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Abstract

The integration of a variety of Intelligence, Surveillance, and Reconnaissance (ISR) assets is
vital to the acquisition of knowledge critical to battle�eld success. Missions performed by a
penetrating Unmanned Aerial Vehicle (UAV) are of particular interest. The environment in
which UAVs must operate includes Surface-to-Air Missile (SAM) sites with extended ranges,
among other threats. SAM location uncertainty, terrain obscuration, and radar/sensor capa-
bilities all contribute to the complexity of the situation.

This thesis provides a game theoretic approach to determine optimal UAV strategies against
enemy SAM sites. It is shown that most characteristics of the UAV or SAM have negligible
e¤ects on both image quality Iq and probability of kill Pk (probability of the SAM shooting
down the UAV). Instead, SAM location uncertainty has the largest in�uence. After only 0.5
miles of uncertainty, the Pk of a UAV assuming perfect knowledge of the SAM location rises to
0.56. When the uncertainty rises to about four miles, the Pk rises to 0.99.

When the UAV takes uncertainty into account, the results are not much better. Assuming
that the SAM may be at one of three possible locations, the result is an average Pk of 0.49
or 0.79, depending on which optimization routine was used. Extending this situation to �ve,
seven, and nine possible SAM locations results in an increase in Pk to 0.99 at seven locations.
An even more realistic scenario involving the UAV optimizing a path through a large area of
varying probabilities results in an 85% chance of getting shot down if the SAM is located within
a �ve mile radius of the center of the area. Outside of this area, the UAV is guaranteed to
get shot down with a Pk of 0.99. Other techniques and methods must be explored and used in
combination with Radar Cross Section (RCS) management to ensure the continuing collection
of valuable ISR imagery in the coming years.

Thesis Supervisor: Randy Avent
Title: Leader, Group 61
MIT Lincoln Laboratory

Thesis Supervisor: Charles Coleman
Title: Boeing Assistant Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

When it becomes necessary to plan or engage in armed combat with an adversary, persistent

and accurate knowledge of the enemy is perhaps the most important tool available to military

commanders. That knowledge provides a plethora of critical information, such as enemy

air defense locations, troop strength, or command structure, which allows friendly forces the

opportunity to adapt and react. The seamless integration of a variety of ground, air, and space

assets is vital to the acquisition of that knowledge and to the success of a particular battle

or war. This thesis focuses on Intelligence, Surveillance, and Reconnaissance (ISR) missions

performed by a penetrating Unmanned Aerial Vehicle (UAV).

The environment in which UAVs must operate during combat is dynamic and dangerous.

Surface-to-Air Missile (SAM) sites with extended ranges and advanced missile capabilities pose

a dire threat to penetrating aircraft. The locations of individual SAM sites may be uncertain

or unknown. Terrain obscuration and radar/sensor capabilities also play a large factor in

determining the outcome of such engagements. To that end, the goals of this thesis are the

following:

� To investigate the use of a game-theoretic approach in determining optimal UAV strategies

against enemy SAM sites.

� To model the radar detection and image acquisition processes for this speci�c combat

situation.

� To determine the feasibility of an algorithmic approach to UAV path planning.
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Area (km2) IAs Needed
North Korea 120,540 2,143
Iraq 437,072 7,771
Afghanistan 647,500 11,512
China 9,596,960 170,613

Table 1.1: Number of Image Analysts Needed for Various Countries

1.1 SAMs

SAMs have become increasingly more sophisticated. The SA-6 "Gainful" was introduced in

the 1960s and can detect aircraft up to 150 km away [34]. The SA-10 "Grumble," introduced

in 1980, was designed to shoot down low altitude, high speed aircraft or missiles and can detect

and engage targets at a range of over 200 km [34]. Most recently, the SA-20 "Triumf," scheduled

to deploy in 2005, can engage targets as far as 400 km away [34]. This type of advanced SAM

can severely hinder the ability of aircraft to obtain precise, high resolution imagery. A more

extensive discussion of the history and development of SAMs is located in Appendix A.

Before the start of an engagement, the probable locations of di¤erent SAMs are often known.

However, once the battle commences, the SAMs are usually moved quickly and become very

di¢ cult to locate. The resulting problem then becomes �nding SAMs that are dispersed

throughout a region.

1.2 Human Analysis

One way to �nd the SAM sites is to use human image analysts (IAs) to physically scrutinize

every image taken over the entire region by satellites or other assets with a wide �eld of view

(FOV). However, it takes on average 30 minutes for eight IAs to identify targets in a 25 km2

image [52]. Using the fact that SAMs typically move every nine hours, �nding every SAM

location using this method is impossible. Table 1.1 illustrates this point. A country like

China with an area of almost 10 million km2 would require over 170,000 image analysts to fully

search the entire region. Even a smaller country like North Korea would require over 2,000

IAs. Clearly, another method must be found.
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Area (km2) IAs Needed for ATR
North Korea 120,540 2,462
Iraq 437,072 8,924
Afghanistan 647,500 13,220
China 9,596,960 195,938

Table 1.2: Number of Image Analysts Needed To Resolve False Alarms

1.3 Automatic Target Recognition

Software that attempts to automatically recognize certain targets is called automatic target

recognition (ATR). ATR utilizes a library of images of di¤erent targets taken at certain de-

pression angles with varying azimuth angles. When given a new image, ATR algorithms will

calculate the probability of �nding a certain target according to a Gaussian probability dis-

tribution. It will then minimize the mean square error, which is a measure of the di¤erences

between the new image and the target library. This is equivalent to �nding the maximum of the

probabilities, which then gives the resulting identi�cation. However, a minimum probability

threshold must be set for detection of the target. This threshold causes a certain amount of

false alarms to be generated. A false alarm occurs when a target is reported to be identi�ed

but does not actually exist.

A typical receiver operating characteristics (ROC) curve is shown in Figure 1-1 with the

bottom axis on a logarithmic scale. As the probability of detecting the target increases, the

number of false alarms per square kilometer increases as well. If it were assumed that a 90%

probability of detection is su¢ cient, then a false alarm rate of 4.9 per square kilometer must be

processed accordingly. On average, it takes IAs two minutes to resolve a false alarm. Referring

back to the countries in Table 1.1, it is clear that this false alarm rate would overwhelm available

resources. The speci�c numbers of IAs needed in this case are detailed in Table 1.2. Searching

North Korea for possible SAM locations would still require over 2,000 IAs. Thus, ATR does

not signi�cantly reduce the demand for IAs.

One way to decrease the number of IAs needed is to reduce the search area by performing

terrain delimitation. Approximately 40% of North Korea is not tra¢ cable, meaning it would be

impossible to place a SAM in those areas. This leaves only 60% of the country to be searched.

However, that only reduces the number of IAs needed by 985, leaving a requirement of well
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Figure 1-1: Typical ROC Curve. The probability of detecting the target is on the left side of
the graph, and the the number of false alarms per square kilometer is on the bottom axis on
a logarithmic scale. If a 90% probability of detection is desired, then a false alarm rate of 4.9
per square kilometer must be processed accordingly.
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over 1,000 IAs. Although more sophisticated ATR algorithms could decrease the false alarm

rate, the practical impact on the number of IAs needed would be insigni�cant.

1.4 Cueing Strategy

The logical extension of this reasoning leads to multiple sensors. One popular implementation

involves using a wide FOV sensor cueing a narrow FOV sensor. The wide FOV sensor must be

utilized with a low detection threshold, producing many false alarms. It would be a passive,

satellite system that can search large areas. After identifying an area of interest, the wide FOV

sensor will cue a di¤erent sensor with higher resolution capabilities. This sensor will have a

narrower FOV and will perform single-class identi�cation because it already knows the target

is somewhere within the cued area. Figure 1-2 demonstrates the high probability of successful

identi�cation for a narrow FOV sensor searching a small area. Given those results, a strategy

involving wide FOV sensors cueing narrow FOV sensors makes sense. However, due to the

limited supply of narrow FOV satellites, a high resolution image could incur a time penalty of

up to several days as the satellite must position itself appropriately. Since SAMs will move

on average every nine hours, the belated satellite image would be inconsequential. Thus, the

narrow FOV sensor must be an airborne asset.

A comparison of various sensor platforms and their associated FOVs is shown in Figure 1-3.

A satellite system such as the future Space Based Radar (SBR) constellation has a very large

FOV whereas the E-8 JSTARS aircraft has a much smaller FOV and high resolution. However,

airborne assets such as the E-8 are not well suited to this particular mission. They would be

unable to penetrate deep inside enemy territory due to their vulnerability to the SAM threat.

They could remain a certain distance away from an area of operations, but that would severely

hinder their ability to gather ISR data on targets deep within enemy territory. At that distance,

terrain obscuration becomes a serious problem. Figures 1-4 and 1-5 depict the probability of

blockage (PB) in Iraq and North Korea at altitudes of 65,000 ft and 15,000 ft, which represent

typical operating altitudes of the RQ-4 Global Hawk and RQ-1 Predator UAVs, respectively.

Although Iraq�s �at desert areas imply low values of PB, the PB for the Global Hawk rises to

almost 50% at a distance of 100 miles in North Korea, and the PB for the Predator is even
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Figure 1-2: Probability of Successful Identi�cation. This value on the left axis decreases only
slightly as the search area gets larger on the bottom axis. These results show that a narrow
FOV sensor can more easily identify a target in a small search area. If that step is a component
in a cueing strategy involving multiple sensors, then numerous identi�cations could be made
without requiring large numbers of image analysts.
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Figure 1-4: Probability of Blockage for Global Hawk UAV. Flying at 65,000 ft, the Global
Hawk UAV has a much better view of the target and has less obstructions in its way. In Iraq,
its probability of blockage rises only to 3% at 100 miles. In North Korea, it rises to about 48%
at 100 miles from a low of 20% at 43 miles.
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Figure 1-5: Probability of Blockage for Predator UAV. Flying at 15,000 ft, the Predator UAV in
general has a more obstructed view of the target than the Global Hawk. In Iraq, its probability
of blockage rises 16% at 100 miles. In North Korea, it rises to over 80% at 100 miles from a
low of 65%, e¤ectively hindering the Predator�s e¤orts to acquire images throughout most of
the country at a majority of angles.
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higher. The conclusion is that the narrow FOV airborne asset must be able to travel deep

inside enemy territory, and the best type of aircraft for that mission is a penetrating UAV.

1.5 Penetrating UAVs

UAVs have many unique advantages over manned systems. They are often smaller, more

maneuverable, and more e¢ ciently designed. They can operate for extended periods of time

while avoiding the risk of placing human pilots in dangerous situations. UAVs have proven to

be highly reliable and e¤ective in both intelligence-gathering operations as well as missions to

put bombs on target. They are discussed in more depth in Appendix B.

Once given the cue from a wide FOV sensor, the penetrating UAV must be routed to the

area of interest to �nd the SAM site. Conversely, the SAM will do its best to shoot down

the UAV. Within this problem lies a simple game with two competing sets of strategies. The

UAV�s strategies comprise the multitude of di¤erent paths it could take to enter the area,

identify the SAM, and depart the area. The SAM�s strategies involve the timing of the missile

launches and the uncertainty in its location. Using the theory of games, the chances of the

UAV successfully completing its mission can be analyzed.

The scope and complexity of the situation and problem described thus far is vast. Many

factors contribute to the eventual UAV and SAM strategies chosen through game theoretic

optimization. Figure 1-6 provides a block diagram of the essential components of the entire

process. x is de�ned as the set of UAV strategies, and y is de�ned as the set of SAM strategies.

Di¤erent performance metrics are calculated to give a resulting payo¤ for each strategy. Those

payo¤s are then used by the game theoretic optimization process to calculate the optimal UAV

and SAM strategies, x and y. Each component of the block diagram in Figure 1-6 is explained

in more depth in subsequent chapters.

1.6 Scenarios

The game between the UAV and SAM is analyzed in four separate cases with increasing levels

of complexity. In the �rst case, the SAM�s location is assumed to be known and �xed. This

knowledge could be derived from the predictive archive, which is a collection of information
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Figure 1-6: Block Diagram of Main Process. Inputs include the UAV strategies, x, and the
SAM strategies, y. Di¤erent metrics then combine to give payo¤s for each strategy. Those
payo¤s are then fed into the game theoretic optimization.

from past engagements and intelligence operations. The UAV�s strategies will include optimal

trajectories that minimize its probability of kill (probability of getting shot down) based on

that known location. This case is probably the most unrealistic due to the high uncertainty in

SAM locations. However, it does provide a valuable baseline for comparison to other cases.

The second case encompasses the �rst one but introduces uncertainty in the location of the

SAM site. It is assumed that the UAV is not "smart" and thus does not take the uncertainty

into account. Thus, the e¤ect on the UAV�s probability of kill and other variables is shown

for increasing uncertainty in the SAM location. This case brings a certain amount of reality

to the ideal scenario in case one.

The third case builds on the second case and assumes that the UAV has now increased its

knowledge of the SAM and will act more intelligently. Typical battle�eld intelligence from

the predictive archive may suggest that the SAM is at one of N possible locations. The �rst

scenario uses three possible SAM locations, and later analysis depicts results from �ve, seven,

and nine possible SAM locations. Each SAM location is given a certain probability that the

SAM is actually located there. Thus, the UAV must attempt to use the known probabilities

and locations to optimize its trajectory more intelligently.

The fourth and �nal case represents the most realistic scenario. A wide FOV asset such

as electrical intelligence (ELINT) satellites or Defense Support Program (DSP) satellites will

pass a cue to the penetrating UAV, which must then search an area for the target. Usually
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de�ned by an ellipse, the cued region will contain di¤erent areas with varying probabilities that

the SAM is actually located there. The UAV must use its knowledge of the elliptical region

and the associated probabilities to obtain an accurate target identi�cation while minimizing

its probability of kill throughout the area. These four cases embody the full spectrum of

uncertainty in SAM location.
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Chapter 2

UAV Strategies

The formulation of the UAV�s strategies �rst involves de�ning the locations of a series of way-

points. For practical purposes, the actual space surrounding the SAM is divided into a large

number of waypoints through which the UAV can travel. This simpli�cation makes the opti-

mization routines more tractable. The locations of the waypoints are in concentric circles from

the inner radius of the SAM out to its detection radius. The waypoints are also divided ver-

tically into a number of altitude layers. Each di¤erent combination of these waypoints results

in a unique UAV trajectory. Figure 2-1 depicts this step along with the other components of

this process.

After �nding all possible permutations of the de�ned waypoints, individual paths are elimi-

nated from the set based on limitations on UAV turning capabilities, line of sight, and terrain.

These limitations are discussed later in this chapter.

2.1 Combinatorial Problems

It becomes immediately clear that a combinatorial problem arises. Consider a SAM with an

inner radius of 20 km, an outer radius of 40 km, radius steps every 10 km, and height steps

every 4,000 meters. That combination of parameters would yield 144 waypoints (for a �ve

degree swath). A more realistic set of paramters might be the following: an inner radius of 20

km, an outer radius of 100 km, radius steps of 5 km, and height steps every 2,000 meters. This

combination would produce 1,584 waypoints (for a seven degree swath), severely increasing the
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Figure 2-1: UAV Strategy Creation. Each waypoint is �rst de�ned. The set of generated
waypoints are then permuted to obtain a large sample of possible UAV paths. Those paths
which run into terrain, lose line-of-sight with the SAM, and surpass turning capabilities are
then eliminated to give only the feasible set of UAV paths.
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number of possible UAV trajectories. The number of waypoints can be calculated according

to the following equation:

# Waypoints =

�
(RadOuter �RadInner)

StepRad
+ 2

�
� (Deg Swath+ 1) �

�
20; 000

StepHeight
+ 1

�
: (2.1)

If there were only �ve waypoints, 120 di¤erent permutations (UAV paths) could be constructed,

and that number only includes paths which pass through all �ve waypoints once, which is a

smaller set than the total number of theoretical paths. If there were 10 waypoints, more than

three and a half million permutations could be found. This set of permutations increases

according to the factorial of the number of waypoints. Due to this sharp increase, the set of

possible permutations for 144 or 1,584 waypoints becomes extremely large, which eliminates

this method of path creation as a possibility.

2.2 Typical Aircraft Tactics

Thus, a di¤erent scheme is used to generate the UAV paths. Common sense dictates that

the �rst strategy of any aircraft near a SAM would be to simply avoid it. In this case, the

UAV�s mission necessitates penetration of the SAM radius. Thus, its second strategy may

be to perform terrain-following maneuvers. In other words, the UAV could hide behind hills,

�y inside valleys, and use terrain to mask its presence to the SAM radar. Flying close to

the ground will also help the UAV�s radar echo blend in with the ground clutter, which is the

radar return re�ected from physical features on the ground. Other options for the UAV may

be to enter the SAM radius at high altitudes, descend quickly to obtain an image, and depart

at low altitude. Conversely, the UAV could enter low and depart high or perform di¤erent

combinations of entering and exiting strategies [2].

One maneuver used by pilots is to "beam" the radar, which means to �y orthogonal to the

radar beam [2]. This produces a zero Doppler velocity (radial velocity) and makes it appear

to the radar as if the aircraft is just a part of the ground or sky. The Doppler shift describes

the shift in wavelength of a moving object as opposed to what that wavelength would be if the

object were at rest. This shift in wavelength can be related to the frequency of the re�ected

radar waves and to the velocity of the object, which is the UAV in this case. Figure 2-2
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Figure 2-2: Doppler Shift. The bottom axis depicts whether the target is receding or approach-
ing. At the frequency of stationary targets, the signal gets quite large due to the ground and
other stationary objects in the path of the radar beam. To ingore those objects as clutter,
the radar must establish limits on the frequency with the intent that nothing below a de�ned
threshold is really moving. If the UAV�s Doppler velocity can stay below that threshold, it can
successfully avoid radar detection.

illustrates the concept of using the Doppler shift to the UAV�s advantage.

The bottom axis depicts whether the target is receding or approaching. At the frequency

of stationary targets, the signal gets quite large due to the ground and other stationary objects

in the path of the radar beam. To ingore those objects as clutter, the radar must establish

limits on the frequency with the intent that nothing below a de�ned threshold is really moving.

If the UAV �ies orthogonal to the radar beam, its radar echo is enveloped by the signals of

stationary targets. This makes it appear to the radar as if the UAV is just a part of the

ground. However, the UAV�s Doppler velocity must stay below the radar-de�ned threshold,

which represents the lowest possible speed at which a target can be detected. A value of 5

km/hour is shown in Figure 2-2. The concept of the Doppler shift and a full discussion of

radar is included in Appendix C.
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Figure 2-3: Possible Types of UAV Paths. The UAV could come in high and depart low, come
in low and depart high, or come in and depart at the same altitude. Additionally, it could
travel deep into the SAM radius or stay on the edge. It could �y straight in, use a zigzag
pattern, or use the beaming maneuver frequently. Regardless, the beaming maneuver is always
used for every path while taking the image.

2.3 UAV Strategy Formulation

Using many of the tactics outlined in the previous section, the UAV paths can then be generated.

The resulting types of trajectories (Figure 2-3) closely resemble the previously discussed pilot

maneuvers. The UAV could enter the SAM radius at a certain height and depart at the same

height. Its path could be a straight line in and out to give the fastest mission completion

time. The path could be zigzagged to present di¢ culties for the SAM radar, or it could use

the beaming technique both while approaching the SAM and while departing. In addition, the

UAV can start a trajectory at high altitudes and return at low altitudes or start at low altitudes

while returning at high altitudes. All of these various UAV paths are depicted in Figure 2-3.

The characteristic that remains constant throughout all the paths is the fact that while taking

the image, the UAV is beaming the radar. Since the majority of sensors are side-looking, this

assumption also simpli�es the problem of having the SAM in the appropriate �eld of view to
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take the image.

2.3.1 Turn Constraints

The set of created paths is then sorted to eliminate the paths that are not possible due to

various reasons. Those paths which are not possible due to the turn constraints of the UAV

are �rst eliminated. The turn limitation is mostly dependent on the speed of the UAV, and

this constraint usually eliminates about 25% of the paths. The �rst step is to calculate the

vector between two sets of waypoints as follows:

q1 = wi+2 � wi+1 (2.2)

q2 = wi+1 � wi;

where wi is a waypoint location, and qi is a vector. The angle between the two resulting vectors

is then found using the formula for the dot product:

� = arccos

�
q1 � q2
jq1j jq2j

�
; (2.3)

where � is the angle between the vectors q1 and q2. The minimum possible turn radius between

these points is then calculated as follows:

rmin =
v2

g
p
n2max � 1

; (2.4)

where v is the velocity of the aircraft, g is the acceleration of earth�s gravity (9:8 m=s2), and

nmax is the maximum sustainable load factor. If a human is in the cockpit, nmax would be

nine times the value of g. Once rmin is found, it can be inserted into Equation 2.5:

�max = arctan

�
v2

g � rmin

�
: (2.5)

The resulting value of �max is then compared with the previously calculated value of � from

Equation 2.3. If � is greater than �max, the path containing that speci�c set of waypoints is

then eliminated. This process is repeated for every set of waypoints along every possible UAV

29



path.

2.3.2 Line of Sight Obscuration

The next constraint deals with visibility. To obtain an image, the UAV must have the SAM

in its line of sight (LOS). In other words, no terrain features can obstruct the straight line

connecting the UAV�s sensor to the SAM location. Thus, the next step involves using Digital

Terrain Elevation Data (DTED) sets to ensure clear LOS is present, which eliminates on average

a third of the remaining paths. DTED sets were developed by the National Imagery and

Mapping Agency (NIMA), now the National Geospatial-Intelligence Agency (NGA), in support

of military applications. They provide a matrix of terrain elevation values for most parts of the

world in three di¤erent levels. Level 0 DTED provides elevation data at a spacing of roughly

one kilometer. Level 1 DTED (used by this author) provides data every 100 meters, which

is similar to a 1:250,000 scale map. Finally, Level 2 DTED provides data roughly every 30

meters.

The imaginary lines connecting the UAV and the SAM is found for the set of points during

which the UAV will be taking an image of the SAM. The height of the terrain is found at each

point and compared with the UAV altitude. This process is then repeated incrementally with

a small step size along the imaginary line until the SAM is reached. If the height of the terrain

interferes just once with the imaginary line, then the associated UAV path is eliminated from

the set.

2.3.3 Terrain Limitations

The �nal step in the process of creating the UAV strategies is to ensure that the UAV does not

�y into any terrain. Using the DTED sets once again, this step compares the UAV�s height,

h, at each point along each UAV path with the terrain elevation at that point, hmin. If h is

less than hmin, the associated UAV path is eliminated from the set. Interpolation between

waypoints is performed to ensure accuracy. This step eliminates another tenth of the possible

paths. These numbers are simply rough averages since the actual number of path eliminations

depends entirely on the UAV and the region�s terrain. However, it is quite feasible to have an

initial set of 330 paths, for example, be cut down to only 146 valid ones.
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Figure 2-4: Terrain Map of North Korea (NASA). The intensity and variation of light brown,
dark brown, and green spots gives a view of the roughness of terrain in North Korea. This
environment is a good challenge to test out a program using terrain-avoidance code.

For this simulation, the SAM�s location (initially �xed) was chosen to be at 126.75 deg E

longitude and 38.75 deg N latitude, which lies directly in the center of North Korea. This

location was chosen mostly because of the rough variety of terrain encountered, which provides

good challenges to terrain avoidance and line of sight calculations. Figure 2-4 provides an

excellent view of the mountainous regions in North Korea.

2.4 Image Quality

The UAV�s mission is to identify a target after receiving a cue from a wide FOV asset. There-

fore, an important metric to describe each UAV path is the quality of the image taken. For

many years, image scale, resolution, and other image quality measures were the only tools avail-

able to evaluate the quality of an image. However, they were never adequate enough to predict
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the interpretability of an image. In the early 1970s, a collaboration of government and contract

workers developed the National Imagery Interpretability Rating Scale (NIIRS) for the Imagery

Resolution And Reporting Standards (IRARS) Committee [23]. Image analysts �rst de�ned

a standard set of interpretation tasks that they were commonly asked to perform. They were

then given sets of images with pre-determined and varying quality and asked to describe the

interpretation tasks that could be performed on the images. The original 10-level scale grew

out of this study. Over the years, it has evolved many times, especially since many objects in

the original NIIRS list became outdated [23]. NIIRS is now the standard scale used by image

analysts, scientists, designers, and managers. It is task-based in that each NIIRS level implies

di¤erent tasks that can be performed by an analyst [23]. With this tool, one can asses image

quality as well as provide quanti�able means for expressing sensor system requirements. Four

separate NIIRS scales have been developed: Radar NIIRS, Visible NIIRS, Infrared (IR) NIIRS,

and Multispectral (MS) NIIRS [23]. These scales consist of 10 graduated levels (0 to 9) with

every increase in level signifying a similar increase in image quality and in the di¢ culty of the

interpretation task required by the analyst. More information on the history and development

of NIIRS can be found in Appendix D.2.1, and lengthy descriptions of the four scales are located

in Appendix E. Additionally, information on modern sensors such as synthetic aperture radar

(SAR) or electro-optical (EO) sensors is found in Appendix D.

The widespread use of NIIRS by sensor system developers led logically to the necessity of a

method or technique that will accurately predict a NIIRS level based on sensor attributes before

the actual sensor is built. Developed in the 1980s but not formally released until 1994, the

General Image Quality Equation (GIQE) predicts NIIRS as a function of predicted image scale,

sharpness or resolution, and signal-to-noise (S/N) ratio [22]. The GIQE was initially developed

under the IRARS Committee and used a regression modeling approach. Ten image analysts

conferred NIIRS ratings on samples of EO imagery. The characteristics of those samples were

then used to develop a regression model that predicted NIIRS as a function of perceptual quality

attributes of scale, resolution and sharpness, contrast, and noise [22]. The GIQE was released

to the UAV community in 1994 but has undergone many changes and improvements since that

time.
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The original EO GIQE is de�ned in Equation 2.6.

NIIRS = 11:81 + 3:32 log10

�
RERGM
GSDGM

�
� (1:48HGM )�

�
G

S=N

�
: (2.6)

RERGM is the geometric mean of the Relative Edge Response (RER), which relates to per-

ceived sharpness or acutance of the image. GSDGM is the geometric mean of the Ground Sam-

pled Distance (GSD), which measures both scale and resolution. EO system post-processing

techniques involve modulation transfer function compensation (MTFC), which increases edge

response and noise [22]. Thus, other terms were added to the GIQE to account for these

increases. HGM is the geometric mean of the height of the overshoot due to edge sharpening.

G is the noise gain due to edge sharpening, and the S/N provides for some modeling of con-

trast. The GIQE does not account for bandwidth compression (BWC), softcopy image output

prediction, or inclement weather [22].

RER is the slope of the edge system response and is found by measuring two points that

are 0.5 pixels from the edge using a normalization over the range of 0 to 1. GSD is found with

the following equation 2.7:

GSD =

��
pixel pitch
focal length

�
� slant range

�
cos(look angle)

: (2.7)

Both GSD and RER are computed along the X and Y axes, and then the geometric means are

found. H is found by measuring the maximum value over the range 1.0 to 3.0 pixels from the

edge at 0.25 pixel increments. The mean of this term is also found using the values along the

X and Y axes.

Substituting physical parameters wherever possible and using simpli�cations from Equation

2.7, Equation 2.6 then becomes the following:
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Figure 2-5: Block Diagram of Image Quality Calculations. The parameters for the best and
worst image quality are input into the GIQE to form a system of equations. The equation
constants are then solved for and inputted into the GIQE, which outputs the NIIRS Level as
the result of this process.

NIIRS = 11:81 + 3:32 log10

�
min (abs(Az � 90); abs(Az � 270))

R

�
(2.8)

+2 cos (abs(Dep� 45))� 1 + C1

�C2 �

0@ 1

log10

�
2:0736� 1030 �

�
1010

R4

��
1A ;

where C1 and C2 are equation constants. The main physical parameters that contribute to the

quality of an image are the range, R, the depression angle, Dep, and the azimuth angle, Az.

These variables occur repeatedly in Equation 2.8.

Using the previously de�ned relationships, the process of determining the image quality, Iq,

for each UAV trajectory is shown in Figure 2-5. It will be assumed here that Iq is synonymous

with NIIRS Level. The best (highest image quality) and worst (lowest image quality) values

of the three main physical parameters are outlined in Table 2.1.

The "worst" parameter values are substituted into Equation 2.8 to produce the top line
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Parameters Best Worst
Range (km) 20 200
Azimuth (deg) 90 180
Depression (deg) 45 0

Table 2.1: Best and Worst Parameter Values

of Equation 2.9. The "best" parameter values yield the bottom line of Equation 2.9. The

following system of GIQE equations can help derive a baseline for Iq calculations.

0 = �5:87 + C1 � (C2 � 0:0523) (2.9)

6:5 = �1:47 + C1 � (C2 � 0:0433):

The values of zero and 6.5 are NIIRS values that correspond to the worst and best parameter

values, respectively. The value of 6.5 value was obtained using published Raytheon data about

the capabilities of the Global Hawk�s Integrated Sensor Suite [16]. Solving the system of

equations yields C1 = 17:98 and C2 = 231:31. Substituting these values into Equation 2.8

gives the �nal modi�ed equation to calculate image quality.

NIIRS = 11:81 + 3:32 log10

�
min (abs(Az � 90); abs(Az � 270))

R

�
(2.10)

+2 cos (abs(Dep� 45))� 1 + 17:98

�231:31 �

0@ 1

log10

�
2:0736� 1030 �

�
1010

R4

��
1A :

Using a range of values for the two most in�uential parameters, azimuth and range, a color map

(Figure 2-6) was created to show the variation in image quality. Clearly, the best images are

obtained when the aircraft is at 90 or 270 degrees and as close to the SAM as possible. Using

the azimuth, range, and depression of the UAV at the points where an image is being taken,

an Iq is thus calculated for every UAV strategy.
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Figure 2-6: Color Map of Image Quality with Varying Azimuth and Depression. A range of
values for azimuth and range, the most in�uential parameters, are used to show the variation in
image quality. Clearly, the best images are obtained when the aircraft is at 90 or 270 degrees
(perpendicular to the SAM) and as close to the SAM as possible.
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Chapter 3

SAM Strategies

In a similar fashion, the SAM also creates its own strategies to counter those of the UAV. One

potential strategy is to �re a missile at the UAV when it �rst detects it. Another strategy is

more deceptive. The SAM will wait until the UAV has acquired its image and is outbound

before �ring a missile. This second strategy assumes the UAV will be more vulnerable after

completing over half of its trajectory without being �red upon. Both of these SAM strategies

involve the processes of detecting the UAV and tracking it, among other components.

3.1 Detections

Detecting the UAV is not a simple task. A block diagram of this process is located in Figure

3-1. The �rst step is to �nd a UAV (target) model. The model used here was created by the

use of the Lincoln Lab Component Object Radar Signatures (LL CORS) toolbox. LL CORS is

component-based, object-oriented Matlab code that coherently combines radar scattering from

various components on an aircraft (or any target) to produce a model of the UAV�s Radar Cross

Section (RCS).

The RCS, �, of a target is the magnitude of the echo signal re�ected by the target and

received by the radar [31]. It has also been de�ned more formally as "the area intercepting

that amount of power which, if radiated isotropically, produces the same received power in the

radar" [30]. RCS is an area, and its units are typically in meters squared or decibels. The

UAV�s strategies are created with the intent to minimize its RCS as much as possible. The
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Figure 3-1: Block Diagram of Detection Process. The model of the target is used to calculate
the S/N. Comparing this value to the minimum S/N gives a matrix of detection values. The
Doppler velocity minimum is also checked to determine whether the UAV�s Doppler velocity is
less, and thus the UAV would avoid detection.

SAM requires a certain level of RCS to even be able to detect the target. A more lengthy

discussion of RCS is located in Appendix C.2.

The LL CORS code involves the use of surface scattering, di¤racting edges, point scattering,

and special ring and joint scattering. Ready-made target models can be processed through

the program, or geometric shapes can be generated and combined within LL CORS to model a

certain target. Using a combination of cylinders and �at panels, a model UAV was created for

this simulation using LL CORS. That model is shown in Figure 3-2. This model was intended

to be similar in size and shape to the Predator UAV, although dimensions and proportions are

not exact. The model was then input into the RCS scattering simulations of LL CORS to

obtain a model of the UAV�s RCS from di¤erent angles. One of the outputs was the UAV�s

RCS as aspect angle is varied. An aspect angle of zero degrees means that one is looking

head-on at the UAV. An aspect angle of 90 degrees signi�es looking directly at the side of the

aircraft in the same plane as the front wings, and an aspect angle of 180 degrees means a tail

view. This graph is shown in Figure 3-3.

The model RCS remains relatively constant throughout the entire front section. 90 degrees

shows the sharpest increase in RCS to over 35 dB due to the sharp edges of the wings. The

RCS then slopes o¤ signi�cantly as the tail comes into view with lows of -35 dB. Only one
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Figure 3-2: UAV Model. Using a combination of cylinders and �at panels, this model UAV was
created for the simulation using LL CORS. This model was intended to be similar in size and
shape to the Predator UAV, although dimensions and proportions are not exact. It includes a
rounded, bulbous nose, a cylindrical body, two long-spanned front wings, and two smaller back
wings with increased dihedral.
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Figure 3-3: RCS of UAV Model with Varying Aspect Angle. The RCS remains relatively
constant throughout the entire front section. 90 degrees shows the sharpest increase in RCS
to over 35 dB due to the sharp edges of the wings. The RCS then slopes o¤ signi�cantly as the
tail comes into view with lows of -35 dB. Only one side of the aircraft is shown because the
model is completely symmetrical. Thus, a graph of RCS from 180 to 360 degrees would mirror
this graph, except in reverse. One other item to note is that the scattering was analyzed at a
frequency of ten GHz. This value is roughly similar to common X-band frequencies, which are
prevalent in �re-control radar systems.
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side of the aircraft is shown because the model is completely symmetrical. Thus, a graph of

RCS from 180 to 360 degrees would mirror the graph in Figure 3-3, except in reverse. One

other item to note is that the scattering was performed at a frequency of 10 GHz. This value

is roughly similar to common X-band frequencies, which is prevalent for SAM systems using

�re-control radar. However, di¤erent radars use di¤erent frequencies. Figure 3-4 shows the

RCS variation of the UAV model at an aspect angle of 90 degrees for frequencies in the range

of 5 to 7 GHz. The RCS is shown to vary by about 2 dB. Although this variation does

not seem signi�cant, di¤erent values of aspect angle may yield larger deviations for di¤erent

frequencies. In Figure 3-5 RCS is plotted on a color coded map versus azimuth and depression

angle. Clearly, the UAV�s RCS averages around 10 dB except for lows at the tail end and short

peaks at each wing. Those peaks bring about especially high RCS values when the depression

angle is at 90 or 270 degrees, which is looking directly at the top and bottom of the aircraft,

respectively. This view presents the largest area to the radar. Depression angles of zero or

180 degrees signify looking directly at the sides of the aircraft.

This model can then give an excellent approximation for the RCS of the UAV at any point

along its paths. Following along with the diagram in Figure 3-1, S/N is then calculated

according to the radar range equation, shown here in Equation 3.1.

S=N =
PtG

2�2�

(4�)3R4kTsBnL
: (3.1)

The radar equation relates the performance of a radar to its design parameters. Speci�cally,

it connects the properties of the target, the characteristics of the radar, and the attributes of

the propagation medium to obtain the range of the target and other values. It is mainly used

to determine the maximum range at which a target can be detected and is often referred to

as the radar range equation. It can also be modi�ed to yield the radar equation for track in

Equation C.15. S/N is essentially the ratio of the power received by the SAM�s radar to the

power of the noise (unwanted returns from other objects), and it is the standard measure of a

radar�s ability to detect a target at a given range. Unfortunately, speci�c values for power, Pt,

gain, G, and other radar characteristics are held tight. Thus, an educated assumption had to

be made that with a 10 dB S/N, a target with a zero dB RCS could just be detected at 120
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Figure 3-4: RCS of UAV Model as Frequency Varies. The frequencies at which radar waves
propagate vary somewhat from radar to radar. This �gure shows the RCS variation of the
UAV model at an aspect angle of 90 degrees for frequencies in the range of �ve to seven GHz.
The RCS is shown to vary by about two dB.
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Figure 3-5: Color Map of Model RCS with Varying Depression and Azimuth. Clearly, the
UAV�s RCS averages around 10 dB except for lows at the tail end and short peaks at each
wing. Those peaks bring about especially high RCS values when the depression angle is at
90 or 270 degrees, which is looking directly at the top and bottom of the aircraft, respectively.
This view presents the largest area to the radar. Depression angles of zero or 180 degrees
signify looking directly at the the sides of the aircraft.

43



km. This results in the simpli�cation of Equation 3.1 to the following:

S=N =

�
PtG

2�2

(4�)3kTsBnL

�
�

R4
=
CS=N � �
R4

; (3.2)

where CS=N is equal to 2:0736 � 1030. In this way, using the UAV�s RCS, �, and range, R,

from the SAM at every point, the S/N can be found as well. This equation can also be written

in the following manner:

S=N

(S=N)o
=
CS=N �

�
�
�o

�
�
R
Ro

�4 ; (3.3)

where (S=N)o = 10 dB, �o = 0 dB, and Ro = 120 km. To provide an illustration of this

part of the detection process, a sample path was chosen (Figure 3-6). On this path, the UAV

travels (while slowly descending) at an altitude of about 5,000 m using the beaming technique

periodically throughout its trajectory in and out of the SAM radius. The S/N of this path was

then graphed versus time to give Figure 3-7, which clearly shows the RCS peaks as the UAV

turns to face the SAM head on after recovering from periods of beaming.

The detection cuto¤ value of 10 dB essentially describes the lowest detectable S/N for

detecting a target. A majority of points along the path in Figure 3-7 would be treated as

detections because they are above that 10 dB threshold. Those points below 10 dB would be

ignored as part of the ground or atmospheric clutter and treated as non-detections.

A �nal check is made to see if the UAV�s Doppler velocity is greater or less than the Doppler

cuto¤ at every point. The Doppler cuto¤ was previously discussed and represents the lowest

speed at which a target can be detected. The Doppler velocity is found using the following

equation:

vD = vi � cos(�i); (3.4)

where vi is the UAV velocity and �i is the angle between the UAV�s heading and the line

connecting the UAV and the SAM. If vD is greater than 5 km/hr, the Doppler cuto¤, then the

detection remains unchanged. If less, a detection is automatically changed to a non-detection

because the object is assumed to be stationary by the radar.
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Figure 3-6: Sample UAV Trajectory. This path slowly descends on one level of a SAM�s
hypothetical sphere encompassing its detection range. The UAV�s altitude averages around
5,000 meters, and it uses the beaming technique periodically throughout its trajectory in and
out of the SAM radius.
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Figure 3-7: S/N of Sample Trajectory. This graph plots S/N on the left axis and elapsed time
on the bottom axis. When the UAV beams the SAM, its S/N stays around 10 dB, but when it
turns back toward the SAM, the S/N shoots up to about 40 dB. This trend continues until the
UAV leaves the SAM detection radius and shows how easily detectable the UAV would be on
this path. If the detection cuto¤ were 10 dB, then a majority of points along this path would
be treated as detections because they are above the de�ned threshold. Those points below 10
dB would be ignored as part of the clutter and treated as non-detections.
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3.2 Probability of Kill

Being detected, however, does not necessarily signify that the UAV will be shot down. Another

process must turn detections into probabilities of kill (Pk), or the probability that the UAV will

be shot down. This is where the SAM strategies are broken down further. The �rst strategy

used is for the SAM to shoot a missile at the incoming UAV upon �rst detection. The time

of that �rst detection occurs at the minimum detected value in the speci�c path�s detection

matrix (D), tstart = t(Dmin). The distance between the SAM and UAV at that detection,

di = d(Dmin), is then found. Using the following equation, the time until missile impact is

found:

tI =
dI
vM
; (3.5)

where vM is the velocity of the missile. Using Equation 3.6, the Pk of that particular UAV/path

combination is then calculated to be proportional to the amount of time the UAV is detected

throughout the �ight time of the missile until impact:

Pk =
# Detections

tI � tstart
=
# Detections

tend
=

PtI
i=tstart

Di

tend
: (3.6)

Also, the "�rst detection" must not be a momentary detection or some rare occurrence. The

SAM must have established a track on the UAV, which is determined here to be 10 or more

detections in a row.

The second SAM strategy is more deceiving. It attempts to lure the UAV inside its radius

by not �ring a missile until the UAV is determined to be outbound. This is found by calculating

the Doppler velocity, as in Equation 3.4, which is negative if the UAV is getting further away.

tstart is then set equal to the time at which the �rst negative Doppler velocity is calculated,

t(�Doppler), and tI is calculated similarly to Equation 3.5:

tI =
d�Doppler
vM

: (3.7)

In this second case, the Pk is the amount of time the UAV is in track divided by the total �ight

time of the missile, as in Equation 3.6. A block diagram of this process is shown in Figure 3-8,

with strategy one on the top and strategy two on the bottom.
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Figure 3-8: Block Diagram of Kill Probability Formulation. Two SAM strategies are utilized.
The strategy at the top left is where the SAM shoots at the UAV upon �rst detection. The
strategy at the bottom left is where the SAM shoots at the UAV when it is outbound. This is a
more deceiving strategy and necessitates the calculation of the Doppler frequency. The amount
of time that the UAV is in track from missile launch until missile impact for both strategies is
proportional to the probability of kill that is the end output of this process.
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Regarding the sample trajectory discussed previously, the UAV�s Pk was 0.84 for strategy

one and about 0.79 for strategy two. Thus, a Pk is calculated for every UAV strategy versus

each SAM strategy.
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Chapter 4

Game Theory

The problem explored in this thesis involves �nding the best trajectory for a penetrating UAV

or other aircraft that travels deep inside the detection and engagement rings of modern SAMs

in enemy territory to perform surveillance, take imagery, and return safely to friendly areas.

Many researchers have studied trajectory optimization in great detail [19]. Methods used in

the past include Mixed-Integer Linear Programming, which allows optimization applications in

areas where variables must have integer values [14]. Probabilistic Road Maps work by combining

large, pre-optimized routes with a series of small path segments to reach a goal [11]. Rapidly-

exploring Random Trees uses only the small path segments to complete an entire route from

start to end [12]. Voronoi diagrams utilize multiple connected edges positioned appropriately

to allow for the integration smooth, �yable trajectories [13]. Studies using these methods

have provided valuable insight, yet lack realistic scenarios or solutions. This thesis focuses on

the speci�cs of penetrating a SAM ring, which necessitates analysis of other factors such as

RCS management and image quality. In addition, any UAV path must take into account the

capabilities and reach of the SAM. In a way, the UAV and SAM are engaging in a simple game.

Speci�cally, they are engaging in a two person non-cooperative mixed zero-sum game. These

terms are explained later in this chapter. The strategies of the UAV comprise the multitude of

possible paths it could take to get a valid image. The strategies of the SAM include �ring the

missile at di¤erent times to shoot down the UAV. With the use of game theory, a two-sided

game such as this one can be scrutinized and solved to provide the most likely outcome.
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4.1 A Brief History of Game Theory

A scattering of economists and mathematicians anticipated many of the ideas of game theory

throughout the 19th and early 20th centuries [18]. The economists Augustin Cournot and

Francis Ysidro Edgeworth published notable papers on the competition between producers

and trading between individuals, respectively [21]. In studying the game of chess in 1913,

the mathematician E. Zermelo discovered the basis for backwards induction, otherwise known

as Zermelo�s Theorem [21]. Emile Borel presented the �rst modern formulation of a mixed

strategy, among other ideas, in the 1920s, and the mathematician John von Neumann later

provided the basis for game theory in a paper published in 1928 [3]. However, the ground-

breaking text on game theory was a collaboration between von Neumann and Oskar Morgenstern

called The Theory of Games and Economic Behavior, published in 1944 [4].

Development of game theory continued with John Nash�s publication of four papers from

1950-1953 [5, 6] that made vital contributions to non-cooperative game theory and bargain-

ing theory, including proving the existence of a strategic equilibrium (now termed the Nash

equilibrium) for non-cooperative games [18]. The publication of A.W. Tucker�s lecture on the

Prisoners�Dilemma in 1950 made game theory even more widely known. Notable game theo-

rists who continued to contribute throughout the latter half of the 20th century include Aumann

[7], Shapley [8], Selten [9], and Harsanyi [10]. The year of 1994 brought a large amount of

public interest in the subject when the Nobel prize in Economic Science was awarded to John

Nash, John C. Harsanyi and Reinhard Selten for their contributions to game theory. The

subject is one of increasing complexity, and it remains one of the most powerful tools available

for studying human interaction.

4.2 Characteristics of Game Theory

Game theory describes interactions in which the outcomes depend on the individual strategies

of two or more rational players whose motives are opposed or at least mixed [18]. Game theory

has been applied in detail and practice to a variety of disciplines with a heavy emphasis on

economics. For example, a person bidding at an auction is playing a game with the other

bidders. A supermarket is playing a game with its customers and with other stores when it
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decides to sell cereal at a certain price, and lawyers play games with each other when they

decide on what type of defense or prosecution will be pursued [21]. Games can also be more

serious in nature. Napoleon and Wellington were playing a game at the Battle of Waterloo,

and Khrushchev and President Kennedy were playing a game during the Cuban missile crisis

[21]. In reality, many situations in life can be described in terms of game theory.

4.2.1 Nomenclature

Some terms must �rst be introduced to appropriately de�ne the UAV/SAM game. A dominant

strategy is one that a player will choose regardless of the other players�strategies because it

gives him maximum bene�ts regardless of the activities of others. If every player in a game

utilizes a dominant strategy, then the outcome is called a dominant strategy equilibrium, which

might also be a Nash equilibrium. However, a Nash equilibrium is not always a dominant

strategy equilibrium. The Nash equilibrium applies only when a set of chosen strategies in a

game exist such that no player can bene�t by changing his strategy if the other players keep

their strategies unchanged. What makes some games more interesting and problematic than

others is the existence of multiple Nash equilibria [18].

Games also exist in many forms. Games can be played by more than two players, and

in fact, the majority of interactions in the world occur between more than two parties. Some

games are non-cooperative, although many games exist in which the goals of each party are the

same and thus cooperation is possible to achieve an outcome. Also, the payo¤s for each party

in a game may sum to a constant (or zero), or it could be a non-constant sum game, which is

more common in practical situations.

However, the losses and rewards are equal in a zero-sum (or constant-sum) game, which can

be either pure or mixed. A pure zero-sum game is one in which each player chooses only one

strategy. A mixed zero-sum game is one in which a player chooses among two or more strategies

at random according to di¤erent probabilities. The solution to a two person zero-sum game

is quite clear and is called the maximin strategy. This occurs when each player chooses the

strategy (or set of strategies) that maximizes their minimum payo¤.

The problem of routing a penetrating UAV inside the detection radius of a SAM to take

imagery and return to safety can be modeled as a two person non-cooperative mixed zero-sum
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game. The game is non-cooperative because the UAV and SAM have di¤erent goals. The

problem is modeled as a zero-sum game for simplicity because the UAV�s goals (take an image,

complete mission safely, etc..) are exactly the opposite of the SAM�s goals (prevent image

acquisition, shoot down UAV, etc...). It will also be shown in later chapters that multiple Nash

equilibria in the solution to this game will dictate mixed strategy solutions.

4.3 Calculating the Nash Equilibrium

Consider the payo¤matrix A = (ai;j) [20]. For a two person zero-sum game, one player chooses

action i (out of n possible actions), and the other player chooses action j (out of m possible

actions). Player one and player two receive payo¤s of ai;j and �ai;j , respectively, where (bi;bj)
is de�ned as the outcome of the game. A dominant strategy i� for player one occurs when

ai;j � ai�;j for all i and j. Similarly, a dominant strategy j� for player two occurs when

ai;j � ai;j� [20]. For a mixed zero-sum game, the players have mixed strategies, meaning that

player one will select xT = (x1; x2; :::; xn) where xi corresponds to the probability that player

one will choose action i. Player two will select yT = (y1; y2; :::; yn) where yi corresponds to the

probability that player two will choose action j [20].

The goal of this game is for player one to maximize his average payo¤ and for player two

to minimize player one�s payo¤ (for a zero-sum game). In other words, player one wants to do

the following [20]:

maximize xTAy =
nX
i

mX
j

xiai;jyj : (4.1)

Conversely, player two would like to attempt the following [20]:

minimize xTAy =
nX
i

mX
j

xiai;jyj : (4.2)

In a zero-sum game, only one payo¤ matrix is needed, and a mutual gain or loss in terms of

payo¤ is not possible [20].

For mixed zero-sum games and if A � 0, then an equilibrium strategy for player one solves

maxx v subject to v �
P
i xiai;j for all j, with

P
i xi = 1 and xi � 0. The optimal value of v

corresponds to the average payo¤ to player one in equilibrium. If x0i = xi=v, then the following
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formula will equivalently �nd the Nash equilibrium:

minimize
nX
i

x0i subject to
�P

i x
0
iai;j � 1, for all j
x0i � 0, for all i

�
: (4.3)

Similarly, y = y0=
P
j y
0
j is the equilibrium strategy for player two if y

0 = (y01; :::; y
0
n) is a solution

to:

maximize
mX
j

y0j subject to
�P

j ai;jy
0
i � 1, for all i

y0i � 0, for all j

�
: (4.4)

The payo¤ to player one is v = 1=
P
i x
0
i = 1=

P
j y
0
j . More information on game theory can be

found in Appendix F.

4.4 UAV vs SAM

The calculation of the performance parameters Iq and Pk are designed to provide variables with

which the positive and negative aspects of di¤erent strategies can be traded o¤. The �rst step

is to combine the relevant parameters into an overall performance metric that can be placed

inside the payo¤ matrix A. This process takes as inputs Iq, Pk, and completion time (tc) for

each UAV trajectory. It takes these values and uses a simple equation to combine them into a

single metric:

Ai;j = (Iq � c � tc)i;j � (1� Pk)i;j ; (4.5)

where i and j are the UAV and SAM strategies, respectively, and c is a constant, normally

set to 0.001. This value represents the weighting given to completion time. Thus, it is clear

that completing the mission quickly is not necessarily the most important factor. If the UAV

takes many hours to complete the mission but is able to avoid the enemy radar and obtain an

excellent image, then that trajectory would be ranked quite high regardless. tc is found by

summing the distance between each waypoint, wi, and dividing by the UAV velocity, vi:

tc =

MX
i=1

(wi+1 � wi)
vi

; (4.6)

where M is the number of waypoints in each UAV path.

Other trends in Equation 4.5 are that as Iq gets higher, the payo¤ Ai;j increases. Also,
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as Pk gets higher, Ai;j decreases. The UAV�s goal in this game is to maximize Ai;j whereas

the SAM�s goal is to minimize Ai;j . The Nash equilibrium is then found using Equations 4.3

and 4.4. The built-in Matlab function "linprog" �nds the Nash equilibrium using the following

form:

min
x

fTx such that A � x � b (4.7)

Aeq � x = beq

lb � x � ub:

A vector of ones whose length is determined by the number of possible UAV trajectories is used

for f , the cost. A is simply the payo¤ matrix. b is also a vector of ones, which forces the

resulting path probabilities to be less than one. The equality constraints on A and b are not

used, and the bounds on x are set to zero (lb) and an arbitrary large positive number (ub).

The outputs of this function are the optimization metric (x), the payo¤s for the UAV and

SAM (Abi;bj), and a vector of probabilities (p). This vector is essentially the solution, or Nash

equilibrium, of the game. It gives the probability that each path should be chosen so that in

the long run, the Nash equilibrium would be achieved.

One interesting feature of game theory is that unusual solutions sometimes emerge. The

solution may be that only one speci�c path should be chosen with a 100% probability and the

rest with a 0% probability. However, the solution could also be that a set of paths should

be chosen with varying probabilities. This presents di¢ culties when attempting to select

only one path for the UAV to �y and one strategy for the SAM. Thus, an element of chance

must be introduced. Essentially, random numbers are generated, and the previously calculated

probabilities are used to select a single UAV strategy and a single SAM strategy. If this process

was repeated a large amount of times, the frequency of strategies chosen would converge to the

initial probability vector. The resulting Pk and Iq are tabulated for use in later Monte Carlo

simulations. All of the computer code used in the simulation is located in Appendix G.

Regarding the sample UAV trajectory discussed previously, it was not chosen as part of the

Nash equilibrium for that speci�c run, in spite of its 6.04 Iq and most likely because of its high

Pk values. Instead, the path in Figure 4-1 was chosen with a probability of 100% due to its
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Figure 4-1: UAV Path given by Nash Equilibrium. This path was chosen with a probability of
100% due to its extremely low probabilities of kill (0.01 for each SAM strategy) even though the
best possible image would be only 4.0894. Thus, the safe trajectory won out in this example.
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extremely low probabilities of kill (0.01 for each SAM strategy) even though the best possible

image would be only 4.0894 on the NIIRS level. Evidently, the strategy of a safe, less risky

trajectory won out in this particular example.
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Chapter 5

Results and Conclusions

Four separate situations with increasing complexity were analyzed. These situations imply

di¤erent amounts of knowledge about the enemy environment as well as di¤ering strategies

about how to deal with the situation. In the �rst case, the SAM�s location is assumed to be

known and �xed. The second case encompasses the �rst one but introduces uncertainty in the

location of the SAM site. It is assumed that the UAV is not "smart" and thus does not take

the uncertainty into account. The third case builds on the second case and assumes that the

UAV has now increased its knowledge of the SAM and will act more intelligently. Speci�cally,

the SAM is assumed to be at one of a number of possible SAM locations. The fourth case

represents the most realistic scenario. A wide FOV asset such as ELINT or DSP will pass a

cue to the penetrating UAV, which must then search an area for the target. These four cases

embody the full spectrum of uncertainty in SAM location and knowledge and provide interesting

results and conclusions. The results presented here, although accurate and straightforward,

must be analyzed carefully and in proportion to the quality of the model. Unfortunately, many

assumptions and estimates were used, which lowers the �delity of the model. However, these

results do provide an interesting perspective on the dangers of air defense threats in the 21st

century.
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Test Cases SAM Radius (km) UAV Speed (knots) Missile Speed (Mach)
1 50 150 3
2 75 150 3
3 100 150 3
4 50 350 3
5 50 550 3
6 50 150 6
7 50 150 9

Table 5.1: Input Parameter Values for Case One Test Cases

5.1 Case One

Case one consists of the following conditions:

s known; s 2 fes : kes� sk = 0g : (5.1)

The variable s is where the UAV believes the SAM is located. es is where the SAM is actually

located. The di¤erence between those two values is zero in Equation 5.1, meaning that the

SAM�s location is known exactly by the UAV. The maximin strategy will be used to enable the

UAV to �nd an optimal route that maximizes its payo¤, A(s), based on that known location,

s.

max
x
min
y

�
xT �A(s) � y

	
: (5.2)

This type of speci�c information may have come from the predictive archives. This case is

probably the most unrealistic due to the high uncertainty in SAM locations. However, it does

provide a valuable baseline for comparison with other cases.

The computer simulation was run 10 times each (due to run time constraints) for a variety

of test cases with each test case using di¤erent inputs. It was determined that the three

user-de�ned input parameters that could realistically change and have the most impact on the

resulting equilibrium would be the detection radius of the SAM, the speed of the UAV, and the

speed of the actual missile. Table 5.1 lists the speci�c values of these parameters for each of

the seven test cases.

The computer simulation was run with a SAM detection radius of 50, 75, and 100 km. It

was also run at UAV speeds of 150, 350, and 550 knots as well as at missile speeds of Mach 3,
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Mach 6, and Mach 9. The resulting Pk and Iq were averaged over each of the 10 runs for every

test case.

The results showed that increasing the detection radius had a negligible e¤ect on the Pk of

the UAV. This is probably due to the fact that no matter how large the detection radius is,

the UAV will always be able to penetrate the radius to some extent as long as the exact SAM

location is known, allowing the UAV to manage its RCS. However, the increase in radius did

have a slight e¤ect on the Iq, illustrated in Figure 5-1.

Thus, the UAV will always �nd the optimal route that minimizes Pk, but that path will

yield slowly deteriorating image quality as the detection range increases.

Test cases one, four, and �ve outline the in�uence of UAV speed in the simulation, which

gave interesting results. One might think that increasing the speed of the UAV would allow

it to complete the mission faster and spend less time inside the SAM�s detection radius, which

would then decrease the Pk. However, the results of this simulation demonstrate that the

opposite is true. Figure 5-2 shows that as UAV speed is increased, Pk increases signi�cantly.

One reason for this increase could be that a fast UAV would be more likely to show up on a

Doppler radar. Essentially, its speed would give it away whereas a slower UAV uses its lack of

speed to its advantage by maintaining a small Doppler velocity and thus lowering its chances

of being detected. Also, variation in UAV speed had no e¤ect on Iq.

An analysis of test cases one, six, and seven demonstrated that missile speed had no e¤ect

on either Pk or Iq. The slowest simulated speed of the missile (Mach 3) is already so large

that the missile will reach the UAV in mere seconds. Thus, increasing that speed to Mach 6

or Mach 9 will do little to increase the Pk, and it certainly will not have any e¤ect on Iq.

Several comments can be made about the simulation in general. The UAV trajectories

picked by the Nash equilibrium utilized higher altitudes, most likely to gain better depression

angles from which to obtain an image. Although some paths took the UAV deep into the SAM

radius, the majority of the paths chosen stayed toward the edge of the SAM radius, picking

safety over image quality. Also, the paths that utilized zigzagged or continuous beaming

maneuvers were chosen less frequently than those that led directly in and out. This result

suggests that in seeking to minimize radar detection, the UAV found it best to simply minimize

its time inside the SAM radius rather than lengthen that time by performing more complex
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Figure 5-1: Image Quality as Detection Radius Varies. As the detection radius of the SAM
increases from 50 to 100 kilometers, the NIIRS level of the best possible image taken by a
penetrating UAV decreases slightly from about 4.1 to about 3.8 with a missile speed of Mach
3.
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Figure 5-2: Probability of Kill with Varying UAV Speed. Clearly, the UAV�s probability of kill
increases as the UAV�s speed increases. Speci�cally, the UAV�s speed was simulated at 150,
350, and 550 knots. The resultant probability of kill went from 0.01 to about 0.35 to about
0.55.
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and risky maneuvers. The SAM strategy picked most frequently by the Nash equilibrium

was the �rst one, which gave the highest values of Pk. This strategy was the one in which

the SAM �red upon the UAV at �rst detection. Evidently, the second strategy in which

the exiting UAV was �red upon gave too much time to the UAV and thus lowered the average

values of Pk. With regard to the game-theoretic component of the simulation, the optimization

terminated successfully on every occasion, yielding results that made sense analytically as well

as numerically.

5.2 Case Two

Case two brings more reality to the situation by introducing some uncertainty in the location of

the SAM. In an actual engagement with the enemy, the exact location of a particular SAM site

is rarely known. The predictive archives might suggest a SAM location with some uncertainty.

Thus, it would be useful to determine what e¤ect the uncertainty in location has on the Pk

and Iq. Using the input parameters of test case one, the simulation was run with increasing

magnitude of target location uncertainty. It was assumed in this case that the UAV is not

"smart" and thus does not take the uncertainty into account. It simply calculates and �ies its

optimal route as in the previous case thinking that the SAM is still at its initial location. This

case is described mathematically using the formula in Equation 5.3.

s 2 fes : kes� sk � �g = N(s; �); (5.3)

es, the actual SAM location, is really within some radius, �, which represents the amount of

uncertainty in the SAM location. The set of di¤erent SAM locations within � is termed N(s; �)

where N is a function of where the UAV thinks the SAM is, s, and how much uncertainty exists

in the SAM�s location, �. The optimization routine is modi�ed to automatically increase �.

1

jN(s; �)j
X

es2N(s;�)maxx min
y

�
xTA(es)y	 : (5.4)

In this case, the maximin strategy is again used. However, the payo¤matrix that is optimized is

A(es), which includes the uncertainty in SAM locations. Additionally, the payo¤s are summed
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over the entire set of possible SAM locations and then divided by the magnitude of the set

to give the average payo¤ for a speci�ed value of uncertainty. The simulation was run for

an uncertainty of up to 10 miles with a step size of 0.1 miles. At each 0.1 mile increment,

1000 iterations were performed and averaged to give a Pk and Iq for an uncertainty of that

magnitude. The graph in Figure 5-3 is the result of that run for Pk. When the uncertainty

in SAM location is only 0.5 miles, the Pk has jumped from 0.01 to about 0.56. After about

the four-mile mark, the Pk essentially steadies out at 0.99. This literally means that if the

uncertainty in the SAM location is only four miles or greater, the penetrating UAV �ying its

optimal route is virtually guaranteed to get shot down. The quality of the best image that

can be taken by the SAM also degrades slightly as uncertainty increases. This result is shown

in Figure 5-4. The speci�c sensor package with which each UAV is equipped necessitates a

certain look angle and viewpoint from which the image must be taken. If the SAM happens

to be at an unexpected location, the UAV will have a more di¢ cult time obtaining a quality

image. In this case, the average Iq was 3.89 at an uncertainty of 10 miles compared to 4.1 with

no uncertainty.

Another run was performed which mapped the uncertainty out to 100 miles. For this run,

the step size was one mile, and 1000 iterations were performed at each one-mile increment. The

result for Pk is shown in Figure 5-5. Clearly, the SAM�s denial of UAV penetration continues

until the uncertainty rises to about 30 miles, at which point Pk steadily decreases to about 0.75

at 100 miles. This result is certainly not intuitive. One would expect the SAM to be able to

shoot down all UAVs as the uncertainty in its location gets larger and larger. However, the

actual reason is very simple. After uncertainty increases to such an extent, the UAV�s optimized

path and special maneuvers cease to have an e¤ect on its Pk. The only factor a¤ecting the

ability of the SAM to shoot down the UAV is the range of the SAM�s missile. Thus, at an

uncertainty of 100 miles, the only time that a SAM anywhere within that limit was unable to

shoot down a UAV was when the UAV was greater than 100 miles away from the SAM. This

idea is explained visually in Figure 5-6. The blue area at the top represents the possible SAM

locations that are outside the range of the UAV. The red area in the middle represents the

possible SAM locations that are able to shoot down the UAV (that are within the uncertainty),

and the gray area at the bottom represents points outside of the SAM�s location uncertainty
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Figure 5-3: Probability of Kill with Zero to 10 miles of Uncertainty. When the UAV knows
the SAM location exactly, the probability of kill is at 0.01, essentially zero. However, when the
uncertainty in location rises just a little bit to 0.5 miles, the probability of kill jumps to 0.55.
Also, after about four miles of uncertainty, the UAV�s probability of kill steadies out at 0.99,
assuring the destruction of any UAV.
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Figure 5-4: NIIRS Level with Zero to 10 mile Uncertainty. Initially, with no uncertainty, the
UAV is able to obtain an image with a NIIRS level quality of about 4.1. After 10 miles of
uncertainty, that level has decreased to about 3.9.
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Figure 5-5: Probability of Kill with Zero to 100 mile Uncertainty. This graph plots the
uncertainty out to 100 miles. The UAV is virtually guaranteed to get shot down until after
30 miles of uncertainty, at which point the probability of kill decreases to about 0.75. This
value roughly corresponds to the proportion of times that the SAM is simply out of range of
the UAV.

67



No SAM Locations

UAV Within Range of SAM

SAM Outside Range of UAV

UAV

SAM

Figure 5-6: SAM Engagement and Location Uncertainty Areas. The blue area at the top
represents the possible SAM locations that are outside the range of the UAV. The red area in
the middle represents the possible SAM locations that are able to shoot down the UAV (that
are within the uncertainty), and the gray area at the bottom represents points outside of the
SAM�s location uncertainty (but within the kill range of the UAV).
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(but within the kill range of the UAV). The following equation was used to calculate the red

area, which is the area of overlap between the circle of the SAM�s possible locations (the blue

circle) and the circle describing the area from which the UAV could be shot down (the gray

circle) [15]:

A = r2 arccos

�
d2 + r2 �R2

2dr

�
+R2 arccos

�
d2 +R2 � r2

2dR

�
� c (5.5)

c =
1

2

p
(�d+ r +R)(d+ r �R)(d� r +R)(d+ r +R);

where r is the radius of the gray circle, R is the radius of the blue circle, and d is the distance

between the centers of the two circles (the distance between the SAM and UAV). Using the

point of 100 mile uncertainty, where r = 100 miles, R = 100 miles, and d = 50 miles, Equation

5.5 gives 21,521.09 km2. Dividing that number by the total possible area of SAM locations

(the blue circle), which equals �R2 = 31; 415:93 km2, gives a percentage of approximately 0.69.

This means that about 69% of the time, the SAM is out of range of the UAV for a 100 mile

value of uncertainty. This number roughly corresponds with the 0.75 Pk shown in Figure 5-5

for a 100 mile uncertainty. The small di¤erence between the two numbers may be due to the

fact that in Figure 5-6, the UAV�s path was approximated as a single point. Thus, as target

location uncertainty gets very large, the UAV will be shot down every time except when it is

outside of the range of the SAM.

Finally, the result of this run for Iq is shown in Figure 5-7. The decreasing trend of image

quality is even more prominent when Iq is mapped out to 100 miles, showing an average NIIRS

level of about 0.5 at that point.

5.3 Case Three

Case three builds on case two in that it assumes the UAV has now increased its knowledge of

the enemy and will act more intelligently. Typical battle�eld intelligence from the predictive

archives or elsewhere may point to possible locations for a SAM site. In the �rst scenario,

three speci�c locations (approximately tens of kilometers apart) are de�ned with associated

probabilities that the SAM will actually be there. A table of these locations and their associated
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Figure 5-7: NIIRS Level with Zero to 100 mile Uncertainty. The image quality, embodied by
the NIIRS level, decreases signi�cantly after 100 miles of target location uncertainty from a
possible 4.1 to a very low 0.5.
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SAM Locations Latitude (deg) Longitude (deg) Probability
1 38.85 126.85 0.5
2 38.45 126.45 0.3
3 39.25 127.25 0.2

Table 5.2: SAM Locations for Scenario One in Case Three

SAM Locations Pk Iq
1 0.01 4.0894
2 0.48 4.0762
3 0.99 4.3332

Table 5.3: Case Three Results for Scenario One using Average Payo¤s

probabilities is shown in Table 5.2. The UAV will now attempt to use the known probabilities

and locations to optimize its �ight path according to the following formula:

s 2 fs1; s2; :::; sNg : (5.6)

The possible SAM locations, fs1; s2; :::; sNg, are known by both the UAV and the SAM. N

represents the number of possible locations. The same maximin optimization strategy is used

in Equation 5.7.

max
x
min
y

(
xT

"X
i

A(si) � pi

#
y

)
: (5.7)

In this case, each payo¤ matrix, A(si), is multiplied by its associated probability pi. All of the

payo¤ matrices are summed, and the Nash equilibrium is found for that average payo¤ matrix,

giving the best possible trajectory given the possible SAM locations and their probabilities.

This case is much more realistic than case one, in which the SAM location was known with

absolute certainty. Before using the formula in Equation 5.7, the program was run separately

with the nominal set of input parameters for each SAM location in 5.2, simulating that the UAV

knew each time with 100% probability that the SAM was going to be there. The obvious result

was that the Pk was 0.01 for each location. However, the simulation was then run using the

updated probabilities and the same input parameters. The result was an average Pk of 0.49 and

an average Iq of 4.166. Thus, the UAV�s chance of success is much less certain. The speci�c

results for each location are shown in Table 5.3. This means that if the SAM was actually at
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SAM Locations Pk Iq
1 0.7955 6.1237
2 0.7778 6.1681
3 0.7907 5.6075

Table 5.4: Case Three Results for Scenario One using Minimum Payo¤s

location three, the UAV would have a 99% chance of getting shot down. At location two, it

would have a 48% chance. It is clear from the results in 5.3 that the Nash equilibrium produced

a solution that heavily weighted location one because of its high associated probability.

Although the Pk did increase somewhat, the UAV does have greater than a 50% chance

of surviving the engagement and obtaining a picture in scenario one. One lesson may be

that using Equation 5.7 leads to misleading results. However, another strategy states that

one should always plan for the worst case scenario. Thus, the optimization formula could be

changed slightly:

max
x
min
y

�
xT min [J(si)] y

	
: (5.8)

The di¤erence in Equation 5.8 is that instead of using the average, the minimum over all of

the payo¤ matrices is found, which might possibly give a more realistic approach to the path

planning. This strategy resulted in expected higher values of Pk, with an average of 0.79 and

each individual location result shown in Table 5.4. Thus, using the minimization technique

e¤ectively took away the extreme 0.99 and 0.01 Pk values in Table 5.3 but caused the average

Pk value to increase by 0.3. Interestingly, Iq increased as well, but the higher Pk would still

not be worth obtaining the image.

The previous scenario involved only three possible locations. To provide some perspective

on what would occur if the number of locations increased, the simulation was run for �ve, seven,

and nine points as well, whose locations are shown in Table 5.5. The minimization formula in

Equation 5.8 was used to simulate the worst case. The result for average Pk is shown in Figure

5-8. Clearly, as the number of SAM locations increase, the average Pk increases quickly, rising

to 99% with seven possible locations. The average Iq remained fairly constant throughout the

increase in locations, which could be due to the fact that all of the SAM locations were roughly

in the same geographical area. Thus, poor images from extreme points would be balanced by

excellent images from close points depending on the speci�c route taken through that area. A
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SAM Locations Latitude (deg) Longitude (deg)
1 38.85 126.85
2 38.45 126.45
3 39.25 127.25
4 38.65 126.65
5 39.05 127.05
6 38.25 126.25
7 38.95 126.95
8 39.15 127.15
9 38.55 126.55

Table 5.5: SAM Locations for Scenario Two in Case Three
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Figure 5-8: Probability of Kill as Possible SAM Locations Inrease. When dealing with three
possible SAM locations, the UAV can at best attain a 0.79 probability of kill on average.
However, when the number of possible SAM locations rises to seven, the UAV is virtually
guaranteed to get shot down no matter what techniques are used for this example.
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Figure 5-9: Scenario Depiction for Case Four. The typical wide FOV elliptical search area
is de�ned here as a circle for simplicity. The outer ring is 100 miles in diameter, and there
is a 10% probability that the SAM is located there. The middle ring is 50 miles in diamter
with an associated 30% probability. The center ring is 10 miles in diameter with an associated
probability of 60%. Given these regions and probabilities, the UAV must optimize its path to
obtain the best picture and minimize its probability of kill.

future consideration not analyzed here might be the spacing of the points and how that a¤ects

the Pk.

5.4 Case Four

The fourth and �nal case analyzed here probably represents the most likely battle�eld scenario.

In this case, a wide FOV asset passes a cue to the penetrating UAV, which must then search

an area for the target. That area is usually de�ned by an ellipse. However, the area will

be depicted as a circle here for simplicity. Figure 5-9 shows a sample scenario for which the

probabilities of the SAM are located in each area along with the area�s associated dimensions.

The UAV must again optimize its path through the area. The relevant condition on this
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Area Average Payo¤ - Pk Minimum Payo¤ - Pk Iq (Avg/Min)
Inner Ring 0.85 0.99 4.0720
Middle Ring 0.99 0.99 3.6727
Outer Ring 0.99 0.99 2.0716

Table 5.6: Case Four Results

optimization is as follows:

s continuous in N(s; �): (5.9)

The set of possible SAM locations, N(s; �), is now continuous within a certain region, meaning

that the SAM can now be located anywhere in that region. The optimization formula is:

max
x
min
y

�
xT
�
min
i
A(si)

�
y

�
: (5.10)

This equation is very similar to that of case three. The di¤erence in this case is that the

possible SAM location, s, is assumed to be continuous throughout the regions in Figure 5-9.

The optimization routine was run using the average payo¤ strategy as well as the worst case

minimization strategy depicted in Equation 5.10. The continuous SAM locations were modeled

by running 1000 iterations for each mile of area radius. The results for this run are shown in

Table 5.6, where the inner ring represents the 10-mile diameter area with a 60% probability,

the middle ring is the 25-mile diameter area with a 30% probability, and the outer ring is the

50-mile diameter area with a 10% probability. Clearly, the UAV does extremely poorly even

with knowledge of the SAM location probabilities. If the SAM happened to be within the

inner ring, the UAV would get shot down 85% of the time. Aside from that occurrence, the

UAV will get shot down every time with a probability of 99%. Also, as expected, the image

quality decreases to approximately a NIIRS level two from a maximum of level four.

5.5 Conclusions

Finding optimal trajectories for penetrating UAVs in ISR missions is a di¢ cult challenge. A

variety of factors, including SAM sites and terrain obscuration, combine to decrease the quality

of image attained and increase the probability of getting shot down. Speci�cally, it was shown

using game-theoretic principles that an increase in the detection radius of a SAM site will cause
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a decrease in Iq. Also, an increase in the speed of the UAV will cause an increase in Pk. Other

characteristics of the UAV or SAM have negligible e¤ects on both Iq and Pk. However, the one

factor that has the most in�uence on an optimal trajectory is the uncertainty in the location of

the SAM. After only 0.5 miles of uncertainty, the Pk of a UAV assuming perfect knowledge of

the SAM location has already risen to 0.56. When the uncertainty rises to about four miles,

the UAV is virtually guaranteed to get shot down with a probability of 0.99. After the SAM

location uncertainty reaches 30 miles, the Pk starts to decrease to a value of about 0.75 at

100 miles of uncertainty, which roughly corresponds to the amount of time the UAV would be

within range of the SAM. As expected, Iq decreases signi�cantly as the uncertainty increases.

When the UAV takes uncertainty into account, the results are not encouraging. A situation

was created with three possible SAM locations with varied probabilities that the SAM will

actually be at those locations. Using the method of optimizing average payo¤s results in

an average Pk of 0.49 and an average Iq of 4.166. Using instead the worst case strategy

of optimizing the minimum payo¤s results in an average Pk of 0.79, which is more realistic.

Extending this situation to �ve, seven, and nine possible SAM locations with varied probabilities

resulted in an increase in Pk to 0.99 at seven locations. Thus, with seven or more di¤erent

SAM locations, the UAV is 99% likely to get shot down using an optimal path. Using an even

more realistic scenario, the UAV must then optimize its path throughout an area of varying

probabilities. In this speci�c case, using the average payo¤ strategy, the UAV has an 85%

chance of getting shot down if the SAM is located within a �ve mile radius of the center of the

area. Outside of this area, the UAV is guaranteed to get shot down with a Pk of 0.99.

The results presented here certainly paint a dark picture of the survivability of penetrating

ISR missions for UAVs or other aircraft given modern air defense threats when their locations

are assumed to be known. Game-theoretic optimization of di¤erent vehicle trajectories will

work only if the air defense locations are known, but even a slight variability in those locations

will ruin the most perfectly planned path. It is often stated that dynamically tasking air

vehicles to respond to observed changes in air defense locations will compensate for imperfect

knowledge. However, with typical detection ranges of 100 miles, most air assets will more likely

be shot down before detecting a SAM, whose engagement range may now extend past 400 km

in some cases. Other techniques and methods must be explored and used in combination
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with RCS management to ensure the continuing collection of valuable ISR imagery given the

extended capabilities of modern air defense threats.

5.6 Future Research

More work can certainly be done to improve the accuracy and �delity of the UAV strategies, the

SAM strategies, and the game theoretic techniques. Speci�cally, a wider and more appropriate

range of UAV strategies could be used, which might give the UAV a better chance at surviving

engagements under uncertainty. The target detection and tracking process could be enhanced,

and other SAM strategies could be added. Additionally, a larger variety of test cases and

speci�c scenarios within those cases could provide more accurate results. Finally, exploration

of better methods to mask aircraft from radar or research into new techniques to collect ISR

imagery could prove invaluable in the future.
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Appendix A

Surface to Air Missiles

It would be quite helpful if UAVs and other aircraft could �y unhindered into enemy territory.

They would be able to obtain valuable imagery, perform strike missions, and return safely

to friendly territory. However, this rosy scenario leaves out some of the largest and most

sophisticated threats that aircraft face today. Ground-to-air and air-to-air defenses are e¤ective

deterrents to penetrating missions. Ground-to-air systems can be as primitive as guns, rockets,

or bombs thrown into the air. Anti-aircraft (AA) guns on a tracked or wheeled chassis with

large caliber rounds are an improvement. MANPADS, which are portable, short-range SAM

systems carried by one or two people, can be even more e¤ective. Components include the

launch tube and missile, gripstock, and thermal battery [58]. The U.S. Stinger missile system is

one of the most advanced MANPADS, and they represent a de�nite threat to aircraft. However,

the most sophisticated air defenses in existence today are long-range SAMs, especially when

used in groups (batteries) and connected to an advanced, long-range radar system.

A.1 Radar Development

A typical SAM system can be described as performing three actions. It detects an incom-

ing aircraft, identi�es and tracks it, and then shoots it down if necessary. All three actions

incorporate some aspect of radar. Radar works by bouncing electromagnetic waves o¤ of ap-

proaching objects and then using the re�ected signal to identify the object and determine its

range, velocity, and other characteristics. Radar systems can be classi�ed by their function
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(surveillance, track, etc...), by their detection range (long, medium, and short), by their fre-

quency band (X, K, etc...), and by a multitude of other categories. This thesis will focus on

X-band �re-controlled radar, used frequently in SAM systems.

The basic principles of radar have been in use for millions of years. Bats emit high frequency

sounds from their nose, and the re�ected echoes are received by the bats�ears. This "ultrasonic

sensor" was used by bats to hunt prey and avoid terrain, among other things [33]. A frequent

meal for a bat is the tiger moth. However, tiger moths have themselves developed the ability

to produce their own sound that interferes with the bats�sound and allows the tiger moth to

escape unharmed [33].

The �rst human foray into radar, which means radio detection and ranging, came in 1887

when a German physicist named Heinrich Hertz began investigations into how radio waves

functioned. He found that radio waves could be transmitted through some materials but were

re�ected by other materials [35]. He was even able to measure the speed of the waves. In 1904,

another German named Christian Hulsmeyer developed the Remote Object Viewing Device,

which could detect ships that were up to three kilometers away [33]. Many other researchers

soon got involved, and in 1930, the U.S. Naval Research Laboratory discovered radar almost

accidentally. They were performing measurements on a radio link that stretched across a

runway when an aircraft crossed the beam and their radio signal �uctuated sharply [33]. Radar

was discovered independently at the same time in the United Kingdom, Germany, the Soviet

Union, France, Italy, Japan, and the Netherlands. Throughout the 1930s, radar remained

inaccurate, low-powered, and unreliable. However, buoyed by the period of technological

innovation initiated by World War II, radar rapidly matured into an accurate and versatile

capability by 1945. In the latter half of the 20th century, research intensi�ed, and radar terms

such as bistatic, spread spectrum, conical scan, and continuous wave Doppler became a common

and integral part of the language. The focus of this thesis is on detection of aircraft via radar,

which is explored in more detail in Appendix C.
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A.2 SAM Development

At the same time that radar was being developed, rockets and missiles were undergoing a

large transformation. They were used in World War I mostly to provide smoke screens or to

illuminate the battle�eld, but the early 20th century saw the development of the Kettering Bug

in 1917, which was one of the �rst guided missiles. Solid-fueled missile research continued,

with the U.S., Great Britain, and Germany leading the way. Liquid-fueled missile tests were

performed in the early 1930s, to be followed by an intensi�cation of research during World War

II.

Allied bomber attacks on German soil spurred the Germans into developing a number

of missiles intended to shoot down Allied aircraft, to include the Enzian, the Feuerlilie, the

Shmetterling, and the Wasserfall, to name a few [32]. The Wasserfall used a pressure-fed,

liquid-fueled engine. It could �y at Mach 2.5 up to eight miles high and at a range of 17 miles

[32]. It was guided and detonated by radio command. Toward the end of World War II, the

proximity fuse was created, which uses the Doppler e¤ect to calculate the missile�s proximity

to its target and then detonate. However, none of these missiles were connected to developing

radar systems to allow for more accurate air defenses.

The world�s �rst commercially available and operational SAM was the RSC-50, developed

by the Swiss companies Oerlikon-Bührle & Co. and Contraves AG in 1947 and completed in

1950 [60]. More improved versions soon followed, to include the RSC-51, RSC-54, RSC-56,

RSC-57, and RSC-58. These missiles were quite successful and used by Switzerland, Sweden,

Italy, and Japan. The U.S. performed an initial evaluation of the RSC-51 but did not pursue

it further [60]. The RSC-51, shown in Figure A-1 [60], utilized two separate trailers.One trailer

contained a tracking radar and a beam transmitter, and the other trailer launched the missile

using a liquid-fueled rocket engine [60]. The missile traveled at speeds in excess of Mach 2,

could reach altitudes higher than 66,000 ft, had a range of 20 km, and detonated by use of a

proximity fuse [60].

The world�s second operational SAM was the Russian SA-1 "Guild," which entered service

in 1954 [56]. Intended to shoot down high-�ying nuclear-armed bombers, it was a great

achievement for its time. It was a �xed-site SAM that was deployed in two concentric rings

around Moscow. Over 3,200 of these SAMs, shown in Figure A-2, were deployed at one time,
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Figure A-1: RSC-51. This SAM was developed by the Swiss companies Oerlikon-Bührle &
Co. and Contraves AG in the early 1950s. It utilized two trailers for the radar and the missile
launcher.
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Figure A-2: SA-1 "Guild." The world�s second operational SAM was the Russian SA-1 "Guild,"
which entered service in 1954. Intended to shoot down high-�ying nuclear-armed bombers, it
was a great achievement for its time. It was a �xed-site SAM that was deployed in two
concentric rings around Moscow.

and a typical SA-1 site contained about 60 missiles in addition to the Yo-Yo radar [34]. The

Yo-Yo radar was a �re-controlled radar that could track more than 24 targets at the same time.

It was called Yo-Yo because the motion of its six rotating antennas resemble the motion of a

toy yo-yo [34].

The Russians soon continued with an aeronautical development of the SA-1 called the SA-2

"Guideline," a long-range, high-altitude, two-stage missile still in use in many countries. It

measures over 35 ft in length and travels at speeds in excess of Mach 3.5 [34]. The SA-2 can

reach targets as high as 90,000 ft and has a range of approximately 50 km [34]. It is aided by

the missile control radar Fan Song and by an early warning radar called Spoon Rest that can

detect targets up to 275 km away. The SA-2 (Figure A-3) is signi�cant in the development of

SAMs for many reasons. This type of missile (actually, 14 of them) was used to shoot down

a U.S. U-2 spy plane �own by Francis Gary Powers on 1 May 1960 near Sverdlovsk, causing a

political crisis over his imprisonment and U.S. spy operations in Russia. Ironically, a Russian

MiG-19 �ghter jet was also shot down in the engagement [34].

The SA-2�s role in world a¤airs was not limited to that one engagement. Over 13,000
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Figure A-3: SA-2 Guideline. The SA-2 is a long-range, high-altitude, two-stage missile still in
use in many countries. It measures over 35 ft in length and travels at speeds in excess of Mach
3.5. It is famous for having been used to shoot down a U.S. U-2 spy plane �own by Francis
Gary Powers in 1960.

SA-2s have been �red in combat, which is more than any other SAM [34]. In 1962, the U.S.

discovered nuclear missiles on Cuban soil via their deployment of SA-2 batteries around the

sites, which then sparked the Cuban missile crisis. SA-2s have been or are currently used by

over 40 nations, to include Russia, China, Vietnam, Cuba, and Egypt. The SA-1 and SA-2

were just the beginning of a long family of Russian SAMs. Other SAM families exist, such as

the Chinese HQ series. However, the Russian SAMs represent probably the greatest threat to

U.S. interests because of their sophistication and their wide distribution.

The importance of air defenses was highlighted by signi�cant battles around the world.

The inability of Russian air defenses to prevent the German Luftwa¤e from destroying troop

concentrations and key installations from 1941-1945 led to full-scale investments in air defense.

North Korean and Chinese military commanders learned this lesson and utilized various types

of AA guns along with small-arms �re to defend themselves against attacking U.S. aircraft in

the Korean War [59]. The U.S. Air Force eventually lost 544 aircraft to these defenses, which

was almost �ve times the amount of losses attributed to air-to-air engagements [59]. The

widespread use of radar equipment in North Korea also gave the defenders an advantage.

Egypt, which had learned from these experiences, had purchased and deployed 18 SA-2

battalions (with six launchers in each battalion) along with a vast array of AA guns [59].
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However, on 5 June 1967, the Six Day War began with the destruction of 16 Egyptian air�elds

and 26 Egyptian radar stations by the Israeli Air Force (IAF) [59]. By the end of the second

day, 418 Arab aircraft were destroyed (393 on the ground). This war led to three lessons.

The �rst was the obvious need for e¤ective low-level defenses. IAF planes were able �y low,

under the envelope of the SA-2s. The second lesson was the need for better training since the

combat readiness level of the Egyptian SAM operators was extremely low. The third lesson

was the demonstrated need for mobile air defense. After the surprise on the �rst day, the

Egyptians had to abandon vast amounts of equipment in their hasty retreat, such as launchers

and missiles.

The extensive use of SAMs in Vietnam forced the U.S. to change air tactics. They used

F-105s as decoys to get SA-2 sites to radiate in anticipation of a shoot-down. When the SA-2s

were detected, the F-105s would shoot anti-radiation missiles at the SA-2 locations, clearing

the air for future strike missions [59]. Sometimes, certain areas just had to be avoided due to

a high concentration of SAMs. Another tactic that U.S. aircraft used was electronic jamming

and other electronic countermeasures (ECM) to SAMs. The North Vietnamese, along with

the Russians, learned that these countermeasures could seriously decrease the performance

of air defenses, which led to research into frequency diversity and other electronic counter-

countermeasures (ECCM) [59]. The shoulder-�red SA-7 "Grail" used heat-seeking technology

to destroy low-level attackers, such as helicopters. In return, U.S. helicopters learned to drop

�ares that would divert the SA-7. Increasing U.S. reliance on helicopters caused their numbers

to increase from 300 in 1964 to about 2,400 in 1967 [59]. This caused Russia to put a larger

emphasis on low-level defenses to defend ground forces against the slow, low helicopters.

After their humiliating loss in the Six Day War, Egypt had to build up its air defenses once

more. The Russians provided a wide variety of weapons, to include numerous AA guns, the

SA-7, the SA-3 "Goa," and the SA-6 "Gainful" [59]. The SA-6 is another signi�cant SAM

in the Russian SA series. It was a potent weapon when introduced in the 1960s. It is a

mobile, armored carrier with a medium-range, low-altitude missile. It uses the Long Track

early warning radar, which provides detection capabilities up to 150 km, in conjunction with the

Thin Skin height-�nding radar [34]. In addition, the Straight Flush radar provides guidance

in the initial missile �ight stage and continuous-wave illumination of the target to allow the
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Figure A-4: SA-6 Gainful. The SA-6 is another signi�cant SAM in the Russian SA series. It
was a potent weapon when introduced in the 1960s. It is a mobile, armored carrier with a
medium-range, low-altitude missile, and it is used extensively throughout the world.

missile to actively home in on the target. The propulsion of the SA-6 (Figure A-4) is also

fascinating. It uses a rocket booster to power the missile to Mach 1.8 and then discards the

rocket nozzle while lighting an internal ramjet [34]. This hybrid propulsion system makes the

SA-6 extremely responsive and may be why it is used so extensively in many regions throughout

the world, to include the Middle East and southern Africa.

By July of 1973, Egypt had built up an integrated air defense (IAD) network that included

over 130 SAM sites [59]. Syria and other Arab nations also posed formidable threats. It

was clear from the start of the Yom Kippur War on 6 October 1973 that the Arab nations�

preparation had paid o¤. The IAF lost over 100 combat aircraft, mostly due to SAM and

AA defenses [59]. However, by the end of the war, Israeli ECM and tactics had improved

to the point where the SA-6 had only a meager two-percent probability of kill, or probability

that the missile would shoot down the intended target [34]. Another prominent lesson to be

taken from this con�ict was that the Arab defenses were allowed to remain relatively static.

However, Russia and other countries saw this as an anomaly and believed that highly mobile,

yet powerful SAMs would be the key to future engagements. Thus, future SAMs in the Russian

SA series and other SAMs re�ected that belief.
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A.3 Modern SAMs

It is clear from the preceding discussion that enemy air defenses, and, to some extent, aircraft

tactics, were the result of a long-standing pattern of action and reaction. That pattern continues

to this day. The SA-10 and the SA-20 are two extremely advanced SAM systems developed

in reaction to perceived capabilities of modern aircraft and weapons. These SAM systems

are capable of in�icting serious damage on any penetrating aircraft and should be taken quite

seriously.

The SA-10 "Grumble" is the much improved successor to the SA-2 and was introduced in

1980. Its aim is to shoot down low-level, high speed aircraft or missiles. It can be �xed or

mobile. The missile uses a single-stage, solid rocket engine that �ies at speeds well over Mach

5. It can reach altitudes up to 90,000 ft and can engage targets at a range of over 200 km [34].

The system utilizes the Big Bird radar system to detect low altitude, terrain-masked targets,

the Clam Shell radar to acquire targets using extreme ECM, and the Flap Lid to track both

the target and the missile and to issue mid-course corrections if necessary [34]. The SA-10,

shown in Figure A-5, boasts a single shot kill probability of 0.7 to 0.93 [34]. The SA-10 is a

mobile and extremely capable SAM that poses unique challenges to aircraft in the theater, and

it has been sold to numerous countries, including China, India, and others.

One of the most advanced SAMs in existence today is the SA-20 "Triumf," scheduled for

deployment in 2005. Possibly its most remarkable characteristic is its ability to engage and

destroy targets as far as 400 km away, or at twice the range of the SA-10 [34]. This capability

has the potential to drastically change the manner in which ISR and strike operations are

performed. The SA-20 can �re two di¤erent types of missiles. The �rst missile can reach

targets 400 km away and can operate in active or semi-active seeker modes [34]. It was

speci�cally designed to target jammer aircraft or early warning aircraft, such as the AWACS.

The associated radar system can reportedly detect targets over 600 km away and engage up to

six separate targets at one time [34]. This clearly shows why typical stando¤ assets will be

unable to penetrate very deep into enemy territory. Penetrating UAVs or some alternative will

be needed to �y undetected through enemy airspace to avoid the lethal reach of the SA-20 and

other SAM systems.

The second missile can engage targets up to 120 km away but has a single shot kill probability
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Figure A-5: SA-10 Grumble. The SA-10 "Grumble" is the much improved successor to the
SA-2 and was introduced in 1980. Its aim is to shoot down low-level, high speed aircraft or
missiles. It can be �xed or mobile. The missile uses a single-stage, solid rocket engine that
�ies at speeds well over Mach 5, and it has been sold to numerous countries.

of 0.9 against manned aircraft [34]. Its innovative gas-dynamic control system permits the

missile to maneuver at forces over 20 Gs and at altitudes up to 115,000 ft [34]. Human pilots

in manned aircraft can withstand 9 Gs at most. Other versions of the missile use an even more

advanced guidance and control system, a new high-energy solid fuel motor, and a "transverse

control engine," which supposedly enhances the accuracy of the missile in its �nal stage [34].

Also, the SA-20 missiles are interoperable with the SA-10 and can quadruple the capacity of

the launchers. Additionally, the SA-20 (Figure A-6) may be hard to jam since it can "vary the

waveform and change polarization of the signal," thus rendering some current U.S. jamming

practices obsolete [34]. Finally, the SA-20 missiles are reportedly made from stealth materials,

which would give the targeted aircraft less notice and less time to maneuver [34]. SA-20s are

currently being marketed to China, Iran, the United Arab Emirates, and other countries.

The evolution of SAM systems throughout the 20th century certainly displays a remarkable

trend of technological innovation. Current SAMs, with amazing precision and long reach, have

the potential to drastically change the nature of how the air war is fought and won. The
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Figure A-6: SA-20 Triumf. Possibly the most remarkable characteristic, among other features,
of this SAM is its ability to engage and destroy targets as far as 400 km away, or at twice
the range of the SA-10. This capability has the potential to drastically change the manner in
which ISR and strike operations are performed.

observed pattern of action and reaction means that today�s aircraft must �nd new ways to

avoid detection if ISR and strike missions deep within enemy territory are to be accomplished.

Management of an aircraft�s radar signature, better operational tactics, and enhanced stealth

technology will surely be integral to the success of air warfare in the 21st century.
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Appendix B

Unmanned Aerial Vehicles (UAVs)

Unmanned Aerial Vehicles (UAV) have had a large impact on military operations in the past

decade, and they now comprise a critical component of the armed forces. Military strategists,

commanders, and operators have all championed the capabilities of UAVs and advocated for

their continued production, availability, and use. UAVs come in all shapes and sizes with

a variety of sensors, weapons, and equipment. They are largely used in ISR operations but

have also proven to be e¤ective in hostile, o¤ensive combat missions. Clearly, UAVs o¤er a

formidable and valuable resource for planners of military operations.

B.1 History of UAVs

Many theories exist in regards to what exactly de�nes a UAV. There remains an equally

long list of terms that are synonymous to UAVs, such as drones, Remotely Operated Aircraft

(ROA), Remotely Piloted Vehicles (RPVs), and Unmanned Vehicles (UVs), to name a few. For

simplicity, the acronym UAV will be used here. The most inclusive de�nition of a UAV includes

powered aerial vehicles which maintain altitude through aerodynamic lift and lack the physical

presence of human beings. They can be recoverable or expendable and can be piloted remotely

or �y autonomously, meaning without any human aid. Robotic weapons and cruise missiles

are even considered to be UAVs. This all-inclusive de�nition will be used in the following

discussion.
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B.1.1 Early History

The �rst development in the history of UAVs occurred in May of 1896 when Samuel Pierpont

Langley constructed an unpiloted heavier-than-air vehicle that subsequently �ew over the Po-

tomac River [41]. The progress of UAVs continued during World War I with the development

of the "Sperry Torpedo," by pilot and inventor Lawrence Sperry. This torpedo began con-

struction in 1916 with the �rst test �ight in March of 1918. Near the end of World War I, two

di¤erent, semi-autonomous, unmanned aircraft began development. One was a Navy-designed

craft called "the �ying bomb." The other was developed by the US Army Signal Corps and

called the Kettering Aerial Torpedo, or "Bug" [38]. Both of these planes used gyroscopes

invented by Lawrence Sperry to control attitude and an aneroid barometer for altitude. The

actual airframe for both planes was provided by the Wright Airplane Company [38]. The "Bug"

was a small biplane made of wood and fabric with a 180-lb explosive warhead. The plane �ew

on a preset course and utilized a mechanism that counted engine revolutions to determine when

to fold the wings and dive on a target [1]. The plane �rst �ew in October of 1918 at Wright

Field but was hampered by developmental problems and delays and was never actually used in

combat.

B.1.2 World War II

The United States and Great Britain continued to invest time and e¤ort into UAVs throughout

the 1920s, but as Figure B-1 [41] shows, World War II spurred further growth in UAVs.

Many nations, including the U.S., Great Britain, Japan, Italy, and Germany, began widespread

experimentation with unmanned aircraft during World War II. The people of Great Britain

were terrorized beginning in June 1944 by the German V-1 (Vergeltungswa¤en-1) cruise mis-

sile, nicknamed the "Doodlebug" [1, 41, 38]. Using a barometer for altitude and a magnetic

compass for heading, the V-1 utilized an air-driven gyro-based �ight control system. The Ger-

mans unleashed a barrage of almost 20,000 V-1s against the Allies, who subsequently copied

the missile�s design, built a similar version, and eventually canceled the program in the 1950s

after never using the new missile in combat [38]. Following the German deployment of the

V-2 in September of 1944, the United States increased the tempo of its own research endeavors
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Figure B-1: History of UAV Development. From the �ight of the Aerodrome in 1896 to the
modern Global Hawk, the development of UAVs has been storied and fascinating.

and developed the Bell B-63 guided missile and the OQ-A Radioplane [41]. These programs

unfortunately followed the trend of many systems in that they become operational only at the

end of the war, were never produced in mass quantities, and were never deployed in combat.

However, the de�ning capability of UAVs developed during World War II was their expend-

ability, and their use proliferated in situations where manned aircraft would be ine¤ective or

unlikely to return.

B.1.3 Cold War

The development of cruise missiles continued unabated into the 1950s and 1960s with, among

others, the F6F-5K Hellcat, a missile launched from the deck of a carrier, the Air Force�s

XGAM-63, a supersonic missile shot from the air, and the AGM-28 Hound Dog, which could

travel over 700 miles [1]. However, an increasing emphasis was placed on recoverable UAVs

in the Cold War era. The need to gather intelligence and perform reconnaissance missions

became more attractive to military commanders, thus requiring the UAVs to return safely after
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Figure B-2: Lockheed D-21 UAV (USAF Museum). The D-21 was a supersonic, air-launched
UAV intended to capture images of areas that were unreachable by the SR-71, a fast, high-�ying,
long-range, stealthy manned recconnaisance aircraft.

performing their mission. A variety of di¤erent UAV designs were able to accomplish this

objective. One of the �rst was the Lockheed D-21 "Tagboard" UAV, which was developed and

deployed operationally over China in the mid-1960s [1]. The D-21, shown in Figure B-2, was

a supersonic, air-launched UAV intended to capture images of areas that were unreachable by

the SR-71, a fast, high-�ying, long-range, stealthy manned reconnaissance aircraft. However,

due to the large success of the SR-71, the D-21 proved to be unnecessary as well as ine¤ective.

Other UAV systems actually made vital contributions to intelligence operations in the Ko-

rean War, the Vietnam War, and other regions. For example, the Northrop-Ventura MQM-57A

and MQM-57B were short range, 24-hour, reconnaissance UAVs utilized from 1959 to 1973 by

the U.S. Army [1]. However, the Ryan Aeronautics Firebee (BQM-34A and variants) system

of UAVs has proven to be the most successful and e¤ective program ever. Developed as a

joint Army, Navy, and Air Force project in 1948, the UAV was initially designed to be a target

vehicle. Making its �rst �ight in mid-1951, the Firebee (see Figure B-3) is launched by a rocket

or in the air and uses a parachute for recovery [1]. To date, over 7,400 Firebees have been

built, both in the U.S. and in Japan, and they have been sold to many countries, including

Canada, Israel, and Italy [42]. The Firebee has been modi�ed into 20 di¤erent variants and

has been heavily utilized in strategic and tactical reconnaissance roles. Some variants carried

electronic intelligence gathering equipment, and some used television cameras and transmitters
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Figure B-3: Ryan BQM-34 Firebee (Northrop Grumman). This is the most successful and
e¤ective UAV program ever. Developed as a joint Army, Navy, and Air Force project in 1948,
the UAV was initially designed to be a target vehicle and is now used in strategic and tactical
reconnaissance roles.
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to accomplish their mission. The Firebee also has the distinction of being the �rst unmanned

vehicle to drop ordnance on an enemy site and return to safety. This type of UAV is called an

Unmanned Combat Aerial Vehicle, or UCAV. Around 1971, the U.S. Air Force contemplated

the use of a UCAV to attack enemy Surface-to-Air Missile (SAM) sites [1], which led to the

BQM-34A variant of the Firebee. Later versions included a modular system to switch between

reconnaissance and strike roles. The common theme between all the UAVs and UCAVs dis-

cussed to this point is that each aircraft was generally launched by a rocket or from the air,

�ew a pre-determined course, and was recovered by parachute.

B.1.4 Post-Vietnam Development

Although many programs lost funding or were canceled altogether, the late 1970s and 1980s

saw widespread continuation of UAV development. The YQM-94A "Compass Cope" was a

high altitude, long-range UAV developed by Boeing to compete with a similar system built by

Teledyne-Ryan [43]. This UAV was able to take o¤ and land under the direction of a controller

at a remote ground station. This design represented a large step toward the more sophisticated

UAVs of modern times. Following the Compass Cope was the Boeing Condor, a reconnaissance

UAV built in the late 1980s with a gigantic wingspan of over 200 feet (larger than a Boeing 747).

The Condor was a stealthy aircraft that could remain in �ight for over 80 hours, managing to

set an altitude record for a piston-driven aircraft of 67,000 feet [44]. Before its retirement, the

Condor was supposedly �own on over 300 secret missions.

Many other UAV systems followed the Condor, but perhaps the most important ones are

the RQ-4A Global Hawk and the RQ-1A Predator. The Global Hawk, built by Northrop

Grumman, is a high-altitude (50,000-60,000 feet), long-range (15,535 miles maximum), and

long-endurance (36 hours) UAV with a 116-foot wingspan, an allowable payload of 2,000 lbs,

and a cruise speed of 343 knots [45]. The Global Hawk, shown in Figure B-4, made its �rst �ight

on 28 February 1998 at Edwards Air Force Base in California. By May of 2001, Global Hawk

had accrued over 330 hours in FAA-controlled civil airspace and on 15 August 2003 became the

�rst UAV to be granted a national Certi�cate of Authorization to �y routinely in U.S. national

airspace [45]. The Global Hawk is intended for long-range missions that require wide-area

surveillance. To support that objective, the aircraft is equipped with Electro-Optical (EO),
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Figure B-4: RQ-4A Global Hawk (C.W. Controls, Inc.). The Global Hawk, built by Northrop
Grumman, is a high-altitude (50,000-60,000 feet), long-range (15,535 miles max), and long-
endurance (36 hours) UAV with a 116-foot wingspan, an allowable payload of 2,000 lbs, and a
cruise speed of 343 knots. It has been used very e¤ectively in recent military operations.
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Figure B-5: GA RQ-1A Predator (Edwards AFB). The Predator is a short-range (2,302 miles),
long-endurance (40 hours), and low-�ying UAV with a loiter speed of 117 knots. It is unique
in being the only operational UCAV within the US military.

InfraRed (IR), and Synthetic Aperture Radar (SAR) sensors. The Global Hawk has been used

quite e¤ectively in recent military operations, including providing U.S. Central Command with

over 15,000 images over about 1,000 hours of �ight time during Operation Enduring Freedom

in Afghanistan [45].

The General Atomics RQ-1A Predator grew out of an earlier General Atomics UAV called

the Gnat. In contrast to the Global Hawk, the Predator is a short-range (2,302 miles), long-

endurance (40 hours), and low-�ying UAV with a loiter speed of 117 knots [46]. Making its �rst

�ight on 3 July 1994, the Predator has been the workhorse of the UAV reconnaissance commu-

nity, logging over 50,000 hours by October of 2002. It has been used in Bosnia, Afghanistan,

and Iraq [46]. The Predator (see Figure B-5) is also unique in that it (or a variant) is the

only operational UCAV within the U.S. military. On 3 November 2002, a Predator used its

attached Hell�re missiles to kill suspected terrorists in a civilian vehicle about 100 miles east

of Sana�a, the capital of Yemen [46].
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B.2 UAVs Today

In 100 years of UAV development, over 1,500 di¤erent UAVs have been created. That is a

staggering number, considering the small fraction that appeared in the previous brief history.

The advances in technology that have occurred since May of 1896 have allowed modern UAVs

to be smarter, faster, more persistent, more adaptable, and simply better at accomplishing

their mission. This is not to say that UAVs are perfect and have reached the peak of their

development. Nothing could be further from the truth. Aside from combat operations, simple

�ight control issues and human-machine interface problems account for the majority of UAV

losses [1, 41]. However, the plethora of UAVs in existence today warrant some degree of

admiration, if only for their in�nite variety.

B.2.1 Types of UAVs

Due to the diversity in UAV designs, it remains di¢ cult to classify them, and numerous tax-

onomies exist with regard to UAVs. One common method is to di¤erentiate between UAVs

based on their altitude and velocity. This system places UAVs into groups that also happen

to share other attributes, such as size, payload capacity, and endurance, although this is not

always the case.

The �rst type of UAVs travel with large velocities at high altitudes. An example is the

previously mentioned Lockheed D-21, which could attain speeds of around Mach 3 at altitudes

of 90,000 feet or greater. UAVs in this group tend to hold medium-sized payloads and achieve

medium levels of endurance. For example, the D-21 has a payload capacity of 190 kg and an

endurance of 1.6 hrs. The next class of UAVs travel at smaller velocities and at lower altitudes.

A common example is the Global Hawk with a cruise speed of 343 knots at altitudes around

60,000 ft. This group of UAVs has a larger payload capacity (900 kg for Global Hawk) and

longer endurance (36 hrs) than the �rst group. Figure B-6 [47] illustrates all the di¤erent types

of UAVs.

The next group of UAVs, like the Predator, �y at a lower altitude (25,000 ft) with a smaller

velocity (117 knots). This group also follows the trend for endurance with the Predator being

able to loiter for over 40 hours, greater than both the Global Hawk and D-21. However, with
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Figure B-6: Classes of UAVs. Micro UAVs such as the Black Widow have a low altitude and
low velocity. Other types of UAVs exist all the way until the high, fast UAVs appear, such as
the D-21. This variety of UAVs allows many options for military commanders.
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regard to payload, the Predator can only carry 200 kg. This is the start of a trend toward

smaller payloads, which makes sense since the actual size of the UAVs in each group decreases

along with their ability to carry heavier items. The next group �ies at altitudes lower than

20,000 ft and at velocities less than 100 knots. An example is the Seascan, a sea reconnaissance

UAV built by the Insitu Group to provide aid to services such as search and rescue and coastal

patrol. This UAV has a small payload of only 3.2 kg but an amazing endurance of 56 hours

[47].

The last group of UAVs are quite promising in what they can o¤er and are an area of

extremely active research. This group is termed Mini- or Micro-UAVs. Some measure as long

as two feet across and weigh more than 10 lbs, but others take advantage of microelectronics

to reduce the size and signature of the UAV. For example, the AeroVironment Black Widow,

shown in Figure B-6, can only carry a tiny payload of 2 grams and has an endurance of only

22 minutes [47]. In addition, it can �y to an altitude of 769 ft at a maximum velocity of about

40 knots. The total weight of the Black Widow is 50 grams, with 25 of those grams being the

weight of the primary batteries [48]. Despite its small size, or perhaps because of its small size,

the Black Widow and many other Micro-UAVs are an increasingly helpful source of information

to aid military commanders.

The general trends within these UAV groups are clear. Looking at Figure B-6, the higher

and further to the right one is on the chart, the larger, higher, and faster the UAV tends to

be. Inversely, the UAVs that are lower and further to the left on the chart are smaller, slower,

and lower. In addition, the endurance of the UAV increases as one moves to the left while the

payload capacity decreases. A �nal trend of interest that one may expect is that the cost per

UAV increases as well, going from $1,000 or less in the left hand corner to millions of dollars in

the upper right hand corner. The groups of UAVs presented here are not complete, nor are they

set in stone. Many UAVs, because of their diversity, fall in gray areas and cannot be classi�ed

easily. However, the taxonomy presented here enables a simple and better understanding of

the wide variety of existing UAVs.
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B.2.2 Control Methods

One particular area of active research and debate is how UAVs are controlled. This area can be

split into three separate categories: remote, semi-autonomous, and autonomous [37]. Each of

these methods have speci�c advantages and disadvantages. Remote control implies direct and

immediate control over the movements and actions of a UAV through a continuous datalink

from a controller located in a ground station. One important aspect of remote control is the

problem of latency, which describes the time delay between the ground controller�s commanded

action and the physical occurrence of the action with respect to the UAV. The Predator has

a three-second lag time when in the direct line-of-sight of the ground station, and that time

increases as the distance between the controller and the UAV increases [37]. That delay may

not appear to matter, but in hostile, combat situations, every second is needed to avoid being

shot down by enemy SAM sites or other threats. However, remote control is quite adaptive

in that the UAV controller can respond quickly to a changing environment. The downside is

the latency problem, the high taskload imposed on the ground controller, and as well as the

need for a continuous communication link between the controller and UAV, which is subject to

failure and enemy interception.

Semi-autonomous control allows the UAV to maintain its own �ight controls, avoid terrain,

and perform various other low-level functions [37]. Commands are then sent via the ground

station whenever necessary to alter the �ight path, take images, or accomplish a di¤erent task.

Semi-autonomous control is especially appropriate when the ground controller�s taskload is

high because the autonomy given to the UAV allows the controller to focus on other tasks and

accomplish much more. Also, communication with the UAV can be less continuous and more

discrete since the datalink is only needed when instructions need to be sent. Autonomous

control essentially puts the entire �ight under the control of the UAV. The prime example of

this type of control is a cruise missile [37]. With autonomous control, the mission is pre-planned

and non-adaptive, which leaves no room to maneuver in a changing environment. However,

for certain missions with stable conditions, an automated UAV might be the best option.

UAVs don�t necessarily have to utilize strictly one method. The combination of two or more

methods may prove to be more e¤ective than simply relying on one. For example, the Predator

is remotely controlled, but if that continuous datalink fails, it is programmed to autonomously
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Figure B-7: Ten Levels of Automation. Sheridan and others divided machine automation into
10 di¤erent levels. At the bottom (level 10) is where the computer makes all decisions. The
top (level 1) is where the human completes all tasks, and the computer o¤ers no assistance.
Many tasks fall somewhere in between those two extremes.

return to a certain point in order to regain communication.

The methods described here actually have a lot more to do with the interaction between

humans and machines than with the control of UAVs. In fact, the terms used can be directly

related to terms used frequently within the human factors community, which come from a

division of automation into ten di¤erent levels, shown in Figure B-7 [49]. An automation level

of 10 means that the computer (or UAV) decides everything and ignores the human (ground

controller), which corresponds to autonomous control. Level 5 means that the computer

executes an action with the approval of the human, corresponding to semi-autonomous control,

and level 1 signi�es that the computer does nothing and allows the human to make all the

decisions and take all the actions, which implies remote control.

In addition to the control method, a three-tiered pyramid scheme can be used to analyze

the level of interaction between the UAV and the controller (Figure B-8). At the bottom of

the pyramid are tasks that can be automated within the UAV, such as following waypoints or

maintaining position in a formation. The second tier consists of more complex, knowledge-based

decisions, such as a search and destroy directive, and the third tier consists of strategic decisions
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Figure B-8: Levels of Interaction. This pyramid represents di¤erent amounts of interaction
between a machine and a human. The bottom represents low-level functions that can be
automated within a machine. The middle level represents more knowledge-based decisions,
and the top level represents the few strategic decisions that require the most interaction.

made by the controller, such as directing the UAV to attack a certain target or approving a

target the UAV has selected. Recent studies have suggested that a management-by-consent

level of automation (semi-autonomous control) combined with a medium level of interaction

may allow for the most e¤ective and e¢ cient control of UAVs in hostile, combat situations [51].

B.2.3 Why UAVs?

One simple question the reader might be asking is why UAVs are so important as compared

to other similar manned platforms. Simply put, UAVs possess very unique advantages over

manned aircraft. They are often smaller because they are not constricted by the larger size

needed to accommodate a pilot. Many design limitations on airframe construction are then

removed because the UAV has no need for a pilot, life support system, canopy, �ight controls,

instruments, displays, and many other items [1]. Eliminating that equipment implies a smaller

aircraft, such as the Predator or the Firebee, which allows the UAV to be optimized for lower

observability and leads to a reduced radar signature. Conversely, that extra space can also

be used to �eld more sensors and equipment and enable the UAV to be more e¤ective than a
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manned aircraft.

The absence of a human pilot allows UAVs to be much more maneuverable and less con-

strained by human physiological limits. Without injury, human beings can on average with-

stand only 9 Gs of force, where one G (short for gravity) is equal to the weight of one atmosphere.

UAVs can be designed to withstand more than 30 Gs without damage to the aircraft, which

makes them much more applicable to missions where sustained forces of 9 Gs or more are neces-

sary. However, current advances in missile technology have now made this advantage irrelevant

[1]. The only combat situations that might require high-G maneuvering are within-visual-range

"dog�ghts" between two aircraft and missile avoidance. The vast reach of current air-to-air

missiles eliminates the necessity for dog�ghting, and the maneuvering and seeking abilities of

these missiles make last ditch, high-G, missile avoidance maneuvers futile [1].

UAVs can also operate and maintain a presence for much longer periods of time. The typical

endurance of a UAV, as previously illustrated, is over 36 hours and can even exceed 50 hours,

which is far beyond the capabilities of manned aircraft. Additionally, a UAV can operate

in environments where humans cannot, such as radioactive or contaminated areas. Human

�ight at altitudes higher than 50,000 feet require pressure suits and special procedures. UAVs

would think nothing of �ying at those altitudes. UAV accidents and mishaps also cause less

politically charged situations. When Francis Gary Powers�U-2 was shot down over Russia on

1 May 1960, a political crisis ensued over U.S. attempts to bring him home, and the nation

learned the price it had to pay for the capture of a U.S. pilot in enemy territory [1]. The crash

or shoot-down of a UAV, however, causes little political upheaval or emotional outbursts and

simply adds to the price tag of the current military operation. A �nal advantage the UAV has

over manned aircraft is the price tag. While not necessarily less expensive in all cases, UAVs

have the potential to greatly reduce the cost per aircraft if signi�cant improvements can be

made to the current acquisition and operational phases of UAV development [41].

B.2.4 UAV Roles

UAVs and UCAVs are well suited for a variety of missions, to include ISR missions, tactical

reconnaissance, deep strike, escort, suppression of enemy air defenses (SEAD), and many others.

UAVs have proven their worth in a variety of ISR missions, to include battle�eld surveillance
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and long endurance tracking. These are mostly uneventful missions that humans in manned

aircraft would be happy to delegate to a UAV. Tactical reconnaissance goes one step further

and increases the risk to the UAV. This would include missions such as pre- and post-strike

reconnaissance, battle damage assessment (BDA), or covert deep reconnaissance [1]. Any air

defenses in the areas under surveillance would be on alert, thus turning a relatively safe mission

into a dangerous one [1]. The low observability of UAVs and UCAVs lends itself quite well to

this mission.

Deep strike involves delivering ordnance against either �xed or mobile targets. UCAVs

could destroy their assigned target, take BDA themselves, and return to safety. Alternately,

they could be instructed to strike another target. These missions are also dangerous, but using

a UCAV eliminates the risk for loss of human life, and real-time imagery could be provided

[37]. Another possible UCAV mission is as an armed escort. A UCAV or group of UCAVs

could augment the weapons capacity of a �ight of manned aircraft, allowing the entire group to

be more e¤ective and lethal. The manned aircraft could also return to other, more important

tasks and let the UCAV drop the ordnance itself after the assignment of targets.

SEAD is the most prominent of roles for which UCAVs have been considered. To gain

air superiority in a region, enemy air defenses must be suppressed or destroyed �rst. This is

neither simple nor easy, and some have described this mission as a duel in which the air defenses

usually have the upper hand [1]. However, if the UCAV can operate and react quickly and

take into account multiple variables as rapidly as human beings can, then it can provide an

e¤ective and safe (from the human perspective) solution to SEAD and allow manned aircraft to

patrol the area unhindered by SAMs and other threats. These are just a few of the multitude

of missions for which UAVs and UCAVs may be suited.

B.2.5 Current Operations and Future Growth

An analysis of current military operations supports the increasing role of UAVs in the military.

Operation Iraqi Freedom (OIF) recently demonstrated the widest use of UAVs in any opera-

tion ever. Over ten di¤erent UAVs were employed, to include the Global Hawk (1), Predator

(17), Hunter (16), Shadow (9), Pioneer (20), FPASS (28), Dragon Eye (20), Silver Fox (6), and

Pointer (25) [36, 41]. Additionally, several di¤erent Micro-UAVs were utilized by ground forces
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Figure B-9: UAVs in Operation Iraqi Freedom (OIF). UAVs such as the Global Hawk, the
Predator, the Hunter, and many others performed many tasks in OIF such as taking images,
identifying targets, close air support, and many other functions. These operations involved
many sorties over an extended period of time.

during the engagement [41]. Together, these UAVs provided intelligence preparation of the

battlespace, persistent surveillance, broad area search, target identi�cation and designation for

weapons employment, strike, battle damage assessment, force protection, and some classi�ed

missions as well [36]. Figure B-9 [36] provides more details about the performance and services

provided by UAVs in OIF. The result of these UAV e¤orts was a persistent availability of ISR

data, which is crucial to military commanders in rapidly changing environments. Although

much improvement is needed, the integration between manned and unmanned systems pro-

ceeded relatively smoothly, and UAV losses were much lower than expected (3 Predators, 2

Hunters, and 1 Pioneer) [36].

Looking at the future provides a window into the intensi�cation of e¤orts to develop and

improve more UAV systems. Analysts predict that there will be 16 fully operational UAV
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Figure B-10: DoD UAV/UCAV Funding. This graph illustrates the exponential increase
in funding for UAVs and UCAVs by the Department of Defense (DoD), clearly revealing its
burgeoning interest in UAVs.

and UCAV programs within the next 10 years [36]. Figure B-10 [36] illustrates the exponential

increase in funding for UAVs and UCAVs by the Department of Defense (DoD), clearly revealing

its burgeoning interest in UAVs. It is clear that UAVs and the technology that supports them

are not perfect: nor are they ready to replace manned aircraft. However, it is equally obvious

that they render many unique capabilities available to military commanders. Increasing e¤ort

must be devoted to the study and development of UAVs so that we do not �nd ourselves, in

the words of one airman, in "an unenviable position: instead of employing these weapons, we

will �nd ourselves facing them" [1].
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Appendix C

Radar Systems

Radar can be classi�ed and organized in a variety of ways, and it is used in numerous applica-

tions. Remote sensing of the environment involves weather observation, planetary observation,

below-ground probing, and mapping of sea ice [31]. Air tra¢ c controllers rely heavily on radar

to properly route aircraft into and out of airports. Of course, most drivers have encountered

a form of radar that is used by police o¢ cers to enforce speed limits. Pitchers in baseball

use radar to determine the speed of each pitch. Space vehicles use radar for rendezvous and

docking. In addition, larger radar systems are able to track satellites and other space objects.

There exist many more �elds to which radar has been applied, but the vast majority of radar

use and development is attributable to the military. Radar is vital to military air defense and

o¤ensive weapons. Di¤erent radar systems perform surveillance, �re-control, guidance, and

a variety of other purposes. Some aspects of intelligence gathering rely on radar, and most

aircraft use some form of terrain-following radar to avoid collisions, so it is clear that radar has

a large imprint in today�s world.

C.1 Characteristics of Radar

There are many positive aspects of radar. It can detect objects at long range as well as

perform tracking. Unlike EO sensors, radar is not a¤ected by clouds or adverse weather. It

can detect moving targets, take images of �xed targets, and rapidly scan over wide areas with

electronic scanning antennas. It can operate at large wavelengths, and it propagates through
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the atmosphere incurring relatively small losses as compared to acoustics [30].

However, there are some detractions to using radar. Large, heavy antennas are necessary,

as are high-powered transmitters in some cases. Radar systems typically consist of complicated

electronics that use a lot of power and cost a large amount of money. Microwaves also do not

propagate very well around obstacles or through water, trees, or foliage [30]. In addition,

radar�s task of identifying and tracking an unknown target is made much more challenging due

to the countermeasures a target can take. Many aircraft know that they�re being detected,

can locate the radar site, and can use ECM along with cha¤, �ares, and anti-radiation missiles

to render the radar obsolete. Additionally, an aircraft can signi�cantly reduce its Radar Cross

Section (RCS), or the degree to which the target re�ects the microwaves, by using stealthy

materials and enhancing the aircraft design.

C.1.1 Radar Wave Basics

Radar operates in the microwave region of the electromagnetic spectrum, between 7.5 mm -

100 cm in wavelength and between 3 MHz - 300 GHz in frequency. This region, shown in

Figure C-1 [29], is located directly between infrared waves and radio waves. As can be seen in

Figure C-1, each segment of the microwave region is divided into separate bands, which are

each denoted by a capital letter. These letters may be confusing, especially in comparison with

other spectrum charts, since several di¤erent letter-band designations are in use. However, the

majority of these bands were created by the military to maintain secrecy during World War

II, and radar engineers continued to use these band designations for convenience after the war

[31].

Each radar wave propagates at the speed of light, c, which is equal to approximately 3 �

108 m/s. The wavelength and frequency of an electromagnetic wave can be related through

Equation C.1, where f is frequency and � is wavelength.

� =
c

f
: (C.1)

The most common radar waveform is a series of rectangular-shaped, pulse-modulated sine

waves, often called a pulse train [31]. Care must be taken to allow su¢ cient time between the
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Figure C-1: Electromagnetic Spectrum. The spectrum is divided into many groups, such as
radio waves, microwaves, visible, or gamma rays. Microwaves are further divided into di¤erent
bands relating to their wavelength or frequency. These bands were initially created by the
military for use in wartime but have continued to be used. Fire-control radar for many SAM
systems utilize X-band radar, between 8 and 12 GHz in frequency.
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TR = 0.00075 s

Tp = 0.001 s P t = 1 MW

Pecho = 10?12 W

Figure C-2: Pulse-Modulated Waveform Example. This is an example of a typical waveform
for a medium range air surveillance radar. In this example, the time between the transmissions
Tp is one millisecond, the peak power Pt is one megawatt, the target�s echo is 10�12 watts, and
TR is 0.00075 s.

transmission of each signal. The re�ected waveform, or echo, must return between the two

transmissions, or else it could be mistakenly associated with the next transmission, resulting in

an inaccurate range measurement. That range is calculated by recording the amount of time,

TR, that it takes for the signal to travel to a target and back. Using that value in Equation

C.2 along with c, the range can then be calculated.

R =
cTR
2
: (C.2)

An example of a typical waveform for a medium range air surveillance radar is shown in Figure

C-2 [30]. In this example, the time between the transmissions Tp is one millisecond, the peak

power Pt is one megawatt, the target�s echo is 10�12 watts, and TR is 0.00075 s. Ignoring

other factors, the target would be 112.5 km away, and the radar would have a maximum

detection range of 150 km in this simpli�ed situation. Both quantities are found by plugging

the respective times into Equation C.2.

The output of the receiver might look something like Figure C-3 [30] after a period of time.

The threshold level determines valid detections and is set somewhere above the average value

of the noise, which is ever-present throughout the electromagnetic spectrum. Points A and

B in Figure C-3 are valid detections of a target whereas point C is a missed detection. The

threshold level allows tradeo¤s between missed detections and false alarms.
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Figure C-3: Envelope of Radar Receiver Output vs Time. This is an example of what a
radar receiver might look like. Points A and B, which lie above the threshold level, are valid
detections whereas point C is a missed detection because it is well above the noise but still
below the threshold that was set.

C.1.2 The Doppler Shift

Another important characteristic of radar is its ability to measure the Doppler frequency of a

target. A simple example to illustrate this ability would be a passing ambulance. A person

standing on the side of the street would hear the pitch of the ambulance�s siren increase as it

gets closer and closer. As the siren passes the person and gets farther away, the person would

hear the pitch of the siren decrease in a similar fashion. This change in pitch is the result of

a change in the frequency of the sound waves being received by the ears of the pedestrian. As

the ambulance gets closer, the intervals between each sound wave become smaller, and as the

ambulance recedes, the intervals between the waves increase. An Austrian mathematician and

physicist by the name of Christian Doppler discovered this anomaly in 1842, and the Doppler

shift, as it became known, had a profound e¤ect on many technologies, including radar systems,

astronomy, medicine, and speed enforcement [28].

The principles of the Doppler shift hold true for electromagnetic waves as well as sound

waves [31]. If the distance between the radar location and the target is R, then the total
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number of wavelengths in the round-trip path between the radar and target is

2R

�
: (C.3)

Since each wavelength implies a phase change of 2� radians, then the total phase-change, �, in

the round-trip path is

� = 2� � 2R
�
=
4�R

�
: (C.4)

The focus of this thesis is on radar associated with SAM sites. Thus, the radar will be looking

at a moving target. This means that R is changing along with the phase. Taking the derivative

of Equation C.4 with respect to time results in a formula for the rate of change of phase, also

known as the angular frequency, !d.

!d =
d�

dt
=
4�

�
� dR
dt
=
4�vr
�
: (C.5)

In Equation C.5, vr is equal to v cos �, where � is the angle between the radar line-of-sight and

the target�s velocity vector. Also, since !d = 2�fd, the Doppler frequency fd can be found as

follows:

fd =
2vr
�
: (C.6)

A positive Doppler frequency means the target is approaching whereas a negative Doppler

frequency means the target is receding. A plot of Doppler frequency vs target radial velocity

for di¤erent frequency bands is shown in Figure C-4 [30].

C.1.3 Radar Block Diagram

There exists many ways in which the process of radar can be analyzed. It can be viewed with

respect to hardware, software, or interfaces. However, the simplest way to depict the radar

process is by listing all of the most important actions or components and then linking them

all together in a diagram. That is shown in Figure C-5 [30]. A waveform is generated by

the ground radar and then transmitted through the antenna to the target in the air. The

target has a certain RCS, which causes it to re�ect the radar waves back to the antenna. The

receiver picks up the target echo, translates the analog signal into a digital one, and sends that
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Figure C-4: Plot of Doppler Frequency vs Radial Velocity. The left axis shows Doppler
frequency in Hz, and the bottom axis shows the radial velocity of a target in knots, Plotted on
the graph are all the various frequency bands and their associated frequencies. Thus, using this
graph, one could determine the radial velocity of an approaching aircraft if the radar frequency
is known.
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Figure C-5: Block Diagram of Radar. A waveform is generated by the ground radar and then
transmitted through the antenna to the target in the air. The target has a certain RCS, which
causes it to re�ect the radar waves back to the antenna. The receiver picks up the target
echo, translates the analog signal into a digital one, and sends that digital echo to the signal
processor, which compresses the pulse and �nds the Doppler frequency. The main computer
then receives the processed signal and determines whether a detection has been made. It will
perform tracking and parameter estimation, record the results, and send them to the display,
where the human operator makes decisions based on the processed target information.
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digital echo to the signal processor, which compresses the pulse and �nds the Doppler frequency.

The main computer then receives the processed signal and determines whether a detection has

been made. It will perform tracking and parameter estimation, record the results, and send

them to the display, where the human operator makes decisions based on the processed target

information.

C.2 Radar Cross Section

The Radar Cross Section (RCS), �, of a target is the magnitude of the echo signal re�ected by

the target and received by the radar [31]. It has also been de�ned more formally as "the area

intercepting that amount of power which, if radiated isotropically, produces the same received

power in the radar" [30]. RCS is an area, and its units are typically in meters squared. It is

also common to see RCS in terms of decibels, where RCSdBsm = 10 log10RCSm2 . Accurate

knowledge of target RCS is vital not only to those operating the air defense systems but also

to those targets who are actively seeking to avoid detection.

Typical average RCS values for aircraft range anywhere from -70 dBsm to 25 dBsm (10�7

m2 to 300 m2). Figure C-6 [30] shows comparative RCS values for birds all the way up to

aircraft carriers. The values for some aircraft can get even lower given the advent of numerous

stealth technologies. However, Figure C-6 does give a good comparison between objects of

di¤erent size and shape.

C.2.1 Simple Targets

Objects such as cylinders or cones are relatively simple targets for which analytical expressions

exist to calculate the RCS. In particular, a sphere is an excellent example because it radiates

isotropically in all directions since it has the same exact shape no matter what aspect angle is

presented. The maximum RCS for a sphere is �a2, where a is the radius [31]. Figure C-7

[30] shows the normalized RCS of a sphere as the circumference (measured in wavelengths) is

increased. RCS depends on the geometry of the object compared to the radar wavelength.

The Rayleigh region, shown in Figure C-7, is where the wavelength is large compared to the

object�s dimensions. In the case of a sphere, this is the area where 2�a=� � 1 [31]. The
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Figure C-6: Approximate RCS Values. Typical average RCS values for aircraft range anywhere
from -70 dBsm to 25 dBsm (10�7 m2 to 300 m2). This �gure shows comparative RCS values
for birds (around 0:01 m2) all the way up to aircraft carriers (100; 000 m2).
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Figure C-7: RCS of a Sphere. This �gure shows the normalized RCS of a sphere as the
circumference (measured in wavelengths) is increased. The Rayleigh region on the left of the
�gure is where the wavelength is large compared to the object�s dimesions. The optical region
on the right is where the wavelength is very small compared to the object�s dimensions, and
the area in between is the resonance region, where the dimensions and wavelength are similar
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region was named after Lord Rayleigh, who observed similar scattering in 1871 while studying

the scattering of light by microscopic particles [31]. Within the Rayleigh region, RCS / f4,

where f is the radar�s frequency, and the volume of the target has a much larger e¤ect than

does the shape. Rain normally falls under this category.

The opposite side of Figure C-7 shows the optical region, where the RCS is heavily dependent

on the shape of the target rather than the volume [31]. Changes in frequency or aspect angle

result in large changes in RCS. In the optical region, the wavelength is very small compared to

the dimensions of the object, and for a sphere, 2�a=� � 1. Scattering from aircraft or ships

normally fall in this category. The area in between the Rayleigh and optical regions is called

the resonance region, where the object�s dimensions and the radar wavelength are similar. In

this case, geometry and volume play roughly equal roles in determining RCS, which �uctuates

as a function of frequency in the case of the sphere. The reason for this �uctuation is that

two separate waves interfere in constructive or destructive ways. The �rst wave is the echo

from the front face of the sphere. The second wave is called the creeping wave, which travels

behind the sphere and heads for the radar to interfere with the �rst wave [31]. Figure C-8

[30] shows the backscatter produced by a short-duration pulse radar with both waves clearly

depicted. In this case, the sphere�s radius is equal to the radar wavelength, which indicates

the resonance region. The creeping wave appears a short time after the �rst wave due to the

distance traveled around the sphere.

C.2.2 Complex Targets

Viewing aspect and frequency are signi�cant factors when determining the RCS for a complex

target such as missiles or aircraft. Each object is made up of numerous parts that produce

individual echoes. In the end, the radar sees the combination of all of these scatterers. Further

complexity results from interactions between individual scatterers and di¤erences in scatter

properties [31].

For a complex target such as a guided missile, there exist three distinct contributions to

the RCS: structure, propulsion, and avionics. These contributions are illustrated in Figure C-9

[30]. Structural contributions include control surfaces, access panels, the shape of the airframe,

and even small fasteners. Propulsion contributions include the inlet, exhaust, and any heat
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Figure C-8: Sphere Backscatter from Short Pulse Radar. Backscatter is produced by a short-
duration pulse radar. The reason for frequency �uctuation is that two separate waves interfere
in constructive or destructive ways. The �rst wave is the echo from the front face of the sphere.
The second wave is called the creeping wave, which travels behind the sphere and heads for the
radar to interfere with the �rst wave.
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Figure C-9: Components of Target RCS. Complex targets have three distinct contributions
to the RCS. Structural contributions include control surfaces, access panels, the shape of the
airframe, and even small fasteners. Propulsion contributions include the inlet, exhaust, and
any heat emissions. Avionics include items such as a GPS or altimeter.

emissions. Finally, avionics include items such as a GPS or altimeter. An examination of

the colossal number of contributors to RCS on a typical aircraft should provoke a great deal of

admiration for those who are able to minimize these scatterers and achieve stealth capability.

Older aircraft that have been studied in the past provide an opportunity to analyze RCS

patterns in more detail. The Army Air Force�s T-33 Shooting Star (Figure C-10 [27]) was the

�rst jet �ghter trainer, introduced in 1944 and exported to more than 20 countries. Figure

C-11 [27] shows its RCS as a function of aspect angle, where 0 degrees is looking head on. It is

clear that the largest spikes occur at 90 degrees and 270 degrees (for the two wings) with smaller

spikes at 0 and 180 degrees for the nose and tail. Some �nd this view of RCS a little confusing

and not very explanatory. Thus, the polar view of a target�s RCS has become the main tool

with which to analyze the scatter properties of a target. The commonly used example of a

B-26 twin-engine bomber is shown in Figure C-12 [31]. This view succinctly displays the RCS

pattern of the B-26 with the aircraft�s frame superimposed in the center to provide an excellent

comparison of RCS values and target geometry.
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Figure C-10: T-33 Shooting Star. The T-33 is an older aircraft that has been studied in the
past and thus provides a good opportunity to analyze RCS patterns in more detail. This
speci�c plane was the �rst jet �ghter trainer, introduced in 1944 and exported to more than 20
countries.
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Figure C-11: T-33 RCS Pattern. The plot maps RCS versus aspect angle. The pattern clearly
shows large spikes at 90 degrees and 270 degrees for the two wings and smaller peaks at 0
degrees and 180 degrees for the nose and tail.

C.2.3 Calculating RCS

RCS can be determined in two ways. It can be measured, or it can be predicted. Obviously,

the �rst choice would be to measure it by using the actual target in �ight tests where radar

waves are transmitted and received by a ground station at a variety of aircraft depression and

azimuth angles. Unfortunately, access to a particular aircraft is relatively rare. Thus, full-scale

models of the aircraft are constructed and used to conduct RCS scatter tests. Styrofoam can

be used in columns to support the aircraft in the test chamber since the dielectric properties

of styrofoam are similar to those of free space [30]. The aircraft could also be mounted with

metal pylons that are shaped to reduce radar echoes, and background subtraction techniques

are utilized to produce a clear RCS pattern [30]. Scaled models can also be used, although

scaling the measurements can become di¢ cult or make for rough interpolations. For example,

if the full-scale model would be measured at frequency f and the scale factor is S, then the

smaller model should be measured at a frequency of S�f [30]. Other quantities, such as length,

time, and conductivity have to be scaled by certain factors before accurate measurements can

take place.

128



Figure C-12: B-26 RCS Polar Plot. Polar plots such as this one are more explanatory and
increasingly are the main tool with which to analyze the scatter properties of a target. The
most common RCS polar plot example is the B-26 twin-engine bomber.
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Figure C-13: Measured and Calculated RCS of JGAM. Clearly, individual RCS values for
di¤erent aspect angles vary widely for di¤erent RCS prediction methods. Even averaged RCS
curves superimposed on this �gure would di¤er greatly at certain sets of angles.

RCS can also be predicted. Some texts on electromagnetic scattering give the following

de�nition of RCS [31]:

� =
power re�ected toward source/unit solid angle

incident power density/4�
= 4�R2

jErj2

jEij2
; (C.7)

where R is range, Er is the received electric �eld strength of the target echo, and Ei is the

electric �eld strength incident on the target. In reality, this equation is not perfect, nor are

the quantities contained in it easy to measure. One approach to predicting RCS involves high

frequency approximations or exact numerical approaches [30]. High frequency approximations

use the physical theory of di¤raction to estimate the RCS, which reduces the computational

demands. However, this method neglects multiple scattering and is applicable only to large,

smooth geometries [30]. Numerical approaches use the method of moments to derive an

exact formulation for the RCS of an object. The only problem is the intense computational

requirements demanded by this method [30]. Figure C-13 [30] depicts both the measured and

calculated RCS for the Johnson Generic Aircraft Model (JGAM). Clearly, individual RCS

values for di¤erent aspect angles vary widely for each method. Even averaged RCS curves

superimposed on Figure C-13 would di¤er greatly at certain sets of angles. RCS determination
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is undoubtedly a �eld of great complexity, lacking perfect measurement and prediction tools.

Many iterations with various models and methods must be performed before settling on a

certain RCS.

C.2.4 Fluctuations

As previously stated, complex targets are composed of numerous parts which all scatter indi-

vidually with di¤erent phases and amplitudes. At the radar receiver, all of these scatterers

are summed to form a resultant phase and amplitude. Any small changes in the depression or

azimuth angles of a target, as viewed by the radar, can result in major changes to the target

RCS, described by that summed phase and amplitude. These changes are called �uctuations,

and are exceedingly di¢ cult to model accurately.

Peter Swerling described four statistical models to represent target �uctuations by utilizing

a probability density function (pdf), which gives the probability of having a certain RCS in a

certain range [31]. The �rst Swerling model assumes that the target echo pulses received by

the radar have constant amplitude throughout an entire scan but are uncorrelated from scan to

scan [31]. This is called a slow �uctuation, and the applicable pdf is shown below in Equation

C.8 [31]:

p(�) =
1

�av
exp

�
� �

�av

�
� � 0; (C.8)

where �av is the average over all values of target RCS. The second Swerling model is identical

to the �rst, except that �uctuations are independent from pulse to pulse instead of scan to

scan. This is called a fast �uctuation. The third Swerling model makes the same assumptions

as the �rst one, but instead uses the following pdf:

p(�) =
4�

�2av
exp

�
� 2�
�av

�
� � 0: (C.9)

This pdf is supposedly better suited to targets with one large scatterer and numerous smaller

scatterers [31]. The fourth and �nal Swerling model uses the same pdf in Equation C.9, but

the �uctuation is pulse to pulse as in the second model.

Other target �uctuation models include the Chi-Square target model, the Rice pdf, and

many others [31]. However, the most common models used to estimate RCS with �uctuations
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are the Swerling models. In particular, the �rst Swerling model is the most widely used.

Fluctuation modeling remains another complex area, and even one author admits that simply

picking a low, conservative RCS that will be exceeded most of the time might be the best

strategy since no existing analytical method is much more precise [31].

C.3 The Radar Equation

The radar equation relates the performance of a radar to its design parameters. Speci�cally,

it connects the properties of the target, the characteristics of the radar, and the attributes of

the propagation medium to obtain the range of the target and other things. It is mainly used

to determine the maximum range at which a target can be detected and is often referred to

as the radar range equation. However, the equation can also be very helpful in analyzing the

relationships between di¤erent factors that a¤ect radar performance. An understanding of

these factors is paramount in designing a radar system to search for targets as well as knowing

how to avoid detection.

If an antenna radiates uniformly in all directions (isotropically), the power density at a

certain range R from the antenna can be calculated by the following equation:

Power Densityisotropic =
Pt
4�R2

; (C.10)

where Pt is the peak transmitter power [30]. However, radars use directive antennas, which

concentrate the power in a certain direction [31]. The term gain Gt is used to describe that

increased power density in one direction as opposed to an isotropically radiated power density.

Thus, the power density of a directive antenna is calculated as follows:

Power Densitydirective =
PtGt
4�R2

: (C.11)

The target itself is hit with these waveforms, which scatter in all directions. That fraction of

the incident energy that is reradiated back in the direction of the radar is the echo signal, which

is determined by the RCS � of the target. The power density �nally received by the radar is

then multiplied by the e¤ective area of the receiving antenna Ae to give the received power Pr
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[30]:

Pr =
PtGt
4�R2

�Ae
4�R2

=
PtGt�Ae
(4�)2R4

: (C.12)

Two substitutions in Equation C.12 can then be made. From antenna theory, Gt = 4�Ae=�2,

and thus Ae = Gt�2=4� [31]. Also, to �nd the maximum detection range of the radar Rmax,

the minimum detectable signal Smin must be substituted for Pr, giving:

Rmax =

�
PtG

2
t��

2

(4�)3Smin

�1=4
: (C.13)

Equation C.13 is the fundamental form of the radar range equation. However, many important

factors must still be analyzed and included for the radar equation to accurately re�ect radar

performance.

One of the largest factors to in�uence radar signals is noise. As discussed in an earlier

section, detection thresholds must be set at some value above the ever-present noise in the

electromagnetic spectrum, and tradeo¤s must occur between false alarms and missed detections

as the threshold is moved. Many types of noise exist, to include solar or galactic noise,

atmospheric noise, man-made noise, ground noise, and receiver noise. Figure C-14 [30] depicts

all of these types of noise. The thermal noise power N generated by the agitation of electrons

within the receiver is related to the noise bandwidth of the receiver Bn and the system noise

temperature Ts [31] by the following equation:

N = kBnTs; (C.14)

where k is Boltzmann�s constant, 1:38� 10�23 joules / degree Kelvin. Ts can be broken down

even further into the addition of three separate components. The antenna noise temperature Ta

is the contribution from the antenna, which comes from the temperature of the sky and losses

within the antenna. The RF noise temperature Tr is the contribution of RF components in the

antenna and the receiver. Finally, the last contribution comes from the multiplication of the

RF component loss Tr and the receiver temperature Te. Thus, the system noise temperature

is calculated as follows: Ts = Ta + Tr + LrTe [30].
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Figure C-14: Sources of Radar Noise. One of the largest factors to in�uence radar signals
is noise. Detection thresholds must be set at some value above the ever-present noise in the
electromagnetic spectrum, and tradeo¤s must occur between false alarms and missed detections
as the threshold is moved. Many types of noise exist, to include solar or galactic noise,
atmospheric noise, man-made noise, ground noise, and receiver noise.
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An important metric for measuring radar performance is the signal-to-noise ratio (S=N). It

is essentially the ratio of the power received Pr to the power of the noiseN , and it is the standard

measure of a radar�s ability to detect a target at a given range [30]. Thus S=N = Pr=N , and

Pr = N � S=N . Both transmit and receive losses are also signi�cant when dealing with the

radar equation. Loss examples include beam shape loss, where the target echo from a scanning

radar is modulated by the shape of the antenna beam as it scans across the target. Another

example is atmospheric attenuation loss, where the radar beam attenuates as it travels through

the atmosphere both to the target and from it. The summation of all of these losses L can be

inserted into the radar equation to provide more accuracy.

By inserting these new terms and substituting Equation C.14 into Equation C.13, the fol-

lowing track radar equation is found for S=N :

S=N =
PtG

2�2�

(4�)3R4kTsBnL
: (C.15)

Equation C.15 is called the track radar equation because the location of the target is assumed

to be known, and the antenna is pointed directly towards the target. In track, the collective

term PtAeG is critical in designing a radar to a speci�c performance [30]. When the target�s

location is unknown, the radar must search a large volume of the sky to �nd it, and the resultant

search radar equation is as follows:

S=N =
PavAets�

4�
R4kTsL
; (C.16)

where Pav is the average power, 
 is the solid angle searched, and ts is the scan time for 
,

with all other terms having been previously de�ned. In search, PavAe is the critical design

parameter [30].

The equations presented here do not do justice to the complexity of radar detection. Many

factors and terms have been excluded from the equations for simplicity. Nevertheless, they

aid in understanding relationships between di¤erent parameters. From the radar design per-

spective, detailed analysis of the radar equation results in groups of parameters that should be

increased to improve the performance of the radar. However, real world limitations on avail-

able power, aperture size, noise, and losses prevent the creation of super-performing radars,
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and tradeo¤s must be made, as always, between various parameters to achieve the desired per-

formance. Conversely, the target has in�uence only over its RCS and its range from the radar

(if radar location is certain). It cannot a¤ect any other part of the radar equation. Thus,

aircraft design, careful mission planning, and RCS management are the only tools available to

the target seeking to avoid detection.
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Appendix D

Sensors and Image Quality

The �rst job of a penetrating UAV is to travel deep inside enemy territory and avoid detection.

Its second job might be to get a good image of the target it was sent to identify or locate.

A variety of sensors exist for this purpose, with each sensor having speci�c advantages and

disadvantages. To some extent, the image that is attained can also be evaluated by examining

attributes such as range from the target, resolution, and other characteristics. This appendix

will explore modern sensors and their capabilities.

D.1 Sensors

The simplest type of sensor is a camera. It uses mirrors and lenses to take videos, electro-optical

(EO) images, and infrared (IR) images. EO images are very similar to images a photographer

would produce because they both depend on light. During the day, most terrain features are

clearly visible with the help of the sun. However, the lack of light at night makes EO sensors

quite useless. Also, clouds and inclement weather render EO sensors obsolete because of the

way they re�ect light. Simplicity seems to be the main advantage of EO sensors. IR images

function during night and day. They pick up infrared radiation (heat) released from areas on

the Earth�s surface. Places such as cities or warm water currents would appear as bright spots

on an IR image, and clouds would appear in varying shades of gray.

The Global Hawk UAV�s Integrated Sensor Suite (ISS) includes an EO/IR sensor produced

by Raytheon. The narrow �eld of view (FOV) camera patches together numerous small frames
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Figure D-1: Wescam 14 EO/IR Sensor. The Predator UAV uses a real-time video system
mounted in the turrets of the aircraft. The Wescam 14 EO/IR sensor installed on the Predator
RQ-1A.

to form a single image [26]. The U-2 carries a high resolution line scanning camera with a

7-band multispectral capability. The Hunter and Predator UAVs use real-time video systems

mounted in the turrets of the aircraft. Figure D-1 [25] depicts the Wescam 14 EO/IR sensor

installed on the Predator RQ-1A. Figure D-2 [53] illustrates the reach and capabilities of the

Predator�s video and IR sensors with both top-down and head-on views. The sensor points

sideways at a range of up to 6.5 nautical miles at an altitude of 15,000 ft to achieve an image

resolution of one foot. EO/IR sensors are good choices for penetrating aircraft on clear days.

Synthetic Aperture Radar (SAR) provides the capability to penetrate clouds and inclement

weather as well as functioning at nighttime. It produces an image like any other radar. The

time from transmission of a pulse to receiving the target echo helps determine the range, and

the width of the pulse helps determine the range resolution. However, SAR also produces

relatively �ne azimuth resolution, which depends upon a physically large antenna (such as

several hundred meters long) to focus energy into a sharp beam, especially because of the lower

frequencies of SAR as compared to optical systems [24]. Since aircraft cannot practically carry

such large antennas, they can instead collect the data while �ying a certain distance and then

process the data as if it came from a physically long antenna. The distance �own during data

collection is then known as the synthetic aperture, resulting in a narrow synthetic beamwidth
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Figure D-2: Predator Video and IR Capability. This illustrates the reach and capabilities of
the Predator�s video and IR sensors with both top-down and head-on views. The sensor points
sideways at a range of up to 6.5 nautical miles at an altitude of 15,000 ft to achieve an image
resolution of one foot. EO/IR sensors are good choices for penetrating aircraft on clear days.
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Figure D-3: Lynx SAR/GMTI. The Predator uses the Lynx Radar, which has a resolution of
four inches in the spotlight mode and provides GMTI and change detection capabilities.

yielding �ner resolution [24]. This relatively simplistic description serves only to provide a base

understanding of SAR, which in actuality is a complicated topic whose design is exceedingly

complex.

The U-2 carries a dedicated imaging SAR called Advanced SAR System (ASARS 2A), which

is capable of one foot resolution [26]. Global Hawk�s ISS is capable of various versions of SAR,

such as spot, search, and Ground Moving Target Indicator (GMTI), also with resolutions down

to one foot [26]. Tactical UAV Radar (TUAVR) is a 63 pound SAR/MTI radar for use on the

Army�s UAVs. It can provide one foot resolution in strip and spotlight modes and a moving

target indicator (MTI) capability. The Predator uses the Lynx Radar, shown in Figure D-3

[25], which has a resolution of four inches in the spotlight mode and provides GMTI and change

detection capabilities. Figure D-4 [53] depicts the reach of the Predator�s SAR system. The

most obvious di¤erence between the Predator�s EO/IR capability and its SAR capability is its

decreased Field of Regard (FoR), meaning that every target being imaged by the Predator�s

SAR must be within a 40 degree swath on either side of the aircraft.

Other sensors in use but more associated with satellites are signals intelligence (SIGINT),

which is the detection of any broadcast communication system. SIGINT is divided up into

communications intelligence (COMINT) and electronic intelligence (ELINT) [39]. COMINT

looks at the patterns, the source, and the content of message tra¢ c. ELINT analyzes non-

communication electronic transmissions, and is further divided into telemetry from missile tests

(TELINT) and radar transmitters (RADINT). The U.S. operates four constellations of SIGINT

satellites in geostationary and low-earth orbits, which have proven invaluable in past military
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Figure D-4: Predator SAR Capability. This depicts the reach of the Predator�s SAR system.
The most obvious di¤erence between the Predator�s EO/IR capability and its SAR capability is
its decreased Field of Regard (FoR), meaning that every target being imaged by the Predator�s
SAR must be within a 40 degree swath on either side of the aircraft.

141



experiences, such as providing the �rst warnings that the Iraqi invasion of Kuwait was likely in

1990 [39]. Other airborne assets also provide large contributions to SIGINT.

Other technologies include multispectral (tens of bands) and hyperspectral (hundreds of

bands) imagery, which combine attributes of di¤erent sensors to form a target image that can

divulge an increased amount of information [26]. U-2�s sensor package utilizes a multispectral

sensor, providing seven bands of imagery at high resolution [26]. Many technologies attempt to

break through obstacles such as forest canopies or even enemy camou�age, such as UHF/VHF

Foliage Penetration (FOPEN) and Light Detection and Ranging (LIDAR) [26]. Improvements

in SAR are underway as well, with new systems using advanced algorithms to manipulate data

and show precise changes in terrain with high resolution. Sensor hardware is also becoming

more lightweight and e¢ cient.

In general, sensor capabilities are excellent but still have a lot of room for improvement.

With well-funded research into new technology, those improvements will come sooner rather

than later. Unfortunately, sensors have become the "pacing item" for the cost of ISR UAVs

[26]. Therefore, care must be taken to reduce cost growth and to plan UAV payloads more

e¢ ciently by combining sensor capabilities on one platform.

D.2 Image Quality

D.2.1 National Imagery Interpretability Rating Scale (NIIRS)

Taking an image is an excellent start, but interpreting the image is even more important. Image

scale, resolution, and other image quality measures were never adequate enough to predict the

interpretability of an image. More complex measures such as modulation transfer function

(MTF) metrics could not clearly communicate the necessary information to the analysts [23].

Thus, a great deal of research was performed in the 1960s and 1970s that attempted to relate

image quality to actual physical criteria. Up until the early 1970s, those e¤orts were to no avail,

and one researcher concluded in 1970 that "no single measure of image quality is now available

to satisfactorily predict (interpretation) performance" [23]. There are several reasons for this.

Many tasks are needed to perform image interpretation, and di¤ering quality did not uniformly

a¤ect those tasks. Also, some physical parameters interact di¤erently with other parameters
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than they do with interpretability. Finally, the studies that were performed analyzed only a

small amount of targets and interpretation tasks, making generalization di¢ cult [23].

In the early 1970s, a collaboration of government and contract workers developed the Na-

tional Imagery Interpretability Rating Scale (NIIRS) for the Imagery Resolution And Reporting

Standards (IRARS) Committee [23]. Image analysts �rst de�ned a standard set of interpreta-

tion tasks that they were commonly asked to perform. They were then given sets of images

with pre-determined and varying quality and asked to describe the interpretation tasks that

could be performed on the images. The original 10-level scale grew out of this study. Over

the years, it has evolved many times, especially since many objects in the original NIIRS list

became outdated [23]. NIIRS is now the standard scale used by image analysts, scientists,

designers, and managers. It is task-based in that each NIIRS level implies di¤erent tasks that

can be performed by an analyst [23]. With this tool, one can asses image quality as well as

provide quanti�able means for expressing sensor system requirements. Four separate NIIRS

scales have been developed: Radar NIIRS, Visible NIIRS, IR NIIRS, and Multispectral (MS)

NIIRS [23]. These scales consist of 10 graduated levels (0 to 9) with every increase in level

signifying a similar increase in the di¢ culty of the interpretation task required by the analyst.

Image analysts using a NIIRS 2 visible image, for example, should be able to detect large

buildings. In contrast, image analysts should be able to identify automobiles as sedans or

station wagons using a NIIRS 6 image. A full listing of every level in each type of NIIRS is

included in Appendix E. Figure D-5 [39] shows an image of NIIRS 2. Large �elds and road

patterns can be seen. Figure D-6 [39] gives an example of a NIIRS 6 image. Clearly, the

quality of the picture has improved. Types of automobiles can be distinguished and trails can

be discerned. Finally, an example of NIIRS 8 is shown in Figure D-7 [39]. The quality of the

NIIRS 8 image is evident. License plates can be identi�ed along with windshield wipers on a

vehicle. The development of this scale has enabled image analysts to use a common language.

Additionally, it has signi�cantly changed the manner in which requirements are set for di¤erent

sensors and systems. For example, the Defense Airborne Reconnaissance O¢ ce has de�ned the

sensor system performance goals for the Global Hawk and the Predator in terms of NIIRS [23].

System developers must now work to achieve the user�s desired level of NIIRS performance.
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Figure D-5: NIIRS Level 2 Image. This picture is an example of a NIIRS 2 image. Large
�elds and road patterns can be seen, which is typical of this type of image.
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Figure D-6: NIIRS Level 6 Image. Clearly, the quality of this NIIRS 6 picture has improved
over the NIIRS 2 example. Types of automobiles can be distinguished and trails can be
discerned.
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Figure D-7: NIIRS Level 8 Image. The quality of the NIIRS 8 image is quite evident. License
plates can be identi�ed along with windshield wipers on a vehicle
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D.2.2 General Image Quality Equation (GIQE)

The widespread use of NIIRS by sensor system developers leads logically to the necessity of

a method or technique that will accurately predict a NIIRS level based on sensor attributes

before the actual sensor is built. Developed in the 1980s but not formally released until 1994,

the General Image Quality Equation (GIQE) predicts NIIRS as a function of predicted image

scale, sharpness or resolution, and SNR [22]. The GIQE was initially developed under the

IRARS Committee and used a regression modeling approach. Ten image analysts conferred

NIIRS ratings on samples of EO imagery. The characteristics of those samples were then

used to develop a regression model that predicted NIIRS as a function of perceptual quality

attributes of scale, resolution and sharpness, contrast, and noise [22]. The GIQE was released

to the UAV community in 1994 but has undergone changes and improvements since that time.

The terms in the GIQE come from earlier research that related the quality of an image to

its interpretability, and these terms account for all physical quality parameters that have been

found to a¤ect image interpretability. The original form of the GIQE for EO systems is as

follows [22]:

NIIRS = 11:81 + 3:32 log10

�
RERGM
GSDGM

�
� (1:48HGM )�

�
G

SNR

�
: (D.1)

RERGM is the geometric mean of the Relative Edge Response (RER), which relates to per-

ceived sharpness or acutance of the image. GSDGM is the geometric mean of the Ground Sam-

pled Distance (GSD), which measures both scale and resolution. EO system post-processing

techniques involve modulation transfer function compensation (MTFC), which increases edge

response and noise [22]. Thus, other terms were added to the GIQE to account for these

increases. HGM is the geometric mean of the height of the overshoot due to edge sharpening.

G is the noise gain due to edge sharpening, and the SNR provides for some modeling of con-

trast. The GIQE does not account for bandwidth compression (BWC), softcopy image output

prediction, or inclement weather [22].

RER is the slope of the edge system response and is found by measuring two points that

are 0.5 pixels from the edge using a normalization over the range of 0 to 1. GSD is found with
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the following equation [22]:

GSD =

��
pixel pitch
focal length

�
� slant range

�
cos(look angle)

: (D.2)

Both GSD and RER are computed along the X and Y axes, and then the geometric means are

found. H is found by measuring the maximum value over the range 1.0 to 3.0 pixels from the

edge at 0.25 pixel increments. The mean of this term is also found using the values along the

X and Y axes.

A large sample of 359 NIIRS-rated images was then used to validate the GIQE. Because of

unexpectedly lower RER=GSD and G=SNR coe¢ cients, an updated equation modi�ed some

parameters and used two separate conditions for RER [22]:

NIIRS = 10:251� a log10 (GSDGM ) + b log10 (RERGM ) (D.3)

�(0:656�H)�
�
0:344� G

SNR

�
RER � 0:9 : a = 3:32 and b = 1:559

RER < 0:9 : a = 3:16 and b = 2:817:

The GIQE performed quite well in studies. Figure D-8 [22] displays the relationship between

predicted and observed NIIRS using the GIQE. Clearly, it is an accurate predictor of NIIRS

levels.

The approach used to develop the EO GIQE was applied in a similar fashion to develop

an IR GIQE, which is almost exactly the same as Equation D.3 except for an 0.5-NIIRS o¤set

[23]. Research still continues in developing good image quality metrics and quanti�able tools

for them, but the NIIRS/GIQE combination has proven to be extremely important in assessing

and quantifying the interpretability of imagery collected during ISR missions. Although only

EO and IR GIQEs have been developed, the principles involved can be applied to any sensor.

In Chapter Two, this thesis presents a modi�cation of Equation D.1 for use in simulations.
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Figure D-8: Predicted and Observed NIIRS Values. The red circles represent the predicted
NIIRS values according to the GIQE as compared to the observed NIIRS values by image
analysts. The straight red line is the best �t line, showing that the predictions were clearly
accurate.
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Appendix E

National Image and Interpretability

Rating Scales (NIIRS)

E.1 Visible NIIRS March 1994

Rating Level 1

� Detect a medium-sized port facility and/or distinguish between taxi-ways and runways at

a large air�eld.

Rating Level 2

� Detect large hangars at air�elds.

� Detect large static radars (e.g., AN/FPS-85, COBRA DANE, PECHORA, HENHOUSE).

� Detect military training areas.

� Identify an SA-5 site based on road pattern and overall site con�guration.

� Detect large buildings at a naval facility (e.g., warehouses, construction hall).

� Detect large buildings (e.g., hospitals, factories).

Rating Level 3
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� Identify the wing con�guration (e.g., straight, swept, delta) of all large aircraft (e.g., 707,

CONCORD, BEAR, BLACKJACK).

� Identify radar and guidance areas at a SAM site by the con�guration, mounds, and

presence of concrete aprons.

� Detect a helipad by the con�guration and markings.

� Detect the presence/absence of support vehicles at a mobile missile base.

� Identify a large surface ship in port by type (e.g., cruiser, auxiliary ship, noncombat-

ant/merchant).

� Detect trains or strings of standard rolling stock on railroad tracks (not individual cars).

Rating Level 4

� Identify all large �ghters by type (e.g., FENCER, FOXBAT, F-15, F-14).

� Detect the presence of large individual radar antennas (e.g., TALL KING).

� Identify, by general type, tracked vehicles, �eld artillery, large river crossing equipment,

wheeled vehicles when in groups.

� Detect an open missile silo door.

� Determine the shape of the bow (pointed or blunt/rounded) on a medium-sized submarine

(e.g., ROMEO, HAN, Type 209, CHARLIE II, ECHO II, VICTOR II/III).

� Identify individual tracks, rail pairs, control towers, switching points in rail yards.

Rating Level 5

� Distinguish between a MIDAS and a CANDID by the presence of refueling equipment

(e.g., pedestal and wing pod).

� Identify radar as vehicle-mounted or trailer-mounted.

� Identify, by type, deployed tactical SSM systems (e.g., FROG, SS-21, SCUD).
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� Distinguish between SS-25 mobile missile TEL and Missile Support Vans (MSVs) in a

known support base, when not covered by camou�age.

� Rating Level 5 (cont.)

� Identify TOP STEER or TOP SAIL air surveillance radar on KIROV-, SOVREMENNY-,

KIEV-, SLAVA-, MOSKVA-, KARA-, or KRESTA-II-class vessels.

� Identify individual rail cars by type (e.g., gondola, �at, box) and/or locomotives by type

(e.g., steam, diesel).

Rating Level 6

� Distinguish between models of small/medium helicopters (e.g., HELIX A from HELIX B

from HELIX C, HIND D from HIND E, HAZE A from HAZE B from HAZE C).

� Identify the shape of antennas on EW/GCI/ACQ radars as parabolic, parabolic with

clipped corners or rectangular.

� Identify the spare tire on a medium-sized truck.

� Distinguish between SA-6, SA-11, and SA-17 missile airframes.

� Identify individual launcher covers (8) of vertically launched SA-N-6 on SLAVA-class

vessels.

� Identify automobiles as sedans or station wagons.

Rating Level 7

� Identify �tments and fairings on a �ghter-sized aircraft (e.g., FULCRUM, FOXHOUND).

� Identify ports, ladders, vents on electronics vans.

� Detect the mount for antitank guided missiles (e.g., SAGGER on BMP-1).

� Detect details of the silo door hinging mechanism on Type III-F, III-G, and II-H launch

silos and Type III-X launch control silos.
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� Identify the individual tubes of the RBU on KIROV-, KARA-, KRIVAK-class vessels.

� Identify individual rail ties.

Rating Level 8

� Identify the rivet lines on bomber aircraft.

� Detect horn-shaped and W-shaped antennas mounted atop BACKTRAP and BACKNET

radars.

� Identify a hand-held SAM (e.g., SA-7/14, REDEYE, STINGER).

� Identify joints and welds on a TEL or TELAR.

� Detect winch cables on deck-mounted cranes.

� Identify windshield wipers on a vehicle.

Rating Level 9

� Di¤erentiate cross-slot from single slot heads on aircraft skin panel fasteners.

� Identify small light-toned ceramic insulators that connect wires of an antenna canopy.

� Identify vehicle registration numbers (VRN) on trucks.

� Identify screws and bolts on missile components.

� Identify braid of ropes (1 to 3 inches in diameter).

� Detect individual spikes in railroad ties.

E.2 Radar NIIRS April 1999

Rating Level 1

� -Determine azimuth of main runway at a large air�eld.

� -Detect lines of transportation, either road or rail, but do not distinguish between.

153



� -Detect a large vessel in open water.

Rating Level 2

� -Detect parallel taxiways.

� -Distinguish between forested areas and agricultural �elds.

� -Detect very large defensive berm (e.g., Iraqi defense during DESERT SHIELD/STORM).

� -Detect known ICBM facility.

� -Detect large freighters or tankers at a known civilian port facility.

Rating Level 3

� -Identify the basic functional areas of an air�eld or air base (e.g., hangars, weapons

storage, POL storage, passenger terminals).

� -Detect multiple wings of large buildings.

� -Detect known KRUG site.

� -Identify a barracks area based on pattern of buildings.

� -Detect Rail Transfer Point (RTP) at missile facility.

� -Distinguish between ships and �oating dry docks.

Rating Level 4

� -Detect large �ghter aircraft (e.g., FENCER, F-15, TORNADO) on a known parking

apron.

� -Identify the wing con�guration (e.g., straight, swept, delta) of large aircraft (e.g., BEAR,

B1, TU-144 CHARGER).

� -Detect smokestacks in industrial facilities.

� -Detect large vertical lattice mast antenna.
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� -Detect a convoy or preparations for deployment at a motor pool.

� -Detect coastal defense artillery battery based on location and dispersal pattern.

� -Identify square bow shape of ROPUCHA LST.

� -Detect SS/SSN at known port facility (e.g., KILO, TYPE 209, VICTOR III).

Rating Level 5

� -Distinguish between large bomber and cargo aircraft (e.g., BEAR v. CANDID).

� -Detect small helicopters (e.g., HOPLITE, IROQUOIS, ALOUETTE).

� -Distinguish between a large vertical mast antenna and a large power transmission tower.

� -Detect a battery of towed artillery (not revetted) based on deployment pattern.

� -Detect a LOW BLOW radar at a �xed SA-3 site based on position.

� -Distinguish between SS/SSN and SSBN.

� -Distinguish between DON AS and SMOLNYY AX based on superstructure con�guration.

Rating Level 6

� -Identify large helicopters by type (e.g., HALO, HOOK, SUPER FRELON, SEA STAL-

LION).

� -Identify wing con�guration of small �ghter aircraft as swept, delta or straight (e.g.,

ALPHA JET, MIRAGE 2000, FROGFOOT).

� -Detect cargo on a railroad �atcar.

� -Detect deployed mast-mounted TWIN EAR B antenna.

� -Identify a single vehicle as a large truck (e.g., KRAZ-255, M939).

� -Distinguish between wheeled and tracked vehicles in garrison based on vehicle size and

dimension.
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� -Detect a warhead van at a known Rail Transfer Point (RTP).

� -Identify SS by class (e.g., KILO, DAPHNE, TYPE 209).

� -Identify bow gun on a destroyer.

Rating Level 7

� -Identify medium helicopters by type (e.g., HIP, HIND, PUMA).

� -Identify �ghter aircraft by type (e.g., FENCER, TORNADO, KFIR, MIRAGE).

� -Detect the break between cab and trailer on tractor-trailer truck.

� -Distinguish between electronic van trailers (without tractor) and van trucks in garrison.

� -Distinguish between THIN SKIN A (trailer mounted) and THIN SKIN B (truck mounted).

� -Determine general function of engineering equipment when in garrison (e.g., bridge sec-

tions, boats, earth-movers and mine-laying/clearing).

� -Distinguish between a turreted, tracked APC and a medium tank by size and con�gura-

tion (e.g., BMP 1/2 vs. T-72).

� -Distinguish between C-802 SACCADE missile launcher and radar vehicle when in garri-

son.

� -Determine if an SA-3 missile launcher is loaded or empty.

� -Distinguish between OSA-I and OSA-II PCFGs based on missile canister shape.

� -Identify closed missile hatches on a DELTA IV SSBN.

Rating Level 8

� -Identify small helicopters by type (e.g., HOPLITE, IROQUOIS, ALOUETTE).

� -Detect individual rail ties.

� -Detect the vertical ribs on the sail of a LONG TRACK radar.
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� -Distinguish between PMP center sections and ramp sections when mounted on KRAZ-

255 truck.

� -Distinguish between 2S6 and ZSU-23/4 SPAA guns by overall con�guration.

� -Distinguish between CSSC-2 SILKWORM and CSSC-3 SEERSUCKER missiles.

� -Determine the location of the running light on the stern �n of DELTA III.

� -Identify the individual RBU tubes on surface combatants (e.g., KIROV CGN, KARA

CG, KRIVAK FFG).

Rating Level 9

� -Distinguish between antenna con�gurations on aircraft models (e.g., CURL A vs. CURL

B, HIP vs. HIP C).

� -Distinguish between models of �ghter aircraft (e.g., FLANKER B-C, F-15 A-E).

� -Identify feedhorn on THIN SKIN B when not operational.

� -Detect both gun tubes on 2S6 SPAA gun.

� -Detect exhaust nozzle on solid fuel booster packs on SA-5 missile.

� -Detect gun barrels on PHALANX CIWS.

E.3 Infrared NIIRS April 1996

Rating Level 1

� Distinguish between runways and taxiways on the basis of size, con�guration or pattern

at a large air�eld.

� Detect a large (e.g., greater than I square kilometer) cleared area in dense forest.

� Detect large ocean-going vessels (e.g., aircraft carrier, super-tanker, KIROV) in open

water.
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� Detect large areas (e.g., greater than I square kilometer) of marsh/swamp.

Rating Level 2

� Detect large aircraft (e.g., C-141, 707, BEAR, CANDID, CLASSIC).

� Detect individual large buildings (e.g., hospitals, factories) in an urban area.

� Distinguish between densely wooded, sparsely wooded and open �elds.

� Identify an SS-25 base by the pattern of buildings and roads.

� Distinguish between naval and commercial port facilities based on type and con�guration

of large functional areas.

Rating Level 3

� Distinguish between large (e.g., C-141, 707, BEAR, A300 AIRBUS) and small aircraft

(e.g., A-4, FISHBED, L-39).

� Identify individual thermally active �ues running between the boiler hall and smoke stacks

at a thermal power plant.

� Detect a large air warning radar site based on the presence of mounds, revetments and

security fencing.

� Detect a driver training track at a ground forces garrison.

� Identify individual functional areas (e.g., launch sites, electronics area, support area,

missile handling area) of an SA-5 launch complex.

� Distinguish between large (e.g, greater than 200 meter) freighters and tankers.

Rating Level 4

� Identify the wing con�guration of small �ghter aircraft (e.g., FROGFOOT, F- 16, FISHBED).

� Detect a small (e.g., 50 meter square) electrical transformer yard in an urban area.
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� Detect large (e.g., greater than 10 meter diameter) environmental domes at an electronics

facility.

� Detect individual thermally active vehicles in garrison.

� Detect thermally active SS-25 MSV�s in garrison.

� Identify individual closed cargo hold hatches on large merchant ships.

Rating Level 5

� Distinguish between single-tail (e.g., FLOGGER, F-16, TORNADO) and twin-tailed (e.g.,

F-15, FLANKER, FOXBAT) �ghters.

� Identify outdoor tennis courts.

� Identify the metal lattice structure of large (e.g. approximately 75 meter) radio relay

towers.

� Detect armored vehicles in a revetment.

� Detect a deployed TET (transportable electronics tower) at an SA-10 site.

� Identify the stack shape (e.g., square, round, oval) on large (e.g., greater than 200 meter)

merchant ships.

Rating Level 6

� Detect wing-mounted stores (i.e., ASM, bombs) protruding from the wings of large bombers

(e.g., B-52, BEAR, Badger).

� Identify individual thermally active engine vents atop diesel locomotives.

� Distinguish between a FIX FOUR and FIX SIX site based on antenna pattern and spacing.

� Distinguish between thermally active tanks and APCs.

� Distinguish between a 2-rail and 4-rail SA-3 launcher.

� Identify missile tube hatches on submarines.
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Rating Level 7

� Distinguish between ground attack and interceptor versions of the MIG-23 FLOGGER

based on the shape of the nose.

� Identify automobiles as sedans or station wagons.

� Identify antenna dishes (less than 3 meters in diameter) on a radio relay tower.

� Identify the missile transfer crane on a SA-6 transloader.

� Distinguish between an SA-2/CSA-1 and a SCUD-B missile transporter when missiles are

not loaded.

� Detect mooring cleats or bollards on piers.

Rating Level 8

� Identify the RAM airscoop on the dorsal spine of FISHBED J/K/L.

� Identify limbs (e.g., arms, legs) on an individual.

� Identify individual horizontal and vertical ribs on a radar antenna.

� Detect closed hatches on a tank turret.

� Distinguish between fuel and oxidizer Multi-System Propellant Transporters based on

twin or single �tments on the front of the semi-trailer.

� Identify individual posts and rails on deck edge life rails.

Rating Level 9

� Identify access panels on �ghter aircraft.

� Identify cargo (e.g., shovels, rakes, ladders) in an open-bed, light-duty truck.

� Distinguish between BIRDS EYE and BELL LACE antennas based on the presence or

absence of small dipole elements.
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� Identify turret hatch hinges on armored vehicles.

� Identify individual command guidance strip antennas on an SA-2/CSA-1 missile.

� Identify individual rungs on bulkhead mounted ladders.

E.4 Multispectral NIIRS January 2001

Rating Level 1

� -Detect �eld delineation based on vegetation di¤erences.

� -Identify golf courses.

� -Detect natural surface runways (e.g., grass, bare earth) in open terrain.

� -Detect shoreline quays outside of a port facility in absence of ships.

� -Detect vessel (~300�length) at suspected narcotics transshipment point in open ocean.

Rating Level 2

� -Identify natural drainage pattern in tidal �ats.

� -Detect extent of recent �ooding based on soil moisture di¤erences.

� -Detect windbreaks/hedgerows between �elds.

� -Identify composition of runway/taxiways/parking aprons

� (i.e., concrete, asphalt).

� -Detect wetland areas unsuitable for mobile Intercontinental Ballistic Missile (ICBM)

tra¢ c.

� -Detect submerged spoil �eld from dredging operations near a port facility.

� -Detect the presence of o¤shore surface vegetation along a beach-landing zone.

Rating Level 3
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� -Distinguish between fallow and abandoned �elds.

� -Detect e­ uent discharge into water from industrial facility.

� -Di¤erentiate between open pit coal mine and a limestone quarry.

� -Identify large cargo aircraft as military or commercial based on paint color and/or scheme.

� -Detect rows of vehicles in a parking area.

� -Identify beach terrain suitable for amphibious landing

operations.

Rating Level 4

� -Detect vegetation stress/aging in narcotics crops in reported eradication area.

� -Identify tennis court as being composed of grass, clay or rubber/composite.

� -Detect CC&D e¤orts (cut vegetation camou�age netting) at suspected coca processing

facilities.

� -Identify azimuth markings (numbers) on runway.

� -Detect tanks and SP-guns in revetted positions.

� -Detect blast marks from mobile or silo based ICBM launches on concrete.

� -Detect presence of Sea-Land containers on a ship�s deck.

� -Distinguish between coal and sand loaded on dumb barge.

Rating Level 5

� -Detect individual trees with indications of vegetation stress.

� -Identify color of unfurled sails on sailboats (20 to 30 feet in length).

� -Distinguish between military and civilian helicopters paint schemes.

� -Identify large ground forces equipment by type (e.g., tanks, SP-guns, ARVs).
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� -Detect foxholes by ring of spoil outlining hole.

� -Detect the presence of sailors in formation on the deck of a large combatant during

parade/review.

� -Identify colors of stripes/deck markings on major surface combatants.

Rating Level 6

� -Detect foot trail through tall grass.

� -Identify colored bands on rail cars.

� -Identify support personnel performing maintenance while on an aircraft.

� -Identify color of stack markings on merchant ships.

� -Detect the presence of an alga line on the dark surface of a submarine hull.

Rating Level 7

� -Identify medium farm animals by type (e.g., sheep, hogs, goats).

� -Distinguish road-safety signs by color.

� -Detect wing �aps and other articulating surfaces on �ghter aircraft.

� -Distinguish between open and closed hatches on the turret of an MTLB chassis.

� -Detect windsock on helo deck.

� -Identify canvas covering the muzzles of an ADMG-630 gun.

Rating Level 8

� -Detect di¤erent species of trees based on color variation.

� -Detect a soccer ball in play at a sports �eld.

� -Determine if a person (with helmet) is in a �ghter aircraft with the canopy open.
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� -Identify turret mounted smoke dischargers on an M-1 MBT.

� -Detect color pattern on life-rings on surface vessels.

Rating Level 9

� -Identify rock layers in sedimentary outcropping.

� -Count cleats on a civilian ski boat.

� -Detect red/green wing lights on �ghter aircraft.

� -Distinguish between armed soldiers and armed civilians based on clothing.

� -Identify the draft marks numbers on submarine bow.
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Appendix F

Game Theory

The problem explored in this thesis involves �nding the best trajectory for a penetrating UAV

or other aircraft that travels deep inside the detection and engagement rings of modern SAMs

in enemy territory to perform surveillance, take imagery, and return safely to friendly areas.

Many researchers have studied trajectory optimization in great detail [19]. Methods used in

the past include Mixed-Integer Linear Programming, which allows optimization applications in

areas where variables must have integer values [14]. Probabilistic Road Maps work by combining

large, pre-optimized routes with a series of small path segments to reach a goal [11]. Rapidly-

exploring Random Trees uses only the small path segments to complete an entire route from

start to end [12]. Voronoi diagrams utilize multiple connected edges positioned appropriately

to allow for the integration smooth, �yable trajectories [13]. Studies using these methods

have provided valuable insight, yet lack realistic scenarios or solutions. This thesis focuses

on the speci�cs of penetrating a SAM ring, which necessitates analysis of other factors such

as RCS management and image quality. In addition, any UAV path must take into account

the capabilities and reach of the SAM. In a way, the UAV and SAM are engaging in a simple

game. Speci�cally, they are engaging in a two person non-cooperative mixed zero-sum game.

These terms are explained later in this appendix. The strategies of the UAV comprise the

multitude of possible paths it could take to get a valid image. The strategies of the SAM may

include �ring the missile at di¤erent times to draw the UAV in close. With the use of game

theory, a two-sided game such as this one can be scrutinized and solved to provide the most

likely outcome.
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F.1 A Brief History of Game Theory

A scattering of economists and mathematicians anticipated many of the ideas of game theory

throughout the 19th and early 20th centuries [18]. The economists Augustin Cournot and

Francis Ysidro Edgeworth published notable papers on the competition between producers

and trading between individuals, respectively [21]. In studying the game of chess in 1913,

the mathematician E. Zermelo discovered the basis for backwards induction, otherwise known

as Zermelo�s Theorem [21]. Emile Borel presented the �rst modern formulation of a mixed

strategy, among other ideas, in the 1920s, and the mathematician John von Neumann later

provided the basis for game theory in a paper published in 1928 [3]. However, the ground-

breaking text on game theory was a collaboration between von Neumann and Oskar Morgenstern

called The Theory of Games and Economic Behavior, published in 1944 [4].

Development of game theory continued with John Nash�s publication of four papers from

1950-1953 [5, 6] that made vital contributions to non-cooperative game theory and bargain-

ing theory, including proving the existence of a strategic equilibrium (now termed the Nash

equilibrium) for non-cooperative games [18]. The publication of A.W. Tucker�s lecture on the

Prisoners�Dilemma in 1950 made game theory even more widely known. Notable game theo-

rists who continued to contribute throughout the latter half of the 20th century include Aumann

[7], Shapley [8], Selten [9], and Harsanyi [10]. The year of 1994 brought a large amount of

public interest in the subject when the Nobel prize in Economic Science was awarded to John

Nash, John C. Harsanyi and Reinhard Selten for their contributions to game theory. The

subject is one of increasing complexity, and it remains one of the most powerful tools available

for studying human interaction.

F.2 Characteristics of Game Theory

F.2.1 De�nition, Application, and Rationality

Game theory describes interactions in which the outcomes depend on the individual strategies

of two or more rational players whose motives are opposed or at least mixed [18]. For example,

a person bidding at an auction is playing a game with the other bidders. A supermarket

is playing a game with its customers and with other stores when it decides to sell cereal at a
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certain price, and lawyers play games with each other when they decide on what type of defense

or prosecution will be pursued [21]. Games can also be more serious in nature. Napoleon

and Wellington were playing a game at the Battle of Waterloo, and Khrushchev and President

Kennedy were playing a game during the Cuban missile crisis [21]. In reality, many situations

in life can be described in terms of game theory.

Game theory has been applied in detail and practice to a variety of disciplines. The most

important application is economics, which is about the allocation of scarce resources. Resources

are scarce because more people want them than are able to receive them, which is a perfect

setup for a game [21]. In the realm of political science, topics such as strategic voting and the

choice of a party�s political platform also incorporate game theoretic principles. Biology, social

philosophy, and other social and behavioral sciences have used game theory in the past. In

fact, some authors believe that the entire branch of social sciences is simply a subdiscipline of

game theory [21].

However, a majority of game theory relies on rational interactions, and the world is certainly

not a model of rationality. A rational person is one who seeks to maximize his rewards in any

given situation. The rewards may be monetary or subjective in nature. The concept of

rationality is extremely helpful in that it is much easier to predict rational behavior as opposed

to irrational behavior [18], although rational models could be made more subtle to account for

irrationality in every day life.

F.2.2 The Prisoners�Dilemma

Game theory is a tough concept for human beings to grasp because of the circular reasoning

involved. For example, if John and Jane were playing a game, then John�s choice of strategy, if

rational, will depend on what Jane will do. However, Jane�s strategy, if she is also rational, will

depend on what John will do, which in turn depends on her own as of yet undecided strategy.

This type of convoluted logic leads to some very interesting outcomes at times. Perhaps the

best way to demonstrate game theory is with an actual example. The following case is called

the Prisoners�Dilemma. In attempting to depict the di¢ culty of analyzing certain games, A.W.

Tucker created this game while addressing a room full of psychologists at Stanford University

in 1950 [18]. This particular game is probably one of the most scrutinized in all of game theory,
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Bob Confesses Bob Remains Silent
Jack Confesses 10, 10 0, 20
Jack Remains Silent 20, 0 1, 1

Table F.1: Prisoners�Dilemma

and according to one author, it "could be the most in�uential one page in the social sciences

in the latter half of the twentieth century" [18].

Suppose two burglars named Bob and Jack are captured near the scene of the crime and

then placed in separate interrogation rooms by the police. Both Bob and Jack must decide

whether to confess and implicate the other burglar or remain silent and confess to nothing. If

neither of them confess, they will both serve one year jail sentences on charges of carrying a

concealed weapon. If each of them confess and implicate the other burglar, they will both

receive 10 year jail sentences. However, if only one of them confesses, he will be set free for

collaborating with the authorities and the other burglar who remained silent will be given 20

years in jail.

The only two strategies available to the burglars are to confess or remain silent. The

rewards (penalties, in this case) are the jail sentences. Being rational human beings, both Bob

and Jack want to minimize that jail sentence. This game�s attributes can be easily expressed

in what is commonly called a payo¤matrix, which shows the values of the payo¤s (or penalties)

according to each player�s strategy.

Table F.1 shows Bob�s strategies at the top with his associated payo¤s being the number to

the right in each box. Conversely, Jack�s strategies are on the left, as are his payo¤s in each

box. Suppose Jack thinks like this: "If Bob confesses, then I get 10 years if I confess and 20

years if I remain silent, so my best strategy if Bob confesses is to confess. If Bob remains silent,

then I get 0 years if I confess and 1 year if I remain silent, so confessing is my best option here

as well. Thus, I will confess no matter what Bob does." However, Bob will reason this game

out in exactly the same fashion. Thus, they will both confess and get 10 years each rather

than acting irrationally, remaining silent, and getting only one year each. This result, in which

individually rational actions result in worse outcomes for both players, has made an enormous

impact in modern social science. The nuclear arms race, pollution, and road congestion are all

real-world examples of this type of outcome. The simple Prisoners�Dilemma acts as a model
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for these types of situations, which is why it remains such an important example [18].

F.2.3 Nomenclature

The end result of the Prisoners�Dilemma is a dominant strategy equilibrium. A dominant

strategy is one that a player will choose regardless of the other players�strategies because it

gives him maximum bene�ts regardless of the activities of others. If every player in a game

utilizes a dominant strategy, then the outcome is called a dominant strategy equilibrium, which

might also be a Nash equilibrium. However, a Nash equilibrium is not always a dominant

strategy equilibrium. The Nash equilibrium applies only when a set of chosen strategies in a

game exist such that no player can bene�t by changing his strategy if the other players keep

their strategies unchanged. What makes some games more interesting and problematic than

others is the existence of multiple Nash equilibria [18].

Games also exist in many forms. The Prisoners�Dilemma is an example of a two person

non-cooperative non-constant sum game. Games can be played by more than two players, and

in fact, the majority of interactions in the world occur between more than two parties. The two

burglars in the Prisoners�Dilemma had di¤erent goals, thus making that game non-cooperative.

Many games exist in which the goals of each party are the same and thus cooperation is possible

to achieve an outcome. Also, the payo¤s in the Prisoners�Dilemma do not sum to a constant

or to zero. In other words, Bob�s losses (jail time) does not equal Jack�s rewards (lack of jail

time), nor do they sum to a certain constant. Thus, it is a non-constant sum game, which is

more common in practical situations.

However, the losses and rewards are equal in a zero-sum (or constant-sum) game, which

can be either pure or mixed. A pure zero-sum game is one in which each player chooses only

one strategy. A mixed zero-sum game is one in which a player chooses among two or more

strategies at random according to speci�c probabilities. The solution to a two person zero-sum

game is quite clear and is called the maximin strategy. This occurs when each player chooses

the strategy (or set of strategies) that maximizes their minimum payo¤.

The problem of routing a penetrating UAV inside the detection radius of a SAM to take

imagery and return to safety can be modeled as a two person non-cooperative mixed zero-sum

game. The two person and non-cooperative parts are quite obvious. The problem is modeled
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as a zero-sum game for simplicity because the UAV�s goal (take an image, complete mission

safely, etc..) are exactly the opposite of the SAM�s goals (prevent image acquisition, shoot

down UAV, etc...). It will also be shown in certain chapters that multiple Nash equilibria in

the solution to this game will dictate mixed strategy solutions.

F.3 Calculating the Nash Equilibrium

Consider the payo¤ matrix A = (ai;j) [20]. For a two person zero-sum game, one player

chooses action i (out of n possible actions), and the other player chooses action j (out of m

possible actions). Player one and player two receive payo¤s of ai;j and �ai;j , respectively.

(bi;bj) is de�ned as the outcome of the game. A dominant strategy i� for player one occurs

when ai;j � ai�;j for all i and j. Similarly, a dominant strategy j� for player two occurs when

ai;j � ai;j� [20]. For a mixed zero-sum game, the players have mixed strategies, meaning that

player one will select xT = (x1; x2; :::; xn) where xi corresponds to the probability that player

one will choose action i. Player two will select yT = (y1; y2; :::; yn) where yi corresponds to the

probability that player two will choose action j [20].

The goal of this game is for player one to maximize his average payo¤ and for player two

to minimize player one�s payo¤ (for a zero-sum game). In other words, player one wants to do

the following [20]:

maximize xTAy =
nX
i

mX
j

xiai;jyj : (F.1)

Conversely, player two would like to attempt the following [20]:

minimize xTAy =
nX
i

mX
j

xiai;jyj : (F.2)

In a zero-sum game, only one payo¤ matrix is needed, and a mutual gain or loss in terms of

payo¤ is not possible [20].

The outcome of a pure zero-sum game (bi;bj) is termed an equilibrium if ai;bj � abi;bj � abi;j .
For a mixed zero-sum game, the outcome (bx; by) is a Nash equilibrium if the following is true
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[20]:

xTAby � bxTAby � bxTAy for all x 2 Sx and all y 2 Sy (F.3)

Sx =
n
x j 0 � xi and

X
i
xi = 1

o
Sy =

n
y j 0 � yj and

X
j
yj = 1

o
:

Some other properties exist for mixed zero-sum games [20]:

1. If (bx; by) is a Nash equilibrium, then
max
x2Sx

min
y2Sy

xTAy = min
y2Sy

max
x2Sx

xTAy =bxTAby: (F.4)

2. Stated di¤erently, (bx; by) is a Nash equilibrium if

minj
X

i
xiai;j � minj

X
i
bxiai;j for all x 2 Sx (F.5)

maxi
X

j
ai;jyi � maxi

X
j
ai;jbyj for all y 2 Sy:

3. There exists at least one mixed strategy Nash equilibrium for all A. When more than

one equilibrium is found, each players�average payo¤ is independent of the equilibrium

used.

4. If A � 0, then an equilibrium strategy for player one solvesmaxx v subject to v �
P
i xiai;j

for all j, with
P
i xi = 1 and xi � 0. The optimal value of v corresponds to the

average payo¤ to player one in equilibrium. If x0i = xi=v, then the following formula will

equivalently �nd the Nash equilibrium:

minimize
nX
i

x0i subject to
�P

i x
0
iai;j � 1, for all j
x0i � 0, for all i

�
: (F.6)

Similarly, y = y0=
P
j y
0
j is the equilibrium strategy for player two if y0 = (y01; :::; y

0
n) is a

solution to:

maximize
mX
j

y0j subject to
�P

j ai;jy
0
i � 1, for all i

y0i � 0, for all j

�
: (F.7)
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The payo¤ to player one is v = 1=
P
i x
0
i = 1=

P
j y
0
j .

A simple example might shed more light on this process. Suppose A =

241 2

2 1

35. Equation
F.6 can then be applied to yield a more speci�c problem de�nition in Equation F.8 [20]:

minimize x01 + x
0
2 subject to

�
x01 + 2x

0
2 � 1, x01 � 0

2x01 + x
0
2 � 1, x02 � 0

�
: (F.8)

The solution to Equation F.8 is x01 = x
0
2 =

1
3 , so the payo¤ to player one in equilibrium is 3

2 ,

and the Nash equilibrium is (x1; x2) =
�
1
2 ;
1
2

�
.

It is never advantageous to take the �rst action in a zero-sum game [20]. However, if the

�rst player uses mixed strategies, his disadvantages will be eliminated. Of course, the mixed

zero-sum game between the UAV and the SAM require much larger payo¤ matrices and more

complicated optimization routines than the illustrative example in Equation F.8. The e¤ects of

changing the values in the payo¤matrix will also be harder to discern. However, the principles

of �nding the Nash equilibrium in using a game-theoretic solution will remain unchanged, and

the increasing size of the payo¤ matrix and associated quantities will be overcome by the use

of algorithms within computer simulations.
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Appendix G

Program Code

The following code was written with Matlab computer programming software, Version 6.5,

Release 13. It was run on a Dell desktop computer with a Pentium 4 processor, 1.8 GHz

processor speed, and 1 GB of RAM using Microsoft Windows XP Professional, Version 2002.

G.1 CreateGraph.m

% CreateGraph

%

% 2Lt Daniel M Morales, USAF

% MIT Lincoln Laboratory

% 14 March 2005

%

% Description:

% This program runs a Monte Carlo simulation of UAV paths while facing

% uncertainty in the location of enemy SAM sites.

%

% Inputs:

% None

%

% Outputs:
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% None

%

% Functions called:

% UAVvsSAM

% ecr2gc

% FindPk

% ImageQuality

% Clear all variables and clear the Matlab workspace

clear all;

clc;

% Call UAVvsSAM, which optimizes the UAV�s path given the SAM location

% using game theory techniques.

[PK,PQ,BestPathX,BestStratY,Paths,SAMecr,PixelLocations,UAVSpeed,...

CompletionTimes,WaypointTimes,DetectionCuto¤,DopplerCuto¤,...

MissileSpeed,OuterRadius,InnerRadius,StartRadius]=UAVvsSAM;

% Assign Paths, CompletionTimes, and WaypointTimes to just relate to

% the optimal path from UAVvsSAM, which lessens program run time.

Paths=Paths(BestPathX,:);

CompletionTimes=CompletionTimes(BestPathX,:);

WaypointTimes=WaypointTimes(BestPathX,:);

% Convert the locations of each waypoint from the geodetic coordinate

% system to the ECR system.

for i=1:size(PixelLocations,1)

PixelLocations(i,:)=gc2ecr(PixelLocations(i,2),PixelLocations(i,1)...

,PixelLocations(i,3));

end

% Save the values from UAVvsSAM in the workspace

save �uavvsam.mat�

% Used to load the previously saved values if UAVvsSAM not run

if(~exist(�PK�))
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load �uavvsam.mat�

end

% Assign UAV Speed to 150 knots and convert to m/sec

UAVSpeed=0.07716667; % km/sec

UAVSpeed=UAVSpeed*1000; % m/sec

% NumLocations represents the number of randomly generated SAM locations

% for each average value of location uncertainty

NumLocations=100; % divisible by 4

TLE=1; % The �rst average uncertainty to be simulated, in miles

TLEend=100; % The last value of TLE, in miles

TLEstep=1; % The step value to proceed from �rst to last TLE, in miles

% Assign Probability of Kill and Picture Quality to a matrix that tabulates

% the TLE and the associated Pk and Pq values

PKTLE(1,1:2)=[0 PK];

PQTLE(1,1:2)=[0 PQ];

% Assign counter s to 2

s=2;

% Start �while�loop at the initial TLE and end at TLEend

while TLE<=TLEend

% Convert TLE to meters from miles

TLE=sm2km(TLE)*1000;

% Generate random x, y, and z values that average to be the current TLE

DeltasXY=randn(NumLocations,1)*(TLE/4)+TLE;

DeltasZ=randn(NumLocations,1)*10+30;

% Distribute these random values amongst four di¤erent sets of SAM

% locations for the x, y, and z coordinates (4 di¤erent quadrants)

SAMlocations(1:(NumLocations/4),1)=SAMecr(1)+DeltasXY(1:...

(NumLocations/4));

SAMlocations(((NumLocations/4)+1):(NumLocations/2),1)=SAMecr(1)-...

DeltasXY(((NumLocations/4)+1):(NumLocations/2));
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SAMlocations(((NumLocations/2)+1):(NumLocations*3/4),1)=SAMecr(1)+...

DeltasXY(((NumLocations/2)+1):(NumLocations*3/4));

SAMlocations(((NumLocations*3/4)+1):NumLocations,1)=SAMecr(1)-...

DeltasXY(((NumLocations*3/4)+1):NumLocations);

SAMlocations(1:(NumLocations/4),2)=SAMecr(2)+DeltasXY(1:...

(NumLocations/4));

SAMlocations(((NumLocations/4)+1):(NumLocations/2),2)=SAMecr(2)-...

DeltasXY(((NumLocations/4)+1):(NumLocations/2));

SAMlocations(((NumLocations/2)+1):(NumLocations*3/4),2)=SAMecr(2)-...

DeltasXY(((NumLocations/2)+1):(NumLocations*3/4));

SAMlocations(((NumLocations*3/4)+1):NumLocations,2)=SAMecr(2)+...

DeltasXY(((NumLocations*3/4)+1):NumLocations);

SAMlocations(:,3)=SAMecr(3)+abs(DeltasZ);

% Start �for�loop from 1 to NumLocations

for j=1:NumLocations

% Load Azimuth / Depression angle look-up table for RCS

load RCS

% Calculate UAV location for all paths, updated every second, using

% temporary variables and counters

tempx=0;

tempy=0;

tempz=0;

t=1;

for x=2:size(Paths,2)

% Find change in location from one waypoint to another waypoint

Delta=PixelLocations(Paths(1,x),:)-PixelLocations(Paths(1,...

x-1),:);

% Use speed of UAV and Delta to calculate location of UAV at

% each second

if x==2
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PixelLocations(Paths(1,x-1),1);

(Delta(1,1)*UAVSpeed*t)/norm(Delta);

Locations1(1,t)=PixelLocations(Paths(1,x-1),1)+((Delta...

(1,1)*UAVSpeed*t)/norm(Delta));

Locations2(1,t)=PixelLocations(Paths(1,x-1),2)+((Delta...

(1,2)*UAVSpeed*t)/norm(Delta));

Locations3(1,t)=PixelLocations(Paths(1,x-1),3)+((Delta(...

1,3)*UAVSpeed*t)/norm(Delta));

t=t+1;

tempt=t-2;

else

if norm(Delta)==0

tempx=0;

tempy=0;

tempz=0;

else

tempx=Delta(1,1)*(UAVSpeed*(t-CompletionTimes(1,...

x-1)))/norm(Delta);

tempy=Delta(1,2)*(UAVSpeed*(t-CompletionTimes(1,...

x-1)))/norm(Delta);

tempz=Delta(1,3)*(UAVSpeed*(t-CompletionTimes(1,...

x-1)))/norm(Delta);

end

Locations1(1,t)=PixelLocations(Paths(1,x-1),1)+tempx;

Locations2(1,t)=PixelLocations(Paths(1,x-1),2)+tempy;

Locations3(1,t)=PixelLocations(Paths(1,x-1),3)+tempz;

t=t+1;

tempt=t-1;

end

while t<CompletionTimes(1,x)
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if norm(Delta)==0

Locations1(1,t)=Locations1(1,t-1);

Locations1(1,t)=Locations1(1,t-1);

Locations1(1,t)=Locations1(1,t-1);

else

Locations1(1,t)=PixelLocations(Paths(1,x-1),1)+tempx...

+((Delta(1,1)*UAVSpeed*(t-tempt))/norm(Delta));

Locations2(1,t)=PixelLocations(Paths(1,x-1),2)+tempy...

+((Delta(1,2)*UAVSpeed*(t-tempt))/norm(Delta));

Locations3(1,t)=PixelLocations(Paths(1,x-1),3)+tempz...

+((Delta(1,3)*UAVSpeed*(t-tempt))/norm(Delta));

end

t=t+1;

end

end

% Assign all location values after completion of mission to ending

% location

Locations1(1,(�x(CompletionTimes(1,end))+1):end)=Locations1(1,...

�x(CompletionTimes(1,end)));

Locations2(1,(�x(CompletionTimes(1,end))+1):end)=Locations2(1,...

�x(CompletionTimes(1,end)));

Locations3(1,(�x(CompletionTimes(1,end))+1):end)=Locations3(1,...

�x(CompletionTimes(1,end)));

% Convert SAM location from ECR sytstem to geodetic system

[SAMlat,SAMlon,SAMalt]=ecr2gc(SAMlocations(j,:));

% Calculate Azimuth / Depression angle for each path, updated every

% second, using range and other information

for x=1:(size(Locations1,2)-1)

[Lat1,Lon1,Alt1]=ecr2gc([Locations1(1,x) Locations2(1,x) ...

Locations3(1,x)]);
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[Lat2,Lon2,Alt2]=ecr2gc([Locations1(1,x+1) Locations2(1,...

x+1) Locations3(1,x+1)]);

Range(1,x)=sqrt(((Locations1(1,x)-SAMlocations(j,1))^2)+...

((Locations2(1,x)-SAMlocations(j,2))^2)+((Locations3...

(1,x)-SAMlocations(j,3))^2));

Dep(1,x)=�x(rad2deg(asin((Alt1-SAMalt)/Range(1,x))));

if SAMlon<Lon1

Az(1,x)=�x(360+azimuth(Lat1,Lon1,Lat2,Lon2)-azimuth...

(Lat1,Lon1,SAMlat,SAMlon));

else

if azimuth(Lat1,Lon1,Lat2,Lon2)==0

Az(1,x)=�x(360-azimuth(Lat1,Lon1,SAMlat,SAMlon));

else

Az(1,x)=�x(azimuth(Lat1,Lon1,Lat2,Lon2)-azimuth...

(Lat1,Lon1,SAMlat,SAMlon));

end

end

if Az(1,x)>360

Az(1,x)=Az(1,x)-360;

end

end

Dep=abs(Dep);

Az=abs(Az);

% Extract RCS values for every UAV location from previously loaded

% RCS value matrix

for x=1:size(Dep,2)

if Az(1,x)==360

RCSpaths(1,x)=RCS(Dep(1,x)+1,Az(1,x)-1);

else

RCSpaths(1,x)=RCS(Dep(1,x)+1,Az(1,x)+1);
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end

end

% Calculate Signal to Noise Ratio based on 10 dB SNR for 0 dBsm

% target at 120 km range.

for x=1:size(RCSpaths,2)

SNR(1,x)=log10((2.0736*(10^30))*((10^(RCSpaths(1,x)-4.5))/...

(Range(1,x)^4)));

end

% Determine detections based on whether SNR is greater than or less

% than the speci�ed detection cuto¤, and disregard "detections"

% with Doppler velocity less than that speci�ed cuto¤.

for x=1:size(SNR,2)

if SNR(1,x)<DetectionCuto¤

Detections(1,x)=0; % not detected

else

Detections(1,x)=1; % detected

end

if norm(UAVSpeed*cos(deg2rad(Az(1,x))))<DopplerCuto¤ % m/s

Detections(1,x)=0; % not detected

end

end

% Combine UAV paths with new SAM location to determine

% probabilities of kill

[ProbKill]=FindPk(Detections,SNR,Locations1,Locations2,...

Locations3,UAVSpeed,MissileSpeed,SAMlocations(j,:),...

OuterRadius,InnerRadius,Az);

% Assume SAM changes his strategy to maximize the Pk on the UAV

PKill=max(ProbKill);

% Find Pq using new SAM location

[PictureQuality]=ImageQuality(CompletionTimes,Range,Paths,RCS,...

180



Az,Dep);

% Assign Pk and Pq to temporary variables

TempArray(j,1)=PKill;

TempArray(j,2)=PictureQuality;

end

% Set PK and PQ equal to the average of their values throughout all the

% locations generated

PK=sum(TempArray(:,1))/size(TempArray,1);

PQ=sum(TempArray(:,2))/size(TempArray,1);

% Convert TLE back to miles

TLE=km2sm(TLE/1000);

% Put Pk and Pq values in matrix form

PKTLE(s,1:2)=[TLE PK]

PQTLE(s,1:2)=[TLE PQ]

% Add 1 to counter s, and add the step value to TLE

s=s+1;

TLE=TLE+TLEstep;

end

% Save matrix values in case of computer failure / shut-down

save PKTLE

save PQTLE

G.2 UAVvsSAM.m

function [PK,PQ,BestPathX,BestStratY,Paths,SAMecr,PixelLocations,...

UAVSpeed,CompletionTimes,WaypointTimes,DetectionCuto¤,DopplerCuto¤...

,MissileSpeed,OuterRadius,InnerRadius,StartRadius]=UAVvsSAM

% UAVvsSAM

%

% 2Lt Daniel M Morales, USAF
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% MIT Lincoln Laboratory

% 14 March 2005

%

% Description:

% This function uses game theory to optimize UAV paths with changing SAM

% location uncertainty.

%

% Inputs:

% None

%

% Outputs:

% PK from 0 to 1

% PQ from 0 to 9

% BestPathX unitless

% BestStratY unitless

% Paths unitless

% SAMecr m

% PixelLocations m, ECR coordinate system

% UAVSpeed km/s

% CompletionTimes s

% WaypointTimes s

% DetectionCuto¤ dB

% DopplerCuto¤ m/s

% MissileSpeed m/s

% OuterRadius km

% InnerRadius km

% StartRadius km

% Functions called:

% DtedData

% gc2ecr
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% ecr2gc

% SetUpGrid

% CalculateDistances

% CreatePaths

% Infeasible

% Detect

% FindPk

% ImageQuality

% FindA

% Nash

% Roll

% Visualize

% Clear all variables from memory and workspace and close all �gures

clear all;

clc;

close all;

% UAV characteristics

UAVSpeed=0.07716667; % km/sec (150 knots)

ImageRequirement=3; % deg

% RCSlow=-10; % dBsm

% RCShigh=0; % dBsm

% RCSwidth=30; % deg

% SAM characteristics

InnerRadius=20; % km

OuterRadius=50; % km

SAMlon=126.75; % deg East

SAMlat=38.75; % deg North

[SAMalt,temp]=DtedData(SAMlat,SAMlat,SAMlon,SAMlon); % m

SAMecr=gc2ecr(SAMlat,SAMlon,SAMalt); % m

MissileSpeed=0.99438; % km/sec (Mach 3)
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DetectionCuto¤=10; % dB

DopplerCuto¤=1.388889; % m/sec (5 km/hour)

% Pixelized space characteristics

StepRadius=5; % km

StartRadius=OuterRadius+StepRadius; % km

AngleWidth=5; % deg, odd number

Height=20; % km

HeightSteps=10; % km

% Delineate waypoint locations

[PixelLocations]=SetUpGrid(InnerRadius,OuterRadius,StepRadius,...

StartRadius,ImageRequirement,AngleWidth,SAMlon,SAMlat,SAMalt,Height,...

HeightSteps);

Start=min(PixelLocations);

Stop=max(PixelLocations);

% Get elevation data for desired region

[Map,MapLegend]=DtedData(Start(2),Stop(2),Start(1),Stop(1));

% Convert latitude, longitude, and altitude into Earth Centered

% Rotating coordinates (ECR).

for i=1:size(PixelLocations,1)

PixelLocations(i,:)=gc2ecr(PixelLocations(i,2),PixelLocations(i,1),...

PixelLocations(i,3));

end

% Calculate distances and times between waypoints

[Distances,WaypointTimes]=CalculateDistances(PixelLocations,UAVSpeed);

% Create set of possible paths and calculate path completion times

[Paths]=CreatePaths(AngleWidth,OuterRadius,InnerRadius,StepRadius,...

HeightSteps,ImageRequirement);

% Search through set of possible paths and eliminate infeasible ones based

% on UAV turn limitations and terrain considerations.

[Paths,CompletionTimes]=Infeasible(Paths,PixelLocations,WaypointTimes,...
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Map,MapLegend,SAMlon,SAMlat,SAMalt);

% Use orientation and speed of UAV to calculate detections by SAM

[Dep,Az,Detections,SNR,Locations1,Locations2,Locations3,RCS,Range,...

RCSPaths]=Detect(PixelLocations,Paths,UAVSpeed,...

CompletionTimes,WaypointTimes,SAMecr,DetectionCuto¤,DopplerCuto¤);

% Convert PixelLocations back into geodetic system

for i=1:size(PixelLocations,1)

[PixelLocations(i,2),PixelLocations(i,1),PixelLocations(i,3)]=...

ecr2gc(PixelLocations(i,:));

end

% Combine UAV paths with SAM strategies to determine probabilities of kill

[ProbKill]=FindPk(Detections,SNR,Locations1,Locations2,Locations3,...

UAVSpeed,MissileSpeed,SAMecr,OuterRadius,InnerRadius,Az);

% Calculate Image Quality for each path

[PictureQuality]=ImageQuality(CompletionTimes,Range,Paths,RCS,Az,Dep);

% Calculate the payo¤ matrix A

[A]=FindA(PictureQuality,CompletionTimes,ProbKill);

% Use game-theoretic principles to �nd Nash equilibrium

[X,UAVPayo¤,PathProbsX,PathProbsY,SAMPayo¤,Y]=Nash(A);

% Pick UAV strategy based on probable roll of dice

[BestPathX,BestStratY]=Roll(PathProbsX,PathProbsY);

% Assign Pk and Pq

PK=ProbKill(BestPathX,BestStratY);

PQ=PictureQuality(BestPathX,1);

% Draw picture of best path

Visualize(OuterRadius,InnerRadius,StepRadius,PixelLocations,AngleWidth,...

SAMlon,SAMlat,BestPathX,Paths,HeightSteps);
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G.3 DtedData.m

function [Map,MapLegend]=DtedData(LatStart,LatStop,LonStart,LonStop);

% DtedData

%

% 2Lt Daniel M Morales, USAF

% MIT Lincoln Laboratory

% 14 March 2005

%

% Description:

% This function produces the Digital Terrain Elevation Data (DTED) given

% speci�c latitude and longitude start and stop points

%

% Inputs:

% LatStart deg

% LatStop deg

% LonStart deg

% LonStop deg

%

% Outputs:

% Map unitless

% MapLegend unitless

%

% Functions called:

% dted

% Call dted function with speci�c directory to obtain elevation data

[Map,MapLegend] = dted(...

�C:nDocuments and SettingsnmoralesdnMy DocumentsnThesis WorknDTED Stu¤�,...

1,[LatStart LatStop],[LonStart LonStop]);
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G.4 SetUpGrid.m

function [PixelLocations]=SetUpGrid(InnerRadius,OuterRadius,...

StepRadius,StartRadius,ImageRequirement,AngleWidth,SAMlon,SAMlat,...

SAMalt,Height,HeightSteps)

% SetUpGrid

%

% 2Lt Daniel M Morales, USAF

% MIT Lincoln Laboratory

% 14 March 2005

%

% Description:

% This function sets up an imaginary grid full of waypoints for UAV paths

%

% Inputs:

% InnerRadius km

% OuterRadius km

% StepRadius km

% StartRadius km

% StartRadius km

% ImageRequirement deg

% AngleWidth deg

% SAMlon deg

% SAMlat deg

% SAMalt m

% Height kft

% HeightSteps unitless

%

% Outputs:

% PixelLocations m

%
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% Functions called:

% None

% Set HalfAngleWidth to be half of AngleWidth, converted to radians

HalfAngleWidth=(AngleWidth/2)*(pi/180);

% Set up waypoints at each degree of angle for every consecutive

% SAM ring until the max detection range.

r=InnerRadius;

while r<=StartRadius

for i=1:((AngleWidth+1)/2)

PixelLocations(i+(AngleWidth+1)*((r-InnerRadius)/StepRadius),1)...

=SAMlon-AngleDistance(r*sin(HalfAngleWidth-(i-1)*(pi/180)),...

SAMlat,2);

PixelLocations(i+(AngleWidth+1)*((r-InnerRadius)/StepRadius),2)...

=SAMlat-AngleDistance(r*cos(HalfAngleWidth-(i-1)*(pi/180)),...

SAMlat,1);

end

for i=(((AngleWidth+1)/2)+1):(AngleWidth+1)

PixelLocations(i+(AngleWidth+1)*((r-InnerRadius)/StepRadius),1)...

=2*SAMlon-...

PixelLocations((AngleWidth+2+(AngleWidth+1)*((r-InnerRadius)...

/StepRadius))-i,1);

PixelLocations(i+(AngleWidth+1)*((r-InnerRadius)/StepRadius),2)=...

PixelLocations(AngleWidth+2+(AngleWidth+1)*((r-InnerRadius)...

/StepRadius)-i,2);

end

PixelLocations(:,3)=SAMalt;

r=r+StepRadius;

end

% Solve for height at each waypoint

numppp=size(PixelLocations,1);

188



counter=numppp;

for i=1:HeightSteps

for x=1:numppp

PixelLocations(counter+1,1:2)=PixelLocations(counter+1-numppp,1:2);

PixelLocations(counter+1,3)=PixelLocations(x,3)+((InnerRadius+...

StepRadius*(�oor(x/(AngleWidth+1.001))))*1000)*sin((asin(...

Height/StartRadius)/HeightSteps)*i);

counter=counter+1;

end

end

G.5 AngleDistance.m

function [Angle]=AngleDistance(Dist,Lat,x)

% AngleDistance

%

% 2Lt Daniel M Morales, USAF

% MIT Lincoln Laboratory

% 14 March 2005

%

% Description:

% This function uses WGS 84 data to give the angle length for any distance

% at a certain latitude.

%

% Inputs:

% Dist m

% Lat deg

% x 1 or 2

%

% Outputs:
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% Angle deg

%

% Functions called:

% None

A= [0 110574 111319.2

1 110574.6 111302.4

2 110575.8 111252

3 110577.6 111168

4 110579.4 111050.4

5 110583 110898.6

6 110586.6 110713.8

7 110590.8 110495.4

8 110595.6 110243.4

9 110601.6 109957.8

10 110607.6 109639.2

11 110614.8 109287.6

12 110622 108902.4

13 110630.4 108484.8

14 110639.4 108034.2

15 110648.4 107550.6

16 110658.6 107034.6

17 110669.4 106485.6

18 110680.2 105904.8

19 110692.2 105292.2

20 110704.2 104647.2

21 110716.8 103970.4

22 110730 103262.4

23 110743.8 102522.6

24 110758.2 101751.6

25 110772.6 100950
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26 110788.2 100117.8

27 110803.8 99255

28 110819.4 98361.6

29 110835.6 97438.8

30 110852.4 96486

31 110869.2 95504.4

32 110886.6 94493.4

33 110904.6 93453

34 110922.6 92385

35 110940.6 91288.2

36 110959.2 90163.8

37 110977.8 89011.8

38 110996.4 87832.2

39 111015.6 86626.2

40 111034.8 85393.8

41 111054 84135

42 111073.2 82851

43 111093 81541.2

44 111112.2 80206.2

45 111132 78846.6

46 111151.2 77463

47 111171 76056

48 111190.2 74625.6

49 111210 73171.8

50 111229.2 71695.8

51 111248.4 70197.6

52 111267.6 68677.8

53 111286.2 67137

54 111304.8 65575.8

55 111323.4 63994.2
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56 111342 62392.8

57 111360 60772.2

58 111377.4 59133

59 111395.4 57475.2

60 111412.2 55800

61 111429 54107.4

62 111445.8 52398

63 111461.4 50673

64 111477.6 48931.8

65 111492.6 47175.6

66 111507.6 45405

67 111522 43620

68 111535.8 41821.8

69 111549 40010.4

70 111562.2 38186.4

71 111574.2 36351

72 111586.2 34504.2

73 111597.6 32646.6

74 111608.4 30779.4

75 111618.6 28902

76 111628.2 27015.6

77 111636.6 25121.4

78 111645 23219.4

79 111652.8 21309.6

80 111660 19393.2

81 111666.6 17471.4

82 111672 15543.6

83 111677.4 13611.6

84 111681.6 11674.8

85 111685.2 9734.4
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86 111688.2 7791

87 111690.6 5845.8

88 111692.4 3898.2

89 111693.6 1949.4

90 111694.2 0 ];

if x==1

Angle=(Dist*1000)/(((Lat-�x(Lat))*(A(�x(Lat)+2,2)...

-A(�x(Lat)+1,2)))+A(�x(Lat)+1,2));

else

Angle=(Dist*1000)/(((Lat-�x(Lat))*(A(�x(Lat),3)...

-A(�x(Lat)+1,3)))+A(�x(Lat)+1,3));

end

G.6 gc2ecr.m

function ECR=gc2ecr(Lat,Lon,Alt)

% gc2ecr

%

% 2Lt Daniel M Morales, USAF

% MIT Lincoln Laboratory

% 14 March 2005

%

% Description:

% This function converts a geodetic state vector to ECR coordinates.

% The state vector must contain 3 elements (position), and this routine

% uses the supplied earth model.

%

% Inputs:

% Lat deg

% Lon deg
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% Alt m

%

% Outputs:

% ECR m

%

% Functions called:

% deg2rad

% cos

% sin

%

% Reference: The majority of this code was translated into Matlab

% directly from MIT Lincoln Laboratory Java code for coordinate transforms.

ecc=0.081819301; % Earth�s eccentricity

Re=6378.13649*1000; % Earth�s radius, m

Lat=deg2rad(Lat);

Lon=deg2rad(Lon);

Clat=cos(Lat);

Slat=sin(Lat);

R=Re/sqrt(1-((ecc^2)*(Slat^2)));

ECR(1,1)=(R+Alt)*Clat*cos(Lon);

ECR(1,2)=(R+Alt)*Clat*sin(Lon);

ECR(1,3)=(R+Alt-((ecc^2)*R))*Slat;

G.7 CalculateDistances.m

function [Distances,WaypointTimes]=CalculateDistances(PixelLocations,...

UAVSpeed)

% CalculateDistances

%

% 2Lt Daniel M Morales, USAF
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% MIT Lincoln Laboratory

% 14 March 2005

%

% Description:

% This function calculates distances between all path waypoints

%

% Inputs:

% UAVSpeed m/s

% PixelLocations m

%

% Outputs:

% Distances m

% WaypointTimes s

%

% Functions called:

% None

% Calculate distances between each waypoint

for x=1:size(PixelLocations,1)

for i=1:size(PixelLocations,1)

Distances(x,i)=sqrt(((PixelLocations(i,1)-PixelLocations(x,1))...

^2)+((PixelLocations(i,2)-PixelLocations(x,2))^2)+((...

PixelLocations(i,3)-PixelLocations(x,3))^2));

if Distances(x,i)<0.001

Distances(x,i)=0;

end

WaypointTimes(x,i)=Distances(x,i)/(UAVSpeed*1000);

end

end
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G.8 CreatePaths.m

function [Paths]=CreatePaths(AngleWidth,OuterRadius,InnerRadius,...

StepRadius,HeightSteps,ImageRequirement)

% CreatePaths

%

% 2Lt Daniel M Morales, USAF

% MIT Lincoln Laboratory

% 14 March 2005

%

% Description:

% This function creates the UAV strategies, its paths.

%

% Inputs:

% AngleWidth deg

% OuterRadius km

% InnerRadius km

% StepRadius km

% HeightSteps unitless

% ImageRequirement deg

%

% Outputs:

% Paths unitless

%

% Functions called:

% vertcat

tempRadius=(OuterRadius-InnerRadius)/StepRadius;

% Enter SAM ring and leave ring at same level, all levels, all rings,

% straight path

for m=0:tempRadius

for i=1:(HeightSteps+1)
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for x=1:(tempRadius+2-m)

Paths1(i,x,m+1)=i*(tempRadius+2)*(AngleWidth+1)-(AngleWidth-...

((AngleWidth-5)/2+1))-(x-1)*(AngleWidth+1);

a=x;

end

for x=(a+1):(a+ImageRequirement)

Paths1(i,x,m+1)=Paths1(i,x-1,m+1)+1;

end

for x=(tempRadius+ImageRequirement+3-m):((tempRadius+...

ImageRequirement+2)+(tempRadius+1-2*m))

Paths1(i,x,m+1)=Paths1(i,x-1,m+1)+(AngleWidth+1);

end

end

end

Paths11=Paths1(:,:,1);

for x=1:(size(Paths1,3)-1)

Paths11=vertcat(Paths11,horzcat(Paths1(:,1:(min(�nd(Paths1...

(1,:,x+1)==0))-1),x+1),...

Paths1(:,(min(�nd(Paths1(1,:,x+1)==0))-1),x+1)*ones(1,size...

(Paths1(:,:,x+1),2)...

-(min(�nd(Paths1(1,:,x+1)==0)-1)))));

end

% Enter SAM ring and leave ring at same level, all levels, all rings,

% zigzag path

for m=0:tempRadius

for i=1:(HeightSteps+1)

Paths2(i,1,m+1)=i*(tempRadius+2)*(AngleWidth+1)-(AngleWidth...

-((AngleWidth-5)/2+1));

for x=2:(tempRadius+2-m)

if mod(x,2)~=0
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Paths2(i,x,m+1)=Paths2(i,x-1,m+1)-(AngleWidth+2);

else

Paths2(i,x,m+1)=Paths2(i,x-1,m+1)-AngleWidth;

end

a=x;

end

for x=(a+1):(a+ImageRequirement)

Paths2(i,x,m+1)=Paths2(i,x-1,m+1)+1;

end

for x=(tempRadius+ImageRequirement+3-m):((tempRadius+...

ImageRequirement+2)+...

(tempRadius+1-2*m))

if mod(x,2)~=0

Paths2(i,x,m+1)=Paths2(i,x-1,m+1)+(AngleWidth+2);

else

Paths2(i,x,m+1)=Paths2(i,x-1,m+1)+AngleWidth;

end

end

end

end

Paths22=Paths2(:,:,1);

for x=1:(size(Paths2,3)-1)

Paths22=vertcat(Paths22,horzcat(Paths2(:,1:(min(�nd(Paths2(1,:,x+1)...

==0))-1),x+1),...

Paths2(:,(min(�nd(Paths2(1,:,x+1)==0))-1),x+1)*ones(1,size(...

Paths2(:,:,x+1),2)...

-(min(�nd(Paths2(1,:,x+1)==0)-1)))));

end

% Enter SAM ring and leave ring at same level, all levels, all rings,

% block path
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for m=0:tempRadius

for i=1:(HeightSteps+1)

j=0;

x=1;

Paths3(i,x,m+1)=i*(tempRadius+2)*(AngleWidth+1)-(AngleWidth...

-((AngleWidth-5)/2+1));

while Paths3(i,x,m+1)>((AngleWidth+1)*(m+1)+((i-1)*(tempRadius...

+2)*(AngleWidth+1)))

x=x+1;

if mod(x,2)~=0

Paths3(i,x,m+1)=Paths3(i,x-1,m+1)-(-1)^j;

else

Paths3(i,x,m+1)=Paths3(i,x-1,m+1)-(AngleWidth+1);

j=j+1;

end

a=x+1;

end

for x=a:(a+(ImageRequirement-1))

Paths3(i,x,m+1)=Paths3(i,x-1,m+1)+1;

end

j=0;

while Paths3(i,x,m+1)<(((tempRadius+1)*(AngleWidth+1)+1)+((i-1)*...

(tempRadius+2)*(AngleWidth+1)))

x=x+1;

if mod(x,2)~=0

Paths3(i,x,m+1)=Paths3(i,x-1,m+1)+(-1)^j;

else

Paths3(i,x,m+1)=Paths3(i,x-1,m+1)+(AngleWidth+1);

j=j+1;

end
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end

end

end

Paths33=Paths3(:,:,1);

for x=1:(size(Paths3,3)-1)

Paths33=vertcat(Paths33,horzcat(Paths3(:,1:(min(�nd(Paths3(1,:,...

x+1)==0))-1),x+1),...

Paths3(:,(min(�nd(Paths3(1,:,x+1)==0))-1),x+1)*ones(1,size(...

Paths3(:,:,x+1),2)...

-(min(�nd(Paths3(1,:,x+1)==0)-1)))));

end

% Enter SAM ring high/low and leave low/high, all levels, all rings,

% straight path

for m=0:tempRadius

for i=1:�x(HeightSteps/2)

for x=1:(tempRadius+2-m)

Paths4(i,x,m+1)=i*(tempRadius+2)*(AngleWidth+1)-(AngleWidth-...

((AngleWidth-5)/2+1))-(x-1)*(AngleWidth+1);

a=x;

end

Paths4(i,a+1,m+1)=Paths4(i,a,m+1)+(AngleWidth+1)*(tempRadius+2)...

*(HeightSteps+1-i);

for x=(a+2):(a+1+ImageRequirement)

Paths4(i,x,m+1)=Paths4(i,x-1,m+1)+1;

end

for x=(tempRadius+ImageRequirement+4-m):((tempRadius+...

ImageRequirement+2)+(tempRadius+2-2*m))

Paths4(i,x,m+1)=Paths4(i,x-1,m+1)+(AngleWidth+1);

end

end
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for i=(�x((HeightSteps)/2)+1):(HeightSteps+1)

for x=1:(tempRadius+2-m)

Paths4(i,x,m+1)=i*(tempRadius+2)*(AngleWidth+1)...

-(AngleWidth-((AngleWidth-5)/2+1))-(x-1)*(AngleWidth+1);

a=x;

end

Paths4(i,a+1,m+1)=Paths4(i,a,m+1)-(AngleWidth+1)*(tempRadius...

+2)*(i-1);

for x=(a+2):(a+2+ImageRequirement)

Paths4(i,x,m+1)=Paths4(i,x-1,m+1)+1;

q=x;

end

for x=q:((tempRadius+ImageRequirement+2)+(tempRadius+2-2*m))

Paths4(i,x,m+1)=Paths4(i,x-1,m+1)+(AngleWidth+1);

end

end

end

Paths44=Paths4(:,:,1);

for x=1:(size(Paths4,3)-1)

Paths44=vertcat(Paths44,horzcat(Paths4(:,1:(min(�nd(Paths4(1,:,x+1)...

==0))-1),x+1),...

Paths4(:,(min(�nd(Paths4(1,:,x+1)==0))-1),x+1)*ones(1,size(...

Paths4(:,:,x+1),2)...

-(min(�nd(Paths4(1,:,x+1)==0)-1)))));

end

% Enter SAM ring high/low and leave low/high, all levels, all rings,

% zigzag path

for m=0:tempRadius

for i=1:�x(HeightSteps/2)

Paths5(i,1,m+1)=i*(tempRadius+2)*(AngleWidth+1)-(AngleWidth-...
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((AngleWidth-5)/2+1));

for x=2:(tempRadius+2-m)

if mod(x,2)~=0

Paths5(i,x,m+1)=Paths5(i,x-1,m+1)-(AngleWidth+2);

else

Paths5(i,x,m+1)=Paths5(i,x-1,m+1)-AngleWidth;

end

a=x;

end

Paths5(i,a+1,m+1)=Paths5(i,a,m+1)+(AngleWidth+1)*(tempRadius+2)...

*(HeightSteps+1-i);

for x=(a+2):(a+1+ImageRequirement)

Paths5(i,x,m+1)=Paths5(i,x-1,m+1)+1;

end

for x=(tempRadius+ImageRequirement+4-m):((tempRadius+...

ImageRequirement+2)+...

(tempRadius+2-2*m))

if mod(x,2)==0

Paths5(i,x,m+1)=Paths5(i,x-1,m+1)+(AngleWidth+2);

else

Paths5(i,x,m+1)=Paths5(i,x-1,m+1)+AngleWidth;

end

end

end

for i=(�x((HeightSteps)/2)+1):(HeightSteps+1)

Paths5(i,1,m+1)=i*(tempRadius+2)*(AngleWidth+1)-(AngleWidth-...

((AngleWidth-5)/2+1));

for x=2:(tempRadius+2-m)

if mod(x,2)~=0

Paths5(i,x,m+1)=Paths5(i,x-1,m+1)-(AngleWidth+2);
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else

Paths5(i,x,m+1)=Paths5(i,x-1,m+1)-AngleWidth;

end

a=x;

end

Paths5(i,a+1,m+1)=Paths5(i,a,m+1)-(AngleWidth+1)*(tempRadius...

+2)*(i-1);

for x=(a+2):(a+2+ImageRequirement)

Paths5(i,x,m+1)=Paths5(i,x-1,m+1)+1;

q=x;

end

for x=q:((tempRadius+ImageRequirement+2)+(tempRadius+2-2*m))

if mod(x,2)==0

Paths5(i,x,m+1)=Paths5(i,x-1,m+1)+(AngleWidth+2);

else

Paths5(i,x,m+1)=Paths5(i,x-1,m+1)+AngleWidth;

end

end

end

end

Paths55=Paths5(:,:,1);

for x=1:(size(Paths5,3)-1)

Paths55=vertcat(Paths55,horzcat(Paths5(:,1:(min(�nd(Paths5(1,:,...

x+1)==0))-1),x+1),...

Paths5(:,(min(�nd(Paths5(1,:,x+1)==0))-1),x+1)*ones(1,size(...

Paths5(:,:,x+1),2)...

-(min(�nd(Paths5(1,:,x+1)==0)-1)))));

end

% Enter SAM ring high/low and leave low/high, all levels, all rings,

% block path
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for m=0:tempRadius

for i=1:�x(HeightSteps/2)

j=0;

x=1;

Paths6(i,x,m+1)=i*(tempRadius+2)*(AngleWidth+1)-(AngleWidth-...

((AngleWidth-5)/2+1));

while Paths6(i,x,m+1)>((AngleWidth+1)*(m+1)+((i-1)*(tempRadius...

+2)*(AngleWidth+1)))

x=x+1;

if mod(x,2)~=0

Paths6(i,x,m+1)=Paths6(i,x-1,m+1)-(-1)^j;

else

Paths6(i,x,m+1)=Paths6(i,x-1,m+1)-(AngleWidth+1);

j=j+1;

end

a=x+1;

end

Paths6(i,a,m+1)=Paths6(i,a-1,m+1)+(AngleWidth+1)*(tempRadius+2)...

*(HeightSteps+1-i);

for x=(a+1):(a+(ImageRequirement))

Paths6(i,x,m+1)=Paths6(i,x-1,m+1)+1;

end

while Paths6(i,x,m+1)<(((tempRadius+1)*(AngleWidth+1)+1)+((...

tempRadius+2)...

*(AngleWidth+1))*HeightSteps)

x=x+1;

if mod(x,2)==0

Paths6(i,x,m+1)=Paths6(i,x-1,m+1)+(-1)^j;

else

Paths6(i,x,m+1)=Paths6(i,x-1,m+1)+(AngleWidth+1);
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j=j+1;

end

end

end

for i=(�x((HeightSteps)/2)+1):(HeightSteps+1)

j=0;

x=1;

Paths6(i,x,m+1)=i*(tempRadius+2)*(AngleWidth+1)-(AngleWidth-...

((AngleWidth-5)/2+1));

while Paths6(i,x,m+1)>((AngleWidth+1)*(m+1)+((i-1)*(tempRadius...

+2)*(AngleWidth+1)))

x=x+1;

if mod(x,2)~=0

Paths6(i,x,m+1)=Paths6(i,x-1,m+1)-(-1)^j;

else

Paths6(i,x,m+1)=Paths6(i,x-1,m+1)-(AngleWidth+1);

j=j+1;

end

a=x+1;

end

Paths6(i,a,m+1)=Paths6(i,a-1,m+1)-(AngleWidth+1)*(tempRadius+2)...

*(i-1);

for x=(a+1):(a+(ImageRequirement))

Paths6(i,x,m+1)=Paths6(i,x-1,m+1)+1;

end

j=0;

while Paths6(i,x,m+1)<((tempRadius+1)*(AngleWidth+1)+1)

x=x+1;

if mod(x,2)==0

Paths6(i,x,m+1)=Paths6(i,x-1,m+1)+(-1)^j;
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else

Paths6(i,x,m+1)=Paths6(i,x-1,m+1)+(AngleWidth+1);

j=j+1;

end

end

end

end

Paths66=Paths6(:,:,1);

for x=1:(size(Paths6,3)-1)

Paths66=vertcat(Paths66,horzcat(Paths6(:,1:(min(�nd(Paths6(1,:,...

x+1)==0))-1),x+1),...

Paths6(:,(min(�nd(Paths6(1,:,x+1)==0))-1),x+1)*ones(1,size(...

Paths6(:,:,x+1),2)-...

(min(�nd(Paths6(1,:,x+1)==0)-1)))));

end

% Combine all paths into one matrix

Temp1=vertcat(vertcat(Paths44,Paths55),horzcat(vertcat(Paths11,Paths22),...

vertcat(Paths11(:,end)...

*ones(1,size(Paths44,2)-size(Paths11,2)),Paths22(:,end)*ones(1,size(...

Paths44,2)-size(Paths22,2)))));

Temp2=vertcat(Paths33,horzcat(Temp1,Temp1(:,end)*ones(1,size(Paths33,2)...

-size(Temp1,2))));

Paths=vertcat(Paths66,horzcat(Temp2,Temp2(:,end)*ones(1,size(Paths66,2)...

-size(Temp2,2))));

G.9 Infeasible.m

function [Paths,CompletionTimes]=Infeasible(Paths,PixelLocations,...

WaypointTimes,Map,MapLegend,SAMlon,SAMlat,SAMalt)

% Infeasible
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%

% 2Lt Daniel M Morales, USAF

% MIT Lincoln Laboratory

% 14 March 2005

%

% Description:

% This function eliminates UAV paths based on turn capabilities, UAV-SAM

% visibility, and terrain avoidance.

%

% Inputs:

% Paths unitless

% PixelLocations m

% WaypointTimes s

% Map m, DTED elevation data

% MapLegend DTED index variable

% SAMlon deg

% SAMlat deg

% SAMalt m

%

% Outputs:

% Paths unitless

% CompletionTimes s

%

% Functions called:

% ecr2gc

% los2

% DtedData

% Eliminates infeasible paths based on limitations of the UAV�s turn

% capabilites. For this program, any turn smaller than about 90 degrees

% (actually pi/2-0.1) was automatically excluded as impossible.
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s=1;

Rows=[];

for i=1:size(Paths,1)

for x=1:(size(Paths,2)-2)

A=[PixelLocations(Paths(i,x),1)-PixelLocations(Paths(i,x+1),1),...

PixelLocations(Paths(i,x),2)-PixelLocations(Paths(i,x+1)...

,2),PixelLocations(Paths(i,x),3)-PixelLocations(Paths(i,...

x+1),3)];

B=[PixelLocations(Paths(i,x+2),1)-PixelLocations(Paths(i,x+1),1)...

,PixelLocations(Paths(i,x+2),2)-PixelLocations(Paths(i,x+1)...

,2),PixelLocations(Paths(i,x+2),3)-PixelLocations(Paths(i,...

x+1),3)];

if acos(dot(A,B)/(norm(A)*norm(B)))<(pi/2-0.1)

Rows(s,1)=i;

s=s+1;

break;

end

end

end

Paths(Rows,:)=[];

for i=1:size(PixelLocations,1)

[PixelLocations(i,2),PixelLocations(i,1),PixelLocations(i,3)]=ecr2gc...

(PixelLocations(i,:));

end

% Eliminate infeasible paths based on whether the SAM is visible during all

% of the three points at which it is taking the image.

s=1;

Rows=[];

for i=1:size(Paths,1)

for x=4:size(Paths,2)
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if (Paths(i,x)-Paths(i,x-3))==3

for j=(x-3):x

Vis(j-x+4,1)=los2(Map,MapLegend,PixelLocations(Paths(i,...

j),2),PixelLocations(Paths(i,j),1),SAMlat,SAMlon,...

PixelLocations(Paths(i,j),3),SAMalt,�MSL�,�MSL�);

end

if min(Vis)==0

Rows(s,1)=i;

s=s+1;

break;

end

end

end

end

Paths(Rows,:)=[];

% Eliminate infeasible paths based on the UAV running into terrain.

s=1;

Rows=[];

for i=1:size(Paths,1)

for x=1:size(Paths,2)

[Alt,temp]=DtedData(PixelLocations(Paths(i,x),2),PixelLocations...

(Paths(i,x),2),...

PixelLocations(Paths(i,x),1),PixelLocations(Paths(i,x),1));

if PixelLocations(Paths(i,x),3)<=Alt

Rows(s,1)=i;

s=s+1;

break;

end

end

end
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Paths(Rows,:)=[];

CompletionTimes(size(Paths,1),size(Paths,2))=0;

for x=1:size(Paths,1)

for i=2:size(Paths,2)

CompletionTimes(x,i)=CompletionTimes(x,i-1)+WaypointTimes...

(Paths(x,i),Paths(x,i-1));

end

end

G.10 Detect.m

function [Dep,Az,Detections,SNR,Locations1,Locations2,Locations3,RCS,...

Range,RCSpaths]=Detect(PixelLocations,Paths,UAVSpeed,...

CompletionTimes,WaypointTimes,SAMecr,DetectionCuto¤,DopplerCuto¤)

% Detect

%

% 2Lt Daniel M Morales, USAF

% MIT Lincoln Laboratory

% 14 March 2005

%

% Description:

% This function takes UAV, path, and radar information and determines

% whether the UAV is detected or not throughout its path.

%

% Inputs:

% PixelLocations m, ECR coordinate system

% Paths unitless

% UAVSpeed m/s

% CompletionTimes s

% WaypointTimes s
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% SAMecr m

% DetectionCuto¤ dB

% DopplerCuto¤ m/s

%

% Outputs:

% Dep deg

% Az deg

% Detections 1 (det) or 0 (not det)

% SNR dBsm

% Locations1/2/3 m

% RCS dBsm

% Range m

% RCSPaths dBsm

%

% Functions called:

% ecr2gc

% azimuth

% Change UAV Speed to m/s

UAVSpeed=UAVSpeed*1000; % m/sec

% Put together Azimuth / Depression angle look-up table for RCS

load RCS

% Calculate UAV location for all paths, updated every second

for i=1:size(Paths,1)

tempx=0;

tempy=0;

tempz=0;

t=1;

for x=2:size(Paths,2)

Delta=PixelLocations(Paths(i,x),:)-PixelLocations(Paths(i,x-1),:);

if x==2
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Locations1(i,t)=PixelLocations(Paths(i,x-1),1)+((Delta(1,1)...

*UAVSpeed*t)/norm(Delta));

Locations2(i,t)=PixelLocations(Paths(i,x-1),2)+((Delta(1,2)...

*UAVSpeed*t)/norm(Delta));

Locations3(i,t)=PixelLocations(Paths(i,x-1),3)+((Delta(1,3)...

*UAVSpeed*t)/norm(Delta));

t=t+1;

tempt=t-2;

else

tempx=Delta(1,1)*(UAVSpeed*(t-CompletionTimes(i,x-1)))/norm...

(Delta);

tempy=Delta(1,2)*(UAVSpeed*(t-CompletionTimes(i,x-1)))/norm...

(Delta);

tempz=Delta(1,3)*(UAVSpeed*(t-CompletionTimes(i,x-1)))/norm...

(Delta);

Locations1(i,t)=PixelLocations(Paths(i,x-1),1)+tempx;

Locations2(i,t)=PixelLocations(Paths(i,x-1),2)+tempy;

Locations3(i,t)=PixelLocations(Paths(i,x-1),3)+tempz;

t=t+1;

tempt=t-1;

end

while t<CompletionTimes(i,x)

Locations1(i,t)=PixelLocations(Paths(i,x-1),1)+tempx+((...

Delta(1,1)*UAVSpeed*(t-tempt))/norm(Delta));

Locations2(i,t)=PixelLocations(Paths(i,x-1),2)+tempy+((...

Delta(1,2)*UAVSpeed*(t-tempt))/norm(Delta));

Locations3(i,t)=PixelLocations(Paths(i,x-1),3)+tempz+((...

Delta(1,3)*UAVSpeed*(t-tempt))/norm(Delta));

t=t+1;

end
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end

end

for i=1:size(Locations1,1)

Locations1(i,(�x(CompletionTimes(i,end))+1):end)=Locations1(i,�x(...

CompletionTimes(i,end)));

Locations2(i,(�x(CompletionTimes(i,end))+1):end)=Locations2(i,�x(...

CompletionTimes(i,end)));

Locations3(i,(�x(CompletionTimes(i,end))+1):end)=Locations3(i,�x(...

CompletionTimes(i,end)));

end

% Calculate Azimuth / Depression angle for each path, updated every second

[SAMlat,SAMlon,SAMalt]=ecr2gc(SAMecr);

for i=1:size(Locations1,1)

for x=1:(size(Locations1,2)-1)

[Lat1,Lon1,Alt1]=ecr2gc([Locations1(i,x) Locations2(i,...

x) Locations3(i,x)]);

[Lat2,Lon2,Alt2]=ecr2gc([Locations1(i,x+1) Locations2(i,...

x+1) Locations3(i,x+1)]);

Range(i,x)=sqrt(((Locations1(i,x)-SAMecr(1))^2)+((Locations2...

(i,x)-SAMecr(2))^2)+((Locations3(i,x)-SAMecr(3))^2));

Dep(i,x)=�x(rad2deg(asin((Alt1-SAMalt)/Range(i,x))));

if SAMlon<Lon1

Az(i,x)=�x(360+azimuth(Lat1,Lon1,Lat2,Lon2)-azimuth(Lat1...

,Lon1,SAMlat,SAMlon));

else

if azimuth(Lat1,Lon1,Lat2,Lon2)==0

Az(i,x)=�x(360-azimuth(Lat1,Lon1,SAMlat,SAMlon));

else

Az(i,x)=�x(azimuth(Lat1,Lon1,Lat2,Lon2)-azimuth(Lat1,...

Lon1,SAMlat,SAMlon));
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end

end

if Az(i,x)>360

Az(i,x)=Az(i,x)-360;

end

end

end

Dep=abs(Dep);

Az=abs(Az);

% Extract RCS values for every UAV location

for i=1:size(Dep,1)

for x=1:size(Dep,2)

if Az(i,x)==360

RCSpaths(i,x)=RCS(Dep(i,x)+1,Az(i,x)-1);

else

RCSpaths(i,x)=RCS(Dep(i,x)+1,Az(i,x)+1);

end

end

end

% Calculate SNR based on 10 dB SNR for 0 dBsm target at 120 km range

for i=1:size(RCSpaths,1)

for x=1:size(RCSpaths,2)

SNR(i,x)=log10((2.0736*(10^30))*((10^(RCSpaths(i,x)-4.5))/(...

Range(i,x)^4)));

end

end

% Determine detections based on whether SNR is greater than or less than

% the speci�ed detection cuto¤, and disregard "detections" with Doppler

% velocity less than that speci�ed cuto¤.

for i=1:size(SNR,1)
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for x=1:size(SNR,2)

if SNR(i,x)<DetectionCuto¤

Detections(i,x)=0; % not detected

else

Detections(i,x)=1; % detected

end

if norm(UAVSpeed*cos(deg2rad(Az(i,x))))<DopplerCuto¤ % m/s

Detections(i,x)=0; % not detected

end

end

end

G.11 FindPk.m

function [ProbKill]=FindPk(Detections,SNR,Locations1,Locations2,...

Locations3,UAVSpeed,MissileSpeed,SAMecr,OuterRadius,InnerRadius,Az)

% FindPk

%

% 2Lt Daniel M Morales, USAF

% MIT Lincoln Laboratory

% 14 March 2005

%

% Description:

% This function takes the detections and determines whether the SAM can

% maintain a track on the UAV. From these calculations, it determines Pk.

%

% Inputs:

% Detections 1 (det) or 0 (not det)

% SNR dBsm

% Locations1/2/3 m
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% UAVSpeed m/s

% MissileSpeed m/s

% SAMecr m

% OuterRadius km

% InnerRadius km

% Az deg

%

% Outputs:

% ProbKill from 0 to 1

%

% Functions called:

% None

% SAM Strategy 1: Shoot on �rst UAV detection - Probability of UAV being

% killed is proportional to amount of time UAV is in track.

for i=1:size(SNR,1)

if max(Detections(i,:))==0

ProbKill(i,1)=0.01;

% This number is not zero because it would excessively weight

% this component of the optimization

else

FirstInterceptTime=min(�nd(Detections(i,:)==1));

temp1=min(�nd(Detections(i,(FirstInterceptTime+1):end)==0));

while temp1<11

temp2=min(�nd(Detections(i,(FirstInterceptTime+temp1):...

end)==1));

if temp2

FirstInterceptTime=FirstInterceptTime+temp1+temp2-1;

temp1=min(�nd(Detections(i,FirstInterceptTime:end)==0));

else

break;
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end

end

if min(�nd(Detections(i,(FirstInterceptTime+temp1):end)==1))

TimeUntilKill=�x(sqrt(((Locations1(i,FirstInterceptTime)...

-SAMecr(1))^2)+((Locations2(i,FirstInterceptTime)...

-SAMecr(2))^2)+((Locations3(i,FirstInterceptTime)-...

SAMecr(3))^2))/((UAVSpeed+MissileSpeed)*1000));

ProbKill(i,1)=sum(Detections(i,FirstInterceptTime:(...

FirstInterceptTime+TimeUntilKill)))/(TimeUntilKill+1);

if ProbKill(i,1)==1

ProbKill(i,1)=0.99;

% This number is not one because it would excessively

% weight this component

end

else

ProbKill(i,1)=0.01;

continue;

end

end

end

% SAM Strategy 2: Shoot when UAV is outbound - Probability of UAV being

% killed is proportional to amount of time UAV is in track.

for i=1:size(SNR,1)

for x=1:size(SNR,2)

if UAVSpeed*cos(deg2rad(Az(i,x)))<0

ShootTime=x;

break;

end

end

if(~exist(�ShootTime�))
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ShootTime=1000;

TimeUntilKill=1000;

else

TimeUntilKill=�x(sqrt(((Locations1(i,ShootTime)-SAMecr(1))^2)...

+((Locations2(i,ShootTime)...

-SAMecr(2))^2)+((Locations3(i,ShootTime)-SAMecr(3))^2))/(...

(UAVSpeed+MissileSpeed)*1000));

end

if (ShootTime+TimeUntilKill)>size(Detections,2)

ProbKill(i,2)=0.01;

else

ProbKill(i,2)=sum(Detections(i,ShootTime:(ShootTime+...

TimeUntilKill)))/(TimeUntilKill+1);

end

if ProbKill(i,2)==1

ProbKill(i,2)=0.99;

% This number is not 1 because it would excessively weight

% this component

elseif ProbKill(i,2)==0

ProbKill(i,2)=0.01;

% This number is not 0 because it would excessively weight

% this component

end

end

G.12 ImageQuality.m

function [PictureQuality]=ImageQuality(CompletionTimes,Range,Paths,RCS,...

Az,Dep)

% ImageQuality
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%

% 2Lt Daniel M Morales, USAF

% MIT Lincoln Laboratory

% 14 March 2005

%

% Description:

% This function calculates image quality (NIIRS scale) for all paths.

%

% Inputs:

% CompletionTimes s

% Range m

% Paths unitless

% RCS dBsm

% Az deg

% Dep deg

%

% Outputs:

% PictureQuality 0 to 9

%

% Functions called:

% None

% Set up system of equations to solve for GIQE parameters

A = [1 (-1/log10((2.0736*(10^30))*((10^10)/(200000^4))));...

1 (-1/log10((2.0736*(10^30))*((10^10)/(20000^4))))];

b = [-(11.81+3.32*log10(cos(deg2rad(45))/200000)+(2*cos(deg2rad(abs...

(0-45))))-1);...

-(11.81+3.32*log10(cos(deg2rad(0))/20000)+(2*cos(deg2rad(abs...

(45-45))))-1)+6.5];

C = inv(A)*b;

% Use modi�ed GIQE to �nd NIIRS quality of image taken
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for i=1:size(Paths,1)

for x=1:size(Paths,2)

if (Paths(i,x+2)-2)==Paths(i,x)

ImagePoint(i,1)=round(CompletionTimes(i,x+1));

break;

end

end

PictureQuality(i,1)=11.81+3.32*log10(cos(deg2rad(min(abs(Az(i,...

ImagePoint(i,1))-90),...

abs(Az(i,ImagePoint(i,1))-270))))/Range(i,ImagePoint(i,1)))...

+2*cos(deg2rad(...

abs(Dep(i,ImagePoint(i,1))-45)))-1+C(1)-C(2)/log10((2.0736*...

(10^30))*...

(10^10)/(Range(i,ImagePoint(i,1))^4));

if PictureQuality(i,1)<0

PictureQuality(i,1)=0;

elseif PictureQuality(i,1)>9

PictureQuality(i,1)=9;

end

end

G.13 FindA.m

function [A]=FindA(PictureQuality,CompletionTimes,ProbKill)

% FindA

%

% 2Lt Daniel M Morales, USAF

% MIT Lincoln Laboratory

% 14 March 2005

%
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% Description:

% This function �nds the payo¤ matrix A.

%

% Inputs:

% PictureQuality 0 to 9

% CompletionTimes s

% ProbKill 0 to 1

%

% Outputs:

% A unitless

%

% Functions called:

% None

% Combine Pq and path completion times into temporary variable

temp=PictureQuality-0.001*CompletionTimes(:,end);

% Find inverse of Pk

ProbKillInv=1-ProbKill;

% Combine Pk and previous temp variable to get A

for i=1:size(PictureQuality,1)

A(i,1)=temp(i,1)*ProbKillInv(i,1);

A(i,2)=temp(i,1)*ProbKillInv(i,2);

if Paths(fjkdl)

end

G.14 Nash.m

function [X,UAVPayo¤,PathProbsX,PathProbsY,SAMPayo¤,Y]=Nash(A)

% Nash

%

% 2Lt Daniel M Morales, USAF
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% MIT Lincoln Laboratory

% 14 March 2005

%

% Description:

% This function uses the payo¤ matrix A to �nd the Nash equilibrium, or

% the best path for the UAV to take and the best strategy for the SAM to

% utilize against the UAV

%

% Inputs:

% A unitless

%

% Outputs:

% X unitless

% UAVPayo¤ unitless

% SAMPayo¤ unitless

% PathProbsX 0 to 1

% PathProbsY 0 to 1

% Y unitless

%

% Functions called:

% linprog

% Assign NumPaths and NumStrats to be the number of rows and columns in A

NumPaths=size(A,1);

NumStrats=size(A,2);

% Set up the costs, fx and fy, for the optimization routines

fx=ones(NumPaths,1);

fy=ones(NumStrats,1);

% Assign bx and by, part of the constraints

bx=ones(NumStrats,1);

by=ones(NumPaths,1);
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% Call linprog to minimize fx

X=linprog(fx,-(A�),-bx,[],[],zeros(NumPaths,1),(10^5)*ones(NumPaths,1));

% Solve for UAV payo¤

SumX=sum(X);

UAVPayo¤=1/SumX;

% Solve for probabilities that UAV should choose each path

for i=1:size(X,1)

PathProbsX(i,1)=X(i,1)/SumX;

end

% Call linprog to minimize fy

Y=linprog(-fy,-(A),-by,[],[],zeros(NumStrats,1),(10^5)*ones(NumStrats,1));

% Solve for SAM payo¤

Y=-Y;

SumY=sum(Y);

SAMPayo¤=1/SumY;

% Sovle for probabilities that SAM should choose each strategy

for i=1:size(Y,1)

PathProbsY(i,1)=Y(i,1)/SumY;

end

G.15 Roll.m

function [BestPathX,BestStratY]=Roll(PathProbsX,PathProbsY)

% Roll

%

% 2Lt Daniel M Morales, USAF

% MIT Lincoln Laboratory

% 14 March 2005

%

% Description:
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% This function generates random numbers, and essentially rolls the dice

% with predetermined probabilities to pick a UAV strategy

%

% Inputs:

% PathProbsX unitless

% PathProbsY unitless

%

% Outputs:

% BestPathX unitless

% BestStratY unitless

%

% Functions called:

% rand

% Generate random number to �nd UAV strategy

num=rand(1);

Tally=PathProbsX(1,1);

for i=1:size(PathProbsX,1)

if num<Tally

BestPathX=i;

break;

end

Tally=Tally+PathProbsX(i+1,1);

end

% Generate random number to �nd SAM strategy

num2=rand(1);

Tally2=PathProbsY(1,1);

for i=1:size(PathProbsY,1)

if num2<Tally2

BestStratY=i;

break;
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end

Tally2=Tally2+PathProbsY(i+1,1);

end

G.16 ecr2gc.m

function [Lat,Lon,Alt]=ecr2gc(ECR)

% ecr2gc

%

% 2Lt Daniel M Morales, USAF

% MIT Lincoln Laboratory

% 14 March 2005

%

% Description:

% This function converts a ECR state vector to geodetic coordinates.

% The state vector must contain 3 elements (position), and this routine

% uses the supplied earth model.

%

% Inputs:

% ECR m

%

% Outputs:

% Lat deg

% Lon deg

% Alt m

%

% Functions called:

% rad2deg

%

% Reference: The majority of this code was translated into Matlab
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% directly from MIT Lincoln Laboratory Java code for coordinate transforms.

ecc=0.081819301; % Earth�s eccentricity

Re=6378.13649*1000; % Earth�s radius, m

oneMinusEcc2=1-ecc^2;

x=ECR(1);

y=ECR(2);

z=ECR(3);

r=sqrt((x^2)+(y^2));

b=Re*sqrt(oneMinusEcc2);

% Compute longitude.

Lon=rad2deg(atan2(y,x));

l=(ecc^2)/2;

l2=l^2;

m=(r/Re)^2;

n=(oneMinusEcc2*z/b)^2;

i=-(2*l2+m+n)/2;

k=l2*(l2-m-n);

% double q = Math.pow((m + n - 4.0 * l2), 3.0) / 216.0 + m * n * l2;

qt=m+n-4*l2;

q=(qt^3)/216+m*n*l2;

D=sqrt((2*q-m*n*l2)*m*n*l2);

beta=(i/3)-(abs(q+D)^(1/3))-(abs(q-D)^(1/3));

sign=m-n;

if sign~=0

sign=sign/abs(sign);

end

t=sqrt(sqrt((beta^2)-k)-(beta+i)/2)-(sign*sqrt(abs(beta-i)/2));

r0=r/(t + l);

z0=oneMinusEcc2*z/(t-l);

% Compute latitude
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Lat=rad2deg(atan(z0/(oneMinusEcc2*r0)));

% Compute altitude (m).

sign=t-1.0+l;

if sign~=0

sign=sign/abs(sign);

end

Alt=sign*sqrt(((r-r0)^2)+((z - z0)^2));

G.17 Visualize.m

function [Lat,Lon,Alt]=ecr2gc(ECR)

% ecr2gc

%

% 2Lt Daniel M Morales, USAF

% MIT Lincoln Laboratory

% 14 March 2005

%

% Description:

% This function converts a ECR state vector to geodetic coordinates.

% The state vector must contain 3 elements (position), and this routine

% uses the supplied earth model.

%

% Inputs:

% ECR m

%

% Outputs:

% Lat deg

% Lon deg

% Alt m

%
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% Functions called:

% rad2deg

%

% Reference: The majority of this code was translated into Matlab

% directly from MIT Lincoln Laboratory Java code for coordinate transforms.

ecc=0.081819301; % Earth�s eccentricity

Re=6378.13649*1000; % Earth�s radius, m

oneMinusEcc2=1-ecc^2;

x=ECR(1);

y=ECR(2);

z=ECR(3);

r=sqrt((x^2)+(y^2));

b=Re*sqrt(oneMinusEcc2);

% Compute longitude.

Lon=rad2deg(atan2(y,x));

l=(ecc^2)/2;

l2=l^2;

m=(r/Re)^2;

n=(oneMinusEcc2*z/b)^2;

i=-(2*l2+m+n)/2;

k=l2*(l2-m-n);

% double q = Math.pow((m + n - 4.0 * l2), 3.0) / 216.0 + m * n * l2;

qt=m+n-4*l2;

q=(qt^3)/216+m*n*l2;

D=sqrt((2*q-m*n*l2)*m*n*l2);

beta=(i/3)-(abs(q+D)^(1/3))-(abs(q-D)^(1/3));

sign=m-n;

if sign~=0

sign=sign/abs(sign);

end
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t=sqrt(sqrt((beta^2)-k)-(beta+i)/2)-(sign*sqrt(abs(beta-i)/2));

r0=r/(t + l);

z0=oneMinusEcc2*z/(t-l);

% Compute latitude

Lat=rad2deg(atan(z0/(oneMinusEcc2*r0)));

% Compute altitude (m).

sign=t-1.0+l;

if sign~=0

sign=sign/abs(sign);

end

Alt=sign*sqrt(((r-r0)^2)+((z - z0)^2));

G.18 create_uav.m

% create_uav

%

% 2Lt Daniel M Morales, USAF

% MIT Lincoln Laboratory

% 14 March 2005

%

% Description:

% This script is used to create a model of a UAV, similar to the Predator

% UAV with respect to size and shape

%

% Inputs:

% None

%

% Outputs:

% uav unitless

%

229



% Functions called:

% plate_collection

% frusta_collection

% Specify vertices and plates of both front and back wings on each side

left_front_wing_verts = [-1 0 4; -7.5 0 4.375; -7.5 0 5.125; -1 0 5.5];

left_front_wing_plates = [1 2 3; 1 3 4];

right_front_wing_verts = [1 0 4; 7.5 0 4.375; 7.5 0 5.125; 1 0 5.5];

right_front_wing_plates = [1 2 3; 1 3 4];

left_back_wing_verts = [-1 0 0.75; -3 -2 0.75; -3 -2 1.5; -1 0 1.5];

left_back_wing_plates = [1 2 3; 1 3 4];

right_back_wing_verts = [1 0 0.75; 3 -2 0.75; 3 -2 1.5; 1 0 1.5];

right_back_wing_plates = [1 2 3; 1 3 4];

% Collect plates together to form left and right wings, front and back

left_front_wing = plate_collection(�verts�,left_front_wing_verts,...

�vert_inx�,left_front_wing_plates,�one_sided�,0);

right_front_wing = plate_collection(�verts�,right_front_wing_verts,...

�vert_inx�,right_front_wing_plates,�one_sided�,0);

left_back_wing = plate_collection(�verts�,left_back_wing_verts,...

�vert_inx�,left_back_wing_plates,�one_sided�,0);

right_back_wing = plate_collection(�verts�,right_back_wing_verts,...

�vert_inx�,right_back_wing_plates,�one_sided�,0);

% Specify radius and length of cylinder segments

body_rad = [0.5 1 1 1.25 0];

body_len = [0 0.75 6.25 7.0 9];

% Form main body of UAV

body = frusta_collection(�rad�,body_rad,�len�,body_len,�curve_�ag�...

,�last�);

% Assign �uav�to include the body and all wings, as formed above

uav.components = {left_front_wing,right_front_wing,left_back_wing,...

right_back_wing,body};

230



uav.name = �uav�;

G.19 loop3d.m

function RCSmean = loop3d(F)

% loop3d

%

% 2Lt Daniel M Morales, USAF

% MIT Lincoln Laboratory

% 14 March 2005

%

% Description:

% This function calculates average RCS values over all frequencies

%

% Inputs:

% F dBsm

%

% Outputs:

% RCSmean dBsm

%

% Functions called:

% None

% Loop through all frequencies to �nd RCS average values

Sum = 0;

for i=1:size(F,2)

for x=1:size(F,3)

for j=1:size(F,1)

Sum = Sum + F(j,i,x);

end

RCSmean(i,x) = Sum/size(F,1);
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Sum = 0;

end

end

G.20 matrix_interp.m

function [RCS]=matrix_interp(RCSb)

% matrix_interp

%

% 2Lt Daniel M Morales, USAF

% MIT Lincoln Laboratory

% 14 March 2005

%

% Description:

% This function switches rows and columns around in order necessary for

% input into main program code.

%

% Inputs:

% RCSb dBsm

%

% Outputs:

% RCS dBsm

%

% Functions called:

% interp

% Sample RCS at twice the frequency

for i=1:size(RCSb,1)

temp(i,:) = interp(RCSb(i,:),2);

end

for i=1:size(temp,2)
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RCS(:,i) = interp(temp(:,i),2);

end
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