policy language framework describes how machine 
understandable policies are created and how they are used. First we will describe the 
actors involved, their roles in creating and using policy, and the elements of the policy 
that they use or control. Then we describe how radios can interpret and use the encoded 
policy. 
 
2.1.1 Development of Machine Understandable Policies 
Three different types of actors are involved in the definition and use of the policy 
language and the policy rules: language designers, policy administrators, and spectrum 
users. These actors will interact with the policy language and policy rules using tools 
appropriate for their role as illustrated in Figure 80 and described below. 

Figure 80: Policy Language Actors 

Language designers create the language model, which defines the high-level objects of 
the language along with their semantics. This document describes an initial version of the 
language model. We expect that eventually a standards committee will draft future 
versions of the model. The language model is published at a well-known URI for policy 
administrators and policy users to access. The language designer may utilize tools such as 
UML modeling tools, tools to convert UML to a machine-understandable language (for 
example, see [BKK01]), and other visualization tools (yet to be developed) in order to 
facilitate the design process. 
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A policy administrator (who, as described in Section 1.3, is not necessarily the policy 
maker) is responsible for developing and encoding spectrum policy using the policy 
language produced by the language designers. The policy administrator makes the policy 
available to spectrum users. Administrators do not have to know all the details of the 
language presented here, as they will likely encode the policy by using a (perhaps 
graphical) tool, called an instance editor, which hides the notational complexity of the 
language. The administrator also uses analysis tools to verify in advance that the encoded 
policy has the desired effect and is consistent with existing policies. 
 
In the short term, policy may be described first in English using engineering and legal 
terms that are commonly understood by the community of interest. Policy administrators 
will likely continue to use established procedures to interpret spectrum policy prior to 
encoding. 
 
Given a policy expressed in English, the first step is to perform an analysis to determine 
how to structure the policy in a form best suited for machine understanding. Once this 
analysis is performed and the elements of the policy are mapped to the elements of the 
XG policy language, the policy can then be readily encoded in the XG policy language. 
In Appendix C, we present a notional policy example in English and show how to 
analyze the policy and encode it using the XG policy language by making use of a 
shorthand notation. Tools that enable the use of this shorthand notation (including a 
converter to XGPL) are available (see Appendix B). Other tools to validate the syntactic 
and logical correctness of the policy represented are planned. As this technology matures, 
we anticipate that a number of graphical and scripting tools will be developed to make 
the process easier. 
 
A spectrum user, such as an XG system, must be able to use the policy to assess whether 
policy allows identified potential spectrum opportunities and to understand the 
constraints the policy administrators have placed on their use. The next section details 
how the spectrum user uses the policy. 
 
2.1.2 Policy Usage 
In this section, we describe a concept of operations for how a policy-agile spectrum user, 
such as an XG radio system, can use machine-understandable policy.  Radios can use the 
machine-understandable policies to assure that its use of spectrum conforms to policy, as 
well as to modify radio behaviors in order to identify and utilize spectrum opportunities 
that are authorized. In this section, we will focus on the former, namely, how to assure 
policy conformance. The (planned) XG Abstract Behaviors RFC [XGAB] will describe 
XG radio behaviors related to acquiring and sharing spectrum awareness, as well as 
behaviors related to identifying, selecting, coordinating, and using available spectrum 
opportunities as authorized by policy. 
 
Figure 81 is a logical functional block diagram of the policy usage concept of operations. 
The placement of these functional blocks in hardware or software is to be determined by 
the designers of each individual system. 
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There are four main components in this functional decomposition: 
 

• Sensor: provides situational information to the radio about the spectral 
environment at a given location and time. This information is key to being 
situationally aware of spectrum opportunities enabled by policy. We note that the 
sensor outputs need not be limited to the RF spectral environment; the outputs 
could include a variety of other information (e.g. geo-location, temperature, and 
proximity to specific targets) that could be used as parameters for system policy. 

• Radio Platform: provides the basic hardware and primitives of a host radio 
system that enables opportunistic use of spectrum (e.g., RF front end, DSP 
hardware, system software including the OS, middleware, and libraries, and 
primitives for networking protocols, waveform agility, and beam forming). 

• Policy Conformance Reasoner: manages accredited policy information, which 
includes interpreting the policy language, and reasoning based on accredited 
policy (e.g., approved by a regulatory authority) and related background 
knowledge to determine whether the proposed spectrum use is policy-conformant 
or not; this key component to ensuring policy conformance is largely system 
independent and does not tell the radio platform or the system strategy reasoner 
what to do. 

• System Strategy Reasoner:  determines the system's strategy for opportunistic  
spectrum sharing under regulatory and system policy constraints; this reasoner is  
aware of system-specific optimizations and tradeoffs and has control over the 
radio platform. In Figure 81 we show the system strategy reasoner as logically 
separated from the rest of the radio. This highlights the potential for reusability. 

 
Figure 81: Policy-Agile Operation of XG Spectrum-Agile Radio 

Transmit/Receive

System
Strategy
Reasoner

Radio
Platform

Policy
Conformance

Reasoner

Sense

Device
Configuration

System
Policy

Accredited
Policy

Network

fetch/filter policies

load/revoke
policies

get bindings for accredited
parameters/processes

validate policy conformance Sensor
Accredited

Kernel

Transmit/Receive

System
Strategy
Reasoner

Radio
Platform

Policy
Conformance

Reasoner

Sense

Device
Configuration

System
Policy

Accredited
Policy

Network

fetch/filter policies

load/revoke
policies

get bindings for accredited
parameters/processes

validate policy conformance Sensor
Accredited

Kernel



 

 163

We envision that the radio platform includes an accredited kernel, within which it 
implements (grounds) accredited parameters and processes governed by policy. We 
further envision that only the policy conformance reasoner, the sensor, and the accredited 
kernel of the radio platform are within the accreditation boundary (shaded portions in 
Figure 81). Parts of the system that lie within the accreditation boundary are both 
necessary and sufficient to ensure policy conformance. As per the XG vision [XGV], 
system and protocol innovations including the system strategy reasoner are outside the 
accreditation boundary. 

This architectural separation of the regulatory policy conformance function from the 
system dependent optimizations and tradeoffs allows the policy conformance reasoner to 
be reused and eases accreditation. Rather than separately accredit each of n radio 
configurations for each of m policy sets for a total of m × n operations, this approach 
reduces the required number of operations to m+n+1. The policy conformance reasoner 
must be accredited once, each policy set once, and each radio configuration once. 
 
We describe the functions and interactions of the policy conformance reasoner in more 
detail here. The policy conformance reasoner performs three basic services:  
 

• First, it loads (and possibly revokes) and interprets accredited policy instances, 
such as policies specified by a regulatory body, which are represented using the 
machine-understandable policy language. 

• Second, it makes use of the policy structure to respond to queries (by a system 
strategy reasoner) to filter policies based on selection criteria (e.g. to a specified 
radio, or intended operating environment). 

• Third, it determines whether or not the spectrum use proposed by the radio 
platform conforms to policy. 

In order to explain the operation of the conformance reasoner, we provide a brief 
overview of the structure of policy rules in the XG policy language, described in more 
detail in Section 3.2. Each policy rule is composed of three parts: a selector description, 
an opportunity description, and a usage constraint description. A description is a Boolean 
predicate expression that involves regulated parameters and methods (for which bindings 
and groundings are provided by the radio platform) and additional policy parameters (for 
which bindings are provided within the policy itself). An instance is a set of bindings that 
can be used to determine the truth-value of a description. 
 
A policy is selected and applied if the proposed selector instance satisfies the selector 
description. If the proposed opportunity instance matches the corresponding opportunity 
description, this provides authorization for the opportunity13. The proposed usage 
instance must fulfill certain obligations, i.e., it must satisfy the corresponding usage 
constraint descriptions. The use of selection, authorization, and obligation to structure 
policy rules is a paradigm that is used in other policy systems as well (e.g., [KAOS]). 
 
                                                 
13Positive and negative authorizations are supported. 
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We now present a notional sequence of operations using the functional decomposition 
presented in Figure 81. After loading any configuration information, the radio platform in 
conjunction with the sensor (potentially using a sensing strategy determined by system 
strategy reasoner) acquires awareness of its situation. The system strategy reasoner has 
access to the configuration, state, and awareness acquired by the radio platform through 
means that are specific to the system implementation. Based on system and regulatory 
policy and knowledge of the radio platform, the system strategy reasoner enables the 
radio platform to identify and characterize available opportunities and a suitable use of 
those opportunities. The characterization can result in, for example, binding values to 
relevant parameters. 
 
Once an opportunity is identified and its intended use is characterized as a set of selector, 
opportunity, and usage constraint instances, the radio platform must present this set to the 
policy conformance reasoner for validation. In order to validate the instances, the policy 
conformance reasoner may need to obtain parameter bindings and invoke method 
groundings implemented within the accredited kernel of the radio platform. If the 
requested set of instances is validated, the XG radio may then use them to transmit. 
 
The system strategy reasoner has the function of influencing radio behaviors in response 
to policy (and situational knowledge) in order to identify and utilize available spectrum 
as authorized. We note that there is significant scope for design diversity, innovation, and 
optimization within the system strategy reasoner, as well a potential for its reuse across 
several radio platforms. A simple system strategy reasoner may try only a limited range 
of opportunities and uses known to work with the radio and typical policies. A more 
sophisticated system strategy reasoner can include dynamic constraint solving 
capabilities; for example, it can query the policy conformance reasoner for applicable 
policy constraints (based on the state of the environment and the capabilities of the radio 
platform), and then determine a strategy to traverse the policy decision space efficiently 
to find good opportunities for the radio platform to use. 
 
The design and specification of the interfaces between the radio platform and the policy 
conformance reasoner is a subject for future work. 

2.2  Language Overview 
This section provides a high-level overview of the XG policy language (XGPL) including 
the language elements described in more detail in Section 3, and the policy processing 
logic described in detail in Section 4. In this section we also present the requirements that 
motivate the use of OWL as the machine-understandable representation for the XG policy 
language. 
 
2.2.1 Language Elements 
An XG policy instance consists of a set of facts and rules. Facts define the policy and 
rules describe how to process the facts and hence how the facts relate to one another. 
 
A policy rule is a statement of policy consisting of a set of facts, but not the rules for 
interpreting those facts. All other facts either further explain a policy rule or make 
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statements about a policy rule. Policy rules encode statements of policy, such as, “if peak 
received power is less than -80dBm then maximum EIRP is 10mW.” Most other facts 
either support the policy rules or refer to the policy rules. A policy rule links three facts: a 
selector description, an opportunity description, and a usage constraint description to 
describe a single statement in a policy, as illustrated in Figure 82. 
 
The first fact in a policy rule is a selector description. This fact is used to filter policy 
rules to the set of rules that may apply to a given situation. The selector description points 
to one or more facts describing the authority that has jurisdiction over the policy, the 
frequency, time, and region the policy covers, and a description of the radio to which the 
policy rule applies. For example, a selector description may include filters such as 
“applies to operation in England” or “applies to operations in the broadcast bands”. 
 
The second fact in a policy rule is an opportunity description. This fact provides an 
expression that is used to evaluate whether or not a given environment and device state 
represents an opportunity for this policy rule. For example, it can express opportunities 
such as: “peak received power is less than -80dBm” or “if a beacon is heard at 823MHz.” 
The opportunity description is not evaluated unless the selector description from its 
policy rule matches. If a potential opportunity, called an opportunity instance, matches 
the opportunity description, a flag in the policy rule indicates if this is a valid or invalid 
opportunity. A valid opportunity indicates transmission that conforms to the usage 
constraint description is permitted. An invalid opportunity indicates that transmission is 
not permitted. 

Figure 82: Structure of Policy Facts 
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The final fact in a policy rule is a usage constraint description. This fact provides an 
expression that constrains the radio behavior, such as the emissions permitted and the 
corresponding sensing requirements when using the opportunity described in the policy 
rule. For example, it can express a usage such as: “transmit with a maximum EIRP of 
10mW” or “maximum continuous on time must be 1 second and the minimum off time 
must be 100msec.” 
 
2.2.1.1 Extensible Semantics of Policy Parameters and Processes 
As new radio platforms and policy sets are developed, they will have capabilities that 
were not envisioned when the policy language was developed.  However, we will need to 
represent facts about these radios to fully describe selector, opportunity, and usage 
constraint descriptions that constitute policy. The policy language supports two generic 
constructs, namely, parameters and processes to represent policy concepts. 
 
Parameter facts define all the values that are in the policy. They include values such as 
frequency bands, power levels, times and geographic areas. Parameters may be bound if 
the value is known, or unbound if the value is not yet known, such as a value that the 
radio platform is expected to bind. 
 
Some policy rules will require the radio to perform certain functions to provide the 
information necessary to match an opportunity or usage constraint description. These are 
described using process facts. The process fact describes inputs and output parameters for 
the function (analogous to a function prototype in a programming language such as C) 
and possibly expressions constraining the relationship between the inputs and outputs. 
The radio is responsible for providing an implementation of the process. If a radio doesn't 
support a needed process, then it cannot use the opportunity that the policy rule describes. 
 
In addition to these generic constructs, we have organized some of the key concepts in 
this domain into ontologies to provide a usable foundation. This organization is described 
in more detail in Section 3. These ontologies include a structure of authority and 
delegation, frequency classifications, geopolitical regions and spatial descriptions, time, 
device capability descriptions, environment and device state descriptions, physical 
quantities, and units. 
 
For example, an authority is an entity that has jurisdiction over some frequency, region, 
time, and set of devices and is authorized to create policy for that jurisdiction. An 
authority may be, for example, a regulatory agency or a primary user who is authorized to 
lease their spectrum to other users. A fact defines the authority and states its jurisdiction. 
 
Some policy rules may apply only to a radio with a specific set of capabilities, either 
because the policy rule is designed for a specific type of radio or because it requires a 
particular set of parameter types or processes for the policy rule to be evaluated (e.g., 
supports geo-location, implements database access function, or maintains a history of 
parameter values). Such information is captured in a device description fact. 
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2.2.1.2 Meta-Policies 
In absence of any other information, the set union of the usage constraint descriptions 
from all the policy rules that represent valid opportunities apply.  However, meta-policy 
facts may state relationships between policy rules that modify this logic. We have 
included three types of meta-policy facts: grouping, precedence, and disjunction. 
 
Grouping simply creates a named set of policies so they can be referenced as a group. 
The group may be described either by explicitly listing the member policy rules or by 
creating an expression that describes the policy rules that are members of the group. 
 
Precedence provides information on how to interpret conflicting policy rules. Two policy 
rules that have matching selector descriptions may also have opportunity descriptions that 
match a particular opportunity instance.  If both these opportunities represent a valid 
opportunity the usage constraints for both policy rules apply. However, if the policy rules 
disagree on whether the opportunity instance is valid, there is a conflict and the rule with 
the higher precedence is applied. Precedence may be defined between two policy rules or 
two policy groups. If one policy group has higher precedence than another, then all its 
member policy rules have a higher precedence than the member rules of the other group. 
Finally, two policy groups may be disjunctive. If policy groups are disjunctive, then the 
policy rules in one or more of those otherwise applicable groups can be selected for 
application. 
 
 
2.2.2 Policy Processing Logic 
Policy processing, within the policy conformance reasoner for example, requires a set of 
rules describing how to process and interpret the policy facts. These rules govern the 
selection of policy rules that match a given selector instance; the selection of a policy rule 
that represents a valid opportunity given a selector instance and an opportunity instance; 
and the conformance of a given selector, opportunity, and usage constraint instance to the 
policy set. These rules also govern meta-policy processing as well as the decorrelation of 
selector instances described in Section 4.   
 
The processing rules allow regulators to create policy rules that build on existing rules. 
Unless modified by a meta-policy, the union of all usage constraints from policy rules 
that represent valid opportunities is required for transmission to occur in that opportunity. 
Therefore, policy administrators do not have to enumerate policies for each band but 
may, instead, create broad policies and refine them where necessary.  
 
For example, if a policy administrator wanted to constrain emission power in the 
television broadcast bands to –10dBm where an opportunity was detected, but 
additionally restrict emissions to have a 1MHz bandwidth in the frequencies14 
represented by channels 58-63, only two policy rules need to be written. The first rule 
would set the –10dBm constraint on all television channels and the second rule would set 
                                                 
14 Supporting information such as the mapping of channel numbers to frequencies must exist elsewhere in 
the policy. 
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the bandwidth constraint on channels 58-63. If a radio wanted to transmit on channel 61, 
it would have to conform to both emission constraints, as both policy rules apply. At a 
later stage, regulators may easily add a third policy rule that constrains new radios of a 
particular type from transmitting on channel 59 in selected regions, without modifying 
the other two rules. 
 
We believe that the union of simpler rules (logical implications) scales well and offers 
flexible management of policies. In contrast, the use of procedural structures such as if-
then-else conditions and while-loops can result in brittle policy structures over time as 
policy evolves. For example, a small change in policy can result in a large number of 
changes that must be reflected across several if-then-else branches or require the entire 
policy to be rewritten. Furthermore, an if-then-else structure can artificially constrain the 
order in which conditions are tested by a particular radio. 

2.3  Language Features and Representation 
A standard representation for the XG policy language is necessary so that regulators can 
encode policies in one language and all XG radios understand the encoded policy. This 
section discusses the features required for representing XGPL, provides an overview for 
some representations considered and introduces the OWL Web Ontology Language, the 
standard representation used for XGPL. 
 
 
 
2.3.1 Requirements 
Spectrum policies have a complex structure with many dimensions and layers of 
exceptions that are difficult even for human interpretation. In selecting a language, one 
must ensure that the language is capable of capturing and potentially simplifying a 
number of aspects of this complex structure, including: 
 

• Inheritance. Spectrum policy is very large and complex. The property of 
inheritance helps manage this complexity by enabling policy rules and properties 
to extend others and reduce the need for enumeration. For instance, rules for the 
2.4GHz unlicensed band can inherit and extend rules for general unlicensed use.  

• Reification (rules about rules). Policy rules may make statements about other 
policy rules. For example, we can make a policy rule governing when or where a 
set of policies will apply. 

• Inference (derivable rules). There are rules that may not be explicitly stated, but 
follow from two or more rules. For instance, given that TV channels are 6 MHz 
wide, and that a policy exists to permit XG devices to transmit within a locally 
unallocated TV channel, one may infer that the maximum bandwidth for an XG 
device using an unallocated TV channel is 6 MHz. More common languages such 
as XML and IDL, while perhaps more straightforward for humans, do not 
facilitate such inference. 

• Extensibility. It is imperative that the policy language be extensible in its 
vocabulary, structure, and semantics so that the language can adapt to express 
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new types of policies as spectrum policy requirements change. Additionally, 
different countries may be concerned with different types of policies or different 
signal parameters, and it is crucial that the language be extensible to include their 
requirements. 

• Maintainability. Policy will evolve over time. Small changes in policy should 
require only small, localized changes in the policy encoding and should not have 
ripple effects throughout the policy. Additionally, the language should make it 
easy to select policies that apply to a particular situation (i.e. time, location, 
frequency bands, device type). This argues for a declarative approach based on 
facts and rules instead of a procedurally based language as exceptions. We discuss 
this more below. 

• Scalability. The policy language must scale to a wide range of devices that may 
have very different levels of resources available. The policy specification must be 
amenable to processing on devices with small memory and computational 
resources. 

• Standards. Using a standard language representation is preferred as it enables 
reuse of libraries, applications, and tools previously developed. These tools 
reduce the cost of developing and using the language and increase interoperability 
between different tools. It is also expected that using a standard representation 
will facilitate the international acceptance of XGPL. 

The language should be a declarative language based on facts and rules instead of a 
procedural language. One reason is maintainability as mentioned above. In a procedural 
language, policy would become a nested set of exceptions–many layers of if-then-else 
clauses. This creates two problems. First a small change in the policy may then affect 
many exception clauses, making it difficult to update policy. Second, the order in which 
exceptions are defined necessarily optimizes the policy for particular parameters. If a 
radio is concerned with other parameters, it will have a less optimal search. 
Additionally, regulatory policy does not tell the radio what to do; it only defines what 
constitutes authorized use of the spectrum. However, enforcing a policy may require the 
results of a function that may be implemented in the XG radio. Using a declarative 
language, the policy can describe the function and specify rules based on its inputs and 
outputs without specifying the particular implementation of the function. 
 
2.3.2 OWL 
 
The World Wide Web Consortium’s Web Ontology Language [OWL] is a machine-
understandable, semantic markup language. It is an extension of the Extensible Markup 
Language (XML) and the Resource Description Framework (RDF). OWL is based on 
DAML+OIL, a combination of efforts in the US (DAML–the DARPA Agent Markup 
Language) and the European Union (OIL - the Ontology Inference Layer) to create a 
machine-understandable semantic markup language. OWL provides a rich language for 
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representing an ontology15, that is knowledge about the interrelationship of objects, in a 
manner that allows a machine to make inferences. 
 
 
OWL builds upon several XML layers: 
 

• XML Document Type Declaration (DTD) and Namespaces: XML is a popular 
portable encoding for data exchange as it offers separation of style, syntax, and 
content. The Document Type Declaration (DTD) represents the basic XML layer. 
It can encode the grammar for a document. Since the grammar is defined 
separately from the content, general-purpose applications may be built that do not 
embed a particular grammar. XML Namespaces allow the grammars to have 
constructs with universal names, whose scope extends beyond their containing 
document. 

• XML Schemas. The next layer, XML schemas [XSD] provide support for 
datatypes and more structure than DTDs. Additionally, an object-oriented schema, 
SOX  is available as well as alternative XML schemas such as RELAXNG 
[RLXNG]. However, XML schemas are still limited as they support only data 
representation; semantic knowledge must still be embedded in an application. 

• The Resource Description Framework (RDF) in conjunction with RDF Schema 
(RDFS) can capture semantic knowledge and is extensible. However, it does not 
support inference. As mentioned earlier, we need a language for inferring 
information about the policy from the rules provided. 

 
OWL builds upon the XML layers16 described above and incorporates insights from 
knowledge representation research. OWL enables the use of powerful processing tools 
(such as inference engines and theorem provers) that are being developed for the 
Semantic Web.  
 
There are three variations of OWL. OWL DL provides the maximum expressiveness of 
OWL while providing well-understood complexity characteristics of description logics. 
OWL Lite is a subset of OWL DL that trades off expressiveness for processing 
complexity. For example, it restricts some of the constraints available in OWL DL, such 
as limiting cardinality restrictions to be 0 or 1, or the restriction of property constraints 
locally to a class. OWL Full supports the same language constructs as OWL DL, but 
relaxes some of OWL DL's restrictions that provide its computational guarantees. XGPL 
will use OWL DL as the computational guarantees are required and it needs more 
expressiveness than OWL Lite provides. 
 
 
 
 
                                                 
15 An “ontology” is the knowledge about the relationships between objects. However, OWL also uses the 
term “ontology” to refer to an OWL file that encodes ontological information. 
16 For a comparison of the capabilities of XML, RDF(s), DAML+OIL and OWL, see [COMP] 
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2.3.3 Why OWL for XG? 
OWL provides a crucial set of features that match the requirements for representing the 
complex structure of spectrum policy. Specifically, OWL is extensible, and it supports 
reification, inference, and several object-oriented features such as multiple inheritance. 
 
Powerful tools are being developed to process OWL that build upon earlier research in 
the knowledge representation, logic, and theorem proving communities in order to 
support the semantic web. 
 
We chose to focus on markup languages for several reasons. First, the automatic 
conversion from a highly structured markup format to other non-markup formats is 
relatively easy; the reverse transformation is typically more difficult and non-uniform. 
Markup languages and tools to process them are widely adopted around the world and are 
continually evolving, as is evidenced by the Web. These Web markup standards satisfy 
the need for a representation that is suitable for cross-platform information exchange and 
processing across nations and organizations. 
 
In an earlier work, Mitola and Maguire [MITOL] investigated a wide variety of 
languages to represent policy for cognitive radios. They concluded, as we do, that a 
knowledge representation approach is the most suitable for radio policy. They 
recommended the development of a new language based on the Knowledge Query and 
Manipulation Language (KQML), a language that has limited exposure outside the 
knowledge-based systems community. Since the time of their study, the World Wide 
Web Consortium has developed the OWL Web Ontology Language. Using a language 
that is a W3 Consortium Recommendation offers potentially wider adoption. 
 
OWL's predecessor, DAML, has also been demonstrated to be an effective technology in 
other complex policy domains. The KAoS Domain and Policy Services [KAOS] project 
has successfully used DAML to represent distributed logistics policies for the DARPA 
UltraLog program [ULTLG]. 
 
In summary, OWL provides the features required to implement a machine-
understandable semantic model. This enables the building of generic applications that 
depend on knowledge of the semantics of the content, including generic theorem provers 
and reasoning engines that enable deductive inference. OWL has the ability to represent 
the syntax of spectrum policy and the complex knowledge embedded in it. Additionally, 
OWL provides the ability to deduce policy constraints that are not explicitly stated for 
each specific case, but rather inferred from more general statements. Finally, we note that 
OWL is a Recommendation of the World Wide Web Consortium. Thus, we believe that 
OWL is an excellent long-term solution for the XG policy language.  
 
Therefore, we provide an OWL representation of the XG policy language ontologies. We 
further show how to use these ontologies to specify machine-understandable spectrum 
policy separately from the implementation of the policy within particular radios. 
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3 Policy Ontology 
This section describes the XG Policy Language ontology in detail. It describes all the 
classes in the language and their relationships. The URLs of the OWL ontology files that 
define the language are listed in Appendix B. 
 

We expect that, in the future, some of the ontologies presented here will be partially or 
completely replaced by generic ontologies as they are developed and standardized. We 
reference some ontologies that are currently being developed and may be used in the 
future. 

3.1 Facts, Expressions, and Rules 
The XG policy language framework is built around three basic constructs: facts, 
expressions, and rules. Policies encoded in XGPL consist of a set of facts and 
expressions. Rule constructs are used to specify processing logic for policies. 
 
3.1.1 Facts 
Facts are OWL statements that describe the policy concepts. The domain, the XG radio, 
grounds the semantics of the facts. For convenience, two semantic extensions to OWL—
expressions and rules—are provided in the XG policy language. These extensions are 
also represented using OWL. 
 
There are several types of OWL statements: classes, properties, restrictions, Boolean 
class expressions, and individuals. Classes provide an abstract definition of a group of 
resources with similar characteristics. Classes can be defined in terms of other classes 
(for example, as a subclass of or as an equivalent class to another class) and restrictions 
on properties. Properties may either be object properties that relate an individual 
(instance) to another individual, or data-type properties that relate an individual to a data-
type value. Restrictions limit properties, including the values that properties may have 
and the cardinality of a property. Boolean class expressions allow a class to be described 
as an intersection, a union, or a complement of other classes. Individuals are specific 
instances of a class; instances are identified by a URI and may have particular values 
associated with each property of the class. For a more detailed description, informative 
tutorials, and the current version of the OWL Recommendation, please refer to the W3C 
OWL website [OWL]. 
 
The specification of an XG policy involves defining a set of individuals that express the 
policy and conform to the ontologies presented in this document. The XG policy 
language ontologies themselves are also described using OWL statements. 
 
3.1.2 Expressions 
Expressions in the XG policy language are used to define an opportunity, a usage 
description, or to define membership in a policy group. Each XG expression is a 
predicate expression that returns a Boolean value. There are four kinds of predicates. 

• Logical operators: The logical operators comprise the top-level predicates. These 
operators include: and, or, not, and exists. 
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• Relational operators: Relational operators, including interval operators, comprise 
the second-level predicates. These operators include the scalar comparison 
operators: <, >, >=, <=, =, eq, and the interval comparison operators: before, 
after, within, contains, overlaps-start, overlaps-end, just-before 
(before and overlaps-start), just-after (after and overlaps-end), at-start-
of (within and overlaps-start), at-end-of (within and overlaps-end), starts-
with (contains and overlaps-start), ends-with (contains and overlaps-end), 
overlaps (within and contains and overlaps-start and overlaps-end).  

• Other predicates. Any additional domain-specific functions required must be 
declared as a Process as discussed below and invoked using the invoke 
predicate. The invoke predicate returns a Boolean value to indicate whether 
the invocation succeeded or not. Processes can be defined for arbitrary 
functions such as mathematical operators, signal processing primitives, and 
other system operations such as the sensing of signals, and database retrieval. 
Such processes must be grounded by the radio platform to be used. 

If automatic constraint solving is desired based on the encoded policy, then care must be 
exercised in the use of XG expressions, especially the use of universal and existential 
quantifiers, as well as the use of domain predicates that are computationally expensive. 
 
3.1.3 Rules 
Rules are statements that describe the logic for interpreting and processing policy. They 
have the form: condition-implies-action. If a fact matches the set of expressions that form 
the condition, then the function expressions in the action are asserted. The XG policy 
language includes a rule ontology. A description of the ontology is included in the 
Backus-Naur Form (BNF) of the shorthand notation in Appendix D. In particular, the 
defrule construct included in the BNF maps to the Rule class provided in the XG rule 
ontology. 
 
Rules are not needed for encoding a policy; however, they are needed to express the logic 
for processing and interpretation of the policy rules. As such, the rules are background 
knowledge, included as part of the ontologies. The rules for processing and interpreting 
the XG policy language are described in Section 4. 
 
Note that in the future, the XG policy language may instead use the OWL Rules [SWRL] 
when this ontology and the tools to process it are further developed. 
 
3.1.4 Shorthand Notation 
For ease of representation we will introduce a shorthand notation for expressing facts and 
expressions. A shorthand notation for expressing rules is described in Section 4.1. We use 
the shorthand notation since it allows us to illustrate the concepts more readily in the 
examples. The shorthand has a one-to-one correspondence to OWL. Appendix E provides 
a mapping of the structures and keywords presented in this section to their OWL 
equivalents. 
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The shorthand notation is based on an existing rule-based knowledge representation 
environment [CLIPS]. 
 
A Class is defined as follows: 
 

(deftemplate <class-name> 
  (slot <slot-name>) 
  (multislot <slot-name>)) 

For example: 
(deftemplate FrequencyDesc (slot id) (multislot frequencyRanges)) 

The <class-name> represents the name of the class and the <slot-name> represents the 
name of a property of the class. A slot may only have a single-valued property as 
<slot-name> while a multislot may have multiple-valued properties as <slot-
name>'s. All XGPL deftemplates have one slot, id, which must be explicitly included.  
It is used to identify an instance of the class. 

An instance of FrequencyDesc can be represented as follows: 
(FrequencyDesc (id MyFrequencies) 
 (frequencyRanges Range1 Range2 Range3)) 

This indicates that MyFrequencies is an individual that belongs to the class 
FrequencyDesc, with the property frequencyRanges assigned the values Range1, 
Range2, and Range3, which are described by other statements, for example: 

(FrequencyRange (id Range1) (min 3.4) (max 3.5) (unit GHz)) 

In addition to classes, the shorthand notation supports Boolean expressions in prefix 
notation: 

(<predicate> <arguments>+) 

To illustrate, we can express the truth value of “9 is greater than 8” as follows: 
(> 9 8) 

The Boolean expressions are part of an XG expression that is enclosed in double quotes. 
To use a process in an XG expression, the invoke predicate is used. The first argument it 
takes is the name of the function being invoked. This can be followed by a sequence of 
name value pairs for input and output parameters. 

For example, we could have an XG expression that states that the difference between the 
maximum transmit power and the maximum received power must be greater than a 
specified power Power20dBm. Say we have declared three device parameters to be bound 
by the XG radio, PowerParam1, PowerParam2 and PowerParam3 that represent a 
maximum transmit power, maximum receive power and the output of the process, 
respectively. We may also define a process called Sub, the mathematical function of 
subtraction, with input parameter names MaxTransmitPower and MaxReceivePower and 
a single output parameter named PowerDiff1. Now we can state the following XG 
expression: 

(and (invoke Sub MaxTransmitPower PowerParam1  
                 MaxReceivePower PowerParam2 
                 PowerRatio PowerRatio1) 
     (> PowerRatio1 Ratio20dB)) 
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All the policy facts in the shorthand notation are wrapped in a deffacts structure that is 
defined as follows: 

(deffacts <deffacts-name>  
     (<deftemplate-name>  
        (<slot-name> <constant>+)*)*) 

So we could have a set of facts defined as follows: 
(deffacts my-policy-facts 
  (FrequencyDesc (id MyFrequencies) 
     (frequencyRanges Range1 Range2 Range3)) 
  (PolicyRule (id P1) (selDesc S1) (deny FALSE)(oppDesc O1)  
              (useDesc U1)) 
)  

The remainder of the shorthand notation is the set of keywords for the classes, slots, and 
predicates. These will be developed as part of the ontology in the remainder of this 
section. The notation also supports rules. A BNF description of the shorthand notation 
may be found in Appendix D.   

 

3.2 Structure of XG Policy 
 

An XG policy rule is a fact that specifies one aspect of a policy. The set of XG policy 
specification facts is given by PSF = {Pi: <Si, Oi, Ui, denyi>} where: 
 

• Si is a selector description 
• Oi is an opportunity description 
• Ui is a usage constraint description 
• denyi indicates whether or not matching the opportunity descriptions means that it 

is an invalid opportunity. 
Accordingly, the structure of the PolicyRule class is as follows: 

(deftemplate PolicyRule  
      (slot id)  
      (slot deny) 
      (slot selDesc)  
      (slot oppDesc)  
      (slot useDesc) 
) 

The respective ontologies for selector description, opportunity description, and usage 
constraint description are described later. Rules (described later) interpret and process the 
policy facts and potentially generate additional policy facts.  
The deny property allows policies to explicitly rule out opportunities at the logical level, 
thereby avoiding the need to process usage constraint descriptions corresponding to 
denied opportunities. We explain how this property is used later in Section 4.3. 
 
3.2.1 Policy Selector 
Selectors classify policy rules for easy filtering of potentially relevant policy. A policy 
selector fact is a five-tuple defined as Si:<Ai, Fi, Ri, Ti, Di> where: 

• Ai is an authority description 
• Fi is a frequency description 
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• Ri is a spatial region description 
• Ti is a temporal description 
• Di is a device description 

Additional descriptions may be useful for policy filtering and will be considered in future 
revisions of this document. Two such descriptions are a user description that identifies 
the class of users for which the policy is intended (e.g. US Federal Government users) 
and a service description that identifies the service (e.g., land mobile, broadcast) to which 
the policy refers. 
 
The SelDesc class is therefore defined as follows: 

(deftemplate SelDesc  
      (slot id)  
      (slot authDesc)  
      (slot freqDesc)  
      (slot regnDesc)  
      (slot timeDesc)  
      (slot devcDesc) 
) 

The corresponding classes for each slot are: 
• Authority – An authority and its jurisdiction is defined as: 

(deftemplate Authority  
      (slot id) 
      (slot polAdmin) 
      (slot freqDesc)  
      (slot regnDesc)  
      (slot timeDesc)  
      (slot devcDesc) 
) 

Where the corresponding classes for each slot are PolicyAdministrator, 
FrequencyDesc, RegionDesc, TimeDesc, and DeviceDesc, respectively. The 
authority ontology is described in detail in Section 3.5. 
 

• FrequencyDesc– A frequency description is a list of FrequencySpecifications. It 
is defined as follows: 

(deftemplate FrequencyDesc  
      (slot id)  
 (multislot frequencyRanges)) 

The frequency ontology is described in detail in Section 3.6. 
 

• RegionDesc – A region description is a one or more GeographicSpecifications. It 
is defined as: 

(deftemplate RegionDesc  
      (slot id)  
 (multislot region)) 
The region ontology is described in detail in Section 3.7. 
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.TimeDesc – A time description is a list of TimeIntervals. It is defined as: 
(deftemplate TimeDesc  
      (slot id)  
 (multislot time)) 
The time ontology is described in detail in Section 3.8. 
 

• DeviceDesc – A device description includes a device type description DeviceTyp, 
and a device capabilities description DeviceCap. It is defined as: 

(deftemplate DeviceDesc  
      (slot id)  
      (slot deviceTyp)  
      (slot deviceCap)) 
The device ontology is described in detail in Section 3.9. 
 

The ontologies in the following sections further develop the values that each of these 
descriptions may specify. 
 
A selector description can be viewed as a region in a multidimensional space (of 
frequency, space, time, and device parameters) tagged with an authority that has 
jurisdiction over that space. A selector instance also represents a region in that 
multidimensional space. Given a selector instance Sx, and a selector description Si, 
exactly one of the following facts can be asserted: 
 

• (disjoint Sx Si)–The region of the selector instance is completely outside the 
region defined by the selector description. 

• (equivalent Sx Si)–The region of the selector instance is the same as or is 
completely contained within the region defined by the selector description. 

• (correlated Sx Si) - The region of the selector instance intersects the region 
defined by the selector description. An equivalent selector is also correlated. 

Figure 83: Two-dimensional Illustration of Disjoint, Equivalent, and Correlated 

This is illustrated in Figure 83.  If a selector instance is correlated, then it must be 
partitioned into other instances such that each instance is correlated with a single selector 
description.  This process is called decorrelation. 
 
3.2.2 Opportunity Description 
 
An opportunity description is a condition expression based on parameters describing 
device and environment state that is used to determine if a valid opportunity exists. Such 
conditions could include, for example, the presence or absence of particular incumbent 

Disjoint Equivalent Correlated
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signals, the use of a feature-matched receiver, and a threshold for sensor sensitivity. An 
opportunity description includes the property xgx that specifies an XG expression based 
on parameters to which the radio must bind values. The opportunity description is defined 
as: 

(deftemplate OppDesc  
      (slot id)  
      (slot xgx) 
) 

Given an opportunity instance Ox, and an opportunity description Oi, we can assert 
exactly one of the following facts. 
 

• (matches Ox Oi) - The parameters in the opportunity instance satisfy the xgx 
expression in the opportunity description. 

• (notGermane Ox Oi) - The opportunity doesn't match so is not relevant to this 
description. 

Whether a matching opportunity instance must be allowed or denied is indicated in the 
deny slot of the policy rule that uses the instance description. If deny is false, a matching 
opportunity instance must be allowed; if it's true, then it must be denied. Positive and 
negative authorizations, used commonly in policy literature, correspond to this allow and 
deny. 
 
3.2.3 Usage Constraints Description 
 
A usage constraint description is a constraint expression based on variables describing 
device and environment state. Using our language, a usage constraint description can 
express a variety of constraints on spectrum use. For example, constraints can be placed 
on the maximum transmit power within the emission frequency band, the duty cycle, the 
energy in the harmonics (splatter due to amplifier distortion), co-channel interference, 
and the field-of-view and side lobe energy when using directional antennas. 
As with an opportunity description, the usage constraint description contains a property 
xgx that specifies an XG expression based on parameters to which the radio must bind 
values. A usage constraint description is defined below:  

(deftemplate UseDesc  
      (slot id)  
      (slot xgx) 
) 

Given a set of usage constraint descriptions {Ui} and a proposed usage instance Ux, we 
can assert exactly one of the following facts. 

• (solutionOf Ux {Ui}) 
• (notSolutionOf Ux {Ui}) 

3.2.4 Meta-Policy 
Meta-policies are facts that relate two or more policy rules to each other and change how 
they are processed. Three types of meta-policies are included in the XG policy language: 
grouping, precedence, and disjunction. This section discusses the specification. 
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3.2.4.1 Grouping 

Grouping is a means of grouping policy rules into a single set, and assigning a single 
name to the set of policy rules. Policy groups may be defined in one of two ways. The 
first is to enumerate all the rules that are part of the group. In the second, an XG 
expression can be defined and all policy rules that match that expression are part of the 
group. 
The class PolicyGrp specifies a policy group. It contains three properties: 
equalPrecedence, polMembers and xgx. Only one of polMembers or xgx may be 
present in an instance of PolicyGrp. The property polMembers contains a list of policy 
rules that are members of the group. xgx contains an XG expression that defines 
membership in the group. The property equalPrecedence indicates whether or not all 
the policy rules in the group have the same precedence. 
 

 
(deftemplate PolicyGrp  
      (slot id)  
      (slot equalPrecedence) 
 (multislot polMembers) 
      (slot xgx) 
) 

Given a policy, Pi, and groups, Gk and Gi, we can assert the following facts: 
• (isMemberOf Pi Gk)–if Pi is listed in polMembers or matches the expression in 

xgx 

• (isSubsetOf Gi Gk )–if all the policy rules in Gi are also in Gk . 
 

3.2.4.2 Precedence 
Precedence is the mechanism used to determine which policy rule applies if multiple 
policy rules conflict on whether an opportunity instance is valid or not. In XGPL the 
precedence of policy rules can be stated explicitly. 
The PolPrecedes fact specifies the precedence between two facts. The properties left 
and right indicate the two policies, where left precedes right. 

(deftemplate PolPrecedes 
      (slot id)  
      (slot left)  
      (slot right)  
) 

We can assert that policy rule (precedes Px Pj) from this PolPrecedes fact 
(PolPrecedes (left Px) (right Pj)) 

There are two properties of precedence that should be noted.  First, if (and (precedes 
Px Pj) (precedes Pj Px)) are asserted then Pj and Px have the same precedence. Second, 
precedence is transitive, so if (and (precedes Pi Pj) (precedes Pi Pk)) are asserted 
that implies (precedes Pi Pk). 
Similarly, we can explicitly state precedences between groups with the PolGrpPrecedes 
fact. The properties left and right indicate the two groups, where left precedes 
right. 

(deftemplate PolGrpPrecedes 
      (slot id)  
      (slot left)  
      (slot right)  
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) 
For example: 

(PolGrpPrecedes (left Gi) (right Gk)) 
 
3.2.4.3 Disjunction 
Two or more groups of policies may have policy rules with equivalent selector 
descriptions and opportunity descriptions that may both be matched by a particular 
opportunity instance. Barring a meta-policy, the usage constraints from all policies (that 
allow the opportunity) from all groups will apply conjunctively. However, the policy 
writer may want to group constraints disjunctively so that the XG radio needs to apply all 
constraints from only the subset of groups under which it chooses to operate. 
 
The DisjunctGrps fact specifies that all policies from a subset of the groups enumerated 
in polGroups can be enforced at one time. The fact is specified as follows: 

(deftemplate DisjunctGrps 
      (slot id)  
 (multislot polGroups) 
) 

3.3 Parameters 
 
Many of the sections above describe ontologies that involve physical quantities. This 
section describes the ontology for expressing those quantities in a uniform manner.  
 
Each physical quantity is a subclass of one of the parameter classes discussed in this 
section. Each parameter used in a selector, opportunity, or usage constraint description 
must be declared as a fact in the policy. The declaration must include the name of the 
parameter. Some parameters will be bound to a specific value as part of the policy. For 
example, the policy may declare a parameter that refers to -100 dBm. Other parameters 
are declared without values and the values must be bound by the XG radio platform. 
Finally, some parameters, such as parameters in process definitions, are defined without 
values, but the values are bound by the policy processing. 
 
Each parameter class below is a subclass of the Parameter class. The parameter class has 
a single optional parameter, boundBy, inherited by each its subclasses. boundBy may 
either have the value Device or Policy, indicating that the parameter is to be bound by 
the XG radio or bound as part of the policy specification, respectively. If the boundBy 
property is not specified, the value defaults to Policy. The Parameter class is specified 
as follows: 
 

(deftemplate Parameter  
      (slot id)  
      (slot boundBy)  
) 

 
Parameters that are defined using a single magnitude and units are subclasses of the 
Param class where magnitude is a floating-point number and unit is one of the units 
defined in Section 3.13.  

(deftemplate Param  
      (slot id)  
      (slot boundBy)  
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      (slot magnitude)  
      (slot unit)  
) 
 

Parameters that represent range values using a minimum and maximum value and units 
are subclasses of the ParamRange class where max and min are floating point numbers 
representing the maximum and minimum values of the range, inclusively, and unit is 
one of the units defined in Section 3.13.   
 

(deftemplate ParamRange 
      (slot id)  
      (slot boundBy)  
      (slot max)  
      (slot min)  
      (slot unit)  
) 
 

While a number of parameters fit into one of the two classes above, we provide a generic 
construct for ones that do not.  Such parameters are subclasses of the ParamObj class, 
with properties defined by the particular subclass. 

(deftemplate ParamObj 
      (slot id)  
      (slot boundBy)  
) 
 

3.4 Processes 
 
Policies may require certain functions that have implementation semantics that are 
outside the scope of the language but instead can be grounded by an implementation of 
the function within the radio platform. These functions are specified using Process facts, 
analogous to function prototypes in C. A Process fact consists of the following 
properties: 
 
• input–Zero or more parameters required as input to the process. 
• inputOpt – Zero or more optional input parameters. 
• output–Zero or more parameters expected as output from the process. 
• xgx–an optional XG expression that may be used to describe the relationship between 

the input and output parameters and any limits on them. 
(deftemplate Process 
      (slot id)  
 (multislot input)  
 (multislot inputOpt) 
 (multislot output)  
      (slot xgx)  
) 

The parameters used for input, inputOpt, and output must be declared as part of the 
policy. The parameters are not bound to any values and are not bound by the device. 
A radio must ground all the processes required by the policy to be able to evaluate 
whether a policy rule describes a valid opportunity or not. The process types that the 
policy rule requires are listed in its device description. 
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3.5 Structure of Authority and Delegation 
An authority is an entity that is authorized to establish and enforce policy for a particular 
jurisdiction. The jurisdiction is defined as a set of frequencies, a set of geographical 
regions, and a set of time periods. Additionally, an authority may exert control over one 
or more types of devices. 
 
While an authority establishes the policies for a jurisdiction, another entity may 
administer and encode the policies.  The PolicyAdministrator class specifies this 
entity.  Currently the class only names the entity, but may be further developed in future 
versions of this document.  The PolicyAdministrator class is defined as follows: 

(deftemplate PolicyAdministrator 
      (slot id)  
) 

 
An authority may delegate portions of its jurisdiction to another authority. When an 
authority, X, creates a policy that involves a jurisdiction that it has delegated to another 
authority, Y, authority X must indicate whether an intersecting policy provided by Y may 
or may not have precedence over the policy. If X's policy must precede Y's policy, then it 
indicates that Y cannot enforce a policy that conflicts with X's policy. If Y's policy may 
precede X's, then Y is allowed to enforce policy that conflicts with X's policy. An 
example of how to specify these precedence rules can be found in Section 6.6 
 
The description of delegation will be developed further in future versions of this 
document. The authority fact will be extended to include information to specify 
delegation information, as well as information assurance information (such as keying 
material, signatures, and message-digests), and other information describing the 
authority. 
 
3.6 Frequency Description 
 
This ontology specifies some foundation classes related to frequencies and frequency 
ranges.  
 
A FrequencySpecification can be either a FrequencyRange or a FrequencyGroup. 
The FrequencyRange class is a subclass of the ParamRange class (Section 3.3) so it has a 
min value representing the lower bound of the range, a max value representing the upper 
bound of the range and a unit value. The unit value is restricted to the class 
FrequencyUnit. FrequencyRange is defined as follows: 

(deftemplate FrequencyRange 
      (slot id)  
      (slot boundBy)  
      (slot max)  
      (slot min)  
      (slot unit)  
) 
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Multiple FrequencyRanges may be grouped together using a FrequencyGroup. It has a 
single property, members, which takes one or more FrequencyRanges or 
FrequencyGroups: 

(deftemplate FrequencyGroup 
      (slot id)  
 (multislot members) 
) 

A FrequencyBand is a subclass of FrequencyRange that may specify channel 
information within the band. A FrequencyBand may optionally specify a channel width 
for channels in the band. The channelWidth property specifies a Bandwidth class. The 
FrequencyBand may also optionally specify a channel number, startChannelNum, to 
start counting channels in that band. FrequencyBand is specified as follows: 
 
 
 

(deftemplate FrequencyBand 
      (slot id)  
      (slot boundBy)  
      (slot max)  
      (slot min)  
      (slot unit)  
      (slot channelWidth) 
      (slot startChannelNum) 
) 

 
Similarly, Channel is a subclass of FrequencyRange that specifies a specific channel in a 
band. In addition to specifying the frequency range of the band, it optionally specifies a 
channel number for the channel. Channel is specified as follows: 

(deftemplate Channel 
      (slot id)  
      (slot boundBy)  
      (slot max)  
      (slot min)  
      (slot unit)  
      (slot channelNum) 
) 

 
In addition to specifying classes with frequency ranges, the frequency ontology includes 
classes that specify single frequencies. The first is the Frequency class that is a subclass 
of the Param class (Section 3.3). It has a magnitude of the frequency and a unit value 
that is restricted to be a FrequencyUnit. Frequency is defined as follows: 

(deftemplate Frequency  
      (slot id)  
      (slot boundBy)  
      (slot magnitude)  
      (slot unit)  
) 

 
The Bandwidth class is similarly defined as a subclass of Param, except it specifies a 
bandwidth. It is defined as follows: 

(deftemplate Bandwidth  
      (slot id)  
      (slot boundBy)  
      (slot magnitude)  
      (slot unit)  
) 
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This ontology may be extended in the future to include additional concepts such as 
specifying frequencies by a center frequency and bandwidth in addition to the start and 
stop frequencies above. 
 
3.7 Region Description 
 
This ontology specifies some foundation classes to define geographic areas, locations, 
and distances. 
 
A GeographicSpecification is either a GeographicArea or a GeographicRegion. A 
GeographicArea is a subclass of ParamObj. It represents a named area as it has no 
properties defining an area. It is intended to be a parent class for more specific area 
classes, however it may be used to name areas that have well known regulatory meaning. 
A GeographicArea is simply defined as: 

(deftemplate GeographicArea 
      (slot id)  
      (slot boundBy)  
) 

A GeographicRegion is a group of one or more GeographicAreas or 
GeographicRegions. The included regions and areas are specified using the 
includesArea property as specified below: 

(deftemplate GeographicRegion 
      (slot id)  
 (multislot includesArea) 
) 

Currently two subclasses of GeographicArea are included in the ontology, a 
CylindricalArea and SphericalArea. A CylindricalArea defines a cylinder of space 
specified by the properties: centerAt–the geographic coordinate of center of the 
cylinder, heightOf – the height of the cylinder, and radiusOf–the radius of the cylinder. 
These properties specify a GeographicCoordinate and a Radius, respectively. 
CylindricalArea is specified as follows: 

(deftemplate CylindricalArea 
      (slot id)  
      (slot boundBy)  
      (slot centerAt) 
      (slot heightOf) 
      (slot radiusOf) 
) 

A SphericalArea defines a sphere in space. As with CylindricalArea it specifies the 
space with the properties centerAt and radiusOf. Additionally it has the optional 
property of altitudeOf that specifies the altitude of the sphere's center. altitudeOf 
specifies an Altitude parameter. SphericalArea is specified as follows: 

(deftemplate SphericalArea 
      (slot id)  
      (slot boundBy)  
      (slot centerAt) 
      (slot radiusOf) 
      (slot altitudeOf) 
) 

Future versions of this document may include additional geographic areas such as a 
polygonal area that defines a polygon as an ordered list of geographic coordinates. 
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A geographic coordinate is specified with the GeographicCoordinate class. It has two 
properties, longitude and latitude, that specify the longitude and latitude of the 
coordinate, respectively. The properties longitude and latitude have values specified 
in decimal format with north and east being represented by positive numbers and south 
and west using negative numbers. An example is provided in Section 6.1. 
GeographicCoordinate is specified as follows: 

(deftemplate GeographicCoordinate 
      (slot id)  
      (slot latitude) 
      (slot longitude) 
) 

In addition to GeographicAreas, this ontology provides several parameters related to 
distances. Distance is a subclass of the Param class (Section 3.3). It has a magnitude of 
the distance and a unit value that is restricted to be a DistanceUnit. Distance is 
defined as follows: 

(deftemplate Distance  
      (slot id)  
      (slot boundBy)  
      (slot magnitude)  
      (slot unit)  
) 

Currently three subclasses of Distance are defined: Radius, Height, and Altitude. 
These subclasses are defined the same as Distance and represent a radius, a height, and 
an altitude, respectively. 
 
3.8 Time Description 
 
The time ontology describes three forms of time: time intervals, time instants, and time 
durations. 
This ontology depends on the DateTime class that specifies a single date and time. 
DateTime is specified as follows: 

(deftemplate DateTime 
      (slot id)  
      (slot tdyear) 
      (slot tdmonth) 
      (slot tdday) 
      (slot tdhour) 
      (slot tdminute) 
      (slot tdsecond) 
      (slot tdusecond) 
) 

Each property takes an integer value that represents a calendar year, calendar month (1 = 
January ... 12 = December), day of the month, hour (24 hour time), minute, second, and 
microsecond respectively. 
 
A TimeInstant is a moment in time defined by a date and a time. TimeInstant is a 
subclass of both DateTime and ParamObj (Section 3.3) and inherits all properties from 
both. 
 
A TimeInterval is a ParamObj that defines a range of time that occurs between instants 
of time. A TimeInterval has two properties: starttime that specifies a DateTime that 
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marks the beginning of the time range and endtime that specifies a DateTime that marks 
the end of the time range. TimeInterval is defined as: 

(deftemplate TimeInterval 
      (slot id)  
      (slot boundBy)  
      (slot starttime) 
      (slot endtime) 
) 

Finally, a parameter TimeDuration defines an elapsed amount of time. TimeDuration is 
a subclass of the Param class (Section 3.3). It has a magnitude of the elapsed time and a 
unit value that is restricted to be a TimeUnit. TimeDuration is defined as follows: 

(deftemplate TimeDuration  
      (slot id)  
      (slot boundBy)  
      (slot magnitude)  
      (slot unit)  
) 

This ontology may be extended further to better support a formal temporal calculus, 
express time zones, and support ISO standard representation of dates and times 
[ISO8601].  It may also be extended to support policies that specify additional time 
statements such as “on Mondays” or “on the last day of a month”. This ontology may be 
partially replaced with the OWL Time ontology [DAMLOT] in the future. 
 
3.9 Device Description and Capabilities 
 
The device ontology is used to define a device that can be specified in a device 
description, device capabilities, and parameters that relate to the device and its 
measurements. 
 
A device is defined by both its device type and capabilities. DeviceTyp defines the type 
of XG device. Device types are individuals of the class DeviceTyp, which is defined with 
no properties as: 

(deftemplate DeviceTyp  
      (slot id)  
) 

A device’s capabilities are defined in the class DeviceCap. DeviceCap has three 
parameters that are used to define the device capabilities. hasPolicyDefinedParams is 
one or more parameters that an XG device must be able to understand and bind in order 
to process a set of policy rules. hasPolicyDefinedBehaviors similarly lists one or more 
processes that an XG device must be able to ground in order to process the set of policy 
rules. hasDeviceCapabilities states one or more capabilities that the device must have 
to process the set of policies. A list of capabilities will be defined in future versions of 
this document. DeviceCap is defined as: 

(deftemplate DeviceCap  
      (slot id)  
 (multislot hasDeviceCapabilities) 
 (multislot hasPolicyDefinedParams) 
 (multislot hasPolicyDefinedBehaviors) 
) 

The device ontology includes regulatable parameters and processes that are related to the 
device. The parameters and processes currently in the ontology are representative of 
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some of the parameters and processes that will be part of the ontology. They are not a 
complete set and will likely be expanded in future versions of this document. 
 
The parameters currently included in the ontology are: 

• NumChannels – A class that defines the number of channels a device may use as 
part of a policy. This class is a subclass of Count defined in Section 3.12. 

• ChannelNum – A class that defines a specific channel number to use. ChannelNum 
is a subclass of Param (Section 3.3) with a magnitude of the channel number and 
a unit value restricted to NoUnit. 

• SignalType – A class defining the type of a signal (e.g., TV signals such as 
NTSC, PAL, DTV). SignalType is a subclass of ParamObj (Section 3.3) with no 
further restrictions. 

• Leakage – A class that specifies the amount of signal that may leak outside of the 
transmission band. Leakage is a subclass of Param with a magnitude of the 
percent leakage and a unit value restricted to Percent. 

 
The processes currently defined are: 
 

• Sensing – A class that specifies a process that retrieves data from sensing. 
Sensing is a subclass of Process (Section 3.4). 

3.10 Environment and Device State 
This ontology is a placeholder to describe the state of the environment and the XG radio. 
Only those parameters related to environment and device state that are known to, and can 
be regulated by, policy are of interest. An example is a low spectrum usage area such as a 
rural area. Other examples of parameters that may be included in this ontology include: 
current weather (e.g., precipitation, wind-speed, temperature), spectral maps as measured 
by the XG radio, and neighbors of the radio within a network.  
 
This ontology will be developed in future versions of this document. 

3.11 System-Dependent Extensions 
The XG policy language must support system-specific extensions that will be used to 
define system policy. This ontology will include any classes necessary to support the 
definition of system-specific policy. Any parameters that are not directly of interest to 
regulatory bodies, but are of concern to system performance, such as battery management 
are also appropriate for inclusion here. For example, in the case of tactical policy, it will 
be useful to include a description of the military structure in this ontology.  
This ontology will be developed in future versions of this document. 

3.12 Physical Quantities 
This ontology describes physical quantities with scope more general than their use within 
spectrum policy.  Specific parameters based on physical quantities that have a richer 
structure in the spectrum policy context (e.g. frequency band classifications) are treated 
in more detail in the respective XG policy language ontologies (e.g. frequency, time, and 



 

 188

region ontologies). The quantities that are currently in this ontology are only a 
representative set—a more extensive set of physical quantities (based on the SI system of 
units, for example) will be included in future versions of this document. 
 
Some quantities currently defined are: 
 

• Field Strength – The class FieldStrength defines the field strength quantity. 
FieldStrength is a subclass of Param (Section 3.3) with unit value restricted to 
FieldStrengthUnit. 

• Power Spectral Density – The class PowerSpectralDensity defines the power 
spectral density quantity. PowerSpectralDensity is a subclass of Param with 
unit value restricted to PSDUnit. 

• Power – The class Power defines the power quantity. Power is a subclass of Param 
with unit value restricted to PowerUnit. 

• Count – The class Count defines a counted quantity. Count is a subclass of Param 
with unit value restricted to NoUnit. 

3.13 Units 
Parameter units are included as part of the XG policy language to support defining 
parameter values. A Unit class is defined and is subclassed for each family of units. 
The ontology currently contains the following units—a more complete set of units (e.g. 
based on the SI system, compound units) will be included in future versions of this 
document. 
 

Unit Class 
Instances 

NoUnit 
None 

FrequencyUnit 
Hz kHz MHz GHz THz 

FieldStrengthUnit 
uVperm mVperm Vperm dBuVperm 

DistanceUnit 
mm cm m km mi Nmi 

DecibelUnit 
dB 

PowerUnit 
uW mW W kW MW dBW dBm 

PercentUnit 
Percent 

TimeUnit 
nsec usec msec sec minute hr day wk mon yr 

PSDUnit 
nWperHz, uWperHz, mWperHz, WperHz, dBmperHz 
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4 Policy Processing 
In this section we describe the rules for processing the policy facts defined in Section 3; 
these rules implement a part of the concept of operations described in Section 3.1.2. We 
focus on checking policy conformance of a proposed instance (that is, the function of the 
policy conformance reasoner in Figure 81), as opposed to techniques that search for 
policy-conformant solution instances that are suitable for a particular radio. Conformance 
checking takes as input selector, opportunity and usage constraint instances, and 
determines if they conform to policy. If only a subset of the instances is provided (for 
example only a selector instance), all policies that match the provided subset are returned. 
Note that a system strategy reasoner can make use of this capability provided by the 
policy conformance reasoner to search for solution instances in a system-dependent 
fashion.  For example, a set of usage descriptions provides a set of constraints that can be 
solved using a constraint solver. 
 
Figure 84 illustrates the conformance checking process, a three-step process that takes as 
inputs the policy instance and related facts, a selector instance, an opportunity instance, 
and a usage instance. Each instance contains parameter bindings (and process 
groundings) required to determine the validity of the corresponding description. Note that 
while we present this processing as sequential steps, an implementation of the policy 
conformance reasoner may process the selector, opportunity, and usage descriptions in 
parallel and combine the results at the end.  The policy rules in Section 4.3 below 
demonstrate this. 

Figure 84: Policy Conformance Checking Process 

In the first step, the conformance checking process takes the policy facts (PSF) and a 
selector instance (Sx). Given the selector instance and a selector description from PSF, we 
can assert that the two are disjoint, equivalent, or correlated. If Sx is correlated with a selector 
description, it must be decorrelated against that description so that the decorrelated 
instances are either disjoint or equivalent to the description. For further discussion, we will 
assume that Sx is already decorrelated with respect to the selector descriptions in PSF. 
The policy rules in PSF with selector descriptions that are equivalent to Sx are selected–we 
denote this set of selected policy rules by PSF\Sx, (where “\” is the notation for 
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“conditioned upon”). The system strategy reasoner may use this subset to create suitable 
opportunity instances. 
 
In the second step, the opportunity instance (Ox), if provided, is compared with all 
opportunity descriptions within PSF\Sx. If the instance satisfies an opportunity 
description for a selected policy rule, then depending on the value of the deny property of 
the policy rule, it is asserted that the instance is either valid or invalid with respect to the 
policy rule. If the validity of the instance is not contradicted by a rule of equal or greater 
precedence (after performing any additional meta-policy processing), then the usage 
constraints imposed by the rule applies. If the instance does not satisfy the description, 
then the instance is not germane, and the policy rule does not apply. We denote the subset 
of rules in PSF\Sx that apply by PSF\Sx\Ox.  
 
We note that the usage constraint descriptions in PSF\Sx\Ox are essentially the constraint 
expressions that limit usage by the radio, after taking into account the radio 
configuration, the situation of the radio, and the intended mode of operation. The 
constraints selection process is coarsely governed by the selector instance, and more 
finely by the opportunity descriptions that match.  
 
In the final step, the usage instance (Ux), if provided, is considered. For each usage 
constraint description Ui of a policy rule in PSF\Sx\Ox, we can assert either that Ux is or is 
not a solution of Ui, depending on whether or not the instance satisfies the description. If, 
for all usage constraints in PSF\Sx\Ox, Ux is a solution of the usage descriptions, then we 
can assert that the usage conforms to policy.  The radio is then permitted to use spectrum 
as defined by the set of instances Sx, Ox, and Ux. 
 
We note that the usage constraints apply conjunctively unless policy rules are organized 
into disjunctive groups using meta-policy. However, we do not describe how to handle 
processing of disjunctive groups of policies in this version of the RFC, but future 
versions may include rules for processing disjunctions. 
 
We also note that there is a condition-implies-action idiom that is implicit in the structure 
of the policy rules (and hence the use of the term rule). Matching the (selector and) 
opportunity description is equivalent to matching the condition of a rule, which in turn 
implies that the corresponding usage constraint description will apply, equivalent to the 
action part of the rule. This implicit idiom is enforced explicitly using rules in the 
following subsection. 
 
The processing of policy rules as described above (even taking into account precedence 
relations described later) to test for conformance can be done efficiently17. Furthermore, 
the processing of policy rules can be done in parallel to a large extent. A rigorous 
characterization of the expressiveness of the policy language and the complexity of 
processing meta-policies (as we develop them further) is a subject of future work. 
 
                                                 
17 In polynomial time in the number of policies (assuming the time to invoke processes grounded by the 
radio is bounded from above by a constant) 
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The following sections define the processing rules needed to implement this processing. 
 
4.1 Shorthand Notation for Rules 
 
In this section, we introduce a shorthand notation for describing rules as we previously 
defined a shorthand notation for facts.  Like the facts shorthand, the rules shorthand is 
based on an existing rule-based knowledge representation environment [CLIPS]. 
 
A rule is defined as follows: 

(defrule <rule-name> 
  [(declare (salience <salience>))] 
  <condition> 
  => 
  <action>) 

Salience is an optional declaration that provides rule priority.  If multiple rules have a 
condition that is satisfied, the rules with a higher salience will fire first.  If all the 
elements in the condition are satisfied then the expression in the action is executed. 
 
The condition is a set of one or more condition elements.  All the elements must be 
satisfied for the condition to be satisfied.  A condition element is one of: 
 

• The logical operators and, or, and not. Additionally, the operator exists.  Exists 
returns true if the fact provided is asserted, false otherwise. 

• A predicate.  A predicate must be called using the test element.  For example if 
we have a predicated named doSomething, then we can use it in the condition as 
follows 

      (test (doSomething ?arg1 ?arg2)) 

• A template pattern.  A condition may require information from a fact that has 
been asserted.  This information is obtained by using a template pattern.  The 
pattern states the known part of a fact and provides variables for unknown values 
that are to be obtained.  For example, if we want the name of a policy rule that has 
TRUE for the value of the deny slot, we would use the following template: 
   (PolicyRule (id ?pid) (deny TRUE)) 

• An assignment pattern.  An assignment pattern assigns a template pattern to a 
variable. This assigns the fact itself to the variable, not the name, of the fact.  An 
example of an assignment pattern is: 
   ?f1 <- (PolicyRule (id ?pid) (deny TRUE)) 

Variables are symbols prefixed with a ?, such as ?pid in the example above. 
 
The action is an expression similar to the XG expression described in Section 3.1.2, 
however it is not limited to a single expression and it is not enclosed in quotation marks. 
 
4.2 Instance Facts 
 
The XG radio provides a set of parameter bindings as input to the policy processing. The 
bindings take the form of a selector instance, an opportunity instance and a usage 
instance.  Each instance is represented by one or more facts described in this section. 
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A selector instance is defined in the SelInst class.  The SelInst class has four slots, 
freqDesc, regnDesc, timeDesc, and devcDesc, which are defined as the like named 
slots in the selector description described in Section 3.2.1. 
 

(deftemplate SelInst  
       (slot id)  
       (slot freqDesc)  
       (slot regnDesc)  
       (slot timeDesc)  
       (slot devcDesc) 
) 

An opportunity instance is defined in the OppInst class.  The instBind slot provides the 
names of one or more parameter bindings as described below. 
 

(deftemplate OppInst  
       (slot id)  
  (multislot instBind)  
) 

A usage instance is defined in the UseInst class.  As with the opportunity instance, the 
instBind slot provides the names of one or more parameter bindings.  Additionally, the 
usage instance contains the selector instance and opportunity instance associated with the 
usage instance in the selInst and oppInst slots, respectively. 

(deftemplate UseInst  
       (slot id) 
       (slot selInst) 
       (slot oppInst) 
  (multislot instBind)  
) 

The parameter bindings are stated using the InstBinding class.  This class associates a 
parameter name specified in the policy to a parameter value provided by the radio.  The 
slot paramName contains a parameter specified in the policy as being bound by the device.  
The paramValue slot contains a parameter with a value that has been bound by the 
device. 

(deftemplate InstBinding 
       (slot id) 
       (slot paramName) 
       (slot paramValue) 
) 

The rules also depend on a variety of other facts that are internal to the rule processing.  
They are used to indicate the result of some processing so that result is available to 
subsequent rules.  These facts will be explained as they are used to define rules below.  
 
4.3 Rules for Policy Processing 
 
This section presents a set of rules to perform policy conformance checking described 
above.  These rules are intended to illustrate the conformance checking process.  A policy 
conformance reasoner may use a different implementation.  We also note that a full 
implementation of a conformance reasoner will require additional rules such as rules to 
check completeness of the policy, rules to support the grounding of the predicates in the 
actions, and other implementation specific rules. 
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We start by looking at the rules for determining if an instance (selector, opportunity, and 
usage) conforms to policy.  We then look at each type of instance individually and how to 
determine if it satisfies policy.  Finally, we will look at some rules for processing meta-
policies. 
 
4.3.1 Policy Conformance 

 
These rules test whether or not an instance conforms to policy.  Barring any meta-policy 
rules to the contrary, if an instance does not satisfy the usage description of any policy 
rule for which it selects and is valid, then it does not conform to policy.  We can state a 
rule that implements this as: 
 
 

Rule in Shorthand Notation Remarks 
(defrule  
  instance-I-conform-to-policy 
 (declare (salience –100)) 

This must be done after conformance to selector, 
opportunity, and usage descriptions are tested. 

 (UseInst (id ?ui) 
   (selInst ?si) (oppInst ?oi)) 

Match a usage instance template. 

 (PolicyRule (id ?pid) 
   (useDesc ?ud)) 

Match a policy rule template. 

 (SelectPolicyRule 
   (polRule ?pid) (selInst ?si)) 

Check if the policy rule has been asserted to be 
selected by the instance. 

 (ValidOppPerPolRule 
   (polRule ?pid) (oppInst ?oi)) 

Check if the opportunity instance has been asserted 
to be valid per the policy rule. 

 (UseNotSatisfied 
   (inst ?ui) (desc ?ud)) 

Check if the usage instance has been asserted to not 
conform to the usage description in the policy rule. 

 =>  
 (assert  
    (InstanceDoesntConformToPol  
    (useInst ?ui)))) 

Assert that the usage instance does not conform to 
policy. 

An instance conforms to policy if its usage satisfies all the policy rules for which it is 
selected and valid.  The following rule fires after the test for non-conformance and 
verifies that non-conformance has not been asserted. 

Rule in Shorthand Notation Remarks 
(defrule  
   instance-conforms-to-policy 
 (declare (salience –110)) 

This must be done after non-conformance is tested. 

 (UseInst (id ?ui) 
   (selInst ?si) (oppInst ?oi)) 

Match a usage instance template. 

 (PolicyRule (id ?pid)) Match a policy rule template. 
 (SelectPolicyRule 
   (polRule ?pid) (selInst ?si)) 

Check if the policy rule has been asserted to be 
selected by the instance. 

 (ValidOppPerPolRule 
   (polRule ?pid) (oppInst ?oi)) 

Check if the opportunity instance has been asserted 
to be valid per the policy rule. 

 (not (exists  
      (InstanceDoesntConformToPol  
       (useInst ?ui)))) 

Check if the usage instance has been determined to 
not conform to policy. 

 =>  
 (assert (InstanceConformsToPol  
   (useInst ?ui)))) 

Assert that the usage instance conforms to policy. 

We will now develop the rules to test if a policy rule is selected and valid and if a usage 
constraint is satisfied. 
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4.3.2 Selecting Policy Rules 
 
This section describes the rules to select policy rules based on a supplied selector 
instance.  A policy rule is selected by a selector instance if the selector instance is 
equivalent to the selector description contained in the policy rule.  To illustrate: 
 
 
 

Rule in Shorthand Notation Remarks 
(defrule select-policyrules 
 (declare (salience –5)) 

 

 (SelInst (id ?si)) Match a selector instance template. 
 (PolicyRule (id ?pid) 
   (selDesc ?sd)) 

Match a policy rule template. 

 (SelEquivalent 
   (inst ?si) (desc ?sd)) 

Match a template indicating the selector instance 
and description are equivalent (set above). 

 =>  
 (assert (SelectPolicyRule  
   (polRule ?pid) (selInst ?si))) 

Assert that the policy rule is selected per the 
selector instance. 

 

In order to determine if a selector instance and description are equivalent, we need to 
check if the authority in the selector description has authority over the space stated in the 
selector instance and that each sub description (frequency, region, time, and device) in 
the instance intersects with the corresponding sub description in the selector description. 

 

For each of these comparisons, we can assert zero, one, or two facts. If the sub 
description from the selector instance and the selector description intersect, then we 
assert that the two descriptions are correlated.  If they are exact matches then we also 
assert that they are equivalent. Similarly when testing jurisdiction, we assert that the 
jurisdiction is correlated if the authority’s jurisdiction intersects the instance space, and 
we additionally assert that the authority has jurisdiction over the instance space if the 
space is completely contained within the authority’s jurisdiction. We can state a rule to 
test the jurisdiction and intersection of each sub descriptor in each selector 
instance/description pair as follows: 
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Rule in Shorthand Notation Remarks 

(defrule compare-SelInst 
 (declare (salience 0)) 

 

 (SelInst (id ?si) (freqDesc ?fi)  
   (regnDesc ?ri) (timeDesc ?ti)  
   (devcDesc ?di)) 

Match a selector instance template. 

 (SelDesc (id ?sd) (authDesc ?ad)  
   (freqDesc ?fd) (regnDesc ?rd)  
   (timeDesc ?td) (devcDesc ?dd)) 

Match a selector description template. 

 =>  
 (compareJurisdiction  
   ?ad ?fi ?ri ?ti ?di) 

Test if the authority in the description has authority 
over the frequency, region, time, and device 
presented in the selector instance.  If the authority 
has complete jurisdiction over the space, then assert 
AuthHasJurisdictionOver and 
AuthCorrelatedJurisdiction.  If it has overlapping, 
but not complete jurisdiction, assert only the latter. 

 (compareDesc ?fd ?fi) Test if the frequency instance and descriptor 
intersect.  Assert DescEquivalent and 
DescCorrelated if they are the same.  If they 
overlap, but are not the same, assert only the latter. 

 (compareDesc ?rd ?ri) Test if the region instance and descriptor intersect, 
assert as described above. 

 (compareDesc ?td ?ti) Test if the time instance and descriptor intersect, 
assert as described above. 

 (compareDesc ?dd ?di) Test if the device instance and descriptor intersect, 
assert as described above. 

 

 

The above rule compares each of the components of the selector instance and description 
and asserts any intersection. The following rule uses these assertions to determine if the 
selector instance is equivalent to the selector description.  They are equivalent if the 
authority in the description has jurisdiction over the frequency, region, time, and device 
in the instance, and the instance’s frequency, region, time, and device descriptions are 
equivalent to those in the selector description. 

 

 
Rule in Shorthand Notation Remarks 

(defrule equivalent-SelInst 
 (declare (salience 0)) 

 

 (SelInst (id ?si) (freqDesc ?fi)  
   (regnDesc ?ri) (timeDesc ?ti)  
   (devcDesc ?di)) 

Match a selector instance template. 

 (SelDesc (id ?sd) (authDesc ?ad)  
   (freqDesc ?fd) (regnDesc ?rd)  
   (timeDesc ?td) (devcDesc ?dd)) 

Match a selector description template. 

 (not (exists (SelEquivalent  
   (inst ?si) (desc ?sd)))) 

Check that this selector has not been processed (it 
may be asserted by selDecorrelate) 

 (AuthHasJurisdictionOver 
   (authDesc ?ad) (freqDesc ?fi)  
   (regnDesc ?ri) (timeDesc ?ti)  
   (devcDesc ?di)) 

Check that the authority has jurisdiction over the 
instance. 
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 (DescEquivalent 
   (desc ?fd) (inst ?fi)) 

Check if the frequency instance and descriptor have 
been asserted to be equivalent. 

 (DescEquivalent 
   (desc ?rd) (inst ?ri)) 

Check if the frequency instance and descriptor have 
been asserted to be equivalent. 

 (DescEquivalent 
   (desc ?td) (inst ?ti)) 

Check if the frequency instance and descriptor have 
been asserted to be equivalent. 

 (DescEquivalent 
   (desc ?dd) (inst ?di)) 

Check if the frequency instance and descriptor have 
been asserted to be equivalent. 

 =>  
 (assert (SelEquivalent (inst ?si)  
   (desc ?sd))) 

Assert that the selector instance and description are 
equivalent. 

 

If a selector instance isn’t equivalent to any selector descriptions, it may still be 
correlated with one. A selector instance is correlated with a selector description if all the 
components of the instance and description are correlated. 

 

A selector instance that is correlated with a selector description must be partitioned into a 
set of selector instances that are either equivalent to the selector description or disjoint 
with it. For example, decorrelation is required if a system needs to use spectrum that 
spans multiple bands, and the policy is organized such that each band must be considered 
separately to determine the policies that apply within that band.  The predicate 
selDecorrelate performs the partitioning and assert equivalence for any partition that is 
equivalent.  Decorrelation is illustrated in Figure 85.   

 

 

Figure 85: Decorrelation of a Selector Instance 

 

This rule tests for correlation and decorrelates the instance, if necessary: 
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Rule in Shorthand Notation Remarks 

(defrule correlated-SelInst 
 (declare (salience –5)) 

Must process these after equivalence has been 
determined. 

 (SelInst (id ?si) (freqDesc ?fi)  
   (regnDesc ?ri) (timeDesc ?ti)  
   (devcDesc ?di)) 

Match a selector instance template. 

 (SelDesc (id ?sd) (authDesc ?ad)  
   (freqDesc ?fd) (regnDesc ?rd)  
   (timeDesc ?td) (devcDesc ?dd)) 

Match a selector description template. 

 (not (exists (SelEquivalent  
   (inst ?si) (desc ?sd)))) 

Check that this selector has not been determined to 
be equivalent.  An equivalent selector will also be 
correlated, but we don’t need to decorrelate it. 

 (AuthCorrelatedJurisdiction 
   (authDesc ?ad) (freqDesc ?fi)  
   (regnDesc ?ri) (timeDesc ?ti)  
   (devcDesc ?di)) 

Check that the authority has overlapping 
jurisdiction with the instance. 

 (DescCorrelated 
   (desc ?fd) (inst ?fi)) 

Check for an assertion that the frequency instance 
and descriptor are correlated. 

 (DescCorrelated 
   (desc ?rd) (inst ?ri)) 

Check for an assertion that the region instance and 
descriptor are correlated. 

 (DescCorrelated 
   (desc ?td) (inst ?ti)) 

Check for an assertion that the time instance and 
descriptor are correlated. 

 (DescCorrelated 
   (desc ?dd) (inst ?di)) 

Check for an assertion that the device instance and 
descriptor are correlated. 

 =>  
 (selDecorrelate ?si ?sd)) A function that decorrelates the selector instance 

with respect to the selector description.  The 
function asserts SelEquivalent for any equivalent 
instances that result from the decorrelation. 

 
4.3.3 Satisfying Opportunity Descriptions 
 
This section describes the rules for determining if an opportunity instance satisfies an 
opportunity description and whether it is valid or invalid with respect to a policy rule.  
First we test each opportunity instance/description pair to see if the parameter bindings 
provided by the instance satisfy the XG expression provided in the description.  Note that 
although it is not illustrated here, only the opportunity descriptions included in selected 
policy rules need to be examined.  If the instance satisfies the description, we assert that 
fact. 
 
 

Rule in Shorthand Notation Remarks 
(defrule opportunity-satisfied-rule 
 (declare (salience 0)) 

 

 (SelInst (id ?si)) Match a selector instance template. 
 (OppInst (id ?oi)) Match an opportunity instance template. 
 =>  
 (oppSatisfied ?od ?oi)) Test if the XG expression contained in the 

opportunity description is satisfied by the values 
bound in the instance.  If it is satisfied, then assert 
OppSatisfied. 
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If an opportunity instance satisfies a description, it may represent either a valid or invalid 
opportunity depending on the value of the deny slot in a policy rule that contains that 
opportunity description. We create two rules. The first asserts that the opportunity is valid 
if deny is FALSE and the second asserts that the opportunity is invalid if deny is TRUE. 
 
 
 

Rule in Shorthand Notation Remarks 
(defrule valid-opp-per-policy-rule 
 (declare (salience 0)) 

 

 (OppInst (id ?oi)) Match an opportunity instance template 
 (PolicyRule (id ?pid) 
   (oppDesc ?od) (deny FALSE)) 

Match a policy rule template. Deny=FALSE 
indicates the rule represents a valid opportunity. 

 (OppSatisfied 
   (desc ?od) (inst ?oi)) 

Check if the opportunity has been determined to be 
satisfied. 

 =>  
 (assert (ValidOppPerPolRule  
   (polRule ?pid) (oppInst ?oi))) 

Assert that this opportunity is valid with respect to 
this policy rule. 

 
 

Rule in Shorthand Notation Remarks 
(defrule  
   invalid-opp-per-policy-rule 
 (declare (salience 0)) 

 

 (OppInst (id ?oi)) Match an opportunity instance template. 
 (PolicyRule (id ?pid) 
   (oppDesc ?od) (deny TRUE)) 

Match a policy rule template. Deny=TRUE 
indicates the rule represents an invalid opportunity. 

 (OppSatisfied 
   (desc ?od) (inst ?oi)) 

Check if the opportunity has been determined to be 
satisfied. 

 =>  
 (assert (InvalidOppPerPolRule  
   (polRule ?pid) (oppInst ?oi))) 

Assert that this opportunity is invalid with respect 
to this policy rule. 

 

Note that the opportunity may now be asserted to be valid and invalid with respect to 
different policy rules.  This conflict must be resolved by rules for processing the 
precedence meta-policy described later. 

 

4.3.4 Satisfying Usage Constraint Descriptions 
 
This section describes the rule for determining if a usage instance satisfies a usage 
description.  To accomplish this, we test each usage instance/description pair to see if the 
parameter bindings provided by the instance satisfy the XG expression provided in the 
description.  Note that although it is not illustrated here, only the usage descriptions 
included in selected policy rules that conclude the opportunity instance is valid need to be 
examined.  If the instance satisfies the description, we assert that fact. 
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Rule in Shorthand Notation Remarks 
(defrule usage-conformance 
 (declare (salience 0)) 

 

 (UseInst (id ?ui)) Match a usage instance template. 
 (UseDesc (id ?ud)) Match a usage description template. 
 =>  
 (matchUsage ?ud ?ui)) Test if the XG expression contained in the usage 

description is satisfied by the values bound in the 
instance.  Assert UseSatisfied if it is satisfied, 
UseNotSatisfied, otherwise. 

 
4.3.5 Meta Policy 
 
Meta-policy rules modify the processing rules described above by describing 
relationships between policy rules.  This version of this document describes only rules for 
processing precedence meta-policies. Rules for processing other meta-policies as well 
will be developed further in future revisions of this document. These meta-policy 
processing rules will address issues such as policy rule precedence under delegation of 
authority, precedence of derived policy rules, re-computation of derived rules under 
addition and revocation of policy rules, and disjunctive groups of policy rules. 
 
4.3.5.1 Precedence 
 
Precedence is used to determine which policy rules apply if multiple policy rules conflict. 
If a highest precedence policy rule whose opportunity description is satisfied by an 
instance concludes that the instance is invalid, then none of the other policy rules of equal 
or lower precedence apply. Otherwise (i.e., all rules of the highest precedence conclude 
the instance is valid), all policy rules that conclude the instance is valid (including policy 
rules with lower precedence) do apply.  
 
The following two rules implement precedence. The first retracts an assertion that an 
opportunity instance is invalid if the policy rule is strictly preceded by another policy rule 
that asserts the instance is valid.  
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Rule in Shorthand Notation Remarks 
(defrule  
   remove-invalid-preceded-by-valid 
 (declare (salience –10)) 

This must happen after all valid/invalid assertions 
are made. 

 (OppInst (id ?oi)) Match an opportunity instance template. 
 (PolicyRule (id ?pid1)) Match a policy rule template.  
 (PolicyRule (id ?pid2)) Match another policy rule template.  
 (ValidOppPerPolRule (polRule ?pid1) 
  (oppInst ?oi)) 

Check for an assertion that the first policy rule is 
valid with respect to the instance. 

 ?f1 <- (InvalidOppPerPolRule    
   (polRule ?pid2) (oppInst ?oi)) 

Check for an assertion that the second policy rule 
invalidates the instance and assign this fact to f1. 

 (PolPrecedes 
  (left ?pid1) (right ?pid2)) 

Check for an assertion that the first policy rule 
precedes the second. 

 (not (exists (PolPrecedes 
  (left ?pid2) (right ?pid1)))) 

Check that the second policy rule does not also 
precede the first (e.g., they have equal precedence). 

 =>  
 (retract ?f1)) Retract the fact f1 – the second policy rule is invalid 

with respect to the instance. 

The second retracts a valid assertion if the policy rule is preceded by another rule that 
asserts the opportunity instance is invalid. 

 
Rule in Shorthand Notation Remarks 

(defrule  
   remove-valid-preceded-by-invalid 
 (declare (salience –20)) 

This must occur after all policy rules that assert an 
instance is  invalid and are preceded are removed 
first. 

 (OppInst (id ?oi)) Match an opportunity instance template 
 (PolicyRule (id ?pid1)) Match a policy rule template.  
 (PolicyRule (id ?pid2)) Match another policy rule template.  
 (InvalidOppPerPolRule (polRule 
?pid1) (oppInst ?oi)) 

Check for an assertion that the first policy rule is 
invalid with respect to the instance. 

 ?f1 <- (ValidOppPerPolRule (polRule 
?pid2) (oppInst ?oi)) 

Check for an assertion that the second policy rule is 
valid with respect to the instance and assign this 
fact to f1. 

 (PolPrecedes (left ?pid1) (right 
?pid2)) 

Check for an assertion that the first policy rule 
precedes the second. 

 =>  
 (retract ?f1)) Retract the fact f1 – the second policy rule is valid 

with respect to the instance. 

 

Both rules depend on the PolPrecedes fact. In some instances, this fact will be stated 
explicitly in the policy, however, other cases will require the fact to be asserted. First, 
precedence is transitive. In order to ensure the above rule works, we may compute the 
transitive closure of the precedences. Second, precedence may be expressed as 
precedences between groups of policies.  If group Gy precedes group Gz then all the 
policy rules in Gy precede the rules in Gz.  
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5 Ontology Extension 
The XG policy language is expected to evolve over time as regulatory needs and device 
capabilities change. Perhaps the evolution of XGPL will eventually take place within the 
auspices of a standards body. Nonetheless, it may be necessary to extend the keywords 
supported by the language outside of the standards process. For example, the expression 
of system-specific policy may require parameters and processes that are outside of the 
regulatory domain and may not be included in the language. While it is not difficult to 
extend the policy language, an XG radio must also be able to understand the new 
keywords in order to use the policies that make use of the extensions. 
The XG policy language can be readily extended by adding process and parameter 
keywords. Furthermore, the use of OWL as the underlying representation enables the 
XGPL ontologies to be extended using OWL statements, and additional ontologies to be 
defined (or ones defined elsewhere to be imported) for use within this framework. In this 
section we will discuss how additional processes and parameters can be added, and how 
the XGPL ontologies can be extended significantly. 
 

5.1 Adding Keywords for Processes and Parameters 
 

Adding a new process is just a matter of defining a process fact with a new process type. 
For example, we can define a process named joinAreas, which takes two geographic 
areas as arguments and returns a geographic area that is the union of those two areas. 
This process could be defined as follows: 

(Process (id joinAreas)  
     (input GeographicArea1 GeographicArea2) 
     (output GeographicArea3)  
) 

A policy rule that uses this process must indicate in its device description that the XG 
radio must support the joinAreas process in order to use the rule. It follows that an XG 
radio that wishes to operate under any policy involving joinAreas must understand what 
it means (that is, implement the process and provide a grounding for it). 
 
Similarly, we can add a parameter keyword to the language provided the parameter type 
is already defined by the ontology. 

5.2 Adding New Parameter Types 
We can also add new parameter types to the language. Although we will continue to use 
the shorthand notation to illustrate this, we note that adding new types requires more 
familiarity with OWL features than we have required so far. In future revisions, we may 
enhance the syntax of the surface notation to make this more transparent to the policy 
writer by, for example, the use of a native parameter type declaration within the XGPL 
ontologies. 
 
If the new parameter type to be added is either a scalar quantity that is specified using a 
magnitude and a unit or a quantity with a continuous range of scalar values specified 
using the minimum and maximum of the range and a unit, then we can add the new 
parameter by subclassing Param or ParamRange respectively. New parameters that do not 
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conform to the structure of Param or ParamRange can extend the more general ParamObj 
class or its subclasses. 
For example, we can create a new parameter, Bandwidth, as follows: 

(owl:Class (id Bandwidth) 
  (rdfs:subClassOf Param)) 

This new class will inherit the slots magnitude and units from Param.  It is likely that 
we will specify additional OWL statements that restrict the units to frequency units (not 
shown here for brevity). A corresponding deftemplate and symbol mappings may also be 
defined for use with the shorthand notation, either manually or using an automated tool. 

(deftemplate Bandwidth 
  (slot magnitude) 
  (slot units)) 

5.3 Extending the XGPL Ontologies 
In the previous section we discussed how new parameter types can be added to the 
language by using OWL statements. OWL statements can be used to extend the language 
in significant ways over and above adding new types of parameters. Suppose we wish to 
extend the language in order to specify policy within a military context. One useful 
extension in this case would be to incorporate knowledge about military structure. 
 
For example, consider the following knowledge about the military structure. The soldier 
is a fundamental entity within the structure. There are typically 9-10 soldiers per squad, 
2-4 squads per platoon, 3-5 platoons per company, and 4-6 companies per battalion, etc. 
We can begin to represent that knowledge by using OWL statements in the shorthand 
notation as follows: 
 
 
No. Encoded Policy in Shorthand Notation Remarks 
1 (owl:Class (id Soldier)) Create a new class identified by Soldier. 
2 (owl:ObjectProperty  

 (id hasSoldier)) 
Create an object property called hasSoldier, 
indicating the property takes only individuals 
(objects not data-types) as values. 

3 (owl:Class (id Squad) 
 (rdfs:subClassOf R1 R2)) 

Create a class called Squad, which is described 
further by two restrictions R1 and R2 below. 
which limits 10 soldiers to a squad. 

4 (owl:Restriction (id R1)  
 (owl:onProperty hasSoldier) 
 (owl:maxCardinality 10)) 

The hasSoldier Property can take at most 10 
values. 

5 (owl:Restriction (id R2)  
 (owl:onProperty hasSoldier)  
 (owl:allValuesFrom Soldier)) 

The hasSoldier can take only values that are 
individuals of class Soldier. 

In the shorthand notation, this can be represented using the following (which hides a lot 
of the background knowledge): 

(deftemplate Soldier (slot id)) 
(deftemplate Squad (slot id)) (multislot hasSoldier)) 

Given these extensions, we can now go on to further define Unit Ids for individual squads 
and specify policy rules that enable certain squads to use certain frequency allocations at 
certain times with XG radios. Clearly, in order to use these extensions, the radio platform 
must ground its semantics appropriately (for example, it may provide information about 
the Unit ID to which it is assigned).          
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6 XGPL Policy Excerpts 
In this section we provide a collection of policy excerpts that illustrate some capabilities 
of the XG policy language. In the following subsections, we describe policy examples in 
English, and then provide annotated encodings of the examples in the XG policy 
language using the shorthand notation described in Section Error! Reference source not 
found..  
 
Note that these examples are notional (as with other examples in this document), and are 
intended only to illustrate the features of the language. Also note that the examples are 
brief excerpts and not complete or usable policies. They depend on, and relate to, other 
background facts that we have omitted for brevity. A complete annotated example is 
provided later in Appendix Error! Reference source not found.. 

6.1 Geographic-Based 
A policy rule can include geographic or spatial constraints in its selector, opportunity, or 
usage descriptions. For instance, we can set the regionDesc part of a policy rule’s 
selector to specify that the policy rule applies to a particular country or region. 
This example will define a selector description that applies to all locations within 30 
miles of the geographic coordinates: 42° 21’ 30”N, 71° 03’ 37” W. 
 
 
No. Encoded Policy in Shorthand Notation Remarks 
1 (SelDesc (id S1) 

 (authDesc US-FCC) 
 (freqDesc F1) 
 (regnDesc US-MA-BostonDesc) 
 (timeDesc Forever) 
 (devcDesc D1)) 

A selector description that specifies a region 
description named BostonDesc (Line 2) 

2 (RegionDesc (id US-MA-BostonDesc) 
 (region US-MA-Boston)) 

A region description with one region named 
Boston (Line 3) 

3 (CylindricalArea (id US-MA-Boston) 
 (centerAt BosCoord) 
 (heightOf H3) 
 (radiusOf R30)) 

A cylindrical area centered at BosCoord (Line 
4) with a radius of 30 miles (Line 5) and a 
height of 3 miles (Line 6) 

4 (GeographicCoordinate  
 (id BosCoord) 
 (latitudeOf 42.358333) 
 (longitudeOf –71.060278)) 

A geographic coordinate in decimal form 

5 (Radius (id R30) 
 (magnitude 30) (unit mi)) 

A parameter specifying the radius 

6 (Height (id H3) 
 (magnitude 3) (unit mi)) 

A parameter specifying the height 
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6.2 Time-Based 
A policy rule may involve time in its selector, opportunity, or usage descriptions. This 
section will illustrate two examples of policies involving time. 
 
First, a policy rule can be limited to a particular time period by setting the timeDesc part 
of a policy rule’s selector. This example will define a selector description that applies to 
just the year 2004. 
 
No. Encoded Policy in Shorthand Notation Remarks 
1 (SelDesc (id S2) 

 (authDesc US-FCC) 
 (freqDesc F1) 
 (regnDesc US) 
 (timeDesc Year2004desc) 
 (devcDesc D1)) 

A selector description that specifies a time 
description named Year2004desc (Line 2) 

2 (TimeDesc (id Year2004desc)  
 (time Year2004)) 

A time description that includes the time 
interval Year2004 (Line 3) 

3 (TimeInterval (id Year2004)  
 (starttime start2004)  
 (endtime end2004)) 

A time interval that starts at start2004 (Line 4) 
and ends at end2004 (Line 5) 

4 (DateTime (id start2004) 
 (tdyear 2004) (tdmonth 1) 
 (tdday 1) (tdhour 0) 
 (tdminute 0) (tdsecond 0)) 

A time structure that specifies the start of the 
year  2004: midnight January 1  

5 (DateTime (id end2004) 
 (tdyear 2004) (tdmonth 12)  
 (tdday 31) (tdhour 23) 
 (tdminute 59) (tdsecond 59)) 

A time structure that specifies the last second 
of the year  2004: December 31, 23:59:59. 

 
Additionally, time-based constraints may be expressed as part of the opportunity or usage 
constraint description. This example will define policy rules that limit the maximum 
continuous transmission on time to 1 second and the minimum off time to 100 msec. 
 
No. Encoded Policy in Shorthand Notation Remarks 
1 (PolicyRule (id P1) (selDesc S1  

 (deny FALSE) (oppDesc AnyOpp)   
 (useDesc U1)) 

For operation matching selector S1 (defined 
elsewhere) allow use subject to constraints 
specified in U1 (Line 5). 

2 (PolicyRule (id P2) (selDesc S1  
 (deny FALSE) (oppDesc AnyOpp)  
 (useDesc U2)) 

For operation matching selector S1 allow use 
subject to constraints specified in U2 (Line 6). 

3 (TimeDuration (id OnTime1)  
 (magnitude 1.0) (unit sec)) OnTime1 = 1 sec 

4 (TimeDuration (id OffTime1)  
 (magnitude 100.0) (unit msec)) OffTime1 = 100 msec 

5 
(UseDesc (id U) (xgx “(<=  
  Emission.OnTime OnTime1)”)) Emission.OnTime <= OnTime1 

6 (UseDesc (id U2) (xgx “(>=  
 Emission.OffTime OffTime1)”)) Emission.OffTime >= OffTime1 
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6.3 Device Capability-Based 
The XG policy language can express policies that apply to particular types of devices, or 
to devices with certain capabilities. For example, policies could be written so that devices 
with particular capabilities would have more opportunities to use the spectrum than those 
that do not have those capabilities. This can be expressed by specifying the device in the 
selector description, as well as in the opportunity and usage constraint descriptions. 
 
This example will define a selector description that applies to a radio that is certified as 
being XG version 1 compliant, which means that the device supports a certain set of 
parameter and process types. The parameters and processes must be described within the 
ontology, but their descriptions are not shown in the example. 
 
No. Encoded Policy in Shorthand Notation Remarks 
1 (SelDesc (id S1) 

 (authDesc US-FCC) 
 (freqDesc F1) 
 (regnDesc US) 
 (timeDesc Forever) 
 (devcDesc D1)) 

A selector description that specifies a device 
description named D1 (Line 2) 

2 (DeviceDesc (id D1)  
 (deviceTyp XGv1)  
 (deviceCap Profile1)) 

A device description that specifies a device 
with type XGv1 and capabilities defined in 
Profile1 

3 (DeviceTyp (id XGv1)) A device type named XGv1. The meaning of 
the name must be defined by the authority and 
grounded by the device. 

4 (DeviceCap (id Profile1) 
 (hasPolicyDefinedParams  
  EmissionFrequencyRange  
  CurrentLocation  
  MaxTransmitPower  
  PowerLeakage) 
 (hasPolicyDefinedBehaviors  
  Listen Sub Distance)) 
   

This defines the capabilities of a device.  This 
device must understand and be able to bind the 
parameters: EmissionFrequencyRange, 
CurrentLocation, MaxTransmitPower, and  
PowerLeakage and understand and be able to 
ground the processes: Listen, Sub, and  
Distance 
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6.4 Explicit Grouping of Policy Rules 
Policy rules can be grouped together by explicitly stating the policy rules that are part of 
the group. Other policy statements can then refer to this group as a whole. This example 
shows how the following three policy rules are grouped together: 
 

• Transmission is limited to the band 3100 MHz to 3300 MHz. 
• If the peak received power in sensing is less than –80 dBm, the maximum EIRP 

for transmission is 10 mW. 
• If the peak received power is greater than –80 dBm, the device must not 

transmit. 
•  

No. Encoded Policy in Shorthand Notation Remarks 
1 (PolicyGrp (id G1) 

 (polMembers P1 P2 P3)) 
A policy group consisting of policy rules P1, 
P2, and P3 

2 (PolicyRule (id P1) (selDesc S1)  
 (deny FALSE) (oppDesc AnyOpp)  
 (useDesc U1))  

For operation matching selector S1 (defined 
elsewhere), allow use subject to constraints 
specified in U1 (defined elsewhere), namely 
transmission in the 3100-3300MHz band. 

3 (PolicyRule (id P2) (selDesc S1)  
 (deny FALSE) (oppDesc O2)  
 (useDesc U2)) 

For operation matching selector S1, allow use 
of opportunity defined if O2 is satisfied (Line 
7), subject to usage constraints U2 (Line 8). 

4 (PolicyRule (id P3) (selDesc S1)  
 (deny TRUE) (oppDesc O3)  
 (useDesc DenyUse)) 

For operation matching selector S1, deny use 
of spectrum if O3 is satisfied (i.e. Peak power 
is greater than –80dBm). This rule is not 
needed if an overarching default policy that 
denies use has been specified. 

5 (Power (id Sense1)  
 (magnitude –80.0) (unit dBm)) 

A parameter specifying sensed power 

6 (Power (id Transmit1) 
 (magnitude 10.0) (unit mW)) 

A parameter specifying transmit power 

7 (OppDesc (id O2) (xgx “(<  
 PeakSensedPower Sense1)”)) 

PeakSensedPower < Sense1 

8 (UseDesc (id U2) (xgx “(<=  
 MaxTransmitPower Transmit1)”)) 

MaxTransmitPower <= Transmit1 
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6.5 Grouping of Policy Rules using Expressions 
Groups can also be formed using an expression that defines membership in the group. In 
this example, we create a group that consists of all policies with a selector description 
of S3 (where S3 is described the same way as selector S1 in the previous example, but 
requires the additional capability of detecting the XYZZY waveform). Then we create 
the following policy rule uses S3:   
 

• If peak received power is greater than –80dBm and less than –50dBm and the 
XYZZY waveform is not detected, then the maximum transmit EIRP is 10mW. 

 
No. Encoded Policy in Shorthand Notation Remarks 
1 (PolicyGrp (id G2) 

 (xgx “(selMatches S3)”)) 
A policy group consisting of all policy rules 
with a selector description that matches S3 

2 (PolicyRule (id P4) (selDesc S3)  
 (deny FALSE) (oppDesc O4)  
 (useDesc U4)) 

For operation matching selector S3 (defined 
elsewhere) allow use of opportunity defined if 
O4 is satisfied (Line 6), subject to usage 
constraints U4 (Line 7). 

3 (Power (id Sense1)  
 (magnitude –80.0) (unit dBm)) 

A parameter specifying sensed power 

4 (Power (id Sense2)  
 (magnitude –50.0) (unit dBm)) 

A parameter specifying sensed power 

5 (Power (id Transmit1)  
  (magnitude 10.0) (unit mW)) 

A parameter specifying transmit power 

6 (OppDesc (id O4) (xgx “(and 
 (> PeakSensedPower Sense1) 
 (< PeakSensedPower Sense2) 
 (invoke DetectWaveform1  
  Waveform XYZZY 
  Presence WFPresent) 
 (eq WFPresent BoolFalse))”)) 

PeakSensedPower > Sense1, and 
PeakSensedPower < Sense2, and 
The opportunity condition of accounting 
approval is determined by invoking the  
DetectWaveform1 process (that is specified 
elsewhere, and must be grounded by the radio) 
with the waveform set to XYZZY as an input 
parameter and  its presence or absence as an 
output parameter.  

7 (UseDesc (id U4) (xgx “(<= 
 MaxTransmitPower Transmit1)”)) 

MaxTransmitPower <= Transmit1 
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6.6 Precedence and Default Rules 
Precedence allows the policy administrator to specify how to resolve policy conflicts. It is 
also useful to specify restrictive default rules that can be relaxed later by specifying other 
rules that enable specific opportunities and constraints on the use of those opportunities. 
In this example, we specify a default rule P_default (placed within a group G_default) 
that denies all use if selector S2 is matched. Then, we specify a meta-policy that 
provides the policy group G2 (from the previous example) a higher precedence over the 
default rule, thereby enabling operation under the policy rules in G2. 
 
 
No. Encoded Policy in Shorthand Notation Remarks 
1 (PolicyRule (id P_default)  

 (selDesc S2) (oppDesc AnyOpp)  
 (useDesc DenyUse) (deny TRUE)) 

This defines a policy that denies 
emissions under all circumstances 
for selDesc S2. AnyOpp (description 

not shown) always evaluates to true. 
2 (PolicyGrp (id G_default)  

 (polMembers P_default)) Create a group that contains the 
policy rule P_default. 

3 (PolGrpPrecedes (left G2)  
 (right G_default)) The group G2 precedes the group 

G_default. This indicates that the 
policy rules that are members of G2 

have precedence over those in 
G_default, and therefore operation 

will be permitted subject to the rules 
in G2, overriding the default policy 

that does not allow any 
transmission. 
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6.7 Disjunction 
Disjunction of a list of policy groups can be used to specify that any one (or more) of the 
enumerated groups of policies can be applied at a time. In this example, we specify the 
disjunction of G1 and G2 (from earlier examples) and allow the radio to choose which 
group it wishes to operate under. 
 
 
No. Encoded Policy in Shorthand Notation Remarks 
1 (DisjunctGrps (polGroups G1 G2)) A meta-policy that states that the policy rules 

in group G1 are disjunct from the policy rules 
in group G2, so a radio needs to use the policy 
rules from only one of the groups.  
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6.8 Policies for Secondary Markets/Pass-through 
XGPL can express policies that enable a hierarchy of policy authorities and primaries to 
lease part of their allocated spectrum to other users. This includes support for a policy 
authority to delegate part of the spectrum that it has jurisdiction over to a sub-authority or 
a primary user. While the sub-authority is free to specify its own policies for the spectrum 
it has been delegated, clearly its policies may not violate any policies of the super-
authority unless explicitly permitted.  
 
XGPL enables specification of policies for both the super- and sub-authorities. The 
super-authority may use grouping and precedence rules to ensure that its policy rules 
have precedence over the sub-authority’s rules. With these meta-policy rules in place, the 
normal policy processing rules will ensure that rules from both authorities will be 
enforced if there are no conflicts; in the case of conflict, the super-authority’s rules 
prevail. 

In this example, there are two authorities, A1 and A2. A2 is leasing some of the 
frequencies it’s been allocated to XG devices. A1 and A2 have the following policies: 

• A1 specifies the maximum transmit power in A2’s spectrum is 10mW 
• A2 specifies that within its allocated spectrum XG devices must get approval 

from A2’s accounting servers before they may use the spectrum. 
• A2 specifies that within its allocated spectrum the maximum transmit power is 

15mW 
The end result of these policies is that an XG device may transmit up to 10mW in A2’s 
spectrum, if it has permission to do so from A2’s accounting server. 
 
We will start with the policy specified by authority A1: 
 
No. Encoded Policy in Shorthand Notation Remarks 
1 (SelDesc (id S4) 

   (authDesc A1) 
   (freqDesc F1) 
   (regnDesc Boston) 
   (timeDesc Forever) 
   (devcDesc Any)) 

A selector description that specifies A1 as the 
authority. 

2 (PolicyGrp (id PG1) 
 (polMembers P6)) 

A policy group consisting of policy rule P6 

3 (PolicyGrp (id PG2)  
 (xgx “(authMatches A2)”)) 

A policy group consisting of all policy rules 
with A2 as an authority. 

4 (PolGrpPrecedes  
 (left PG1) (right PG2)) 

A meta-policy that specifies the policy rules in 
group PG1 have precedence over the policy 
rules in group PG2. 

5 (PolicyRule (id P6) (selDesc S4)  
 (deny FALSE) (oppDesc AnyOpp)  
 (useDesc U6)) 

For operation matching selector S4 (Line 1), 
allow use subject to usage constraints U6 (Line 
7). 

6 (Power (id Transmit1)  
 (magnitude 10.0) (unit mW)) 

A parameter specifying transmit power. 

7 (UseDesc (id U6) (xgx “(<= 
 MaxTransmitPower Transmit1)”)) 

MaxTransmitPower <= Transmit1 

 
 



 

 211

Next, we present the encoding of the sub-policy specified by authority A2: 
 
No. Encoded Policy in Shorthand Notation Remarks 
1 (SelDesc (id S5) 

   (authDesc A2) 
   (freqDesc F1) 
   (regnDesc Boston) 
   (timeDesc Forever) 
   (devcDesc XG)) 

A selector description that specifies A2 as the 
authority. 

2 (PolicyRule (id P7) (selDesc S5)  
 (deny FALSE) (oppDesc O7)  
 (useDesc U7)) 

For operation matching selector S5 (Line 1), 
allow use of frequency band F1 if O7 is 
satisfied (i.e. Accounting approval), subject to 
usage constraints U7 (Line 5) 

3 (Power (id Transmit2) 
 (magnitude 15.0) (unit mW)) 

A parameter specifying transmit power. 

4 (OppDesc (id O7) (xgx “(and  
 (invoke CheckAccount  
   Location CurrLocation 
   Approval Approved) 
 (eq Approved BoolTrue))”)) 

The opportunity condition of accounting 
approval is determined by invoking the 
CheckAccount process (that is specified 
elsewhere, and must be grounded by the radio) 
with the current location as an input parameter 
and  the approval as an output parameter.  

5 (UseDesc (id U7) (xgx “(<=  
 MaxTransmitPower Transmit2)”)) 

MaxTransmitPower <= Transmit2 

 



 

 212

6.9 Public Safety/Interruptible18 Spectrum 
If XG devices were to be allowed to use public safety spectrum, then it is conceivable 
that regulatory policies would have to be in place that require the XG device to vacate the 
spectrum on a moment’s notice. One possible implementation could use beacons–a 
permit-use (“take it”) beacon and possibly a release (“leave it”) beacon–that signal 
whether or not the spectrum is available. 

In this example, we have a permit-use beacon at 823MHz. If it is heard, the radio may 
transmit; if not, the radio may not transmit. The parts of the policy that might specify 
constraints on the radio’s emissions are not shown in this excerpt, as this example is 
focused on how an opportunity can be described in this context. 

 
No. Encoded Policy in Shorthand Notation Remarks 
1 (PolicyRule (id P10) (selDesc S1)

 (deny FALSE) (oppDesc O10)  
 (useDesc U10)) 

For operation matching selector S1 (defined 
elsewhere), allow use of public safety spectrum 
if O10 is satisfied (i.e. beacon is heard), subject 
to usage constraints U10 (not shown here) 

2 (PolicyRule (id P11) (selDesc S1)
 (deny TRUE) (oppDesc O11)
 (useDesc DenyUse)) 

For operation matching selector S1, deny use 
of spectrum if O11 is satisfied (i.e. when 
beacon is not heard). This rule is not needed if 
an overarching default policy that denies use 
has been specified. 

3 (Boolean (id BeaconPresent1)) Parameter to indicate if beacon is present 
4 (Frequency (id BeaconFreq1)

 (magnitude 823.0) (unit MHz)) 
A parameter specifying the beacon frequency 

5 (SignalEncoding (id BeaconSig1)) A parameter specifying the beacon signal 
encoding. 

6 (OppDesc (id O10) (xgx “(and
 (invoke SenseSignal
  BeaconFreq BeaconFreq1 
  BeaconEnc BeaconSig1
  BeaconPresent BeaconPresent1))
 (eq BeaconPresent1 BoolTrue))”)) 

The opportunity condition of beacon is present 
as determined by invoking the SenseSignal 
process (that is specified elsewhere, and must 
be grounded by the radio) with the beacon 
frequency and beacon signal encoding as input 
parameters, and the Boolean variable 
BeaconPresent1 as output. 

7 (OppDesc (id O11) (xgx “(and
 (invoke SenseSignal
  BeaconFreq BeaconFreq1 
  BeaconEnc BeaconSig1
  BeaconPresent BeaconPresent1)
 (eq BeaconPresent1 BoolFalse))”))

An opportunity condition of beacon not present 
as determined by invoking the SenseSignal 
process as in the previous line. 

 
                                                 
18 The need for interruptible operation can arise in other scenarios as well. 
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6.10 Re-Use of Television Bands 
Suppose a regulatory authority decides to provide spectrum-sharing rights to XG users on 
a non-interference basis within bands originally allocated for television broadcasts.  
Initially, policies may be provided within limited geographical regions, and with 
temporal restrictions. Furthermore, these policies may be limited to a small number of 
channels, for example, selected UHF TV channels. As experience is gained with 
spectrum sharing policies and technologies through extensive experimentation and field-
testing, the policies and the technologies will both evolve.  Policies can be crafted to 
expand the opportunities available to sophisticated receivers capable of sub-noise 
detection of a DTV signal.  A notional policy example governing this scenario is 
provided below. Note that in this example, an XG radio with the ability to perform sub-
noise detection of DTV signals is given rights to transmit at a higher power spectral 
density as long as the DTV signal is detected below the noise threshold. 
 
In this example, the following policies apply to all TV bands: 

• Incumbent primaries in TV bands may broadcast NTSC, PAL, or DTV signals. 
• The XG radio may transmit on at most 6 MHz at a time. 

In this example, the following policies provide transmission rights for XG radios that 
are capable of operating in TV bands 60-69: 

• This policy expires at 00:00 hrs GMT on April 1, 2005.  
• The use of XG radios in these bands is limited areas governed by USA spectrum 

policies. 
• The XG radio sensor must sample at least once every 5 seconds. 
• The continuous on time of the XG radio must not exceed 1 second, the off time 

must not be less than 150 milliseconds, and duty cycle must not exceed 50% 
across a 2 second period. 

• The emission power of the XG radio must exceed -60dBm/Hz outside of the 
intended channel 

• If the XG radio uses power sensing (no sub-noise detection of DTV signals): 
• The XG Radio may transmit on channels where the received spectral 

power in the channel is less than -100dBm. 
• The peak power spectral density of the XG radio's emission shall not 

exceed -53 dBm/Hz. 
• If the XG radio uses the capability of sub-noise detection of DTV signals: 

• The XG radio may transmit on a channel in which the received DTV 
signal power is less than -107 dBm 

• The peak power spectral density of the XG radio's emission shall not 
exceed -53 dBm/Hz plus 1 dB for every 1 dB the received signal is below 
–107dBm up to a maximum of -40 dBm/Hz. 
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No. Encoded Policy in Shorthand Notation Remarks 
1 (SelDesc (id S9) 

 (authDesc US-FCC) 
 (freqDesc TVBands) 
 (regnDesc US) 
 (timeDesc Forever) 
 (devcDesc XG)) 

A selector description that specifies all 
television bands and all XG devices for an 
unlimited amount of time. For this example 
only, we assume all XG devices  

2 (SelDesc (id S10) 
 (authDesc US-FCC) 
 (freqDesc TV60-69) 
 (regnDesc US) 
 (timeDesc Until-040105) 
 (devcDesc XG)) 

A selector description that specifies only TV 
channels 60-69 and a time period from the 
present to April 1, 2005 for all XG devices. 

3 (SelDesc (id S11) 
 (authDesc US-FCC) 
 (freqDesc TV60-69) 
 (regnDesc US) 
 (timeDesc Until-040105) 
 (devcDesc XG-subnoise)) 

A selector description that specifies only TV 
channels 60-69 and a time period from the 
present to April 1, 2005 for all XG devices that 
can have the capability of sub-noise detection 
for DTV signals. 

4 (PolicyRule (id P1) 
 (selDesc S10) (oppDesc AnyOpp) 
 (deny FALSE)(useDesc U_TV60-69)) 

A policy rule that states that for selector S10 
(Line 2), transmission is limited to TV 
channels 60-69 (U_TV60-69 defined 
elsewhere). 

5 (PolicyRule (id P2) 
 (selDesc S9) (oppDesc AnyOpp) 
 (deny FALSE) (useDesc U_BW6MHz)) 

A policy rule that states that for selector S9 
(Line 1), transmission in any TV channel is 
limited to a 6 MHz bandwidth (U_BW6MHz 
defined elsewhere). 

6 (PolicyRule (id P3) (selDesc S10) 
 (oppDesc O_Sense5sec) 
 (deny TRUE) (useDesc DenyUse)) 

A policy rule that states that for selector S10 
(Line 2), there is no opportunity if sensing is 
done less than one every 5 seconds 
(O_Sense5sec defined elsewhere). 

7 (PolicyRule (id P4) 
 (selDesc S10) (oppDesc AnyOpp) 
 (deny FALSE) (useDesc U_OnTime1))

A policy rule that states that for selector S10 
(Line 2), on time must not exceed 1 
second(U_OnTime1 defined elsewhere). 

8 (PolicyRule (id P5)(selDesc S10)  
 (oppDesc AnyOpp) (deny FALSE)  
 (useDesc U_OffTime1)) 

A policy rule that states that for selector S10 
(Line 2), off time must not be less than 150 
msecs (U_OffTime1 defined elsewhere). 

9 (PolicyRule (id P6) (selDesc S10) 
 (oppDesc AnyOpp) (deny FALSE)  
 (useDesc U_DutyCycle50Pc2s)) 

A policy rule that states that for selector S10 
(Line 2), the duty cycle must not exceed 50% 
across a 2 s time period (U_DutyCycle50Pc2s 
defined elsewhere). 

10 (PolicyRule (id P7) (selDesc S10) 
 (oppDesc AnyOpp) (deny FALSE)  
 (useDesc U_Leakage-60dBmperHz)) 

A policy rule that states that for selector S10 
(Line 2), emissions outside the intended 
channel must not exceed -60 dBm/Hz 
(U_Leakage-60dBmperHz defined elsewhere). 

11 (PolicyRule (id P8) (selDesc S10) 
 (oppDesc O_Power-100dBm) 
 (deny FALSE) 
 (useDesc U_PSD-53dBmperHz)) 

A policy rule that states that for selector S10 
(Line 2), there is an opportunity if received 
power is less than -100dBM (O_Power-
100dBm defined elsewhere) and the emission 
is less than -53 dBm/Hz (U_PSD-53BmperHz 
defined elsewhere). 

12 (PolicyRule (id P9) (selDesc S11) 
 (oppDesc O_Power-107dBm) 
 (deny FALSE) 
 (useDesc U_PSD-53dBmperHzplus)) 

A policy rule that states that for XG radios 
have the capability of sub-noise detection 
(selector S11, Line 2), there is an opportunity 
if received power is less than -107dBM 
(O_Power-107dBm defined elsewhere) and the 
emission is limited as specified in the policy 
rule (Line 13). 
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13 (UseDesc (id U_PSD-53dBmperHzplus) 
 (xgx  
  "(and  
     (<= Emission.PSD  
       PSD-40dBmperMhz) 
     (<= Emission.PSD  
       (+ PSD-53dBmperHz 
         (- Pwr-107dBm  
           SensedSignal.Power)))))
   ")) 

A usage constraint stating: 
• Emission.PSD <= -40 dBm/Hz 
• Emission.PSD <= -53 dBm/Hz + -107dBm 

- SensedSignal.Power 

14 (PolicyGrp (id G1) 
 (polMembers P8)) 

A policy group containing policy rule P8. 

15 (PolicyGrp (id G1) 
 (polMembers P9)) 

A policy group containing policy rule P9. 

16 (DisjunctGrps (polGroups G1 G2)) A meta-policy that states that the policy rules 
in group G1 are disjunct from the policy rules 
in group G2, so an XG radio needs to either 
use the rule using sub-noise detection or use 
the rule without it. 
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7 Discussion 
In this section we discuss: 
 

• Related work: a brief discussion of related work that has influenced this 
document 

• Future Work: plans for refining and extending the concepts described in this 
document  (to be incorporated in future versions) 

• Summary: a summary of the major contributions of this document 
 

7.1 Related Work 
 
The policy language presented in this document was influenced by other work in the 
policy community and previous policy work done at BBN.  We describe that work in this 
section.  We note, however, that beyond the work discussed here, there is an extensive 
body of literature on languages for expressing policy, algorithms to interpret policy and 
check conformance, algorithms to determine optimal solutions for operation under policy 
constraints, and systems to manage, monitor, provision, and enforce policy in various 
domains. 
 
Mitola and Maguire [MITOL] investigated languages to represent policy for cognitive 
radios. They conclude that existing languages are not sufficient to express the knowledge 
required and developed the Radio Knowledge Representation Language (RKRL). 
However this work was performed before OWL was developed to provide a standards-
based solution to the problem. 
 
OWL’s precursor DAML has been used previously to represent policy to support 
logistics in KaoS Domain and Policy Services [KAOS]. It provides a source on the use of 
DAML and may be the source of some DAML tools. KaoS also contains an 
authorization/obligation model that may be useful for XG. 
 
As part of the DARPA-funded Policy Based Security Management [PBSM] project, BBN 
developed a policy language and a policy discovery and exchange protocol for IPsec 
communications. BBN’s work in this area led to the formation of the IPsec Policy [IPSP] 
working group in the IETF that influenced the Policy Framework [PCIM] working group. 
PCIM developed a general framework for policy that has been extended into various 
policy domains including security and quality of service. BBN also developed an XML-
based policy language for communicating mission-related security requirements among 
the dynamic membership of a coalition in the DARPA-funded Multi-Dimensional 
Security Policy Management and Enforcement [MSME] project. 
 
There are tradeoffs between the expressiveness and the processing complexity of a policy 
specification language. Griffin et al. [GJF03] address this issue by laying out the design 
principles of policy languages, and include rigorous analyses in the context of path vector 
protocols such as BGP.  
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Finally, the KeyNote/PolicyMaker system [KeyNote] describes an authority-delegation 
model that may be useful for delegation of authorization in XG and it provides insights 
on the issues for providing polynomial time conformance verifiability. 
 
7.2 Future Work 
 
This is an initial version of the XG policy language framework. We plan to refine and 
extend this work within the XG program, based in part on the feedback we receive from 
the community on this RFC.  In particular, the extensions may include: 
 
• Extensions to the XGPL ontologies to include a wider range of concepts used to express 

spectrum policy as well as background facts such as frequency band classifications 

• An ontology that describes the capabilities of a notional XG radio and that can be 
used to further illustrate policy agile radio behaviors within an XG environment 

• Basic tools and utilities for processing policy, including an interpreter, format 
converter, and a policy conformance reasoner 

• Additional examples that illustrate the use of the XG policy language 
• Tradeoff analyses of processing complexity versus expressive power for the XG 

policy language, as a guidance to policy writers on how to structure policy 
• Development of the policy processing logic, including rules for processing meta-

policies, handling of delegation of authority, and decorrelation of selector instances 
• Visualization and editing tools 
• Modeling better paradigms and idioms that fit better with concerns of policy-makers, 

for example, rights-limits or authorization-obligation patterns 
• Engage the regulatory community, radio vendors, wireless service providers, and standards 

organizations for further development and adoption of this promising technology 
Future revisions of this document may include the results of such work, as appropriate. 
 
7.3 Summary 
 
Radio devices are becoming more agile and programmable. The regulatory community is 
moving toward opening up opportunistic access to spectrum. These trends are poised to 
create a new era in wireless communications in which spectrum scarcity is no longer an 
issue and zero deployment time is a reality. This will have a great impact in both the 
commercial and military sectors. The XG program is pioneering the field of opportunistic 
spectrum access by developing key technologies that enable efficient and practical use of 
spectrum sharing across regulatory policy regimes. 
 
A key technological challenge in this environment is how to exploit the emerging agility 
of radio devices while retaining the ability to accredit them for policy conformance under 
all possible modes of operation, different operating environments, and variable regulatory 
jurisdictions. Hard coding policy sets into radios for all possible combinations will 
become impractical, as will the maintenance and management of accredited software 
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implementations for all the distinct combinations of policy sets and target platforms. 
Furthermore, as technology often gets developed in advance of policy, hard-coding 
policy into the radios can result in costly reengineering when the policies change.  
 
The key to addressing this problem is a framework that permits the control of radio 
behaviors in-situ using a machine-understandable policy language. In other words, radios 
must be policy-agile in addition to being hardware agile (e.g. frequency-agile, or 
waveform-agile). 
 
In this RFC, we propose a framework to express and process policy in order to enable 
radios to be policy-agile. We describe a concept of operations for how machine-
understandable policy can be created, as well as how a radio can make use of this 
encoded policy in order to be situationally adaptive to policy. Our framework enables the 
definition of a well-defined accreditation boundary, which is similar to the concept of a 
“trusted kernel” in secure systems. Critical policy conformance validation functions (that 
are within regulatory purview) are kept within this boundary.  At the same time, all 
system-dependent innovations, optimizations, and engineering tradeoffs are outside this 
boundary, providing a clean separation of concerns. 
 
We present a language to express policy, including the terms, their meanings, their 
interrelationships, and useful constructs and idioms. In our approach, the policy does not 
tell the radio what to do; rather, it specifies what constitutes conforming use of spectrum. 
A key feature of our approach is the use of a rule-based rather than a procedural 
approach. This approach enables the specification of policies in a manner that is both 
more scalable and more maintainable over time—because new parameters and policies 
can be added without modifying previously specified policies. 
 
Moreover, by using an extensible knowledge-representation framework, we have allowed 
for the language to evolve to meet the needs of policy concepts and technological 
concepts that are yet to be developed. 
 
The use of a standards-based representation, namely, the W3C’s OWL, will enable wider 
adoption, make a larger base of tools available, and leverage the benefits of decades of 
research and development efforts in the areas of markup languages for the World Wide 
Web and knowledge representation. 
 
As proof-of-concept, we present a number of examples that illustrate the capabilities of 
the language to express notional policies, including policies that are time-dependent and 
location-dependent, and policies that may address proposed spectrum-sharing concepts 
such as dynamic spectrum allocation based on sensing incumbent signals, secondary 
spectrum markets with sub-policy management, and the interruptible use of public safety 
spectrum. In the appendices, we present a complete example, and provide links to related 
OWL ontologies that are available online. 
 
We believe this is a promising approach that can enable the practical use of spectrum 
sharing technologies across regulatory policy regimes. We are in the early stages of the 
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evolution of this technology. We hope to engage the regulatory community, radio 
vendors, wireless service providers, and standards organizations for further development 
and adoption of this promising technology. 
 
To conclude, this document is a Request for Comments. We actively seek input and 
feedback from the community. 
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A  Terminology and Acronyms 
A list of definitions of terminology and acronyms used in this document is provided here 
for convenience. 

A.1  Glossary 
Binding: Associating a value with a parameter. The value of a parameter may not be 
known when the policy is written, for example, values that must be provided by an XG 
radio when the policy is processed. 
 
Fact: A statement of policy knowledge. Policy consists of a set of facts and associated 
rules for processing. 
 
Grounding: An implementation of process keywords in a policy. Many keywords in the 
policy language refer to a function that must be implemented by the radio. The XG radio 
platform must implement (i.e., provide a grounding for) these keywords to be able to use 
policies that refer to them. 
 
Instance: A set of bound parameters that can be used to determine the truth-value of a 
selector, opportunity or usage description. 
 
Machine Understandable Policies: Policies expressed in a form that allows for an XG 
radio to automatically (without requiring human intervention) read and “interpret” them. 
That is, there exists an automated procedure by which the implications of the constraints 
expressed by the policies are reflected in the actions of the radio. 
 
Meta-policy: A fact that states relationships between Policy-Rules. 
 
Ontology: The representation of terms in a vocabulary and their inter-relationships. 
 
Opportunity Description: The second fact in a Policy Rule; it provides an expression 
that is used to evaluate whether or not a given environment and device state represents an 
opportunity for the device to take action in accordance with the policy rule. 
 
Parameter: A fact that describes a policy concept that can be associated with a value. 
Parameters may be bound or unbound. 
 
Policy: a set of Facts and associate Rules that specify how a resource (spectrum in the 
case of this document) may be used. 
 
Policy Rule: A statement of policy consisting of a set of facts, but not the rules for 
interpreting. A policy rule has a Selector Description, an Opportunity Description and a 
Usage Description. 
 
Process: A fact that describes a function implemented by a radio. The description 
includes inputs and output parameters (analogous to a function prototype in languages 
such as C) and expressions constraining the relationship between the inputs and outputs. 
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Processes do not refer to operating system processes. A process may, for example, 
implement a k-ary relationship between parameters. An XG device must ground relevant 
process keywords with a function implementation that matches the description. 
 
Regulatory Policy: A policy that is specified, or likely to be specified by a regulatory 
authority (such as the FCC or the NTIA in the U.S.A.). Typically, these describe what 
constitutes valid use of spectrum rather than provide specific instructions to the device on 
what specific actions to take. 
 
Rule: A statement that describes the logic for interpreting and processing policy. Rules 
have the form: condition-implies-action. 
 
Selector Description: The first fact in a Policy Rule; it is used to filter policies to obtain 
the set that may apply to an intended operating environment or situation (described by 
frequency, time, region, and device characteristics). 
 
Spectrum Overlay: Using adaptive spectrum access techniques to identify underutilized 
spectrum and to avoid interference conflicts in time, frequency or space with competing 
spectrum users.  Unlicensed spectrum users have used these techniques (e.g., 802.11a 
Dynamic Frequency Selection) to share spectrum with incumbent licensed users. 
 
Spectrum underlay: Simultaneous use of spectrum in time and frequency by multiple 
uncoordinated emitters that takes advantage of modulation techniques such as spread 
spectrum or ultra-wideband to limit interference between systems.  Transmitter power 
output may be restricted to further limit the possibility of interference.  Typically at least 
one of the emitters is a spread spectrum signal with a large amount of processing gain to 
insure that the undesired signal power seen by an incumbent licensed user is below a 
designated threshold. 
 
System Policy: A policy representing dynamic, location specific, or capability based 
guidance, intended to constrain and influence XG radio behaviors, decisions, and actions. 
The system policy is likely specified by a system administrator and typically specifies 
inputs beyond those available in regulatory policy. It can provide specific strategies or 
instructions to the radio. 
 
Usage Description: The third fact in a Policy Rule; it provides an expression that 
constrains XG spectrum use behavior such as the emission permitted and the 
corresponding sensing requirements when using the opportunity described in the policy 
rule. 

A.2  Acronyms 
BGP:  Border Gateway Protocol 
BNF:  Backus-Naur Form 
CLIPS:  C Language Integrated Production System 
DTD:  Document Type Declaration 
DAML:  DARPA Agent Markup Language 
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DARPA:  Defense Advance Research Projects Agency 
DSP:  Digital Signal Processor 
DTV:  Digital Television (television standard) 
EIRP:  Effective Isotropic Radiated Power 
FCC:  Federal Communications Commission 
HTML:  Hyper-Text Markup Language 
IETF:  Internet Engineering Task Force 
KQML:  Knowledge Query and Manipulation Language 
KR: Knowledge Representation 
NTIA:  National Telecommunications and Information Administration 
NTSC:  National Television System Committee (television standard) 
OIL:  Ontology Inference Layer 
OWL:  Web Ontology Language 
PAL: Phase Alternating Line (television standard) 
RDF:  Resource Description Framework 
RF:  Radio Frequency 
RFC:  Request for Comments 
RKRL:  Radio Knowledge Representation Language 
SI:  International System of Units 
SOX:  Schema for Object-Oriented XML 
UML:  Unified Modeling Language 
URI:  Uniform Resource Identifier 
URL:  Uniform Resource Locator 
W3C:  World Wide Web Consortium 
XG:  DARPA's NeXt Generation Communications Program 
XGPL:  XG policy language 
XG-WG:  XG working group 
XML:  Extensible Markup Language 
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B  URLs for XGPL Ontologies, Examples, and Software 
B.1  XGPL Ontologies 
This section provides the URLs of the OWL ontologies that implement the XG policy 
language as defined in this document. The sections refer to the section that defines the 
ontology in this document. 
 

Section URL 
3.1 http://www.ir.bbn.com/projects/xmac/owl/2004/03/xgpl-rl.owl 
3.2 http://www.ir.bbn.com/projects/xmac/owl/2004/03/xgpl.owl 
3.3 http://www.ir.bbn.com/projects/xmac/owl/2004/03/xgpl-param.owl 
3.4 http://www.ir.bbn.com/projects/xmac/owl/2004/03/xgpl-proc.owl 
3.5 http://www.ir.bbn.com/projects/xmac/owl/2004/03/xgpl-auth.owl 
3.6 http://www.ir.bbn.com/projects/xmac/owl/2004/03/xgpl-freq.owl 
3.7 http://www.ir.bbn.com/projects/xmac/owl/2004/03/xgpl-regn.owl 
3.8 http://www.ir.bbn.com/projects/xmac/owl/2004/03/xgpl-time.owl 
3.9 http://www.ir.bbn.com/projects/xmac/owl/2004/03/xgpl-devc.owl 
3.10 http://www.ir.bbn.com/projects/xmac/owl/2004/03/xgpl-env.owl 
3.11 http://www.ir.bbn.com/projects/xmac/owl/2004/03/xgpl-sysext.owl 
3.12 http://www.ir.bbn.com/projects/xmac/owl/2004/03/xgpl-physq.owl 
3.13 http://www.ir.bbn.com/projects/xmac/owl/2004/03/xgpl-unit.owl 

B.2  Examples 
The notional policy examples described in this document (in Section 6 and Appendix C) 
are available online, encoded in XG policy language, both using the notational shorthand 
used in this document, as well as in OWL. They can be accessed at the following URL: 
http://www.ir.bbn.com/projects/xmac/owl/2004/03/rfc-examples 

B.3  Processing Rules 
We plan to make available the policy processing rules described in Section 4 also 
encoded using in the XG policy language. When completed, these will be available at the 
following URL: http://www.ir.bbn.com/projects/xmac/owl/2004/03/processing-rules  

B.4  Tools 
We plan to make available utilities to process the XG policy language, for example, 
programs to convert between the shorthand notation used in this document and the OWL 
representation of the XG policy language. When completed, these will be available at the 
following URL: http://www.ir.bbn.com/projects/xmac/owl/2004/03/tools 
C  Example 
In this appendix, we present the analysis and encoding of a notional policy. We analyze 
the example described in English and map it to our ontological framework. We then 
describe the encoding in our surface language and provide an instance that would satisfy 
the policy. 
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The full encoding of this example in the shorthand notation is available online at: 
http://www.ir.bbn.com/projects/xmac/owl/2004/03/rfc-examples/example-appA.xgsl 
 
 
The equivalent encoding of the same example in OWL is available online at: 
http://www.ir.bbn.com/projects/xmac/owl/2004/03/rfc-examples/example-appA.owl 

C.1  English Description 
 
This example applies to XG devices that are capable of operating in the 3.6-3.7 GHz 
band. The NTIA is the authority over this band in the US. Only emissions permitted by 
the following rules are allowed in this band: 
 
1. Transmissions shall be contained within 3.6 GHz to 3.7 GHz.  
2. The sensor must have a minimum look-through interval of 3 seconds. 
3. The peak power spectral density of the XG device shall not be more than 1 nW/Hz. 
4. The XG device may transmit only on channels where an incumbent signal “INCSIG” 

has been detected and the peak sensed power on each channel is less than –100 dBm.  
5. The device may transmit on at most 10 channels at the same time. 
6. No more than 1% of the power must be outside of the bandwidth of the intended 

frequency channel 
7. The continuous on time must not exceed 1 second and the off time must not be less 

than 100 msec. 

C.2  Ontological Analysis 
Here we present a line-by-line ontological analysis of the example. The first column 
contains English statements from above. The second column provides an ontological 
classification of the statement and any clarifying remarks. The final column cross-
references the facts in the encoding provided below. 
 
English Ontological Analysis X-ref 

This example applies to XG devices that are 
capable of operating in the 3.6-3.7 GHz band 

SelDesc:DevcDesc:XG 
SelDesc:FreqDesc:FrequencyRange 
Some of this information may be background 
knowledge. 

F13, 
F33, 
F36 

The NTIA is the authority over this band in the 
US. 

SelDesc:AuthDesc:US-NTIA 
SelDesc:RegnDesc:US 
This information may be background 
knowledge. 

F13, 
BGF 

Only emissions permitted by the following rules 
are allowed in this band: 

A default policy exists that denies use of this 
band if the rest of the policy rules do not apply. 

F10, 
F11, 
F12 

Transmissions shall be contained within 3.6 
GHz to 3.7 GHz.  

UseDesc:Emission.Band F1, F16
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The sensor must have a minimum look-through 
interval of 3 seconds. 

OppDesc:Sensor.LookThrough F6, F15

The peak power spectral density shall not be 
more than 1 nW/Hz. 

UseDesc:Emission.PeakPSD F2, F19

The XG device may transmit only on channels 
where the incumbent signal “INCSIG” has been 
detected and the peak sensed power on each 
channel is less than –100 dBm.  

UseDesc:SensedSignal.Type 
UseDesc:SensedSignal.Power 
UseDesc:SensedSignal.ChannelNum 
The policy also requires the notion of 
associating a channel with its corresponding 
sensed signal type and power. This must be 
represented as a process for which the XG 
device must have a grounding to be able to use 
this policy. This requirement is reflected in the 
device description. 

F8, 
F14, 
F17 

The device may transmit on at most 10 channels 
at the same time. 

UseDesc:Emission.Channels F7, F18

No more than 1% of the power must be outside 
of the bandwidth of the intended frequency 
channel 

UseDesc:Emission.PowerLeakage F5, F22

The maximum continuous on time must be 1 
second and the minimum off time must be 100 
msec. 

UseDesc:Emission.OnTime 
UseDesc:Emission.OffTime 

F3, 
F20, 
F4, F21

 
 
 
 
 

C.3  Encoding 
This section encodes the example and annotates the encoding. 
 

X-ref Encoding Remarks 

F1 (PolicyRule (id P_a) (selDesc S_c) 
 (deny FALSE) (oppDesc AnyOpp)  
 (useDesc U_Band)) 

Policy Rule P_a 

Each policy rule points to the 
selector, opportunity, and usage 
descriptions that comprise the 

rule. 

In this case Policy Rule P_a points 
to selector description S_c (F13), 
opportunity description AnyOpp 

(background fact) and, usage 
description U_band (F16).  

F2 (PolicyRule (id P_b) (selDesc S_c) 
 (deny FALSE) (oppDesc AnyOpp)  
 (useDesc U_PSD1)) 

Policy Rule P_b 
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X-ref Encoding Remarks 

F3 (PolicyRule (id P_c) (selDesc S_c) 
 (deny FALSE) (oppDesc AnyOpp) 
 (useDesc U_OnTime1)) 

Policy Rule P_c 

F4 (PolicyRule (id P_d) (selDesc S_c) 
 (deny FALSE) (oppDesc AnyOpp) 
 (useDesc U_OffTime1)) 

Policy Rule P_d 

F5 (PolicyRule (id P_e) (selDesc S_c) 
 (deny FALSE) (oppDesc AnyOpp)  
 (useDesc U_Leakage)) 

Policy Rule P_e 

F6 (PolicyRule (id P_f) (selDesc S_c) 
 (oppDesc O LookThru1) (deny TRUE)  
 (useDesc DenyUse)) 

Policy Rule P_f 

F7 (PolicyRule (id P_g) (selDesc S_c) 
 (deny FALSE) (oppDesc BelowSens1) 
 (useDesc U_MaxChn1)) 

Policy Rule P_g 

F8 (PolicyRule (id P_h) (selDesc S_c) 
 (deny FALSE) (oppDesc BelowSens1) 
 (useDesc U_Channel)) 

Policy Rule P_h 

F9 (PolicyGrp (id PG_conops)    
  (equalPrecedence TRUE)  
  (polMembers P_a P_b P_c P_d P_e 
              P_f P_g P_h)) 

This groups the policies defined 
in F1-F8 into a single group 

named PG_conops. 

F10 (PolicyRule (id P_default)  
 (selDesc S_c) (oppDesc AnyOpp)  
 (useDesc DenyUse) (deny TRUE)) 

This defines a policy that denies 
emissions under any 

circumstance that matches 
selDesc S_c 

F11 (PolicyGrp (id PG_default)  
 (polMembers P_default)) This creates a group that contains 

the policy rule P_default defined 
as F10. 

F12 (PolGrpPrecedes (left PG_conops)  
 (right PG_default)) The group PG_conops precedes 

the group PG_default. This 
indicates that the policy rules that 
are members of PG_conops have 

precedence over those in 
PG_default. In this case, that 

means that the device may 
transmit if it provides an instance 

that matches the policies in 
PG_conops, overriding the 

default policy that does not allow 
transmission. 

F13 (SelDesc (id S_c) 
 (authDesc US-NTIA)  
 (freqDesc XGConopsBand) 
 (regnDesc US) (timeDesc Forever)  
 (devcDesc XG)) 

The selector description for the 
policy rules. Device and 

Frequency descriptions are in 
facts F33 and F36. Others are 

background knowledge. 
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X-ref Encoding Remarks 

F14 (OppDesc (id BelowSens1)  
 (xgx “(and  
  (invoke SensedSignal1  
     ChannelNum1 
     SensedSignal.ChannelNum 
     SigType SensedSignal.Type  
     SigPower SensedSignal.Power) 
  (eq SensedSignal.Type   
      INCSIG_Signal) 
  (< SensedSignal.Power    
     SenseThreshold1))”)) 

This opportunity description 
requires three tests to be 

successful: 

1) The device invokes the process 
name SensedSignal1, using the 

value SensedSignal.ChannelNum 
as the value for input parameter 
ChannelNum (which parameters 
are input and which are output 

are defined in the process 
definition, which is background 

knowledge). The device binds the 
return values to 

SensedSignal.Type and 
SensedSignal.Power. 

2) SensedSignal.Type = 
INCSIG_Signal 

3) SensedSignal.Power < 
SenseThreshold1 

F15 (OppDesc (id O_LookThru1)  
 (xgx “(< Sensor.LookThrough  
          LookThru1)”)) 

Sensor.LookThrough < 
LookThru1 

F16 (UseDesc (id U_Band)  
 (xgx “(within Emission.Band  
               XGCBand)”)) 

The range Emission.Band is 
contained within the range 

XGCBand 

F17 (UseDesc (id U_Channel)  
 (xgx “(= Emission.ChannelNum  
        SensedSignal.ChannelNum)”))

Emission.ChannelNum = 
SensedSignal.ChannelNum 

F18 (UseDesc (id U_MaxChn1)  
 (xgx “(<= Emission.Channels   
           MaxChn1)”)) 

Emission.Channels <= MaxChn1 

F19 (UseDesc (id U_PSD1)  
 (xgx “(<= Emission.PeakPSD  
           PeakPSD1)”)) 

Emission.PeakPSD <= PeakPSD1 

F20 (UseDesc (id U_OnTime1)  
 (xgx “(<= Emission.OnTime  
           OnTime1)”)) 

Emission.OnTime <= OnTime1 

F21 (UseDesc (id U_OffTime1)  
 (xgx “(>= Emission.OffTime  
           OffTime1)”)) 

Emission.OffTime >= OffTime1 

F22 (UseDesc (id U_Leakage)  
 (xgx “(<= Emission.PowerLeakage  
           Percent_1)”)) 

Emission.PowerLeakage <= 
Percent_1 

F23 (FrequencyRange (id XGCBand)  
 (minValue 3.6) (maxValue 3.7)  
 (unit GHz)) 

XGCBand = 3.6-3.7 GHz 

F24 (Power (id SenseThreshold1)  
 (magnitude –100.0) (unit dBm)) SenseThreshold1 = -100 dBm 



 

 228

X-ref Encoding Remarks 

F25 (PSD (id PeakPSD1) (magnitude 1.0) 
 (unit nWperHz)) PeakPSD1 = 1 nW/Hz 

F26 (TimeDuration (id OnTime1)  
 (magnitude 1.0) (unit sec)) OnTime1 = 1 sec 

F27 (TimeDuration (id OffTime1)  
 (magnitude 100.0) (unit msec)) OffTime1 = 100 msec 

F28 (TimeDuration (id LookThru1)  
 (magnitude 3.0) (unit sec)) LookThru1 = 3 sec 

F29 (NumChannels (id MaxChn1)  
 (magnitude 10) (unit NONE)) MaxChn1 = 10 

F30 (Leakage (id Percent_1)  
 (magnitude 1.0) (unit Percent)) Percent_1 = 1% 

F31 (SignalType (id INCSIG_Signal)) 
INCSIG_Signal is a signal type 

F32 (ChannelNum  
  (id SensedSignal.ChannelNum)  
  (boundBy Device)) 
(SignalType (id SensedSignal.Type) 
  (boundBy Device)) 
(Power (id SensedSignal.Power)  
  (boundBy Device)) 
(TimeDuration 
  (id Sensor.LookThrough) 
  (boundBy Device)) 
(ChannelNum  
  (id Emission.ChannelNum) 
  (boundBy Device)) 
(NumChannels (id Emission.Channels) 
  (boundBy Device)) 
(PSD (id Emission.PeakPSD) 
  (boundBy Device)) 
(TimeDuration (id Emission.OnTime) 
  (boundBy Device)) 
(TimeDuration (id Emission.OffTime) 
  (boundBy Device)) 
(Leakage (id Emission.PowerLeakage) 
  (boundBy Device)) 
(FrequencyRange (id Emission.Band) 
  (boundBy Device)) 

Declares a set of variables that are 
bound to a value by the XG device. 

Each declaration contains a 
parameter type and a variable 

name. 

For example, PSD is the type of 
the variable named 
Emission.PeakPSD. 

In C, this would be similar to 
declaring: 

PSD Emission.PeakPSD; 

F33 (DeviceDesc (id XG) 
  (deviceTyp XGv1)  
  (deviceCap XGProfile1)) 

Device description XG has a 
device type Xgv1 (F34) and 

capabilities defined in XGProfile1 

(F35) 
F34 (DeviceTyp (id XGv1)) 

A named type (this could be 
background knowledge) 
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X-ref Encoding Remarks 

F35 (DeviceCap (id XGProfile1) 
 (hasPolicyDefinedParams  
    SensedSignal.ChannelNum  
    SensedSignal.Type  
    SensedSignal.Power  
    Sensor.LookThrough  
    Emission.Channels  
    Emission.PeakPSD  
    Emission.OffTime  
    Emission.OnTime) 
 (hasPolicyDefinedBehaviors  
    SensedSignal1)) 

Device capabilities. The device 
must know what these 

capabilities mean to be able to use 
this policy. 

HasPolicyDefinedParams lists the 
parameter names to which the 

device must be able to bind 
values. Similarly, 

hasPolicyDefinedBehaviors lists 
the processes the device must 

ground to implement the policy. 

F36 (FrequencyDesc (id XGConopsBand)  
 (frequencyRanges XGCBand)) The frequency description 

includes the frequency range 
XGCBand. 

 
 
C.4  Example Instance 
An instance that would satisfy this policy and be able to transmit is provided below, 
identifying parameter-value pairs corresponding to the selector, opportunity, and usage 
constraint descriptions in the policy example. 
 
Selector Instance: 
     Authority: US-NTIA 
     FrequencyRange: 3.6-3.7GHz 
     Time: Now through the next 10 minutes 
     Region: Boston 
     Device: XG 
 
Opportunity Instance: 
     SensedSignal.ChannelNum: 2  
     SensedSignal.ChannelNum: 5 
     SensedSignal.ChannelNum: 8 
     SensedSignal.ChannelNum: 15 
     SensedSignal.ChannelNum: 16 
     SensedSignal.Type: INCSIG_Signal 
     SensedSignal.Power: -110dBm 
     Sensor.LookThrough: 2.9 sec 
Usage Constraints Instance: 
     Emission.Band: 3.65-3.95GHz 
     Emission.ChannelNum: 2  
     Emission.ChannelNum: 5 
     Emission.ChannelNum: 8 
     Emission.ChannelNum: 15 
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     Emission.ChannelNum: 16 
     Emission.Channels: 5 
     Emission.PeakPSD: 1 nW/Hz 
     Emission.OnTime: .75 sec 
     Emission.OffTime: 100 msec 
     Emission.PowerLeakage: .75% 
 
 
 
 
 
 
 
D  BNF for the Shorthand Notation 
This section presents a BNF for the shorthand notation used in this document. This 
notation is based on an existing rule-based knowledge representation environment 
[CLIPS]. 

Data Types 
     <symbol>                 ::=  A symbol 
     <string>                 ::=  A string 
     <float>                  ::=  A float 
     <integer>                ::=  An integer 
     <boolean>                ::=  A boolean 
     <constant>               ::=  <symbol> | <string> 
                                   | <integer> | <float> 
                                   | <boolean> 
     <comment>                ::=  <string> 
     <*-name>                 ::=  <symbol> 
 
Variables and Expressions 
     <variable>               ::=  <single-variable>  
                                   | <multifield-variable> 
     <single-variable>        ::=  ?<variable-name> 
     <multifield-variable>    ::=  $?<variable-name> 
     <function-call>          ::=  (<function-name> <expression>*) 
     <expression>             ::=  <constant> | <variable>  
                                   | <function-call> 
     <action>                 ::=  <function-call> 
     <xgx-string>             ::=  “<expression” 
 
Constructs 
     <construct>              ::=  <defrule-construct> 
                                   | <deffacts-construct> 
                                   | <deftemplate-construct> 
 
Defrule Construct 
     <defrule-construct>      ::=  (defrule <defrule-name>  
                                    [<comment>] 
                                    [<declaration>] 
                                    <conditional-element>* =>  
                                    <action>*) 
     <conditional-element>    ::=  <pattern-CE>  
                                   | <assigned-pattern-CE>  
                                   | <or-CE> | <and-CE>  
                                   | <not-CE> | <test-CE>  
                                   | <exists-CE> 
     <pattern-CE>             ::=  (<deftemplate-name>  
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                                    <LHS-slot>*) 
     <assigned-pattern-CE>    ::=  <single-variable> <-  
                                   <pattern-CE> 
     <or-CE>                  ::=  (or     <conditional-element>+) 
     <and-CE>                 ::=  (and    <conditional-element>+) 
     <exists-CE>              ::=  (exists <conditional-element>+) 
     <not-CE>                 ::=  (not    <conditional-element>) 
     <test-CE>                ::=  (test   <function-call>) 
     <LHS-slot>               ::=  (<slot-name> <tconstraint>) 
     <tconstraint>            ::=  <constant> | <variable>  
     <declaration>            ::=  (declare (salience <integer>)) 
 
Deffacts Construct 
     <deffacts-construct>     ::=  (deffacts <deffacts-name>  
                                    [<comment>] <RHS-pattern>*) 
Fact Specification 
     <RHS-pattern>            ::=  (<deftemplate-name>  
                                    <RHS-slot>*) 
     <RHS-slot>               ::=  (<slot-name> <constant>+) 
 
Deftemplate Construct 
     ;; The deftemplate construct and slot-definition below are  
     ;; for creating predefined deftemplates; not exported to OWL. 
     <deftemplate-construct>  ::= (deftemplate <deftemplate-name> 
                                   [<comment>] <slot-definition>*) 
     <slot-definition>        ::=  (slot <slot-name>)  
                                  | (multi-slot <slot-name>) 

 
This section lists the functions supported by our ontology; the function names are 
reserved words and users must not define other symbols with any of these names. 
 

Variable assignment:   bind 
 
Control constructs:    if, while, foreach, apply, •oole 
 
Current time:          time 
 
Logic functions:       or, and, not, bit-or, bit-and, bit-not  
 
Math functions:        -, /, *, **, +, <, <=, <>, =, >, >=, 
                       abs, div, e, eq, eq*, exp, float, integer,  
                       log, log10, long, max, min, mod, neq, pi,  
                       random, round, sqrt 
 
String functions:      asc, lowcase, upcase, str-cat, str-compare,  
                       str-index, str-length, sub-string, sym-cat 
 
Manipulate facts:      assert, assert-string, retract,  
                       retract-string, fact-slot-value 
 
Create/delete a rule:  build, undefrule 
 
Multifield functions:  complement$, create$, delete$, explode$,  
                       first$, implode$, insert$, intersection$,  
                       length$, member$, nth$, replace$, rest$,  
                       subseq$, union$ 
 
Comparison functions:   <, >, >=, <=, = 
 
Interval functions:     before, after, within, contains,  
                        overlaps-start, overlaps-end,  
                        just-before, just-after, at-start-of,  
                        at-end-of, starts-with, ends-with, 
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                        overlaps 
 
Policy processing functions:  compareJurisdiction, compareDesc, 
                        SelDecorrelate, oppSatisfied, matchUsage 
 
Other functions:        invoke, alwaysTrue, alwaysFalse 
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E  Mapping of Shorthand Notation to OWL 
As discussed before, the notation used in this document is shorthand for OWL. This section provides an 
overview of the mapping from the shorthand to OWL. Additional details of the mapping will be 
provided with the documentation of the XGPL utilities mentioned in Appendix A.  

E.1  Symbols and Datatypes 
We will start by looking at the most basic elements in the mapping, datatypes and symbols.  Datatypes 
map to XML Schema Datatypes (xsd) as follows: 

• Integers – numbers without a decimal point – map to xsd:integer. 
• Floating point numbers – numbers with a decimal point or in scientific notation – map to 

xsd:double 
• Strings – literals in quotes – map to xsd:string. 
• Boolean – True and False – map to xsd:boolean. 

Symbols are names in the surface language that map to OWL URIs. If a symbol has a colon (“:”) in it, 
the part to the left of the colon is considered to represent the namespace of the symbol and the symbol is 
placed directly into the OWL with the appropriate markup.  If it doesn’t have a colon, then a namespace 
is assigned.  If the symbol is listed in the keyword mapping in Appendix D, then the OWL symbol from 
that mapping is used.  If the symbol is not in the mapping, then it is assumed to be defined within the 
scope of the file being converted. 
 
For example: 
 

Shorthand OWL 
(magnitude 10) <xgparam:magnitude> 

  <xsd:integer rdf:value=”10” /> 
</xgparam:magnitude> 

(unit mW) <xgparam:unit rdf:resource=”&xgunit;mW” /> 
(selDesc S1) <xgpl:selDesc rdf:resource=”#S1” /> 
(xyz:name “myname”) <xyz:name> 

  <xsd:string rdf:value=”myname” /> 
</xyz:name> 

E.2  Classes and Individuals 
Now we will map the definition of classes and individuals to OWL. 
 
A deftemplate in the shorthand notation represents the definition of an owl:Class. The <class-name> 
maps to the rdf:ID of the class. A deftemplate has zero or more slots and multislots defined. Each 
slot and multislot maps to a property of the class. Slots have a maximum cardinality of 1 and 
multislots may have a cardinality of greater than 1.  Note that this provides an incomplete definition of 
the class as it does not specify the range of the property or other constraints on it. Each deftemplate 
has a reserved slot named id. The value of id maps to the rdf:ID of an instance of the class. 
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For example: 

Shorthand OWL 
(deftemplate FrequencyDesc  
      (slot id) 
 (multislot frequencyRanges) 
) 

<owl:Class rdf:ID=”FrequencyDesc”> 
 <rdfs:subClassOf> 
  <owl:Restriction> 
   <owl:onProperty  
     rdf:resource=”#frequencyRanges” /> 
   <owl:minCardinality>1 
     </owl:minCardinality> 
  </owl:Restriction> 
 </rdfs:subClassOf> 
</owl:Class> 

(FrequencyDesc  
  (id MyFreqs)  
  (frequencyRanges Range1  
     Range2 Range3)) 

<xgpl:FrequencyDesc rdf:ID=”MyFreqs”> 
  <xgpl:frequencyRanges  
         rdf:resource=”#Range1” /> 
  <xgpl:frequencyRanges  
         rdf:resource=”#Range2” /> 
  <xgpl:frequencyRanges  
         rdf:resource=”#Range3” /> 
</xgpl:FrequencyDesc> 

E.3  Expressions 
Finally, we need to express predicates from the shorthand notation in OWL. Predicates are a Function 
with the property expressions that points to an ExpressionList.  Symbols and datatypes in the 
ExpressionList are represented by a Constant class, with a class for each type. 
For example: 

Shorthand OWL 
(<= Power2 Power1) <xgrl:lessThanOrEqual> 

  <xgrl:expressions> 
    <xgrl:ExpressionList> 
    <rdf:first> 
      <xgrl:URIConstant> 
        <xgrl:constval rdf:datatype=”&xsd;anyURI”> 
          #Power2 
        </xgrl:constval> 
      </xgrl:URIConstant> 
    </rdf:first> 
    <rdf:rest> 
    <xgrl:ExpressionList> 
    <rdf:first> 
      <xgrl:URIConstant> 
        <xgrl:constval rdf:datatype=”&xsd;anyURI”> 
          #Power1 
        </xgrl:constval> 
      </xgrl:URIConstant> 
    </rdf:first> 
    <rdf:rest rdf:resource=”&rdf;nil” /> 
    </xgrl:ExpressionList> 
    </rdf:rest> 
    </xgrl:ExpressionList> 
  </xgrl:expressions> 
</xgrl:lessThanOrEqual> 

E.4  Keywords 
This section provides the mappings from the shorthand notation keywords to their counterparts in the 
OWL ontologies.  They are grouped by ontology.  We provide a namespace for each ontology and then 
provide the keyword mappings. 
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xgrl = http://www.ir.bbn.com/projects/xmac/owl/2004/03/xgpl-rl.owl 

 
Shorthand OWL 
bind xgrl:bind 

time xgrl:time 

and xgrl:and 

bit-and xgrl:bitAnd 

bit-not xgrl:bitNot 

bit-or xgrl:bitOr 

not xgrl:not 

or xgrl:or 

apply xgrl:apply 

foreach xgrl:foreach 

if xgrl:if 

progn xgrl:progn 

while xgrl:while 

- xgrl:minus 

/ xgrl:divide 

* xgrl:multiply 

** xgrl:exponent 

+ xgrl:plus 

< xgrl:lessThan 

<= xgrl:lessThanOrEqual 

<> xgrl:notEqual 

= xgrl:equal 

> xgrl:greaterThan 

>= xgrl:greaterThanOrEqual 

abs xgrl:abs 

div xgrl:div 

e xgrl:e 

eq xgrl:eq 

eq* xgrl:equiv 

exp xgrl:ex 

float xgrl:float 

integer xgrl:integer 

log xgrl:log 
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log10 xgrl:log10 

long xgrl:long 

max xgrl:max 

min xgrl:min 

mod xgrl:mod 

neq xgrl:neq 

pi xgrl:pi 

random xgrl:random 

round xgrl:round 

sqrt xgrl:sqrt 

asc xgrl:asc 

lowcase xgrl:lowcase 

str-cat xgrl:strCat 

str-compare xgrl:strCompare 

str-index xgrl:strIndex 

str-length xgrl:strLength 

sub-string xgrl:subString 

sym-cat xgrl:symCat 

upcase xgrl:upcase 

assert xgrl:assert 

assert-string xgrl:assertString 

retract xgrl:retract 

retract-string xgrl:retractString 

fact-slot-value xgrl:factSlotValue 

build xgrl:build 

retract-rule xgrl:retractRule 

complement$ xgrl:multiComplement 

create$ xgrl:multiCreate 

delete$ xgrl:multiDelete 

explode$ xgrl:multiExplode 

first$ xgrl:multiFirst 

implode$ xgrl:multiImplode 

insert$ xgrl:multiInsert 

intersection$ xgrl:multiIntersection 

length$ xgrl:multiLength 

member$ xgrl:multiMember 
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nth$ xgrl:multiNth 

replace$ xgrl:multiReplace 

rest$ xgrl:multiRest 

subseq$ xgrl:multiSubseq 

union$ xgrl:multiUnion 

before xgrl:before 

after xgrl:after 

within xgrl:within 

contains xgrl:contains 

overlaps-start xgrl:overlapsStart 

overlaps-end xgrl:overlapsEnd 

just-before xgrl:justBefore 

just-after xgrl:justAfter 

at-start-of xgrl:atStartOf 

at-end-of xgrl:atEndOf 

starts-with xgrl:startsWith 

ends-with xgrl:endsWith 

overlaps xgrl:overlaps 

invoke xgrl:invoke 

alwaysTrue xgrl:alwaysTrue 

alwaysFalse  xgrl:alwaysFalse 
compareDesc xgrl:compareDesc 

compareJurisdiction xgrl:compareJurisdiction 

selDecorrelate xgrl:selDecorrelate 

oppSatisfied xgrl:oppSatisfied 

matchUsage xgrl:matchUsage 

useInst xgrl:useInst 

inst xgrl:inst 

desc xgrl:desc 

polRule xgrl:polRule 

DescEquivalent xgrl:DescEquivalent 

AuthHasJurisdictionOver xgrl:AuthHasJurisdictionOver 

DescCorrelated xgrl:DescCorrelated 

AuthCorrelatedJurisdiction xgrl:AuthCorrelatedJurisdiction 

SelEquivalent xgrl:SelEquivalent 

SelectedPolicyRule xgrl:SelectedPolicyRule 
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OppSatisfied xgrl:OppSatisfied 

ValidOppPerPolRule xgrl:ValidOppPerPolRule 

InvalidOppPerPolRule xgrl:InvalidOppPerPolRule 

UseSatisfied xgrl:UseSatisfied 

UseNotSatisfied xgrl:UseNotSatisfied 

UseCoveredByDisjunct xgrl:UseCoveredByDisjunct 

InstanceConformsToPol xgrl:InstanceConformsToPol 

InstanceDoesntConformToPol xgrl:InstanceDoesntConformToPol 
 
xgpl = http://www.ir.bbn.com/projects/xmac/owl/2004/03/xgpl.owl 
Shorthand OWL 
Authority xgpl:Authority 

DeviceDesc xgpl:DeviceDesc 

DisjunctGrps xgpl:DisjunctGrps 

InstBind xgpl:InstBind 

FrequencyDesc xgpl:FrequencyDesc 

OppDesc xgpl:OppDesc 

OppInst xgpl:OppInst 

PolGrpPrecedes xgpl:PolGrpPrecedes 

PolicyGrp xgpl:PolicyGrp 

PolicyRule xgpl:PolicyRule 

PolicySpec xgpl:PolicySpec 

PolPrecedes xgpl:PolPrecedes 

RegionDesc xgpl:RegionDesc 

SelDesc xgpl:SelDesc 

SelInst xgpl:SelInst 

TimeDesc  xgpl:TimeDesc 

UseDesc xgpl:UseDesc 

UseInst xgpl:UseInst 

authDesc xgpl:authDesc 

deny xgpl:deny 

devcDesc xgpl:devcDesc 

deviceCap xgpl:deviceCap 

deviceTyp xgpl:deviceTyp 

equalPrecedence xgpl:equalPrecedence 

freqDesc xgpl:freqDesc 
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frequencyRanges xgpl:frequencyRanges 

InstBind xgpl:instBind 

left xgpl:left 

oppDesc xgpl:oppDesc 

oppInst xgpl:oppInst 

polAdmin xgpl:polAdmin 

polGroups xgpl:polGroups 

polMembers xgpl:polMembers 

polRule xgpl:polRule 

region xgpl:region 

regnDesc xgpl:regnDesc 

right xgpl:right 

selDesc xgpl:selDesc 

selInst xgpl:selInst 

time xgpl:time 

timeDesc xgpl:timeDesc 

useDesc xgpl:useDesc 

xgx xgpl:xgx 
 
xgparam = http://www.ir.bbn.com/projects/xmac/owl/2004/03/xgpl-param.owl 

 
Shorthand OWL 
Parameter xgparam:Parameter 

PolicyParameter xgparam:PolicyParameter 

DeviceParameter xgparam:DeviceParameter 

Policy xgparam:Policy 

Device xgparam:Device 

Param xgparam:Param 

ParamRange xgparam:ParamRange 

ParamDecl xgparam:ParamDecl 

ParamObj xgparam:ParamObj 

boundBy xgparam:boundBy 

magnitude xgparam:magnitude 

maxValue xgparam:maxValue 

minValue xgparam:minValue 

unit xgparam:unit 
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xgproc = http://www.ir.bbn.com/projects/xmac/owl/2004/03/xgpl-proc.owl 

 
Shorthand OWL 
Process xgproc:Process 

input xgproc:input 

inputOpt xgproc:inputOpt 

output xgproc:output 
 
xgauth = http://www.ir.bbn.com/projects/xmac/owl/2004/03/xgpl-auth.owl 

 
Shorthand OWL 
PolicyAdministrator xgauth:PolicyAdministrator 

 
xgfreq = http://www.ir.bbn.com/projects/xmac/owl/2004/03/xgpl-freq.owl 
Shorthand OWL 
Bandwidth xgfreq:Bandwidth 

Channel xgfreq:Channel 

FrequencyBand xgfreq:FrequencyBand 

FrequencyGroup xgfreq:FrequencyGroup 

FrequencyRange xgfreq:FrequencyRange 

FrequencySpecification xgfreq:FrequencySpecification 

Frequency xgfreq:Frequency 

channelNum xgfreq:channelNum 

channelWidth xgfreq:channelWidth 

members xgfreq:members 

startChannelNum xgfreq:startChannelNum 
 
xgregn = http://www.ir.bbn.com/projects/xmac/owl/2004/03/xgpl-regn.owl 
Shorthand OWL 
Altitude xgregn:Altitude 

CylindricalArea xgregn:CylindricalArea 

Distance xgregn:Distance 

GeographicArea xgregn:GeographicArea 

GeographicCoordinate xgregn:GeographicCoordinate 

GeographicRegion xgregn:GeographicRegion 

Height xgregn:Height 
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SphericalArea xgregn:SphericalArea 

Radius xgregn:Radius 

RegionSpecification xgregn:RegionSpecification 

altitudeOf xgregn:altitudeOf 

centerAt xgregn:centerAt 

heightOf xgregn:heightOf 

includesArea xgregn:includesArea 

latitude xgregn:latitude 

longitude xgregn:longitude 

radiusOf xgregn:radiusOf 
 
xgtime = http://www.ir.bbn.com/projects/xmac/owl/2004/03/xgpl-time.owl 
Shorthand OWL 
DateTime xgtime:DateTime 

TimeSpecification xgtime:TimeSpecification 

TimeDuration xgtime:TimeDuration 

TimeInstant xgtime:TimeInstant 

TimeInterval xgtime:TimeInterval 

tdyear xgtime:tdyear 

tdmonth xgtime:tdmonth 

tdday xgtime:tdday 

tdhour xgtime:tdhour 

tdminute xgtime:tdminute 

tdsecond xgtime:tdsecond 

tdusecond xgtime:tdusecond 

starttime xgtime:starttime 

endtime xgtime:endtime 
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xgdevc = http://www.ir.bbn.com/projects/xmac/owl/2004/03/xgpl-devc.owl 
Shorthand OWL 
DeviceCap xgdevc:DeviceCap 

DeviceTyp xgdevc:DeviceTyp 

hasDeviceCapabilities xgdevc:hasDeviceCapabilities 

hasPolicyDefinedBehaviors xgdevc:hasPolicyDefinedBehaviors 

hasPolicyDefinedParams xgdevc:hasPolicyDefinedParams 

NumChannels xgdevc:NumChannels 

ChannelNum xgdevc:ChannelNum 

SignalType xgdevc:SignalType 

Leakage xgdevc:Leakage 

Sensing xgdevc:Sensing 
 
xgphysq = http://www.ir.bbn.com/projects/xmac/owl/2004/03/xgpl-physq.owl 
Shorthand OWL 
FieldStrength xgphysq:FieldStrength 

PSD xgphysq:PowerSpectralDensity 

Power xgphysq:Power 

Count xgphysq:Count 
 
xgunit = http://www.ir.bbn.com/projects/xmac/owl/2004/03/xgpl-unit.owl 
Shorthand OWL 
Unit xgunit:Unit 

NoUnit Xgunit:NoUnit 

NONE xgunit:None 

FrequencyUnit xgunit:FrequencyUnit 

Hz xgunit:Hz 

kHz xgunit:kHz 

MHz xgunit:MHz 

GHz xgunit:GHz 

THz xgunit:THz 

FieldStrengthUnit xgunit:FieldStrengthUnit 

uVperm xgunit:uVperm 

mVperm xgunit:mVperm 

Vperm xgunit:Vperm 

dBuVperm xgunit:dBuVperm 

DistanceUnit xgunit:DistanceUnit 

mm xgunit:mm 
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cm xgunit:cm 

m xgunit:m 

km xgunit:km 

mi xgunit:mi 

Nmi xgunit:Nmi 

DecibelUnit xgunit:DecibelUnit 

dB xgunit:dB 

PowerUnit xgunit:PowerUnit 

uW xgunit:uW 

mW xgunit:mW 

W xgunit:W 

kW xgunit:kW 

MW xgunit:MW 

dBW xgunit:dBW 

dBm xgunit:dBm 

PercentUnit xgunit:PercentUnit 

Percent xgunit:Percent 

TimeUnit xgunit:TimeUnit 

nsec xgunit:nsec 

usec xgunit:usec 

msec xgunit:msec 

sec xgunit:sec 

minute xgunit:min 

hr xgunit:hr 

day xgunit:day 

wk xgunit:wk 

mon xgunit:mon 

yr xgunit:yr 

PSDUnit xgunit:PSDUnit 

nWperHz xgunit:nWperHz 

uWperHz xgunit:uWperHz 

mWperHz xgunit:mWperHz 

WperHz xgunit:WperHz 

dBmperHz xgunit:dBmperHz 
 

 


