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 INTRODUCTION

 
 In this project we have worked towards a theory of representation and computation in 
decision- and game-theoretic models. In many domains, such as the ones faced by the 
military, or in e-commerce, task allocation (and other multi-agent protocols) is carried out 
in non-cooperative environments. Game theory deals with decision making in non-
cooperative environments, but ignores fault-tolerance and related computational issues. 
Conversely, most work done in computer science ignores the issue of decentralized 
decision making by self-interested parties. In order to effectively and efficiently address 
the problems such as task allocation, work in computer science and AI should be 
integrated with work in game theory. Naturally, this suggests major computational 
challenges that should be addressed as well.  
 
We have isolated several central and complementary lines of research, which are 
essential for establishing a general synthesized theory of representation and computation 
in decision and game-theoretic models, and made significant progress in each of those 
directions.  
 
1. Computational mechanism design: 
 
 An important aspect of our research concerns the use of auctions for efficient resource 
(or, symmetrically, task) allocation. This is an area we and others have worked on for 
several years now, and is becoming quite popular in computer science. Auctions fall 
under the umbrella of mechanism design in game theory, which is the art and science of 
designing interactions among agents that lead - by virtue of the agents following their 
own best interest - to certain desired outcomes. In an alternative view, mechanism design 
injects game-theoretic notations necessary for dealing with self-interesting agents into 
classical computational settings. 
 
1a. Fair mechanism design: Fair Imposition. [1] 
Traditional work in auction theory and economic mechanism design does not concentrate 
on whether the outcome is fair in any sense; the usual yardsticks are efficiency and 
revenue maximization (or cost minimization). We investigated this new direction, so that 
for example if the military decides to adopt a market mechanism to assign transportation 
tasks to civilian carriers then the outcome will be not only efficient but also fair.  We 
defined the problem precisely, present solution criteria for these problems (the central of 
which is called k-efficiency), and present both positive results (in the form of concrete 
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protocols) and negative results (in the form of impossibility theorems) concerning these 
criteria. 
 
 
1b. Fault-tolerant mechanism design. [2] 
Traditional work on mechanism design assumes that agents have perfect control over 
their actions and their success. In contrast, a long-standing interest in computer science is 
in controlling for failures of various kinds - a computer crashing, a communication link 
going down. We introduced the notion of Fault Tolerant Mechanism Design, which 
consists of injecting the computer science notion of fault tolerance into the standard game 
theoretic framework of Mechanism Design. Specifically, we defined the problem of task 
allocation in the context in which not only the agents' costs are private information, but 
so are their probabilities of failure. For several different instances of this setting we 
obtained technical results, including positive ones in the form of specific mechanisms 
with provable desired properties, and negative ones in the form of impossibility theorems. 
 
1c. Collusion in first-price auctions. [3] 
 
We introduced a class of mechanisms, called bidding clubs, which allow agents to 
coordinate their bidding in auctions. We modeled this setting as a Bayesian game, 
including agents’ choices of whether or not to accept a bidding club’s invitation. It turns 
out, that for this setting in first-price auctions there exists a Bayes-Nash equilibrium 
where agents choose to participate in bidding clubs when invited and truthfully declare 
their valuations to the coordinator. Furthermore, the existence of bidding clubs benefits 
all agents (including both agents inside and outside of a bidding club) in several different 
senses. 
 
 
1d. Practical job-scheduling mechanisms. [4] 
 
We considered the problem of online real-time scheduling of jobs on a single processor in 
an economic setting, in which each job is released to a separate, self-interested agent. The 
agent can then delay releasing the job to the algorithm, inflate is length, and declare an 
arbitrary value and deadline for the job, while the center determines not only the 
schedule, but also the amount each agent must pay. For the resulting mechanism design 
problem, we developed a mechanism that addresses each of these incentive issues, while 
only increasing by one the competitive ratio previously known for the non-strategic 
setting. We also proved a matching lower bound for deterministic mechanisms that never 
pay the agents. 
 
 
1e. Non-cooperative computation [5] 
 
We introduced the framework of non-cooperative computation (NCC). We considered 
functions whose inputs are held by separate, self-interested agents. We also considered 
four components of each agent's utility function: (a) the wish to know the correct value of 
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the function, (b) the wish to prevent others from knowing it, (c) the wish to prevent others 
from knowing one's own private input, and (d) the wish to know other agents' private 
inputs. We provided an exhaustive game-theoretic analysis of all 24 possible 
lexicographic orderings among these four considerations, for the case of Boolean 
functions (mercifully, these 24 cases collapse to four). In each case we identified the class 
of functions for which there exists an incentive-compatible mechanism for computing the 
function.  
 
This work has applications both to cryptographic settings and to utility elicitation.   If a 
function is not computable in the NCC setting, then no cryptographic protocol can be 
developed for interactions between self-interested agents.  One application to utility 
elicitation is when the input to the function is each agent’s utility for the events it has 
experienced (e.g., movies seen or books read).  The function that each agent is trying to 
compute could is then a recommendation based on the opinions of all other agents.   The 
key point is that, in order to construct useful protocols for eliciting utility, one has to be 
aware of agents’ meta-preferences expressing their privacy, their desire to deceive, etc. 
Both of these applications fall into a new area that we termed informational mechanism 
design, in which the utility functions of the self-interested agents depend only on the state 
of knowledge of all agents at the end of the mechanism.   
 
1f. Multi-party computation. [6] 
 
We studied the problem of using a “busy center” to design a mechanism that encourages 
rational actors to play a game of complete information that achieves an outcome that a 
center prefers without involving the center in the mechanism in any way on the 
equilibrium path. We examined the cases when agents’ actions are both observable and 
unobservable to the center. We showed that “busy center” mechanisms can be 
transformed into agent-resolved mechanisms with the assistance of a trusted third-party 
bank which is ignorant of the mechanism being executed. These ideas are also applicable 
in a constant-round multi-party rational exchange protocol. 
 
2. Multi-agent adaptation: 
 
Many, indeed most, multiagent interactions do not admit easy equilibrium analysis, and 
indeed the harder the analysis the less clear it is that the concept of equilibrium is relevant 
either descriptively or prescriptively. This is particular true of situations that take place 
over long period times. What is more common in complex situations is for agents to 
consider a simple version, or aspect, of the game being played, but learn over time to 
improve their model and strategies. Indeed, effective adaptation is the topic of many 
research activities in many academic disciplines. Most of the work concerns single-agent 
learning, in the context of a passive environment; the environment may be stochastic and 
unpredictable, but it is not "strategic" which its own set of objectives. Things become 
even more challenging when multiple agents adapt simultaneously, since one agent's 
adaptation process impacts the other agent's optimal adaptation. Indeed, learning has been 
a very active area within game theory, and very recently also within computer science 
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(mostly AI). We have tried to extend AI-style reinforcement learning to the multiagent 
setting. 
 
 
2a. Planning in games.  
 
We developed a new anytime algorithm for computing good policies in many-agent 
systems. Most of the previous work on multi-agent systems tackles problems with either 
two agents or a very large number of agents. We focused on problems with intermediate 
number of agents. Our first results show how to solve the planning problem when playing 
against known rationally bounded opponents, where the computation of the optimal 
policy may be intractable due to the huge state-space. We identified a lattice of problems 
where at one extreme we consider all the opponents and compute the true best response, 
and at the other extreme we consider none of them and compute the maxmin strategy. In 
between the two extremes we can explicitly reason about a given subset of the opponents 
and treat the others as worst-case adversaries. We identified a vertex on the lattice that 
gives the best policy given computational restrictions. Based on our experimental results, 
we also proposed two ways of heuristically speeding up optimal value computations. 
 
2b. Computing best-response strategies via sampling. [7] 
 
We investigated the problem of computing a best-response to an opponent’s strategy, 
when this strategy is not known exactly but can instead be sampled. For instance, a 
government might capture some members of a terrorist organization and learn samples of 
their strategies. They can the use this sample to estimate the strategies of the remaining 
agents. A similar example involves studying the code/strategy of computer viruses and 
using this information to design effective security against new viruses. We found 
analytics results on the number of samples required in order to approximate the optimal 
best response. We then showed experimentally that convergence to the best response 
often occurs much more quickly than is predicted by formal guarantees. Finally, we went 
beyond so-called “oblivious sampling”, i.e. we considered what happens if the opponent 
is aware that the agent has taken the samples, if the agent knows that the opponent is 
aware, and so on to higher levels of mutual modeling. 
 
 
3. Algorithms and representations for game theory: 
 
Game theory is a very natural tool for modeling multiagent interactions. In our work on 
mechanism design we have shown how to inject incentives into computational settings in 
order to make agents behave the way we want. In the work on multiagent adaptation, we 
have studied how one might devise artificial agents that act in such environments. A 
complementary direction is to study the problem of automatically, but centrally, 
reasoning about game-theoretic settings. However, very little work in computer science 
has been done on algorithms and representations for game-theoretic problems. An 
important part of our research has been to fill this gap. 
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3a. Dispersion games. [8] 
 
We generalized a notion of anti-coordination games to an arbitrary number of actions 
and players. In such games players prefer maximally dispersed outcomes. Such games 
capture many natural problems, such as division of roles within a team, network load 
balancing and resource allocation, niche selection in economics. We studied empirically 
and analytically behavior of agents in repeated versions of such games using several 
decentralized learning rules. 
 
3c. Search methods for finding Nash equilibria. [9] 
 
Computing a sample Nash equilibrium in a normal form game is one of the most 
interesting and most poorly understood problems in computer science. The question of its 
complexity still remains open. The best algorithms currently known are based on 
complicated mathematics and numerical methods, and yet come with no known 
guarantees on their running time. Surprisingly, none of the classic AI search methods 
have been tried. We filled this gap, by formulating this problem as a search problem, and 
by coming up with problem relaxations and useful heuristics. Resulting methods, while 
extremely simple, outperformed state-of-the-art Lemke-Howson, Simplicial Subdivision, 
and Govindan-Wilson algorithms by orders of maginuted on a wide variety of realistic 
game distributions. 
 
3d. Game theory test suite. [10] 
 
In order to achieve our goal of a coherent theory of decision – and game-theoretic 
models, it is essential to have a solid collection of interesting settings on which the new 
ideas can be evaluated.  In our case, many of such settings can be modeled as 
simultaneous-action games.  We have combed through the literature in game theory, 
economics, CS, AI, psychology, and political science, and compiled an extensive 
database of classes of games in normal form that researches have found to be interesting 
and useful. We have elucidated relations between many such classes by organizing them 
into a unified taxonomy of games. We also implemented generators for many of these 
games in a test-suite called GAMUT. GAMUT has already become the definitive test suit 
for testing game-theoretic algorithms and agents. 
  
3e. Multi-agent target surveillance. 
 
We developed a novel approach to solve a real-time multiagent target surveillance 
problem. The problem consists of a set of agents and a set of targets on a map, each of 
which must be visited by an agent. The objective function is the total time spent by the 
agents. There exists software to solve this problem optimally; however, in general the 
computational time is large. On the other hand, there are several different algorithms 
which quickly produce an approximate solution. Our overall objective is to minimize the 
sum of the computation time plus the execution time. Our approach is to first execute the 
approximate solutions. Then, using our empirical hardness methodology, we predict both 
the improvement in solution quality that would result from finding the optimal solution, 
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in addition to the time that it would take to find this solution. Only if it is worth the 
computation time, do we execute the optimal solver. Experimentally, this approach 
outperformed both always using the approximate solution, and always finding the optimal 
solution. 
 
3f. Representation and complexity of cooperative games. [11] 
 
While most of our effort has focused on non-cooperative games, cooperative game theory 
is an equally important, but much less understood from the computational point of view. 
Cooperative game theory studies the interaction of agents that have the capability of 
enforcing contracts, and has strong ties to basic microeconomic theory. We have 
introduced several natural compact representations of coalitional games, and studied the 
complexity of reasoning about games in these representations. 
 
4. Empirical hardness models: 
 
Many natural computational problems associated with game theory and economics 
models turn out to be NP-hard. Nevertheless, it is important to develop methods for 
solving practical instances of these problems. Thus, it is necessary to be able to 
empirically understand factors that make particular problems hard for existing 
algorithms. We have proposed a novel methodology for doing this. In our methodology, 
we compute features of hard problem instances, and then use machine-learning, 
specifically, regression, techniques to construct statistical models of algorithms behavior. 
We have constructed such models for algorithms in two domains: winner-determination 
problem for Combinatorial Auctions, and the problem of determining satisfiability of a 
propositional formula. In both cases, we showed that very accurate predictions of 
runtimes can be obtained. Also, by analyzing learned models, we were able to zero on 
some very specific, and, sometimes, surprising, sources of hardness. We have also used 
this methodology as a basis for our multi-agent target surveillance approach discussed 
below. 
 
4a. Algorithm selection and algorithm portfolios. [12, 13] 
 
A lot of the problems that naturally arise in AI and game theory are hard. It is often the 
case, especially for NP-hard problems, that different algorithms perform well on 
completely different problem instances. Therefore, in order to obtain practical robust 
solution methods, several existing algorithms must be combined into a single portfolio. 
The problem of selecting the right algorithm on a per-instance basis was first recognized 
by Rice in 1973. Surprisingly little has been done since, with most people simply running 
the algorithm that is best on average.  We have demonstrated that our empirical hardness 
models can be used to select the right algorithm very effectively. For the winner 
determination problem, a portfolio that included two additional inferior algorithms 
outperformed the best algorithm by a factor of 3. Our SAT portfolio performed very 
favorably in SAT solver competition, being the only solver that placed near the top in 
more than one competition track.  
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4b. Hard instance distributions. [12, 13] 
 
In light of the success of algorithm portfolios, it becomes extremely important to come up 
with new hard distributions of problem instances, since new algorithms are only useful to 
the portfolio if they perform well where the current portfolio performs poorly. We have 
showed how our hardness models, in conjunction with rejection sampling, can be used to 
generate hard instances. We have tested this approach on CATS – the standard generator 
for combinatorial auctions WDP instances. Using our models to guide instance 
generation, even CATS’ easiest distributions, such as matching and scheduling, now 
routinely output instances that are much harder than anything that we’ve observed 
previously.  
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Fair Imposition

Yoav Shoham and Moshe Tennenholtz �

Computer Science Department

Stanford University

Stanford� CA �����

Abstract

We introduce a new notion� related to auctions
and mechanism design� called fair imposition��

In this setting a center wishes to fairly and e��
ciently allocate tasks among a set of agents� not
knowing their cost structure� As in the study of
auctions� the main obstacle to overcome is the
self�interest of the agents� which will in gen�
eral cause them to hide their true costs� Un�
like the auction setting� however� here the cen�
ter has the power to impose arbitrary behav�
ior on the agents� and furthermore wishes to
distribute the cost as fairly as possible among
them� We de�ne the problem precisely� present
solution criteria for these problems �the cen�
tral of which is called k�e�ciency�� and present
both positive results �in the form of concrete
protocols� and negative results �in the form of
impossibility theorems� concerning these crite�
ria�

� Introduction

Allocation of resources or� isomorphically� of tasks is
among the fundamental problems in computer science�
operations research� economics� and other scienti�c and
technological disciplines� In a centralized task allocation
problem there is a center whose aim is to allocate one or
more tasks among several available agents �be they ma�
chines� processors� servers� employees� companies� etc���
Several aspects of the situation strongly impact the prob�
lem� The two aspects we focus on are�

�� The information available to the center about the
agents	 costs for performing the tasks�


� The center	s ability to impose tasks and payments
on the agents

�The permanent address of the second author is� Faculty
of Industrial Engineering and Management� Technion� Haifa
������ Israel

�This work was supported by DARPA grant F���������
�����	�P����


In classical work on centralized optimization in CS and
OR the assumption is that the center has perfect infor�
mation about and perfect control over the agents� usu�
ally payments don	t �gure in at all� and the center im�
poses on the agents an optimal protocol computed by
the center� In economics and game theory for the most
part the opposite obtains� namely the center �auctioneer�
procurer� has no knowledge of the agents	 private infor�
mation� and furthermore has no power to enforce any
behavior on the agents� Indeed� the individual freedom
to decide whether to transact and under what terms to
do so lies at the core of what one usually understands
a �market	 to mean� For this reason� payments are the
primary means of inducing agents to exhibit any sort of
behavior in such a setting�
We introduce an intermediate setting in which the cen�

ter has full power over the agents� but no access to their
private information� We furthermore assume that the
center is a benign dictator� which wishes not only to
achieve the tasks but to do so in a way that is socially
fair� The problem is that agents will in general not vol�
unteer correct information that would allow the center
to achieve these objectives� and thus the center must re�
sort to incentive engineering of the sort encountered in
mechanism design in game theory�
This broad category of problems was motivated by

a speci�c problem encountered by the military� in the
Virtual Transportation Company VTC� project God�
frey and Mi�in� 
����� In most if not all democratic
countries the state has the power at times of emergency
to commandeer aircraft and other resources required to
deal with the crisis� Of course� in a democratic country
the state recognizes the rights of companies such as air�
line carriers� and attempts to compensate them for such
use� The problem is how to decide which carriers to tap�
and how to compensate the parties a�ected� Ideally� the
state would like to achieve the following�

�� Acquire the required types and number of aircraft�


� Minimize �in some cases� eliminate� its own costs�

�� Minimize the total true costs to the carriers tapped�

�� Distribute the cost fairly among all the carriers�
those tapped and not�
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While our treatment of the problem going forward will
be entirely abstract� and indeed make some assumptions
that are not consistent with this application �in partic�
ular� that the military wishes to pay less than market
value for the services rendered�� the reader might keep
this example in mind throughout the paper�
The rest of the paper is organized as follows� In sec�

tion 
 we de�ne the procurement problem� The pro�
curement problem is isomorphic to the problem of task
allocation �or the auctioning of a good�� In section �
we discuss the fair imposition of tasks� In particular� we
introduce the notion of k�e�ciency� which is central for
the evaluation of procurement protocols in the context of
fair allocation� Sections ��� present a set of basic results
dealing with the feasibility of fair allocation of tasks� We
present several upper bounds �by means of impossibility
results� on the level of fairness and the minimization of
expenses that can be obtained� as well as protocols for
fair task allocation� Further discussion of the contribu�
tion of our work in the context of general task allocation
and protocols for non�cooperative environments can be
found in section ��

� The procurement problem

In this section we provide the reader with the requisite
knowledge of the task allocation�procurement theory�
Basic procurement theory has much similarity with ba�
sic auction theory� Following the related basic procure�
ment�auction theory literature� we restrict ourselves to a
��shot� single�item procurements problem� We later �see
Section �� weaken the second restriction� and in future
work deal with the �rst one�
Consider a center who wishes to obtain a particular

service� where there are n potential suppliers� or agents�
denoted by �� 
� � � � � n who may supply this service� A
procurement protocol is a procedure in which partici�
pants submit messages �typically monetary bids� for pro�
viding the service� The protocol	s rules specify the type
of messages� and as a function of the messages submitted
by the participants they determine the service provider
and the payments to be made by the participants� The
payments may be positive� negative� or zero�
Formally� a procurement procedure for n potential

participants� N � f�� 
� � � � � ng is characterized by �
parameters� M� g� c� d� where M is the set of messages�
g � �g�� � � � � gn� with gi � Mn � �� �� for all i andPn

i�� gi�m� � � for all m� and c � �c�� � � � � cn�� d �
�d�� � � � � dn� with ci� dj � Mn � R for all i� j� The inter�
pretation of these elements is as follows� Participant i
submits a message mi �M � Let m � �m��m�� � � � �mn�
be a vector of messages� then the organizer conducts a
lottery to determine the service provider� in which the
probability that i is the winner equals gi�m�� The win�
ner� say j� is paid cj�m� and every other participant i
pays di�m�� The classical theory of procurement asso�
ciates a �Bayesian� game with each procurement pro�
cedure and analyses the behavior of the agents under
the equilibrium assumption� as described below� Each

agent has a type� vi� selected from a set of possible types
V � The type of agent i� vi� is known to it� but might
not be known to the other agents� The type vi should
be interpreted as the cost for agent i in providing the
required service� A strategy for agent i is a function
bi � R� �M � where bi�vi� is the message submitted by
i when his type is vi� Each agent i has a utility function
ui� Assuming that the agents submitted the tuple of
messages m � �m��m�� � � � �mn�� the service will be allo�
cated based on g� The utility of agent i will be ci�m��vi
if it has been selected as the service provider� and oth�
erwise its utility will be �di�m�� A tuple of strategies�
b � �b�� b�� � � � � bn� will be called an equilibrium� if for ev�
ery agent i� bi is the best response against the strategies
of the other agents in b �denoted by b�i�� A strategy bi of
agent i will be called a dominant strategy if for any tuple
of strategies b�i of the other agents� and for any strategy
b�i of agent i we have that ui�bi� b�i� � ui�b�i� b�i��

� From procurement to fair imposition

In the setup discussed in this paper� the center can force
the agents to provide a desired service� as well as mone�
tary payments� However� the center may wish to get the
desired service while attempting to minimize the agents	
costs�

De�nition � Given a procurement setting� with n pos�
sible service providers� N � f�� 
� � � � � ng� and costs se�
lected from the set V � a procurement protocol �M� g� c� d��
where M � V is the set of messages �possibly declared
costs�� g is the allocation function� c determines the
service provider payments� and d determines the other
agents� payments� is called incentive compatible if for
any cost vi � V of agent i� its payo� is maximized by
sending the message mi � vi regardless of the messages
of the other agents �i�e�� truth revealing is a dominant
strategy��

In the sequel we will restrict ourselves to incentive com�
patible protocols� Incentive compatible protocols have
several desired properties� In particular� they do not
build on any rationality assumption on the behavior of
other agents� This implies that an agent can refrain from
adopting and computing probabilistic information about
the other agents	 behavior when employing a dominant
strategy�
In order to introduce a basic de�nition of fair imposi�

tion of protocols we use the following idea� We wish �rst
to ensure that the center will minimize its expenses due
to the performance of the service� Given that� we would
like to minimize the expenses of each and every agent�
This leads to the following central de�nition�

De�nition � Given a procurement setting S with n
agents� a procurement protocol P is called k�e�cient if
the following holds�

	� P is incentive compatible�


� For any tuple of costs �v�� v�� � � � � vn� where vi is the
cost of agent i� we have that�
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�a� The sum of payments from the center to the
agents is non�positive�

�b� The cost to agent i is no more than
v�k�
n
� where

v�k� is the k order statistics of fv�� v�� � � � � vng�
�

Notice that our de�nition of fairness captures the desire
to minimize expenses of each particular agent� Notice
that we have required that the center	s budget be non�
negative� The case where the procurer expects to pay
for its services is discussed in Section �� In the sequel we
will denote the agent with the i�th lowest valuation by
ai and its valuation by v�i��

� ��e�ciency

Work on economic mechanism design in game theory
Fudenberg and Tirole� ����� usually adopts several ba�
sic requirements� One of these basic requirements is that
protocols should be economically e�cient� We will use
the following standard de�nition�

De�nition � Given a procurement setting S with n
agents� a procurement protocol P will be called economi�
cally e�cient if it always selects the agent with the lowest
cost to serve as the service provider�

We can now prove�

Lemma � Given a procurement setting S with n agents�
a procurement protocol P is 	�e�cient only if it is eco�
nomically e�cient�

Proof �sketch�� Assume that the protocol chooses the
agent with the second lowest valuation as the service
provider� Recall we denote the agent with the i�th lowest
valuation by ai and its valuation by v�i�� In order to get
��e�ciency agents a�� a�� a�� � � � � an need to su�er a cost
of at most �

n
v���� This implies that if a� is the service

provider� then it will su�er an expense of at least v��� �
n��
n

v��� �
�
n
v���� which contradicts ��e�ciency� Similar

argument holds when the agent who will provide the
service is aj� j � 
�
The above lemma teaches us that in order to have ��

e�ciency we must have economic e�ciency� However�
we now show�

Lemma � There is no protocol that is both 	�e�cient
and economically e�cient�

Proof �sketch�� In order to have ��e�ciency agents
a�� a�� � � � � an should su�er an expense of at most

v���
n
�

Since the center may not have a negative balance� and
since we require ��e�ciency� and since the cost of the ser�
vice for a� is v��� we get that the payments are as follows�

each agent ai� i � 
 pays exactly �
n
v��� to the center� who

collects these payments and transfers that to a�� How�
ever� such incentive compatible e�cient protocol� where
the sum of payments is �� does not exist �see Mas�Colell
et al�� ������ page ������

�The k order statistic of a set is the k lowest element in
this set�

�This is no longer the case if we consider Bayesian equi�
librium �dAspremont and Gerard�Varet� 
�����

Hence� as we have seen� economic e�ciency is essential
for ��e�ciency� but ��e�ciency and economic e�ciency
are contradicting in our setup� Hence� we get�

Theorem � There is no 	�e�cient procurement proto�
col�

� ��e�ciency

Given the impossibility of ��e�ciency the next desirable
alternative is to consider the case of 
�e�ciency� As be�
fore� we are �rst interested in the connections between

�e�ciency and economic e�ciency� We can show�

Lemma � Given a procurement setting S with n agents�
a procurement protocol P is 
�e�cient only if it is eco�
nomically e�cient�

Proof �sketch�� Assume that the protocol assigns the
good to agent a�� Notice that in order to obtain 
�
e�ciency all other agents will have to pay exactly �

n
v����

This implies that agent 
 will su�er an expense of �
n
v����

Hence� a� may go ahead and report a cost v�� where
v��� � v� � v���� Consider now the tuple of types
�v���� v

�� v���� � � � � v�n��� Regardless of who is the agent to
be allocated the service for this valuation �whether this
is agent a� or another agent�� 
�e�ciency will imply that
agent a� will su�er an expense of no more than of �

n
v��

Hence� the above deviation is rational� which contradicts
incentive compatibility� It is immediate to see that an
allocation of the service to agent aj� j � � can not lead to

�e�ciency� Hence� the allocation needs to be e�cient�
Thus again we	d like to know whether economic e��

ciency and 
�e�ciency are compatible� Unfortunately�
at this time we don	t� so instead we give a weaker result�
Consider the following property de�ned on procurement
protocols�

De�nition � Given a procurement setting S with n
agents� a procurement protocol is called unbiased� if for
every tuple of agents� types the payments by all agents
who do not provide the service are identical� and the fol�
lowing property does not hold�

� For any tuple of agents� types� the service provider�s
expenses are greater than or equal to the expenses of
all other agents� and for at least one tuple of types
its expense is greater than the expenses of all other
agents�

Thus a biased procurement protocol either favors the
agents that do not provide the service� or di�erentiates
among them� We can now show�

Theorem � Given a procurement setting S with n
agents� there is no unbiased 
�e�cient procurement pro�
tocol�

Proof �sketch�� First� given the previous lemma we
can restrict our attention to protocols that guarantee ef�
�cient allocation� Notice that for any tuple of types�
either all agents	 expenses are exactly �

n
v���� or there

should be at least one agent who su�ers expenses of more
than �

n
v��� �otherwise the center will su�er losses�� Since
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the protocol is unbiased there must be at least one tu�
ple of types� for which agent a� pays �

n
v��� � �� for some

� � �� Assume that for this tuple of types� a� reports the

cost v���� �� where � � � and
v�����

n
� �

n
v���� � �which is

satis�ed for any � � n��� We get that� since the alloca�
tion needs to be economically e�cient �and therefore this
modi�cation will not change the allocation of service�
and since the protocol is 
�e�cient� such deviation will
decrease the expense of agent a�� consider the behavior
of the protocol on the tuple �v���� v������ v���� � � � � v�n��� we

get that agent a� will pay no more than
v�����

n
� �

n
v������

This contradicts incentive compatibility� This implies
that there is no unbiased 
�e�cient protocol�

� ��e�ciency

The negative results of the previous sections teach us
that in order to obtain fair imposition of services we
need to consider protocols that are at most ��e�cient�
In this section we show that this upper bound can be
matched by an appropriate protocol� Consider the fol�
lowing protocol�
Fair��

�� Each supplier is asked to reveal its costs to the cen�
ter�


� The task will be allocated to the agent who has
announced the lowest cost� this agent will be paid
the second lowest cost announced�

�� Each supplier will pay to the center �
n
of the second

lowest reported cost of the other participants�

Notice that this protocol �as well as protocol Fair�b
to be discussed in section �� makes use of the Groves
scheme for mechanism design Groves� ������ We can
now show�

Proposition � Given a procurement setting S with n
agents� Fair� is a ��e�cient protocol for that setting�

Proof �sketch� � Notice that if every agent reports
its actual costs� then the payments by a� and a� are
v���
n
� and the payment by aj � j � � is

v���
n
� We need to

show that truth revealing is a dominant strategy� How�
ever� since the payments here �t the Groves scheme �see
Groves� ������ we get that the protocol is also incentive
compatible�
As we can see� if we are willing to settle for ��e�ciency�

then quite fair task allocation for minimizing the agents	
actual expenses can be obtained� The center will be able
to obtain the desired behavior without su�ering any cost�

� Almost budget balanced protocols

Given the general results of the previous sections� it may
be of interest to see how far we are from obtaining 
�
e�ciency� In order to address this issue we challenge
one of the assumptions of our model� namely that in no
case is any cost imposed on the center� Indeed� while
in some situations the center should be expected to pay
nothing� in many others they expect to bear some costs�

In some cases � including� arguably� the VTC domain�
which motivated this work �the expectation is that the
service providers experience a positive surplus� Here we
however explore the intermediate situation in which the
center is willing to su�er some expense� but a minimal
one�
In order to handle the above issue let us assume that

V � a� b� where b � a� i�e� the agents	 costs are in
between a and b� In many domains� assuming the costs
are high� we have that b�a �� a� For example� the costs
to various airlines of providing a given �ight might range
from ����K to ����K� The center be willing to su�er a
payment of ����K�����K����K but not of ����K or
more�
Given the above intuition we consider the following

de�nition�

De�nition � Given a procurement setting with n
agents� a procurement protocol P will be called an al�
most budget balanced k�e�cient protocol� if the following
holds�

	� P is incentive compatible�


� For any tuple of costs �v�� v�� � � � � vn� where vi is the
cost of agent i� we have that�

�a� The sum of payments from the center to the
agents is at most v�n� � v����

�b� The payment by agent i is no more than
v�k�
n
� where v�k� is the k order statistics of

fv�� v�� � � � � vng�

Consider the following protocol�
almost��

�� Each supplier is asked to reveal its cost to the center�


� The task will be allocated to the agent who has
announced the lowest cost� this agent will be paid
the second lowest cost announced�

�� Each supplier will pay to the center �
n
of the lowest

reported cost of the other participants�

We can now show�

Proposition � almost
 is an almost budget balanced 
�
e�cient protocol for any given procurement setting�

Proof �sketch�� Let there be n agents in the setting
with valuations v���� ���� v�n�� Since the payment scheme

�ts the Groves payments �see Groves� ������ we get that
the protocol is incentive compatible� In addition� if every
agent reports its actual valuation then the payment by
a� is

v���
n
� and the payment by aj � j � 
 is

v���
n
� The

center will pay n��
n

v��� �
n��
n

v��� � v�n� � v����

	 Extension
 the imposition of
interacting services

Our study in the previous sections has concentrated on
the imposition of a single task on a set of agents� If
there are several tasks� we can deal with each of those
tasks separately� and apply the techniques and results
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we previously obtained� Although this may be quite ap�
propriate in many cases� one may wish to consider more
general extensions� In this section� we brie�y consider
one extension� We will concentrate on the case of two
interacting service�
Consider two services� � and 
� The cost of performing

service j by agent i will be denoted by vi�j�� and the cost
of performing both services by agent i will be denoted
by vi�f�� 
g�� The fact that there exists some interaction
between the services will be captured by the fact that it
might be that vi�f�� 
g� �� vi��� � vi�
�� For example�
a carrier	s cost for a pair of �ights might be lower than
the sum of costs for each of the �ights since these �ights
might refer to two consecutive periods or two consecutive
routes �notice the similaritywith combinatorial auctions�
a popular topic in the recent AI literature Fujishima et
al�� ����� Sandholm� ����� Tennenholtz� 
����� in both
cases the valuation for a pair of goods might be di�erent
from the sum of valuations of these goods��
The procurement setting de�nition will be now revised

to have two services� and n agents with costs�types as
above� selected from a set V � For ease of exposition let
V � �� b� for some b � ��

De�nition 	 Given a procurement setting with two
services� and with n possible service providers� N �
f�� 
� � � � � ng� where costs for single services and for the
pair of services are selected from the set V � a pro�
curement protocol �M� g� c� d� is a tuple where M �
V � is the set of messages� and a message m �
�m��m��m�� declares the costs for service 	�
� and the
pair f�� 
g respectively� where g is the allocation func�
tion� c determines the payments to the service providers�
and d determines the other agents� payments� Such
a protocol is called incentive compatible if for every
valuation vi���� vi�
�� vi�f�� 
g� � V of agent i� its
payo� is maximized by sending the message mi �
�vi���� vi�
�� vi�f�� 
g�� regardless of the messages of the
other agents�

The de�nition of k�e�ciency can be extended in vari�
ous ways in order to handle the case of two interacting
services� We now describe one of these possible exten�
sions�

De�nition 
 Given a procurement setting S with two
interacting services� and n agents� a procurement proto�
col P will be called k�e�cient� if the following holds�

	� P is incentive compatible�


� For any tuple of costs of the agents we have�

�a� The sum of payments from the center to the
agents is non�positive�

�b� The payment by agent i is no more than
v�k���	�v�k���	

n
� where v�k��j� is the k order statis�

tics of fv��j�� v��j�� � � � � vn�j�g

It is easy to extend our infeasibility results for ��
e�ciency and for 
�e�ciency to the case of two inter�
acting services� As we will now show� the positive result
on ��e�ciency can be generalized as well�

Consider the following protocol�
Fair�b�

�� Each supplier is asked to reveal its costs to the cen�
ter�


� The tasks will be allocated to the agents who have
announced the lowest cost� notice that both tasks
can be allocated to the same agent� or the tasks can
be allocated to di�erent agents�

�� If a supplier s has been selected to supply both ser�
vices then he will be paid as follows� an allocation
of the lowest cost possible� ignoring this supplier	s
messages will be calculated� and the supplier s will
be paid according to the cost associated with this
allocation�

�� If a supplier s has been selected to supply the ser�
vice x� and another supplier s� has been selected to
supply the service y� then s will be paid as in ����
minus the cost associated with supplying y by s��

�� For each agent i we consider the second lowest de�
clared cost� ci�j� of the other agents for service j�

Agent i will be asked to pay to the center ci��	�ci��	
n

�

We can now show�

Proposition � Given a procurement setting S with two
interacting services and n agents� Fair�b is a ��e�cient
protocol for that setting�

� Discussion

Social systems face the challenge of distributing e�orts
among service providers� in a way that will obtain the
society goals� while attempting to minimize costs for the
individuals in that society� Therefore� the problem of
fair imposition of tasks appears in a variety of domains�
and is fundamental to obtaining e�cient and fair pro�
curement procedures� In this paper we have introduced
a general rigorous setting� where the fair imposition of
tasks can be studied� Using this setting� we have pro�
vided general results on the fair imposition of services in
multi�agent systems�
Our study deals with the problem of task alloca�

tion with self�motivated service providers� where the
center can enforce agents	 actions �e�g� their pay�
ments�� The complexity of this setting stems from the
fact that the participants can try and cheat the cen�
ter about their private information �e�g� their costs�
while the center wishes to keep the allocation fair and
to minimize the expenses of each individual partici�
pant� As a result� our study complements previous
work on social laws �e�g� Moses and Tennenholtz� �����
Shoham and Tennenholtz� ������ and on the imposition
of protocols on multi�agent systems �e�g� Minsky� ����a�
����b��� as well as work in information economics �see
Kreps� ����� for a general discussion�� Our work also
complements work in Distributed AI dealing with rules
on interactions for self�motivated agents �e�g� Rosen�
schein and Zlotkin� ����� Kraus� ������� as well as

14



work bridging the gap between Game Theory and Com�
puter Science Boutilier et al�� ����� Tennenholtz� �����
Varian� ������ Perhaps the most relevant line of research
is work on optimal auction design �which is isomor�
phic to work on optimal design of procurement proto�
cols� see Wolfstetter� ����� McAfee and McMillan� �����
Milgrom� ����� for overviews�� However� our setting�
where fairness is the major objective �rather than eco�
nomic e�ciency or center	s revenue� and behaviors can
be enforced �hence� participation constraints do not ap�
ply�� distinguishes our line of research from the economic
mechanism design literature�
We see the procurement setting as a basic building

block for general task allocation in multi�agent systems�
Hence� in order to address general task allocation in non�
cooperative environments we need to obtain deep un�
derstanding of the basic procurement setup� This seems
essential for the design of protocols for non�cooperative
environments� Needless to say� when facing this funda�
mental need� basic work in AI dealing with protocols for
non�cooperative environments and work on mechanism
design in game theory share much in common� The no�
tion of fair imposition and its study are the contributions
of this paper to these lines of research�
Much left to be done� In particular� the study of the

multi�item �i�e� interacting services� setting should be
further developed� In addition� an explicit treatment of
repeated procurement situations is a challenge of consid�
erable importance� More speci�c challenge is to try and
come with a biased 
�e�cient protocol� We plan to pur�
sue these extensions in our future work� We believe that
the study of the fair imposition of tasks is a challenge of
fundamental importance to the design of e�ective multi�
agent systems� and hope that others will join us in this
e�ort�
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Abstract

We introduce the notion of fault tolerant
mechanism design, which extends the stan-
dard game theoretic framework of mechanism
design to allow for uncertainty about execu-
tion. Specifically, we define the problem of
task allocation in which the private informa-
tion of the agents is not only their costs to
attempt the tasks, but also their probabili-
ties of failure. For several different instances
of this setting we present technical results,
including positive ones in the form of mecha-
nisms that are incentive compatible, individ-
ually rational and efficient, and negative ones
in the form of impossibility theorems.

1 INTRODUCTION

Recent years have seen much activity at the interface
of computer science and game theory, in particular in
the area of Mechanism Design, or MD (e.g. (Parkes
& Ungar 2000; Boutilier, Shoham, & Wellman 1997;
Shoham & Tennenholtz 2001; Nisan & Ronen 2001)).
A sub-area of game theory, MD is the science of craft-
ing protocols for self-interested agents, and as such is
natural fodder for computer science in general and AI
in particular. The uniqueness of the MD perspective is
that it concentrates on protocols for non-cooperative
agents. Indeed, traditional game theoretic work on
MD focuses uniquely on the incentive aspects of the
protocols.

A promising application of MD to AI is the problem
of task allocation among self-interested agents (see e.g.
(Rosenschein & Zlotkin 1994)). When only the execu-
tion costs are taken into account, the task allocation
problem allows standard mechanism design solutions.

1This work was supported in part by DARPA grant
F30602-00-2-0598.

However, this setting does not take into consideration
the possibility that agents might fail to complete their
assigned tasks. When this possibility is added to the
framework, existing results cease to apply. The goal
of this paper is to investigate robustness to failures in
the game theoretic framework in which each agent is
rational and self-motivated. Specifically, we consider
the design of protocols for agents which have not only
private cost functions, but also privately-known prob-
abilities of failure.

What criteria should such protocols meet? Traditional
MD has a standard set of criteria for successful out-
comes, namely social efficiency (maximizing the sum
of the agents’ utilities), individual rationality (posi-
tive utility for all participants), and incentive com-
patibility (incentives for agents to reveal their pri-
vate information). Fault Tolerant Mechanism Design
(FTMD) strives to satisfy these same goals; the key
difference is that the agents have richer private infor-
mation (namely probability of failure, in addition to
cost). As we will see, this extension presents novel
challenges.

It is important to distinguish between different pos-
sible types of failure. The focus of this paper is on
failures that occur when agents make a full effort to
complete their assigned tasks, but may fail. A more
nefarious situation would be one in which agents may
also fail deliberately when it is rational to do so. While
we do not formally consider this possibility, we will re-
visit it at the end of the paper to explain why our
results hold in this case as well. Finally, one can con-
sider the case in which there exist irrational agents
whose actions (for example, intentional failures) are
counter to their best interests. This is the most diffi-
cult type of failure to handle, because the presence of
such agents can affect the strategy of rational agents,
in addition to directly affecting the outcome. We leave
this case to future work.

It is helpful to consider a concrete example. Consider
a network of links which are owned by selfish agents
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(e.g. airline companies), and two distinguished nodes
S and T in it. We allow multiple links between nodes
so that more than one agent can provide the same ser-
vice (but only agent can be selected to do so). When
an object is routed through a link, the owning agent
incurs some cost. In addition, the agent may fail (ac-
cording to some probability) to pass the object across
the link (e.g., the object is lost in transit, or not deliv-
ered by a strict deadline). The costs and probabilities
are privately known to their owners. Our goal is to
design a mechanism (protocol) that will ensure that
objects will be sent from S to T across the network in
the most reliable and cost-effective way possible.

To demonstrate the challenges encountered when fac-
ing such problems, consider even the simple case in
which the network consists of only parallel links be-
tween S and T , and costs are all zero. A näıve proto-
col would ask each agent for their probability, choose
the most reliable agent (according to the declarations)
and pay her a fixed, positive amount if she succeeds,
and zero otherwise. Of course, in this case each agent
will report a probability of one in order to selfishly
maximize her own expected profit.

In this paper we study progressively more complex
task-allocation problems. The first problem that we
study is one in which there is only one task. We use
this setting both to show why standard MD solutions
are not applicable and to present our basic technique
in the form of a novel mechanism. After extending this
technique to handle the case of multiple tasks without
dependencies among them, we move to the general case
of dependent tasks. Here, we prove an impossibility re-
sult when we demand incentive compatibility in dom-
inant strategies, and present a mechanism that solves
in equilibrium the case of dependent tasks. Finally,
we discuss the use of cost verification to significantly
improve the revenue properties of the center.

2 RELATED WORK

The work presented in this paper integrates techniques
of economic mechanism design (an introduction to MD
can be found in (Mas-Collel, Whinston, & Green 1995,
chapter 23)) with studies of fault tolerant problem
solving in computer science and AI.

In particular, the technique used in our mechanism
is similar to that of the Generalized Vickrey Auction
(GVA) (Vickrey 1961; Clarke 1971; Groves 1973) in
that it aligns the utility of the agents with the overall
welfare. This similarity is almost unavoidable, as this
alignment is the only known general principle for solv-
ing mechanism design problems. However, because we
allow for the possibility of failures, we will need to
change the GVA in a significant way in order for our

mechanism to achieve this alignment.

Because we have added probabilities to our setting, our
mechanisms may seem to be related to the Expected
Externality Mechanism (or d’AGVA) (d’Aspremont &
Gerard-Varet 1979), but there are key differences. In
the setting of d’AGVA, the types of the agents are
drawn (independently) from a distribution which is
assumed to be common knowledge among the par-
ticipants. The two key differences in our setting are
that no such common knowledge assumption is made
and that the solution concepts which we guarantee are
stronger than that of d’AGVA.

A recent paper (Eliaz 2002) also considers failures in
MD, but solves a different problem. This work assumes
that agents know the types of all other rational agents
and also limits the failures that can occur by bounding
the number of irrational agents.

Finally, the design of protocols which are robust to
failures has a long tradition in computer science (for a
survey, see (Linial 1994)). Work in this area, however,
almost always assumes a set of agents that are by and
large cooperative and adhere to a central protocol, ex-
cept for some subset of malicious agents who may do
anything to disrupt the protocol. In MD settings, the
participants fit neither of these classes, but are simply
self-interested.

3 A BASIC MODEL

In this section we describe our basic model and no-
tation, which will be modified later to handle specific
settings.

In a FTMD problem, we have a set of t tasks τ =
{1, . . . , t} and a set N = {1, . . . , n} of self-interested
agents to which the tasks can be assigned. We also
have a center M who assigns tasks to agents and pays
them for their work. The center and the agents will
collectively be called the participants.

Each agent i has, for each task j, a probability pij ∈
[0, 1] of successfully completing task j, and a nonnega-
tive cost cij ∈ <+ of attempting the task. We assume
that the cost of attempting a task does not depend on
the success of the attempt. We use pi = (pi1, . . . , pit)
for the set of all probabilities for agent i, and use
p = (p1, . . . , pn) to represent the set of probability vec-
tors for all agents. We use corresponding notation for
ci and c. The pair θi = (pi, ci) is called the agent’s type
and is privately known to the agent. Each agent is as-
signed a set Ai of tasks, and her cost to attempt the
set is: ci(Ai) =

∑
j∈Ai

cij . We define θ = (θ1, . . . , θn)
as the vector of types for all agents.

We use a completion vector µ ∈ {0, 1}t to denote which
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tasks have been completed. The function V : {0, 1}t →
<+ defines the center’s nonnegative valuation for each
possible completion vector. For now, we assume that
the center has a non-combinatorial valuation for a set
of tasks. That is, the value of a set of tasks is the sum
of the values for the individual tasks. We also assume
that V (µ) ≥ 0 for all µ and that V (0, . . . , 0) = 0.

An assignment vector A = (A1, . . . , An) and a vec-
tor of agent probabilities p together induce a proba-
bility distribution over the completion vector which
we denote by [µ|A, p]. Given an assignment A, a
type vector θ and a completion vector µ, we de-
fine the welfare of the participants as W (A, c, µ) =
V (µ) − ∑

i ci(Ai). We define the expected welfare as
W̄ (A, c, p) = E[µ|A,p][W (A, c, µ)]. The goal of the cen-
ter is to design a mechanism (protocol) that maximizes
this expected welfare.

We assume that each task can be assigned only once.
The center does not have to allocate all the tasks. For
notational convenience we assume that all the non-
allocated tasks are assigned to a dummy agent 0 which
for each task has zero probability of success and zero
cost to attempt.

When an agent i is assigned a set Ai of tasks, and
is paid Ri, her utility equals ui = Ri − ci(Ai). Since
our setting is stochastic by nature, an agent can do
no better than to maximize her expected utility, ūi,
calculated before any task is attempted. This term
thus depends on the true probabilities of success of
the agents, as explained below.

Throughout the paper we shall use the following vector
notations: The subscript −i on a vector denotes that
the term for agent i has been omitted from the vector.
For example, p−i = (p1, . . . , pi−1, pi+1, . . . , pn). The
omitted term can be combined with such a vector by
using the following notation: p = (pi, p−i). We de-
note by µi the completion vector for agent i (i.e. we
have 1 for each task accomplished by agent i and 0 for
each one either failed by her or not assigned to her).
The definitions for µ−i and (µi, µ−i) follow similarly.
Sometimes we will use µi in place of pi. Since both
vectors are of the same form, a 0 or 1 for task tj in µi

becomes the probability of successfully completing tj .

3.1 Mechanisms

A mechanism is a protocol that decides how to assign
the tasks to the agents and how much each agent is
paid. The simplest type of mechanisms are ones in
which the agents are simply required to report their
types. (Of course they may lie!) The revelation prin-
ciple (see e.g. (Mas-Collel, Whinston, & Green 1995,
p. 871)) tells us that we can, w.l.o.g., restrict ourselves
to such mechanisms.

We denote by the vector θ̂ the types declared by the
agents . A mechanism is thus defined by a pair g =
(A(θ̂), R(θ̂, µ)) such that:

• A(θ̂) = (A1(θ̂), . . . , An(θ̂)) is an assignment func-
tion. It takes a declaration vector and returns an
assignment of the tasks to the agents.

• R(θ̂) = (R1(θ̂, µ), . . . , Rn(θ̂, µ)) is the payment
function.

In our motivating example, a type θi would correspond
to agent i’s costs and probabilities of success on each
of her edges.

In our protocol, the center first asks each agent to de-
clare her type. We call an agent truthful if she reveals
her true type to the center. Based on these declara-
tions the center first computes the assignment A(θ̂).
Then, the agents execute their tasks. Finally, the cen-
ter pays the agents. Note that these payments de-
pend on the set of tasks which were accomplished. We
assume that the agents always attempt each task to
which they are assigned. In our discussion section, we
explain why this is a valid assumption.

In the above protocol, the utility of agent
i is: ui(ci, θ̂i, θ̂−i, µ) = Ri(θ̂, µ) − ci(Ai(θ̂)),
and her expected utility is: ūi(ci, θ̂i, θ̂−i, p) =
E[µ|A(θ̂),p][ui(ci, θ̂i, θ̂−i, µ)].

The main difference between mechanism design prob-
lems and the usual algorithmic problems is that the
participating agents may manipulate the given proto-
col if it is beneficial for them to do so. We therefore
need to design protocols that fulfill our objectives even
though the agents behave selfishly. We thus require
our mechanism to satisfy the following standard prop-
erties:

Individual rationality (IR) holds when truthful agents
are guaranteed to have non-negative expected utility.
Formally, for all i, θ and θ̂−i: ūi(ci, θi, θ̂−i, p) ≥ 0.

Incentive compatibility (IC) holds when it is a domi-
nant strategy for each agent to declare her type truth-
fully. Formally, this condition holds, when for all i, θ,
θ′i, and θ̂−i: ūi(ci, θi, θ̂−i, p) ≥ ūi(ci, θ

′
i, θ̂−i, p). This

means that the expected utility of the agent (condi-
tional on her own probability of success) is maximized
when the agent reports her true type.

A mechanism is called socially efficient (SE) if the cho-
sen assignment maximizes the expected welfare W̄ .
The fact that W̄ depends on the true types of the
agents underscores the importance of IC, which allows
the center to correctly assume that θ̂ = θ.
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Individual rationality for the center (CR) holds if the
center’s utility uM = V (µ)−∑

i Ri(.) is always nonneg-
ative. CR is an extension of the standard mechanism
design requirement of weak budget balance to account
for the center’s utility for outcomes.

A final goal is no free riders (NFR), which holds if all
agents not assigned any task have a revenue of zero.

4 SINGLE TASK SETTING

We will start with the special case of a single task
to show our basic technique to handle the possibility
of failures in MD. For expositional purposes, we will
analyze two restricted settings (the first restricts prob-
abilities of success to be one, and the second restricts
costs to be zero), before formally proving properties
about our mechanism in the full single task setting.

Because there is only one task, we can simplify the
notation. We let ci and pi denote ci1 and pi1, re-
spectively. Similarly, we let V = V ((1)), which is the
value that the center assigns to the completion of the
task. For each mechanism, we will use the index [1]
to denote the agent selected to attempt the task (e.g.,
p[1] denotes the selected agent’s probability of success).
The subscript [2] then refers to the agent who would
be selected as the service provider if agent [1] had not
participated.

4.1 CASE 1: ONLY COSTS

When we do not allow for failures (that is, ∀i pi = 1),
the goal of social efficiency reduces to assigning the
task the lowest-cost agent. This simplified problem
can be solved using a second-price auction (which is a
specific case of GVA). Each agent declares a cost, the
task is assigned to the agent with the lowest cost, and
that agent is paid the second-lowest submitted cost.

4.2 CASE 2: ONLY FAILURES

We now reduce the problem in a different way, by as-
suming all costs to be zero (∀i ci = 0). In this case, the
main goal is to allocate the task to the most reliable
agent. Interestingly, we cannot use a straightforward
application of the GVA for this case. Such a mech-
anism would ask each agent to declare a probability
of success and assign the task to the agent with the
highest declared probability. It would set the revenue
function for all agents not assigned the task to be 0,
while the service provider would be paid the amount
by which her presence increases the welfare of the other
agents and the center: p̂[1]V − p̂[2]V . Obviously, such
a mechanism is not incentive compatible, because the
payment to the service provider depends on her own

declared type! Since there are no costs, each agent
would have a dominant strategy to declare her proba-
bility of success as one. 2

Thus, we need to fundamentally alter our payment
rule so that it depends on the outcome of the attempt,
and not solely on the declared types, as it does in the
GVA. The key difference in our setting that forces this
change is the fact that the true type of an agent now
directly affects the outcome, whereas in the standard
MD setting the type of an agent only affects her pref-
erences over outcomes. We accomplish our goals by
replacing p̂[1] with an indicator function that is 1 if
the task was completed, and 0 otherwise. The pay-
ment rule for the service provider is now V − p̂[2]V if
she succeeds and −p̂[2]V if she fails. Just as in the
previous setting, the service provider is the only agent
who has positive utility for attempting the task with
the corresponding payment rule. The expected utility
for agent i would be V · (pi · (1− p̂[2])− (1− pi) · p̂[2]).
This expression is positive for the agent iff pi > p̂[2],
which is only true for the service provider.

4.3 CASE 3: COSTS AND FAILURES

We now consider the case of one task with both costs
and failures.

We introduce the following definition that we will use
throughout the paper: Given an agent i we denote by
W̄ ∗
−i(ĉ−i, p̂−i) the optimal (declared) expected welfare

when tasks cannot be allocated to agent i. In the single
task case it is maxj 6=i(p̂j · V − ĉj). Now we can define
the mechanism.

Single Task Mechanism:

Assignment The mechanism chooses an agent i ∈
{0, . . . , n} that maximizes the (declared) expected
welfare W̄ = p̂i · V − ĉi.

Payment The payment to all agents not assigned a
task is always zero. The payment to the “winner”
i is defined as follows:

Ri =
{

V − W̄ ∗
−i(ĉ−i, p̂−i) If i succeeds

−W̄ ∗
−i(ĉ−i, p̂−i) If i fails

Using p[2] and c[2] to denote the probability and the
cost of the “second best” agent, the payment to agent
i when she succeeds is (V −p[2] ·V +c[2]) and when she
fails is (−p[2] ·V +c[2]). Note that W̄ ∗ is never negative

2In fact, this would be true for any payment rule for
which an agent’s payment is always nonnegative, which is
the reason why we require our goals (such as IC and IR) to
be satisfied for the expected utility of the agent, and not
for ex post utility.

19



because the center will never make an assignment that
yields an expected loss for the system.

For example, suppose we have three agents with the
types listed in Table 1. Let V be 210. If the agents are
truthful, then the winner is agent 3. If agent 3 did not
exist, the optimal expected welfare would be W̄ ∗

−3 =
210 − 100 = 110, because the task would be assigned
to agent 2. The payment for agent 3 is therefore 210−
110 = 100 if she succeeds and −110 if she fails. Agent
3’s own costs are 60, and thus her expected utility is
(100− 60) · 0.9 + (−110− 60) · 0.1 = 19.

Agent ci pi

1 30 0.5
2 100 1.0
3 60 0.9

Table 1: A Single Task Example

Before we prove the properties of this mechanism, let
us introduce two definitions that we shall use through-
out that paper. Given an agent i, we define the
welfare of the other participants W−i(A, c−i, µ) =
V (µ) − ∑

j 6=i cj(Aj). Note that W−i(A, c−i, µ) =
W (A, ci, µ) + ci(Ai). We define the expected welfare
for the other participants as W̄−i(A, c−i, (p−i, µi)) =
E[µ−i|A,p−i][W−i(A, c−i, (µi, µ−i))]. This is the ex-
pected welfare of all the other participants (including
the center) when the allocation is A and agent i has
completed exactly the set of tasks defined by µi.

It is not difficult to see that the payment Ri

of each agent i equals W̄−i(A, ĉ−i, (p̂−i, µi)) −
W̄ ∗
−i(ĉ−i, p̂−i). Her expected utility is therefore

ūi = −ci(Ai) + E[µi|Ai,pi]W̄−i(A, ĉ−i, (p̂−i, µi)) −
W̄ ∗
−i(ĉ−i, p̂−i). Since the distribution [µ|A, (pi, p̂−i)]

equals [µi|Ai, pi] · [µ−i|A, p−i], we get that Ri =
W̄ (A, (ci, ĉ−i), (pi, p̂−i)) − W̄ ∗

−i(ĉ−i, p̂−i). This means
that each agent gets paid her contribution to the ex-
pected welfare of the other participants.

Theorem 1 The Single Task mechanism satisfies IR,
IC, CR, SE, and NFR.

Proof:

We will prove each property separately.

1. Individual Rationality

We need to prove that the expected utility
of a truthful agent is always non negative.
When agent i is truthful her expected util-
ity is ūi = W̄ (A((θi, ˆθ−i)), (ci, ĉ−i), (pi, p̂−i)) −
W̄ ∗
−i(ĉ−i, p̂−i). By the optimality of A(.), the sec-

ond term quantifies the optimal welfare that can
be obtained when the types of the other agents are

ˆθ−i and i does not exist. Similarly, the first term
quantifies the optimal welfare when the types of
the other agents are ˆθ−i and the type of agent i
is the true one θi. Since i can only improve the
total welfare, we proved our claim.

2. Incentive Compatibility

We need to prove that the expected utility of each
agent i is maximized when she is truthful. Let
ˆθ−i denote the declarations of the other agents.

As before, when the agent is truthful her util-
ity is ūi = W̄ (A((θi, ˆθ−i)), (ci, ĉ−i), (pi, p̂−i)) −
W̄ ∗
−i(ĉ−i, p̂−i). Consider the case where the agent

reports another type θ′i. This results in an as-
signment A′. The utility of agent i in this case is
ū′i = W̄ (A′, (ci, ĉ−i), (pi, p̂−i))− W̄ ∗

−i(ĉ−i, p̂−i)

Assume by contradiction that ū′i > ūi.
This means that W̄ (A′, (ci, ĉ−i), (pi, p̂−i)) >

W̄ (A((θi, ˆθ−i)), (ci, ĉ−i), (pi, p̂−i)). However this
contradicts the optimality of A((θi, ˆθ−i)).

3. Individual Rationality for the Center Let
agent i be the winner. We need to show that
the utility for the center is always non nega-
tive. There are two cases. When agent i suc-
ceeds we have uM = V − (V − W̄ ∗

−i(ĉ−i, p̂−i)) =
W̄ ∗
−i(ĉ−i, p̂−i)) ≥ 0. When i fails, the value is zero

and thus uM = W̄ ∗
−i(ĉ−i, p̂−i)) ≥ 0.

4. Social Efficiency Immediate from IC and the
definition of A(.).

5. No Free Riders Immediate from the definition
of the payment rule.

5 MULTIPLE TASKS

We now return to the original setting presented in this
paper, consisting of t tasks for which the center has
a non-combinatorial valuation (that is, the value for a
set of tasks is equal to the sum of the values for the
individual tasks). Because the setting disallows any
interaction between tasks, we can construct a mecha-
nism that satisfies all of our goals by generalizing the
Single Task Mechanism.

Multiple Task Mechanism:

Assignment The chosen assignment A maximizes
the (declared) expected welfare W̄ (A, ĉ, p̂) =
E[µ|A,p̂][W (A, ĉ, µ)].

Payment The payment to each agent i is defined
according to her completion vector: Ri =
W̄−i(A, ĉ−i, (p̂−i, µi))− W̄ ∗

−i(ĉ−i, p̂−i)
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In other words, each agent is paid according to her
contribution to the welfare of the other participants.

Proposition 2 The Multiple Task mechanism satis-
fies IC, IR, SE, CR, and NFR.

The proof is similar to the single task case and is omit-
ted. Note that the theorem holds even when the cost
functions and probabilities of success have a combina-
torial nature.

5.1 COMBINATORIAL V

We now consider the setting in which the center’s valu-
ation V (·) can be any monotone function of the tasks.
Unfortunately, in this setting, it is impossible to satisfy
all our goals simultaneously.

Theorem 3 When V is combinatorial, there does not
exist a mechanism that satisfies IC, IR, CR, and SE
for any n ≥ 2 and t ≥ 2.

Intuitively it is enough to consider the following case
which no mechanism is able to solve. There are two
tasks, each of which can only be completed by one
agent (and, this one agent is different for the two
tasks). The center only has a positive value (call it
x) for both tasks being completed. Since both agents
add a value of x to the system, they can each extract
close to x from the center, causing the center to pay
double for the utility of x he will gain from the com-
pletion of the task. Due to space constraints, we omit
the formal proof of this theorem.

However, despite the possibility of failures we can
maintain the desired properties other than CR using
the same mechanism as before.

Theorem 4 The Multiple Task mechanism satisfies
IC, IR, SE, and NFR, even when V is combinatorial.

Again, we omit the proof. Intuitively, IC, IR, and NFR
are not affected by a combinatorial V because they are
only properties of the agents, and SE still follows from
IC and the definition of A(·).

5.2 DEPENDENCIES

We now return to the case of non-combinatorial valu-
ation V (·), and analyze a different extension: depen-
dencies between the tasks.

Consider our motivating example of a network of
flights. A natural example of a task dependency would
be an object that could not be carried over the edge
(b, c) before being carried over (a, b).

Formally, we say that a task j is dependent on a set s
of tasks if j cannot be attempted unless all tasks in s

were successfully finished. We assume that there are
no dependency cycles. The tasks now are executed ac-
cording to a topological order. Note that if a task can-
not be attempted, the agent assigned that task does
not incur the costs of attempting it. 3

However, the presence of dependencies, just like the
presence of a combinatorial V , makes it impossible to
satisfy IC, IR, CR, and SE.

Theorem 5 When dependencies exist between tasks,
there does not exist a mechanism that satisfies IC, IR,
CR, and SE for any n ≥ 2 and t ≥ 2.

Proof: Proof by induction. We first show that a
mechanism cannot satisfy IC, IR, CR, and SE for the
base case of n = t = 2. The inductive step then shows
that increasing either n or t cannot alter this impossi-
bility result.

Base Case: We prove the base case by contradiction.
Assume that there exists a mechanism that satisfies
IC, IR, CR, and SE. This implies that it satisfies these
properties for all possible instances, where we define a
instance as a particular set of agent types and decla-
rations, task dependencies, and a V function. We will
use 3 possible instances in order to derive properties
that must hold in the mechanism, but lead to a con-
tradiction. The constants in these instances are that
task 2 is dependent on task 1 and that the center has
value of 5 for task 2 being completed, but no value for
the completion of task 1 in isolation. The five types
that we will use, θ1, θ′1, θ′′1 , θ2, and θ′2, are defined in
Table 2 (the final type, θe, will be used later in the
inductive step).

θ1 : p11 = 1 c11 = 2 p12 = 1 c12 = 1
θ′1 : p′11 = 1 c′11 = 2 p′12 = 0 c′12 = 0
θ′′1 : p′′11 = 1 c′′11 = 0 p′′12 = 1 c′′12 = 4
θ2 : p21 = 0 c21 = 1 p22 = 0 c12 = 0
θ′2 : p′21 = 1 c′21 = 1 p′22 = 0 c′22 = 0
θe : pe1 = 0 ce1 = 1 pe2 = 0 ce2 = 1

Table 2: Agent Types for Theorem 5.

Instance 1: The true types are θ1 and θ2, and the
declared types are θ1 and θ′2. To satisfy SE, task 1 is
assigned to agent 2, and task 2 to agent 1. That is,
A1(θ1, θ

′
2) = (0, 1) and A2(θ1, θ

′
2) = (1, 0). Since agent

2’s true type is θ2, she will fail on task 1, preventing
task 2 from being attempted. Thus, µ = (0, 0) with
probability 1. The expected utility for agent 1 is then:

ū1(c1, θ1, θ
′
2, p) = R1((θ1, θ

′
2), (0, 0))

3This is the reason why the current setting is not a spe-
cial case of the combinatorial V setting where the valuation
of a set of tasks is the valuation of the subset for which the
prerequisites are met.
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Instance 2: The true types are θ′1 and θ2, and the de-
clared types are θ1, and θ′2. Thus, the only difference
from instance 1 is agent 1’s true type which is insignif-
icant, because agent 1 never gets to attempt a task.
Thus, we have a similar expected utility function:

ū1(c′1, θ1, θ
′
2, (p

′
1, p2)) = R1((θ1, θ

′
2), (0, 0))

Instance 3: The true types are θ′1 and θ2, and the de-
clared types are θ′1, and θ′2. Now we have also changed
agent 1’s declared type to θ′1. Both tasks will be al-
located to the null agent: A1(θ′1, θ

′
2) = A2(θ′1, θ

′
2) =

(0, 0). Therefore, µ = (0, 0) still holds with probabil-
ity 1, and we get the following equations:

ū1(c′1, θ
′
1, θ

′
2, (p

′
1, p2)) = R1((θ′1, θ

′
2), (0, 0))

ū2(c2, θ
′
2, θ

′
1, (p

′
1, p2)) = R2((θ′1, θ

′
2), (0, 0))

If R2((θ′1, θ
′
2), (0, 0)) < 0, then IR would be violated

if θ′2 were indeed the true type of agent 2, because
the assignment function would be the same. Since the
center thus receives no payment from agent 2, and it
never gains any utility from completed tasks, the CR
condition requires that R1((θ′1, θ

′
2), (0, 0)) ≤ 0. Thus,

ū1(c′1, θ
′
1, θ

′
2, (p

′
1, p2)) ≤ 0.

Notice that if agent 1 lied in this instance and de-
clared her type to be θ1, then we are in instance 2.
So, to preserve IC, agent 1 must not have incentive
to make this false declaration. ū1(c1, θ1, θ

′
2, (p

′
1, p2)) =

R1((θ1, θ
′
2), (0, 0)) ≤ ū1(c′1, θ

′
1, θ

′
2, (p

′
1, p2)) ≤ 0.

Instance 1: Now we return to instance 1. Having
shown that R1((θ1, θ

′
2), (0, 0)) ≤ 0, we know that when

agent 1 declares truthfully in this instance, her ex-
pected utility will be: ū1(c′1, θ1, θ

′
2, p) ≤ 0.

We will now show that agent 1 must have a pos-
itive expected utility if she falsely declares θ′′1 .
In this case, both tasks are assigned to agent
1. That is, A1(θ′′1 , θ′2) = (1, 1). We know that
R2((θ′′1 , θ′2), (1, 1)) ≥ 4 by IR for agent 1, because if
θ′′1 were agent 1’s true type, then both tasks would be
completed and agent 1 would incur a cost of 4.

We now know that if agent 1 falsely declares θ′′1 in in-
stance 1: ū1(c′1, θ

′′
1 , θ′2, p) = R1((θ′′1 , θ′2), (1, 1))− (c11 +

c12) ≥ 4−3 ≥ 1. Thus, agent 1 has incentive to falsely
declare θ′′1 in instance 1, violating IC. Thus, we have
reached a contradiction and completed the proof of the
base case.

Inductive Step: We now prove the inductive step,
which consists of two parts: incrementing n and in-
crementing t. In each case, the inductive hypothesis
is that no mechanism satisfies IC, IR, CR, and SE for
n = x and t = y, where x, y ≥ 2.

Part 1: For the first case, we must show that no
mechanism exists that satisfies IC, IR, CR, and SE

for n = x + 1 and t = y, which we will prove by con-
tradiction. Assume that such a mechanism does exist.
There is a one-to-one mapping from every instance in
which n = x and t = y to an instance that only dif-
fers in the addition of an “extra” agent who truthfully
declares her type θe. Since such an instance satisfies
n = x + 1 and t = y, our mechanism must satisfy
IC, IR, CR, and SE for this instance. Because of SE,
this mechanism can never assign the task to the extra
agent. Because of IR, this mechanism can never re-
ceive a positive payment from the extra agent. Since
in each instance the only effect that the extra agent can
have on the mechanism is to receive a payment from
the center, we can transform this mechanism into one
which satisfies IC, IR, CR, and SE for all instances
where n = x and t = y by simply removing the rev-
enue function and assignment function for the extra
agent, contradicting the inductive hypothesis.

Part 2: For the second case, we need to show that no
mechanism can satisfy IC, IR, CR, and SE for n = x
and t = y+1. We use a similar proof by contradiction,
starting from the assumption that such a mechanism
does exist. There is a one-to-one mapping from every
instance in which n = x and t = y to an instance of
n = x and t = y+1 through the addition of an “extra”
task te that is not involved in any dependencies and for
which the center has no value for its completion. By
SE, if a satisfying mechanism exists, then there exists
a satisfying mechanism that always assigns this task to
the dummy agent (recall that this is equivalent to not
assigning the task). We can transform this mechanism
into one which satisfies our goals for n = x and t = y
by simply removing the assignment of te to the dummy
agent. Once again, we have contradicted the inductive
hypothesis, and the proof is complete.

Interestingly, by slightly altering our mechanism we
can solve the problem in an equilibrium.

Equilibrium Multiple Task Mechanism:

Assignment The chosen assignment A maximizes
the (declared) expected welfare W̄ (A, ĉ, p̂) =
E[µ|A,p̂][W (A, ĉ, µ)].

Payment The payment to each agent i is defined
according to her completion vector: Ri =
W̄−i(A, ĉ−i, µ)− W̄ ∗

−i(ĉ−i, p̂−i)

The only difference from the Multiple Task Mecha-
nism is that the first term of the payment rule uses
the actual completion vector, instead of the distribu-
tion induced by the declaration of the other agents. As
a result, our properties are satisfied only as an equilib-
rium: if all agents declare truthfully, then no agent has
incentive to deviate to a different declaration. While
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there is no formal name for this type of equilibrium, it
is similar in spirit to a Nash equilibrium, but techni-
cally different because there is no common knowledge
of the game (since privately-known types affect the
utility of other agents). It is also similar to a Bayes-
Nash equilibrium, but much stronger because it holds
regardless of agent beliefs about the prior distributions
for the types of the other agents. We define Equilib-
rium IC to hold if truth-telling is such an equilibrium.
Equilibrium IR and SE are defined similarly.

Theorem 6 The Equilibrium Multiple Task Mecha-
nism satisfies NFR, Equilibrium IC, Equilibrium IR,
and Equilibrium SE, even when dependencies exist.

6 COST VERIFICATION

A practical drawback of our mechanisms is that the
payments (or fines) may be very large, especially when
service provider is far more efficient than the other
agents. Also, since CR is not satisfied in our most
general settings, the designer has to take a risk.

Previous work (Nisan & Ronen 2001) has stressed the
importance of ex post verification. It showed that
when the designer can verify the costs and the actions
of the agents after the work was done, the power of
the designer increases dramatically. All of our previ-
ous constructions have corresponding versions that use
verification. The main advantage of these mechanisms
is that the payments can be normalized by any linear
function, thus making the potential losses more rea-
sonable for both the agents and the center. Due to
space constraints we omit these constructions.

7 DISCUSSION & FUTURE WORK

In this paper we studied task allocation problems in
which agents may fail to complete their assigned tasks.
For the settings we considered (single task, multi-
ple tasks with combinatorial properties, and multiple
tasks with dependencies) we provided either a mecha-
nism that satisfies our goals or an impossibility result.

It is worth pointing out that all of the results in this pa-
per hold when we expand the set of possible failures to
include rational, intentional failures, which occur when
an agent increases her utility by not attempting an as-
signed task (and thus not incurring the corresponding
cost). Modelling this possibility would complicate our
model without changing any of our results. Intuitively,
our positive results continue to hold because the pay-
ment rule aligns an agent’s utility with the welfare of
the system. If failing to attempt some subset of the
assigned tasks would increase the welfare, then these
tasks would not have been assigned to any agent. Ob-

viously, all impossibility results would still hold when
we expand the set of possible actions for the agents.

Many interesting directions stem from this work. Two
possibilities are retrying tasks after a failure or allow-
ing multiple agents to attempt the same task in par-
allel. The computation of our allocation and payment
rules presents non-trivial algorithmic problems. Also,
the payment properties for the center may be further
investigated, especially in settings where CR must be
sacrificed to satisfy our other goals.

Finally, we believe that the most important future
work will be to consider a wider range of possible
failures, and to discover new mechanisms to overcome
them. In particular, we would like to explore the case
in which agents may fail maliciously or irrationally.
For this case, even developing a reasonable model of
the setting provides a major challenge.
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Bidding Clubs in First-Price Auctions∗

Kevin Leyton-Brown Yoav Shoham Moshe Tennenholtz

Abstract

We introduce a class of mechanisms, called bidding clubs, that allow
agents to coordinate their bidding in auctions. Bidding clubs invite a set
of agents to join, and each invited agent freely chooses whether to accept
the invitation or to participate independently in the auction. Agents
who join a bidding club first conduct a “knockout auction” within the
club; depending on the outcome of the knockout auction some subset of
the members of the club bid in the primary auction in a prescribed way.
We model this setting as a Bayesian game, including agents’ choices of
whether or not to accept a bidding club’s invitation. After describing this
general setting, we examine the specific case of bidding clubs for first-
price auctions. We show the existence of a Bayes-Nash equilibrium where
agents choose to participate in bidding clubs when invited and truthfully
declare their valuations to the coordinator. Furthermore, we show that
the existence of bidding clubs benefits all agents (both inside and outside
of bidding clubs).

1 Introduction

Most work on auctions concentrates on the design of auction protocols from the
seller’s perspective, and in particular on optimal (i.e., revenue maximizing) auc-
tion design. In this paper we present a class of systems to assist sets of bidders,
bidding clubs. The idea is similar to the idea behind “buyer clubs”: aggregating
the market power of individual bidders. Buyer clubs work when buyers’ inter-
ests are perfectly aligned; the more buyers join in a purchase the lower the price
for everyone. In auctions it is relatively easy for multiple agents to cooperate,
hiding behind a single auction participant. Intuitively, these bidders can reduce
their payment if they win, by causing others to lower their bids in the case of a
first-price auction or by possibly removing the second-highest bidder in the case
of a second-price auction. However, the situation in auctions is not as simple
as in buyer clubs, because while bidders can gain by sharing information, the
competitive nature of auctions means that bidders’ interests are not aligned.
Thus there is a complex strategic relationship among bidders in a bidding club,
and bidding club rules must be designed accordingly.

∗Thanks to Navin Bhat and Ryan Porter for very helpful discussions about Theorem 3. This
work was supported by DARPA grant F30602-00-2-0598 and a Stanford Graduate Fellowship.
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1.1 Related Work

Below we discuss the most relevant previous work and its relation to ours, not-
ing the relative scarcity of previous work on bidder-centric mechanisms. This
work all comes under the umbrella of self-enforcing collusive protocols for non-
repeated auctions. Collusion is a negative term reflecting a seller-oriented per-
spective; since we adopt a more neutral stance towards such bidder activities,
we use the term bidding clubs rather than the terms bidding rings and cartels
that have been used in the past. However, the technical development is not
impacted by such subtle differences in moral attitude.

1.1.1 Collusion in Second-Price Auctions

One of the first formal papers to consider collusion in second-price auctions
was written by Graham and Marshall [3]. This paper introduces the knockout
procedure: agents announce their bids in a knockout auction; only the highest
bidder goes to the auction but this bidder must pay a “ring center” the amount
of his gain relative to the case where there was no collusion. The ring center
pays each agent in advance; the amount of this payment is calculated so that the
ring center will budget-balance ex-ante, before knowing the agents’ valuations.

Graham and Marshall’s work has been extended to deal with variations in the
knockout procedure, differential payments, and relations to the Shapley value
[4]. The case where only some of the agents are part of the cartel is discussed by
Mailath and Zemsky [9]. Ungern and Sternberg [14] discuss collusion in second-
price auctions where the designated winner of a cartel is not the agent with
the highest valuation. Although not presented in any existing work of which
we are aware, it is also easy to extend Graham and Marshall’s protocol to an
environment where multiple cartels may operate in the same auction alongside
independent bidders.

1.1.2 Collusion in First-Price Auctions

There is little formal work on collusion in first-price auctions, the most impor-
tant exception being a very influential paper by McAfee and McMillan [11].
It is the closest in the literature to our work, and indeed we have borrowed
some modelling elements from it. Several sections, including the discussion of
enforcement and the argument for independent private values as a model of
agents’ valuations, are directly applicable to our paper. However, the setting
introduced in their work assumes that a fixed number of agents participate in
the auction and that all agents are part of a single cartel that coordinates its be-
havior in the auction. The authors show optimal collusion protocols for “weak”
cartels (in which transfers between agents are not permitted: all bidders bid the
reserve price, using the auctioneer’s tie-breaking rule to randomly select a win-
ner) and for “strong” cartels (the cartel holds a knockout auction, the winner of
which bids the reserve price in the main auction while all other bidders sit out;
the winner distributes some of his gains to other cartel members through side
payments). A small part of the paper deals with the case where in addition to
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a single cartel there are also additional agents. However, results are shown only
for two cases: (1) when non-cartel members bid without taking the existence of
a cartel into account and (2) when each agent i has valuation vi ∈ {0, 1}. The
authors explain that they do not attempt to deal with general strategic behavior
in the case where the cartel consists of only a subset of the agents; furthermore,
they do not consider the case where multiple cartels can operate in the same
auction. Finally, a brief presentation of “cartel-formation games” is related to
our discussion of agents’ decision of whether or not to accept an invitation to
join a bidding club.

1.1.3 Other Work on Collusion

Less formal discussion of collusion in auctions can be found in a wider variety
of papers. For example, a survey paper that discusses mechanisms that are
likely to facilitate collusion in auctions, as well as methods for the detection of
such schemes, can be found in [6]. A discussion and comparison of the stability
of rings associated with classical auctions can be found in [13], concentrating
on the case where the valuations of agents in the cartel are honestly reported.
Collusion is also discussed in other settings, e.g., aiming to influence purchaser
behavior in a repeated procurement setting (see [2]) and in the context of general
Bertrand or Cournot competition (see [1]).

Our previously published work anticipates some of the results reported here.
Specifically, in [7] we considered bidding clubs under the assumptions that only a
single bidding club exists, and that bidders who were not invited to join the club
are not aware of the possibility that a bidding club might exist. The current
paper is an extension and generalization of that earlier work. An extended
abstract of the current paper appeared in AAAI-02 [8].

2 Technical Preliminaries

Our goal is to extend on past work on bidder cooperation in first-price auctions
to the standard game-theoretic setting in which all agents (both cartel members
and non-members) are rational, and act in equilibrium based on true knowledge
of the economic environment. We also want to increase realism by allowing
for the possibilities that more than one cartel will exist (introducing the new
wrinkle that cartel members must reason about the behavior of other cartels)
and that some agents will not belong to any cartel. Of course we also want to
allow for real-numbered valuations drawn from an interval, as compared to the
case studied in [11] where valuations take one of only two discrete values.

2.1 Auction Setting

In this section we give a formal description of the auction setting and introduce
notation. An economic environment E consists of a finite set of agents who
have non-negative valuations for a good at auction, and a distinguished agent
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0—the seller or center. Denote the economic environment described here as Ec.
Let T be the set of possible agent types. The type τi ∈ T of agent i is the pair
(vi, si) ∈ V × S. vi denotes an agent’s valuation: his maximal willingness to
pay for the good offered by the center. We assume that vi represents a purely
private valuation for the good, and that vi is selected independently from the
other vj ’s of other agents from a known distribution, F , having density function
f . By si we denote agent i’s signal: his private information about the number
of agents in the auction. The set of possible signals will be varied throughout
the paper; in Ec let S = {∅}. Note, however, that the economic environment
itself is always common knowledge, and so agents always have some information
about the number of agents even when they always receive the null signal.

By pτi
n we denote the probability that agent i assigns to there being exactly

n agents in the auction, conditioned on his type τi. We denote the whole
distribution conditioned on i’s type as uppercase P τi . The utility function of
agent i, ui : R → R is linear, normalized with ui(0) = 0. The utility of agent
i (having valuation vi) when asked to pay t is vi − t if i is allocated a good,
and it is 0 otherwise. Thus, we assume that there are no externalities in agents’
valuations and that agents are risk-neutral. bi : T → R denotes agent i’s
strategy, a mapping from i’s type τi to his declaration in the auction. This may
be the null declaration, indicating that i will not participate in the auction.

2.2 Classical first-price auctions

It is instructive to consider the reasons why most previous work in collusion
has focused on second-price rather than first-price auctions. Since second-price
auctions give rise to dominant strategies, and since colluding agents can gain by
having other agents drop out without changing their own bidding behavior, it
is possible to study collusion in many settings related to these auctions without
performing strategic equilibrium analysis. In particular, agents outside a cartel
have no reason to change their strategies if they suspect (or even know) that
collusion is taking place. In first-price auctions agents who are not part of the
cartel must take into account the likelihood of collusion in deciding what they
should bid, since their strategy amounts to predicting the second-highest bid
conditional on their bid being highest, and this computation depends on the
total number of agents. The settings in [11] are largely designed to overcome
this problem: e.g., if all agents belong to the cartel, or if non-cartel agents are
assumed to play as though collusion is impossible, the question of how cartel
members and non-cartel members reason about each other is avoided.

This suggests that the choice of information structure will make a real differ-
ence for the study of collusion in first-price auctions. The most familiar is what
we will call the “classical” first-price auction, where the number of participants
is part of the economic environment (as in Ec). The equilibrium analysis of
classical first-price auctions is quite standard1:

1When we say that n agents participate in the auction we do not count the distinguished
agent 0, who is always present.
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Proposition 1 If valuations are selected independently according to the uni-
form distribution on [0, 1] then it is a unique symmetric equilibrium for each
agent i to follow the strategy:

b(vi) =
n− 1

n
vi.

Using classical equilibrium analysis (e.g., following Riley and Samuelson [12])
classical first-price auctions can be generalized to an arbitrary continuous dis-
tribution F .

Proposition 2 If valuations are selected from a continuous distribution F then
it is a unique symmetric equilibrium for each agent i to follow the strategy:

b(vi) = vi − F (vi)−(n−1)

∫ vi

0

F (u)n−1du.

.

In both cases, observe that the strategy is parameterized by valuation, and
also depends on information from the economic environment. It will be nota-
tionally useful for us to be able to specify the amount of the equilibrium bid as
a function of both v and n:

be(vi, n) = vi − F (vi)−(n−1)

∫ vi

0

F (u)n−1du. (1)

We are interested in constructing a bidding club protocol: a collusive agree-
ment that requires low bidders to drop out of the main auction if they lose in a
knockout auction. It is immediately obvious that such collusion is nonsensical
in a classical first-price auction. Since all agents have full knowledge of the
economic environment, they all know the true number of agents; as a result, it
will not matter to agents outside a cartel if cartel members with low valuations
drop out, and so the original equilibrium (based on the true number of agents in
the environment) will still hold. This seems more of a problem with our auction
model than with collusion in first-price auctions per se—in practice bidders do
not know how many agents have declined to participate, because they don’t
actually know the number of agents in the economic environment. The next
section considers an economic environment that addresses this issue.

2.3 First-price auctions with stochastic number of bidders

One way of modelling agents’ uncertainty about the number of opponents they
face is to say that the number of participants is chosen stochastically from a
probability distribution, and while the number of participants is not known to
the individual agents (not being part of the economic environment) the dis-
tribution is commonly known [10]. This setting requires that we redefine the
economic environment; denote the new economic environment as Es. Let the
set of agents who may participate in the economic environment be A ≡ N. Let
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βA represent the probability that a finite set A ⊂ A is the set of agents. The
probability that n agents will participate in the auction is γA(n) =

∑
A,|A|=n βA.

All agents know the probability distribution βA. Once an agent k is selected,
he updates his probability of the number of agents present as:

pk
n =

∑
A,|A|=n,k∈A βA∑

A,k∈A βA
. (2)

We deviate from the model in [10] by adding the assumption that all bidders
are equally likely to be chosen. Hence pk

n is the same for all k; we will hereafter
refer only to pn. Finally, we assume that γA(0) = γA(1) = 0; at least two agents
will participate in the auction.

An equilibrium for this setting was demonstrated by Harstad, Kagel and
Levin [5]:

Proposition 3 If valuations are selected from a continuous distribution F and
the number of bidders is selected from the distribution P then it is a unique
symmetric equilibrium for each agent i to follow the strategy:

b(vi) =
∑

j

F j−1(vi)pj∑
k F k−1(vi)pk

be(vi, j)

Observe that be(vi, j) is the amount of the equilibrium bid for a bidder with
valuation vi in a setting with j bidders as described in section 2.2 above. P is
deduced from the economic environment.2 We overload our previous notation
for the equilibrium bid, this time as a function of the agent’s valuation and the
probability distribution P :

be(vi, P ) =
∑

j

F j−1(vi)pj∑
k F k−1(vi)pk

be(vi, j) (3)

Unfortunately, this auction model is still not rich enough to express our in-
tuition about how agents could collude in a first-price auction. If each agent
knows only a distribution on the total number of agents interested in partici-
pating in the auction, then he has no way of knowing that other agents have
dropped out! It seems reasonable that agents will sometimes know how many
agents are placing bids in the auction, even though they may not know the
number of agents who chose not to participate at all. For example, when an
auction takes place in an auction hall, no bidder knows how many potential
bidders stayed home, but every bidder can count the number of people in the
room before placing his or her bid. It is in this sort of auction that we could
hope collusion based on dropping agents with low valuations would work. We
must first introduce a new type of auction to model this auction hall scenario.

2Recall that P is a set: pj ∈ P for all j ≥ 0, where pj denotes the probability that the
economic environment contains exactly j agents.
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2.4 First-price auctions with participation revelation

First-price auctions with participation revelation are defined as follows:

1. Agents indicate their intention to bid in the auction.

2. The auctioneer announces n, the number of agents who registered in the
first phase.

3. Agents submit bids to the auctioneer. The auctioneer will only accept
bids from agents who registered in the first phase.

4. The agent who submitted the highest bid is awarded the good for the
amount of his bid; all other agents are made to pay 0.

When a first-price auction with participation revelation operates in Es, the
equilibrium of the corresponding classical first-price auction holds.

Proposition 4 In Es it is an equilibrium of the first-price auction with partic-
ipation revelation for every agent i to indicate the intention to participate and
to bid according to be(vi, n).

Proof. Agents are always better off participating in first-price auctions
as long as there is no participation fee. The only way of participating is to
declare the intention to participate in the first phase of the auction. Thus the
number of agents announced by the auctioneer is equal to the total number of
agents in the economic environment. From proposition 2 it is best for agent i
to bid be(vi, n) when it is common knowledge that the number of agents in the
economic environment is n.

Settings modelled using classical first-price auctions may often be more ap-
propriately modelled as first-price auctions with participation revelation, since
bidders rarely know a priori the number of opponents they will face. However,
when bidders are unable to collude there is no strategic difference between these
two mechanisms, explaining why the simpler classical model is commonly used.
For the study of bidding clubs, however, the difference between the mechanisms
is profound—we are now able to make the standard assumption that bidders
have complete knowledge of the economic environment, while still finding that
bidder strategies are affected by the number of other agents who indicate an
intention to participate in the auction.

2.5 Distinguishing Features of our Model

Having justified our setting, it is worthwhile to emphasize the main differences
between our model of collusion and models proposed in the work surveyed above
(particularly [4] and [11]):

1. The number of bidders is stochastic.
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2. There is no minimum number of bidders in a bidding club (e.g., bidding
clubs are not required to contain all bidders).3

3. There is no limit to the number of bidding clubs in a single auction.

4. Club members and independent bidders behave strategically, acting ac-
cording to correct beliefs about their environment.

Additionally, we make several restrictions on the bidding club protocols that
we are willing to consider. None of these is required for the construction of a
working protocol, but we feel that each of these characteristics is necessary for
bidding clubs to be a realistic model of bidder cooperation:

1. Participation in bidding clubs requires an invitation, but bidders must be
free to decline this invitation without (direct) penalty. In this way we
include the choice to collude as one of agents’ strategic decisions, rather
than starting from the assumption that agents will collude.

2. Bidding club coordinators must make money on expectation. This ensures
that third-parties have incentive to run bidding club coordinators.

3. The bidding club protocol must give rise to an equilibrium where all invited
agents choose to participate, even when the bidding club operates in a
single auction as opposed to a sequence of auctions. This means that
agents can not be induced to collude in a given auction by the threat of
being denied future opportunities to collude.

2.6 Overview

Section 3 expands the auction models and economic environments described
above to the bidding club setting. Section 4 examines bidding club protocols
for first-price auctions. After giving assumptions and two lemmas, we give a
bidding club protocol for first-price auctions with participation revelation. Our
main technical results are that:

• It is an equilibrium for agents to accept invitations to join bidding clubs
when invited and to disclose their true valuations to their bidding club’s
coordinator, and for singleton agents to bid as they would in an auc-
tion with a stochastic number of participants in an economic environment
without bidding clubs, in which the distribution over the number of par-
ticipants is the same as in the bidding clubs setting.

• In equilibrium each agent is better off as a result of his own club (that
is, his expected payoff is higher than would have been the case if his club
never existed, but other clubs—if any—still did exist).

3For technical reasons we will have to assume that there is a finite maximum number of
bidders in each bidding club; however, this maximum may be any integer greater than or
equal to two.
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• In equilibrium each club increases all non-members’ expected payoffs, as
compared to equilibrium in the case where all club members participated in
the auction as singleton bidders, but all other clubs—if any—still existed.

• In equilibrium each agent is either better off or equally well off belonging
to a bidding club as compared to equilibrium in the case where no clubs
exist.

Finally, section 5 touches on questions of trustworthiness of coordinators,
legality of bidding clubs and steps an auctioneer could take to disrupt the op-
eration of bidding clubs.

3 Bidding Club Auction Model

In this section we extend both the economic environment and auction mech-
anism described above to include the characteristics necessary for a model of
bidding clubs. As described above, our aim is not to model a situation where
agents’ decision to collude is exogenous, as this would gloss over the question of
whether the collusion is stable. We thus include the collusive protocol as part
of the model and show that it is individually rational ex post (i.e., after agents
have observed their valuations) for agents to choose to collude. However, we do
consider exogenous the selection of the set of agents who are offered the oppor-
tunity to collude. Furthermore, we want to show the impact of the possibility
of collusion upon non-colluding agents; indeed, even colluding agents must take
into account the possibility that other groups of agents in the auction may also
be colluding. Once we have defined the new economic environment and auction
mechanism, a well-defined Bayesian game will be specified by every tuple of pri-
mary auction type, bidding club rules and distributions of agent types, number
of agents and number of bidding clubs.

3.1 The Economic Environment

We extend the economic environment Es to consist of a set of agents who have
non-negative valuations for a good at auction, the distinguished agent 0 and a set
of bidding club coordinators who do not value the good, but may invite agents
to participate in a bidding club. We will denote the new economic environment
Ebc. Intuitively, in Ebc an agent’s belief update after observing the number of
agents in his bidding club does not result in any change in the distribution over
the number of other agents in the auction, because the number of agents in each
bidding club is independent of the number of agents in every other bidding club.

3.1.1 Coordinators

Coordinators are not free to choose their own strategies; rather, they act as
part of the mechanism for a subset of the agents in the economic environment.
We select coordinators in a process analogous to the approach for exogenously
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selecting agents in [10]: we draw a finite set of individuals from an infinite set of
potential coordinators. In this case, however, this finite set is considered “poten-
tial coordinators”; in section 3.1.2 we will describe which potential coordinators
are “actualized”, i.e., correspond to actual coordinators.

Let C ≡ N (excluding 0) be the set of all coordinators. βC represents the
probability that a finite set C ⊂ C is selected to be the set of potential coordina-
tors. We add the restriction that all coordinators are equally likely to be chosen.
A consequence of this restriction is that an agent’s knowledge of the coordinator
with whom he is associated does not give him additional information about what
other coordinators may have been selected. We denote the probability that an
auction will involve nc potential coordinators as γC(nc) =

∑
C,|C|=nc

βC . We
assume that γC(0) = γC(1) = 0: at least two potential coordinators will be
associated with each auction.

3.1.2 Agents

We independently associate a random number of agents with each potential
coordinator, again drawing a finite set of actual agents from an infinite set
of potential agents. If only one (actual) agent is associated with a potential
coordinator, the potential coordinator will not be actualized and hence the agent
will not belong to a bidding club. In this way we model agents who participate
directly in the auction without being associated with a coordinator. If more
than one agent is associated with a potential coordinator, the coordinator is
actualized and all its associated agents receive an invitation to participate in
the bidding club.

Let A ≡ N be the set of all agents, and let κ ∈ N \ {0, 1} be the maximum
number of agents who may be associated with a single bidding club. Partition
A into subsets, where agent i belongs to the subset Adi/κe. Let βA be the
probability that a finite set A ⊂ Ai is the set of agents associated with potential
coordinator i; we assume that all agents are equally likely to be chosen. The
probability that n agents will be associated with a potential coordinator is
denoted γA(n) =

∑
A,|A|=n βA. By the definition of κ, ∀j > κ, γA(j) = 0; we

assume that γA(0) = 0 and that γA(1) < 1.

3.1.3 Types and Signals

Recall that the type τi ∈ T of agent i is the pair (vi, si) ∈ V × S. Let S ∈
N \ {0}; si denotes agent i’s private information about the number of agents in
his bidding club.4 Of course, if this number is 1 then there is no coordinator
for the agent to deal with, and he will simply participate in the main auction.
Note also that agents are neither aware of the number of potential coordinators

4In fact, none of our results require that agents know the number of agents in their bidding
clubs; it would be sufficient that agents know whether they belong to a bidding club. We
consider the setting where agents’ signals are more informative because deviation from the
bidding club protocol is more profitable in this case.
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for their auction nor the number of actualized potential coordinators, though
they are aware of both distributions.

3.1.4 Beliefs

Once an agent is selected, he updates his probability distribution over the num-
ber of actual agents in the economic environment. Not all agents will have the
same beliefs—agents who have been signaled that they belong to a bidding club
will expect a larger number of agents than singleton agents. We denote by pn,k

m

the probability that there are a total of m agents in the auction, given that
there are n bidding clubs and that there are k agents in the bidder’s own club;
we denote the whole distribution Pn,k. Because the numbers of agents in each
bidding club are independent, observe that every agent in the whole auction has
the same beliefs about the number of other agents in the economic environment,
discounting those agents in his own bidding club. Hence agent i’s beliefs are
described by the distribution Pn,si .

3.2 The Augmented Auction Mechanism

Bidding clubs, in combination with a main auction, induce an augmented auc-
tion mechanism for their members:

1. A set A of bidders is invited to join the bidding club.

2. Each agent i sends a message µi to the bidding club coordinator. This
may be the null message, which indicates that i will not participate in
the coordination and will instead participate freely in the main auction.
Otherwise, i agrees to be bound by the bidding club rules, and µi is i’s
declared valuation for the good. Of course, i can lie about his valuation.

3. Based on commonly-known rules and the information all the members
supply, the coordinator selects a subset of the agents to bid in the main
auction. We assume that the coordinator can force agents to bid as desired,
e.g. by imposing a punitive charge on misbehaving agents.

4. The coordinator makes a payment to each club member. The amount of
the payment must not depend on any of the agents’ declared valuations
or on the outcome of the main auction.

5. If a bidder represented by the coordinator wins the main auction, he is
made to pay the amount required by the auction mechanism to the auc-
tioneer. In addition, he may be required to make an additional payment
to the coordinator.

Any number of coordinators may participate in an auction. However, we
assume that there is only a single coordination protocol, and that this protocol
is common knowledge.
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4 Bidding Clubs for First-Price Auctions

This section contains the paper’s main technical results. We begin by stating
some (mild) assumptions about the distribution of agent valuations, then use
these assumptions to prove a technical lemma. A second lemma explains how
we can show the existence of an equilibrium in a setting where agents receive
asymmetric information and are subject to asymmetric payment rules. We
then give the bidding club protocol for first-price auctions, based on a first-
price auction with participation revelation as described in section 2.4. We show
an equilibrium of this auction, and demonstrate that agents gain under this
equilibrium.

4.1 Assumptions about F

Our results hold for a broad class of distributions of agent valuations—all dis-
tributions for which the following two assumptions are true.

Assumption 1 F is continuous and atomless.

In order to give our second assumption, we must introduce some notation:

Px≥i =
∞∑

x=i

px. (4)

We now define the relation “<” for probability distributions:

P < P ′ iff ∃l(∀i < l, Px≥i = p′x≥i and ∀i ≥ l, Px≥i < P ′x≥i). (5)

We are now able to state our second assumption:

Assumption 2 (P < P ′) implies that ∀v, be(v, P ) < be(v, P ′)

Intuitively, we assume that every agent’s symmetric equilibrium bid in Es

with number of participants drawn from P ′ is strictly greater than that agent’s
symmetric equilibrium bid in Es with number of participants drawn from P , in
the case where P ′ stochastically dominates P .5

4.2 A Technical Lemma

It is important to note that the notation Pn,k may be seen as defining a proba-
bility distribution over the number of agents in economic environment Es (i.e.,
even without the existence of bidding clubs). It is thus possible to discuss equi-
librium bids in the classical stochastic settings where the number of bidders is
drawn from such a distribution. While it will remain to show why these val-
ues are meaningful in our setting where (among other differences) agents have

5This assumption holds for every standard distribution of independent valuations of which
we are aware.
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asymmetric information, it will be useful to prove the following lemma about
the classical stochastic setting:6

Lemma 1 ∀k ≥ 2, ∀n ≥ 2, ∀v, be(v, Pn+k−1,1) > be(v, Pn,k)

Remark. This lemma asserts that the symmetric equilibrium bid is always
higher when more agents belong to the main auction as singleton bidders and
the total number of agents is held constant.

Proof. Recall Assumption 2 from section 4.1. We defined P < P ′ as the
proposition that ∃l(∀i < l, Px≥i = P ′x≥i and ∀i ≥ l, Px≥i < P ′x≥i), and assumed
that (P < P ′) implies that ∀v, be(v, P ) < be(v, P ′). It is thus sufficient to show
that Pn+k−1,1 > Pn,k. We will take l = n + k.

First we will show that ∀j < n + k, Pn+k−1,1
x≥j = Pn,k

x≥j . The distribution
Pn+k−1,1 expresses the belief that there are n+k−2 potential coordinators, the
membership of which is distributed as described in section 3.1, and one potential
coordinator that is known to contain only a single bidder. The distribution Pn,k

expresses the belief that there are n−1 potential coordinators, the membership
of which is again distributed as described in section 3.1, and one potential
coordinator that is known to contain exactly k bidders. Under both distributions
it is certain that there are at least n + k − 1 agents. Therefore ∀j < n +
k, Pn+k−1,1

x≥j = Pn,k
x≥j = 1.

Second, ∀j ≥ n + k, Pn+k−1,1
x≥j > Pn,k

x≥j . Considering Pn+k−1,1, observe that
for n + k− 2 of the potential coordinators the probability that this coordinator
contains a single agent is less than one and these probabilities are all indepen-
dent; the last potential coordinator contains a single agent with probability one.
Considering Pn,k, there are n− 1 potential coordinators where the probability
of containing a single agent is less than one, exactly as above, and k potential
coordinators certain to contain exactly one agent. Thus the two distributions
agree exactly about n − 1 of the potential coordinators, which both hold to
contain more than a single agent, and likewise both distributions agree that one
of the potential coordinators contains exactly one agent. However, there remain
k − 1 potential coordinators about which the distributions disagree; Pn+k−1,1

always generates a greater or equal number of agents for these potential coordi-
nators, as compared to Pn,k. Under the latter distribution all these agents are
singletons with probability one, while under the former there is positive proba-
bility that each of the potential coordinators contains more than one agent. As
long as k ≥ 2, there is at least one potential coordinator for which Pn+k−1,1

stochastically dominates Pn,k. Thus ∀k ≥ 2, ∀n ≥ 2, ∀v Pn+k−1,1 > Pn,k.

6For convenience and to preserve intuition in what follows we will refer to the number of
potential coordinators and the number of agents belonging to a coordinator even though we
concern ourselves with the economic environment Es where bidding clubs do not exist. The
number of potential coordinators is shorthand for the number nc drawn from γC in the first
phase of the procedural definition of the distribution P n,k. Likewise the number of agents
associated with a potential coordinator is shorthand for the number of agents chosen from
one of the nc iterative draws from γA.
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4.3 Truthful Equilibria in Asymmetric Mechanisms

In Ebc there is informational asymmetry because agents receive different signals,
and asymmetric payment rules because some agents belong to bidding clubs of
different sizes and others do not belong to a bidding club at all. The lemma in
this section will allow us to go on to show an equilibrium in Theorem 1 despite
these asymmetries.

We describe a particular class of auction mechanisms that are asymmetric
in the sense that every agent is subject to the same allocation rule but to a
potentially different payment rule, and furthermore that agents may receive
different signals. A truth-revealing equilibrium exists in such auctions when the
following conditions hold:

1. The auction allocates the good to the agent who submits the highest bid.

2. Consider the auction Mi in which all agents are subject to agent i’s pay-
ment rule and the above allocation rule, and where (hypothetically) all
agents receive the signal si.7 Truth-revelation is a symmetric equilibrium
in Mi.

Observe that the second condition above is less restrictive than it may ap-
pear. From the revelation principle we can see that for every auction with a
symmetric equilibrium there is a corresponding auction in which truth-revealing
is an equilibrium that gives rise to the same allocation and the same payments
for all agents. Mi can thus be seen as a revelation mechanism for any other
auction that has a symmetric equilibrium.

Definition 1 M̄ is a regular asymmetric auction if it has the following struc-
ture, where M represents a set of auctions {M1, . . . , Mn} which each allocate the
good to the agent who submits the highest bid, and which are all truth-revealing
direct mechanisms for n risk-neutral agents with independent private valuations
drawn from the same distribution:

1. Each agent i sends a message µi to the center.

2. The center allocates the good to the agent i with µi ∈ maxj µj. If multiple
agents submit the highest message, the tie is broken in some arbitrary way.

3. Agent i is made to transfer ti(µ, π) to the center. The transfer function ti
is taken from Mi ∈M.

Lemma 2 Truth-revelation is an equilibrium of regular asymmetric auctions.

Proof. The payoff of agent i is uniquely determined by the allocation rule, the
transfer function ti, and all agents’ strategies. Assume that the other agents
are truth revealing, then the other agents’ behavior, the allocation rule, and

7That is, for every agent j in the real auction, we create an agent k in the hypothetical
auction Mi having type τk = (vj , si).
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agent i’s payment rule are all identical in M̄ and Mi. Since truth-revelation is
an equilibrium in Mi, truth-revelation is agent i’s best response in M̄ .

The next corollary, following directly from Lemma 2, compares a single
agent’s expected utility under two different auctions which implement differ-
ent payment rules. We will need this result for our proof of Theorem 1.

Corollary 1 Consider two regular asymmetric auctions M̄ and M̄ ′, which both
implement the same transfer function for agent i. In equilibrium, agent i’s
expected utility is the same in both M̄ and M̄ ′.

Proof. The payoff of agent i is uniquely determined by the allocation rule,
its transfer function, and all agents’ strategies. Both M̄ and M̄ ′ have the same
allocation rule. Lemma 2 tells us that truth revelation is a best response for
all agents in both M̄ and M̄ ′, so all agents’ strategies are identical in the two
auctions. In general, agents may not receive the same expected utility from M̄
and M̄ ′. However, since i has the same transfer function in both auctions, i’s
expected utility in M̄ is equal to his expected utility in M̄ ′.

4.4 First-Price Auction Bidding Club Protocol

What follows is the protocol of a coordinator who approaches k agents.

1. Each agent i sends a message µi to the coordinator.

2. If at least one agent declines participation then the coordinator registers
in the main auction for every agent who accepted the invitation to the bid-
ding club. For each bidder i, the coordinator submits a bid of be(µi, P

n,k),
where n is the number of bidders announced by the auctioneer.

3. If all k agents accepted the invitation then the coordinator drops all
bidders except the bidder with the highest reported valuation, who we
will denote as bidder h. For this bidder the coordinator places a bid of
be(µh, Pn,1) in the main auction.

4. The coordinator pays each member a pre-determined payment c ≥ 0 when-
ever all bidders participate in the club, and regardless of the outcome of
the auction and of how much each bidder bid. Following the argument in
[3] let g be the coordinator’s ex ante expected gain if all agents behave
according to the equilibrium in Theorem 1; the coordinator will not lose
money on expectation if it pays each agent c = 1

k (g − c′) with 0 ≤ c′ ≤ g.

5. If bidder h wins in the main auction, he is made to pay be(µh, Pn,1) to
the center and be(µh, Pn,k)− be(µh, Pn,1) to the coordinator.

Observe that in equilibrium the coordinator has an expected profit of c′,
though it will lose kc whenever the winner of the main auction does not belong
to its club. If a coordinator wanted to be budget-balanced on expectation rather
than profitable on expectation, it could set c′ = 0.

We are now ready to prove the main theorem of the paper:
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Theorem 1 It is an equilibrium for all bidding club members to choose to par-
ticipate and to truthfully declare their valuations to their respective bidding club
coordinators, and for all non-bidding club members to participate in the main
auction with a bid of be(v, Pn,1).

Proof. We first prove that the above strategy is in equilibrium for both
categories of bidders assuming that agents all participate; we then prove that
participation is rational for all agents.

For the proof of equilibrium we consider a one-stage mechanism which be-
haves as follows:

1. The center announces n, the number of bidders in the main auction.

2. Bidders submit bids (messages) to the mechanism.

3. The bidder with the highest bid is allocated the good.

4. The winning bidder is made to pay be(vi, P
n,si)− c.

5. All non-winning bidding club members are paid c.

This one-stage mechanism has the same payment rule for bidding club bid-
ders as the bidding club protocol given above, but no longer implements a first-
price payment rule for singleton bidders. In order to prove that the strategies
given in the statement of the theorem are an equilibrium, it is sufficient to show
that truthful bidding is an equilibrium for all bidders under the given one-stage
mechanism. Observe that this mechanism may be seen as a mechanism M̄ in
the sense of Lemma 2: it allocates the good to the agent who submits the high-
est message, and (by definition of be) the auction Mi in which all agents are
subject to agent i’s payment rule and receive the signal si has truth revelation
as a symmetric equilibrium.

Strategy of non-club bidder: Assume that all bidding club agents (if any)
bid truthfully. Further assume that all non-club agents also bid truthfully ex-
cept for non-club bidder i. The probability distribution Pn,1 correctly describes
the distribution of the number of agents faced by i, given his signal si = 1 and
the auctioneer’s announcement that there are n bidders in the main auction.
Although agents in bidding clubs have additional information about the number
of agents—each agent knows that there is at least one other agent in his own
club—their prescribed behavior is to place bids of be(µ, Pn,1) in the main auc-
tion. Agent i thus faces an unknown number of agents distributed according to
Pn,1 and all bidding be(v, Pn,1). The auction is regular asymmetric: using the
result from Lemma 2, i’s strategic decision is the same as under a mechanism
where all agents are subject to his payment rule and share his signal si, and with
a stochastic number of bidders distributed according to Pn,1. In particular, it
does not matter that the club members are subject to different payment rules
and have additional information, and so i will also bid be(v, Pn,1).

Strategy of club bidder: Assume that all agents accept the invitation to join
their respective clubs and then truthfully declare their valuations, excluding
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club bidder i who decides to participate but considers his bid. Once again,
observe that the auction is regular asymmetric, and so Lemma 2 applies: Pn,k

describes the distribution over the number of agents conditioned on i’s signal
si = k, and the bidder submitting the highest (global) message will always be
allocated the good. Therefore truthful bidding is a best response for agent i,
despite the information asymmetry. Because i gets the payment c regardless of
the amount of his bid, the presence or absence of this payment has no effect on
his choice of what amount to bid given the decision to participate.

We now turn to the question of participation; for this part of the proof we
consider the original, multi-stage mechanism.

Participation of non-club bidder: Because there is no participation fee, it
is always rational for a bidder to participate in a first-price auction.

Participation of club bidder: Assume that c = 0; clearly c > 0 only in-
creases agents’ incentive to participate in a bidding club. Because there is no
participation fee, all bidding club bidders will participate in the auction, but
must decide whether or not to accept their coordinators’ invitations. Assume
that all agents except for i join their respective clubs and bid truthfully, and
agent i must decide whether or not to join his bidding club. Agent i knows
the number of agents in his bidding club and updates his distribution over the
number of agents in the whole auction as Pn,k.

Consider the classical stochastic case where all bidders have the same infor-
mation as i (and are subject to the same payment rules): from proposition 3 it
is a best response for i to bid be(vi, P

n,k). In this setting i’s expected gain is
the same as in the equilibrium of the one-stage mechanism from the first part
of the proof where all bidding club members (including i) join their clubs and
bid truthfully (with c = 0), by Corollary 1.

As a result of i declining the offer to participate in the bidding club there
are n − 1 bidders in the main auction placing bids of be(v, Pn+k−1,1) and
k − 1 other bidders placing bids of be(v, Pn,k). We know from Lemma 1 that
be(v, Pn+k−1,1) > be(v, Pn,k). Thus the singleton bidders and other bidding
clubs will bid a higher function8 of their valuations than the bidders from the
disbanded bidding club. It always reduces a bidder’s expected gain in a first-
price auction to cause other bidders to bid above the equilibrium, because it
reduces the chance that he will win without affecting his payment if he does
win. This is exactly the effect of i declining the offer to join his bidding club:
the k − 1 other bidders from i’s bidding club bid according to the equilibrium
of the classical stochastic case discussed above, but the n− 1 singleton and bid-
ding club bidders submit bids that exceed the symmetric equilibrium amount.
Therefore i’s expected gain is smaller if he declines the offer to participate than
if he accepts it.

8Note that this occurs because the singleton bidders and other bidding clubs in the main
auction follow a strategy that depends on the number of bidders announced by the auctioneer;
hence they bid as though all the k − 1 bidders from the disbanded bidding club might each
be independent bidding clubs.
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4.5 Do bidding clubs cause agents to gain?

All things being equal, bidders are better off being invited to a bidding club
than being sent to the auction as singleton bidders. Intuitively, an agent gains
by not having to consider the possibility that other bidders who would otherwise
have belonged to his bidding club might themselves be bidding clubs.

Theorem 2 An agent i has higher expected utility in a bidding club of size k
bidding as described in Theorem 1 than he does if the bidding club does not exist
and k additional agents (including i) participate directly in the main auction as
singleton bidders, again bidding as described in Theorem 1, for c ≥ 0.

Proof. Consider the counterfactual case where agent i’s bidding club does not
exist, and all the members of this bidding club are replaced by singleton bidders
in the main auction. We will show that i is better off as a member of the bidding
club (even when c = 0) than in this case. If there were n potential coordinators
in the original auction and k agents in i’s bidding club, then the auctioneer would
announce n+k−1 as the number of participants in the new auction. Under the
equilibrium from Theorem 1, as a singleton bidder i will bid be(vi, P

n+k−1,1). If
he belonged to the bidding club and followed the same equilibrium i would bid
be(vi, P

n,k). In both cases the auction is economically efficient, which means i
is better off in the auction that requires him to pay a smaller amount when he
wins. Lemma 1 shows that ∀k ≥ 2, ∀n ≥ 2,∀v, be(v, Pn+k−1,1) > be(v, Pn,k),
and so our result follows.

We can also show that singleton bidders and members of other bidding clubs
benefit from the existence of each bidding club in the same sense. Following an
argument similar to the one in Theorem 2, other bidders gain from not having to
consider the possibility that additional bidders might represent bidding clubs.
Paradoxically, as long as c′ > 0, other bidders’ gain from the existence of a given
bidding club is greater than the gain of that club’s members.

Corollary 2 In the equilibrium described in Theorem 1, singleton bidders and
members of other bidding clubs have higher expected utility when other agents
participate in a given bidding club of size k ≥ 2, as compared to a case where k
additional agents participate directly in the main auction as singleton bidders.

Proof. Consider a singleton bidder in the first case, where the club of k agents
does exist. (It is sufficient to consider a singleton bidder, since other bidding
clubs bid in the same way as singleton bidders.) Following the equilibrium from
Theorem 1 this agent would submit the bid be(vi, P

n,1). Theorem 2 shows that
it is better to belong to a bidding club (and thus to bid be(vi, P

n,k)) than to be
a singleton bidder in an auction with the same number of agents (and thus to
bid be(vi, P

n+k−1,1). Since the distribution Pn,k is just Pn,1 with k−1 singleton
agents added, ∀k ≥ 2, be(vi, P

n,1) < be(vi, P
n,k). Thus ∀k ≥ 2, be(vi, P

n,1) <
be(vi, P

n+k−1,1).

Finally, we can show that agents prefer participating in Ebc in the equilib-
rium from Theorem 1 in a bidding club of size k (thus, where the number of
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agents is distributed according to Pn,k) to participating in Es with number of
bidders distributed according to Pn,k, as long as c > 0.

Theorem 3 For all τi ∈ T , for all k ≥ 2, for all n ≥ 2, for all c > 0, agent i
obtains smaller expected utility by:

1. participating in a first-price auction with participation revelation in Es

with number of bidders distributed according to Pn,k; than by

2. participating in a bidding club of size k in Ebc and following the equilibrium
from Theorem 1.

When c = 0, agent i obtains the same expected utility in both cases.

Proof. For any efficient auction, an agent i’s expected utility EUi is∑
j PjF

j−1(Vi)b, where Pj is the probability that there are a total of j agents
in the economic environment, F j−1(vi) is the probability that i has the high
valuation among these j agents, and b is the amount of i’s bid.

First, we consider case (1). From proposition 4 it is an equilibrium for
agent i in economic environment Es to bid be(vi, j) in a first-price auction with
participation revelation, where j is the number of bidders announced by the
auctioneer. Since the number of agents is distributed according to Pn,k, agent
i’s expected utility in a first-price auction with participation revelation is:

EUi,pr =
∑

j

pn,k
j F j−1(vi)be(vi, j) (6)

=
∑

` pn,k
` F `−1(vi)∑

`′ p
n,k
`′ F `′−1(vi)

∑

j

pn,k
j F j−1(vi)be(vi, j)

=
∑

`

pn,k
` F `−1(vi)


∑

j

pn,k
j F j−1(vi)∑

`′ p
n,k
`′ F `′−1(vi)

be(vi, j)




=
∑

`

pn,k
` F `−1(vi)be(vi, P

n,k) = EUi,s (7)

Equation (7) is agent i’s expected utility in a first-price auction with a
stochastic number of participants, which we shall denote EUi,s. Observe that
we make use of the definition of be(vi, P ) from equation (3).

We now consider case (2). Let EUi,bc denote agent i’s expected utility in
Ebc as a member of a bidding club of size k, in the equilibrium from Theorem
1. Recall that in this equilibrium the bidder with the globally highest valuation
always wins, and that all agents in bidding clubs of size k bid be(vi, P

n,k) and
receive a positive payment of c, which does not depend on the amount of their
bids or on whether any agent in the club wins the auction.

EUi,bc =
∑

j

pn,k
j F j−1(vi)be(vi, P

n,k) + c (8)
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Intersecting equations (7) and (8), we get:

EUi,bc − EUi,pr = c (9)

When c > 0, agent i’s expected utility is strictly greater in case (2) than in
case (1); when c = 0 he has the same expected utility in both cases.

What about agents who do not belong to bidding clubs? We can show
in the same way that they are not harmed by the existence of bidding clubs:
they are neither better nor worse off in the bidding club economic environment
than facing the same distribution of opponents in a first-price auction with
participation revelation.

Corollary 3 For all τi ∈ T , for all n ≥ 2, agent i obtains the same expected
utility by:

1. participating in a first-price auction with participation revelation in Es

with number of bidders distributed according to Pn,1; as by

2. participating as a singleton bidder in Ebc and following the equilibrium
from Theorem 1.

Proof. We follow the same argument as in Theorem 3, except that k = 1
and EUi,bc does not include c. Thus we get EUi,bc = EUi,pr.

5 Discussion

In this section we consider the trustworthiness and legality of coordinators, and
also discuss two ways for auctioneers to disrupt bidding clubs in their auctions.

5.1 Trust

Why would a bidding club coordinator be willing to provide reliable service, and
likewise why would bidders have reason to trust a coordinator? For example, a
malicious coordination protocol could be used simply to drop all its members
from the auction and reduce competition. While this is a reasonable concern, our
coordinators make a profit on expectation, thus providing incentive for a trusted
third party to run a reliable coordination service. Indeed, coordinators would be
very inexpensive to run: as their behavior is entirely deterministic, they could
operate without any human supervision. The establishment of trust is exogenous
to our model; we have simply assumed that all agents trust coordinators and
that all coordinators are honest.
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5.2 Legality

We have often been asked about the legal issues surrounding the use of bidding
clubs. While this is an interesting and pertinent question, it exceeds both our
expertise and the scope of this paper. We should note, however, that uses of
bidding clubs exist that might not fall under the legal definition of collusion. For
example, a corporation could use a bidding club to choose one of its departments
to bid in an external auction. In this way the corporation could be sure to avoid
bidding against itself in the external auction while avoiding dictatorship and
respecting each department’s self-interest. Coordinators may also be permitted
by the auctioneer: e.g., by an internet market seeking to attract more bidders
to its site.

5.3 Disrupting Bidding Clubs

There are two things an auctioneer can do to disrupt bidding clubs in a first-
price auction. First, she can permit “false-name bidding.” (Our auction model
has assumed that each agent may place only a single bid in the auction, and that
the center has a way of uniquely identifying agents.) Second, she can refrain
from publicly disclosing the winner of the auction.

If bidders can bid both in their bidding clubs and in the main auction, they
are better off deviating from the equilibrium in Theorem 1 in the following way.
A bidder i can accept the invitation to join the bidding club but place a very low
bid with the coordinator; at the same time, i can directly submit a competitive
bid in the main auction. Agent i will gain by following this strategy when
all other agents follow the strategies specified in Theorem 1 because accepting
the invitation to join the bidding club ensures that the club does drop all but
one of its members and also causes the high bidder to bid less than he would
if he were not bound to the coordination protocol. If the bidding club drops
any bidders other than i then all agents’ bids will also be lowered because the
number of participants announced by the auctioneer will be smaller, compared
to the case where the bidding club did not exist or where it was disbanded.
However, if false-name bidding is impossible and the winner of the auction is
publicly disclosed then the bidding club coordinator can detect an agent who has
deviated in this way. Because the agent has agreed to participate in the bidding
club the coordinator has the power to punish this agent and make the deviation
unprofitable. If either or both of these requirements does not hold, however,
the coordinator will be unable to detect defection and so the equilibrium from
Theorem 1 will not hold.

6 Conclusion

We have presented a formal model of bidding clubs which in many ways extends
models traditionally used in the study of collusion; most importantly, all agents
behave strategically based on correct information about the economic environ-
ment, including the possibility that other agents will collude. Other features
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of our setting include a stochastic number of agents and of bidding clubs in
each auction, and revelation by the auctioneer of the number of bids received.
The strategy space is expanded so that the decision of whether or not to join a
bidding club is part of an agent’s choice of strategy. Bidding clubs make money
on expectation, and can optionally be configured so they never lose money.
We have showed a bidding club protocol for first-price auctions that leads to
a (globally) efficient allocation in equilibrium, and which does not make use of
side-payments in the case of c = 0. There are three ways of asking the question
of whether agents gain by participating in bidding clubs in first-price auctions:

1. Could any agent gain by deviating from the protocol?

2. Would any agent be better off if his bidding club did not exist?

3. Would any agent would be better off in an economic environment that did
not include bidding clubs at all?

We have shown that agents are strictly better off in all three senses. (In the
third sense, the gain is only strict when c > 0.) We have also shown that each
bidding club causes non-members to gain in the second sense, and does not hurt
them in the third sense. Finally, we have discussed ways for an auctioneer to
set up the rules of her auction so as to disrupt the operation of bidding clubs.
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Abstract

For the problem of online real-time scheduling of jobs on a single processor, previous work
presents matching upper and lower bounds on the competitive ratio that can be achieved by
a deterministic algorithm. However, these results only apply to the non-strategic setting in
which the jobs are released directly to the algorithm. Motivated by emerging areas such as grid
computing, we instead consider this problem in an economic setting, in which each job is released
to a separate, self-interested agent. The agent can then delay releasing the job to the algorithm,
inflate its length, and declare an arbitrary value and deadline for the job, while the center
determines not only the schedule, but the payment of each agent. For the resulting mechanism
design problem (in which we also slightly strengthen an assumption from the non-strategic
setting), we present a mechanism that addresses each incentive issue, while only increasing the
competitive ratio by one. We then show a matching lower bound for deterministic mechanisms
that never pay the agents.

1 Introduction

We consider the problem of online scheduling of jobs on a single processor. Each job is characterized
by a release time, a deadline, a processing time, and a value for successful completion by its deadline.
The objective is to maximize the sum of the values of the jobs completed by their respective deadlines.
The key challenge in this online setting is that the schedule must be constructed in real-time, even
though nothing is known about a job until its release time.

Competitive analysis [5, 9], with its roots in [11], is a well-studied approach for analyzing online
algorithms by comparing them against the optimal offline algorithm, which has full knowledge of the
input at the beginning of its execution. One interpretation of this approach is as a game between the
designer of the online algorithm and an adversary. First, the designer selects the online algorithm.
Then, the adversary observes the algorithm and selects the sequence of jobs that maximizes the
competitive ratio: the ratio of the value of the jobs completed by an optimal offline algorithm to the
value of those completed by the online algorithm.

Two papers paint a complete picture in terms of competitive analysis for this setting, in which
the algorithm is assumed to know k, the maximum ratio between the value densities (value divided
by processing time) of any two jobs. For k = 1, [3] presents a 4-competitive algorithm, and proves
that this is a lower bound on the competitive ratio for deterministic algorithms. The same paper

∗The author would like to acknowledge Yoav Shoham for his influential comments on drafts of the paper, and Yossi
Azar for a useful discussion. This work was supported in part by DARPA grant F30602-00-2-0598.
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also generalizes the lower bound to (1 +
√

k)2 for any k ≥ 1, and [14] then presents a matching
(1 +

√
k)2-competitive algorithm.

The setting addressed by these papers is completely non-strategic, and the algorithm is assumed
to always know the true characteristics of each job upon its release. However, in domains such as
grid computing (see, for example, [6, 7]) this assumption is invalid, because buyers of processor time
choose when and how to submit their jobs. Furthermore, sellers not only schedule jobs but also
determine the amount that they charge buyers, an issue not addressed in the non-strategic setting.

Thus, we consider an extension of the setting in which each job is owned by a separate, self-
interested agent. Instead of being released to the algorithm, each job is now released only to its
owning agent. Each agent now has four different ways in which it can manipulate the algorithm:
it decides when to submit the job to the algorithm after the true release time, it can artificially
inflate the length of the job, and it can declare an arbitrary value and deadline for the job. Because
the agents are self-interested, they will choose to manipulate the algorithm if doing so will cause
their job to be completed; and, indeed, one can find examples in which agents have incentive to
manipulate the algorithms presented in [3] and [14].

The addition of self-interested agents moves the problem from the area of algorithm design to
that of mechanism design. In this setting, a mechanism will take as input a job from each agent,
and return a schedule for the jobs and a payment to be made by each agent to the center. The
mechanism design goal of incentive compatibility requires that it is always in each agent’s best
interests to immediately submit its job upon release, and to truthfully declare its value, length, and
deadline.

In order to evaluate a mechanism using competitive analysis, the adversary model must be
updated. In the new model, the adversary still determines the sequence of jobs, but it is the self-
interested agents who determine the observed input of the mechanism. Thus, in order to achieve a
competitive ratio of c, an online mechanism must both be incentive compatible, and always achieve
at least 1

c of the value that the optimal offline mechanism achieves on the same sequence of jobs.
The rest of the paper is structured as follows. In Section 2, we formally define and review results

from the original, non-strategic setting. After introducing the incentive issues through an example,
we formalize the mechanism design setting in Section 3. In Section 4 we present our first main result,
a ((1 +

√
k)2 + 1)-competitive mechanism. We also show how we can simplify this mechanism for

the special case in which k = 1 and each agent cannot alter the length of its job. Returning to the
general setting, we show in Section 5 that, for any k > 1, this competitive ratio is a lower bound for
deterministic mechanisms that do not pay agents. All formal proofs are delayed to the appendix.
Finally, in Section 6, we discuss related work other than the directly relevant [3] and [14], before
concluding with Section 7.

2 Non-Strategic Setting

In this section, we formally define the original, non-strategic setting, and recap previous results.

2.1 Formulation

There exists a single processor on which jobs can execute, and a set N = {1, . . . , n} of jobs, although
this number is not known beforehand. Each job i is characterized by a tuple θi = (ri, di, li, vi), which
denotes the release time, deadline, length of processing time required, and value, respectively. The
space Θi of possible tuples is the same for each job and consists of all θi such that ri, di, li, vi ∈ <+

(thus, the model of time is continuous). Each job is released at time ri, at which point its three
other characteristics are known. Nothing is known about the job before its arrival. Each deadline is
firm (or, hard), which means that no value is obtained for a job that is completed after its deadline.
Preemption of jobs is allowed, and it takes no time to switch between jobs. Thus, job i is completed
if and only if the total time it executes on the processor before di is at least li.
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Define the value density ρi = vi

li
of job i to be the ratio of its value to its length. For an

input θ = (θ1, . . . , θn), denote the maximum and minimum value densities as ρmin = mini ρi and
ρmax = maxi ρi. The importance ratio is then defined to be ρmax

ρmin
, the maximal ratio of value

densities between two jobs. The algorithm is assumed to always know an upper bound k on the
importance ratio. For simplicity, we normalize the range of possible value densities so that ρmin = 1.

An online algorithm is a function f : Θ1× . . .×Θn → X that maps the vector of tuples (for any
number n) to an alternative x. In this setting, an alternative x ∈ X is simply a schedule of jobs on
the processor, recorded by the function S : <+ → {0, 1, . . . , n}, which maps each point in time to
the active job, or to 0 if the processor is idle. We will use S(θ, t) as shorthand for the S(t) of f(θ),
and it denotes the active job at time t when the input is θ.

To denote the total elapsed time that a job has spent on the processor at time t when the input
is θ, we will use the function ei(θ, t) =

∫ t

0
µ(S(θ, x) = i)dx, where µ(·) is an indicator function

that returns 1 if the argument is true, and zero otherwise. A job’s laxity at time t is defined to be(
di − t− li + ei(θ, t)

)
, the amount of time that it can remain inactive and still be completed by its

deadline. A job is abandoned if it cannot be completed by its deadline (formally, if di−t+ei(θ, t) < li).
Since a job cannot be executed before its release time, the space of possible schedules is restricted

in that S(θ, t) = i implies ri ≤ t. Also, because the online algorithm must produce the schedule over
time, without knowledge of future inputs, it must make the same decision at time t for inputs that
are indistinguishable at this time. Formally, let θ(t) denote the subset of the tuples in θ that satisfy
ri ≤ t. The constraint is then that θ(t) = θ′(t) implies S(θ, t) = S(θ′, t).

The objective function is the sum of the values of the jobs that are completed by their respective
deadlines: W (f(θ), θ) =

∑
i

(
vi · µ(ei(θ, di) ≥ li)

)
. Let W ∗(θ) = maxx∈X W (x, θ) denote the

maximum possible total value for the profile θ.
In competitive analysis, an online algorithm is evaluated by comparing it against an optimal

offline algorithm. Because the offline algorithm knows the entire input θ at time 0 (but still cannot
start each job i until time ri), it always achieves W ∗(θ). An online algorithm f(·) is (strictly) c-
competitive if there does not exist an input θ such that c ·W (f(θ), θ) < W ∗(θ). An algorithm that
is c-competitive is also said to achieve a competitive ratio of c.

Finally, it is assumed that there does not exist an overload period of infinite duration. A period of
time [ts, tf ] is overloaded if the sum of the lengths of the jobs whose release time and deadline both fall
within the time period exceeds the duration of the interval (formally, if tf − ts ≤ ∑

i|(ts≤ri,di≤tf ) li).
Without such an assumption, it is not possible to achieve a finite competitive ratio [14].

2.2 Previous Results

In the non-strategic setting, [3] presents a 4-competitive algorithm called TD1 (version 2) for the
case of k = 1, while [14] presents a (1+

√
k)2-competitive algorithm called Dover for the general case

of k ≥ 1. Matching lower bounds for deterministic algorithms for both of these cases were shown in
[3]. In this section we provide a high-level description of TD1 (version 2) using an example.

TD1 (version 2) divides the schedule into intervals, each of which begins when the processor
transitions from idle to busy (call this time tb), and ends with the completion of a job. The first
active job of an interval may have laxity; however, for the remainder of the interval, preemption of
the active job is only considered when some other job has zero laxity. For example, when the input
is the set of jobs listed in Table 1, the first interval is the complete execution of job 1 over the range
[0.0, 0.9]. No preemption is considered during this interval, because job 2 does not have zero laxity
before time 1.5. Then, a new interval starts at tb = 0.9 when job 2 becomes active. Before job 2 can
complete, preemption is considered at time 4.8, when job 3 is released with zero laxity.

In order to decide whether to preempt the active job, TD1 (version 2) uses two more variables:
te and p loss. The former records the latest deadline of a job that would be abandoned if the active
job executes to completion (or, if no such job exists, the time that the active job will finish if it
is not preempted). In this case, te = 17.0. The value te − tb represents an upper bound on the
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amount of possible execution time “lost” to the optimal offline algorithm due to the completion of
the active job. The other variable, p loss, is equal to the length of the first active job of the current
interval. Because in general this job could have laxity, the offline algorithm may be able to complete
it outside of the range [tb, te].1 If the algorithm completes the active job and this job’s length is at
least te−tb+p loss

4 , then the algorithm is guaranteed to be 4-competitive for this interval (note that
k = 1 implies that all jobs have the same value density and thus that lengths can used to compute the
competitive ratio). Because this is not case at time 4.8 (since te−tb+p loss

4 = 17.0−0.9+4.0
4 > 4.0 = l2),

the algorithm preempts job 2 for job 3, which then executes to completion.

Job ri di li vi

1 0.0 0.9 0.9 0.9

2 0.5 5.5 4.0 4.0

3 4.8 17.0 12.2 12.2

0 1 5 17

6
?

6
?

6
?

Table 1: Input used to recap TD1 (version 2) [3]. The up and down arrows represent ri and di,
respectively, while the length of the box equals li.

3 Mechanism Design Setting

However, false information about job 2 would cause TD1 (version 2) to complete this job. For
example, if job 2’s deadline were declared as d̂2 = 4.7, then it would have zero laxity at time 0.7. At
this time, the algorithm would preempt job 1 for job 2, because te−tb+p loss

4 = 4.7−0.0+1.0
4 > 0.9 = l1.

Job 2 would then complete before the arrival of job 3.2

In order to address incentive issues such as this one, we need to formalize the setting as a
mechanism design problem. In this section we first present the mechanism design formulation, and
then define our goals for the mechanism.

3.1 Formulation

There exists a center, who controls the processor, and a set N = {1, . . . , n} of agents, where the
value of n is unknown by the center beforehand. Each job i is owned by a separate agent i. The
characteristics of the job define the agent’s type θi ∈ Θi. At time ri, agent i privately observes its
type θi, and has no information about job i before ri. Thus, jobs are still released over time, but
now each job is released only to the owning agent.

Agents interact with the center through a direct mechanism Γ = (Θ1, . . . , Θn, g(·)), in which each
agent declares a job, denoted by θ̂i = (r̂i, d̂i, l̂i, v̂i), and the function g : Θ1 × . . . × Θn → O maps
the declared types to an outcome o ∈ O. An outcome o = (f(·), p1, . . . , pn) consists of the online
algorithm f(·) that produces the schedule, and a payment from each agent to the mechanism.

1While it would be easy to alter the algorithm to recognize that this is not possible for the jobs in Table 1, our
example does not depend on the use of p loss.

2While we will not describe the significantly more complex Dover, we note that it is similar in its use of intervals
and its preference for the active job. Also, we note that the lower bound we will show in Section 5 implies that false
information can also benefit a job in Dover.
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In a standard mechanism design setting, the outcome is enforced at the end of the mechanism.
However, since the end is not well-defined in this online setting, we choose to model, for each agent i,
the return of a completed job and the collection of a payment as occurring at d̂i. (which, according to
agent i’s declaration, is latest relevant point of time for that agent). Thus, even if job i is completed
before d̂i, the center does not return the job to agent i until that time. This modelling decision
could instead be viewed as a decision by the mechanism designer from a larger space of possible
mechanisms. Indeed, as we will discuss later, this decision of when to return a completed job is
crucial to our mechanism.

The utility function each agent aims to maximize, ui(g(θ̂), θi) = vi · µ(ei(θ̂, di) ≥ li) · µ(d̂i ≤
di)−pi(θ̂), is a linear function of its value for its job (if completed and returned by its true deadline)
and the payment it makes to the center.

Agent declarations are restricted in that an agent cannot declare a length shorter than the true
length, since the center would be able to detect such a lie if the job were completed. On the
other hand, in the general formulation we will allow agents to declare longer lengths, since in some
settings it may be possible add unnecessary work to a job. However, we will also consider a restricted
formulation in which this type of lie is not possible. The declared release time r̂i is the time that
the agent chooses to submit job i to the center, and it cannot precede the time ri at which the job
is revealed to the agent. The agent can declare an arbitrary deadline or value. To summarize, agent
i can declare any type θ̂i = (r̂i, d̂i, l̂i, v̂i) such that l̂i ≥ li and r̂i ≥ ri.

While in the non-strategic setting it was sufficient for the algorithm to know the upper bound k
on the ratio ρmax

ρmin
, in the mechanism design setting we will strengthen this assumption so that the

mechanism also knows ρmin (or, equivalently, the range [ρmin, ρmax] of possible value densities).3

While we feel that it is unlikely that a center would know k without knowing this range, we later
present a mechanism that does not depend on this extra knowledge in a restricted setting.

The restriction on the schedule is now that S(θ̂, t) = i implies r̂i ≤ t, to capture the fact that
a job cannot be scheduled on the processor before it is declared to the mechanism. As before,
preemption of jobs is allowed, and job switching takes no time.

The constraints due to the online mechanism’s lack of knowledge of the future are that θ̂(t) = θ̂′(t)
implies S(θ̂, t) = S(θ̂′, t), and θ̂(d̂i) = θ̂′(d̂i) implies pi(θ̂) = pi(θ̂′) for each agent i. The setting can
then be summarized as follows.

Setting 1 Overview
for all t do

The center instantiates S(θ̂, t) ← i, for some i s.t. r̂i ≤ t
if ∃i, (ri = t) then

θi is revealed to agent i
if ∃i, (t ≥ ri) and agent i has not declared a job then

Agent i can declare any job θ̂i, s.t. r̂i = t and l̂i ≥ li
if ∃i, (d̂i = t) ∧ (ei(θ̂, t) ≥ li) then

Completed job i is returned to agent i
if ∃i, (d̂i = t) then

Center sets and collects payment pi(θ̂) from agent i

3.2 Mechanism Goals

Our aim as mechanism designer is to maximize the value of completed jobs, subject to the con-
straints of (dominant strategy) incentive compatibility and individual rationality, for which we use

3Note that we could then force agent declarations to satisfy ρmin ≤ v̂i

l̂i
≤ ρmax. However, this restriction would

not decrease the lower bound on the competitive ratio.
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the standard definitions.4

Definition 1 A direct mechanism satisfies incentive compatibility (IC) if:
∀i, θi, θ

′
i, θ̂−i : ui(g(θi, θ̂−i), θi) ≥ ui(g(θ′i, θ̂−i), θi)

Definition 2 A direct mechanism satisfies individual rationality (IR) if
∀i, θi, θ̂−i, ui(g(θi, θ̂−i), θi) ≥ 0

The social welfare function that we aim to maximize is the same as the objective function of
the non-strategic setting: W (f(θ), θ) =

∑
i

(
vi · µ(ei(θ, di) ≥ li)

)
. As in the non-strategic setting,

we will evaluate an online mechanism using competitive analysis to compare it against an optimal
offline mechanism (which we will denote by Γoffline). An offline mechanism knows all of the types
at time 0, and thus can always achieve W ∗(θ).5

Definition 3 An online mechanism Γ is (strictly) c-competitive if it satisfies IC, and if there does
not exist a profile of agent types θ such that c ·W (f(θ), θ) < W ∗(θ).

Note that, to guarantee that the competitive ratio has been achieved, the online mechanism must
satisfy IC, in order to ensure that the declared types used by its algorithm are indeed the true types.

4 Results

In this section, we first present our main positive result: a
(
(1 +

√
k)2 + 1

)
-competitive mechanism

(Γ1). After providing some intuition as to why Γ1 satisfies individual rationality and incentive
compatibility, we formally prove first these two properties and then the competitive ratio. We then
consider a special case in which k = 1 and agents cannot lie about the length of their job, which
allows us to alter this mechanism so that it no longer requires either knowledge of ρmin or the
collection of payments from agents.

4.1 General Setting

For the full setting described above, we present Γ1, which is formally defined below. Unlike TD1

(version 2) and Dover, Γ1 gives no preference to the active job. Instead, it always executes the
available job with the highest priority : (v̂i +

√
k · ei(θ̂, t) · ρmin). Each agent whose job is completed

is then charged the lowest value that it could have declared such that its job still would have been
completed, holding constant the rest of its declaration.

We now state our theoretical results for this mechanism (with proofs found in the appendex),
and provide intuition as to why Γ1 addresses each of the incentive issues.

Theorem 1 Mechanism Γ1 satisfies IR.

Theorem 2 Mechanism Γ1 satisfies IC.
4A possible argument against the need for incentive compatibility in this setting is that an agent’s lie may actually

improve the schedule. In fact, this was the case in the example we showed for the false declaration d̂2 = 4.7. However,
if an agent lies due to incorrect beliefs over the future input, then the lie could instead make the schedule the worse
(for example, if job 3 were never released, then job 1 would have been unnecessarily abandoned). Furthermore, if we
do not know the beliefs of the agents, and thus cannot predict how they will lie, then we can no longer provide a
competitive guarantee for our mechanism.

5Another possibility is to allow only the agents to know their types at time 0, and to force Γoffline to be incentive
compatible so that agents will truthfully declare their types at time 0. However, this would not affect our results,
since executing a Clarke mechanism [8] at time 0 satisfies IC and IR, and always maximizes social welfare.
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Mechanism 1 Γ1

Execute S(θ̂, ·) according to Algorithm 1
for all i do

if ei(θ̂, d̂i) ≥ l̂i {Agent i’s job is completed} then
pi(θ̂) ← arg minv′i≥0(ei(((r̂i, d̂i, l̂i, v

′
i), θ̂−i), d̂i) ≥ l̂i)

else
pi(θ̂) ← 0

Algorithm 1
for all t do

Avail ← {i|(t ≥ r̂i) ∧ (ei(θ̂, t) < l̂i) ∧ (ei(θ̂, t) + d̂i − t ≥ l̂i)}
{Set of all released, non-completed, non-abandoned jobs}

if Avail 6= ∅ then
S(θ̂, t) ← arg maxi∈Avail(v̂i +

√
k · ei(θ̂, t) · ρmin)

{Break ties in favor of lower r̂i}
else
S(θ̂, t) ← 0

By the use of a payment rule similar to that of a second-price auction, Γ1 satisfies both IC
with respect to values and IR. We now argue why it satisfies IC with respect to the other three
characteristics. Declaring an “improved” job (i.e., declaring an earlier release time, a shorter length,
or a later deadline) could possibly decrease the payment of an agent. However, the first two lies are
not possible in our setting, while the third would cause the job, if it is completed, to be returned
to the agent after the true deadline. This is the reason why it is important to always return a
completed job at its declared deadline, instead of at the point at which it is completed.

It remains to argue why an agent does not have incentive to “worsen” its job. First, note that
if the job is completed both for truthful and a worse, false declaration, then the payment of the
agent cannot decrease, since the completion of a job is monotonic in each of r̂i, d̂i, and l̂i. Second,
the only possible effects of an inflated length on the completion of a job are to delay it or cause it
to be abandoned, and the only possible effects of an earlier declared deadline are to cause it to be
abandoned or to cause it to be returned earlier (which has no effect on the agent’s utility in our
setting). On the other hand, it is less obvious why agents do not have incentive to declare a later
release time. Consider a mechanism Γ′1 that differs from Γ1 in that it does not preempt the active
job i unless there exists another job j such that (v̂i +

√
k · li(θ̂, t) ·ρmin) < v̂j . Note that as an active

job approaches completion in Γ1, its condition for preemption approaches that of Γ′1.
However, the types in Table 2 for the case of k = 1 show why an agent may have incentive to

delay the arrival of its job under Γ′1. Job 1 becomes active at time 0, and job 2 is abandoned upon
its release at time 6, because 10 + 10 = v1 + l1 > v2 = 13. Then, at time 8, job 1 is preempted by
job 3, because 10 + 10 = v1 + l1 < v3 = 22. Job 3 then executes to completion, forcing job 1 to be
abandoned. However, job 2 had more “weight” than job 1, and would have prevented job 3 from
being executed if it had been the active job at time 8, since 13 + 13 = v2 + l2 > v3 = 22. Thus, if
agent 1 had falsely declared r̂1 = 20, then job 3 would have been abandoned at time 8, and job 1
would have completed over the range [20, 30].

Intuitively, Γ1 avoids this problem because of two properties. First, when a job becomes active,
it must have a greater priority than all other available jobs. Second, because a job’s priority can
only increase through the increase of the term (

√
k · ei(θ̂, t) · ρmin), the rate of increase of a job’s

priority is independent of its characteristics. These two properties together imply that, while a job
is active, there cannot exist a time at which its priority is less than the priority that one of these
other jobs would have achieved by executing on the processor instead.
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Job ri di li vi

1 0 30 10 10

2 6 19 13 13

3 8 30 22 22

0 6 10 20 30

6
?

6
?

6
?

Table 2: Jobs used to show why a slightly altered version of Γ1 would not be incentive compatible
with respect to release times.

Using the fact that IC is satisfied, we can now prove that Γ1 is
(
(1 +

√
k)2 + 1

)
-competitive by

proving that the algorithm used by Γ1 achieves this competitive ratio, assuming truthful inputs.

Theorem 3 Mechanism Γ1 is
(
(1 +

√
k)2 + 1

)
-competitive.

4.2 Special Case: Unalterable length and k=1

While so far we have allowed each agent to lie about all four characteristics of its job, lying about
the length of the job is not possible in some settings. For example, a user may not know how to
alter a computational problem in a way that both lengthens the job and allows the solution of the
original problem to be extracted from the solution to the altered problem. Another restriction that
is natural in some settings is uniform value densities (k = 1), which was the case considered by
[3]. If the setting satisfies these two conditions, then, by using Mechanism Γ2 (formally described
below), we can achieve a competitive ratio of 5 (which is the same competitive ratio as Γ1 for the
case of k = 1) without knowledge of ρmin and without the use of payments. The latter property
may be necessary in settings that are more local than grid computing (e.g., within a company) but
in which the users are still self-interested.6

Mechanism 2 Γ2

Execute S(θ̂, ·) according to Algorithm 2
for all i do

pi(θ̂) ← 0

Algorithm 2
for all t do

Avail ← {i|(t ≥ r̂i) ∧ (ei(θ̂, t) < li) ∧ (ei(θ̂, t) + d̂i − t ≥ li)}
if Avail 6= ∅ then
S(θ̂, t) ← arg maxi∈Avail(li + ei(θ̂, t))

{Break ties in favor of lower r̂i}
else
S(θ̂, t) ← 0

6While payments are not required in this setting, Γ2 can be changed to collect a payments without affecting
incentive compatibility by charging some fixed fraction of li for each job i that is completed.
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Theorem 4 When k = 1, and each agent i cannot falsely declare li, Mechanism Γ2 satisfies IR and
IC.

Theorem 5 When k = 1, and each agent i cannot falsely declare li, Mechanism Γ2 is 5-competitive.

Since this mechanism is essentially a simplification of Γ1, we omit proofs of these theorems.
Basically, the fact that k = 1 and l̂i = li both hold allows Γ2 to substitute the priority (li + ei(θ̂, t))
for the priority used in Γ1; and, since v̂i is ignored, payments are no longer needed to ensure incentive
compatibility.

5 Competitive Lower Bound

We now show that the competitive ratio of (1 +
√

k)2 + 1 achieved by Γ1 is a lower bound for
deterministic online mechanisms, under a pair of conditions. First, we appeal to third requirement
on a mechanism, non-negative payments (NNP), which requires that the center never pays an agent
(formally, ∀i, θ̂, pi(θ̂i) ≥ 0). While we did not require that our mechanisms satisfy this requirement,
we note that both Γ1 and Γ2 satisfy it trivially, and that, in the proof of this theorem (found in
the appendix), zero only serves as a baseline utility for an agent, and could be replaced by any
non-positive function of θ̂−i.

Second, we restrict consideration to settings in which k > 1. For the case of k = 1, we can achieve
a competitive ratio of 4 by using TD1 (version 2) [3], and charging l̂i · ρmin to each agent i whose
job is completed. Any agent who truthfully declares the length of his job is indifferent between
whether his job is completed or not, because k = 1 implies that his payment upon completion will
be equal to his value. If he inflates the length of his job, then he will have negative utility for its
completion. Thus, an agent has no incentive to falsely declare his type. However, we chose not
to use this mechanism for the restricted setting in the previous section, because agents never have
incentive to even participate (or not to declare a type such that their job would never be completed).

Theorem 6 There does not exist a deterministic online mechanism that satisfies IC, IR, and NNP,
and that achieves a competitive ratio less than (1 +

√
k)2 + 1, for any k > 1.

6 Related Work

In this section we describe related work other than the two papers ([3] and [14]) on which this work is
based. Recent work related to this scheduling domain has focused on competitive analysis in which
the online algorithm uses a faster processor than the offline algorithm (see, e.g., [12, 13]). Mechanism
design was also applied to a scheduling problem in [16]. In their model, the center owns the jobs in an
offline setting, and it is the agents who can execute them. The private information of an agent is the
time it will require to execute each job. Several incentive compatible mechanisms are presented that
are based on approximation algorithms for the computationally infeasible optimization problem.

Online execution presents a different type of algorithmic challenge, and several other papers
study online algorithms or mechanisms in economic settings. For example, [4] considers an online
market clearing setting, in which the auctioneer matches buy and sells bids (which are assumed to
be exogenous) that arrive and expire over time. In [1], a general method is presented for converting
an online algorithm into an online mechanism that is incentive compatible with respect to values.
Truthful declaration of values is also considered in [2] and [15], which both consider multi-unit online
auctions. The main difference between the two is that the former considers the case of a digital good,
which thus has unlimited supply. It is pointed out in [15] that their results continue to hold when
the setting is extended so that bidders can delay their arrival.

The only other work we are aware of that addresses the issue of incentive compatibility in a
real-time system is [10], which considers several variants of a model in which the center allocates
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bandwidth to agents who declare both their value and their arrival time. A dominant strategy IC
mechanism is presented for the variant in which every point in time is essentially independent, while
a Bayes-Nash IC mechanism is presented for the variant in which the center’s current decision affects
the cost of future actions.

7 Discussion

In this paper, we considered an online scheduling domain for which algorithms with the best possible
competitive ratio had been found, but for which new solutions were required when the setting is
extended to include self-interested agents. We presented a mechanism that is incentive compatible
with respect to release time, deadline, length and value, and that only increases the competitive
ratio by one. We also showed how this mechanism could be simplified when k = 1 and each agent
cannot lie about the length of its job. We then showed a matching lower bound, under a pair of
conditions, on the competitive ratio that can be achieved by a deterministic mechanism.

It would be interesting to determine whether the lower bound can be strengthened by removing
the restriction of non-negative payments. More generally, the use of randomized mechanisms in this
setting provides an unexplored area for future work.
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A Proofs

A.1 Proof of Theorem 1

Theorem 7 Mechanism Γ1 satisfies IR.

Proof: For arbitrary i, θi, θ̂−i, if job i is not completed, then agent i pays nothing and thus has
a utility of zero; that is, pi(θi, θ̂−i) = 0 and ui(g(θi, θ̂−i), θi) = 0. On the other hand, if job i

is completed, then its value must exceed agent i’s payment. Formally, ui(g(θi, θ̂−i), θi) = vi −
arg minv′i≥0(ei(((ri, di, li, v

′
i), θ̂−i), di) ≥ li) ≥ 0 must hold, since v′i = vi satisfies the condition.

A.2 Proof of Theorem 2

To prove incentive compatibility, we need to show that for an arbitrary agent i with type θi, and
an arbitrary profile θ̂−i of declarations of the other agents, agent i can never gain by making a false
declaration θ̂i 6= θi, subject to the constraints that r̂i ≥ ri and l̂i ≥ li. We break this proof into
lemmas.

We start by showing that, regardless of v̂i, if truthful declarations of ri, di, and li do not cause
job i to be completed, then “worse” declarations of these variables (that is, declarations that satisfy
r̂i ≥ ri, l̂i ≥ li and d̂i ≤ di) can never cause the job to be completed. We break this part of the
proof into two lemmas, first showing that it holds for the release time, regardless of the declarations
of the other variables, and then for length and deadline.

Lemma 8 In mechanism Γ1, the following condition holds for all i, θi, θ̂−i:

∀ v̂i, l̂i ≥ li, d̂i ≤ di, r̂i ≥ ri,
[
ei

(
((r̂i, d̂i, l̂i, v̂i), θ̂−i), d̂i

) ≥ l̂i
]

=⇒
[
ei

(
((ri, d̂i, l̂i, v̂i), θ̂−i), d̂i

) ≥ l̂i
]

Proof: Assume by contradiction that this condition does not hold– that is, job i is not completed
when ri is truthfully declared, but is completed for some false declaration r̂i ≥ ri. We first analyze
the case in which the release time is truthfully declared, and then we show that job i cannot be
completed when agent i delays submitting it to the center.

Case I: Agent i declares θ̂′i = (ri, d̂i, l̂i, v̂i).
First, define the following three points in the execution of job i.

• Let ts = arg mint

(S((θ̂′i, θ̂−i), t) = i
)

be the time that job i first starts execution.
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• Let tp = arg mint>ts

(S((θ̂′i, θ̂−i), t) 6= i
)

be the time that job i is first preempted.

• Let ta = arg mint

(
ei((θ̂′i, θ̂−i), t) + d̂i − t < l̂i

)
be the time that job i is abandoned.

If ts and tp are undefined because job i never becomes active, then let ts = tp = ta.
Also, partition the jobs declared by other agents before ta into the following three sets.

• Let X = {j|(r̂j < tp) ∧ (j 6= i)} consist of the jobs (other than i) that arrive before job i is
first preempted.

• Let Y = {j|(tp ≤ r̂j ≤ ta) ∧ (v̂j > v̂i +
√

k · ei((θ̂′i, θ̂−i), r̂j)} consist of the jobs that arrive in
the range [tp, ta] and that when they arrive have higher priority than job i (note that we are
make use of the normalization that ρmin = 1).

• Let Z = {j|(tp ≤ r̂j ≤ ta) ∧ (v̂j ≤ v̂i +
√

k · ei((θ̂′i, θ̂−i), r̂j)} consist of the jobs that arrive in
the range [tp, ta] and that when they arrive have lower priority than job i.

We now show that all active jobs during the range (tp, ta] must be either i or in the set Y .
Unless tp = ta (in which case this property trivially holds), it must be the case that job i has a
higher priority than an arbitrary job x ∈ X at time tp, since at the time just preceding tp job x was
available and job i was active. Formally, v̂x +

√
k · ex((θ̂′i, θ̂−i), tp) < v̂i +

√
k · ei((θ̂′i, θ̂−i), tp) must

hold.7 We can then show that, over the range [tp, ta], no job x ∈ X runs on the processor. Assume
by contradiction that this is not true. Let tf ∈ [tp, ta] be the earliest time in this range that some job
x ∈ X is active, which implies that ex((θ̂′i, θ̂−i), tf ) = ex((θ̂′i, θ̂−i), tp). We can then show that job i

has a higher priority at time tf as follows: v̂x +
√

k · ex((θ̂′i, θ̂−i), tf ) = v̂x +
√

k · ex((θ̂′i, θ̂−i), tp) <

v̂i +
√

k ·ei((θ̂′i, θ̂−i), tp) ≤ v̂i +
√

k ·ei((θ̂′i, θ̂−i), tf ), contradicting the fact that job x is active at time
tf .

A similar argument applies to an arbitrary job z ∈ Z, starting at it release time r̂z > tp, since
by definition job i has a higher priority at that time. The only remaining jobs that can be active
over the range (tp, ta] are i and those in the set Y .

Case II: Agent i declares θ̂i = (r̂i, d̂i, l̂i, v̂i), where r̂i > ri.
We now show that job i cannot be completed in this case, given that it was not completed in case

I. First, we can restrict the range of r̂i that we need to consider as follows. Declaring r̂i ∈ (ri, t
s]

would not affect the schedule, since ts would still be the first time that job i executes. Also, declaring
r̂i > ta could not cause the job to be completed, since di − ta < l̂i holds, which implies that job i
would be abandoned at its release. Thus, we can restrict consideration to r̂i ∈ (ts, ta].

In order for declaring θ̂i to cause job i to be completed, a necessary condition is that the execution
of some job yc ∈ Y must change during the range (tp, ta], since the only jobs other than i that
are active during that range are in Y . Let tc = arg mint∈(tp,ta][∃yc ∈ Y, (S((θ̂′i, θ̂−i), t) = yc) ∧
(S((θ̂i, θ̂−i), t) 6= yc)] be the first time that such a change occurs. We will now show that for
any r̂i ∈ (ts, ta], there cannot exist a job with higher priority than yc at time tc, contradicting
(S((θ̂i, θ̂−i), t) 6= yc).

First note that job i cannot have a higher priority, since there would have to exist a t ∈ (tp, tc)
such that ∃y ∈ Y, (S((θ̂′i, θ̂−i), t) = y) ∧ (S((θ̂i, θ̂−i), t) = i), contradicting the definition of tc.

Now consider an arbitrary y ∈ Y such that y 6= yc. In case I, we know that job y has lower
priority than yc at time tc; that is, v̂y +

√
k · ey((θ̂′i, θ̂−i), tc) < v̂yc +

√
k · eyc((θ̂′i, θ̂−i), tc). Thus,

moving to case II, job y must replace some other job before tc. Since r̂y ≥ tp, the condition is that
there must exist some t ∈ (tp, tc) such that ∃w ∈ Y ∪ {i}, (S((θ̂′i, θ̂−i), t) = w)∧ (S((θ̂i, θ̂−i), t) = y).

7For simplicity, when we give the formal condition for a job x to have a higher priority than another job y, we
will assume that job x’s priority is strictly greater than job y’s, because, in the case of a tie that favors x, future ties
would also be broken in favor of job x.
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Since w ∈ Y would contradict the definition of tc, we know that w = i. That is, the job that y
replaces must be i. By definition of the set Y , we know that v̂y > v̂i +

√
k · ei((θ̂′i, θ̂−i), r̂y). Thus, if

r̂y ≤ t, then job i could not have executed instead of y in case I. On the other hand, if r̂y > t, then
job y obviously could not execute at time t, contradicting the existence of such a time t.

Now consider an arbitrary job x ∈ X. We know that in case I job i has a higher priority than
job x at time ts, or, formally, that v̂x +

√
k ·ex((θ̂′i, θ̂−i), ts) < v̂i +

√
k ·ei((θ̂′i, θ̂−i), ts). We also know

that v̂i +
√

k ·ei((θ̂′i, θ̂−i), tc) < v̂yc +
√

k ·eyc((θ̂′i, θ̂−i), tc). Since delaying i’s arrival will not affect the
execution up to time ts, and since job x cannot execute instead of a job y ∈ Y at any time t ∈ (tp, tc]
by definition of tc, the only way for job x’s priority to increase before tc as we move from case I to
II is to replace job i over the range (ts, tc]. Thus, an upper bound on job x’s priority when agent i

declares θ̂i is: v̂x+
√

k·[ex((θ̂′i, θ̂−i), ts)+ei((θ̂′i, θ̂−i), tc)−ei((θ̂′i, θ̂−i), ts)
]

< v̂i+
√

k·[ei((θ̂′i, θ̂−i), ts)+
ei((θ̂′i, θ̂−i), tc)− ei((θ̂′i, θ̂−i), ts)

]
= v̂i +

√
k · ei((θ̂′i, θ̂−i), tc) < v̂yc +

√
k · eyc((θ̂′i, θ̂−i), tc).

Thus, even at this upper bound, job yc would execute instead of job x at time tc. A similar
argument applies to an arbitrary job z ∈ Z, starting at it release time r̂z. Since the sets {i}, X, Y, Z
partition the set of jobs released before ta, we have shown that no job could execute instead of job
yc, contradicting the existence of tc, and completing the proof.

Lemma 9 In mechanism Γ1, the following condition holds for all i, θi, θ̂−i:

∀ v̂i, l̂i ≥ li, d̂i ≤ di,
[
ei

(
((ri, d̂i, l̂i, v̂i), θ̂−i), d̂i

) ≥ l̂i
]

=⇒
[
ei

(
((ri, di, li, v̂i), θ̂−i), d̂i

) ≥ li
]

Proof: Assume by contradiction there exists some instantiation of the above variables such that
job i is not completed when li and di are truthfully declared, but is completed for some pair of false
declarations l̂i ≥ li and d̂i ≤ di.

Note that the only effect that d̂i and l̂i have on the execution of the algorithm is on whether or
not i ∈ Avail. Specifically, they affect the two conditions: (ei(θ̂, t) < l̂i) and (ei(θ̂, t) + d̂i − t ≥ l̂i).
Because job i is completed when l̂i and d̂i are declared, the former condition (for completion) must
become false before the latter. Since truthfully declaring li ≤ l̂i and di ≥ d̂i will only make the
former condition become false earlier and the latter condition become false later, the execution of
the algorithm will not be affected when moving to truthful declarations, and job i will be completed,
a contradiction.

We now use these two lemmas to show that the payment for a completed job can only increase
by falsely declaring “worse” l̂i, d̂i, and r̂i.

Lemma 10 In mechanism Γ1, the following condition holds for all i, θi, θ̂−i:

∀ l̂i ≥ li, d̂i ≤ di, r̂i ≥ ri, arg minv′i≥0

[
ei

(
((r̂i, d̂i, l̂i, v

′
i), θ̂−i), d̂i

) ≥ l̂i
] ≥

arg minv′i≥0

[
ei

(
((ri, di, li, v

′
i), θ̂−i), di

) ≥ li
]

Proof: Assume by contradiction that this condition does not hold. This implies that there exists
some value v′i such that the condition (ei(((r̂i, d̂i, l̂i, v

′
i), θ̂−i), d̂i) ≥ l̂i) holds, but (ei(((ri, di, li, v

′
i), θ̂−i), di) ≥

li) does not. Applying Lemmas 8 and 9: (ei(((r̂i, d̂i, l̂i, v
′
i), θ̂−i), d̂i) ≥ l̂i) =⇒ (ei(((ri, d̂i, l̂i, v

′
i), θ̂−i), d̂i) ≥

l̂i) =⇒
(ei(((ri, di, li, v

′
i), θ̂−i), di) ≥ li), a contradiction.

Finally, the following lemma tells us that the completion of a job is monotonic in its declared
value.

Lemma 11 In mechanism Γ1, the following condition holds for all i, θ̂i, θ̂−i:

∀ l̂i ≥ li, d̂i ≤ di, r̂i ≥ ri, v̂′i ≥ v̂i,
[
ei

(
((r̂i, d̂i, l̂i, v̂i), θ̂−i), d̂i

) ≥ l̂i
]

=⇒
[
ei

(
((r̂i, d̂i, l̂i, v̂

′
i), θ̂−i), d̂i

) ≥ l̂i
]
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The proof, by contradiction, of this lemma is omitted because it is essentially identical to that of
Lemma 8 for r̂i. In case I, agent i declares (r̂i, d̂i, l̂i, v̂

′
i) and the job is not completed, while in case

II he declares (r̂i, d̂i, l̂i, v̂i) and the job is completed. The analysis of the two cases then proceeds as
before– the execution will not change up to time ts because the initial priority of job i decreases as
we move from case I to II; and, as a result, there cannot be a change in the execution of a job other
than i over the range (tp, ta].

We can now combine the lemmas to show that no profitable deviation is possible, proving The-
orem 2.

Theorem 12 Mechanism Γ1 satisfies IC.

Proof: For an arbitrary agent i, we know that r̂i ≥ ri and l̂i ≥ li hold by assumption. We also
know that agent i has no incentive to declare d̂i > di, because job i would never be returned before
its true deadline. Then, because the payment function is non-negative, agent i’s utility could not
exceed zero. By IR, this is the minimum utility it would achieve if it truthfully declared θi. Thus,
we can restrict consideration to θ̂i that satisfy r̂i ≥ ri, l̂i ≥ li, and d̂i ≤ di. Again using IR, we
can further restrict consideration to θ̂i that cause job i to be completed, since any other θ̂i yields a
utility of zero.

If truthful declaration of θi causes job i to be completed, then by Lemma 10 any such false decla-
ration θ̂i could not decrease the payment of agent i. On the other hand, if truthful declaration does
not cause job i to be completed, then declaring such a θ̂i will cause agent i to have negative utility,
since, by Lemmas 11 and 10, it must be the case that: vi < arg minv′i≥0

[
ei(((ri, di, li, v

′
i), θ̂−i), d̂i) ≥

li
] ≤ arg minv′i≥0

[
ei(((r̂i, d̂i, l̂i, v

′
i), θ̂−i), d̂i) ≥ l̂i

]
.

A.3 Proof of Theorem 3

The proof of the competitive ratio, which makes use of techniques adapted from those used in [14],
is also broken into lemmas. Having shown IC, we can assume truthful declaration (θ̂ = θ), and it
remains to bound the loss of social welfare against Γoffline.

Denote by (1, 2, . . . , F ) the sequence of jobs completed by Γ1. Divide time into intervals If =
(topen

f , tclose
f ], one for each job f in this sequence. Set tclose

f to be the time at which job f is completed,
and set topen

f = tclose
f−1 for f ≥ 2, and topen

1 = 0 for f = 1. Also, let tbegin
f be the first time that the

processor is not idle in interval If .

Lemma 13 For any interval If , the following inequality holds: tclose
f − tbegin

f ≤ (1 + 1√
k
) · vf

Proof: Interval If begins with a (possibly zero length) period of time in which the processor is
idle because there is no available job. Then, it continuously executes a sequence of jobs (1, 2, . . . , c),
where each job i in this sequence is preempted by job i + 1, except for job c, which is completed
(thus, job c in this sequence is the same as job f is the global sequence of completed jobs). Let tsi
be the time that job i begins execution. Note that ts1 = tbegin

f .
Over the range [tbegin

f , tclose
f ], the priority (vi +

√
k · ei(θ, t)) of the active job is monotonically

increasing with time, because this function linearly increases while a job is active, and can only
increase at a point in time when preemption occurs. Thus, each job i > 1 in this sequence begins
execution at its release time (that is, tsi = ri), because its priority does not increase while it is not
active.

We now show that the value of the completed job c exceeds the product of
√

k and the time
spent in the interval on jobs 1 through c− 1, or, more formally, that the following condition holds:
vc ≥

√
k

∑c−1
h=1(eh(θ, tsh+1) − eh(θ, tsh)). To show this, we will prove by induction that the stronger

condition vi ≥
√

k
∑i−1

h=1 eh(θ, tsh+1) holds for all jobs i in the sequence.
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Base Case: For i = 1, v1 ≥
√

k
∑0

h=1 eh(θ, tsh+1) = 0, since the sum is over zero elements.
Inductive Step: For an arbitrary 1 ≤ i < c, we assume that vi ≥

√
k

∑i−1
h=1 eh(θ, tsh+1) holds. At

time tsi+1, we know that vi+1 ≥ vi+
√

k ·ei(θ, tsi+1) holds, because tsi+1 = ri+1. These two inequalities
together imply that vi+1 ≥

√
k

∑i
h=1 eh(θ, tsh+1), completing the inductive step.

We also know that tclose
f − tsc ≤ lc ≤ vc must hold, by the simplifying normalization of ρmin = 1

and the fact that job c’s execution time cannot exceed its length. We can thus bound the total
execution time of If by: tclose

f − tbegin
f = (tclose

f − tsc) +
∑c−1

h=1(eh(θ, tsh+1)− eh(θ, tsh)) ≤ (1 + 1√
k
)vf .

We now consider the possible execution of uncompleted jobs by Γoffline. Associate each job i
that is not completed by Γ1 with the interval during which it was abandoned. All jobs are now
associated with an interval, since there are no gaps between the intervals, and since no job i can be
abandoned after the close of the last interval at tclose

F . Because the processor is idle after tclose
F , any

such job i would become active at some time t ≥ tclose
F , which would lead to the completion of some

job, creating a new interval and contradicting the fact that IF is the last one.
The following lemma is equivalent to Lemma 5.6 of [14], but the proof is different for our mech-

anism.

Lemma 14 For any interval If and any job i abandoned in If , the following inequality holds:
vi ≤ (1 +

√
k)vf .

Proof: Assume by contradiction that there exists a job i abandoned in If such that vi > (1+
√

k)vf .
At tclose

f , the priority of job f is vf +
√

k · lf < (1 +
√

k)vf . Because the priority of the active job
monotonically increases over the range [tbegin

f , tclose
f ], job i would have a higher priority than the

active job (and thus begin execution) at some time t ∈ [tbegin
f , tclose

f ]. Again applying monotonicity,
this would imply that the priority of the active job at tclose

f exceeds (1 +
√

k)vf , contradicting the
fact that it is (1 +

√
k)vf .

As in [14], for each interval If , we give Γoffline the following “gift”: k times the amount of time
in the range [tbegin

f , tclose
f ] that it does not schedule a job. Additionally, we “give” the adversary vf ,

since the adversary may be able to complete this job at some future time, due to the fact that Γ1

ignores deadlines. The following lemma is Lemma 5.10 in [14], and its proof now applies directly.

Lemma 15 [14] With the above gifts the total net gain obtained by the clairvoyant algorithm from
scheduling the jobs abandoned during If is not greater than (1 +

√
k) · vf .

The intuition behind this lemma is that the best that the adversary can do is to take almost all
of the “gift” of k · (tclose

f − tbegin
f ) (intuitively, this is equivalent to executing jobs with the maximum

possible value density over the time that Γ1 is active), and then begin execution of a job abandoned
by Γ1 right before tclose

f . By Lemma 14, the value of this job is bounded by (1 +
√

k) · vf . We can
now combine the results of these lemmas to prove Theorem 3.

Theorem 16 Mechanism Γ1 is
(
(1 +

√
k)2 + 1

)
-competitive.

Proof: Using the fact that the way in which jobs are associated with the intervals partitions
the entire set of jobs, we can show the competitive ratio by showing that Γ1 is

(
(1 +

√
k)2 + 1

)
-

competitive for each interval in the sequence (1, . . . , F ). Over an arbitrary interval If , the offline
algorithm can achieve at most (tclose

f − tbegin
f ) · k + vf + (1 +

√
k)vf , from the two gifts and the net

gain bounded by Lemma 15. Applying Lemma 13, this quantity is then bounded from above by
(1 + 1√

k
) · vf · k + vf + (1 +

√
k)vf = ((1 +

√
k)2 + 1) · vf . Since Γ1 achieves vf , the competitive ratio

holds.

15

61



A.4 Proof of Theorem 6

The proof the lower bound uses an adversary argument similar to that used in [3] to show a lower
bound of (1+

√
k)2 in the non-strategic setting, with the main novelty lying in the two perturbations

of the job sequence and the related incentive compatibility arguments. We first prove a lemma
relating to the recurrence used for this argument.

Lemma 1 For any k ≥ 1, for the recurrence defined by:

lj+1 = λ · lj − k ·
j∑

h=1

lh (1)

l1 = 1

where (1 +
√

k)2 − 1 < λ < (1 +
√

k)2, there exists an integer m ≥ 1 such that:

lm + k ·∑m−1
h=1 lh

lm
> λ (2)

Proof: This proof is a generalization of the one shown in [3] for the case of k = 1. We first show that
the existence of such a number m is equivalent to the existence of an m ≥ 1 such that lm < lm−1.
Rearranging Equation 2, and using Equation 1 to substitute in for lm yields:

lm + k ·
m−1∑

h=1

lh > λ · lm

λ · lm−1 − k ·
m−1∑

h=1

lh + k ·
m−1∑

h=1

lh > λ · lm

lm−1 > lm

We now show that there exists an m ≥ 1 that satisfies lm < lm−1. Substituting j in for j + 1 in
Equation 1 yields:

lj = λ · lj−1 − k ·
j−1∑

h=1

lh (3)

Subtracting Equation 3 from Equation 1 produces:

lj+1 − lj = λ · lj − λ · lj−1 − k · lj
lj+1 = (λ + 1− k) · lj − λ · lj−1

Thus, we can re-write the recurrence as:

lj+2 = (λ + 1− k) · lj+1 − λ · lj
l1 = 1
l2 = λ− k

We now use the standard approach for solving linear homogeneous recurrence relations (see, e.g.,
[17]). The characteristic equation of the recurrence is:
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x2 − (λ + 1− k)x + λ = 0

The roots of this equation are:

x1 =
(λ + 1− k) +

√
(λ + 1− k)2 − 4λ

2

x2 =
(λ + 1− k)−

√
(λ + 1− k)2 − 4λ

2

We now show that the roots are irrational by verifying the following inequality.

(λ + 1− k)2 < 4λ

λ2 + 2(1− k)λ + (1− k)2 < 4λ

k2 − 2k + 1 < λ · (2k + 2− λ)

Using the condition that λ = (1 +
√

k)2 − ε for some ε ∈ (0, 1), it suffices to verify that the
following inequality holds for any such ε.

k2 − 2k + 1 <
[
(1 +

√
k)2 − ε

] · [2k + 2− (
(1 +

√
k)2 − ε

)]

k2 − 2k + 1 <
[
k + 2

√
k + 1− ε

] · [2k + 2− k − 2
√

k − 1 + ε
]

k2 − 2k + 1 <
[
(k + 1) + (2

√
k − ε)

] · [(k + 1)− (2
√

k − ε)
]

k2 − 2k + 1 < k2 + 2k + 1− 4k + 4ε
√

k − ε2

0 < 4
√

k − ε

Because k ≥ 1, this inequality holds for any ε ∈ (0, 1). The two roots can then be represented as
follows:

x1 = y + iz

x2 = y − iz

where

y =
λ + 1− k

2

z =

√
4λ− (λ + 1− k)2

2

Because the roots are distinct, the solution to the recurrence is of the form: lj+1 = δ1x
j
1 + δ2x

j
2,

where δ1, δ2 are constants that we now derive. The initial conditions give us the following equations:

1 = δ1 + δ2

λ− k = δ1 · (y + iz) + δ2 · (y − iz)

Solving these equations yields:
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δ1 =
1
2

+
λ− k − y

2iz

δ2 =
1
2
− λ− k − y

2iz

Because the pairs (x1, x2) and (δ1, δ2) are both complex conjugates with non-zero imaginary
parts, we can represent the recurrence as follows for some α, β, θ, ω 6= 0:

lj+1 = αeiθ · (βeiω)j + αe−iθ · (βe−iω)j

lj+1 = α · βj [ei(θ+jω) + e−i(θ+jω)]
lj+1 = α · βj [cos(θ + jω) + i sin(θ + jω) +

cos(−(θ + jω)) + i sin(−(θ + jω))]
lj+1 = 2 · α · βj cos(θ + jω)

Because ω 6= 0, it must be the case that cos(θ + jω) < 0 for some value of j > 0. Thus, since
α, β > 0, there must exist some j > 0 such that lj+1 < 0. Combined with the fact that l1 > 0, this
implies that there must exist an m ≥ 1 such that lm < lm−1, completing the proof.

We now present the proof of Theorem 6.

Theorem 17 There does not exist a deterministic online mechanism that satisfies IC, IR, and NNP,
and that achieves a competitive ratio less than (1 +

√
k)2 + 1, for any k > 1.

Proof: Assume by contradiction that there exists a deterministic online mechanism Γ that satisfies
IC, IR, and NNP, and that achieves a competitive ratio of c = (1 +

√
k)2 + 1 − ε for some ε > 0.

Since a competitive ratio of c implies a competitive ratio of c + x, for any x > 0, we assume without
loss of generality that ε < 1. First, we will construct a profile of agent types θ using an adversary
argument. After possibly slightly perturbing θ to assure that a strictness property is satisfied, we
will then use a more significant perturbation of θ to reach a contradiction.

We now construct the original profile θ. Pick an α such that 0 < α < ε, and define δ = α
ck+3k .

The adversary uses two sequences of jobs: minor and major. Minor jobs i are characterized by
li = δ, vi = k · δ, and zero laxity. The first minor job is released at time 0, and ri = di−1 for all
i > 1. The sequence stops whenever Γ completes any job.

Major jobs also have zero laxity, but they have the smallest possible value ratio (that is, vi = li).
The lengths of the major jobs that may be released, starting with i = 1, are determined by the
following recurrence relation.

li+1 = (c− 1 + α) · li − k ·
i∑

h=1

lh

l1 = 1

The bounds on α imply that (1+
√

k)2−1 < c−1+α < (1+
√

k)2, which allows us to apply Lemma

1. Let m be the smallest positive number such that lm+k·∑m−1
h=1 lh

lm
> c− 1 + α.

The first major job has a release time of 0, and each major job i > 1 has a release time of
ri = di−1 − δ, just before the deadline of the previous job. The adversary releases major job i ≤ m
if and only if each major job j < i was executed continuously over the range [ri, ri+1]. No major job
is released after job m.

In order to achieve the desired competitive ratio, Γ must complete some major job f , because
Γoffline can always at least complete major job 1 (for a value of 1), and Γ can complete at most
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one minor job (for a value of α
c+3 < 1

c ). Also, in order for this job f to be released, the processor
time preceding rf can only be spent executing major jobs that are later abandoned. If f < m, then
major job f + 1 will be released and it will be the final major job. Γ cannot complete job f + 1,
because rf + lf = df > rf+1. Therefore, θ consists of major jobs 1 through f + 1 (or, f , if f = m),
plus minor jobs from time 0 through time df .

We now possibly perturb θ slightly. By IR, we know that vf ≥ pf (θ). Since we will later need
this inequality to be strict, if vf = pf (θ), then change θf to θ′f , which differs from θf only in that
v′f = vf + δ. By IC, job f must still be completed by Γ for the profile (θ′f , θ−f ). If not, then
by IR and NNP we know that pf (θ′f , θ−f ) = 0, and thus that uf (g(θ′f , θ−f ), θ′f ) = 0. However,
agent f could then increase its utility by falsely declaring the original type of θf , receiving a utility
of: uf (g(θ′f , θ−f ), θ′f ) = v′f − pf (θ) = δ > 0, violating IC. Furthermore, agent f must be charged
the same amount (that is, pf (θ′f , θ−f ) = pf (θ)), due to a similar incentive compatibility argument.
Thus, for the remainder of the proof, assume that vf > pf (θ).

We now use a more substantial perturbation of θ to complete the proof. If f < m, then define
θ′′f to be identical to θf , except that d′′f = df+1 + lf , allowing job f to be completely executed after
job f + 1 is completed. If f = m, then instead set d′′f = df + lf .

We now show that, for the profile (θ′′f , θ−f ), Γ must still execute job f continuously over the
range [rf , rf + lf ], thus preventing job f + 1 from being completed. Assume by contradiction that
this were not true. Then, at the original deadline of df , job f is not completed. Consider the
possible profile (θ′′f , θ−f , θx), which differs from the new profile only in the addition of a job x which
has zero laxity, rx = df , and vx = lx = max(d′′f − df , (c + 1) · (lf + lf+1)). Because this new profile
is indistinguishable from (θ′′f , θ−f ) to Γ before time df , it must schedule jobs in the same way until
df . Then, in order to achieve the desired competitive ratio, it must execute job x continuously until
its deadline, which is by construction at least as late as the new deadline d′′f of job f . Thus, job
f will not be completed, and, by IR and NNP, it must be the case that pf (θ′′f , θ−f , θx) = 0 and
uf (g(θ′′f , θ−f , θx), θ′′f ) = 0. Using the fact that θ is indistinguishable from (θf , θ−f , θx) up to time df ,
if agent f falsely declared his type to be the original θf , then its job would be completed by df and
it would be charged pf (θ). Its utility would then increase to uf (g(θf , θ−f , θx), θ′′f ) = vf − pf (θ) > 0,
contradicting IC.

While Γ’s execution must be identical for both (θf , θ−f ) and (θ′′f , θ−f ), Γoffline can take advan-
tage of the change. If f < m, then Γ achieves a value of at most lf + δ (the value of job f if it were
perturbed), while Γoffline achieves a value of at least k · (∑f

h=1 lh − 2δ) + lf+1 + lf by executing
minor jobs until rf+1, followed by job f + 1 and then job f (we subtract two δ’s instead of one
because the last minor job before rf+1 may have to be abandoned). Substituting in for lf+1, the
competitive ratio is then at least:

k · (∑f
h=1 lh − 2δ) + lf+1 + lf

lf + δ

=
k · (∑f

h=1 lh)− 2k · δ + (c− 1 + α) · lf − k · (∑f
h=1 lh) + lf

lf + δ

=
c · lf + (α · lf − 2k · δ)

lf + δ

≥ c · lf + ((ck + 3k)δ − 2k · δ)
lf + δ

> c

If instead f = m, then Γ achieves a value of at most lm + δ, while Γoffline achieves a value of at
least k · (∑m

h=1 lh− 2δ) + lm by completing minor jobs until dm = rm + lm, and then completing job

19

65



m. The competitive ratio is then at least:

k · (∑m
h=1 lh − 2δ) + lm

lm + δ

=
k · (∑m−1

h=1 lh)− 2k · δ + klm + lm
lm + δ

>
(c− 1 + α) · lm − 2k · δ + klm

lm + δ

=
(c + k − 1) · lm + (αlm − 2k · δ)

lm + δ
> c
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Abstract

We generalize the framework of non-cooperative computation (NCC), recently introduced by
Shoham and Tennenholtz, to apply to cryptographic situations. We consider functions whose
inputs are held by separate, self-interested agents. We consider four components of each agent’s
utility function: (a) the wish to know the correct value of the function, (b) the wish to prevent
others from knowing it, (c) the wish to prevent others from knowing one’s own private input,
and (d) the wish to know other agents’ private inputs. We provide an exhaustive game theoretic
analysis of all 24 possible lexicographic orderings among these four considerations, for the case
of Boolean functions (mercifully, these 24 cases collapse to four). In each case we identify the
class of functions for which there exists an incentive-compatible mechanism for computing the
function. In this article we only consider the situation in which the inputs of different agents
are probabilistically independent.

1 Introduction

In this paper we analyze when it is possible for a group of agents to compute a function of their pri-
vately known inputs when their own self-interests stand in the way. One motivation for studying this
class of problems is cryptography. Consider, for example, the problem of secure function evaluation
(SFE). In SFE, n agents each wish to compute a function of n inputs (where each agent i possesses
input i), without revealing their private inputs. An increasingly clever series of solutions to SFE
have been proposed (e.g., [1, 2]). But if these protocols are the answer, what exactly is the question?
Like many other cryptographic problems, SFE has not been given a mathematical definition that
includes the preferences of the agents. We hasten to add that this does not mean that the solutions
are not clever or useful; they are. However, to prove that agents will actually follow a protocol, one
needs a game-theoretic definition of the SFE problem. It turns out that the game theoretic analysis
provides a slightly different perspective on (e.g.,) SFE; the paranoias of game theorists are more
extreme than the traditional paranoias of cryptographers in some respects and less so in others. The
difference between the two demands a more complete discussion than we have space for, and we
discuss the issue in more depth in a companion paper.

In this paper we do not speak about cryptography per se, but rather about a general framework
within which to think about cryptography and related phenomena. The framework is called non-
cooperative computing, or NCC for short. The term was introduced by Shoham and Tennenholtz in
[4], who adopt a narrower setting. The NCC framework of S&T is however too limited to account
for (e.g.,) cryptography, and the goal of this paper is to extend it so it does.

We give the formal definitions in the next section, but let us describe the NCC framework
intuitively. The setting includes n agents and an n-ary function f , such that agent i holds input
i. Broadly speaking, all the agents want to compute f correctly, but in fact each agent has several

∗This work was generously supported by DARPA grant F30602-00-2-0598 and by an NSF fellowship.
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independent considerations. In this article we take agent i’s utility function to depend on the
following factors:

Correctness: i wishes to compute the function correctly.

Exclusivity: i wishes that the other agents do not compute the function correctly.

Privacy: i wishes that the other agents do not discover i’s private input.

Voyeurism: i wishes to discover the private inputs of the other agents.

Of course, these considerations are often conflicting. They certainly conflict across agents – one
agent’s privacy conflicts with another agent’s voyeurism. But they also conflict within a given agent
– the wish to compute the function may propel the agent to disclose his private input, but his privacy
concerns may prevent it. So the question is how to amalgamate these different considerations into
one coherent preference function.

In this paper we consider lexicographic orderings. In the extended abstract, we analyze all 24
possible orderings of these considerations, while in the full paper we consider all possible orderings on
all subsets of the considerations. In each case we ask for which functions f there exists a mechanism
in the sense of mechanism design [3], such that in the game induced by the mechanism, it is a
Bayes-Nash equilibrium for the agents to disclose their true inputs. Of course, to do that we must
be explicit about the probability distribution from which the agents’ inputs are drawn.

This is a good point at which to make clear the connection between our setting and the restricted
NCC setting of S&T:

• S&T consider only correctness and exclusivity (and, in particular, only the ordering in which
correctness precedes exclusivity).

• S&T consider both the case in which the inputs of the agents are independently distributed
and the case in which they are correlated.

• S&T consider also a version of the setting in which agents are willing to mis-compute the
function with a small probability, and another version in which agents can be offered money,
in addition to their inherent informational incentives.

We not only consider privacy and voyeurism in addition to correctness and exclusivity, but also
consider all 24 possible orderings among them (mercifully, in the Boolean case which we investigate
they collapse to four equivalence classes), maintaining the property that all agents have the same
ordering over the considerations. However, in this paper we do not investigate the case of correlated
values, nor the probabilistic and monetary extensions. We leave those to future work.

There is one additional sense in which our treatment is more general. Consider for example the
consideration of correctness, and three possible outcomes: in the first the agent believes the correct
value with probability .6, in the second with probability .99, and in the third with probability 1.
Holding all other considerations equal, how should the agent rank these outcomes? Clearly the third
is preferred to the others, but what about those two? Here we have two versions; in one, the first
two are equally desirable (in other words, any belief less than certainty is of no value), and in the
other the second is preferred to the first. We call those two settings the full information gain setting
and the partial information gain setting, respectively.

This means that rather than 24 cases we need to investigate, we have 48. But again, luck is on
our side, and we will be able to investigate a small number of equivalence classes among these cases.

In the next section we give the precise definitions, and in the following sections we summarize
our results. Several of the insights into our results are derived from the results obtained by S&T;
we will try to indicate clearly when that is the case.
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2 Formulation

2.1 Formal problem definition

As in NCC, let N = {1, 2, . . . , n} be a set of agents, and consider also a non-strategic center which
will execute the protocol. We assume that each agent 1 . . . n has a private and authenticated channel
between itself and the center. Each agent has an input Vi drawn from the set Bi. We will use vi

(as shorthand for Vi = vi) to represent a particular (but unspecified) value for Vi. The vector
v = (v1, . . . , vn) consists of the types of all agents, while v−i = (v1, . . . , vi−1, vi+1, . . . , vn) is this
same vector without the type of agent i (v−i,j simply extends this to removing two types). P (V )
is the joint probability over all players’ inputs, which induces a Pi(Vi) for each agent. Each agent
knows his own type, but does not know the types of the other agents. Instead, the prior P (V )
(which we assume has full support – that is, ∀v P (v) > 0) is common knowledge among the agents
and known by the mechanism designer. We further assume that the agent types are independent.

The commonly-known function that the agents are trying to compute is denoted by f : B1× . . .×
BN → B0. Though the setting makes sense in the case of an arbitrary field, we restrict ourselves
in this work to the case of Boolean functions over Boolean inputs (B = Bi = {0, 1}). We assume
that all agents are relevant to the function in that they have at least some chance of affecting the
outcome. Formally, this means that, for each agent i, ∃vi, v−i f(vi, v−i) 6= f(¬vi, v−i).

2.2 The mechanism design problem

In general, a mechanism is a protocol specifying both the space of legal messages that the individual
agents can send to the center and, based on these messages, what the center will return to each
agent. We seek that, for all possible input values, all agents believe in the correct value of the
function at the end of the protocol. Since dominant strategy implementation is not feasible in our
setting, we are looking for a Bayes-Nash implementation.

A standard mechanism is a mapping from actions to outcomes. The setting of NCC is somewhat
different from the standard mechanism design setting, however. In the case of NCC, an outcome
is a complete set of belief states, but instead of mapping from actions to outcomes, the mechanism
instead gives a signal to each player, who interprets it according to his belief strategy. Thus, a
mechanism cannot enforce outcomes: it can only control the information embedded in its signal to
each player. As we shall see, this will be sufficient for our purposes. A player’s preferences over his
and others’ belief states are defined with respect to the correct inputs to and outputs of the function,
as determined by the private types of the other players.

A priori, one could imagine arbitrarily complicated mechanisms in which the agents and the
center iterate through many rounds of messages before converging on a result. However, following
Shoham and Tennenholtz, we note that an extended revelation principle (extended from, e.g., [3])
allows us wlog to restrict our attention to mechanisms in which the agents truthfully declare an
input to the center and accept the result returned to them.

Theorem 1 (Extended Revelation Principle) If there exists a protocol for the center and the
agents in which each agent computes the correct value of the function, then there exists a truthful,
direct protocol in which each agent accepts the center’s output and thereby computes the correct value
of the function.

Formally, a mechanism is a tuple (S1, . . . , Sn, g1, . . . , gn), consisting of, for each agent i, a strategy
space Si and a function gi that determines the output returned to the agent. A strategy of agent
i consists of the following tuple of functions: (si : B → 4B, bf

i : B × B → 4B, b1
i : B × B →

4B, ..., bn
i : B ×B →4B). The first maps an agent i’s true type to a distribution over its declared

type (which we will sometimes refer to as v̂i). The second maps i’s true type vi and the center’s
response gi(v̂) to i’s beliefs about the output of the function f . The remaining functions map i’s
type and the center’s response to i’s beliefs about each agent j’s private input. We shall henceforth
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refer to the tuple of belief functions, which together map to a complete belief state of agent i, as
bi, the agent’s belief strategy. Agents may have other higher-order beliefs, but we can neglect these
since they are not relevant to any agent’s preferences.

The set of outcomes O is the set of distributions over the belief states of the agents about the
input and output values; that is, O = (4B × 4Bn)n. We wish to implement the social choice
function W which always selects an outcome in which, for all agents i, Pr(bf

i (vi, gi(v̂)) = f(v)) = 1.
That is, in our desired outcome, each agent always computes the correct value of the function. In
this paper, we restrict the range of gi : Bn → B so that it returns to agent i a bit (to represent a
possible output of the function) for each set of declared values v̂. Since we wish every agent to always
compute correctly, we can restrict the center’s protocol to computing and returning the function
f(v̂) to each player (i.e. gi(v̂) = f(v̂)).

The agents’ preferences are defined over the belief states which form the set of outcomes. We
now give a more formal definition of the incentives of each agent, first for the full information gain
setting.

Correctness: i wishes that Pr(bf
i (vi, gi(v̂)) = f(v)) = 1.

Exclusivity: For each j 6= i, i wishes that Pr(bf
j (vj , gj(v̂)) = f(v)) 6= 1.

Privacy: For each j 6= i, i wishes that Pr(bi
j(vj , gj(v̂)) = vi) 6= 1.

Voyeurism: For each j 6= i, i wishes that Pr(bj
i (vi, gi(v̂)) = vj) = 1.

In the partial information gain setting, agent valuations depend on more than whether or not
a probability is equal to 1. Instead, agents attempt to maximize the entropy function, which for a
distribution Pr(X) over a Boolean variable X is defined as: H(X) = −Pr(X = 0) · log2Pr(X =
0)− Pr(X = 1) · log2Pr(X = 1).

Because of the way in which we can reduce the space of mechanisms that we need to consider,
we can restate our goal as follows. In this paper we characterize, for each possible ordering on the
four incentives listed above, the set of functions f for which it is a Bayes-Nash equilibrium for each
agent i to use a strategy (si(vi) = vi, b

f
i (vi, f(v)) = f(v), ...) – that is, always telling the truth and

believing the output of the mechanism.

3 Full information gain setting

In this section we consider the full information gain setting, in which we assume that agents are
only concerned with what they and the other agents know with certainty, as opposed to what they
can know with some probability. We now characterize the set of functions that are NCC for each of
24 possible orderings of the incentives, which can be broken into four cases.

Before we begin, we review two definitions and a theorem from S&T [4] that will play an important
role in our impossibility results. We say that f is (locally) dominated if there exists a type for some
agent which determines the output of the function. Formally, the condition is that there exists an
i and vi such that ∀v−i, v

′
−i, f(vi, v−i) = f(vi, v

′
−i). We say that a function f is reversible if there

exists an agent i such that ∀v−i, f(Vi = 0, v−i) 6= f(Vi = 1, v−i), which means that for either input,
agent i knows what the value of function would have been if he had submitted the other input.

Theorem 2 (Shoham and Tennenholtz) When agents value correctness over exclusivity, and
value no other consideration, a function is NCC if and only if it is non-reversible and non-dominated.

We can restrict the class of functions to consider in the current setting by noting that any function
which is not NCC in the S&T sense is not NCC for any ordering of the four incentives.

Theorem 3 Any function that is reversible or dominated is not NCC.
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3.1 Exclusivity and correctness

We can tackle half of the orderings at once by considering the case in which all agents rank exclusivity
over correctness. Not surprisingly, all is lost in this case.

Theorem 4 If exclusivity is ranked over correctness, then no function is NCC.

On the other hand, we find that the converse of Theorem 3 holds when correctness is ranked
above all other factors.

Theorem 5 If correctness is ranked over all other factors, then a function is NCC if and only if
it is non-reversible and non-dominated.

3.2 Privacy over correctness

We are now down to six cases, in which correctness must be ranked second or third, and exclusivity
must be ranked below it. For the four of these cases in which privacy is ranked over correctness,
the key concept is what we call a privacy violation, which occurs when an agent has an input for
which there is a possible output that would allow the agent to determine another agent’s input
with certainty. Formally, we say that a privacy violation for agent i by agent j occurs whenever
∃vj , x, y, ∀v−j (f(vj , v−j) = x) ⇒ (Vi = y).

Theorem 6 If privacy is ranked over correctness, and both are ranked over exclusivity, then a
function is NCC if and only if it is non-reversible, non-dominated, and has no privacy violations.

It is interesting to note the relationship between privacy violations and what we call conditional
(local) domination. We say that agent i conditionally dominates f given agent j if ∃vi, vj , x (∀v−i,j , f(vi, vj , v−i,j) =
x)∧ (∃v−i,j f(¬vi, vj , v−i,j) 6= x). Using the terminology we defined earlier, conditional domination
occurs when agent j can submit an input vj such that agent i both dominates and is relevant to the
output of the conditional function f−j(v−j) = f(vj , v−j).

Lemma 7 : There exists a privacy violation for agent i by agent j if and only if agent i conditionally
dominates f given j.

3.3 Voyeurism first, correctness second

The final two cases to consider are those in which the first two considerations are voyeurism and
correctness, in that order. If there exists an agent j who can obtain a greater amount of voyeurism,
on expectation, from one of his possible inputs, then he will always choose to declare this input.
Thus, a necessary condition for the function to be NCC is that the expected voyeurism be equal for
Vj = 0 and Vj = 1. If this is the case, then correctness becomes paramount, and we again have the
classic NCC condition.

Formally, define a new indicator function violate(i, j, vj , x) to be 1 if a privacy violation occurs
for agent i by agent j, and vj and x satisfy the condition for the violation to occur, and 0 otherwise.
Now, we can formally give the condition for a voyeurism tie.

Theorem 8 If all agents rank voyeurism first and correctness second, then, given a prior P(V), a
function is NCC if and only if it is non-reversible and non-dominated and the following condition
for a voyeurism tie holds for each agent j:

∑
i 6=j

∑
v−j

P (v−j)·violate
(
i, j, Vj = 1, f(Vj = 1, v−j)

)
=

∑
i 6=j

∑
v−j

P (v−j)·violate
(
i, j, Vj = 0, f(Vj = 0, v−j)

)
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For the common prior P (0) = 1
2 , an example of a function for which there is a voyeurism tie in

the presence of privacy violations is the unanimity function, in which f(v) = 1 if and only if the
inputs of all agents are identical.

Finally, note that the space of functions which are NCC in these two cases is a superset of the
functions which are NCC in the cases of the previous subsection (privacy over correctness), since a
complete lack of privacy violations trivially induces a voyeurism tie.

4 Partial information gain setting

Now we consider the partial information gain setting, in which agents value increased information
about a factor. For this setting, we see that the results are unchanged for many of the possible
lexicographic orderings, but are different for several interesting cases.

4.1 Unchanged results

The first three theorems from the full information gain setting carry over exactly to this setting.

Theorem 9 In the partial information gain setting, any function that is reversible or dominated is
not NCC.

Theorem 10 In the partial information gain setting, if agents rank exclusivity over all other fac-
tors, then no function is NCC.

Theorem 11 In the partial information gain setting, if agents rank correctness over all other fac-
tors, then a function is NCC if and only if it is non-reversible and non-dominated.

4.2 Privacy over correctness

For the cases in which privacy is ranked above correctness, the condition for non-cooperative com-
putability becomes more stringent, and it now depends on the form of the prior.

First, we need to update the definition of a privacy violation, because it now occurs whenever an
agent’s posterior distribution over another agent’s input differs at all from the prior distribution. We
say that a partial privacy violation of agent i by agent j occurs if ∃vi, x, Pr(Vj |vi, f(v) = x) 6= P (Vj).

Theorem 12 In the partial information gain setting, if agents rank privacy over correctness, then,
given a prior P (V ), a function is NCC if and only if it is non-reversible and non-dominated and
there are no partial privacy violations.

The absence of partial privacy violations can also be formulated by the following condition,
which, in words, requires that no pair of inputs provide more information about the output than
any other pair.

Lemma 13 A function has no partial privacy violations if and only if satisfies the following condi-
tion:

∃c, ∀i, j, vi, vj , P r(f(v) = 0|vi, vj) = c

A (relatively) simple function that satisfies this condition is: f(v) = parity(v1, v2, v3)∧parity(v4, v5, v6),
with a common prior of P (0) = 1

2 . There also exist privacy-preserving functions that treat each
agent’s input symmetrically. One example, for N = 7 and the common prior P (0) = 1

2 , is the
function f(v) that returns 1 if and only if the number of agents i for which vi = 0 is 1, 2, 4, or 5.
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4.3 Voyeurism first, correctness second

The last two cases to consider are those in which agents rank voyeurism first and correctness second,
leaving privacy as their third or fourth priority.

In order to calculate the expected entropy that agent j has agent i’s input after learning the out-
put of the function, we can use the following expression: Pr(vi|f(v) = x, vj) = Pr(f(v)=x|vi,vj)·P (vi)

Pr(f(v)=x|vj)
.

For the desired equilibrium to hold, it must be the case that for each agent i the expected partial
voyeurism is the same for both possible values of Vi.

Theorem 14 In the partial information gain setting, if agents rank voyeurism first and correctness
second, then, given a prior P(V), a function is NCC if and only if it is non-reversible and non-
dominated and the following condition holds for each agent j:∑

i 6=j

Ex[H(Vi|Vj = 1, f(v) = x)] 6=
∑
i 6=j

Ex[H(Vi|Vj = 0, f(v) = x)]

Note that, for the common prior P (0) = 1
2 , the unanimity function still induces a voyeurism tie,

as it did for the same two orderings of the full information gain setting.

5 Conclusion

In this paper, we have considered a class of incentive structures for agents and a class of mechanisms,
and characterized the sets of functions which are computable by agents which are similarly self-
interested. A summary of our results lends itself to a decision tree, as shown in Figure 1.

We view these results as laying the groundwork for a consideration of a wide variety of both
theoretical concerns and practical problems. In the introduction, we discussed the cryptographic
problem of secure function evaluation. Determining whether these cryptographic protocols will lead
to successful computation requires considering not only deviations from the protocol given agent
inputs (which is the extent of the analysis in most papers in this field), but also whether the protocol
is incentive compatible. Using the impossibility results stated above, we can focus our efforts on
designing protocols for functions which are non-cooperatively computable.

In addition, we can extend our formulation along several dimensions. For example, if we allow
the mechanism to return to an agent the inputs of other agents, in addition to the output of the
function, then voyeurism no longer prevents a function from being NCC. Intuitively, the mechanism
will expose inputs in a way that always creates a voyeurism tie. While similar solutions cannot
overcome privacy or exclusivity, other extensions, including correlation between agent inputs and
the possibility of monetary payments, further expand the space of functions that are NCC. Finally,
the analysis and types of results we obtained are not limited to Boolean functions and lexicographic
utility functions, and we regard extending this analysis to more general fields as a promising line of
future research.
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Figure 1: A decision tree which summarizes the conditions for a function and prior to be NCC. The
conditions are the same for the two settings we consider, except for the bottom two decision boxes,
in which “(partial)” refers to the updated conditions for the partial information gain setting.
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Abstract
We consider how much in uence a center can exert on a game
if its only power is to propose contracts to the agents before
the original game, and enforce the contracts after the game
if all agents sign it. Modelling the situation as an extensive-
form game, we note that the outcomes that are enforceable are
precisely those in which the payoff to each agent is higher
than its payoff in at least one of the Nash equilibria of the
original game. We then show that these outcomes can still be
achieved without any effort actually expended by the center:
We propose a mechanism in which the center does not moni-
tor the game, and the contracts are written so that in equilib-
rium all agents sign and obey the contract, with no need for
center intervention.

Introduction
There has been much interest in AI in mechanism design, the
area of game theory devoted to designing protocols for self-
interested agents. In the literature (Mas-Colell, Whinston,
& Green 1995) it is generally assumed that the mechanism
designer has complete freedom in designing the rules of the
game. Yet the world is full of strategic situations with rules
that already exist and cannot be changed arbitrarily. Recent
work on k-implementation (Monderer & Tennenholtz 2003)
restricts the capabilities of the mechanism designer in a par-
ticular way – it can add to any given cell in the payoff ma-
trix, but it cannot subtract. (The interesting results in that
line of work concern cases in which, despite that addition,
the cost to the center in equilibrium is zero.) The opposite
of this setting would be one in which the center can impose
 nes, rather than bonuses. This in and of itself is not in-
teresting, because with suf ci ently large  nes any outcome
can be enforced. However, suppose the mechanism cannot
unilaterally impose  nes, but it can do so in the context of
a signed contract. Speci cally , we consider the following
class of mechanisms. Given a game G, the center can:

1. Propose a contract before G is played. This contract spec-
i es a particular outcome, that is, a unique action for each
agent, and a penalty for deviating from it.
∗This work was supported in part by the National Science Foun-

dation under ITR IIS-0205633 and by This work was supported in
part by the DARPA grant F30602-00-2-0598.
Copyright c© 2005, American Association for Arti cial Intelli-
gence (www.aaai.org). All rights reserved.

2. Collect signatures on the contract and make it common
knowledge who signed.

3. Monitor the players’ actions during the execution of G.

4. If the contract was signed by all agents,  ne anyone who
deviated from it as speci ed by the contract.

Our setting is reminiscent of the work on social laws and
conventions (Shoham & Tennenholtz 1997). There too the
center can offer a social convention to the players, where
each player agrees to a particular outcome so long as the
other players play their part. The difference is that in that
work it is assumed that, once all agents agree, the center has
the power to enforce that outcome. Here we assume that
players still have the freedom to choose whether or not to
honor the agreement; the challenge is to design a mechanism
such that, in equilibrium, they will.

The technical results of this paper will refer to games of
complete information, but for intuition consider the example
of online auctions, such as those conducted by eBay. Con-
sider the complete game being played, including the deci-
sion after the close of the auction by the seller of whether
to deliver the good and by the buyer of whether to send
payment. Straightforward analysis shows that that the equi-
librium is for neither to keep his promise, and the experi-
ence with fraud on eBay (Hafner 2004) demonstrates that
the problem is not merely theoretical. It would be in eBay’s
interest to  nd a way to enable its customers to bind them-
selves to their promises.

Our  rst interest will be to characterize the achievable out-
comes: What outcomes may the center suggest, with asso-
ciated penalties, that the agents will accept? Our  rst result
will be an observation that the center’s power is quite broad:
Any outcome will be accepted when accompanied by ap-
propriate  nes, so long as the payoffs of each agent in that
outcome are better than that player’s payoffs in some equi-
librium of the original game.

Although the center can achieve almost any outcome, we
note that the helpful center expends a large amount of ef-
fort to do so: suggesting an outcome, collecting signatures,
observing the game, and enforcing the contracts. If this pro-
cedure happens not just for one game, but for hundreds or
thousands per day, the center may wish to  nd a way to avoid
this burden while still achieving the same effect.
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The bulk of this paper concerns ways in which this reduc-
tion in effort can be achieved. We continue to assume that
the center still needs to propose a contract. We also simply
assume that it does not monitor the game. Nor does it partic-
ipate in the signing phase; the agents do that among them-
selves using a broadcast channel. While we might imagine
that the players could simply broadcast their signatures, this
protocol allows a single player to learn the others’ signatures
and threaten them with  nes. Nonetheless, we can construct
a more complicated protocol - using a second stage of con-
tracts - which does not require the center’s participation. The
only phase in which the center’s protocol requires it to get
involved under some conditions is the enforcement stage.
However, our goal will be to devise contracts so that, in equi-
librium, at this stage too the center sits idle. Our results here
will be as follows. If the game play is veri able (if the cen-
ter can discover after the fact how the game played out), we
can achieve all of the outcomes achievable by a fully en-
gaged center. If the game is not veri able then we can still
achieve all previously achievable outcomes with some con-
tract, but that contract might allow equilibria with additional
outcomes.

The rest of the paper is organized as follows: we  rst for-
mally de ne our setting. Then we characterize the set of
outcomes which are achievable with a busy center using con-
tracts in this game. Finally, we lighten the load on the center
 rst in the enforcement stage, then in the signature exchange
stage.

Formal Setting
The strategic situation the center wishes to in uence can be
characterized as a strategic-form game with consequences in
O: G = 〈N,A, O, g, V 〉. (We roughly follow the notation of
(Osborne & Rubinstein 1994).) Here N is the set of players
{1...n}. A = A1 × A2 × ... × An, where Ai is the set
of actions which can be taken by an individual agent. We
will use ai to refer to an action of i in G and a−i to refer
to the vector of actions of all other players. O is the space
of outcomes; g : A → O determines the outcome after an
action pro le. We identify each outcome o(ai,a−i) with a
distinct action pro le (ai, a−i), and assume g(ai, a−i) =
o(ai,a−i). V = V1 × V2 × ...× Vn, where Vi : A → R is the
pay-off function for player i.

Before this strategic situation G occurs, the helpful center
suggests a contract to the players. This contract speci es the
outcome o suggested by the center and what actions h the
center will take in response to different action pro les of the
players. The center will not enforce this contract unless it
is signed by all players. This contract de nes the center’s
protocol in the enforcement stage H , as described below.
We will denote a contract that describes a particular center
protocol h as ch.

Now we will describe the stages of the game, as initially
formulated. We will adjust this formulation in later sections
so that the center does no work in equilibrium.

Signature Exchange Stage F Each player who assents
sends his signature on the contract to the center, who col-
lects them. The center noti es all players of the identi-

ties of the signers. At the end of this stage, it is common
knowledge whether or not the contract will be enforced.

Execution Stage G The players play the game G. Each
player may take his action ai to achieve o or he may not.
The center observes the actions taken by the players.

Enforcement Stage H The center takes the actions speci-
 ed in the contract in response to the actions he observed.

The outcomes are a consequence of the execution stage,
but the only way the center can affect the players’ actions in
the is by  ning them in the enforcement stage.

The extended game which arises from playing the stage
games one after another we denote by X = F · G · H .
Together, these de ne an extensive-form game with simul-
taneous moves. In general, an extensive-form game X can
be de ned as X = 〈N,Ω, Aω, P, U〉, where N is again the
players, Ω is the set of histories of actions taken, Aω is the
set of actions for all players that can be taken after history
ω, P : Ω → 2N is the player function that de nes which
players get to move after a given history, and U is the utility
function of players in the entire game.

In our particular setting, the history ω is just the set of
actions taken in each stage game played so far, Aω is the
set of actions possible in each stage game following history
ω, P is the set of all players (all players move simultane-
ously in each stage), and U is the (undiscounted) sum of
the utilities of each stage game. We denote the subgame of
X = 〈N,Ω|ω, A|ω, P|ω, U|ω〉 that arises after history ω by
Γ(ω), which simply refers to the play of the remaining stage
games following the actions taken in ω. In later sections, we
will refer to the strategy space of stage F as ΓF , of stage G
as ΓG, and of stage H as ΓH .

A pure strategy σi for player i in a strategic-form game
corresponds to the choice of a single action σi ∈ Ai. A
mixed strategy corresponds to the choice of a distribution
over actions: σi ∈ ∆Ai. A pure strategy in an extensive
form game is de ned as σi : Ω → Aω; a mixed strategy is
de ned accordingly. If σi is a strategy in X , then the strat-
egy σi|ω : Ω|ω → A|ω induced by σi in the subgame Γ(ω)
is σi|ω(ω′) = σi(ω, ω′). Since it is unobservable whether a
player has played a particular mixed strategy (only the re-
alization of that strategy is observed), we will henceforth
concentrate on enforcing outcomes that are the consequence
of pure strategy pro les.

Our chosen solution concept will be subgame perfect
equilibrium. To de ne this, we must  r st de n e a Nash equi-
librium: a pro le of strategies σ is a Nash equilibrium in a
game if ∀i ∈ N,σ′

i ∈ ∆Ai : Ui(σi, σ−i) ≥ Ui(σ′
i, σ−i).

A pro le of strategies σ in an extensive form game is a
subgame perfect equilibrium if for every ω ∈ Ω, σ|ω is a
Nash equilibrium of the subgame Γ(ω). A subgame perfect
equilibrium is resistant to deviations by players even in sub-
games off the equilibrium path.

The Power of a Helpful Center
We wish to characterize the power of a helpful center with-
out any resource limitations. In this section, the center
is limited only by the voluntary consent required from all
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agents and by its lack of desire to spend its own money.
Speci cally , we assume that it collects the signatures in F
itself and that it monitors the players’ actions in G. In later
sections we will relax each of these two assumptions.

First, we must precisely de ne the game which is being
played. We model the signature exchange stage as a game
form F with players N and action space ΓF = {0, 1}n. The
player i assents to the contract if γF

i ∈ ΓF
i = 1. Since the

center broadcasts the identities of the signers, each player’s
action is common knowledge. The execution game G thus
has an extended action space ΓG : {0, 1}n → A in which
players decide to take action based on the consequences of
the signature exchange stage. In the initial formulation, the
enforcement stage H requires no action on the part of the
players, but only of the center. The center’s protocol h sets
the payoff function of the enforcement stage. The center
observes the signatures it receives and the actions chosen by
the players and chooses to  ne or reward players. Formally,
h = h1 × h2 × ...× hn and hi : {0, 1}n ×O → R.

We de ne the payoff function Ui : Γ → R for each
player in the extended game X given actions v ∈ {0, 1}n

and (ai, a−i) ∈ A as Ui(v, ai, a−i) = V (g(ai, a−i)) +
hi(v, g(ai, a−i)). Thus each player has a quasi-linear utility
function over the outcome determined in G and the money
taken or given by the center according to h.

We say that the center’s protocol h is voluntary if the cen-
ter neither  n es nor rewards players if the contract is not
signed by every player: for all v 6= 1n ∈ {0, 1}n and for all
o ∈ O, it is the case that hi(v, o) = 0. We say that h is frugal
if the center never spends its own money: for all v ∈ {0, 1}n

and all o ∈ O, it is the case that
∑

i∈N hi(v, o) ≤ 0. As
these capture the limitations on the helpful center in our set-
ting, we will henceforth limit h to be frugal and voluntary.

We  rst wish to characterize what outcomes can occur in a
subgame-perfect equilibrium of the extended game X . The
outcome depends on two things: the contract ch suggested
by the center and the strategies of the players in X . We wish
to  nd contracts to which the players will agree that ensure
that our chosen outcome is played.

In order to characterize the space of possible outcomes
which can be enforced, we must de ne the notion of a pun-
ishment equilibrium. ρi is a punishment equilibrium for i if
ρi is the Nash equilibrium of G with minimal payoffs for i
among all (mixed) Nash equilibria of G.

Theorem 1 Let ρi be the punishment equilibrium for i. For
all o(ai,a−i), if Vi(ai, a−i) ≥ Vi(ρi), then there exists a vol-
untary and frugal center protocol h and a subgame perfect
equilibrium π∗ in which all players agree to ch and play
(ai, a−i), and in no subgame perfect equilibrium do players
agree to ch and then fail to play (ai, a−i). Furthermore, for
all i, Ui(π∗) = Vi(ai, a−i). If Vi(ai, a−i) < Vi(ρi), then
there is no subgame perfect equilibrium in which (ai, a−i)
is played.

Proof: First, suppose Vi(ai, a−i) < Vi(ρi). Since player
i will get at least Vi(ρi) in any subgame perfect equilib-
rium without  nes, i can pro t by withholding his assent.
As (ai, a−i) cannot be a Nash equilibrium by assumption
and no  nes are assessed in H , there can be no subgame

perfect equilibrium in which (ai, a−i) is played.
Second, suppose Vi(ai, a−i) ≥ Vi(ρi). We choose

hi(ai) = 0 and hi(a′i 6= ai) = −M . If we choose
M so that for all i, a′i, and a′−i, it is the case that M >
Vi(a′i, a

′
−i)−Vi(ai, a−i), then (ai, a−i) will be the only sub-

game perfect equilibrium of the subgame G · H , supposing
all players agree to ch. We also require that all players assent
in F . If any player does not assent, all players coordinate on
his punishment equilibrium ρi in G. If more than one player
fails to assent, we break ties arbitrarily to see which ρi is
played. No matter which player fails to assent, ρi will be a
subgame perfect equilibrium of G ·H , since the center will
not assess  nes. Thus i will not pro t by withholding his
assent.

Thus we show that, with a fully engaged center that takes
part in the protocol and monitors the players’ actions, we
can achieve any payoffs for the players which are at least
as good for every player as some Nash equilibrium of G.
Furthermore, once a contract for o is mutually signed, the
unique subgame perfect equilibrium achieves o.

We notice that, already, the center takes no action in H
in equilibrium. Yet as the center takes action in every other
stage, we shall consider how to lighten the load on the center.

Removing the Center From the Enforcement
Stage

In this section, we will drop the assumption that the center
does not monitor the players’ actions in the execution stage
G. Instead, we assume that actions and outcomes are com-
mon knowledge among the players but are not observed by
the center. The center must therefore encourage the players
to tell him if there has been a deviation. We will distinguish
two cases. In the veri able case, the center can verify that
a particular player played a given action if he chooses to
do so once the game G has been played. Speci cally , we
require that the center be able to verify, for each player i,
whether i played the correct action ai or some other action
a′i 6= ai. The center saves effort by not paying attention to
G; we merely require that he can determine the truth after
the fact, if necessary. In the unveri able case, the center has
no information about players’ actions whatsoever.

Because we now require the center to be noti ed by the
players of deviations, the enforcement games we now con-
sider will be of the following form:  rst, the players observe
the outcome and send messages to the center. The center
publishes any messages he receives to all players. The play-
ers then have the chance to respond to the center’s messages.
This repeats for some number of rounds. Finally, the center
makes monetary transfers between the players based on the
messages sent.

For our purposes, this full generality is not needed. Our
enforcement stage H is a single-round stage game where
each player chooses whether or not to complain about
other players by sending their names to the center, and
the center chooses a  ne to impose on each player: H =
〈N,ΓH , Rn, h〉. γH

i ∈ ΓH
n : O → 2N speci es which

complaints player i will send to the center after each out-
come. As before, h is the center’s protocol which maps out-
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comes and complaints received to monetary consequences
in Rn. The center may make payments based on the out-
come (if he can verify it), the identities of the complainers,
and the target of their complaints. In the veri able case,
h : O × (2N )n → Rn, while in the unveri able case,
h : (2N )n → Rn.

Now that we have speci ed an enforcement game, we
wish to characterize the set of outcomes obtainable thereby
in the extended game corresponding to this enforcement
game.

We de ne a protocol ho for the center, which will induce
an equilibrium under which the center takes no action in
the enforcement stage. Let M and m be a large and small
amount of money, respectively. In ho, the center punishes
each player who deviated by a large-enough amount M , but
also rewards each player who sent in a correct complaint by
m for each correct complaint. The center also punishes any
player who sent in an incorrect complaint by m. The con-
tract that speci es center protocol ho we call cho

.
Theorem 2 (Contracts for Veri able Games) Let G be a
game with veri able consequences in O and let o(ai,a−i) ∈
O be the desired outcome. Assume that the center has sug-
gested contract cho

de ned above and consider the subgame
G · H that follows unanimous agreement to this contract.
Then there is a strategy pro le π∗ such that π∗ is the unique
subgame perfect equilibrium of G ·H , o(ai,a−i) is the equi-
librium outcome of π∗, and π∗ has payoffs V (ai, a−i). The
center takes no action if π∗ is played.
[Proof omitted.]

We now consider the unveri able case. As before, we  rst
de ne a particular center protocol h′o. In h′o, the center pun-
ishes the target of each complaint by a large-enough amount
M , but does not reward or punish players for complaints.
After all, the center cannot distinguish valid complaints from
invalid ones. The contract that speci es center protocol h′o
we call ch′o .
Theorem 3 (Contracts for Unveri able Games) Let G be
a game with unveri able consequences in O, and let
o(ai,a−i) ∈ O be the desired outcome. Assume that the cen-
ter has suggested contract ch′o and consider the subgame
G · H that follows unanimous agreement to this contract.
Then there is a strategy pro le π∗′ such that π∗′ is a sub-
game perfect equilibrium of G · H , o(ai,a−i) is the equilib-
rium outcome of π∗′, and π∗′ has payoffs V (ai, a−i). The
center takes no action if π∗′ is played.
[Proof omitted.]

We have seen that even without veri ability , it is possi-
ble to achieve almost any outcome in equilibrium. Unfor-
tunately, these equilibria are no longer unique. As we shall
see, in the unveri able case, a given signed contract may
have many possible equilibrium outcomes rather than just
the intended one.

Given a game G, de ne the shortfall sσ
i of pure-strategy

pro le σ = (ai, a−i) for i as sσ
i = maxa′i

Vi(a′i, a−i) −
Vi(ai, a−i). The shortfall of i in σ is the amount i’s pay-
offs would need to rise so that i would have no incentive
to deviate from σ, all else held constant. We can see that

there must be some equilibrium of the enforcement game
in which an agent i is punished by at least s

(ai,a−i)
i when-

ever he deviates from his action ai. Yet, in an unveri able
game, there is nothing in the center’s protocol which makes
(ai, a−i) special. The players could just as well coordinate
on this equilibrium in the enforcement game when the ac-
tions are not some other action (a′i, a−i). This implies that
any enforcement scheme for the unveri able case will not in
general have a unique outcome. Here we consider not only
our chosen center protocol h′o, but in fact any center protocol
h in any form of enforcement game H .

Theorem 4 (Spurious Equilibria) Consider an unveri -
able enforcement game with a frugal and voluntary h under
which G ·H has a subgame-perfect equilibrium π in which
the center does no work, where (ai, a−i) is the strategy pro-
 le that π plays in G. Then if σ′ is a pure strategy pro le
of G and ∀i : sσ′

i ≤ s
(ai,a−i)
i , then there exists a subgame

perfect equilibrium π′ of G · H such that σ′ is the strategy
pro le that π′ plays in G.

[Proof omitted.]
A consequence of this theorem is that any Nash equilib-

rium of G can be played in F ·G·H regardless of the contract
signed.

Corollary 5 (No Deletion) If σ is a pure or mixed Nash
equilibrium in the unveri able game G, then, for any fru-
gal and voluntary center protocol h that has a subgame per-
fect equilibrium π where the center does no work, there is a
subgame perfect equilibrium π′ of G · H such that σ is the
strategy pro le that π′ plays in G.

[Proof omitted.]
Thus, if the center cannot verify the players’ actions, he

cannot in general enforce any outcomes uniquely. After
signing the contracts, the players might arrive at an outcome
different from the one the center suggested. In a real-world
setting, this would substantially weaken the case that the
players should sign the contract.

We have shown that a helpful center who neither moni-
tors the player’s actions nor  nes any player in equilibrium
can enforce every outcome that a fully engaged center can
enforce with more burdensome contracts. In an unveri able
game, however, the center must generally accept spurious
equilibria. Our next task is to remove the center from the
signature exchange stage.

Exchanging Signatures Without The Center
Under the original contract, the center collected signatures
on the contract ch and enforced the contract if every player
signed. We now show how the players can exchange signa-
tures on the contract by use of a broadcast channel without
requiring any action from the center in equilibrium. In this,
our goal is similar to the goal of optimistic signature ex-
change (Garay & MacKenzie 1999), but with rational actors
instead of computationally-bounded ones.

If players may communicate without being observed by
others, F would be a game of imperfect information. As
these games are dif cult to analyze and generally admit of
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many solutions, we require the players to use a broadcast
channel, on which all messages sent are common knowl-
edge.

When the center no longer monitors the signature ex-
change stage, he no longer knows in the enforcement stage
H whether the contracts have been signed or not. There-
fore, we now require that each complaint sent to the center
in the enforcement stage H include a fully signed copy of
the contract.

The Naive Broadcast Protocol
We might hope that the signature collection service per-
formed by the center was super uous: that we will achieve
the same results if we simply require players to broad-
cast their agreement or disagreement. Unfortunately, this
will not be so. Consider the naive broadcast protocol
where all players simultaneously broadcast their signatures.
Let us formally de ne F to be the one-round stage game
F = 〈N,ΓF , S, f〉, where N is the set of players and
ΓF = {0, 1}n, where 0 represents the decision not to broad-
cast one’s signature, while 1 represents the decision to do
so. S = ({0, 1}n)n is the set of outcomes of the game.
Each outcome speci es the set of signatures (represented by
{0, 1}n) possessed by each player in N . f : ΓF → S is the
outcome function of F : each player knows his own signa-
ture and every signature which is broadcast.

The complete set of signatures is thus common knowledge
if and only if every player chooses to broadcast his signature.
Consider what occurs if exactly one player i fails to reveal
his signature: i has received all the signatures of the other
players, and he can produce his own. Thus i is the only
player to possess all signatures on the contract, and this fact
is common knowledge among the players. The center, on
the other hand, cannot distinguish this case from the case
where all players know all signatures, but only i chooses
to complain. Therefore i is able to unilaterally enforce the
contract, unlike in the original formulation.

Recall that, in H , every message sent by one player to
the center is broadcast to all other players. Thus, once one
player has sent a complaint about another (which includes a
fully signed contract), every player will know all signatures
on ch and be able to complain. A player who deviates in F
cannot choose to punish other players while remaining un-
scathed himself, but he can choose unilaterally whether or
not to enforce the contract. Unfortunately, this power im-
plies that our previously speci ed equilibrium for the ex-
tended game F ·G ·H is no longer an equilibrium.

The equilibrium for F ·G·H discussed above requires that,
if i fails to reveal his signature on the contract, all players co-
ordinate on i’s punishment equilibrium. Consider the case,
for instance, where the punishment equilibrium for some i
is (ai, a

′
−i), where ai is the action i is contractually obliged

to play. Suppose i alone fails to reveal his signature and all
players play i’s punishment equilibrium (ai, a

′
−i). In stage

H , then, i will pro t by choosing to enforce the contract: the
center will punish the other players and reward i. Knowing
this, the other players will not in general wish to play their
part of the punishment equilibrium, so our previous strategy
fails.

The Pre-Contract Protocol
Although the naive broadcast protocol did not allow us to
guarantee all the payoffs we wanted, we shall see that we
can use a more complicated signature exchange stage F to
ensure that either each player receives all signatures on ch,
or no players receive all signatures on ch. Our exchange
scheme is modelled on the contracts mechanism of the rest
of the paper: we will add a pre-contract ĉh that the play-
ers will sign before signing ch. This contract authorizes the
center to  ne players who do not reveal their signature on ch.
Surprisingly, this does not lead to in nite regress: this one
pre-contract is suf cient to allow for signature exchange.

We will divide F itself into stages: a miniature contract
exchange stage F̂ , a miniature execution stage Ĝ, and a
miniature enforcement stage Ĥ . The players will bind them-
selves in contract ĉh to reveal their signatures on the contract
ch in such a way that, if they fail to reveal them, they can be
 ned by the center. We will allow them, however, to recoup
that  ne by revealing their signatures on ch to the center and
all players after the fact. The after-the-fact alteration of the
outcome allows us to use the naive broadcast protocol for F̂
where we could not use it for F .

Formally, let the signature stage F = F̂ · Ĝ · Ĥ . Let
us call the contract signed in F̂ the pre-contract ĉh, which
binds players to release their signatures on the real contract
ch. F̂ is the naive broadcast protocol de ned above as the
stage game F̂ = 〈N,ΓF̂ , S, f̂〉. S is the set of signatures on
ĉh that each player knows, and ΓF̂ is each player’s choice to
broadcast or not broadcast his signature on ĉh. Ĝ is also the
naive broadcast protocol de ned above for the signatures on
ch: Ĝ = 〈N,ΓĜ,Φ, ĝ〉, with Φ the set of known signatures
on ch, and ΓĜ : S → 0, 1n the decision of the players to
broadcast their signatures on ch given what signatures each
player knows on ĉh.

Ĥ = 〈N,ΓĤ , Rn, ĥ〉 is a miniature enforcement stage
that is substantially different from the enforcement stage H .
Ĥ has two rounds. In the  rst round, a player i is allowed
to complain to the center that he has not received some sig-
nature on ch. To do so, i must submit the contract ĉh, all
signatures on ĉh, and i’s signature on ch. When the center
rebroadcasts this message to all players, both the signatures
on ĉh and i’s signature on ch become known to all play-
ers. In the second round, each player who did not complain
in the  rst round is given a chance to complain. ΓĤ

i sim-
ply characterizes whether i will complain to the center after
each history.

We now state our chosen center protocol ĥ in Ĥ . If the
center received a complaint in the  rst round, then the cen-
ter  nes all players who did not complain in either the  rst
or the second round by a large-enough amount M . If the
center does not receive any complaints, he does not  ne any
players. Note that if all players complain, all signatures on
ch become common knowledge and no  nes are assessed.

We now specify the strategy π∗ we expect the agents to
play in F . In F̂ , each player  rst reveals his signature on
ĉh. In Ĝ, he will reveal his signature on ch if and only if
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he has received the signatures of every other player on ĉh.
In the enforcement stage Ĥ , he complains to the center if
and only if he has received all signatures on ĉh, but he has
not received all signatures on ch, or if some other player has
complained.

The remainder of π∗ for G and H is simple. If all sig-
natures on ch become known to all players, then the players
play (ai, a−i) in G to achieve o, just as before, and then
complain to the center in H if some player deviates. If,
however, some player i deviates from the equilibrium in F

(whether by choosing not to reveal in F̂ , choosing not to
reveal in Ĝ, or failing to complain in Ĥ), in such a way
that the signatures on ch do not become commonly known,
then the agents coordinate on that player’s punishment equi-
librium ρi. If several players deviate during F , the agents
coordinate on the punishment equilibrium of the last player
to deviate.

Our strategy π∗ is now an equilibrium. Thus, we can
achieve any outcome achievable with a busy center with a
center that does no work in equilibrium.

Theorem 6 Let X be the extended game F̂ · Ĝ · Ĥ ·G ·H ,
and let ρi be the punishment equilibrium for i in G. Then,
for any o(ai,a−i) such that for all i, Vi(ai, a−i) ≥ Vi(ρi),
there exists a contract ch for which there is an strategy pro-
 le π∗ such that π∗ is a subgame perfect equilibrium of the
extended game and o(ai,a−i) is the equilibrium outcome of
π∗. Furthermore, in π∗, the center takes no action during
any stage.

Proof: Let us sketch why this will be a subgame perfect
equilibrium. We will proceed by backwards induction.

So long as no single player gains complete knowledge of
the signatures on ch, then π∗ is a subgame perfect equilib-
rium in G and H . This does not occur if π∗ is played in F ,
so it is suf cient to prove that π∗ is a subgame perfect equi-
librium in F . We will show that, even after one deviation,
either all players know all the signatures on ch or no player
knows all signatures on ch.

Consider the second round of Ĥ . If no player complained
in the  rst round, second-round complaints have no effect.
If a player complained in the  rst round of Ĥ , then it will
be dominant for every other player to complain according to
π∗ to avoid the punishment of M from the center. Thus, all
players will know all signatures on ch.

Consider the  rst round of Ĥ . There are three cases to
distinguish. First, if every player knows all signatures on
both ĉh and ch, then complaining will have no effect. Sec-
ond, if every player knows all signatures on ĉh, but only one
player knows all signatures on ch. Every other player will
complain in the  rs t round and i must therefore complain in
the  rst or second rounds to avoid losing M . Every player
will learn all signatures. Third, if only one player i knows all
the signatures on ĉh, then i will not know all the signatures
on ch. If i does not complain, no player will learn all sig-
natures on ch and players will coordinate on i’s punishment
equilibrium. If i does complain, all others will complain in
the second round and all players will learn all signatures.

Consider the stage Ĝ. There are now two cases to con-
sider. First, suppose all players know all signatures on ĉh.
Then no player i can bene t by failing to reveal his signature
on ch, since the other players will complain, i will complain
to avoid punishment, and all players will end up learning all
signatures on ch. Second, suppose only one player i knows
the signatures on ĉh because he failed to reveal in F̂ . Then
no other players will reveal their signatures, and, whether i
reveals or not, all players will coordinate on i’s punishment
equilibrium.

Finally, consider the stage F̂ . Suppose one player i devi-
ates in the stage F̂ by failing to reveal his signature on the
pre-contract ĉh. Then he alone will have all the signatures
on ĉh, and no one else will reveal their signatures on ch in Ĝ.
According to the equilibrium, i will complain to the center
in stage Ĥ , resulting in complete knowledge of ch and the
decision to play (ai, a−i).

Conclusion
We have discussed the power of a helpful center in enabling
a group of players to make contracts which require them to
play a certain strategy or face penalties. Even if the center
brings no money to the system and transfers money from the
players only after receiving permission, the center is able to
help the players achieve nearly any outcome of the game.
Moreover, we  nd that the center is still able to help the
players achieve these outcomes in equilibrium, even if he
does not monitor the game and does not participate on the
equilibrium path - in other words, even when the center does
no work in equilibrium beyond suggesting a contract.

In fact, if the contracts the center would suggest are com-
mon knowledge or determined by a negotiation stage be-
tween the agents, the center does no work whatsoever in
equilibrium. Incidentally, we notice that the center makes
a pro t to cover his costs whenever his services are used.
These two properties are very important for a third party who
wishes to in uence outcomes in strategic settings that occur
frequently, such as in the online auction setting.
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Abstract

We look at the problem of computing a best-
response to an opponent’s strategy, when this
strategy is not known exactly but can instead be
sampled. We  rst give analytic results on the
number of samples required in order to approx-
imate the optimal best response. We then show
experimentally, on a variety of games, that one
can closely approximate the best response with
a much smaller number of samples than are re-
quired by the formal guarantees. Finally, we go
beyond so-called oblivious sampling; that is, we
consider what happens if the opponent is aware
that the agent has taken the samples, if the agent
knows that the opponent is aware, and so on to
higher levels of mutual modelling.

1 Introduction

Recent years have seen much research in AI on game the-
oretic multi-agent systems. Since most of game theory ab-
stracts away from computational issues, much of the recent
activity has concentrated on addressing algorithmic consid-
erations. In this work we consider a particular algorithmic
issue, namely computing a best response for one agent to
a  x ed opponent (when the strategies are  x ed, there is no
greater generality in considering a set of opponents, since
they can be viewed as a single player with an expanded ac-
tion space). We use the terms ‘agent’ and ‘opponent’ to in-
dicate the different status of the two players in the problem
we consider, but we interpret the term ‘opponent’ neutrally
(in particular, it does not mean that the game is necessarily
adversarial).

Although there are many other outstanding computational
issues in game theory (notably, computing one or all Nash
equilibria (Papadimitriou 2001)), best-response computa-
tion is arguably the most relevant to AI. There are several
variants of the problem; for example, computing a best re-

sponse against a known opponent or a distribution of op-
ponents. The latter, for example, is the natural computa-
tional question in the context of competitions such as the
Trading Agent Competition (Wellman & Wurman 1999).
Even against a known opponent, however, the problem is in
general intractable. (see Gilboa & Zemel 1989) The prob-
lem of computing a best response to a bounded automata
was shown to be NP -complete in (Papadimitriou 1992),
while  nding the best response for an arbitrary strategy can
be non-computable in some instances (Nachbar & Zame
1996).

Besides these complexity results, there are other reasons
why one might not be able to engage in a straightforward
best-response computation. For one thing, the opponent’s
strategy might be too complicated to represent. Worse, it
might not be available at all. However, recalling that the
opponent’s strategy is a distribution over its pure strategies,
we can sometimes sample from this distribution. There
are many real-world examples where such a situation could
arise naturally. For instance, a government might capture
some members of a terrorist organization and learn their
strategies. This sample can then be used to estimate the
strategies of the remaining agents. In a similar example
one could study the code/strategy of a set of known com-
puter viruses and use this information to design effective
security against new viruses. Or in a corporate setting,
companies regularly hire away members of their competi-
tors organization, giving them access to those employees
knowledge/strategies. For organized games such as chess
or poker, there are large reservoirs of data on samples both
from records of previous games played and books written
describing proposed strategies for play.

We propose to analyze these situations, where the agent has
access to some number of samples from its opponent’s dis-
tribution and uses them to calculate a best response. Sev-
eral questions suggest themselves, including the following:

• Theoretically speaking, how many samples do we
need to approximate the best response within a given
constant?
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• Empirically speaking, how good is a best response that
is based on a small sample?

• What happens if the opponent is aware that the agent
has the samples, if the agent is aware of this, and so
on as one increases the levels of outguessing?

In the next section, we show a bound on the number of
samples required to guarantee a payoff within ε of the true
best response. The following section looks at the empir-
ical question, analyzing payoff achieved as a function of
samples across different game environments. Both of these
sections assume the opponent is oblivious to the fact that
the agent is taking samples. To address this limitation, we
then consider the results of mutual modelling, when the op-
ponent is aware that the samples have been taken. Finally
we conclude with a few general observations and areas for
future work.

2 Oblivious Sampling - Theoretical Bounds

Given our approach of drawing samples from an oppo-
nent’s distribution over strategies, a natural question is how
many samples are required to achieve a certain level of
performance. Using the Hoeffding inequality we can  nd
the minimum number of samples required to guarantee
with probability 1 − δ that the best response we compute
achieves within ε of the payoff of the best response to the
true distribution (Hoeffding 1956). Let us assume that each
of our samples is an independent and identically distributed
random variable drawn from the true distribution and that
all payoffs are bounded within [0,1]. When computing the
best response we are effectively calculating the payoff of
each of the agent’s k strategies from the set A against the
distribution of the m samples in S and choosing the action
with the highest payoff. Let

â = arg max
a∈A

V̂ (a), (1)

where
V̂ (a) =

1

m

X

s∈S

R(a, s) (2)

and R(a, o) is the agent’s payoff function for the game
when the agent plays a and the opponent plays o. Letting
a∗ be the true best response, we want

V (â) ≥ V (a∗) − ε, (3)

where V (a) is the value achieved by strategy a against the
true distribution. Since V̂ is the mean of m iid random vari-
ables, we know by the Hoeffding inequality (also known as
the Chernoff bound) that for any a,

P (|V̂ (a) − V (a)| > γ) < 2e−2γ2m. (4)

By the union bound in probability theory, we know that

P (∃a : |V̂ (a)−V (a)| > γ) ≤
X

a∈A

P (|V̂ (a) − V (a)| > γ)

≤ k ∗ 2e−2γ2m

P (∀a|V̂ (a) − V (a)| < γ) ≥ 1 − 2ke−2γ2m. (7)

In particular if we have

|V̂ (â) − V (â)| ≤ γ, (8)

|V̂ (a∗) − V (a∗)| ≤ γ (9)

and by (1)
V̂ (â) ≥ V̂ (a∗), (10)

we get
V (â) ≥ V (a∗) − 2γ. (11)

Setting γ = ε
2

and 2ke−2γ2m = δ, we can solve for m to
get a bound of

m ≥
2

ε2
log(

2k

δ
) (12)

which will guarantee that the best response to the samples
is within ε of the actual best response with probability 1−δ.
Note that this bound is independent of the number of possi-
ble opponent strategies and that it depends only on the log
of the size of the agent’s strategy space. This lets us by-
pass the potential complexity of the opponent’s true strat-
egy distribution by evaluating only the set of agent strate-
gies required to include a best response to any possible dis-
tribution. For instance, although the set of possible mixed
strategies is in nite, the set of pure strategies is guaranteed
to contain a best response to any mixed strategy. Although
the existence of these bounds is encouraging, the Hoeffding
inequality is well-known to be quite weak by the learning
theory community. Further work has focused on tighten-
ing the bounds, reducing the dependence on ε from 1

ε2
to

1

ε
in many situations. The question remains, however, how

many samples would be required in practice, which will be
the focus of the following section.

3 Oblivious Sampling - Empirical Results

While the theoretical results are encouraging, the number
of samples required could still prove impractical in many
instances. In order to test the empirical performance of
sampling, we performed a series of tests for different types
of arti cial games and distributions of opponent strategies.
We found that the sampling performed quite well in all
of the domains and often achieved close to optimal per-
formance with only a small number of samples. We ini-
tially divided the domains on the basis of their payoff func-
tions, analyzing zero-sum, common-payoff, and general-
sum games independently. However, the performance we

82



observed seemed independent of these categories. On re-
 ection, this is not particularly surprising for a  x ed oppo-
nent distribution since it is oblivious to the samples being
taken. Given this situation, only the agent’s payoffs are rel-
evant in determining a best response.

In order to illustrate these  ndings, we will show results
from two individual games: one-card poker and a repeated
game of chicken, as well as aggregate results for randomly
generated games. For each setting, an opponent distribu-
tion is  rst selected and then m samples are drawn from
this distribution and provided to the agent. The agent cal-
culates a best response to this set of samples, weighting
all samples equally, and this best response strategy is tested
empirically against opponent strategies drawn from the true
distribution.

In our  rst experiment, we de ned a game based on a sim-
pli ed version of poker. At the start of the game each of
two players receives a card uniformly selected from the set
of integers [1...N ]. Each player then antes 1 chip, and a
player is randomly chosen to start betting. On their turn,
each player can choose either to bet B chips or pass, play
then continues to the other player until either both players
have passed or one player folds (passes when the opponent
has bet a larger amount). If one player folds the other player
wins the contents of the pot, otherwise the player with the
higher card wins (the pot is split in the case of a tie). The
results shown here are for the game where each player is
limited to a single bet. This gives each player a total of 12
distinct betting strategies which they can condition on the
card they receive, resulting in 12N possible pure strategies.

We ran tests against three different opponent distributions.
The  rst was a uniform distribution assigning equal prob-
ability to playing any of the 12N pure strategies. The next
assigned a Gaussian distribution in strategy space about a
random pure strategy, while the  nal used a probability dis-
tribution that combined two such Gaussians. The results
are shown in Figure 1 for games with bets of 4 units and
a deck of 10 cards. Similar results were also obtained for
games with a variety of values for B and N . Although not
shown, even in this zero-sum game the mini-max strategy
fares worse than even a small number of samples, since it
fails to take advantage of the opponent’s liabilities.

For our next setting, we considered a repeated version of
the game of Chicken. Each player has a choice of two ac-
tions at each time step, either to ‘Dare’ or ‘Yield’. If both
players ‘Dare’, the result is the worst possible outcome for
each player, but a player can achieve its maximum reward
by daring while its opponent yields. In Figure 2 we show
the payoffs for the three versions of the game of chicken we
used in our experiments. In the repeated setting, the strat-
egy space allows the players to base their current actions on
the history of the last H outcomes within the game. Note
that we restrict the agent as well to only using informa-
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Figure 1: Percent of maximum payoff achieved using the
given number of samples in single-card poker.

tion from the last H outcomes during the repeated game,
thus resulting in essentially a one-shot game. Since there
are 4 possible outcomes, this results in a strategy space of
size 24

H

. Once again we obtained quick convergence to
the optimal response value with a relatively small number
of samples, despite the huge strategy space. The results are
qualitatively quite similar to those for single-card poker, so
we have omitted the graph, although this setting will be re-
ferred to again in the following section.

Finally, experiments were performed for randomly gener-
ated matrix games. Each game has k actions for each agent
with the payoffs randomly distributed in the range [0, 1].
For these games we added an additional opponent distribu-
tion which was forced to assign zero probability to strate-
gies employing dominated actions. Results for general-sum
games of different sizes against this new opponent distri-
bution are shown in Figure 3. Results are basically identi-
cal against a uniform distribution over opponents or when
the payoffs are restricted to be common-payoff. While the
agent can still achieve close to optimal payoffs, the number
of samples required increases more rapidly with the num-
ber of actions than in the previous games, possibly indi-
cating an advantage of the structure in the previous games
when using sampling.

From the empirical results we can see that sampling is ef-
fective in approximating a best response across a wide vari-
ety of different environments. Most of these environments
allow us to achieve good performance with far fewer sam-
ples then our theoretical bounds require. We can de ne a

Dare Y ield

Dare 0, 0 4, 1

Y ield 1, 4 2, 2

D Y

D 0, 0 3, 1

Y 1, 3 2, 2

D Y

D 0, 0 8, 5

Y 5, 8 6, 6

Figure 2: Single round payoffs in three games of Chicken.
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Figure 3: Percent of maximum payoff achieved for random
matrix games of different sizes.

metric for the ease with which this is possible by setting a
performance guarantee we wish (such as 99% of optimal)
and then comparing the sample complexity for achieving
this performance across games. Figure 4 shows the values
for such a metric applied to the games analyzed here.

4 Beyond Oblivious Sampling

So far, we’ve assumed that the agent is the only one al-
lowed to explicitly reason about their opponent. They are
allowed to gather samples from the opponent’s distribu-
tion and then compete against the original distribution un-
affected by their actions. What if the opponent is aware
that the samples have been taken? Presumably they might
use this information to change their strategy in response to
the new situation. We can then ask a number of questions
about this setting.

• How should the opponent use its awareness that sam-
ples were taken and how should the agent respond in
turn?

• When and to whom is it an advantage to explicitly
model the other player?

Environment 90% 95% 99%
Poker (N=10, B=4, Uniform Dist.) 5 10 20
Poker (N=10, B=4, Gaussian Dist.) 5 15 25
Poker (N=10, B=4, Bimodal Dist.) 5 15 25
Chicken (Payoffs 4 2 1, Uniform) 1 8 100
Chicken (Payoffs 8 6 5, Uniform) 3 8 20
Random Games (4 Actions) 1 2 10
Random Games (16 Actions) 3 10 64
Random Games (64 Actions) 3 25 250
Random Games (256 Actions) 1 50 500

Figure 4: Samples required to approximate best response.

• What happens in the limit of in nite mutual mod-
elling?

First we need to consider what kind of information the op-
ponent might have. They could know only that some sam-
ples were taken, and nothing about the value or number of
samples. In this case it seems the only possible improve-
ment the opponent could make in their strategy would be
to assume the agent has calculated a best response to their
true distribution and play a best response to that. However,
if the opponent in addition knows how many samples were
taken (or has a distribution over likely sample sizes) they
can improve their performance. This may seem surprising,
but consider the game shown in Figure 5, with the oppo-
nent’s original distribution consisting of 75% agents which
always play L and 25% agents which always play R.

If the agent calculates the true best response, it will al-
ways play B, forcing the opponent (the column player)
to always play L. However, if the agent only receives
one sample, then 75% of the time it will choose T as its
best response instead. Now, playing L only yields a pay-
off of 1, while playing R yields an expected payoff of 3
(75% × (V (T,R) = 4) + 25% × (V (B,R) = 0)). In this
example, if the agent has taken many samples their play
will likely correspond to the best response strategy for the
true distribution, however, there is no guarantee this is true
in general. While we showed earlier that the value achieved
by the agent will approach the value of the best response,
this does not in general imply that the play will approach
the best response strategy for any  nite number of samples.
The agent may have a strategy that yields within ε of the
maximum value but lies arbitrarily far away in the strat-
egy space. In this case, there is no guarantee that playing
the best response to the true best response is a good strat-
egy against the ε-best response actually played. In practice
this tends to work well for large numbers of samples, but
is dominated by employing the correct Bayesian calcula-
tion using the actual number of samples taken. The exact
calculation can prove infeasible for large strategy spaces,
but once again we can employ sampling to approximate it,
this time from the opponent’s point of view. The opponent
can randomly draw sets of samples from its original true
distribution to match the samples the agent may have taken
and use the best responses to these samples sets as its sam-
ples from the agent’s true distribution. In Figure 6 we can
see the results of using this method for a variety of sample
sizes. The measure here is how much value is lost by the

L R

T 2, 1 1, 4

B 1, 1 5, 0

Figure 5: Game showing the value of knowing the sample
size.
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Figure 6: Opponent’s loss of value in simple poker setting
versus that achieved with full information on samples taken
for different agent sample sizes.

opponent relative to the value they could have achieved if
they knew the exact samples taken by the agent. We can
see that this improves as the opponent simulates more sam-
ple sets and that the loss from not knowing the samples is
highest when a single sample was taken.

Next, we consider the case in which the opponent knows
not only the number of samples but also the value of each
sample. They could assume the agent would calculate a
best response to those samples and therefore calculate their
own best response to the agent’s strategy. Of course, this
process can escalate inde nitely , as the agent realizes the
opponent knows the samples were taken, etc.

For the settings we described previously, we analyzed the
results of this recursive modelling under different assump-
tions about the level of mutual modelling carried out by
each agent. Results for the individual games are dis-
cussed in the following subsections, organized into zero-
sum, common-payoff, and general-sum games.

Note that for these results we assumed that at least one
player had correct beliefs about the other player and also
that the other player’s beliefs were accurate except for not
accounting for the last level of analysis performed. As
the players beliefs depart further from the actual situation,
the payoffs tend to move towards those achieved by a ran-
dom strategy. This generally corresponds to a decrease in
value for each agent for team games and many general sum
games.

4.1 Zero-sum Games

Within the simple poker game, as each player performs ad-
ditional introspection about the other’s strategy, the mag-
nitude of the payoffs increases until the play settles into
a simple cycle of alternating strategies. In this cycle, the
primary driver of value is holding the correct beliefs about
the level of analysis the other player has performed. When
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20 50
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Figure 7: Payoffs for increased levels of introspection

holding correct beliefs each player is guaranteed at least
the value of the game, since they are performing a best
response calculation. Payoffs for the sampling agent in
the simpli ed poker game are shown in Figure 7. The
points labelled 0A correspond to the agent calculating a
best response to the samples received without the opponent
changing strategies. Each point to the right then advances
the level of mutual modelling by one (with the letter indi-
cating which player has the informational advantage). The
number of samples taken has little impact on payoff and
mainly serves to decrease the magnitude of the oscillations
as the number of samples increases. Presumably this is be-
cause the strategies found with larger numbers of samples
are slightly more robust.

4.2 Common-payoff Games

In our empirical experiments, the play would often con-
verge rapidly to the Paretto optimal Nash equilibrium of
the game as the players reasoned more deeply about one an-
other. In general, the players are guaranteed to converge to
playing a Nash equilibrium for some  nite amount of mu-
tual modelling (assuming a  nite action space and generic
payoffs). This follows since each player has full knowledge
of the best response calculated by the other for any level of
reasoning. Given this, each subsequent best response cal-
culation is guaranteed to be monotonically nondecreasing
in the common value achieved by all players. For two-
player games or games with generic payoffs, the players
will not enter a cycle where they return to a previously en-
countered outcome until they reach a  x ed-point outcome.
Since there are a  nite number of distinct outcomes, they
must eventually arrive at an outcome where each player is
playing its best response, meeting the de nition of a Nash
equilibrium.

4.3 General-sum Games

We ran additional tests on the game of centipede. In this
game, each player alternates in choosing whether to stop
the game or continue for up to one hundred turns. Each
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Figure 8: Value achieved by each player for successive lev-
els of mutual modelling in the centipede game.

player then receives a reward equal to the number of turns
the game continued plus a bonus reward of two for the
player who chose to stop the game. Looking at Figure 8,
we can see that there is at  rst a jump in value to both play-
ers since the agent’s initial best response is near the strategy
of always continuing. The value then drops steadily for in-
creased introspection, matching the process of backwards
induction. (If no player would ever continue past k steps,
then the best response is to always stop the game at k-1
steps.) The limit of this process is the unique Nash equilib-
rium, where each player chooses to stop immediately.

In the repeated game of chicken, play once again converges
to a Nash equilibrium in the limit. However, this game has
multiple Nash equilibria corresponding to different players
choosing ‘Dare’ when their opponent chooses ‘Yield’. The
beliefs in the game will tend to converge to the Nash equi-
librium closest in the strategy space to the agent’s initial
best response, which is a function of the particular pay-
offs. In Figure 9, we can see the payoffs to each player
for increasing amounts of mutual modelling by both play-
ers. Again, each point to the right along the x-axis indicates
one more level of analysis by one of the players.

Looking at these two games we can address the question
of whether informational advantage always offers a better
payoff. It turns out that the answer depends on who cur-
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Opponent Value

Figure 9: Value achieved by each player for successive lev-
els of mutual modelling in a repeated game of chicken.

H T X

H 1,−1 −1, 1 −2,−2

T −1, 1 1,−1 −2,−2

X −2,−2 −2,−2 1, 1

Figure 10: Sample game in which recursive modelling does
not converge to a Nash equilibrium.

rently has the advantage. Unsurprisingly, if the opponent
currently has the advantage, it can never hurt the agent’s
payoff (in the short turn) to do further analysis to take the
advantage, since this is a best-response calculation. How-
ever, if the agent currently has the advantage, the opponent
taking the advantage could help. This is particularly true
in team games where all players are maximizing the same
function, but can also occur in some general-sum games,
such as the repeated game of chicken shown above. No-
tice in Figure 9, that when the opponent  rst starts to rea-
son about the agent taking samples that the payoffs to both
players go up.

Given that these games have all converged to Nash equilib-
ria, will this process in general converge to a pure strategy
Nash equilibrium when one exists? If the process does con-
verge, it must be to a Nash equilibrium since each player
calculates best response. However, it turns out not to con-
verge in all games since it is possible for the best responses
to cycle through outcomes without encountering an equi-
librium. Consider the game shown in Figure 10 where
the agent received a sample opponent strategy that always
plays T . One can see that mutual modelling will result
in each player alternating between always playing H or
always playing T without ever reaching either the mixed
Nash of playing H and T each with 50% probability or the
pure Nash equilibrium with both players playing X .

5 Conclusions and Future Work

Most of our results fall in line with our predictions stated
in the introduction, although not without a few surprises.

• Sampling can be shown to approximate the true best
response with a number of samples logarithmic in the
size of the agent’s strategy space.

• Empirical results show sampling to be effective
against a variety of hidden opponent distributions and
different game environments.

• Analyzing successive mutual modelling by the players
results in either convergence to equilibrium or cyclic
behavior, reminiscent of  ctitious play in repeated
games. (Brown 1951)
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• Even a small difference in player knowledge, such as
information about the number of samples taken, can
produce a major difference in the value an agent can
achieve.

• While in general the advantage from modelling falls
to the player with correct beliefs, games with some
degree of cooperation allowed one player to bene t
from increased mutual modelling by the other player.

Several of our  ndings encourage further study of this ap-
proach. For many of the settings tested, the empirical per-
formance far exceeded the theoretical guarantees for small
numbers of samples. Although the bounds were known
to be weak, can we more clearly characterize the factors
leading to settings where sampling is most effective? One
possible factor relates to qualities of the agent’s strategy
space. In the proof we assumed a worst case distribution of
payoffs for the agent’s strategies. In practice the effective
space of strategies that need be considered may be much
smaller for many games. For instance, there may be many
strategies that achieve (nearly) optimal payoffs against the
true distribution, creating a wider target to choose from.
Also, there may be many strategies that fail to be best re-
sponses against (almost) any strategy selected by the sam-
ples. These strategies can then be ignored in the calculation
since there is no chance of their being confused with an op-
timal strategy. A  rst step in better de ning the space of
games where sampling is effective could be achieved by
testing the approach over a wide sample of games and op-
ponent distributions. A machine learning approach could
then be used to learn what parameters affect the number
of samples required. Given this understanding, it may be
possible to tighten the theoretical bounds on the number of
samples required by adding additional restrictions on the
strategy space and the payoffs of the game.

While both agents could pro t in general-sum games with
some coordination, the exact values achieved could vary
signi cantly based on the starting samples, as seen in the
Repeated Chicken game. This opens up a further question
of how an opponent might take advantage of this depen-
dence. What if the opponent had the ability to manipu-
late the samples the agent received? This could occur ei-
ther through adding additional samples of their choosing
(planted evidence or double agents) or changing the distri-
bution the agent is sampling from.

Additionally, all of our detailed analysis on recursive mod-
elling assumed that the agents had certainty over the infor-
mation they possessed about the other player (even when
one agent was wrong). What if we instead allow the agents
to have more complex beliefs over the possible information
or beliefs of the other agent? This may allow the agents to
develop more robust strategies as a result of their uncer-
tainty. Note that as long as the agents can characterize their
uncertainty precisely they can form a probability distribu-

tion over possible opponent strategies and still calculate a
pure strategy best response. If however they believe their
opponent may outguess them in unforseen ways, there can
be pressure to play mixed strategies that reduce the penalty
of losing the informational advantage. Given that equilib-
ria are often justi ed as the endpoints of in nite analysis
among perfectly rational opponents, are there any reason-
able constraints we could add to the player’s process of mu-
tual modelling such that in the limit it would also converge
to an equilibrium?

In terms of direction for our future work, probably the
greatest limitation of the current approach is that it requires
that the samples from the opponent’s distribution be entire
strategies. For instance, in the simple poker setting each
sample contains the betting strategy for the opponent given
any possible card. In many situations it is much easier to
acquire part of a strategy, such as the on-path play for a
previous game. The question of how best to utilize this
weaker information would help expand the applicability of
this work to a wider class of settings.
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Abstract

Dispersion games are the generalization of the anti-
coordination game to arbitrary numbers of agents and ac-
tions. In these games agents prefer outcomes in which the
agents are maximally dispersed over the set of possible ac-
tions. This class of games models a large number of natu-
ral problems, including load balancing in computer science,
niche selection in economics, and division of roles within a
team in robotics. Our work consists of two main contribu-
tions. First, we formally define and characterize some inter-
esting classes of dispersion games. Second, we present sev-
eral learning strategies that agents can use in these games,
including traditional learning rules from game theory and ar-
tificial intelligence, as well as some special purpose strate-
gies. We then evaluate analytically and empirically the per-
formance of each of these strategies.

Introduction
A natural and much studied class of games is the set of so-
called coordination games, one-shot games in which both
agents win positive payoffs only when they choose the same
action (Schelling 1960).1 A complementary class that has
received relatively little attention is the set of games in which
agents win positive payoffs only when they choose distinct
actions; these games have sometimes been called the anti-
coordination games. Most discussion of these games has
focused only on the two-agent case (see Figure 1), where
the coordination game and the anti-coordination game dif-
fer by only the renaming of one player’s actions. However,
with arbitrary numbers of agents and actions, the two games
diverge; while the generalization of the coordination game
is quite straightforward, that of the anti-coordination game
is more complex. In this paper we study the latter, which
we call dispersion games (DGs), since these are games in
which agents prefer to be more dispersed over actions.2 Al-
though one can transform a dispersion game into a coordi-

∗This work is supported in part by DARPA Grant F30602-00-
2-0598 and by a Benchmark Stanford Graduate Fellowship.
Copyright c© 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

1In this paper, we assume familiarity with basic game theory;
our formulations are in the style of (Osborne & Rubinstein 1994).

2We chose this name after (Alpern 2001) who studies a subclass
of these games which he calls spatial dispersion problems.

A B

A 1 0

B 0 1

A B

A 0 1

B 1 0

Figure 1: Two-agent coordination game (left) and anti-
coordination game (right).

nation game in which agents coordinate on a maximally dis-
persed assignment of actions to agents, the number of such
assignments grows exponentially with the number of agents.

DGs model natural problems in a number of different do-
mains. Perhaps the most natural application is presented by
the much studied load balancing problem (see, e.g., Azar
et al. 2000). This problem can be modeled as a DG in
which the agents are the users, the possible actions are the
resources, and the equilibria of the game are the outcomes
in which agents are maximally dispersed. Another natural
application of DGs is presented by the niche selection prob-
lem studied in economics and evolutionary biology. In a
general niche selection problem, each of n oligopoly pro-
ducers wishes to occupy one of k different market niches,
and producers wish to occupy niches with fewer competi-
tors. Other niche selection problems include the Santa Fe
bar problem proposed by Arthur (1994), and the class of mi-
nority games (Challet & Zhang 1997). These niche selection
problems can all be modeled in a straightforward manner by
DGs. Finally, we note that DGs can also serve as a model of
the process of role formation within teams of robots. In fact,
the initial motivation for this research came from empirical
work on reinforcement learning in RoboCup (Balch 1998).

This paper makes two types of contributions. First, we
formally define and characterize some classes of DGs that
possess special and interesting properties. Second, we ana-
lyze and experimentally evaluate the performance of differ-
ent learning strategies in these classes of games, including
two standard learning rules from game theory and artificial
intelligence, as well as two novel strategies. The remainder
of this article is organized as follows. In the first section we
present the game definitions. In the second and third sec-
tions we present the learning strategies and the results and
analysis of their performance. Finally, in the last section we
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discuss these findings and present ideas for future research.

Dispersion Game Definitions
In this section we begin by discussing some simple disper-
sion games, and work our way gradually to the most general
definitions. All of the DGs we define in this section are sub-
classes of the set of normal form games, which we define as
follows.

Definition 1 (CA, CP, CACP games) A normal form game
G is a tuple 〈N, (Ai)i∈N , (�i)i∈N 〉, where

• N is a finite set of n agents,
• Ai is a finite set of actions available to agent i ∈ N , and
• �i is the preference relation of agent i ∈ N , defined

on the set of outcomes O = An, that satisfies the von
Neumann-Morgenstern axioms.

A game G is a common action (CA) game if there exists a
set of actions A such that for all i ∈ N , Ai = A; we rep-
resent a CA game as 〈N,A, (�i)i∈N 〉. Similarly, a game is
a common preference (CP) game if there exists a relation �
such that for all i ∈ N , �i=�; we represent a CP game as
〈N, (Ai)i∈N ,�〉. We denote a game that is both CA and CP
as CACP. We represent a CACP game as 〈N,A,�〉

Note that we use the notation 〈a1, . . . , an〉 to denote the
outcome in which agent 1 chooses action a1, agent 2 chooses
action a2, and so on. In a CA game where |A| = k, there
are kn total outcomes.

Common Preference Dispersion Games
Perhaps the simplest DG is that in which n agents indepen-
dently and simultaneously choose from among n actions,
and the agents prefer only the outcomes in which they all
choose distinct actions. (This game was defined indepen-
dently in (Alpern 2001).) We call these outcomes the maxi-
mal dispersion outcomes (MDOs).

This simple DG is highly constrained. It assumes that
the number of agents n is equal to the number of actions
k available to each agent. However, there are many prob-
lems in which k �= n that we may wish to model with DGs.
When k > n the game is similar to the k = n game but
easier: there is a larger proportion of MDOs. When k < n
however, the situation is more complex: there are no out-
comes in which all agents choose distinct actions. For this
reason, we will need a more general definition of an MDO.
In the definitions that follow, we use the notation no

a to be
the number of agents selecting action a in outcome o.

Definition 2 (MDO) Given a CA game G, an outcome
o = 〈a1, . . . , ai, . . . , an〉 of G is a maximal dispersion
outcome iff for all agents i ∈ N and for all outcomes
o′ = 〈a1, . . . , a

′
i, . . . , an〉 such that a′

i �= ai, it is the case
that no

ai
≤ no′

a′
i
.

In other words, an MDO is an outcome in which no agent
can move to an action with fewer other agents. Note that
when the number of agents is less than or equal to the num-
ber of actions, an MDO allocates exactly one agent to each
action, as above.

Under this definition, the number of MDOs in a general
CA game with k actions is given by

MDO(n, k) = n!

(
k

nmodk

)

�n/k	nmodk
n/k�!k .

When k = n this expression simplifies to n!, since there are
n! ways to allocate n agents to n actions.

The simple DG presented above also makes another
strong assumption. It assumes that an agent’s preference
over outcomes depends only on the overall configuration of
agents and actions in the outcome (such as the number of
agents that choose distinct actions), but not on the particular
identities of the agents or actions (such as the identities of
the actions that are chosen). We call these the assumptions
of agent symmetry and action symmetry. However, many
situations we might like to model are not agent and action
symmetric. For example, role formation on soccer teams is
not action symmetric. The identity of a particular field posi-
tion in an outcome can affect the performance of the team: a
team with a goalie but no halfback would probably perform
better than one with a halfback but no goalie, all else being
equal. Robot soccer is also not necessarily agent symmetric.
If agent 1 is a better offensive than defensive player, then a
team may perform better if agent 1 is a forward instead of a
fullback, all else being equal. We use the following formal
definitions of symmetry.

Definition 3 (Agent Symmetry) A CA game G =
〈N,A, (�i)i∈N 〉 is agent symmetric iff for all outcomes
o = 〈a1, . . . , ai, . . . , an〉, and for all permutations
o′ = 〈a′

1, . . . , a
′
i, . . . , a

′
n〉 of o, for all i ∈ N , o �i o′ and

o′ �i o.

Definition 4 (Action Symmetry) A CA game G =
〈N,A, (�i)i∈N 〉 is action symmetric iff for all outcomes
o = 〈a1, . . . , ai, . . . , an〉 and o′ = 〈a′

1, . . . , a
′
i, . . . , a

′
n〉, if

there exists a one-to-one mapping f : A → A such that
for all i ∈ N , f(ai) = a′

i, then for all i ∈ N , o �i o′ and
o′ �i o.

In fully symmetric games, agents cannot distinguish be-
tween outcomes with the same configuration of numbers of
agents choosing actions. Thus we use the abbreviated nota-
tion {n1, . . . , nk} to refer to the set of outcomes in which
n1 agents choose some action, n2 agents choose a different
action, and so on. By convention, we order the actions from
most to least populated.

We are now ready to state the formal definition of a weak
DG that is well defined over the set of all CACP games,
including asymmetric games and games with arbitrary n, k.

Definition 5 (Weak DG) A CACP game G = 〈N, A,�〉 is
a weak dispersion game iff the set of �-maximal outcomes
of G is a subset of the set of MDOs of G.

This definition requires only that at least one of the MDOs
is a preferred outcome, and that none of the non-MDOs
is a preferred outcome. This definition is weak because it
places no constraints on the preference ordering for the non-
maximally-preferred outcomes.3 For this reason, we also

3The reader may wonder why our definitions don’t require that
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state a strong definition. Before we can state the definition,
however, we will need the following dispersion relation.

Definition 6 () Given two outcomes o =
〈a1, . . . , ai, . . . , an〉 and o′ = 〈a′

1, . . . , a
′
i, . . . , a

′
n〉,

we have that o D o′ iff there exists a agent i ∈ N such
that a′

i �= ai, and no
ai

< no′

a′
i
, and for all other agents

j ∈ N, j �= i, aj = a′
j . We let the dispersion relation  be

the reflexive and transitive closure of D.

In other words, o is more dispersed than o′ if it is possible
to transform o′ into o by a sequence of steps, each of which
is a change of action by exactly one agent to an action with
fewer other agents. It is important to note that the dispersion
ordering is a structural property of any CACP game. The
dispersion relation over the set of outcomes forms a partially
ordered set (poset). Note that the set of MDOs is just the set
of -maximal elements of O.

There are many other measures that we could use instead
of the qualitative dispersion relation. Entropy is consistent
with, but stronger than our dispersion relation: if o  o′ then
the entropy of o is higher than that of o′, but the converse is
not necessarily true. We have chosen to base our definitions
on the weaker dispersion relation because it is the most gen-
eral, and because it corresponds directly to a single agent’s
change of actions.

Using this dispersion relation, we can state the formal def-
inition of strong DGs.

Definition 7 (Strong DG) A CACP game G = 〈N,A,�〉
is a strong dispersion game iff for all outcomes o, o′ ∈ O, it
is the case that if o  o′ but not o′  o, then o � o′ but not
o′ � o.

Recall that the preference relation � forms a total order-
ing while the dispersion relation  forms a partial ordering.
Thus this definition requires that o is strictly preferred to o′

when o is strictly more dispersed than o′.
If the strong definition has such nice properties, why

bother to state the weak definition at all? There are many
situations which have a dispersion quality but which can-
not be modeled by games in the stronger class. Consider
the situation faced by Alice, Bob, and Charlie who are each
choosing among three possible roles in the founding of a
company: CEO, COO, and CFO. Because they will be com-
pensated as a group, the situation can be modeled as a CP
game. However, suppose that Bob would be a terrible CEO.
Clearly, the agents would most prefer an outcome in which
each role is filled and Bob is not CEO; thus the game satis-
fies the weak definition. However, rather than have all roles
filled and Bob alone be CEO, they would prefer an outcome
in which Bob shares the CEO position with one of the other
agents (i.e., both Bob and another agent select the “CEO”
action), even though it leaves one of the other roles empty.
In other words, the preference relation conflicts with the dis-
persion ordering, and the game does not satisfy the strong
definition.

all MDOs are maximal outcomes. In fact, it is easy to verify that
this must be the case in a fully symmetric DG.

Non-Common-Preference Dispersion Games

There are also several interesting classes of non-CP disper-
sion games we might like to model. Due to space consider-
ations we will not define these classes formally, but instead
present a few motivating examples.

Consider again the load balancing application in which
each of n users simultaneously wishes to use one of k dif-
ferent resources. If the users all belong to a single organi-
zation, the interest of the organization can be well modeled
by a CP DG, since the productivity of the organization will
be highest if the users are as dispersed as possible among
the servers. However, the users’ preferences may be more
selfish: a user may prefer individually to use a resource with
the fewest possible other users, regardless of the welfare of
the rest of the group. Additionally, users’ preferences may
reflect some combination of individual and group welfare.
These problems may be modeled with the class of selfish
dispersion games.

Consider again the niche selection problem, in which each
of n oligopoly producers wishes to occupy one of k different
market niches. It may be the case that in addition to a general
preference for dispersal (presumably to avoid competition)
each producer has an exogenous preference for one of the
niches; these preferences may or may not be aligned. For
example, it may be that one of the market niches is larger
and thus preferred by all producers. Alternatively, a pro-
ducer may have competencies that suit it well for a partic-
ular niche. Note that the two agent case can be modeled
by what one might call the anti-battle-of-the-sexes game in
which a man and his ex-wife both wish to attend one of two
parties, one of which is more desirable, but both prefer not
to encounter each other (the reader familiar with the origi-
nal BoS game will appreciate the humor). These problems
can be modeled with the class of partial dispersion games,
in which agents’ preferences may align with either the dis-
persion ordering or with a set of exogenous preferences.

Learning Strategy Definitions
Now that we have defined a few interesting classes of dis-
persion games, let us consider the task of playing them in a
repeated game setting. There are two perspectives we may
adopt: that of the individual agent wishing to maximize his
individual welfare, and that of a system designer wishing to
implement a distributed algorithm for maximizing the group
welfare. In the present research, we adopt the latter.

Let us begin with the problem of finding an MDO as
quickly as possible in a weak CACP DG.4 Note that this
problem is trivial if implemented as a centralized algorithm.
The problem is also trivial if implemented as a distributed
algorithm in which agents are allowed unlimited commu-
nication. Thus we seek distributed algorithms that require
no explicit communication between agents. Each algorithm
takes the form of a set of identical learning rules for each

4Note that any mixed strategy equilibrium outcome is neces-
sarily preference dominated by the pure strategy MDOs. For this
reason, we henceforth disregard mixed strategy equilibria, and fo-
cus on the problem of finding one of the MDOs.
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agent, each of which is a function mapping observed histo-
ries to distributions over actions.

Consider the most naive distributed algorithm. In each
round, each agent selects an action randomly from the uni-
form distribution, stopping only when the outcome is an
MDO. Note that this naive learning rule imposes very min-
imal information requirements on the agents: each agent
must be informed only whether the outcome is an MDO.
Unfortunately, the expected number of rounds until conver-
gence to an MDO is

kn

MDO(n, k)
.

It is easy to see that for k = n the expected time is nn/n!,
which is exponential in n.

We began by evaluating traditional learning rules from
game theory and artificial intelligence. Game theory offers
a plethora of options; we looked for simplicity and intuitive
appropriateness. We considered both fictitious play (Brown
1951; Robinson 1951) and rational learning (Kalai & Lehrer
1993). Rational learning did not seem promising because of
its dependence on the strategy space and initial beliefs of the
agents. Thus we focused our attention on fictitious play.

In evaluating learning rules from artificial intelligence the
decision was more straightforward. Recently there has been
significant interest in the application of reinforcement learn-
ing to the problem of multi-agent system learning (Littman
1994; Claus & Boutilier 1998; Brafman & Tennenholtz
2000). We chose to implement and test the most common
reinforcement learning algorithm: Q-learning.

Finally, we developed a few special purpose strategies to
take advantage of the special structure of DGs.

Note that the different strategies we describe require
agents to have access to different amounts of information
about the outcome of each round as they play the game. At
one extreme, agents might need only a Boolean value sig-
nifying whether or not the group has reached an MDO (this
is all that is required for the naive strategy). At the other
extreme, agents might need complete information about the
outcome, including the action choices of each of the other
agents.

Fictitious Play Learning
Fictitious play is a learning rule in which an agent assumes
that each other agent is playing a fixed mixed strategy. The
fictitious play agent uses counts of the actions selected by
the other agents to estimate their mixed strategies and then
at each round selects the action that has the highest expected
value given these beliefs. Note that the fictitious play rule
places very high information requirements on the agents. In
order to update their beliefs, agents must have full knowl-
edge of the outcome. Our implementation of fictitious play
includes a few minor modifications to the basic rule.

One modification stems from the well known fact that
agents using fictitious play may never converge to equilib-
rium play. Indeed our experiments show that fictitious play
agents in CP DGs often generate play that oscillates within
sets of outcomes, never reaching an MDO. This results from
the agents’ erroneous belief in the others’ use of a fixed

mixed strategy. To avoid this oscillation, we modify the
fictitious play rule with stochastic perturbations of agents’
beliefs as suggested by (Fudenberg & Levine 1998). In par-
ticular, we apply a uniform random variation of -1% to 1%
on the expected reward of each action before selecting the
agent’s best response.

The other modifications were necessary to make the
agents’ computation within each round tractable for large
numbers of agents. Calculating the expected value of each
possible action at each round requires time that is exponen-
tial in n. To avoid this, we store the history of play as counts
of observed outcomes rather than counts of each agents’ ac-
tions. Also, instead of maintaining the entire history of play,
we use a bounded memory of observed outcomes. The pre-
dicted joint mixed strategy of the other agents is then cal-
culated by assuming the observed outcomes within memory
are an unbiased sample. 5

Reinforcement Learning
Reinforcement learning is a learning rule in which agents
learn a mapping from states to actions (Kaelbling, Littman,
& Moore 1996). We implemented the Q-learning algorithm
with a Boltzman exploration policy. In Q-learning, agents
learn the expected reward of performing an action in a given
state. Our implementation of Q-learning includes a few mi-
nor modifications to the basic algorithm.

It is well known that the performance of Q-learning is
extremely sensitive to a number of implementation details.
First, the choice of a state space for the agent’s Q-function
is critical. We chose to use only a single state, so that in
effect agents learn Q-values over actions only. Second, the
selection of initial Q-values and temperature is critical. We
found it best to set the initial Q-values to lie strictly within
the range of the highest possible payoff (i.e., being alone)
and the next highest (i.e., being with one other agent). We
chose to parameterize the Boltzman learning function with
an initial low temperature. These choices allow agents that
initially choose a non-conflicting action to have high proba-
bility of continuing to play this action, and allow those that
have collided with other agents to learn eventually the true
value of the action and successively choose other actions un-
til they find an action that does not conflict.

In our implementation we chose to give the agents a self-
ish reward instead of the global common-preference reward.
The reward is a function of the number of other agents that
choose the same action, not of the degree of dispersion of
the group as a whole. This selfish reward has the advantage
of giving the agents a signal that is more closely tied to the
effects of their actions, while still being maximal for each
agent when the agents have reached an MDO.

Specialized Strategies
The first specialized strategy that we propose is the freeze
strategy. In the freeze strategy, an agent chooses actions

5The reader might be concerned that this approximation
changes the convergence properties of the rule. Although this may
be the case in some settings, in our experiments with small n no
difference was observed from those using the full history.
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randomly until the first time she is alone, at which point
she continues to replay that action indefinitely, regardless
of whether other agents choose the same action. It is easy to
see that this strategy is guaranteed to converge in the limit,
and that if it converges it will converge to an MDO. The
freeze strategy also has the benefit of imposing very mini-
mal information requirements: it requires an agent to know
only how many agents chose the same action as she did in
the previous round.

An improvement on the freeze strategy is the basic simple
strategy, which was originally suggested by Alpern (2001).
In this strategy, each agent begins by randomly choosing an
action. Then, if no other agent chose the same action, she
chooses the same action in the next round. Otherwise, she
randomizes over the set of actions that were either unoccu-
pied or selected by two or more agents. Note that the basic
simple strategy requires that agents know only which actions
had a single agent in them after each round.

Definition 8 (Basic Simple Strategy) Given an outcome
o ∈ O, an agent using the basic simple strategy will

• If no
a = 1, select action a with probability 1,

• Otherwise, select an action from the uniform distribution
over actions a′ ∈ A for which no

a′ �= 1.

We have extended the basic simple strategy to work in the
broader class of games for which n �= k.

Definition 9 (Extended Simple Strategy) Given an out-
come o ∈ O, an agent using the extended simple strategy
will

• If no
a ≤ 
n/k�, select action a with probability 1,

• Otherwise, select action a with probability n/k
no

a
and with

probability (1 − n/k
no

a
) randomize over the actions a′ for

which no
a′ < �n/k	.

Unlike the basic strategy, the extended strategy does not
assign uniform probabilities to all actions that were not cho-
sen by the correct number of agents. Consider agents react-
ing to the outcome {2, 2, 0, 0}. In this case each agent is
better off staying with probability 0.5 and jumping to each
of the empty slots with probability 0.25, than randomizing
uniformly over all four slots. The extended simple strategy
can actually be further improved by assigning non-uniform
probabilities to the actions a′ for which no

a′ < �n/k	. We
have found empirically that the learning rule converges more
rapidly when agents place more probability on the actions
that have fewer other agents in them. Note that the ex-
tended simple strategy requires that agents know the number
of agents selecting each action in the round; the identity of
these agents is not required, however.

Experimental Results
The learning rules and strategies described above differ sig-
nificantly in the empirical time to converge. In Figure 2 we
plot as a function of n the convergence time of the learn-
ing rules in repeated symmetric weak DGs, averaged over
1000 trials. Table 1 summarizes the observed performance
of each strategy (as well as the information requirements of

Figure 2: Log-log plot of the empirical performance of dif-
ferent strategies in symmetric CACP dispersion games.

Learning Information Avg. Rounds to
Rule Requirements Converge (f(n))
Naive Whether MDO EXP
FP Full Information EXP
RL Num. in Own Action POLY
Freeze Num. in Own Action LINEAR
BS & ES Num. in All Actions LOG

Table 1: Applicability of strategies to various classes of
games with information requirements and estimated com-
plexity class.

each strategy). We discuss the performance of each of the
strategies in turn.

We begin with the learning rules. In our empirical tests
we found that stochastic fictitious play always converged to
an MDO. However, the number of rounds to converge was
on average exponential in n. In our empirical tests of the
reinforcement learning strategy we found that on average
play converges to an MDO in a number of rounds that is
linear in n. An interesting result is that for n �= k, the al-
gorithm didn’t converge to a unique selection of actions for
each agent, but rapidly adopted a set of mixed strategies for
the agents resulting in average payoffs close to the optimal
deterministic policy.

The specialized strategies generally exhibited better per-
formance than the learning rules. Our empirical observa-
tions show that the number of rounds it takes for the freeze
strategy to converge to an MDO is linear in n. Our empirical
tests of both basic and extended simple strategies show that
on average, play converges to an MDO in a number of steps
that is logarithmic in the number of agents.6

6For n > k certain ratios of n/k led consistently to superlog-
arithmic performance; slight modifications of the extended simple
strategy were able to achieve logarithmic performance.
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Discussion
In this paper we have introduced the class of DGs and de-
fined several important subclasses that display interesting
properties. We then investigated certain representative learn-
ing rules and tested their empirical behavior in DGs. In the
future, we intend to continue this research in two primary
directions.

First, we would like to further investigate some new types
of DGs. We gave examples above of two classes of non-CP
dispersion games that model common problems, but due to
space limitations we were not able to define and characterize
them in this paper. On a different note, we are also interested
in a possible generalization of DGs which models the allo-
cation of some quantity associated with the agents, such as
skill or usage, to the different actions. We would like to de-
fine these classes of games formally, and explore learning
rules that can solve them efficiently.

Second, we would like to continue the research on learn-
ing in DGs that we have begun in this paper. The learn-
ing rules we evaluated above are an initial exploration, and
clearly many other learning techniques also deserve consid-
eration. Additionally, we would like to complement the em-
pirical work presented here with some analytical results. As
a preliminary result, we can prove the following loose upper
bound on the expected convergence time of the basic simple
strategy.

Proposition 1 In a repeated fully symmetric weak disper-
sion game with n agents and actions, in which all agents
use the basic simple strategy, the expected number of rounds
until convergence to an MDO is in O(n).

Informally, the proof is as follows. The probability that a
particular agent chooses an action alone is ((n − 1)/n)n−1,
and so the expected number of rounds until she is alone is
just (n/(n−1))n−1. Because of the linearity of expectation,
the expected number of rounds for all agents to find them-
selves alone must be no more than nn/(n − 1)n−1, which
is less than ne for all n > 1. Using similar techniques it is
possible to show a quadratic bound on the expected conver-
gence time of the freeze strategy.

Unfortunately, our empirical results show that the basic
simple strategy converges in time that is logarithmic in n,
and that the freeze strategy converges in linear time. This
gap between our preliminary analysis and our empirical re-
sults begs future analytical work. Is it possible to show a
tighter upper bound, for these learning rules or for others?
Can we show a lower bound?

We would also like to better understand the optimality of
learning rules. It is possible in principal to derive the opti-
mal reactive learning rule for any finite number of agents us-
ing dynamic programming. Note that the optimal strategies
obtained using this method are arbitrarily complex, how-
ever. For example, even upon reaching the simple out-
come {2, 2, 0, 0}, an optimal reactive strategy for each agent
chooses the same action with probability 0.5118 (not 0.5, as
the extended simple strategy would dictate).

Dispersion games clearly play an important role in coop-
erative multiagent systems, and deserve much more discus-
sion and scrutiny. We view the results of this paper as open-

ing the door to substantial additional work on this exciting
class of games.
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Abstract
We present two simple search methods for computing a sam-
ple Nash equilibrium in a normal-form game: one for 2-
player games and one for n-player games. We test these al-
gorithms on many classes of games, and show that they per-
form well against the state of the art– the Lemke-Howson al-
gorithm for 2-player games, and Simplicial Subdivision and
Govindan-Wilson for n-player games.

Introduction
Game theory has had a profound impact on multi-agent sys-
tems research, and indeed on computer science in general.
Nash equilibrium (NE) is arguably the most important con-
cept in game theory, and yet remarkably little is known about
the problem of computing a sample NE in a normal-form
game. All evidence points to this being a hard problem, but
its precise complexity is unknown (Papadimitriou 2001).

At the same time, several algorithms have been proposed
over the years for the problem. In this paper, three previ-
ous algorithms will be of particular interest. For 2-player
games, the Lemke-Howson algorithm (Lemke & Howson
1964) is still the state of the art, despite being 40 years old.
For n-player games, until recently the algorithm based on
Simplicial Subdivision (van der Laan, Talman, & van der
Heyden 1987) was the state of the art. Indeed, these two al-
gorithms are the default ones implemented in Gambit (McK-
elvey, McLennan, & Turocy 2003), the best-known game
theory software. Recently, a new algorithm, which we will
refer to as Govindan-Wilson, was introduced by (Govindan
& Wilson 2003) and extended and ef ciently implemented
by (Blum, Shelton, & Koller 2003).

In a long version of this paper we provide more intu-
ition behind each these methods. Here we simply note
that they have surfaced as the most competitive algorithms
for the respective class of games, and refer the reader
to two thorough surveys on the topic (von Stengel 2002;
McKelvey & McLennan 1996). Our goal in this paper is
to demonstrate that for both of these classes of games (2-
player, and n-player for n > 2) there exists a relatively
Copyright c© 2004, American Association for Arti cial Intelli-
gence (www.aaai.org). All rights reserved.

1This work was supported in part by DARPA grant F30602-00-
2-0598 and in part by the National Science Foundation under ITR
IIS-0205633.

simple, search-based method that performs very well in
practice. For 2-player games, our algorithm performs sub-
stantially better than Lemke-Howson. For n-player games,
our algorithm outperforms both Simplicial Subdivision and
Govindan-Wilson.

The basic idea behind our search algorithms is simple.
Recall that, while the general problem of computing a NE is
a complementarity problem, computing whether there exists
a NE with a particular support2 for each player is a rela-
tively easy feasibility program. Our algorithms explore the
space of support pro les using a backtracking procedure to
instantiate the support for each player separately. After each
instantiation, they prune the search space by checking for
actions in a support that are strictly dominated, given that
the other agents will only play actions in their own supports.

Both algorithms order the search by giving precedence to
supports of small size. Since it turns out that games drawn
from classes that researchers have focused on in the past tend
to have (at least one) NE with a very small support, our al-
gorithms are often able to  nd one quickly. Thus, this paper
is as much about the properties of NE in games of interest as
it is about novel algorithmic insights.

We emphasize, however, that we are not cheating in the
selection of games on which we test. Past algorithms were
tested almost exclusively on “random” games. We tested on
these too (indeed, we will have more to say about how “ran-
dom” games vary along at least one important dimension),
but also on many other distributions (24 in total). To this
end we use GAMUT, a recently introduced computational
testbed for game theory (Nudelman et al. 2004). Our results
are quite robust across all games tested.

The rest of the paper is organized as follows. After formu-
lating the problem and the basis for searching over supports,
we describe our two algorithms. The n-player algorithm is
essentially a generalization of the 2-player algorithm, but we
describe them separately, both because they differ slightly
in the ordering of the search, and because the 2-player case
admits a simpler description of the algorithm. Then, we de-
scribe our experimental setup, and separately present our re-
sults for 2-player and n-player games. In the  nal section,
we conclude and describe opportunities for future work.

2The support speci es the pure strategies played with nonzero
probability.
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Notation
We consider  nite, n-player, normal-form games G =
〈N, (Ai), (ui)〉:
• N = {1, . . . , n} is the set of players.
• Ai = {ai1, . . . , aimi} is the set of actions available to

player i, where mi is the number of available actions
for that player. We will use ai as a variable that takes
on the value of a particular action aij of player i, and
a = (a1, . . . , an) to denote a pro le of actions, one for
each player. Also, let a−i = (a1, . . . , ai−1, ai+1, . . . , an)
denote this same pro le excluding the action of player i,
so that (ai, a−i) forms a complete pro le of actions. We
will use similar notation for any pro le that contains an
element for each player.

• ui : A1 × . . . × An → < is the utility function for each
player i. It maps a pro le of actions to a value.

Each player i selects a mixed strategy from the set Pi =
{pi : Ai → [0, 1]|∑ai∈Ai

pi(ai) = 1}. A mixed strat-
egy for a player speci es the probability distribution used to
select the action that the player will play in the game. We
will sometimes use ai to denote the pure strategy in which
pi(ai) = 1. The support of a mixed strategy pi is the set
of all actions ai ∈ Ai such that pi(ai) > 0. We will use
x = (x1, . . . , xn) to denote a pro le of values that speci es
the size of the support of each player.

Because agents use mixed strategies, ui is extended to
also denote the expected utility for player i for a strategy
pro le p = (p1, . . . , pn): ui(p) =

∑
a∈A p(a)ui(a), where

p(a) = Πi∈Npi(ai).
The primary solution concept for a normal form game is

that of Nash equilibrium. A mixed strategy pro le is a Nash
equilibrium if no agent has incentive to unilaterally deviate.

De nition 1 A strategy pro le p∗ ∈ P is a Nash equilib-
rium if: ∀i ∈ N, ai ∈ Ai : ui(ai, p

∗
−i) ≤ ui(p∗i , p

∗
−i)

Every  nite, normal form game is guaranteed to have at
least one Nash equilibrium (Nash 1950).

Searching Over Supports
The basis of our two algorithms is to search over the space
of possible instantiations of the support Si ⊆ Ai for each
player i. Given a support pro le as input, Feasibility Pro-
gram 1, below, gives the formal description of a program for
 nding a Nash equilibrium p consistent with S (if such an
strategy pro le exists).3 In this program, vi corresponds to
the expected utility of player i in an equilibrium. The  rst
two classes of constraints require that each player must be
indifferent between all actions within his support, and must
not strictly prefer an action outside of his support. These
imply that no player can deviate to a pure strategy that im-
proves his expected utility, which is exactly the condition for
the strategy pro le to be a Nash equilibrium.

3We note that the use of Feasibility Program 1 is not novel–
it was used by (Dickhaut & Kaplan 1991) in an algorithm which
enumerated all support pro les in order to  nd all Nash equilibria.

Because p(a−i) =
∏

j 6=i pj(aj), this program is linear for
n = 2 and nonlinear for all n > 2. Note that, strictly speak-
ing, we do not require that each action ai ∈ Si be in the
support, because it is allowed to be played with zero prob-
ability. However, player i must still be indifferent between
action ai and each other action a′i ∈ Si.

Feasibility Program 1
Input: S = (S1, . . . , Sn), a support pro le
Output: NE p, if there exists both a strategy pro le p =
(p1, . . . , pn) and a value pro le v = (v1, . . . , vn) s.t.:

∀i ∈ N, ai ∈ Si :
∑

a−i∈S−i

p(a−i)ui(ai, a−i) = vi

∀i ∈ N, ai ∈/ Si :
∑

a−i∈S−i

p(a−i)ui(ai, a−i) ≤ vi

∀i ∈ N :
∑

ai∈Si

pi(ai) = 1

∀i ∈ N, ai ∈ Si : pi(ai) ≥ 0
∀i ∈ N, ai ∈/ Si : pi(ai) = 0

Algorithm for Two-Player Games
In this section we describe Algorithm 1, our 2-player algo-
rithm for searching the space of supports. There are three
keys to the ef cienc y of this algorithm. The  rst two are
the factors used to order the search space. Speci cally , Al-
gorithm 1 considers every possible support size pro le sep-
arately, favoring support sizes that are balanced and small.
The motivation behind these choices comes from work such
as (McLennan & Berg 2002), which analyzes the theoreti-
cal properties of the NE of games drawn from a particular
distribution. Speci cally , for n-player games, the payoffs
for an action pro le are determined by drawing a point uni-
formly at random in a unit sphere. Under this distribution,
for n = 2, the probability that there exists a NE consistent
with a particular support pro le varies inversely with the size
of the supports, and is zero for unbalanced support pro les.

The third key to Algorithm 1 is that it separately instanti-
ates each players’ support, making use of what we will call
“conditional (strict) dominance” to prune the search space.
De nition 2 An action ai ∈ Ai is conditionally dominated,
given a pro le of sets of available actions R−i ⊆ A−i

for the remaining agents, if the following condition holds:
∃a′i ∈ Ai ∀a−i ∈ R−i : ui(ai, a−i) < ui(a′i, a−i).

The preference for small support sizes ampli es the ad-
vantages of checking for conditional dominance. For ex-
ample, after instantiating a support of size two for the  rst
player, it will often be the case that many of the second
player’s actions are pruned, because only two inequalities
must hold for one action to conditionally dominate another.

Pseudo-code for Algorithm 1 is given below. Note that
this algorithm is complete, because it considers all support
size pro les, and because it only prunes actions that are
strictly dominated.
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Algorithm 1
for all support size pro les x = (x1, x2), sorted in increas-
ing order of,  rst, |x1 − x2| and, second, (x1 + x2) do

for all S1 ⊆ A1 s.t. |S1| = x1 do
A′2 ← {a2 ∈ A2 not cond. dominated, given S1 }
if @a1 ∈ S1 cond. dominated, given A′2 then

for all S2 ⊆ A′2 s.t. |S2| = x2 do
if @a1 ∈ S1 cond. dominated, given S2 then

if Feasibility Program 1 is satis able for S =
(S1, S2) then

Return the found NE p

Algorithm for N-Player Games
Algorithm 1 can be interpreted as using the general back-
tracking algorithm (see, e.g., (Dechter 2003)) to solve a con-
straint satisfaction problem (CSP) for each support size pro-
 le. The variables in each CSP are the supports Si, and
the domain of each Si is the set of supports of size xi.
While the single constraint is that there must exist a solu-
tion to Feasibility Program 1, an extraneous, but easier to
check, set of constraints is that no agent plays a condition-
ally dominated action. The removal of conditionally domi-
nated strategies by Algorithm 1 is similar to using the AC-1
to enforce arc-consistency with respect to these constraints.
We use this interpretation to generalize Algorithm 1 for the
n-player case. Pseudo-code for Algorithm 2 and its two
procedures, Recursive-Backtracking and Iterated Removal
of Strictly Dominated Strategies (IRSDS) are given below.4

IRSDS takes as input a domain for each player’s support.
For each agent whose support has been instantiated, the do-
main contains only that instantiated support, while for each
other agent i it contains all supports of size xi that were
not eliminated in a previous call to this procedure. On each
pass of the repeat-until loop, every action found in at least
one support of a player’s domain is checked for conditional
domination. If a domain becomes empty after the removal
of a conditionally dominated action, then the current instan-
tiations of the Recursive-Backtracking are inconsistent, and
IRSDS returns failure. Because the removal of an action can
lead to further domain reductions for other agents, IRSDS
repeats until it either returns failure or iterates through all
actions of all players without  nding a dominated action.

Finally, we note that Algorithm 2 is not a strict general-
ization of Algorithm 1, because it orders the support size
pro les  rst by size, and then by a measure of balance. The
reason for the change is that balance (while still signi cant)
is less important for n > 2 than it is for n = 2. For ex-
ample, under the model of (McLennan & Berg 2002), for
n > 2, the probability of the existence of a NE consistent
with a particular support pro le is no longer zero when the
support pro le is unbalanced.

4Even though our implementation of the backtracking proce-
dure is iterative, for simplicity we present it here in its equivalent,
recursive form. Also, the reader familiar with CSPs will recognize
that we have employed very basic algorithms for backtracking and
for enforcing arc consistency, and we return to this point in the
conclusion.

Algorithm 2
for all x = (x1, . . . , xn), sorted in increasing order of,
 rst,

∑
i xi and, second, maxi,j(xi − xj) do

∀i : Si ← NULL //uninstantiated supports
∀i : Di ← {Si ⊆ Ai : |Si| = xi} //domain of supports
if Recursive-Backtracking(S,D, 1) returns a NE p then

Return p

Procedure 1 Recursive-Backtracking
Input: S = (S1, . . . , Sn): a pro le of supports

D = (D1, . . . , Dn): a pro le of domains
i: index of next support to instantiate

Output: A Nash equilibrium p, or failure
if i = n + 1 then

if Feasibility Program 1 is satis able for S then
Return the found NE p

else
Return failure

else
for all di ∈ Di do

Si ← di

Di ← Di − {di}
if IRSDS(({S1}, . . . , {Si}, Di+1, . . . , Dn)) succeeds
then

if Recursive-Backtracking(S, D, i + 1) returns NE p
then

Return p
Return failure

Procedure 2 Iterated Removal of Strictly Dominated
Strategies (IRSDS)
Input: D = (D1, . . . , Dn): pro le of domains
Output: Updated domains, or failure
repeat

changed ← false
for all i ∈ N do

for all ai ∈ di ∈ Di do
for all a′i ∈ Ai do

if ∀a−i ∈ d−i ∈ D−i, ui(ai, a−i) < ui(a′i, a−i)
then

Di ← Di − {di ∈ Di : ai ∈ di}
changed ← true
if Di = ∅ then

return failure
until changed = false
return D

D1 Bertrand Oligopoly D2 Bidirectional LEG, Complete Graph
D3 Bidirectional LEG, Random Graph D4 Bidirectional LEG, Star Graph
D5 Covariance Game: ρ = 0.9 D6 Cov. Game: ρ ∈ [−1/(N − 1), 1]
D7 Covariance Game: ρ = 0 D8 Dispersion Game
D9 Graphical Game, Random Graph D10 Graphical Game, Road Graph
D11 Graphical Game, Star Graph D12 Graphical Game, Small-World
D13 Minimum Effort Game D14 Polymatrix Game, Complete Graph
D15 Polymatrix Game, Random Graph D16 Polymatrix Game, Road Graph
D17 PolymatrixGame, Small-World D18 Uniformly Random Game
D19 Travelers Dilemma D20 Uniform LEG, Complete Graph
D21 Uniform LEG, Random Graph D22 Uniform LEG, Star Graph
D23 Location Game D24 War Of Attrition

Table 1: Descriptions of GAMUT distributions.
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Experimental Results
To evaluate the performance of our algorithms we ran sev-
eral sets of experiments. All games were generated by
GAMUT (Nudelman et al. 2004), a test-suite that is capable
of generating games from a wide variety of classes of games
found in the literature. Table 1 provides a brief description
of the subset of distributions on which we tested.

A distribution of particular importance is the one most
commonly tested on in previous work: D18, the “Uniformly
Random Game”, in which every payoff in the game is drawn
independently from an identical uniform distribution. Also
important are distributions D5, D6, and D7, which fall under
a “Covariance Game” model studied by (Rinott & Scarsini
2000), in which the payoffs for the n agents for each action
pro le are drawn from a multivariate normal distribution in
which the covariance ρ between the payoffs of each pair of
agents is identical. When ρ = 1, the game is common-
payoff, while ρ = −1

N−1 yields minimal correlation, which
occurs in zero-sum games. Thus, by altering ρ, we can
smoothly transition between these two extreme classes of
games.

Our experiments were executed on a cluster of 12
dual-processor, 2.4GHz Pentium machines, running Linux
2.4.20. We capped runs for all algorithms at 1800 seconds.
When describing the statistics used to evaluate the algo-
rithms, we will use “unconditional” to refer to the value of
the statistic when timeouts are counted as 1800 seconds, and
“conditional” to refer to its value excluding timeouts.

When n = 2, we solved Feasibility Program 1 using
CPLEX 8.0’s callable library. For n > 2, because the pro-
gram is nonlinear, we instead solved each instance of the
program by executing AMPL, using MINOS as the underly-
ing optimization package. Obviously, we could substitute in
any nonlinear solver; and, since a large fraction of our run-
ning time is spent on AMPL and MINOS, doing so would
greatly affect the overall running time.

Before presenting the empirical results, we note that a
comparison of the worst-case running times of our two algo-
rithms and the three we tested against does not distinguish
between them, since there exist inputs for each which lead
to exponential time.

Results for Two-Player Games
In the  rst set of experiments, we compared the performance
of Algorithm 1 to that of Lemke-Howson (implemented in
Gambit, which added the preprocessing step of iterated re-
moval of weakly dominated strategies) on 2-player, 300-
action games drawn from 24 of GAMUT’s 2-player distribu-
tions. Both algorithms were executed on 100 games drawn
from each distribution. The time is measured in seconds and
plotted on a logarithmic scale.

Figure 1(a) compares the unconditional median runtimes
of the two algorithms, and shows that Algorithm 1 performs
better on all distributions.5 However, this does not tell the
whole story. For many distributions, it simply re ects the

5Obviously, the lines connecting data points across distributions
for a particular algorithm are meaningless– they were only added
to make the graph easier to read.

fact that there is a greater than 50% chance that the distribu-
tion will generate a game with a pure strategy NE, which our
algorithm will then  nd quickly. Two other important statis-
tics are the percentage of instances solved (Figure 1(b)), and
the average runtime conditional on solving the instance (Fig-
ure 1(c)). Here, we see that Algorithm 1 completes far more
instances on several distributions, and solves fewer on just a
single distribution (6 fewer, on D23). Additionally, even on
distributions for which we solve far more games, our condi-
tional average runtime is 1 to 2 orders of magnitude smaller.

Clearly, the hardest distribution for our algorithm is D6,
which consists of “Covariance Games” in which the co-
variance ρ is drawn uniformly at random from the range
[−1, 1]. In fact, neither Algorithm 1 nor Lemke-Howson
solved any of the games in another “Covariance Game” dis-
tribution in which ρ = −0.9, and these results were omitted
from the graphs, because the conditional average is unde-
 ned for these results. On the other hand, for the distribu-
tion “CovarianceGame-Pos” (D5), in which ρ = 0.9, both
algorithms perform well.

To further investigate this continuum, we sampled 300
values for ρ in the range [−1, 1], with heavier sampling in the
transition region and at zero. For each such game, we plot-
ted a point for the runtime of both Algorithm 1 and Lemke-
Howson in Figure 1(d).6 The theoretical results of (Rinott &
Scarsini 2000) suggest that the games with lower covariance
should be more dif cult for Algorithm 1, because they are
less likely to have a pure strategy Nash equilibrium. Never-
theless, it is interesting to note the sharpness of the transi-
tion that occurs in the [−0.3, 0] interval. More surprisingly,
a similarly sharp transition also occurs for Lemke-Howson,
despite the fact that the two algorithms operate in unrelated
ways. Finally, it is important to note that the transition re-
gion for Lemke-Howson is shifted to the right by approxi-
mately 0.3, and that, on instances in the easy region for both
algorithms, Algorithm 1 is still an order of magnitude faster.

In the third set of experiments we explore the scaling
behavior of both algorithms on the “Uniformly Random
Game” distribution (D18), as the number of actions in-
creases from 100 to 1000. For each multiple of 100, we
generated 20 games. Because space constraints preclude an
analysis similar to that of Figures 1(a) through 1(c), we in-
stead plot in Figure 1(e) the unconditional average runtime
over 20 instances for each data size, with a timeout counted
as 1800s. While Lemke-Howson failed to solve any game
with more than 600 actions and timed out on some 100-
action games, Algorithm 1 solved all instances, and, without
the help of cutoff times, still had an advantage of 2 orders of
magnitude at 1000 actions.

Results for N-Player Games
In the next set of experiments we compare Algorithm 2 to
Govindan-Wilson and Simplicial Subdivision (which was
implemented in Gambit, and thus combined with iterated
removal of weakly dominated strategies). First, to compare
performance on a  x ed problem size we tested on 6-player,

6The capped instances for Algorithm 1 were perturbed slightly
upward on the graph for clarity.
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Figure 1: Comparison of Algorithm 1 and Lemke-Howson on 2-player games. Sub gures (a)-(d) are for 300-action games.
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Figure 2: Comparison of Algorithm 2, Simplicial Subdivision, and Govindan-Wilson. Sub gures (a)-(d) are for 6-player,
5-action games.
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5-action games drawn from 22 of GAMUT’s n-player dis-
tributions.7 While the numbers of players and actions ap-
pear small, note that these games have 15625 outcomes and
93750 payoffs. Once again, Figures 2(a), 2(b), and 2(c)
show unconditional median runtime, percentage of instances
solved, and conditional average runtime, respectively. Al-
gorithm 2 has a very low unconditional median runtime, for
the same reason that Algorithm 1 did for two-player games,
and outperforms both other algorithms on all distributions.
While this dominance does not extend to the other two met-
rics, the comparison still favors Algorithm 2.

We again investigate the relationship between ρ and the
hardness of games under the “Covariance Game” model.
For general n-player games, minimal correlation under this
model occurs when ρ = − 1

n−1 . Thus, we can only study
the range [−0.2, 1] for 6-player games. Figure 2(d) shows
the results for 6-player 5-action games. Algorithm 2, over
the range [−0.1, 0], experiences a transition in hardness that
is even sharper than that of Algorithm 1. Simplicial Sub-
division also undergoes a transition, which is not as sharp,
that begins at a much larger value of ρ (around 0.4). How-
ever, the running time of Govindan-Wilson is only slightly
affected by the covariance, as it neither suffers as much for
small values of ρ nor bene ts as much from large values.

Finally, Figures 2(e) and 2(f) compare the scaling behav-
ior (in terms of unconditional average runtimes) of the three
algorithms: the former holds the number of players constant
at 6 and varies the number of actions from 3 to 8, while the
latter holds the number of actions constant at 5, and varies
the number of players from 3 to 8. In both experiments,
both Simplicial Subdivision and Govindan-Wilson solve no
instances for the largest two sizes, while Algorithm 2 still
 nds a solution for most games.

Conclusion and Future Work
In this paper, we presented two algorithms for  nding a sam-
ple Nash equilibrium. Both use backtracking approaches
(augmented with pruning) to search the space of support pro-
 les, favoring supports that are small and balanced. Both
also outperform the current state of the art.

The most dif cult games we encountered came from the
“Covariance Game” model, as the covariance approaches its
minimal value, and this is a natural target for future algo-
rithm development. We expect these games to be hard in
general, because, empirically, we found that as the covari-
ance decreases, the number of equilibria decreases, and the
equilibria that do exist are more likely to have support sizes
near one half of the number of actions, which is the support
size with the largest number of supports.

One direction for future work is to employ more sophis-
ticated CSP techniques. The main goal of this paper was
to show that our general search method performs well in
practice, and there are many other CSP search and infer-
ence strategies which may improve its ef cienc y. Another
promising direction to explore is local search, in which the

7Two distributions from the tests of 2-player games are missing
here, due to the fact that they do not naturally generalize to more
than 2 players.

state space is the set of all possible supports, and the avail-
able moves are to add or delete an action from the support of
a player. While the fact that no equilibrium exists for a par-
ticular support does not give any guidance as to which neigh-
boring support to explore next, one could use a relaxation of
Feasibility Program 1 that penalizes infeasibility through an
objective function. More generally, our results show that AI
techniques can be successfully applied to this problem, and
we have only scratched the surface of possibilities along this
direction.
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Abstract

We present GAMUT1, a suite of game generators de-
signed for testing game-theoretic algorithms. We explain
why such a generator is necessary, offer a way of visual-
izing relationships between the sets of games supported by
GAMUT, and give an overview of GAMUT’s architecture.
We highlight the importance of using comprehensive test
data by benchmarking existing algorithms. We show sur-
prisingly large variation in algorithm performance across
different sets of games for two widely-studied problems:
computing Nash equilibria and multiagent learning in re-
peated games.2

1. Introduction

Researchers in multiagent systems have become increas-
ingly interested in game theory as a modeling tool. This
has led to growing interest in computational problems as-
sociated with game-theoretic domains. Two such problems
are computing Nash equilibria and learning to achieve good
payoffs in repeated games. It is often difficult to offer theo-
retical guarantees about such algorithms’ performance: the
computational complexity of many algorithms for comput-
ing Nash remains an interesting open problem [14], and
there is rarely anything that can be proven about the sort of
performance a learning algorithm will achieve without mak-
ing reference to the game it will play or the opponents it will
face. For these sorts of reasons, researchers needing to eval-
uate algorithms for game-theoretic problems often choose
to perform empirical tests.

One general lesson that has been learned by researchers
working in a wide variety of different domains is that an
algorithm’s performance can vary substantially across dif-
ferent “reasonable” distributions of problem instances, even

1 Available at http://gamut.stanford.edu
2 This work was supported by NSF grant IIS-0205633 and DARPA

grant F30602-00-2-0598.

when problem size is held constant [9]. When we examine
the empirical tests that have been performed on algorithms
that take games as their inputs, we find that they have typi-
cally been small-scale and involved very particular choices
of games. Such tests can be appropriate for limited proofs-
of-concept, but cannot say much about an algorithm’s ex-
pected performance in new domains. For this, a compre-
hensive body of test data is required.

It is not obvious that a library of games should be diffi-
cult to construct. After all, games (if we think for the mo-
ment about normal-form representations) are simply matri-
ces with one dimension indexed by action for each player,
and one further dimension indexed by player. We can thus
generate games by taking the number of players and of ac-
tions for each player as parameters, and populate the corre-
sponding matrix with real numbers generated uniformly at
random. Is anything further required?

We set out to answer this question by studying sets of
games that have been identified as interesting by computer
scientists, game theorists, economists, political scientists
and others over the past 50 years. Our attempt to get a
sense of this huge literature led us to look at several hun-
dred books and papers, and to extract one or more sets of
games from more than a hundred sources. To our surprise,
we discovered two things.

First, for every one of the sets of games that we encoun-
tered, the technique described above would generate a game
from that set with probability zero. More formally, all of
these sets are non-generic with respect to the uniform sam-
pling procedure. It is very significant to find that an un-
biased method of generating games has only an infinitesi-
mal chance of generating any of these games that have been
considered realistic or interesting. Since we know that algo-
rithm performance can depend heavily on the choice of test
data, it would be unreasonable to extrapolate from an algo-
rithm’s performance on random test data to its expected per-
formance on real-world problems. It seems that test data for
games must take the form of a patchwork of generators of
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Figure 1. GAMUT Taxonomy (Partial)

different sets of games.

Second, we were surprised to find very little work that
aimed to understand, taxonomize or even enumerate non-
generic games in a holistic or integrative way. We came
across work on understanding generic games [7], and found
a complete taxonomy of two-player two-action games [15].
Otherwise, work that we encountered tended to fall into one
or both of two camps. Some work aimed to describe and
characterize particular sets of games that were proposed
as reasonable models of real-world strategic situations or
that presented interesting theoretical problems. Second, re-
searchers proposed novel representations of games, explic-
itly or implicitly identifying sets of games that could be
specified compactly in these representations.

In this paper we aim to fill this gap: to identify interest-
ing sets of non-generic games comprehensively and with as
little bias as possible. In the next section we describe this
effort, highlighting relationships between different sets of
games we encountered in our literature search and describ-
ing issues that arose in the identification of game generation
algorithms. In section 3 we give experimental proof that a
comprehensive test suite is required for the evaluation of
game-theoretic algorithms. For our two example problems,
computing Nash equilibria and learning in repeated games,

we show that performance for different algorithms varies
dramatically across different sets of games even when the
size of the game is held constant, and that performance on
random games can be a bad predictor of performance on
other games. Finally, in the appendix, we briefly describe
GAMUT’s architecture and implementation, including dis-
cussion of how new games may easily be added.

2. GAMUT

For the initial version of GAMUT we considered only
games whose normal-form representations can be comfort-
ably stored in a computer. Note that this restriction does not
rule out games that are presented in a more compact rep-
resentation such as extensive form or graphical games; it
only rules out large examples of such games. It also rules
out games with infinite numbers of agents and/or of ac-
tions and Bayesian games. We make no requirement that
games must actually be stored in normal form; in fact,
GAMUT supports a wide array of representations (see the
appendix). Some are complete (able to represent any game)
while other incomplete representations support only certain
sets of games. We will say that a given representation de-
scribes a set of games compactly if its descriptions of games
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in the set are exponentially shorter than the games’ descrip-
tions in normal form.

In total we identified 122 interesting sets of games in
our literature search, and we were able to find finite time
generative procedures for 71. These generative sets ranged
from specific two-by-two matrix games with little variation
(e.g., Chicken) to broad classes extensible in both number
of players and number of actions (e.g., games that can be
encoded compactly in the Graphical Game representation).

2.1. The Games

To try to understand the relationships between these dif-
ferent sets of non-generic games, we set out to relate them
taxonomically. We settled on identifying subset relation-
ships between the different sets of games. Our taxonomy
is too large to show in full, but a fragment of it is shown
in Figure 1. To illustrate the sort of information that can
be conveyed by this figure, we can see that all Dispersion
Games [6] are Congestion Games [17] and that all Conges-
tion Games have pure-strategy equilibria.

Besides providing some insight into the breadth of gen-
erators included in GAMUT and the relationships between
them, our taxonomy also serves a more practical purpose:
allowing the quick and intuitive selection of a set of gener-
ators. If GAMUT is directed to generate a game from a set
that does not have a generator (e.g., supermodular games
[13]; games having unique equilibria) it chooses uniformly
at random among the generative descendants of the set and
then generates a game from the chosen set. GAMUT also
supports generating games that belong to multiple intersect-
ing sets (e.g., symmetric games having pure-strategy equi-
libria); in this case GAMUT chooses uniformly at random
among the generative sets that are descendants of all the
named sets.

The data we collected in our literature search—including
bibliographic references, pseudo-code for generating games
and taxonomic relationships between games—will be use-
ful to some researchers in its own right. We have gathered
this information into a database which is publicly avail-
able from http://gamut.stanford.edu as part of
the GAMUT release. Besides providing more information
about references than we can fit into a conference-length pa-
per, this database also allows users to navigate according to
subset/superset relationships and to perform searches.

2.2. The Generators

Roughly speaking, the sets of games that we enumer-
ated in the taxonomy can be partitioned into two classes, re-
flected by different colored nodes in Figure 1. For some sets
we were able to come up with an efficient algorithmic pro-
cedure that can, in finite time, produce a sample game from

Arms Race Grab the Dollar Polymatrix Game
Battle of the Sexes Graphical Game Prisoner’s Dilemma
Bertrand Oligopoly Greedy Game Random Games
Bidirectional LEG Guess 2/3 Average Rapoport’s Distribution

Chicken Hawk and Dove Rock, Paper, Scissors
Collaboration Game Local-Effect Game Shapley’s Game
Compound Game Location Game Simple Inspection Game
Congestion Game Majority Voting Traveler’s Dilemma

Coordination Game Matching Pennies Uniform LEG
Cournot Duopoly Minimum Effort Game War of Attrition
Covariant Game N-Player Chicken Zero Sum Game
Dispersion Game N-Player Pris Dilemma

Table 1. Game Generators in GAMUT

that set, and that has the ability to produce any game from
that set. We call such sets generative. For others, we could
find no reasonable procedure. One might consider a rejec-
tion sampling approach that would generate games at ran-
dom and then test whether they belong to a given set S.
However, if S is non-generic—which is true for most of our
sets, as discussed above—such a procedure would fail to
produce a sample game in any finite amount of time. Thus,
we do not consider such procedures as generators.

Cataloging the relationships among sets of games and
identifying generators prepared us for our next task, creat-
ing game generators. The wrinkle was that generative al-
gorithms were rarely described explicitly in the literature.
While in most cases coming up with an algorithm was
straightforward, we did encounter several interesting issues.

Sometimes an author defined a game too narrowly
for our purposes. Many traditional games (e.g., Pris-
oner’s Dilemma) are often defined in terms of precise
payoffs. Since our goal was to construct a generator ca-
pable of producing an infinite number of games be-
longing to the same set, we had to generalize these
games. In the case of Prisoner’s Dilemma, we can gener-
ate any game �

R, R S, T

T, S P, P

�

which satisfies T > R > P > S and R > (S + T )/2. (The
latter condition ensures that all three of the non-equilibrium
outcomes are Pareto optimal.) Thus, an algorithm for gen-
erating an instance of Prisoner’s Dilemma reduces to gener-
ating four numbers that satisfy the given constraints. There
is one subtlety involved with this approach to generalizing
games. It is a well-known fact that a positive affine transfor-
mation of payoffs does not change strategic situation mod-
eled by the game. It is also a common practice to normal-
ize payoffs to some standard range before reasoning about
games. We ensure that no generator ever generates instances
that differ only by a positive affine transformation of pay-
offs.

In other cases the definition of a set was too broad,
and thus had to be restricted. In many cases, this could be
achieved via an appropriate parametrization. An interesting
example of this is the set of Polymatrix Games [5]. These
are n-player games with a very special payoff structure: ev-
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ery pair of agents plays a (potentially different) 2-player
game between them, and each agent’s utility is the sum of
all of his payoffs. The caveat, however, is that the agent
must play the same action in all of his two-player games. We
realized that these games, though originally studied for their
computational properties, could be generalized and used es-
sentially as a compact representation for games in which
each agent only plays two-player games against some sub-
set of the other agents. This led to a natural parametriza-
tion of polymatrix games with graphs. Nodes of the graph
now represent agents, and edges are labeled with different
2-player games.3 Thus, though we still can sample from the
set of all polymatrix games using a complete graph, we are
now able also to focus on more specific and, thus, even more
structured subsets.

Sometimes we encountered purely algorithmic difficul-
ties. For example, in order to implement geometric games
[18] we needed data structures capable of representing and
performing operations on abstract sets (such as finding in-
tersection, or enumerating subsets).

In some cases one parameterized generator was able to
generate games from many different sets. For example, we
implemented a single generator based on work by Rapoport
[15] which demonstrated that there are only 85 strategically
different 2x2 games, and so did not need to implement gen-
erators for individual 2x2 games mentioned in the litera-
ture. We did elect to create separate generators for several
very common games (e.g., Matching Pennies; Hawk and
Dove). We also used our taxonomy to identify similar sets
of games, and either implemented them with the same gen-
erator or allowed their separate generators to benefit from
sharing common algorithms and data structures. In the end
we built 35 parameterized generators to support all of the
generative sets in our taxonomy; these are listed in Table 1.

The process of writing generators presented us with a
nontrivial software engineering task in creating a coherent
and easily-extensible software framework. Once the frame-
work was in place, incrementally adding new generators be-
came easy. Some of these implementation details are de-
scribed in the Appendix.

3. Running the GAMUT

At the beginning of this paper we claimed that it is neces-
sary to evaluate game-theoretic algorithms on a wide range
of distributions before empirical claims can be made about
the algorithms’ strengths and weaknesses. Of course, such
a claim can only be substantiated after a test suite has been
constructed. In this section we show that top algorithms for

3 Note that this is a strict subset of graphical games, where payoffs for
each player also depend only on the actions of its neighbors, but it is
not assumed that payoffs have the additive decomposition.

two computational problems in game theory do indeed ex-
hibit dramatic variation across distributions, implying that
small performance tests would be unreliable.

All our experiments were performed using a cluster of
12 dual-CPU 2.4GHz Xeon machines running Linux 2.4.20,
and took about 120 CPU-days to run. We capped runs for all
algorithms at 30 minutes (1800 seconds).

3.1. Computation of Nash Equilibria

One of the most interesting computational problems in
game theory is computing Nash equilibria. All evidence
suggests that this is a hard problem (e.g., [4, 3]), yet the
precise complexity class into which the problem falls is un-
known [14]. In this section we use GAMUT to evaluate
three algorithms’ empirical properties on this problem.

3.1.1. Experimental Setup The best-known game theory
software package is Gambit [12], a collection of state-
of-the-art algorithms. For two-player games the Lemke-
Howson algorithm [8] is best and is used by default in Gam-
bit. For n-player games Gambit uses an algorithm based on
Simplicial Subdivision [19]. In both cases, Gambit performs
iterative removal of dominated strategies as a preprocess-
ing step. Govindan and Wilson [5] introduced an alterna-
tive algorithm based on a continuation method. We use a
recent optimized implementation, the GameTracer package
[1]. This work also included speedups for the Govindan-
Wilson algorithm on the special cases of compact graphi-
cal games and MAIDs, but because we expanded all games
to their full normal forms Govindan-Wilson did not bene-
fit from these extensions in our experiments.

One factor that can have a significant effect on an algo-
rithm’s runtime is the size of its input. Since our goal was
to investigate the extent to which runtimes vary as the re-
sult of differences between distributions, we studied fixed-
size games. To make sure that our findings were not artifacts
of any particular problem size we compared results across
several fixed problem sizes. We ran the Lemke-Howson al-
gorithm on games with 2 players, 150 actions and 2 play-
ers, 300 actions. Because Govindan-Wilson is very simi-
lar to Lemke-Howson on two-player games and is not opti-
mized for this case [1], we did not run it on these games. We
ran Govindan-Wilson and Simplicial Subdivision on games
with 6 players, 5 actions and 18 players, 2 actions. For each
problem size and distribution, we generated 100 games.

Both to keep our machine-time demands manageable
and to keep the graphs in this paper from getting too clut-
tered, we chose not to use all of the GAMUT generators.
Instead, we chose a representative slate of 22 distributions
from GAMUT. Some of our generators (e.g., Graphical
Games, Polymatrix games, and Local Effect Games–LEGs)
are parameterized by graph structure; we split these into
several sub-distributions based on the kind of graph used.
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Suffixes “-CG”, “-RG”, “-SG”, “-SW” and “-Road” indi-
cate, respectively, complete, random, star-shaped, small-
world, and road-shaped (see [20]) graphs. Another distribu-
tion that we decided to split was the Covariant Game distri-
bution, which implements the random game model of [16].
In this distribution, payoffs for each outcome are generated
from a multivariate normal distribution, with correlation be-
tween all pairs of players held at some constant ρ. With
ρ = 1 these games are common-payoff, while ρ = −1

n−1

yields minimum correlation and leads to zero-sum games
in the two-player case. Rinott and Scarsini show that the
probability of the existence of a pure strategy Nash equi-
librium in these games varies as a monotonic function of
ρ, which makes the games computationally interesting. For
these games, suffixes “-Pos”, “-Zero”, and “-Rand” indicate
whether ρ was held at 0.9, 0, or drawn uniformly at ran-
dom from [ −1

n−1
, 1].

Lemke-Howson, Simplicial Subdivision and Govindan-
Wilson are all very complicated path-following numerical
algorithms that offer virtually no theoretical guarantees.
They all have worst-case running times that are at least ex-
ponential, but it is not known whether this bound is tight.
On the empirical side, very little previous work has at-
tempted to evaluate these algorithms. The best-known em-
pirical results [11, 21] were obtained for generic games
with payoffs drawn independently uniformly at random (in
GAMUT, this would be the RandomGame generator). Our
work may therefore represent the first systematic attempt
to understand the empirical behavior of these algorithms on
non-generic games.

3.1.2. Experimental Results Figure 2 shows each algo-
rithm’s performance across distributions for two different
input sizes. The Y -axis shows CPU time measured in sec-
onds and plotted on a log scale. Column height indicates
median runtime over 100 instances, with the error bars
showing the 25th and 75th percentiles. The most impor-
tant thing to note about this graph is that each algorithm
exhibits highly variable behavior across our distributions.
This is less visible for the Govindan-Wilson algorithm on
18-player games, only because this algorithm’s runtime ex-
ceeds our cap for a majority of the problems. However, even
on this dataset the error bars demonstrate that the distribu-
tion of runtimes varies substantially with the distribution.
Moreover, for all three algorithms, we observe that this vari-
ation is not an artifact of one particular problem size.

Figure 3 illustrates runtime differences both across and
among distributions for 6-player 5-action games. (Though
we do not have space to show them here, we observed qual-
itatively similar results for different input sizes and for the
Lemke-Howson algorithm.) Each dot on the graph corre-
sponds to a single run of an algorithm on a game. This graph
shows that the distribution of algorithm runtimes varies sub-
stantially from one distribution to another, and cannot easily
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Figure 2. Effect of Problem Size on Solver
Performance

be inferred from 25th/50th/75th quartile figures such as Fig-
ure 2. The highly similar Simplicial Subdivision runtimes
for Traveler’s Dilemma and Minimum Effort Games are ex-
plained by the fact that these games can be solved by it-
erated elimination of dominated strategies—a step not per-
formed by the GameTracer implementation of Govindan-
Wilson. We note that distributions that are related to each
other in our taxonomy (e.g., all kinds of Graphical Games,
LEGs, or Polymatrix Games) usually give rise to similar—
but not identical—algorithmic behavior.

Figure 3 makes it clear that algorithms’ runtimes exhibit
substantial variation and that algorithms often perform very
differently on the same distributions. However, this figure
makes it difficult for us to reach conclusions about the ex-
tent to which the algorithms are correlated. For an answer to
this question, we turn to Figure 4. Each data point represents
a single 6-player, 5-action game instance, with the X-axis
representing runtime for Simplicial Subdivision and the Y -
axis for Govindan-Wilson. Both axes use a log scale. This
figure shows that when we focus on instances rather than
on distributions, these algorithms are very highly uncorre-
lated. Simplicial Subdivision does strictly better on 67.2%
of the instances, while timing out on 24.7%. Govindan-
Wilson wins on 24.7% and times out on 36.5%. It is in-
teresting to note that if a game is easy for Simplicial Sub-
division, then it will often be harder for Govindan-Wilson,
but in general neither algorithm dominates.
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Figure 3. Runtime Distribution for 6-player, 5-
action Games

3.2. Multiagent Learning in Repeated Games

The last few years have seen a surge of research into mul-
tiagent learning, resulting in the recent proposal of several
new algorithms. This research area is still at a very early
stage, particularly with respect to the identification of the
best metrics and standards of performance to use for eval-
uating algorithms. As a result, we do not claim that our re-
sults demonstrate anything about the relative merit of the al-
gorithms we study. We believe it is clear, however, that our
results show that these algorithms’ performance depends
crucially on the distributions of games on which they are
run, and thus that GAMUT will be a useful tool for re-
searchers in the multiagent learning community.

3.2.1. Experimental Setup We used three learning algo-
rithms: Minimax-Q [10], WoLF [2], and a version of the
original Q-learning algorithm for single agent games [22]
modified for use by an individual player in a repeated game
setting. These algorithms have received much study in re-
cent years; they each have very different performance guar-
antees, strengths and weaknesses. Single-agent Q-learning
assumes away the multiagent component, and thus is not
guaranteed to converge at all against an adaptive opponent.
Minimax-Q plays a safety-level strategy, and so does not
necessarily converge to a best response. WoLF is a variable-
learning-rate policy-hill-climbing algorithm that is designed
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Figure 4. Correlation, 6-player, 5-action.

to converge to a best response. Previous work in the litera-
ture has established that each of these algorithms is very
sensitive to its parameter settings (e.g., learning rate) and
that the best parameter settings usually vary from one game
to the next. Since it is infeasible to perform per-game pa-
rameter tuning in an experiment involving tens of thousands
of games, we determined parameter values that reproduced
previously-published results from [10, 2, 22] and then fixed
these parameters for all experiments.

In our experiments we chose to focus on a set of 13 dis-
tributions. As before, we keep game sizes constant, this time
at 2 actions and 2 players for each game. Although it would
also be interesting to study performance in larger games, we
decided to focus on a simpler setting in which it would be
easier to understand the results of our experiments. For each
distribution we generated 100 game instances. For each in-
stance we performed nine different pairings (each possible
pairing of the three algorithms, including self-pairings, and
in the case of non-self-pairings also allowing each algorithm
to play once as player 1 and once as player 2). We ran the al-
gorithms on each pairing ten times, since we found that al-
gorithm performance varied based on the outcomes of coin
flips. On each run, we repeated the game 100,000 times. The
first 90,000 rounds allow the algorithms to settle into their
long-run behavior; we then compute each algorithm’s pay-
off for each game as its average payoff over the following
10,000 rounds. We did this to approximate the offline per-
formance of the learned policy and to minimize the effect
of relative differences in the algorithms’ learning rates.

3.2.2. Experimental Results There are numerous ways in
which learning algorithms can be evaluated. In this section
we focus on just two of them. A more comprehensive set
of experiments would be required to judge the relative mer-
its of algorithms, but this smaller set of experiments is suf-
ficient to substantiate our claim that algorithm performance
varies significantly from one distribution to another.
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Figure 5. Pairwise Comparison of Algorithms

Figure 5 compares the pairwise performance of three al-
gorithms. The height of a bar along the Y -axis indicates the
(normalized) fraction of games in which the corresponding
algorithm received a weakly greater payoff than its oppo-
nent. In this metric we ignore the magnitude of payoffs,
since in general they are incomparable across games. The
overall conclusion that we can draw from this graph is that
there is great variation in the relative performance of algo-
rithms across distributions. There is no clear “winner”; even
Minimax-Q, which is usually outperformed by WoLF, man-
ages to win a significant fraction of games across many dis-
tributions, and dominates it on Traveler’s Dilemma. WoLF
and single-agent Q come within 10% of a tie most of the
time—suggesting that these algorithms often converge to
the same equilibria—but their performance is still far from
consistent across different distributions.

Figure 6 compares algorithms using a different metric.
Here the Y -axis indicates the average payoff for an algo-
rithm when playing as player 1, with column heights indi-
cating the median and error bars indicating 25th and 75th
percentiles. Payoffs are normalized to fall on the range
[−1, 1]. Despite this normalization, it is difficult to make
meaningful comparisons of payoff values across distribu-
tions. This graph is interesting because, while focusing on
relative performance rather than trying to identify a “win-
ning” algorithm, it demonstrates again that the algorithms’
performance varies substantially along the GAMUT. More-
over, this metric shows Minimax-Q to be much more com-
petitive than was suggested by Figure 5.

4. Conclusion

In this paper we presented GAMUT, a game theory test
suite. We surveyed hundreds of books and papers to compile
a comprehensive database of structured non-generic games
and the relationships between them. We built a highly mod-
ular and extensible software framework, and used it to im-
plement generators for these sets of games. Finally, we
demonstrated the importance of comprehensive test data
to game-theoretic algorithms by showing how performance
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Figure 6. Median Payoffs as Player 1

depends crucially on the distribution of instances on which
an algorithm is run. We hope that GAMUT will become
a useful tool for researchers working at the intersection of
game theory and computer science.
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Appendix: GAMUT Implementation

The GAMUT software was built using an object-oriented
framework and implemented in Java4. Our framework con-
sists of objects in four basic categories: game generators,
graphs, functions, and representations. Our main design ob-
jective was to make it as easy as possible for end users to
write new objects of any of the four kinds, in order to al-
low GAMUT to be extended to support new sets of games
and representations.

Currently, GAMUT contains 35 implementations of
Game objects, which correspond the 35 procedures we
identified in 2.2. They are listed in Table 1. While the in-
ternal representations and algorithms used vary depend-
ing on the set of games being generated, all of them must
be able to return the number of players, the number of ac-
tions for each player, and the payoff for a each player for
any action profile. Outputter classes then encode gener-
ated games into appropriate representations.

Many of our generators depend on random graphs (e.g.,
Graphical Games, Local Effect Games, Polymatrix Games)
and functions (e.g., Arms Race, Bertrand Oligopoly, Con-
gestion Games). Graph and Function classes, listed in
Table 2, have been implemented to meet these needs in a

4 See http://gamut.stanford.edu for detailed software docu-
mentation.
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GAMUT Graph Classes:

Barabasi-Albert PLOD Power-Law Out-Degree
Complete Graph Random Graph

N-Ary Tree Ring Graph
N-Dimensional Grid Small World Graph

N-Dimensional Wrapped Grid Star Graph

GAMUT Function Classes:
Exponential Function Polynomial Function

Log Function Table Function
Decreasing Wrapper Increasing Polynomial

GAMUT Outputter Classes:

Complete Representations Incomplete Representations
Default GAMUT Payoff List Local-Effect Form

Extensive Form Two-Player Readable Matrix Form
Gambit Normal Form

Game Tracer Normal Form
Graphical Form

Table 2. GAMUT Support Classes

modular way. As with games, additional classes of func-
tions and graphs can be easily added.
Outputter classes encapsulate the notion of represen-

tation. GAMUT allows for representations to be incom-
plete and to work only with compatible generators; how-
ever, most output representations work with all game gen-
erators. Table 2 lists the complete and incomplete represen-
tations that are currently supported by GAMUT.

In keeping with our main goal of easy extensibility,
GAMUT also implements a wide range of support classes
that encapsulate common tasks. For example, GAMUT uses
a powerful parameter handling mechanism. Users who want
to create a new generator can specify types, ranges, default
values and help strings for parameters. Given this informa-
tion, user help, parsing, and even randomization will all be
handled automatically. Since a large (and mundane) part of
the user’s job now becomes declarative, it is easy to focus
on the more interesting and conceptual task of implement-
ing the actual generative algorithm.

Other support utilities offer the ability to convert
games into fixed-point arithmetic and to normalize pay-
offs. The former, besides often being more efficient,
sometimes makes more sense game-theoretically: the no-
tion of a Nash equilibrium can become muddy with floating
point, since imprecision can lead to equilibrium instabil-
ity. As mentioned in section 2.2, games’ strategic properties
are preserved under positive affine transformations. Nor-
malization allows payoff magnitudes to be compared and
can avoid machine precision problems.
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ABSTRACT
We present a new approach to representing coalitional games
based on rules that describe the marginal contributions of
the agents. This representation scheme captures character-
istics of the interactions among the agents in a natural and
concise manner. We also develop efficient algorithms for two
of the most important solution concepts, the Shapley value
and the core, under this representation. The Shapley value
can be computed in time linear in the size of the input. The
emptiness of the core can be determined in time exponen-
tial only in the treewidth of a graphical interpretation of our
representation.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems; J.4 [Social and Behavioral Sciences]: Eco-
nomics; F.2 [Analysis of Algorithms and Problem Com-
plexity]

General Terms
Algorithms, Economics

Keywords
Coalitional game theory, Representation, Treewidth

1. INTRODUCTION
Agents can often benefit by coordinating their actions.

Coalitional games capture these opportunities of coordina-
tion by explicitly modeling the ability of the agents to take
joint actions as primitives. As an abstraction, coalitional
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games assign a payoff to each group of agents in the game.
This payoff is intended to reflect the payoff the group of
agents can secure for themselves regardless of the actions
of the agents not in the group. These choices of primitives
are in contrast to those of non-cooperative games, of which
agents are modeled independently, and their payoffs depend
critically on the actions chosen by the other agents.

1.1 Coalitional Games and E-Commerce
Coalitional games have appeared in the context of e-com-

merce. In [7], Kleinberg et al. use coalitional games to study
recommendation systems. In their model, each individual
knows about a certain set of items, is interested in learning
about all items, and benefits from finding out about them.
The payoffs to groups of agents are the total number of dis-
tinct items known by its members. Given this coalitional
game setting, Kleinberg et al. compute the value of the pri-
vate information of the agents is worth to the system using
the solution concept of the Shapley value (definition can be
found in section 2). These values can then be used to deter-
mine how much each agent should receive for participating
in the system.

As another example, consider the economics behind sup-
ply chain formation. The increased use of the Internet as a
medium for conducting business has decreased the costs for
companies to coordinate their actions, and therefore coali-
tional game is a good model for studying the supply chain
problem. Suppose that each manufacturer purchases his raw
materials from some set of suppliers, and that the suppliers
offer higher discount with more purchases. The decrease in
communication costs will let manufacturers find others in-
terested in the same set of suppliers cheaper, and facilitates
formation of coalitions to bargain with the suppliers. De-
pending on the set of suppliers and how much from each
supplier each coalition purchases, we can assign payoffs to
the coalitions depending on the discount it receives. The
resulting game can be analyzed using coalitional game the-
ory, and we can answer questions such as the stability of
coalitions, and how to fairly divide the benefits among the
participating manufacturers. A similar problem, combina-
torial coalition formation, has previously been studied in [8].

1.2 Evaluation Criteria for Coalitional Game
Representation

To capture the coalitional games described above and per-
form computations on them, we must first find a represen-
tation for these games. The näıve solution is to enumerate

108



the payoffs to each set of agents, therefore requiring space
exponential in the number of agents in the game. For the
two applications described, the number of agents in the sys-
tem can easily exceed a hundred; this näıve approach will
not be scalable to such problems. Therefore, it is critical to
find good representation schemes for coalitional games.

We believe that the quality of a representation scheme
should be evaluated by four criteria.

Expressivity: the breadth of the class of coalitional games
covered by the representation.

Conciseness: the space requirement of the representation.

Efficiency: the efficiency of the algorithms we can develop
for the representation.

Simplicity: the ease of use of the representation by users
of the system.

The ideal representation should be fully expressive, i.e., it
should be able to represent any coalitional games, use as
little space as possible, have efficient algorithms for com-
putation, and be easy to use. The goal of this paper is to
develop a representation scheme that has properties close to
the ideal representation.

Unfortunately, given that the number of degrees of free-
dom of coalitional games is O(2n), not all games can be rep-
resented concisely using a single scheme due to information
theoretic constraints. For any given class of games, one may
be able to develop a representation scheme that is tailored
and more compact than a general scheme. For example, for
the recommendation system game, a highly compact repre-
sentation would be one that simply states which agents know
of which products, and let the algorithms that operate on
the representation to compute the values of coalitions ap-
propriately. For some problems, however, there may not be
efficient algorithms for customized representations. By hav-
ing a general representation and efficient algorithms that go
with it, the representation will be useful as a prototyping
tool for studying new economic situations.

1.3 Previous Work
The question of coalitional game representation has only

been sparsely explored in the past [2, 3, 4]. In [4], Deng
and Papadimitriou focused on the complexity of different
solution concepts on coalitional games defined on graphs.
While the representation is compact, it is not fully expres-
sive. In [2], Conitzer and Sandholm looked into the problem
of determining the emptiness of the core in superadditive
games. They developed a compact representation scheme
for such games, but again the representation is not fully ex-
pressive either. In [3], Conitzer and Sandholm developed a
fully expressive representation scheme based on decomposi-
tion. Our work extends and generalizes the representation
schemes in [3, 4] through decomposing the game into a set of
rules that assign marginal contributions to groups of agents.
We will give a more detailed review of these papers in section
2.2 after covering the technical background.

1.4 Summary of Our Contributions

• We develop the marginal contribution networks rep-
resentation, a fully expressive representation scheme
whose size scales according to the complexity of the

interactions among the agents. We believe that the
representation is also simple and intuitive.

• We develop an algorithm for computing the Shapley
value of coalitional games under this representation
that runs in time linear in the size of the input.

• Under the graphical interpretation of the represen-
tation, we develop an algorithm for determining the
whether a payoff vector is in the core and the emptiness
of the core in time exponential only in the treewidth
of the graph.

2. PRELIMINARIES
In this section, we will briefly review the basics of coali-

tional game theory and its two primary solution concepts,
the Shapley value and the core.1 We will also review previ-
ous work on coalitional game representation in more detail.
Throughout this paper, we will assume that the payoff to
a group of agents can be freely distributed among its mem-
bers. This assumption is often known as the transferable
utility assumption.

2.1 Technical Background
We can represent a coalition game with transferable utility

by the pair 〈N, v〉, where

• N is the set of agents; and

• v : 2N 7→ R is a function that maps each group of
agents S ⊆ N to a real-valued payoff.

This representation is known as the characteristic form. As
there are exponentially many subsets, it will take space ex-
ponential in the number of agents to describe a coalitional
game.

An outcome in a coalitional game specifies the utilities
the agents receive. A solution concept assigns to each coali-
tional game a set of “reasonable” outcomes. Different so-
lution concepts attempt to capture in some way outcomes
that are stable and/or fair. Two of the best known solution
concepts are the Shapley value and the core.

The Shapley value is a normative solution concept. It
prescribes a “fair” way to divide the gains from cooperation
when the grand coalition (i.e., N) is formed. The division
of payoff to agent i is the average marginal contribution of
agent i over all possible permutations of the agents. For-
mally, let φi(v) denote the Shapley value of i under charac-
teristic function v, then2

φi(v) =
∑
S⊂N

s!(n− s− 1)!

n!
(v(S ∪ {i})− v(S)) (1)

The Shapley value is a solution concept that satisfies many
nice properties, and has been studied extensively in the eco-
nomic and game theoretic literature. It has a very useful
axiomatic characterization.

Efficiency (EFF) A total of v(N) is distributed to the
agents, i.e.,

∑
i∈N φi(v) = v(N).

1The materials and terminology are based on the textbooks
by Mas-Colell et al. [9] and Osborne and Rubinstein [11].
2As a notational convenience, we will use the lower-case let-
ter to represent the cardinality of a set denoted by the cor-
responding upper-case letter.
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Symmetry (SYM) If agents i and j are interchangeable,
then φi(v) = φj(v).

Dummy (DUM) If agent i is a dummy player, i.e., his
marginal contribution to all groups S are the same,
φi(v) = v({i}).

Additivity (ADD) For any two coalitional games v and
w defined over the same set of agents N , φi(v + w) =
φi(v) + φi(w) for all i ∈ N , where the game v + w is
defined as (v + w)(S) = v(S) + w(S) for all S ⊆ N .

We will refer to these axioms later in our proof of correctness
of the algorithm for computing the Shapley value under our
representation in section 4.

The core is another major solution concept for coalitional
games. It is a descriptive solution concept that focuses on
outcomes that are “stable.” Stability under core means that
no set of players can jointly deviate to improve their payoffs.
Formally, let x(S) denote

∑
i∈S xi. An outcome x ∈ Rn is

in the core if

∀S ⊆ N x(S) ≥ v(S) (2)

The core was one of the first proposed solution concepts
for coalitional games, and had been studied in detail. An
important question for a given coalitional game is whether
the core is empty. In other words, whether there is any
outcome that is stable relative to group deviation. For a
game to have a non-empty core, it must satisfy the property
of balancedness, defined as follows. Let 1S ∈ Rn denote the
characteristic vector of S given by

(1S)i =

{
1 if i ∈ S

0 otherwise

Let (λS)S⊆N be a set of weights such that each λS is in the
range between 0 and 1. This set of weights, (λS)S⊆N , is a
balanced collection if for all i ∈ N ,

∑

S⊆N

λS(1S)i = 1

A game is balanced if for all balanced collections of weights,

∑

S⊆N

λSv(S) ≤ v(N) (3)

By the Bondereva-Shapley theorem, the core of a coali-
tional game is non-empty if and only if the game is bal-
anced. Therefore, we can use linear programming to deter-
mine whether the core of a game is empty.

maximize
λ∈R2n

∑
S⊆N λSv(S)

subject to
∑

S⊆N λS1S = 1 ∀i ∈ N

λS ≥ 0 ∀S ⊆ N

(4)

If the optimal value of (4) is greater than the value of the
grand coalition, then the core is empty. Unfortunately, this
program has an exponential number of variables in the num-
ber of players in the game, and hence an algorithm that oper-
ates directly on this program would be infeasible in practice.
In section 5.4, we will describe an algorithm that answers
the question of emptiness of core that works on the dual of
this program instead.

2.2 Previous Work Revisited
Deng and Papadimitriou looked into the complexity of

various solution concepts on coalitional games played on
weighted graphs in [4]. In their representation, the set of
agents are the nodes of the graph, and the value of a set of
agents S is the sum of the weights of the edges spanned by
them. Notice that this representation is concise since the
space required to specify such a game is O(n2). However,
this representation is not general; it will not be able to repre-
sent interactions among three or more agents. For example,
it will not be able to represent the majority game, where a
group of agents S will have value of 1 if and only if s > n/2.
On the other hand, there is an efficient algorithm for com-
puting the Shapley value of the game, and for determining
whether the core is empty under the restriction of positive
edge weights. However, in the unrestricted case, determin-
ing whether the core is non-empty is coNP-complete.

Conitzer and Sandholm in [2] considered coalitional games
that are superadditive. They described a concise represen-
tation scheme that only states the value of a coalition if the
value is strictly superadditive. More precisely, the semantics
of the representation is that for a group of agents S,

v(S) = max
{T1,T2,...,Tn}∈Π

∑
i

v(Ti)

where Π is the set of all possible partitions of S. The value
v(S) is only explicitly specified for S if v(S) is greater than
all partitioning of S other than the trivial partition ({S}).
While this representation can represent all games that are
superadditive, there are coalitional games that it cannot rep-
resent. For example, it will not be able to represent any
games with substitutability among the agents. An exam-
ple of a game that cannot be represented is the unit game,
where v(S) = 1 as long as S 6= ∅. Under this representa-
tion, the authors showed that determining whether the core
is non-empty is coNP-complete. In fact, even determining
the value of a group of agents is NP-complete.

In a more recent paper, Conitzer and Sandholm described
a representation that decomposes a coalitional game into a
number of subgames whose sum add up to the original game
[3]. The payoffs in these subgames are then represented by
their respective characteristic functions. This scheme is fully
general as the characteristic form is a special case of this
representation. For any given game, there may be multiple
ways to decompose the game, and the decomposition may
influence the computational complexity. For computing the
Shapley value, the authors showed that the complexity is
linear in the input description; in particular, if the largest
subgame (as measured by number of agents) is of size n and
the number of subgames is m, then their algorithm runs
in O(m2n) time, where the input size will also be O(m2n).
On the other hand, the problem of determining whether a
certain outcome is in the core is coNP-complete.

3. MARGINAL CONTRIBUTION NETS
In this section, we will describe the Marginal Contribution

Networks representation scheme. We will show that the idea
is flexible, and we can easily extend it to increase its con-
ciseness. We will also show how we can use this scheme to
represent the recommendation game from the introduction.
Finally, we will show that this scheme is fully expressive,
and generalizes the representation schemes in [3, 4].
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3.1 Rules and Marginal Contribution Networks
The basic idea behind marginal contribution networks

(MC-nets) is to represent coalitional games using sets of
rules. The rules in MC-nets have the following syntactic
form:

Pattern → value

A rule is said to apply to a group of agents S if S meets
the requirement of the Pattern. In the basic scheme, these
patterns are conjunctions of agents, and S meets the re-
quirement of the given pattern if S is a superset of it. The
value of a group of agents is defined to be the sum over the
values of all rules that apply to the group. For example, if
the set of rules are

{a ∧ b} → 5

{b} → 2

then v({a}) = 0, v({b}) = 2, and v({a, b}) = 5 + 2 = 7.
MC-nets is a very flexible representation scheme, and can

be extended in different ways. One simple way to extend
it and increase its conciseness is to allow a wider class of
patterns in the rules. A pattern that we will use throughout
the remainder of the paper is one that applies only in the
absence of certain agents. This is useful for expressing con-
cepts such as substitutability or default values. Formally,
we express such patterns by

{p1 ∧ p2 ∧ . . . ∧ pm ∧ ¬n1 ∧ ¬n2 ∧ . . . ∧ ¬nn}
which has the semantics that such rule will apply to a group
S only if {pi}m

i=1 ∈ S and {nj}n
j=1 /∈ S. We will call

the {pi}m
i=1 in the above pattern the positive literals, and

{nj}n
j=1 the negative literals. Note that if the pattern of

a rule consists solely of negative literals, we will consider
that the empty set of agents will also satisfy such pattern,
and hence v(∅) may be non-zero in the presence of negative
literals.

To demonstrate the increase in conciseness of representa-
tion, consider the unit game described in section 2.2. To
represent such a game without using negative literals, we
will need 2n rules for n players: we need a rule of value 1
for each individual agent, a rule of value −1 for each pair of
agents to counter the double-counting, a rule of value 1 for
each triplet of agents, etc., similar to the inclusion-exclusion
principle. On the other hand, using negative literals, we
only need n rules: value 1 for the first agent, value 1 for the
second agent in the absence of the first agent, value 1 for the
third agent in the absence of the first two agents, etc. The
representational savings can be exponential in the number
of agents.

Given a game represented as a MC-net, we can interpret
the set of rules that make up the game as a graph. We call
this graph the agent graph. The nodes in the graph will rep-
resent the agents in the game, and for each rule in the MC-
net, we connect all the agents in the rule together and assign
a value to the clique formed by the set of agents. Notice that
to accommodate negative literals, we will need to annotate
the clique appropriately. This alternative view of MC-nets
will be useful in our algorithm for Core-Membership in
section 5.

We would like to end our discussion of the representation
scheme by mentioning a trade-off between the expressive-
ness of patterns and the space required to represent them.

To represent a coalitional game in characteristic form, one
would need to specify all 2n − 1 values. There is no over-
head on top of that since there is a natural ordering of the
groups. For MC-nets, however, specification of the rules
requires specifying both the patterns and the values. The
patterns, if not represented compactly, may end up over-
whelming the savings from having fewer values to specify.
The space required for the patterns also leads to a trade-
off between the expressiveness of the allowed patterns and
the simplicity of representing them. However, we believe
that for most naturally arising games, there should be suffi-
cient structure in the problem such that our representation
achieves a net saving over the characteristic form.

3.2 Example: Recommendation Game
As an example, we will use MC-net to represent the rec-

ommendation game discussed in the introduction. For each
product, as the benefit of knowing about the product will
count only once for each group, we need to capture sub-
stitutability among the agents. This can be captured by a
scaled unit game. Suppose the value of the knowledge about
product i is vi, and there are ni agents, denoted by {xj

i},
who know about the product, the game for product i can
then be represented as the following rules:

{x1
i } → vi

{x2
i ∧ ¬x1

i } → vi

...

{xni
i ∧ ¬xni−1

i ∧ · · · ∧ ¬x1
i } → vi

The entire game can then be built up from the sets of rules
of each product. The space requirement will be O(mn∗),
where m is the number of products in the system, and n∗

is the maximum number of agents who knows of the same
product.

3.3 Representation Power
We will discuss the expressiveness and conciseness of our

representation scheme and compare it with the previous
works in this subsection.

Proposition 1. Marginal contribution networks consti-
tute a fully expressive representation scheme.

Proof. Consider an arbitrary coalitional game 〈N, v〉 in
characteristic form representation. We can construct a set
of rules to describe this game by starting from the singleton
sets and building up the set of rules. For any singleton set
{i}, we create a rule {i} → v(i). For any pair of agents {i, j},
we create a rule {i ∧ j} → v({i, j}) − v({i}) − v({j}. We
can continue to build up rules in a manner similar to the
inclusion-exclusion principle. Since the game is arbitrary,
MC-nets are fully expressive.

Using the construction outlined in the proof, we can show
that our representation scheme can simulate the multi-issue
representation scheme of [3] in almost the same amount of
space.

Proposition 2. Marginal contribution networks use at
most a linear factor (in the number of agents) more space
than multi-issue representation for any game.
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Proof. Given a game in multi-issue representation, we
start by describing each of the subgames, which are rep-
resented in characteristic form in [3], with a set of rules.
We then build up the grand game by including all the rules
from the subgames. Note that our representation may re-
quire a space larger by a linear factor due to the need to
describe the patterns for each rule. On the other hand, our
approach may have fewer than exponential number of rules
for each subgame, depending on the structure of these sub-
games, and therefore may be more concise than multi-issue
representation.

On the other hand, there are games that require exponen-
tially more space to represent under the multi-issue scheme
compared to our scheme.

Proposition 3. Marginal contribution networks are ex-
ponentially more concise than multi-issue representation for
certain games.

Proof. Consider a unit game over all the agents N . As
explained in 3.1, this game can be represented in linear space
using MC-nets with negative literals. However, as there is
no decomposition of this game into smaller subgames, it will
require space O(2n) to represent this game under the multi-
issue representation.

Under the agent graph interpretation of MC-nets, we can
see that MC-nets is a generalization of the graphical repre-
sentation in [4], namely from weighted graphs to weighted
hypergraphs.

Proposition 4. Marginal contribution networks can rep-
resent any games in graphical form (under [4]) in the same
amount of space.

Proof. Given a game in graphical form, G, for each edge
(i, j) with weight wij in the graph, we create a rule {i, j} →
wij . Clearly this takes exactly the same space as the size of
G, and by the additive semantics of the rules, it represents
the same game as G.

4. COMPUTING THE SHAPLEY VALUE
Given a MC-net, we have a simple algorithm to compute

the Shapley value of the game. Considering each rule as a
separate game, we start by computing the Shapley value of
the agents for each rule. For each agent, we then sum up
the Shapley values of that agent over all the rules. We first
show that this final summing process correctly computes the
Shapley value of the agents.

Proposition 5. The Shapley value of an agent in a marginal
contribution network is equal to the sum of the Shapley val-
ues of that agent over each rule.

Proof. For any group S, under the MC-nets representa-
tion, v(S) is defined to be the sum over the values of all the
rules that apply to S. Therefore, considering each rule as a
game, by the (ADD) axiom discussed in section 2, the Shap-
ley value of the game created from aggregating all the rules
is equal to the sum of the Shapley values over the rules.

The remaining question is how to compute the Shapley
values of the rules. We can separate the analysis into two
cases, one for rules with only positive literals and one for
rules with mixed literals.

For rules that have only positive literals, the Shapley value
of the agents is v/m, where v is the value of the rule and
m is the number of agents in the rule. This is a direct
consequence of the (SYM) axiom of the Shapley value, as
the agents in a rule are indistinguishable from each other.

For rules that have both positive and negative literals, we
can consider the positive and the negative literals separately.
For a given positive literal i, the rule will apply only if i
occurs in a given permutation after the rest of the positive
literals but before any of the negative literals. Formally, let
φi denote the Shapley value of i, p denote the cardinality of
the positive set, and n denote the cardinality of the negative
set, then

φi =
(p− 1)!n!

(p + n)!
v =

v

p
(

p+n
n

)

For a given negative literal j, j will be responsible for can-
celling the application of the rule if all positive literals come
before the negative literals in the ordering, and j is the first
among the negative literals. Therefore,

φj =
p!(n− 1)!

(p + n)!
(−v) =

−v

n
(

p+n
p

)

By the (SYM) axiom, all positive literals will have the value
of φi and all negative literals will have the value of φj .

Note that the sum over all agents in rules with mixed
literals is 0. This is to be expected as these rules contribute
0 to the grand coalition. The fact that these rules have no
effect on the grand coalition may appear odd at first. But
this is because the presence of such rules is to define the
values of coalitions smaller than the grand coalition.

In terms of computational complexity, given that the Shap-
ley value of any agent in a given rule can be computed in
time linear in the pattern of the rule, the total running time
of the algorithm for computing the Shapley value of the
game is linear in the size of the input.

5. ANSWERING CORE-RELATED
QUESTIONS

There are a few different but related computational prob-
lems associated with the solution concept of the core. We
will focus on the following two problems:

Definition 1. (Core-Membership) Given a coalitional game
and a payoff vector x, determine if x is in the core.

Definition 2. (Core-Non-Emptiness) Given a coalitional
game, determine if the core is non-empty.

In the rest of the section, we will first show that these
two problems are coNP-complete and coNP-hard respec-
tively, and discuss some complexity considerations about
these problems. We will then review the main ideas of tree
decomposition as it will be used extensively in our algorithm
for Core-Membership. Next, we will present the algorithm
for Core-Membership, and show that the algorithm runs
in polynomial time for graphs of bounded treewidth. We end
by extending this algorithm to answer the question of Core-
Non-Emptiness in polynomial time for graphs of bounded
treewidth.
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5.1 Computational Complexity
The hardness of Core-Membership and Core-Non-

Emptiness follows directly from the hardness results of games
over weighted graphs in [4].

Proposition 6. Core-Membership for games represented
as marginal contribution networks is coNP-complete.

Proof. Core-Membership in MC-nets is in the class
of coNP since any set of agents S of which v(S) > x(S)
will serve as a certificate to show that x does not belong to
the core. As for its hardness, given any instance of Core-
Membership for a game in graphical form of [4], we can
encode the game in exactly the same space using MC-net
due to Proposition 4. Since Core-Membership for games
in graphical form is coNP-complete, Core-Membership in
MC-nets is coNP-hard.

Proposition 7. Core-Non-Emptiness for games rep-
resented as marginal contribution networks is coNP-hard.

Proof. The same argument for hardness between games
in graphical frm and MC-nets holds for the problem of Core-
Non-Emptiness.

We do not know of a certificate to show that Core-Non-
Emptiness is in the class of coNP as of now. Note that
the “obvious” certificate of a balanced set of weights based
on the Bondereva-Shapley theorem is exponential in size. In
[4], Deng and Papadimitriou showed the coNP-completeness
of Core-Non-Emptiness via a combinatorial characteri-
zation, namely that the core is non-empty if and only if
there is no negative cut in the graph. In MC-nets, however,
there need not be a negative hypercut in the graph for the
core to be empty, as demonstrated by the following game
(N = {1, 2, 3, 4}):

v(S) =





1 if S = {1, 2, 3, 4}
3/4 if S = {1, 2}, {1, 3}, {1, 4}, or {2, 3, 4}
0 otherwise

(5)

Applying the Bondereva-Shapley theorem, if we let λ12 =
λ13 = λ14 = 1/3, and λ234 = 2/3, this set of weights demon-
strates that the game is not balanced, and hence the core
is empty. On the other hand, this game can be represented
with MC-nets as follows (weights on hyperedges):

w({1, 2}) = w({1, 3}) = w({1, 4}) = 3/4

w({1, 2, 3}) = w({1, 2, 4}) = w({1, 3, 4}) = −6/4

w({2, 3, 4}) = 3/4

w({1, 2, 3, 4}) = 10/4

No matter how the set is partitioned, the sum over the
weights of the hyperedges in the cut is always non-negative.

To overcome the computational hardness of these prob-
lems, we have developed algorithms that are based on tree
decomposition techniques. For Core-Membership, our al-
gorithm runs in time exponential only in the treewidth of the
agent graph. Thus, for graphs of small treewidth, such as
trees, we have a tractable solution to determine if a payoff
vector is in the core. By using this procedure as a sepa-
ration oracle, i.e., a procedure for returning the inequality
violated by a candidate solution, to solving a linear pro-
gram that is related to Core-Non-Emptiness using the el-
lipsoid method, we can obtain a polynomial time algorithm
for Core-Non-Emptiness for graphs of bounded treewidth.

5.2 Review of Tree Decomposition
As our algorithm for Core-Membership relies heavily

on tree decomposition, we will first briefly review the main
ideas in tree decomposition and treewidth.3

Definition 3. A tree decomposition of a graph G = (V, E)
is a pair (X , T ), where T = (I, F ) is a tree and X = {Xi | i ∈
I} is a family of subsets of V , one for each node of T , such
that

• ⋃
i∈I Xi = V ;

• For all edges (v, w) ∈ E, there exists an i ∈ I with
v ∈ Xi and w ∈ Xi; and

• (Running Intersection Property) For all i, j, k ∈ I: if j
is on the path from i to k in T , then Xi ∩Xk ⊆ Xj .

The treewidth of a tree decomposition is defined as the max-
imum cardinality over all sets in X , less one. The treewidth
of a graph is defined as the minimum treewidth over all tree
decompositions of the graph.

Given a tree decomposition, we can convert it into a nice
tree decomposition of the same treewidth, and of size linear
in that of T .

Definition 4. A tree decomposition T is nice if T is rooted
and has four types of nodes:

Leaf nodes i are leaves of T with |Xi| = 1.

Introduce nodes i have one child j such that Xi = Xj ∪
{v} of some v ∈ V .

Forget nodes i have one child j such that Xi = Xj \ {v}
for some v ∈ Xj .

Join nodes i have two children j and k with Xi = Xj =
Xk.

An example of a (partial) nice tree decomposition together
with a classification of the different types of nodes is in Fig-
ure 1. In the following section, we will refer to nodes in the
tree decomposition as nodes, and nodes in the agent graph
as agents.

5.3 Algorithm for Core Membership
Our algorithm for Core-Membership takes as an input

a nice tree decomposition T of the agent graph and a payoff
vector x. By definition, if x belongs to the core, then for
all groups S ⊆ N , x(S) ≥ v(S). Therefore, the difference
x(S)−v(S) measures how “close” the group S is to violating
the core condition. We call this difference the excess of group
S.

Definition 5. The excess of a coalition S, e(S), is defined
as x(S)− v(S).

A brute-force approach to determine if a payoff vector be-
longs to the core will have to check that the excesses of all
groups are non-negative. However, this approach ignores the
structure in the agent graph that will allow an algorithm to
infer that certain groups have non-negative excesses due to

3This is based largely on the materials from a survey paper
by Bodlaender [1].
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Join Node:

Figure 1: Example of a (partial) nice tree decompo-
sition

the excesses computed elsewhere in the graph. Tree decom-
position is the key to take advantage of such inferences in a
structured way.

For now, let us focus on rules with positive literals. Sup-
pose we have already checked that the excesses of all sets
R ⊆ U are non-negative, and we would like to check if the
addition of an agent i to the set U will create a group with
negative excess. A näıve solution will be to compute the
excesses of all sets that include i. The excess of the group
(R ∪ {i}) for any group R can be computed as follows

e(R ∪ {i}) = e(R) + xi − v(c) (6)

where c is the cut between R and i, and v(c) is the sum of
the weights of the edges in the cut.

However, suppose that from the tree decomposition, we
know that i is only connected to a subset of U , say S, which
we will call the entry set to U . Ideally, because i does not
share any edges with members of Ū = (U \ S), we would
hope that an algorithm can take advantage of this structure
by checking only sets that are subsets of (S ∪ {i}). This
computational saving may be possible since (xi−v(c)) in the
update equation of (6) does not depend on Ū . However, we
cannot simply ignore Ū as members of Ū may still influence
the excesses of groups that include agent i through group
S. Specifically, if there exists a group T ⊃ S such that
e(T ) < e(S), then even when e(S ∪ {i}) has non-negative
excess, e(T ∪{i}) may have negative excess. In other words,
the excess available at S may have been “drained” away due
to T . This motivates the definition of the reserve of a group.

Definition 6. The reserve of a coalition S relative to a

coalition U is the minimum excess over all coalitions between
S and U , i.e., all T : S ⊆ T ⊆ U . We denote this value by
r(S, U). We will refer to the group T that has the minimum
excess as arg r(S, U). We will also call U the limiting set of
the reserve and S the base set of the reserve.

Our algorithm works by keeping track of the reserves of
all non-empty subsets that can be formed by the agents of a
node at each of the nodes of the tree decomposition. Starting
from the leaves of the tree and working towards the root,
at each node i, our algorithm computes the reserves of all
groups S ⊆ Xi, limited by the set of agents in the subtree
rooted at i, Ti, except those in (Xi\S). The agents in (Xi\S)
are excluded to ensure that S is an entry set. Specifically,
S is the entry set to ((Ti \Xi) ∪ S).

To accomodate for negative literals, we will need to make
two adjustments. Firstly, the cut between an agent m and a
set S at node i now refers to the cut among agent m, set S,
and set ¬(Xi \ S), and its value must be computed accord-
ingly. Also, when an agent m is introduced to a group at an
introduce node, we will also need to consider the change in
the reserves of groups that do not include m due to possible
cut involving ¬m and the group.

As an example of the reserve values we keep track of at a
tree node, consider node i of the tree in Figure 1. At node
i, we will keep track of the following:

r({1}, {1, 2, . . .})
r({3}, {2, 3, . . .})
r({4}, {2, 4, . . .})
r({1, 3}, {1, 2, 3, . . .})
r({1, 4}, {1, 2, 4, . . .})
r({3, 4}, {2, 3, 4, . . .})
r({1, 3, 4}, {1, 2, 3, 4, . . .}

where the dots . . . refer to the agents rooted under node m.
For notational use, we will use ri(S) to denote r(S, U) at

node i where U is the set of agents in the subtree rooted at
node i excluding agents in (Xi \ S). We sometimes refer to
these values as the r-values of a node. The details of the
r-value computations are in Algorithm 1.

To determine if the payoff vector x is in the core, during
the r-value computation at each node, we can check if all of
the r-values are non-negative. If this is so for all nodes in
the tree, the payoff vector x is in the core. The correctness
of the algorithm is due to the following proposition.

Proposition 8. The payoff vector x is not in the core if
and only if the r-values at some node i for some group S is
negative.

Proof. (⇐) If the reserve at some node i for some group
S is negative, then there exists a coalition T for which
e(T ) = x(T )− v(T ) < 0, hence x is not in the core.

(⇒) Suppose x is not in the core, then there exists some
group R∗ such that e(R∗) < 0. Let Xroot be the set of nodes
at the root. Consider any set S ∈ Xroot, rroot(S) will have
the base set of S and the limiting set of ((N \Xroot) ∪ S).
The union over all of these ranges includes all sets U for
which U ∩ Xroot 6= ∅. Therefore, if R∗ is not disjoint from
Xroot, the r-value for some group in the root is negative.

If R∗ is disjoint from U , consider the forest {Ti} resulting
from removal of all tree nodes that include agents in Xroot.
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Algorithm 1 Subprocedures for Core Membership

Leaf-Node(i)
1: ri(Xi) ← e(Xi)

Introduce-Node(i)
2: j ← child of i
3: m ← Xi \Xj {the introduced node}
4: for all S ⊆ Xj , S 6= ∅ do
5: C ← all hyperedges in the cut of m, S, and ¬(Xi \S)
6: ri(S ∪ {x}) ← rj(S) + xm − v(C)
7: C ← all hyperedges in the cut of ¬m, S, and ¬(Xi\S)
8: ri(S) ← rj(S)− v(C)
9: end for

10: r({m}) ← e({m})
Forget-Node(i)
11: j ← child of i
12: m ← Xj \Xi {the forgotten node}
13: for all S ⊆ Xi, S 6= ∅ do
14: ri(S) = min(rj(S), rj(S ∪ {m}))
15: end for

Join-Node(i)
16: {j, k} ← {left, right} child of i
17: for all S ⊆ Xi, S 6= ∅ do
18: ri(S) ← rj(S) + rk(S)− e(S)
19: end for

By the running intersection property, the sets of nodes in
the trees Ti’s are disjoint. Thus, if the set R∗ =

⋃
i Si for

some Si ∈ Ti, e(R∗) =
∑

i e(Si) < 0 implies some group
S∗i has negative excess as well. Therefore, we only need to
check the r-values of the nodes on the individual trees in the
forest.

But for each tree in the forest, we can apply the same
argument restricted to the agents in the tree. In the base
case, we have the leaf nodes of the original tree decomposi-
tion, say, for agent i. If R∗ = {i}, then r({i}) = e({i}) < 0.
Therefore, by induction, if e(R∗) < 0, some reserve at some
node would be negative.

We will next explain the intuition behind the correctness
of the computations for the r-values in the tree nodes. A
detailed proof of correctness of these computations can be
found in the appendix under Lemmas 1 and 2.

Proposition 9. The procedure in Algorithm 1 correctly
compute the r-values at each of the tree nodes.

Proof. (Sketch) We can perform a case analysis over
the four types of tree nodes in a nice tree decomposition.

Leaf nodes (i) The only reserve value to be computed is
ri(Xi), which equals r(Xi, Xi), and therefore it is just
the excess of group Xi.

Forget nodes (i with child j) Let m be the forgotten node.
For any subset S ⊆ Xi, arg ri(S) must be chosen be-
tween the groups of S and S ∪ {m}, and hence we
choose between the lower of the two from the r-values
at node j.

Introduce nodes (i with child j) Let m be the introduced
node. For any subset T ⊆ Xi that includes m, let S
denote (T \ {m}). By the running intersection prop-
erty, there are no rules that involve m and agents of

the subtree rooted at node i except those involving
m and agents in Xi. As both the base set and the
limiting set of the r-values of node j and node i dif-
fer by {m}, for any group V that lies between the
base set and the limiting set of node i, the excess of
group V will differ by a constant amount from the
corresponding group (V \ {m}) at node j. Therefore,
the set arg ri(T ) equals the set arg rj(S) ∪ {m}, and
ri(T ) = rj(S)+xm− v(cut), where v(cut) is the value
of the rules in the cut between m and S. For any sub-
set S ⊂ Xi that does not include m, we need to con-
sider the values of rules that include ¬m as a literal
in the pattern. Also, when computing the reserve, the
payoff xm will not contribute to group S. Therefore,
together with the running intersection property as ar-
gued above, we can show that ri(S) = rj(S)− v(cut).

Join nodes (i with left child j and right child k) For any
given set S ⊆ Xi, consider the r-values of that set
at j and k. If arg rj(S) or arg rk(S) includes agents
not in S, then argrj(S) and argrk(S) will be dis-
joint from each other due to the running intersection
property. Therefore, we can decompose arg ri(S) into
three sets, (arg rj(S) \ S) on the left, S in the middle,
and (arg rk(S) \ S) on the right. The reserve rj(S)
will cover the excesses on the left and in the middle,
whereas the reserve rk(S) will cover those on the right
and in the middle, and so the excesses in the middle is
double-counted. We adjust for the double-counting by
subtracting the excesses in the middle from the sum
of the two reserves rj(S) and rk(S).

Finally, note that each step in the computation of the r-
values of each node i takes time at most exponential in the
size of Xi, hence the algorithm runs in time exponential only
in the treewidth of the graph.

5.4 Algorithm for Core Non-emptiness
We can extend the algorithm for Core-Membership into

an algorithm for Core-Non-Emptiness. As described in
section 2, whether the core is empty can be checked using
the optimization program based on the balancedness condi-
tion (3). Unfortunately, that program has an exponential
number of variables. On the other hand, the dual of the
program has only n variables, and can be written as follows:

minimize
x∈Rn

∑n
i=1 xi

subject to x(S) ≥ v(S), ∀S ⊆ N
(7)

By strong duality, optimal value of (7) is equal to opti-
mal value of (4), the primal program described in section
2. Therefore, by the Bondereva-Shapley theorem, if the op-
timal value of (7) is greater than v(N), the core is empty.

We can solve the dual program using the ellipsoid method
with Core-Membership as a separation oracle, i.e., a pro-
cedure for returning a constraint that is violated. Note that
a simple extension to the Core-Membership algorithm will
allow us to keep track of the set T for which e(T ) < 0 dur-
ing the r-values computation, and hence we can return the
inequality about T as the constraint violated. Therefore,
Core-Non-Emptiness can run in time polynomial in the
running time of Core-Membership, which in turn runs in
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time exponential only in the treewidth of the graph. Note
that when the core is not empty, this program will return
an outcome in the core.

6. CONCLUDING REMARKS
We have developed a fully expressive representation scheme

for coalitional games of which the size depends on the com-
plexity of the interactions among the agents. Our focus
on general representation is in contrast to the approach
taken in [3, 4]. We have also developed an efficient algo-
rithm for the computation of the Shapley values for this
representation. While Core-Membership for MC-nets is
coNP-complete, we have developed an algorithm for Core-
Membership that runs in time exponential only in the treewidth
of the agent graph. We have also extended the algorithm
to solve Core-Non-Emptiness. Other than the algorithm
for Core-Non-Emptiness in [4] under the restriction of
non-negative edge weights, and that in [2] for superaddi-
tive games when the value of the grand coalition is given,
we are not aware of any explicit description of algorithms
for core-related problems in the literature.

The work in this paper is related to a number of areas
in computer science, especially in artificial intelligence. For
example, the graphical interpretation of MC-nets is closely
related to Markov random fields (MRFs) of the Bayes nets
community. They both address the issue of of conciseness
of representation by using the combinatorial structure of
weighted hypergraphs. In fact, Kearns et al. first apply
these idea to games theory by introducing a representation
scheme derived from Bayes net to represent non-cooperative
games [6]. The representational issues faced in coalitional
games are closely related to the problem of expressing val-
uations in combinatorial auctions [5, 10]. The OR-bid lan-
guage, for example, is strongly related to superadditivity.
The question of the representation power of different pat-
terns is also related to Boolean expression complexity [12].
We believe that with a better understanding of the relation-
ships among these related areas, we may be able to develop
more efficient representations and algorithms for coalitional
games.

Finally, we would like to end with some ideas for extend-
ing the work in this paper. One direction to increase the
conciseness of MC-nets is to allow the definition of equiva-
lent classes of agents, similar to the idea of extending Bayes
nets to probabilistic relational models. The concept of sym-
metry is prevalent in games, and the use of classes of agents
will allow us to capture symmetry naturally and concisely.
This will also address the problem of unpleasing assymetric
representations of symmetric games in our representation.

Along the line of exploiting symmetry, as the agents within
the same class are symmetric with respect to each other, we
can extend the idea above by allowing functional description
of marginal contributions. More concretely, we can specify
the value of a rule as dependent on the number of agents
of each relevant class. The use of functions will allow con-
cise description of marginal diminishing returns (MDRs).
Without the use of functions, the space needed to describe
MDRs among n agents in MC-nets is O(n). With the use
of functions, the space required can be reduced to O(1).

Another idea to extend MC-nets is to augment the seman-
tics to allow constructs that specify certain rules cannot be
applied simultaneously. This is useful in situations where a
certain agent represents a type of exhaustible resource, and

therefore rules that depend on the presence of the agent
should not apply simultaneously. For example, if agent i in
the system stands for coal, we can either use it as fuel for
a power plant or as input to a steel mill for making steel,
but not for both at the same time. Currently, to represent
such situations, we have to specify rules to cancel out the
effects of applications of different rules. The augmented se-
mantics can simplify the representation by specifying when
rules cannot be applied together.
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APPENDIX
We will formally show the correctness of the r-value compu-
tation in Algorithm 1 of introduce nodes and join nodes.

Lemma 1. The procedure for computing the r-values of
introduce nodes in Algorithm 1 is correct.

Proof. Let node m be the newly introduced agent at i.
Let U denote the set of agents in the subtree rooted at i.
By the running intersection property, all interactions (the
hyperedges) between m and U must be in node i. For all
S ⊆ Xi : m ∈ S, let R denote (U \Xi) ∪ S), and Q denote
(R \ {m}).
ri(S) = r(S, R)

= min
T :S⊆T⊆R

e(T )

= min
T :S⊆T⊆R

x(T )− v(T )

= min
T :S⊆T⊆R

x(T \ {m}) + xm − v(T \ {m})− v(cut)

=

(
min

T ′:S\{m}⊆T ′⊆Q
e(T ′)

)
+ xm − v(cut)

= rj(S) + xm − v(cut)

The argument for sets S ⊆ Xi : m /∈ S is symmetric except
xm will not contribute to the reserve due to the absence of
m.

Lemma 2. The procedure for computing the r-values of
join nodes in Algorithm 1 is correct.

Proof. Consider any set S ⊆ Xi. Let Uj denote the
subtree rooted at the left child, Rj denote ((Uj \Xj) ∪ S),
and Qj denote (Uj \ Xj). Let Uk, Rk, and Qk be defined
analogously for the right child. Let R denote (U \Xi)∪ S).

ri(S) = r(S, R)

= min
T :S⊆T⊆R

x(T )− v(T )

= min
T :S⊆T⊆R

(
x(S) + x(T ∩Qj) + x(T ∩Qk)

− v(S)− v(cut(S, T ∩Qj)− v(cut(S, T ∩Qk)
)

= min
T :S⊆T⊆R

(
x(T ∩Qj)− v(cut(S, T ∩Qj))

)

+ min
T :S⊆T⊆R

(
x(T ∩Qk)− v(cut(S, T ∩Qk))

)

+ (x(S)− v(S)) (*)

= min
T :S⊆T⊆R

(
x(T ∩Qj) + x(S)− v(cut(S, T ∩Qj))− v(S)

)

+ min
T :S⊆T⊆R

(
x(T ∩Qk) + x(S)− v(cut(S, T ∩Qk))− v(S)

)

− (x(S)− v(S))

= min
T :S⊆T⊆R

e(T ∩Rj) + min
T :S⊆T⊆R

e(T ∩Rk)− e(S)

= min
T ′:S⊆T ′⊆Rj

e(T ′) + min
T ′′:S⊆T⊆Rk

e(T ′′)− e(S)

= rj(S) + rk(S)− e(S)

where (*) is true as T ∩ Qj and T ∩ Qk are disjoint due
to the running intersection property of tree decomposition,
and hence the minimum of the sum can be decomposed into
the sum of the minima.
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Abstract. Hard computational problems are often solvable by multiple algo-
rithms that each perform well on different problem instances. We describe tech-
niques for building an algorithm portfolio that can outperform its constituent al-
gorithms, just as the aggregate classi ers learned by boosting outperform the clas-
si ers of which they are composed. We also provide a method for generating test
distributions to focus future algorithm design work on problems that are hard for
an existing portfolio. We demonstrate the effectiveness of our techniques on the
combinatorial auction winner determination problem, showing that our portfolio
outperforms the state-of-the-art algorithm by a factor of three.1

1 Introduction

Although some algorithms are better than others on average, there is rarely a best al-
gorithm for a given problem. Instead, it is often the case that different algorithms per-
form well on different problem instances. Not surprisingly, this phenomenon is most
pronounced among algorithms for solving NP-Hard problems, because runtimes for
these algorithms are often highly variable from instance to instance. When algorithms
exhibit high runtime variance, one is faced with the problem of deciding which algo-
rithm to use; in 1976 Rice dubbed this the “algorithm selection problem” [13]. In the
nearly three decades that have followed, the issue of algorithm selection has failed to
receive widespread study, though of course some excellent work does exist. By far,
the most common approach to algorithm selection has been to measure different algo-
rithms’ performance on a given problem distribution, and then to use only the algorithm
having the lowest average runtime. This approach, to which we refer as “winner-take-
all”, has driven recent advances in algorithm design and re nement, but has resulted
in the neglect of many algorithms that, while uncompetitive on average, offer excel-
lent performance on particular problem instances. Our consideration of the algorithm
selection literature, and our dissatisfaction with the winner-take-all approach, has led
us to ask the following two questions. First, what general techniques can we use to
perform per-instance (rather than per-distribution) algorithm selection? Second, once
we have rejected the notion of winner-take-all algorithm evaluation, how ought novel
algorithms to be evaluated? Taking the idea of boosting from machine learning as our
guiding metaphor, we strive to answer both questions.

1 This work has previously been published as a two-page extended abstract [9].

* This work is generously supported by DARPA grant F30602-00-2-0598.
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1.1 The Boosting Metaphor

Boosting is a machine learning paradigm due to Schapire [17] and widely studied since.
Although this paper does not make use of any technical results from the boosting lit-
erature, it takes its inspiration from the boosting philosophy. Stated simply, boosting is
based on two insights:

1. Poor classi ers can be combined to form an accurate ensemble when the classi ers’
areas of effectiveness are suf ciently uncorrelated.

2. New classi ers should be trained on problems on which the current aggregate clas-
si er performs poorly.

In this paper, we argue that algorithm design should be informed by two analogous
ideas:

1. Algorithms with high average running times can be combined to form an algorithm
portfolio with low average running time when the algorithms’ easy inputs are suf-
 ciently uncorrelated.

2. New algorithm design should focus on problems on which the current algorithm
portfolio performs poorly.

Of course the analogy to boosting is imperfect; we discuss differences in section 5.

1.2 Case Study: Combinatorial Auctions (Weighted Set Packing)

To discuss the effectiveness of an algorithm design methodology, it is necessary to per-
form a case study. We chose to consider the combinatorial auction winner determination
problem (WDP), and made use of runtime prediction techniques and runtime data from
our previous work [10]. However, it must be emphasized that none of the techniques
we propose here are particular to this problem domain. The full version of this paper
will also consider other domains; in particular, we have had some positive initial results
building portfolios for SAT.

Combinatorial auctions provide a general framework for allocation problems among
self-interested agents by allowing bids for bundles of goods. WDP is a weighted set
packing problem (SPP): the goal is to choose a non-con ictin g subset of bids maxi-
mizing the seller’s revenue. SPP is NP-Complete, and also inapproximable within a
constant factor (cf. [15]). Let n be the number of goods, and m be the number of bids.
A bid is a pair < Si, pi >, where Si ⊆ {1, . . . , n} is the set of goods requested by
bid i, and pi is that bid’s price offer. WDP can be formulated as the following integer
program:

maximize:
m∑

i=1

xipi

subject to:
∑

i|g∈Si

xi ≤ 1 ∀g

xi ∈ {0, 1} ∀i
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We consider three algorithms for solving WDP: ILOG’s CPLEX package;GL (Gonen-
Lehmann) [5], a simple branch-and-bound algorithm with CPLEX’s LP solver as its
heuristic; and CASS [2], a more complex branch-and-bound algorithm with a non-LP
heuristic. Unfortunately, we were unable to get access to CABOB [16], another widely-
cited WDP algorithm.

1.3 Overview

In the next three sections we give general methods for our boosting analogy in algorithm
design. In section 2 we present a methodology for constructing algorithm portfolios and
show some results from our case study. We go on in section 3 to offer practical exten-
sions to our methodology, including techniques for avoiding the computation of costly
features, trading off between accuracy on hard and easy instances, and building models
when runtime data is capped at some maximum running time. In section 4 we consider
the empirical evaluation of portfolios, and describe a method for using a learned model
of runtime to generate a test distribution that will be hard for a portfolio. Similar tech-
niques can be used to generate instances that score highly on a given “realism” metric.
Finally, section 5 discusses our design choices and compares them to the choices made
in related work.

2 Algorithm Portfolios

Our previous work [10] demonstrated that statistical regression can be used to learn
surprisingly accurate algorithm-speci c models of the empirical hardness of given dis-
tributions of problem instances. In short, the method proposed in that work is:

1. Use domain knowledge to select features of problem instances that might be in-
dicative of runtime.

2. Generate a set of problem instances from the given distribution, and collect runtime
data for the algorithm on each instance.

3. Use regression to learn a real-valued function of the features that predicts runtime.

Given this existing technique for predicting runtime, we now propose building port-
folios of multiple algorithms as follows:

1. Train a model for each algorithm, as described above.
2. Given an instance:

(a) Compute feature values
(b) Predict each algorithm’s running time using runtime models
(c) Run the algorithm predicted to be fastest

This technique is powerful, but deceptively simple. For discussion and comparison
with other approaches in the literature, please see section 5.1. As we will demonstrate
in our case study, such portfolios can dramatically outperform the algorithms of which
they are composed.
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2.1 Case Study: Experimental Setup

We performed our case study using data collected in our past work [10], which we recap
brie y in this section. All of our results focused on problems of a  x ed size: numbers of
goods and non-dominated bids were held constant to 256 and 1000 respectively.2 Our
instance distribution involved making a uniform choice between nine of the distribu-
tions from the Combinatorial Auction Test Suite (CATS) [11], and randomly choosing
parameters for each instance. The complete dataset was composed of about 4500 in-
stances. For each instance we collected runtime data for CPLEX 7.1, and computed 25
features that fall roughly into four categories:

1. Norms of the linear programming slack vector (integrality of the LP relaxation of
the IP)

2. Deviations of prices
3. Node statistics of the Bid-Good bipartite graph
4. Various statistics of the Bid graph (effectively, the problem’s constraint graph)

All data was collected on 550 MHz Pentium Xeon machines running Linux 2.2;
over 3 years of CPU time was spent gathering this data. Fig. 1 shows a 3D histogram
of the distribution of hard instances across our dataset. Observe that CPLEX’s runtime
varied by seven orders of magnitude even though the number of goods and bids was
held constant. Also, there is considerable variation within most of the distributions.

Using quadratic regression, we were able to build very accurate models of the loga-
rithm of runtime. Fig. 2 shows a histogram of the mean absolute error in predicting the
log of CPLEX’s runtime observed on test set instances. Since our methodology relies

2 In a separate research effort, we are in the process of extending the work from [10] to models
of variable problem size; when these models become available it will be possible to extend the
techniques presented in this paper without any modi cation.
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on machine learning, we split the data into training, validation, and test sets. We report
our portfolio runtimes only on the test set that was never used to train or evaluate mod-
els. An error of 1 in predicting the log means that runtime was mispredicted by a factor
of 10, or roughly that an instance was misclassi ed by one of the bins in Fig. 1; observe
that nearly all prediction errors are less than 1.
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2.2 Case Study Results

We now turn to new results. First, we used the methodolody described in section 2.1
to build regression models for two new algorithms (GL and CASS). Fig. 3 compares
the average runtimes of our three algorithms (CPLEX, CASS, GL) to that of the portfo-
lio3. Note that CPLEX would be chosen under winner-take-all algorithm selection. The
“optimal” bar shows the performance of an ideal portfolio where algorithm selection is
performed perfectly and with no overhead. The portfolio bar shows the time taken to
compute features (light portion) and the time taken to run the selected algorithm (dark
portion). Despite the fact that CASS and GL are much slower than CPLEX on average,
the portfolio outperforms CPLEX by roughly a factor of 3. Moreover, neglecting the

3 Note the change of scale on the graph, and the repeated CPLEX bar
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cost of computing features, our portfolio’s selections take only 5% longer to run than
the optimal selections.

Figs. 4 and 5 show the frequency with which each algorithm is selected in the ideal
portfolio and in our portfolio. They illustrate the quality of our algorithm selection and
the relative value of the three algorithms. Observe that our portfolio does not always
make the right choice (in particular, it selects GL much more often than it should).
However, most of the mistakes made by our models occur when both algorithms have
very similar running times; these mistakes are not very costly, explaining why our port-
folio’s choices have a running time so close to optimal.

These results show that our portfolio methodology can work very well even with a
small number of algorithms, and when one algorithm’s average performance is consid-
erably better than the others’. We suspect that our techniques could work even better in
other settings.

3 Extending our Portfolio Methodology

Once it has been demonstrated that algorithm portfolios can offer signi cant speedups
over winner-take-all algorithm selection, it is worthwhile to consider modi cations to
the methodology that make it more useful in practice. Speci cally, we describe methods
for reducing the amount of time spent computing features, transforming the response
variable, and capping runs of some or all algorithms.

3.1 Smart Feature Computation

Feature values must be computed before the portfolio can choose an algorithm to run.
We expect that portfolios will be most useful when they combine several exponential-
time algorithms having high runtime variance, and that fast polynomial-time features
should be suf cient for most models. Nevertheless, on some instances the computa-
tion of individual features may take substantially longer than one or even all algorithms
would take to run. In such cases it would be desirable to perform algorithm selection
without spending as much time computing features, even at the expense of some accu-
racy in choosing the fastest algorithm. In order to achieve this, we partition the features
into sets ordered by time complexity, S1, . . . , Sl, with i > j implying that each feature
in Si takes signi cantly longer to compute than each feature in Sj .4 The portfolio can
start by computing the easiest features, and iteratively compute the next set only if the
expected bene t to selection exceeds the cost of computation. More precisely:

1. For each set Sj learn or provide a model c(Sj) that estimates time required to
compute it. Often, this could be a simple average time scaled by input size.

2. Divide the training examples into two sets. Using the  rst set, train models M i
1 . . . M i

l ,
with M i

k predicting algorithm i’s runtime using features in
⋃k

j=1 Sj . Note that M i
l

is the same as the model for algorithm i in our basic portfolio methodology. Let
Mk be a portfolio which selects argmini M i

k.
4 We assume here that features will have low runtime variance. We have found this assumption

to hold in our case study. If feature runtime variance makes it dif cult to partition the features
into time complexity sets, smart feature computation is more dif cult.
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3. Using the second training set, learn models D1 . . . Dl−1, with Dk predicting the
difference in runtime between the algorithms selected by Mk and Mk+1 based on
Sk. The second set must be used to avoid training the difference models on data to
which the runtime models were  t.

Given an instance x, the portfolio now works as follows:

4. For j = 1 to l

(a) Compute features in Sj

(b) If Dj [x] > c(Sj+1)[x], continue.
(c) Otherwise, return with the algorithm predicted to be fastest according to Mj .

3.2 Transforming the Response Variable

Average runtime is an obvious measure of portfolio performance if one’s goal is to min-
imize computation time over a large number of instances. Since our models minimize
root mean squared error, they appropriately penalize 20 seconds of error equally on in-
stances that take 1 second or 10 hours to run. However, another reasonable goal may be
to perform well on every instance regardless of its hardness; in this case, relative error
is more appropriate. Let r

p
i and r∗i be the portfolio’s runtime and the optimal runtime

respectively on instance i, and n be the number of instances. One measure that gives an
insight into the portfolio’s relative error is percent optimal:

∑

i|rp
i
=r∗

i

1

n
.

Another measure of relative error is average percent suboptimal:

1

n

∑

i

r
p
i − r∗i
r∗i

.

Taking a logarithm of runtime is a simple way to equalize the importance of relative
error on easy and hard instances. Thus, models that predict a log of runtime help to im-
prove the average percent suboptimal, albeit at some expense in terms of the portfolio’s
average runtime. In Figure 6 (overleaf) we show three different functions; linear (iden-
tity) and log are the extreme values; clearly, many functions can fall in between. The
functions are normalized by their maximum value, since this does not affect regression,
but allows us to better visualize their effect. In our case study (section 3.4) we found
that the cube root function was particularly effective.

3.3 Capping Runs

The methodology of section 2 requires gathering runtime data for every algorithm on
every problem instance in the training set. While the time cost of this step is fundamen-
tally unavoidable for our approach, gathering perfect data for every instance can take an
unreasonably long time. For example, if algorithm a1 is usually much slower than a2

but in some cases dramatically outperforms a2, a perfect model of a1’s runtime on hard
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instances may not be needed to discriminate between the two algorithms. The process
of gathering data can be made much easier by capping the runtime of each algorithm at
some maximum and recording these runs as having terminated at the captime. This ap-
proach is safe if the captime is chosen so that it is (almost) always signi cantly greater
than the minimum of the algorithms’ runtimes; if not, it might still be preferable to sac-
ri ce some predictive accuracy for dramatically reduced model-building time. Note that
if any algorithm is capped, it can be dangerous (particularly without a log transforma-
tion) to gather data for any other algorithm without capping at the same time, because
the portfolio could inappropriately select the algorithm with the smaller captime.

3.4 Case Study Results

Fig. 7 shows the performance of the smart feature computation discussed in section 3.1,
with the upper part of the bar indicating the time spent computing features. Compared
to computing all features, we reduce overhead by almost half with nearly no cost in
running time.
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 Average Runtime % Optimal Average % Suboptimal 

(Optimal) 216.4 s 100 0 

Log 236.5 s 97 9 

Cuberoot 225.6 s 89 17 

Linear 225.1 s 81 1284 

Table 1. Portfolio Results

Table 1 shows the effect of our response variable transformations on average run-
time, percent optimal and average percent suboptimal. The  rst row has results that
would be obtained by a perfect portfolio. As discussed in section 3.2, the linear (iden-
tity) transformation yields the best average runtime, while the log function leads to bet-
ter algorithm selection. We tried several transformation functions between linear and

125



log. Here we only show the best, cube root: it has nearly the same average runtime
performance as linear, but also made choices nearly as accurately as log.

4 Focused Algorithm Design

Once we have decided to select among existing algorithms using a portfolio approach, it
is necessary to reexamine the way we design and evaluate algorithms. Since the purpose
of designing new algorithms is to reduce the time that it will take to solve problems,
designers should aim to produce new algorithms that complement an existing portfolio.
First, it is essential to choose a distribution D that re ects the problems that will be
encountered in practice. Given a portfolio, the greatest opportunity for improvement is
on instances that are hard for that portfolio, common in D, or both. More precisely,
the importance of a region of problem space is proportional to the amount of time the
current portfolio spends working on instances in that region. This is analogous to the
principle from boosting that new classi ers should be trained on instances that are hard
for the existing ensemble, in the proportion that they occur in the original training set.

4.1 Inducing Hard Distributions

Let Hf be a model of portfolio runtime based on instance features, constructed as the
minimum of the models that constitute the portfolio. By normalizing, we can reinter-
pret this model as a density function hf . By the argument above, we should generate
instances from the product of this distribution and our original distribution, D. However,
it is problematic to sample from D ·hf : D may be non-analytic (an instance generator),
while hf depends on features and so can only be evaluated after an instance has been
created.

One way to sample from D · hf is rejection sampling [1]: generate problems from
D and keep them with probability proportional to hf . This method works best when
another distribution is available to guide the sampling process toward hard instances.
Test distributions usually have some tunable parameters −→p , and although the hardness
of instances generated with the same parameter values can vary widely, −→p will often
be somewhat predictive of hardness. We can generate instances from D · hf in the
following way:5

1. Create a hardness model Hp with features −→p , and normalize it to create a pdf, hp.
2. Generate a large number of instances from D · hp.
3. Construct a distribution over instances by assigning each instance s probability

proportional to Hf (s)
hp(s) , and select an instance by sampling from this distribution.

Observe that if hp turns out to be helpful, hard instances from D · hf will be en-
countered quickly. Even in the worst case where hp directs the search away from hard

5 In true rejection sampling step 2 would generate a single instance that would be then accepted
or rejected in step 3. Our technique approximates this process, but doesn’t require us to nor-
malize Hf and allows us to output an instance after generating a constant number of samples.

126



instances, observe that we still sample from the correct distribution because the weights
are divided by hp(s).

In practice, D may be factored as Dg ·Dpi
, where Dg is a distribution over otherwise

unrelated instance generators with different parameter spaces, and Dpi
is a distribution

over the parameters of the chosen instance generator i. In this case it is dif cult to
learn a single Hp. A good solution is to factor hp as hg · hpi

, where hg is a hardness
model using only the choice of instance generator as a feature, and hpi

is a hardness
model in instance generator i’s parameter space. Likewise, instead of using a single
feature-space hardness model Hf , we can train a separate model for each generator
Hf,i and normalize each to a pdf hf,i.6 The goal is now to generate instances from the
distribution Dg · Dpi

· hf,i, which can be done as follows:
1. For every instance generator i, create a hardness model Hpi

with features −→pi , and
normalize it to create a pdf, hpi

.
2. Construct a distribution over instance generators hg , where the probability of each

generator i is proportional to the average hardness of instances generated by i.
3. Generate a large number of instances from (Dg · hg) · (Dpi

· hpi
)

(a) select a generator i by sampling from Dg · hg

(b) select parameters for the generator by sampling from Dpi
· hpi

(c) run generator i with the chosen parameters to generate an instance.
4. Construct a distribution over instances by assigning each instance s from generator

i probability proportional to Hf,i(s)
hg(s)·hpi

(s) , and select an instance by sampling from
this distribution.

4.2 Inducing Realistic Distributions
It is important for our portfolio methodology that we begin with a “realistic” D: that
is, a distribution accurately re ecting the sorts of problems expected to occur in prac-
tice. Care must always be taken to construct a generator or set of generators producing
instances that are representative of problems from the target domain. Sometimes, it is
possible to construct a function Rf that scores the realism of a generated instance based
on features of that instance; such a function can encode additional information about
the nature of realistic data that cannot easily be expressed in a generator. If a function
Rf is provided, we can construct D from a parameterized set of instance generators by
using Rf in place of Hf above and learning rp in the same way we learned hp. This
can allow us to make informed choices when setting the parameters of instance gener-
ators, and also to discard less realistic data after it has been generated. Note that when
inducing hard distributions a hardness model had to be used because it was infeasible
to score each sample by actual portfolio runtime. In the case of inducing realistic dis-
tributions this is no longer a problem, because the realism function can be evaluated
on each sample. Therefore, our rejection sampling technique is guaranteed to generate
instances with increased average realism scores. The use of parameter-space models rp

can still improve performance by reducing the number of samples needed for obtaining
good results.

6 However, the case study results presented in  gs. 8–10 use hardness models Hf trained on
the whole dataset rather than using models trained on individual distributions. Learning new
models would probably yield even better results.
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4.3 Case Study Results

Due to the wide spread of runtimes in our composite distribution D (7 orders of mag-
nitude) and the high accuracy of our model hf [10], it is quite easy for our technique
to generate harder instances. These results are presented in  g. 8. Because our runtime
data was capped, there is no way to know if the hardest instances in the new distri-
bution are harder than the hardest instances in the original distribution; note, however,
that very few easy instances are generated. Instances in the induced distribution came
predominantly from the CATS “arbitrary” distribution, with most of the rest from “L3”.

To demonstrate that our technique also works in more challenging settings, we
sought a different distribution with small runtime variance. As it happens, there has
been ongoing discussion in the WDP literature about whether those CATS distributions
[11] that are relatively easy could be con gured to be harder (see e.g., [4, 16]). We
consider two easy distributions with low variance from CATS, matching and schedul-
ing, and show that they indeed can be made harder than originally proposed. Figures
9 and 10 show the histograms of the runtimes of the ideal portfolio before and after
our technique was applied. In fact, for these two distributions we generated instances
that were (respectively) 100 and 50 times harder than anything we had previously seen!
Moreover, the average runtime for the new distributions was greater than the observed
maximum running time on the original distribution.
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5 Discussion and Related Work

Although it is helpful, our analogy to boosting is clearly not perfect. One key differ-
ence lies in the way components are aggregated: classi ers can be combined through
majority voting, whereas the whole point of algorithm selection is to run only a single
algorithm. We instead advocate the use of learned models of runtime as the basis for
algorithm selection, which leads to another important difference. It is not enough for
the easy problems of multiple algorithms to be uncorrelated; the models must also be
accurate enough to reliably recommend against the slower algorithms on these uncor-
related instances. Finally, while it is impossible to improve on correctly classifying an
instance, it is almost always possible to solve a problem instance more quickly. Thus
improvement is possible on easy instances as well as on hard instances; the analogy to
boosting holds in the sense that focusing on hard regions of the problem space increases
the potential gain in terms of reduced average portfolio runtimes.

5.1 Algorithm Selection

It has long been understood that algorithm performance can vary substantially across
different classes of problems. Rice [13] was the  rst to formalize algorithm selection
as a computational problem, framing it in terms of function approximation. Broadly, he
identi ed the goal of selecting a mapping S(x) from the space of instances to the space
of algorithms, to maximize some performance measure perf(S(x), x). Rice offered few
concrete techniques, but all subsequent work on algorithm selection can be seen as
falling into his framework. We explain our choice of methodology by relating it to
other approaches for algorithm selection that have been proposed in the literature.

Parallel Execution One tempting alternative to portfolios that select a single algo-
rithm is the parallel execution of all available algorithms. While it is often true that
additional processors are readily available, it is also often the case that these processors
can be put to uses besides running different algorithms in parallel, such as paralleliz-
ing a single search algorithm or solving multiple problem instances at the same time.
Meaningful comparisons of running time between parallel and non-parallel portfolios
require that computational resources be  x ed, with parallel execution modelled as ideal
(no-overhead) task swapping on a single processor. Let t∗(x) be the time it takes to
run the algorithm that is fastest on instance x, and let n be the number of algorithms.
A portfolio that executes all algorithms in parallel on instance x will always take time
nt∗(x). On the data from our case study such parallel execution has roughly the same
average runtime as winner-take-all algorithm selection (we have three algorithms and
CPLEX is three times slower than the optimal portfolio), while our techniques do much
better, achieving running times of roughly 1.05t∗(x).

In some domains, parallel execution can be a very effective technique. Gomes and
Selman [3] proposed such an approach for incomplete SAT algorithms, using the term
portfolio to describe a set of algorithms run in parallel. In this domain runtime depends
heavily on variables such as random seed, making runtime dif cult to predict; thus
parallel execution is likely to outperform a portfolio that chooses a single algorithm.
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In such cases it is possible to extend our methodology to allow for parallel execution.
We can add one or more new algorithms to our portfolio, with algorithm i standing as
a placeholder for the parallel execution of ki of the original algorithms; in the training
data i would be given a running time of ki times the minimum of its constituents. This
approach would allow portfolios to choose to task-swap sets of algorithms in parts of the
feature space where the minimums of individual algorithms’ runtimes are much smaller
than their means, but to choose single algorithms in other parts of the feature space.
Our use of the term “portfolio” may thus be seen as an extension of the term coined by
Gomes and Selman, referring to a set of algorithms and a strategy for selecting a subset
(perhaps one) for parallel execution.

Classi cation Since algorithm selection is fundamentally discriminative—it entails
choosing the algorithm that will exhibit minimal runtime—classi cation is an obvious
approach to consider. Any standard classi cation algorithm (e.g., a decision tree) could
be used to learn which algorithm to choose given features of the instance and labelled
training examples. The problem is that such classi cation algorithms use the wrong er-
ror metric: they penalize misclassi cations equally regardless of their cost. We want to
minimize a portfolio’s average runtime, not its accuracy in choosing the optimal algo-
rithm. Thus we should penalize misclassi cations more when the difference between
the runtimes of the chosen and fastest algorithms is large than when it is small. This is
just what happens when our decision criterion is to select the smallest prediction among
a set of regression models that were  t to minimize root mean squared error.

A second classi cation approach entails dividing running times into two or more
bins, predicting the bin that contains the algorithm’s runtime, and then choosing the
best algorithm. For example, Horvitz et. al. [6, 14] used classi cation to predict runtime
of CSP and SAT solvers with inherently high runtime variance (heavy tails). Despite
its similarity to our portfolio methodology, this approach suffers from the use of a clas-
si cation algorithm to predict runtime. First, the learning algorithm does not use an
error function that penalizes large misclassi cations (off by more than one bin) more
heavily than small misclassi cations (off by one bin). Second, this approach is unable
to discriminate between algorithms when multiple predictions fall into the same bin.
Finally, since runtime is a continuous variable, class boundaries are arti cial. Instances
with runtimes lying very close to a boundary are likely to be misclassi ed even by a
very accurate model, making accurate models harder to learn.

Markov Decision Processes Perhaps most related to our paper is work by Lagoudakis
and Littman ([7, 8]). They worked within the MDP framework, and concentrated on
recursive algorithms (e.g. sorting, SAT), sequentially solving the algorithm selection
problem on each subproblem. This work demonstrates encouraging results; however,
its generality is limited by several factors. First, the use of algorithm selection at each
stage of a recursive algorithm can require extensive recoding, and may simply be impos-
sible with ‘black-box’ commercial or proprietary algorithms, which are often among the
most competitive. Second, solving the algorithm selection problem recursively requires
that the value functions be very inexpensive to compute; in our case study we found that
more computationally expensive features were required for accurate predictions of run-
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time. Finally, these techniques can be undermined by non-Markovian algorithms, such
as those using clause learning, taboo lists or other forms of dynamic programming.

Of course, our approach can also be described in an MDP framework, with each
action (choice of algorithm) leading to a terminal state, and reward equal to the negative
of runtime. Optimal policy selection is trivial given a good value function; thus the
key to success is good value estimation. Our approach emphasizes making the value
functions—that is, models of runtime—explicit, since this provides the best defense
against good but fragile policies. We do not describe our models as MDPs because the
framework is redundant in the absence of sequential decision-making.

Different Regression Approaches Lobjois and Lema ̂tre [12] select among several
simple branch-and-bound algorithms based on a prediction of running time. This work
is similar in spirit to our own; however, their prediction is based on a single feature and
works only on a particular class of branch-and-bound algorithms.

Since our goal is to discriminate among algorithms, it might seem more appropriate
to learn models of pairwise differences between algorithm runtimes, rather than models
of absolute runtimes. For linear regression (and the forms of nonlinear regression used
in our work) it is easy to show that the two approaches are mathematically equivalent.

5.2 Inducing Hard Distributions

It is widely recognized that the choice of test distribution is important for algorithm
development. In the absence of general techniques for generating instances that are both
realistic and hard, the development of new distributions has usually been performed
manually. An excellent example of such work is Selman et. al. ([18]), which describes
a method of generating SAT instances near the phase transition threshold, which are
known to be hard for most SAT solvers.

6 Conclusions

Just as boosting allows weak classi ers to work together effectively, algorithms can be
combined into portfolios to build a whole greater than the sum of its parts. First, we
have described how to build such portfolios. Our techniques can be elaborated to re-
duce the cost of computing features, to reduce the time spent gathering training data
by capping runs, and to strike the right balance between the penalties for mispredict-
ing easy and hard instances. Second, we argued that algorithm design should focus on
problem instances upon which a portfolio of existing algorithms spends most of its
time. We have provided techniques for inducing such distributions, and also for re ning
distributions to emphasize instances that have high scores on a given ‘realism’ func-
tion. We performed a case study on combinatorial auctions, and showed that a portfolio
composed of CPLEX and two older—and generally much slower—algorithms outper-
formed CPLEX alone by about a factor of 3. In future work, we aim to perform case
studies of our methodology on other hard problems; our  rst effort in this direction is a
portfolio of 10 algorithms which we have entered in the 2003 SAT competition.
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