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ABSTRACT 
 
 
 
Acoustic modems are the basis for emerging undersea wireless communications 

networks. US Navy Seaweb technology offers an opportunity to perform undersea 

navigation and tracking by virtue of node-to-node ranging measurements acquired as a 

by-product of the acoustic communications protocol. A simple localization algorithm is 

developed and verified with synthetic data and is then tested with an Unmanned 

Undersea Vehicle (UUV) during an experiment at sea.  
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I. SEAWEB: A BRIEF OVERVIEW  

A. SYSTEM BASICS 

Seaweb is a set of deployable acoustic transducers that forms an underwater 

acoustic communications network. Detailed system information regarding the Seaweb 

system can be found in reference [1], but we shall briefly review some basic theory, 

particularly that which pertains to underwater navigation.  

This thesis considers the viability of tracking an undersea vehicle using a grid of 

fixed nodes. Similar endeavors have been pursued as far back as 1990 [2-4] in the form 

of element localization of sonar arrays.  More recently, localization techniques for 

undersea network nodes have been sought [5]. This thesis differs from previous work in 

that we attempt to localize a mobile network node. Figure 1 depicts an experimental 

implementation of this concept.  
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Figure 1.   The May 2005 Seaweb ARIES Experiment in Monterey Bay exercised the 

node-to-node acoustic ranging capability of Seaweb networked modems as a 
mechanism for tracking the ARIES UUV mobile node relative to a fixed 
undersea grid. When the UUV is submerged, tracking is accomplished by 

triangulation from the fixed nodes. When surfaced, Seaweb tracking quality 
can be compared with that afforded by GPS. 
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1. Repeater Nodes 

The heart of Seaweb communications lies in the exchange of acoustic signals 

among a network of repeater nodes on the sea floor. Deployment of a Seaweb system 

involves the placement of a set of repeaters at various locations within the operating area. 

Each node is outfitted as shown in Figure 2. 

 

 

Figure 2.   Seaweb Repeater Node. The repeater node is anchored to the sea floor and 
held 3-5 meters off the bottom by a subsurface float. The acoustic release 

mechanism allows retrieval of the telesonar modem following the end of an 
experiment.  

 

These repeaters exchange and process acoustically-modulated acoustic data through the 

use of omnidirectional transducers and the through-water propagation channel. 

Directional transducers would increase the practical range between nodes, but the 

omnidirectional aspect of the current modem is convenient for this thesis, since we hope 

to establish links with a mobile node at an unknown position. 

2. Racom Gateway Buoy 

The racom (radio-acoustic communications) gateway buoy (Figure 3) provides 

the link between the undersea network and an operator on the surface. A mooring line 

attached to the bottom of the buoy also maintains a hardwire connection to a submerged 
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transducer for acoustic signaling to the repeater nodes. Through this hard-wire 

connection, signal processing techniques allow conversion of acoustic data to/from radio 

signals. Thus, a human operator aboard a research vessel gains access to the network via 

one of two electromagnetic communications methods: FreeWave line-of-sight packet 

radio or Iridium satellite communications. A large solar panel and a battery bank provide 

power to all equipment. 

 
Figure 3.   Racom gateway buoy. The racom buoy maintains a hard-wire connection to a 

repeater node attached to its mooring line. It provides a radio link between the 
undersea environment and the Seaweb operator on a surface vessel.  

 

3. ARIES UUV 

The May 2005 experiment depicted in Figure 1 introduces the ARIES UUV as a 

new component to Seaweb. By equipping the UUV (Figure 4) with the same telesonar 

hardware as the repeater nodes, we transform ARIES into a network mobile node. For 

this thesis, we only consider the UUV insofar as it provides us with navigational data, 

though a great wealth of background information has been written about this vehicle [6, 

7].  
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Figure 4.   The ARIES UUV was equipped with the same equipment as the repeater 

nodes. 
 

B. RANGING DATA 

1. Signal Processing 

Inter-node communications yield range data as a by-product of the link-layer 

protocol. For a data exchange between two nodes (i and j) a ranging signal precedes the 

transmission of a utility packet from node i. A matched filter at node j detects this signal, 

which is a Hyperbolic Frequency Modulated (HFM) chirp. Node j then determines the 

time of arrival (TOA) as the peak of the matched filter response. Picking the peak 

response allows resolution of multipath propagation for most cases, since reflected and 

head waves will typically be characterized by amplitudes lower than those of direct paths.  

Following a specified dwell time τj after detection of the ranging signal peak, 

node j replies by sending a utility packet to node i. The utility packet itself may contain 

several different types of information. For ranging purposes, however, the only relevant 

information is a random time delay that may be implemented in some situations. If 

present, the utility packet includes the random delay value as a digital parameter. 

Reciprocity dictates that the return travel time will equal that of propagation in the 

opposite direction and that the same characteristic peak will be picked. Therefore, 

ij jid d=      (1) 

The total elapsed time, tj-to, from the initial sending of the ping (to) to the 

reception of the echo (tj) is measured at node i. Hence, we may calculate the one-way 

travel time dij. 
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Figure 5.   The Seaweb ranging process: a utility packet (e.g., ping utility packet) travels 

from node i to node j, then the signal experiences a dwell time at node j, and a 
replying utility packet (e.g., echo) travels back from node j to node i. We 

measure the sum of the three legs by taking the total elapsed time at node i 
from when the ping is first broadcast until the echo is received. The dwell 
time τj is embedded in the echo utility packet and sent from node j to i. The 
important result of this method is the fact that all time measurements are 

computed at node i. Thus, no clock synchronization is required. 
 
We now compute a range by multiplying the travel time by the speed of sound 

propagation, for which the present software assumes the general value of 1500 m/s: 

1500ij ijr d= ⋅       (3) 

The ranging protocol makes several assumptions which may lead to ranging 

errors. The most obvious assumption is the 1500 m/s value for sound speed, which 

clearly will not apply in all cases. Also, the range calculation itself assumes straight-line 

sound propagation. Lastly, the analog-to-digital converters used will result in a small 

degree of rounding error in calculating the travel time. Despite these assumptions, past 

ranging tests indicate that the accumulation of such errors in typical operating areas 
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generally does not exceed that of a typical hand held GPS device with a nominal error of 

3 m. 

2. Broadcast Ping 

While a single range provides the basis for network localization, a set of three or 

more ranges (for a three-dimensional model, at least four ranges are required) would 

prove a more useful tool for fixing locations. The broadcast ping command provides this 

tool. Briefly, the broadcast ping orders a single node, the UUV for our case, to acquire 

ranges to each of its neighboring nodes. The UUV sends a single ping, akin to the ranging 

signal discussed earlier, to all neighboring nodes. To avoid signal interference, each node 

computes a random delay of up to 60 seconds. At the conclusion of its random delay, 

each node sends an echo signal back to the UUV, from which a range measurement is 

calculated as discussed in the previous section. The experiment conducted for this thesis 

employed a fixed grid of 6 nodes. Thus, the UUV may acquire up to 6 inter-node ranges 

for a broadcast ping. The lack of simultaneity among the set of ranges for a single 

broadcast ping poses a formidable obstacle in the tracking/navigation of fast-moving 

targets, but the UUV moved at a top speed of only 1.2 m/s, so we accept the motion error 

as part of the error budget and do not yet attempt to account for target motion in the 

localization algorithm. 

NPS NPS NPS NPS

(a) Networked command (b) Broadcast ping (c) Echoes (d) Networked telemetry

NPSNPS NPSNPS NPSNPS NPSNPS

(a) Networked command (b) Broadcast ping (c) Echoes (d) Networked telemetry

 
Figure 6.   Broadcast Ping. The operator commands the UUV (a) to broadcast a ping (b). 

This elicits echoes from neighboring nodes (c). The UUV telemeters the 
calculated set of ranges back to the operator (d). 
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II. MATHEMATICAL CONCEPTS 

A. RANGE CIRCLES 

The solution to the positioning problem lies in simple geometric concepts. We 

acquire a set of between three and six known reference nodes on a 2-dimensional plane 

and wish to locate a target based on straight line distances from the known nodes. When 

considering a single range R, we know the target lies somewhere along the circumference 

of a circle of radius R centered at the known location. Thus, a single range yields an 

infinite number of possible solutions, each satisfying the equation of the range circle.  

2 2 2( ) ( )o or x x y y= − + −     (4) 

The solutions can be described by  

      

2 2

2 2

( )

( )

o o

o o

x x y y r

y y x x r

= + − −

= + − −
    (5) 

where xo and yo are the coordinates of the reference node (center of the circle). 

Although a single range holds little value for a localization problem, when it is 

combined with a second range from another reference node, we may then cross-fix the 

target. Two ranges from separate locations result in two separate range circles. 

Intersections of the two circles occur where the range circle equations for both nodes are 

satisfied. These intersections, then, represent possible solutions. One of three cases will 

prevail for a system of two ranges: one, two, or zero solutions. 
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Figure 7.   Three possible cases for a set of two range circles: The third case may only 

occur if one or both of the ranges contains error. 
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For a 2-dimensional system, the addition of a third range yields a unique solution.  

A unique solution requires that the range circles must not contain errors. For perfect data, 

the three circles will intersect at a single point. This thesis does not consider the 3-

dimensional case, but note that an additional dimension requires an additional range, 

since the new dimension presents a new unknown (depth). The presence of additional 

ranges results in an over determined system. In the absence of range errors, additional 

range circles will cross through the solution  
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Figure 8.   Three range circles suffice for target localization in two-dimensional space. 

Additional ranges result in an over determined system, which will prove 
useful for minimizing the effects of errors in the range data. 

The range circle equations, while useful, do not work well when we introduce 

range errors. As shown by Figure 8, the addition of range errors disrupts the intersection 

points. The tight cluster of intersection points clearly points to the general region of the 

solution, but a unique intersection point no longer exists. No set of coordinates will 

satisfy the system of equations.  
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Figure 9.    The addition of range errors causes the single intersection point at the 

solution to spread. A single solution no longer exists. We now have only a 
region of probable location whose size is proportional to the magnitude of the 

range errors and the bearing angles of the different sources. 
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The nature of the equations themselves also poses concerns for implementation 

within a computer program. Many computer tools assume a positive square root and 

neglect the second (negative) solution. MATLAB software, the proposed tool for 

algorithm implementation, exhibits this problem. Thus, multiple equations are required to 

define a circle. This complicates defining the system of equations.  

B. TRIGONOMETRY 

The failure of the circle equations in the presence of range errors requires that we 

search elsewhere for a localization method. A useful exercise for this search is to 

compute the locations of the range circle intersection points. To accomplish this we 

consider each pair of ranges and compute their intersection points. Basic trigonometric 

laws offer a straightforward route to this end.  

Consider two reference nodes, i and j, located a distance rij apart. Let node i be 

located at the origin and node j be located on the positive x-axis. The values ri and rj 

represent target node ranges for the respective reference nodes. A triangle formed by the 

intersections of the three available ranges defines the target location. Note that two 

solutions exist because the range vectors ri and rj may point either above or below the 

line segment r12. The data form two triangles for which all side lengths are known, as 

shown in Figure 10. The law of cosines allows rapid calculation of any of the three angles 

based on the following equation, where sides ri and rij are adjacent to the angle θ and rj 

defines the opposite side. 

2 2 2
1cos

2
i ij j

i ij

r r r
r r

θ −
⎡ ⎤+ −

= ⎢ ⎥
⎢ ⎥⎣ ⎦

     (6) 

Calculation of the angle values allows simple calculation of the target position via 

trigonometric functions. The angle ambiguity of the even cosine function maintains the 

existence of two solutions, since θ may be positive or negative. 

cos
sin

i

i

x r
y r

θ
θ

=
=

      (7) 
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Figure 10.   The law of cosines allows us to calculate the angle θ, which we use in 

conjunction with the side lengths to compute two possible target positions. 
 

We have now computed two solutions for the source pair. The two solutions are 

images of one another, differing only in the sign of θ. This means that the x value will not 

change, because θ is contained within a cosine term and its sign does not matter. 

Likewise, the y values will have the same absolute value, because θ is contained within 

the odd sine function. 

Repeating this calculation for N reference nodes yields ½N(N-1) range pairs and 

creates N(N-1) solutions if each range pair produces two solutions Recall that we have 

computed each solution pair within a separate coordinate system, where one reference 

node defines the origin and a second reference node defines the x-axis. To display the 

solutions in a meaningful fashion, each solution pair must be transformed to a common 

coordinate system. 

C. COORDINATE TRANSFORMATIONS 

The solutions of each range pair must be transformed from their respective local 

coordinate systems to a common reference (Figure 11). As discussed earlier, we compute 

solutions relative to a set of local axes with the origin defined as one source and the x axis 

defined as the line segment between the source pair. To transform a solution from a local 

reference to the common one, we perform both translational and rotational calculations. 

We perform the translation by simply adding the local origin coordinates to the 

solution coordinates. The rotational component requires a bit more sophistication. We 

have already obtained the solution angles relative to the local (x´) axis. Now we must 
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consider the angle of the x´ axis itself relative to the common x axis. The arctangent of 

the angle between x and x´ defines this angle, which we call φ. Combining φ and the 

solution angles ±θ defines the solution angles relative to the common x axis.  

Determination of the direction of the x´ axis and resolution of angle quadrants is 

required. We handle both issues by carefully considering the positions of the two sources. 

For simplicity, we assign a number to each source and always define the local origin as 

the lower number of the pair. To determine the quadrant of φ, we compare the 

coordinates of the two reference nodes i and j to verify the angle quadrant based on 

relative locations.  

1tan i j

i j

y y
x x

ϕ − −
′ =

−
     (8) 

The value of φ´ represents the inter-node axis angle with respect to the common x-axis if 

we assume it is located in the first quadrant. We now compare the relative positions of 

the reference nodes to implement an angle quadrant correction. 

/ 2

2

ϕ
ϕ π

ϕ
ϕ π
π ϕ

′⎧
⎪ ′+⎪= ⎨ ′+⎪
⎪ ′−⎩

    

,

,

,

,

i j i j

i j i j

i j i j

i j i j

x x y y

x x y y

x x y y

x x y y

≤ ≤ ⎫
⎪> ≤ ⎪
⎬≥ > ⎪
⎪< > ⎭

    (9) 

In addition to these equations we treat the special case of a vertical x-axis, which 

has an infinite arctangent value and cannot be resolved by the previous equations. 

, ,
2

, ,
2

i j i j

i j i j

x x y y

x x y y

π

ϕ
π

⎧ ⎫= <⎪ ⎪⎪ ⎪= ⎨ ⎬−⎪ ⎪= >
⎪ ⎪⎩ ⎭

     (10) 

Now that we have the angle of the local x-axis relative to the common x-axis, we 

can define the solution angle γ relative to the common axis. The solution angles for the 

two solutions given by each range pair are defined as the sum of the relative local x-axis 

angle and the solution angles within the local coordinate system. 

γ ϕ θ= ±       (11) 
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The complete transformation may now be performed by combining the 

translational and rotational components as follows: 

' cos ' cos( )
' sin ' sin( )

o i o i

o i o i

x x r x r
y y r y r

γ ϕ θ
γ ϕ θ

= + = + ±
= + = + ±

    (12) 
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Figure 11.   We perform coordinate transformations on each solution pair in order to 

acquire a set of all solution coordinate pairs within a common reference 
frame. To perform a transformation we exploit the known parameters xo’, yo’, 
θ, and φ to compute the solution angle γ within the common (x, y) axes. 

 
D. WEIGHTING METHOD OF POSITION ESTIMATION 

We have now computed the coordinates of a solution pair within the common 

reference frame. By performing the transformation on all solution pairs, a set of possible 

solutions is defined within a single coordinate system. If all the solutions are plotted, a 

tight cluster of points will clearly indicate the target position. Though the solution is 

obvious to the human eye, we require an automated method for pinpointing the estimated 

position within a computer program. This thesis uses a simple adaptive weighting method 

to complete this task.  

The weighting method exploits the proximity of solution pairs to estimate a 

position. By computing the relative proximity of a single solution to all other possible 
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solutions, we assign a dimensionless weight to that solution. Once a weight has been 

assigned to each solution, we average the solutions based on their relative weights. 

2 2
1,

1
( ) ( )

m

i
j j i i j i j

W
x x y y

α

= ≠

⎡ ⎤
= ⎢ ⎥

− + −⎢ ⎥⎣ ⎦
∑     (13) 

The variable m refers to the number of solutions that have been calculated, and 

the exponential term is an arbitrary constant used to either amplify or reduce the severity 

of weighting. A high alpha value will drastically increase the weights of close solution 

pairs while decreasing the influence of distant pairs. For our purposes we choose the α 

value of 2, realizing it may be adjusted to alter performance. Once all weight values have 

been computed from (9), we sum the individual weights to find a total weight Wtotal: 

1

m

total k
k

W W
=

=∑       (14) 

Averaging the set of solutions based on the ratio of individual weights to the total 

weight yields estimated position coordinates: 

1

1

m
i

est i
i total

m
i

est i
i total

Wx x
W

Wy y
W

=

=

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

∑

∑
     (15) 

 
Figure 12.   The figures above show the ideal outcome of the weighting method. The 

tightest cluster of possible solutions represents the region of probable location, 
and the triangle indicating the estimated target position (right figure) shows 

that the weighting method has chosen a position near the center of the tightest 
cluster. 
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E. SPECIAL CASES 

Recall the discussion of the three possible cases for a pair of ranges (Figure 6). 

Until now, we have considered only the case of two non-unique solutions. This is the 

most common situation, but, for completeness, we consider the other two cases. 

1. Unique Intersection of Two Range Circles 

In rare cases, two range circles will intersect only once, resulting in a single 

unique solution. This occurs for scenarios where the target lies directly on a straight line 

intersecting the two reference nodes in consideration, as shown by Figure 13.  

y

x

Node j

Node i

target

y

x

y

x

Node j

Node i

target

 
Figure 13.   Rare case of a unique range circle intersection. This results in a double 

solution and these solutions will exhibit infinitely high weight values such that 
all other solutions would be neglected.  

In this situation, the value of θ has decreased to zero. For a node pair exhibiting a single 

intersection, the algorithm will still compute two solutions, but these solutions will be 

located at the same point. Hence, when we calculate the weight values for all solutions, 

the two solutions from this pair will encounter a term in the summation of the weight 

equation (10) with a zero denominator. This will result in infinitely high weight values 

for the two solutions of this range pair; subsequently, all other solutions will be 

effectively neglected (11), and the final estimated target position (12) will be “focused” at 

a location directly over the solution pair.  

Since we expect all experimental range measurements to contain at least a 

minimal degree of error, we know the estimated position will hardly ever be perfect, even 

if focused by the “double solution”. However, we do expect any double solution to be 

located very close to the true target position, so we allow the presence of double roots 
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into the field of possible solutions for a given set of ranging data. Inclusion of such cases 

requires a minor algorithm revision, since most computer programming tools do not 

handle zero denominators well. To eliminate this problem, we add a small value to the 

denominator term of the weight equation (10). The value of this term should not affect 

the general performance of the weighting method, since all solutions will include it.  

2 2
1,

1
( ) ( )

m

i
j j i i j i j

W
x x y y C

α

= ≠

⎡ ⎤
= ⎢ ⎥

− + − +⎢ ⎥⎣ ⎦
∑     (16) 

We choose C=0.01 because a term of that order of magnitude will be lower than what we 

expect in terms of typical solution separation distances, which will likely be on the order 

of a few meters for very good ranging data. 

2. Non-intersecting Pair of Range Circles 

a. Two Cases for Non-intersecting Circles 

Sometimes a combination of range error and target position results in non-

intersecting range circles. As in the previous section, this situation can happen for target 

positions on or close to the straight line drawn between two reference nodes (Figure 13). 

One or both of the target ranges must then be calculated to a value shorter than the true 

distance in order for the circle pair to lack an intersection point. Non-intersecting circle 

pairs are not limited to this situation, however. Two reference nodes with a similar target 

bearing may also produce such a result. Figure 14 illustrates this scenario.  
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Figure 14.   Non-intersecting range circles with similar target bearings. This situation 

requires a short value for rj, a long ri value, or both. Depending on the 
magnitude of range errors, the node pair may still be able to produce good 

solutions. 
 

b. Defining an Improvised Solution Pair 

The fact that a circle pair does not intersect should not lead us to believe 

that good solution estimates cannot be drawn from the data. In fact, choosing the point on 

each circle along the straight line distance between the reference nodes allows us to 

include such cases intelligently. 
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Figure 15.   For non-intersecting circles, we define two solutions, one located on each 

range circle at the point of greatest proximity. Using this method, circles with 
only a small distance between will produce more heavily weighted solutions 

than circles separated by large distances. 
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c. Implementation 

Implementation of this method requires significant additions to the 

computer program. To begin, we determine the locations of our projected solutions 

relative to the reference nodes. If both ri and rj are less than the inter-node distance rij, 

then we know that the solutions will be located between the reference nodes, as shown in 

Figure 14. Likewise, if ri is greater than rij and rj is shorter, then the solutions will be 

located along the inter-node axis beyond node j. The converse is also true, and Figure 13 

illustrates this concept. 

Mathematically defining the improvised solutions involves finding the 

coordinates of a point on a line of known slope (φ), located a given distance (range) from 

a known point (reference node).  Because the calculations for the two cases are nearly 

identical, we will perform example calculations for only one of cases, those in which the 

improvised solutions are located between the reference nodes (Figure 15). Figure 16 

illustrates the method used to calculate the solution coordinates. 
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Figure 16.   Mathematical concepts underlying improvised solutions for non-intersecting 

range circles.  
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We employ the φ values calculated earlier (section C.) to determine exactly where each 

solution should be located relative to the reference nodes. For the scenario given by 

Figure 16, we use the following equations to solve for the solution coordinates. 

cos
sin
cos

sin

Ti i i

Ti i i

Tj j j

Tj j j

x x r
y y r
x x r

y y r

ϕ
ϕ
ϕ

ϕ

= + ⋅

= + ⋅
= − ⋅

= − ⋅

     (14) 

As with all other solutions, pairs of improvised solutions are included in the revised 

weight equation (13). Having considered all three cases for a pair of range circles and 

devised methods for computing two solutions regardless of which case occurs, we may 

more readily calculate the number of solutions. If N is the number of solutions, we know 

that k possible combinations of reference nodes are available. 

1 ( ) ( 1)
2

k N N= ⋅ ⋅ −      (15) 

If we have k possible combinations of reference nodes, and each node pair produces two 

solutions, then the total number of possible solutions (used in the weight equation 

summations (11,12,13), m, is defined as a function of N. 

2 ( ) ( 1)m k N N= = ⋅ +      (16) 

As a result, the number of computed solutions for consideration of a single position is a 

function of the number of ranges only. 
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III. SIMULATION 

A. CREATION OF SYNTHETIC DATA 

Testing and refinement of the positioning algorithm were accomplished through a 

series of MATLAB simulations. These simulations generated hypothetical target nodes at 

randomly chosen locations. Simulating large numbers of cases revealed even the rarest of 

scenarios, and analyzing the results provided a systematic method for debugging and 

refining the positioning algorithm. Having achieved an acceptable level of performance 

for random numbers, further simulations treated a series of three hypothetical tracks. 

Simulating actual tracks served as the final test of algorithm performance before field 

experimentation. 

The first simulation computed solutions for a set of 50,000 random positions 

spread among a field of 6 nodes as shown: 
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Figure 17.   The large squares represent the fixed nodes, and the smaller dots shows a 

typical distribution of the 50,000 randomly created positions used for 
simulations.  

 

The MATLAB program created a set of range data for each of these points by 

calculating the straight line distance from each reference node to the random location. 

The xi and yi values indicate the coordinates of the 6 fixed nodes, and x and y represent 

the random position true coordinates. 

2 2( ) ( )i i ir x x y y= − + −     (17) 
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In order to model actual range measurements and to account for errors caused by 

assumptions, we perturb each range value by applying random error. For initial 

simulations, errors were held within ±10 meters of true ranges. Note that the rand(n) 

function in MATLAB creates an (n x n) matrix of random values between 0 and 1. 

( )20 (0.5 (1))i i truer rand r= ⋅ − ⋅     (18) 

For some simulations, we wish to offset the data to give only short or long errors. 

The following equations produce errors from -20:0 meters and 0:20 meters, respectively: 

( )

( )

20 [1 (1)]

20 [1 (1)]
i i true

i i true

r rand r

r rand r

= − ⋅ − ⋅

= ⋅ − ⋅
    (19) 

B. PRELIMINARY IMPLEMENTATION 

1. Simulation 1 Results 

The results of the first simulation indicated fundamental problems within the 

algorithm code. The majority of problems did not stem from the theory of the algorithm, 

but, rather, from flawed implementation. 

Error Range +/- 10 m
Mean Error 11.12 m

Standard Deviation 47.99 m
Max. Error 2222.86 m

50% Range 8.13 m
75% 10.62 m
90% 15.40 m
95% 19.77 m
99% 35.15 m

99.90% 788.92 m

Error Range +/- 10 m
Mean Error 11.12 m

Standard Deviation 47.99 m
Max. Error 2222.86 m

50% Range 8.13 m
75% 10.62 m
90% 15.40 m
95% 19.77 m
99% 35.15 m

99.90% 788.92 m

 
Figure 18.   Solution Error Distribution for Simulation 1. The algorithm calculated 

accurate position estimations for the vast majority of 50,000 simulated 
locations. However, a number of outlying solutions with errors over 1 km 

suggested fundamental flaws, which were discovered within the MATLAB 
code. The range percentages indicate error magnitudes within which a certain 

percentage of the solutions have been estimated. For example, half of the 
solutions have been calculated to within 8.13 meters of the true solution. 
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2. Debugging the MATLAB Script File 

Debugging was performed via detailed simulation of the cases for which poor 

solutions had been found. This method quickly revealed a software bug, which is 

illustrated by the following figure: 
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Figure 19.   The asterisks represent possible solutions, which should exist at every 

intersection of range circles. For this case, an erroneous solution has been 
calculated less than a meter away from a true solution. Due to the close 

proximity of the solution pair, each of their weight values has been amplified 
tremendously. In fact, the weights of the solutions have been increased to the 

point where all other solutions are neglected, and the estimated solution, 
indicated by a red triangle, is located in at outlying pair. 

 

The erroneous solutions were determined to be the result of improper coordinate 

transformations. Due to a coding error, the MATLAB script had added an offset angle of 

3π/2 to solutions calculated from node pairs lying along the x-axis. In short, solutions 

calculated from the node pairs 2/4 and 5/6 (see Figure 19) were incorrect. 

 3. Simulation 2 Results 

Correction of this error eliminated the very high error cases and displayed a 

subsequent improvement in standard deviation. The maximum error case decreased to 

just over 100 m, and the mean error decreased to 9.52 m with a standard deviation of 

12.26 m. 
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Range Errors +/- 10 m
Mean Error 9.52 m

Standard Deviation 12.26 m
Max. Error 359.7 m

50% Range 7.39 m
75% 10.06 m
90% 15.39 m
95% 21.37 m
99% 57.65 m

99.90% 160.6 m
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75% 10.06 m
90% 15.39 m
95% 21.37 m
99% 57.65 m

99.90% 160.6 m

 
Figure 20.   Solution Error Distribution for Simulation 2, which corrected coordinate 

transformation errors. The error magnitudes for outlying solutions have 
diminished significantly, and general performance has also improved. 

Examination of the high error cases revealed a problem related to shallow angles. 

For nodes with similar bearing angles to the target, the range circles intersect with a very 

shallow angle. When coupled with only moderate range errors, these intersections tend to 

shift the solution for the given node pair. For the maximum error cases, a pair of shifted 

solutions would often lie in close proximity to one another, amplifying their respective 

weights and producing in a poor solution.  

Shallow angle cases can occur for nearly any target position, but the cases of 

maximum error occurred predominantly for positions well outside the network perimeter. 

For such cases, several nodes (or even all nodes, for positions at extreme distances from 

the network center) may exhibit similar bearing angles. A greater number of shallow 

angle intersections results in a higher probability that many solutions will be shifted 

along the tangent of the range circles, and a large number of shifted solutions offers an 

increased likelihood that the estimated position will contain a high error. A replication of 

the maximum error case for Simulation 2 illustrates this concept, as seen in Figure 21. 
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Figure 21.   Shallow Angle Error: The estimated target node position (left), indicated by a 

red triangle, has been shifted from the main cluster of solutions. A closer look 
(right) reveals that a combination of shallow angle errors and a highly-

weighted improvised solution pair (for non-intersecting range circles) has 
shifted the solution by over 350 m from the true target location. Note the 

target location, is over 1000 m outside the network perimeter. 
 

C. REFINING THE ALGORITHM  

1. Constrained Operating Area 

Given the magnitude of error for some of the worst shallow angle scenarios, we 

conduct further simulations to investigate the more general impact of this phenomenon. 

We now conduct a simulation for random data within a more constrained operating area. 

For Simulation 2, the grid of random positions was spread over a 4000 m by 4000 m box 

centered at the origin. For Simulation 3, we reduce the region sides to 2400 m.  
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Figure 22.   Solution Error Distribution for Simulation 3, which was conducted within a 

constrained operating area. The improved results suggest that the shallow 
angle/ improvised solutions problem did, in fact, skew the results of 

Simulation 2 to a significant degree. 

The results of Simulation 3 show a significant improvement over those of 

Simulation 2, suggesting that the shallow angle effect is significant, especially for 

localization outside the network perimeter. The maximum error case of 170.0 m is 

attributed to a case nearly identical to the maximum error case shown in Figure 21. The 

error magnitude is smaller for this case because the constrained operating area has 

reduced the size of the range circles (resulting in more well-defined defined arcs and a 

lower probability of a large solution shift).   

2. Modification of the Exponential Term 

The root of the shallow angle problem stems from a single solution pair 

“outweighing” all other pairs. Adjustment of the arbitrary exponential term α in the 

general weight equation (Equation 9) offers a possible remedy. We are at liberty to adjust 

α because the weights are dimensionless coefficients. The exponential term tends to 

amplify weight values for solutions close to one another while disregarding isolated 

solutions. The magnitude of α determines how severely weight values will be amplified 

for close solutions. Hence, a smaller α may constrain the range of weight values such that 

a single pair of close solutions will not suffice to shift the estimated location. As 
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discussed in Chapter II, we originally used the value α=2 by arbitrary choice. Simulations 

with smaller α values will indicate the usefulness of modifying the exponential term. We 

now run simulation for α values of 0.5 and 1 and present the resulting statistics in Table 

1. 

α 0.5 1 2
Range Errors +/- 10 m +/- 10 m +/- 10 m
Mean Error 10.72 m 6.01 m 7.61 m

Standard Deviation 4.73 m 3.25 m 3.68 m
Max. Error 35.20 m 65.09 m 62.13 m

50% Range 10.55 m 5.75 m 7.53 m
75% 13.87 m 7.69 m 9.48 m
90% 16.85 m 9.44 m 11.36 m
95% 18.79 m 10.75 m 13.43 m
99% 22.58 m 16.45 m 19.53 m

99.90% 27.67m 30.75 m 30.94 m  
Table 1. Algorithm Performance for Various Alpha Values 

 

The results indicate that better results are generally obtained using a value of 1 for the 

exponential term, though shallow angle errors still exist. For all further simulations, we 

shall use a value of 1 for the exponential term.  

3. Shallow Angle Correction Factor and Short Range Treatment 

A second possibility for reducing shallow angle error may lie in adjustment of 

individual solution weights based on bearing angles themselves. For an ideal 

triangulation scenario, range circles would intersect at close to 90°.  
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Figure 23.   Illustration of the bearing angle difference ψ. We desire a value close to π/2 to 

minimize shallow angle error (a). Implementing a correctional factor based on 
sin(ψ) will decrease the weight values of shallow angle cases, such as the one 

shown in (b).   
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To implement a shallow angle correction factor, we include the following correction 

factor in the weight equation, where ψ is the bearing angle difference between the 2 

nodes of a single pair. 

2 2
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1sin sin
( ) ( ) 0.01
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i i j
j j i i j i j

W
x x y y
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ψ ψ
= ≠

⎡ ⎤
= ⋅⎢ ⎥

− + − +⎢ ⎥⎣ ⎦
∑   (20) 

In addition to the correction term, we now direct the algorithm to neglect ranges less than 

150 m. We prefer to not use short ranges in field experiments at this point because the z 

(depth) component of UUV-node distances will become significant for such small values, 

and neglecting z will exaggerate the range value. Neglecting short ranges will result in a 

number of solutions less than the value of m that was calculated in (16).  

Angle Correction No Yes
α 1 1

Range Errors +/- 10 m +/- 10 m
Mean Error 6.01 m 6.07 m

Standard Deviation 3.25 m 3.30 m
Max. Error 65.09 m 63.70 m

50% Range 5.75 m 5.82 m
75% 7.69 m 7.76 m
90% 9.44 m 9.46 m
95% 10.75 m 10.82 m
99% 16.45 m 16.64 m

99.90% 30.75 m 32.22 m  
Table 2. Algorithm Performance for Angle Correction Term 

 

The simulation results suggest that the shallow angle correction has done little to 

reduce the effects of those cases. Shallow angle cases remain a troublesome issue, 

especially for non-intersecting range circles, which tend to heavily shift position 

estimates. We choose to not include the correction factor in the weight equation for 

further tests. We maintain the 150 m minimum range requirement, however, because we 

the accuracy of ranges should decay exponentially below this threshold (see Figure 34). 

4. Skewed Error 

For all previous simulations, range errors have been limited to within 10 m of the 

true range. To better simulate true conditions, we offset the data to create simulations 

with generally short or generally long range data. To do this, we use the same ± 10 m as 
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before, but we offset the error by -10 and 10 m according to (19). Such simulations yield 

the following results: 

Alpha 1 1 1
Range Errors +/- 10 m -20-0 m 0-20 m
Mean Error 6.01 m 13.15 m 12.56

Standard Deviation 3.25 m 6.30 m 5.04 m
Max. Error 65.09 m 108.71 m 96.23 m

50% Range 5.75 m 12.83 m 12.59 m
75% 7.69 m 16.16 m 15.75 m
90% 9.44 m 18.94 m 18.11 m
95% 10.75 m 21.23 m 19.40 m
99% 16.45 m 35.10 m 25.48 m

99.90% 30.75 m 64.80 m 48.02 m  
Table 3. Algorithm Performance for Skewed Error.  

 

As indicated by the table above, an offset of the range error will adversely affect 

algorithm performance. Field experimentation will almost certainly encounter a range 

measurement bias, though probably not as severe as that used in these simulations. 

D. SYNTHETIC TRACK SIMULATIONS 

Now that we have attained a satisfactory level of algorithm performance, we 

create three synthetic tracks to run a more practical set of tests. The purpose of these tests 

is to simulate the types of tracks that may be encountered during field experiments. We 

employ the same six-node system grid as before, and we run each track simulation 1000 

times to acquire accurate data. The tracks include an interior path that circles the central 

node but stays well inside the network perimeter, an exterior path that circles the outer 

perimeter, and a more general track that meanders through the network. We run each 

track simulation both with and without the angle correction term, and we maintain the 

150 m minimum range requirement for all simulations as well as an α value of 1 for the 

exponential term. Simulations are performed with ranging errors between -10 and 10 

meters of the true ranges. 
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Figure 24.   Synthetic Track Simulations: The plot shows the three synthetic tracks used 

for practical algorithm simulations. The solid blue lines represent the tracks 
themselves, which are defined using sets of 21 discrete points. The red 

triangles indicate the mean algorithm solutions for each waypoint, averaged 
over 1000 simulations, each with independent random error. 

 

The following table lists the results for each track. We calculate the mean error 

for all 21 waypoints of each track and average that value over 1000 simulations to 

acquire statistically significant results. The outcome shows that the algorithm produces 

consistent position estimates and is ready for field testing. 

 
Track Name Mean Error (m) Std. Dev. (m)

Interior 6.54 2.82
Exterior 6.53 2.77

Meandering 6.52 2.77  
Table 4. Results for Synthetic Track Simulations. Consistent results indicate a 

reliable positioning algorithm that is ready for field tests. 
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IV. EXPERIMENT SETUP 

Field tests occurred as a major objective of the three-day Seaweb ARIES May 

2005 experiment in Monterey Bay. Chapter 1 describes the equipment used. Six repeater 

nodes served as the sources of range data, and the Seaweb ARIES team operated the 

system from aboard the Cypress Sea workboat.  

A. OPERATING AREA 

The operating area exhibited a sandy, relatively flat bottom with a gentle depth 

increase moving from east to west (Figure 25), and the landward buoy was deployed 

approximately 1 km from the surf zone. The bottom exhibited little variation in the 

north/south direction. 

B. SOUND PROPAGATION CHARACTERISTICS 

1. Sound Velocity Profiles and Ray Tracing Models 

A series of CTD (conductivity, temperature, depth) casts during the first two days 

of testing provided sound speed data. The results indicate the presence of a very thin 

surface layer, below which sound speed steadily increased with depth. Having obtained 

sound velocity profiles, ray tracing methods then predicted propagation for various 

source depths. Of particular interest are ray models for sources at the nominal ARIES and 

Seaweb repeater node depths, assumed to be 5 and 25 meters, respectively.  

Of particular importance for range measurements is direct-path propagation 

between the UUV and repeater nodes. Our assumption of straight line paths is a source of 

range error for even direct paths. A reflected ray from either the bottom or surface would 

greatly decrease the accuracy of range measurements under the straight line path 

assumption. The model for 25 m source depth (Figure 27) shows that a direct path to a 

receiver at 5 m will be available out to approximately 1000 m at our experiment site.  

2. Environmental Conditions and Ambient Noise 

The operating area offered favorable environmental conditions. The surf zone, 

while located nearby (Figure 25), contributed only minimal ambient noise levels.  

Shipping traffic in the area was non-existent during the tests. Winds presented the most 

significant noise. Each afternoon, surface conditions rapidly deteriorated as the local 

winds picked up. This elevated noise levels and made equipment recovery difficult. 
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Figure 25.   Seaweb/ARIES May 2005 Experiment, Operating Area. The six fixed grid 

nodes (circles, numbered 10 through 15) were spaced approximately 1000 m 
apart in a pentagonal geometry, with the sixth node located in the center, 
approximately equidistant from the others. The RACOM buoy (inverted 

triangle) was moored just south of the network. 
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Figure 26.   Sound Velocity Profiles. CTD casts provided accurate data within the 

operating area during the first two days of testing. 
 

 
Figure 27.   Ray Tracing Models for nominal operating depths of Seaweb repeaters (left) 

and ARIES UUV (right). 
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C. EXPERIMENTAL PROCEDURES 

For the actual tests, the ARIES UUV performed a series of tracks through the 

network. To accomplish this, the UUV would surface so that a navigation track would be 

downloaded by radio command to the UUV by ARIES operators on the workboat. Each 

navigation track included a set of waypoints. ARIES uses its own inertial navigation 

system to attempt to follow the track, periodically coming to the surface to obtain a 

correctional GPS (Global Positioning System) fix. Upon obtaining a correctional fix, 

ARIES would submerge and continue its track, having corrected its position. The task of 

the Seaweb team was simple: obtain as much range data as possible and input the data 

into the positioning algorithm. The goal was to obtain a large number of ranging fixes 

and compare that information to ARIES’ own GPS fixes and inertial navigation data.  
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V. EXPERIMENTAL RESULTS 

A. CALIBRATION FIXES 

Data collection began with a series of “calibration fixes” designed to test the 

accuracy of the algorithm with a nearly stationary target. For these fixes, ARIES was 

positioned directly astern of the research vessel. During these tests, a series of 3 broadcast 

pings acquired range data. Since the UUV was positioned next to the research vessel, it 

was possible to use either a handheld GPS unit or ARIES’ own GPS system to compute a 

simultaneous satellite fix for ground truth. In addition to these three fixes, two more 

broadcast pings were obtained with simultaneous GPS fixes during testing to test the 

practical accuracy of the algorithm. Of these 5 fixes, the algorithm achieved a mean error 

of 7.5 m with a maximum error of 14.1 m. 
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Figure 28.   Calibration Fixes. The three fixes next to Node 1 represent those obtained 

with the UUV held astern of the research vessel. The other two fixes show 
broadcast pings conducted while ARIES was surfaced, allowing simultaneous 
acquisition of a GPS satellite fix. Due to their proximity to the central node, 
the three fixes near Node 1 neglected range data from that reference node. 
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B. TRACK RUNS 

1. Track 1 

The following track presents navigation data obtained on day three of the 

experiment over a period of 48 minutes.  

Time Ranges
1 10:24 4
2 10:30 6
3 10:32 5
4 10:45 4
5 10:57 5
6 11:00 4
7 11:04 5
8 11:05 5
9 11:07 3
10 11:08 4
11 11:09 3
12 11:11 6
13 11:12 413
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Figure 29.   Track 1 results. The triangles indicate Seaweb ranging fixes, with numbers 

corresponding to the timestamps in the table. The “Ranges” column shows the 
number of ranges available for that particular fix. The solid lines represent 

ARIES inertial navigation data points, and the plus signs represent GPS fixes. 
The dotted lines indicate instances when the UUV surfaced and corrected its 

position with a GPS fix. The GPS fixes near fixes 6 and 11 show large inertial 
navigation drift. The corresponding Seaweb ranging fixes demonstrate the 

accuracy of our positioning method, especially compared with inertial 
navigation. 
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2. Track 2 

The following track, though more complex than the previous one, again 

demonstrates the algorithm’s ability to outperform inertial navigation. This track was 

conducted on the day two of the experiment over a period of 29 minutes. 

Time Ranges
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Figure 30.   Track 2 Results. The data are denoted as before. Points 4 through 6 

demonstrate the same type of drift pattern shown by Track 1. The green 
arrows indicate the direction of motion of the UUV. 

 
C. ADDITIONAL DATA 

Several other tracks were performed during the experiment, but these provided 

less useful results for a combination of reasons. Most importantly, algorithm performance 

was limited by the relatively low rate of data arrival. At best, broadcast pings could be 

conducted 1 minute apart, so the algorithm was unable to keep pace with tracks 

containing abrupt changes in heading. Track 2 provides a good example of this problem 

(Figure 24). Between fixes 7 and 8, the inertial navigation attempted to drive the UUV 

over 100 m past the Seaweb fixes. However, no ranges were collected during that time 

period, so it is not possible to estimate the true position of the UUV at the time of the 
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turn. Figure 25 shows how the small update rate prevents the algorithm from achieving 

good localization performance for the “box” tracks that were used for the initial test runs. 
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Figure 31.   This “box” track illustrates the resolution problem with Seaweb ranging. In 

this case, the UUV did not surface at all during its run. This meant that GPS 
fixes were not available for comparative purposes except at the beginning and 

end of the track. Because the actual “box” portion of the track, for which 
ARIES completed 2 loops, lacks GPS fixes, so only inertial navigation data is 
available for verification of the Seaweb fixes. Tracks 1 and 2 (Figures 23, 24) 
have already proven such data is inaccurate). The result is an incoherent field 

of fixes spread over the box region. Fix 11 appears to be located almost 80 
meters outside of the box perimeter, but we have no way to either verify or 

refute this position estimate. GPS fixes at the beginning and end of the track 
correspond well with our position fixes at these times, however. 
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VI. ANALYSIS 

A. ACCURACY OF THE RANGING DATA 

To assess the accuracy of the computed range data, we examine the intersection 

points of the range circles for Seaweb ranging fixes. A tight cluster of points generally 

indicates accurate ranges, while a cluster spread over a large area suggests ranging errors. 

We examine the solution clusters for selected fixes to gather insight regarding ranging 

error. The zoom views of intersection points shown in Figure 32 predict the presence of 

skewed range errors. The recurring case of non-intersecting range circle pairs suggests 

that the range data may be skewed toward short values, contradicting the algorithm 

assumptions. We assume straight-line paths between nodes, but, in reality, sound speed 

variability induces refraction of the acoustic waves, resulting in longer, curved paths (as 

traced in Figure 21). Given a uniform depth, a refracted path would travel a shorter 

distance in a given amount of time than a straight line path, meaning that our straight-line 

assumption yields exaggerated ranges. We also neglect depth changes in the 2-

dimensional model of the operating area. Hence, for UUV-fixed node ranges, we 

essentially measure the hypotenuse of a triangle as illustrated by Figure 33.  

Non-simultaneous ranging data
2-dimensional model of environment

Inaccurate locations of reference nodes
Multi-path sound propagation

Neglection of sound wave refraction
Incorrect sound speed assumption

Quantization error in time measurements  
Table 5. Primary sources of range measurement errors. This table lists the main 

sources of ranging errors in an estimated order of magnitude, since we lack the 
appropriate data to conduct a more complete error analysis. 
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Figure 32.   Intersection Points of Fixes for Track 1 (Figure 23) seem to indicate short 

range measurements. Waypoints 6, 7, and 13 each contain 1 pair of non-
intersecting range circles, which can only occur for cases of short range 

measurements. The likely culprit of this phenomenon is the non-simultaneity 
of range measurements for a moving target. 
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Figure 33.   The assumption of a 2-dimensional space should lead to exaggerated range 
measurements. The 20 m depth change between the nominal UUV and 

repeater depths indicates that the difference between Rmeasured and Ractual is 
negligible for long ranges. The difference becomes significant at short ranges, 

however 
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Figure 34.   The effects of the 2-dimensional assumption are only manifested at short 

ranges. A 5% error occurs at about 60 m for the geometry with a 20 m depth 
change between the fixed grid and mobile node. 

 

The most obvious algorithm assumptions predict long range estimates, yet the 

data from Track 1 displays the opposite result. A third assumption may hold the answer. 

As discussed in Chapter I, the broadcast ping does not actually yield simultaneous range 

measurements, but, rather, a collection of range measurements spread over a time period 

of up to one minute. A UUV moving at 1.2 m/s will travel 72 m over that time period. If 

two range measurements were taken near the beginning and end of the time spread, the 

UUV position may have changed such that the ranges appear to be short, even if they 

were actually long! The 1500 m/s assumption for sound speed may have also lead to 

scaling of the range measurements. 

Uncertainties in the fixed node positions may account for additional skewed range 

data. Repeater positions were obtained by reading the output of a handheld GPS receiver 

at each drop point. Positioning errors could easily result from error within the GPS unit 

itself, drift of the repeater during its descent to the sea floor, and subsequent “dragging” 

of the apparatus along the sea floor by ocean currents. No data were taken to record 

currents or drift patterns, so it is difficult to estimate errors in the repeater positions, 

though each of the six nodes was recovered at the same Latitude/Longitude coordinates 

as deployed (within instrument quantization error). This suggests a fairly reliable repeater 
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deployment technique, though the long-term goal of aircraft deployment of the network 

will require more sophisticated procedures. 

A final comment should be made regarding the assumption of direct path 

propagation. A large percentage of the range measurements exceeded the 1000 m limit of 

direct path availability. The range measurements made beyond this limit are suspect, as 

the travel times may represent surface-reflected rays. 

Apart from the issue of skewed data, we examine the results of fixes near the 

network perimeter to look for shallow angle error. Figure 35 shows three waypoints with 

multiple shallow angle intersections. None of three cases has produced an extremely 

skewed solution like those seen in some of the simulations. The experimental tracks were 

all conducted either within the network perimeter or just outside of it, so the kinds of 

scenarios that would result in large numbers of shallow angles simply did not occur. The 

plots shown in Figure 28 have all produced one or more outlying solutions at large 

distances from the main cluster, but none of those solutions has significantly impacted 

position estimates. 
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Figure 35.   Shallow Angle Intersections for Track 1 fixes. Close-up views for Track 1 

waypoints near the network perimeter exhibit shallow angle errors, as 
predicted by the simulation results (Chapter III). For the cases shown here, the 

weighting method largely ignored the outlying solutions. 
 

B. MOTION OF THE ARIES UUV 

The algorithm produced good results for Tracks 1 and 2. The nature of the GPS 

data set combined with a lack of clock synchronization between the Seaweb and ARIES 

systems precludes the comparison of fixes on a common time scale, but the drift 

phenomena suggest favorable performance by the positioning algorithm. Drift motion of 

the UUV is shown most readily for track portions where ARIES attempted to move in a 

straight line for 500 m or more. Figures 23 and 24 show that the UUV typically 

experiences a drift during such track legs. As shown in the figures, at the end of each 

straight line path, ARIES would surface and acquire a GPS fix between 50-150 m to 

either side of the planned track. The sequence of ranging fixes accounts for such drift in 

all three cases, twice in Track 1 and once in Track 2.  
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Despite its ability to account for drift, the algorithm failed to provide adequate 

sampling for generating a complete navigation track for all test runs, with the exception 

of Track 1. The three tracks shown in Figures 23-25 demonstrate a mean time interval of 

3.35 minutes between fixes. This long interval simply does not allow for the 

reconstruction of rapidly changing tracks such as those given by Figures 24 and 25. It is 

evident that the ranging measurements used in combination with inertial navigation 

would substantially improve the undersea navigation solution. 
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VII. CONCLUSIONS AND FURTHER WORK 

A. METHOD FEASIBILITY 

The Seaweb/ARIES Experiment proved the feasibility of undersea navigation 

through the use of an undersea acoustic communications network. Accurate results were 

achieved through rigorous simulations, and similar performance was attained by a set of 

calibration fixes during the experiment. Despite a large error budget, good results were 

obtained for the experimental tracks. Improvements in resolution will be needed if a 

stand-alone navigation system is desired, but the positioning algorithm has proven its 

ability to localize the UUV within the network. Further work may be pursued in several 

areas, which we discuss in the next section. 

B. FURTHER WORK 

1. System Integration  

Efficient system integration of the algorithm would involve implementation 

within the UUV navigation system. If the ranging data were fed into a computer onboard 

the ARIES vehicle, correctional ranging fixes could be obtained while submerged, 

similar to the present method of surfacing to obtain a GPS fix. This requires an 

autonomous program that will automatically upload range data from broadcast pings. The 

present algorithm merely uses a MATLAB script (Appendix) to import data from an 

Excel file. Further system integration will entail more sophisticated computer 

programming techniques. 

2. Three-Dimensional Model 

Modeling the undersea environment in three-dimensional space should greatly 

improve the accuracy of range data. At present, travel times are used to directly calculate 

straight line distances using a constant sound velocity of 1500 m/s. On a simple level, the 

three-dimensional model might involve retaining the straight-line path assumption and 

simply accounting for the depth change between the UUV and fixed reference nodes. 

More advanced models would incorporate equations to model the refraction of sound 

waves for calculating inter-node ranges [2, 4, 5].  
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3. Sensitivity to UUV Motion 

The Seaweb ARIES Experiment employed a slow-moving vehicle (1.2 m/s), yet 

the effect of the motion was evident due to the non-simultaneity of range measurements 

within a single broadcast ping. Errors from this source would increase significantly if the 

algorithm were implemented for tracking a submarine moving at speeds of 10 knots or 

more. A solution to this problem involves the combination of ranging data with UUV 

navigation data. Even a very rough dead-reckoning track or heading angle would allow a 

revised algorithm to incorporate both data sources and produce a better position estimate. 

This method would prove especially useful given the availability of the individual node 

dwell times (Chapter 1). 

4. Fixed Grid Self Localization 

Self localization of the fixed grid remains to be implemented. A long-term goal of 

Seaweb is to produce a rapidly deployable ad hoc network that can be dropped from an 

aircraft and quickly initialize undersea communications. Successful routing of the 

network requires knowledge of fixed node locations, which are presently determined by a 

handheld GPS unit as the nodes are deployed manually from the deck of a research 

vessel. Self-localization may be accomplished using a method similar to the positioning 

algorithm, though self-localization of a fixed grid will not require near-simultaneous 

measurements because the repeaters will not move a great distance from their initial 

locations [3, 4].  Range data from the Seaweb ARIES Experiment may be used to 

perform localization of the fixed grid. Such analysis would lend additional insight into 

the accuracy of the present deployment techniques. 

5. Other Positioning Methods 

The weighting method used for this thesis worked quite well, but other methods 

do exist, and several of these methods have been studied already. Articles by Stan E. 

Dosso and Kenneth D. Frampton outline a few of these methods [3-5], which could be 

adapted to the Seaweb navigation problem.  

Dosso’s method performs localization of a hydrophone array using a set of 

linearized “Time Difference of Arrival” (TDOA) equations. This is accomplished 

through an inversion technique described in his journal articles [3, 4]. Frampton also 

employs TDOA signals [5] for multiple acoustic sources at known locations in or around 
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an undersea network. Each source transmits a chirp, which is received by the sensor 

(repeater) nodes. TDOA data is then collected and analyzed at a central location, and the 

resulting set of nonlinear equations is solved using a least squares technique [5].  A least 

squares method could be readily adapted to our case using broadcast ping data. 

Furthermore, Frampton includes depth coordinates in his method outline, so a three-

dimensional model has already been provided. 



46 

 

 

 

 

 

 

 

 

 

 

 

THIS PAGE INTENTIONALLY LEFT BLANK 

 



47 

LIST OF REFERENCES 

1. Rice, J., Seaweb Acoustic Communication and Navigation Networks, In Proc. 
Conf. Underwater Acoustic Measurements: Technologies & Results, Heraklion, 
Greece (2005). 

2. Rice, J., A Prototype Array-Element Localization Sonobuoy, Naval Ocean 
Systems Center, Technical Report 1365, (1990). 

3. Dosso, S., et al., Array element localization for horizontal arrays via Occam’s 
inversion, J. Acoust. Soc. Am., Vol. 104.2, (1998). 

4. Dosso, S. and B. Sotirin, Optimal Array Element Localization, J. Acoust. Soc. 
Am., Vol. 106.6, (1999). 

5. Williams, Stephen M., Peter L. Schmidt, and Kenneth D. Frampton, Distributed 
Source Localization in a Wireless Sensor Network, J. Acoust. Soc. Am., Vol. 
117.4, (2005) . 

6. Marr, W., Acoustic Based Tactical Control of Underwater Vehicles, Naval 
Postgraduate PhD Dissertation (2003). 

7. Nguyen, T., ARIES Navigation System Accuracy and Track Following, Naval 
Postgraduate MS Thesis (2002). 



48 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 
 



49 

APPENDIX 

A.  ANNOTATED MATLAB CODE 

The follow is a portion of the script file used to implement the positioning 

algorithm in field tests. The fixed node positions were specified by Latitude/Longitude 

coordinates, which we have convert to x/y positions within a reference frame with its 

origin located at the central node.  
grid=xlsread(‘fixed_node_positions’); %import Excel data files 
range_data = xlsread(‘range_data’); 
N=size(range_data,1); 
 
range_set=zeros(size(grid,1),size(grid,1)); 
for(i=1:1:size(grid,1)) %define inter-node ranges for for fixed nodes  
 for(j=i+1:1:6) 
  if(i~=j) 
   x_dist=grid(j,1)-grid(i,1); 
   y_dist=grid(j,2)-grid(i,2); 
   dist=sqrt(x_dist^2+y_dist^2);  
             range_set(i,j)=dist; 
             range_set(j,i)=dist; 
  end 
 end 
end 
 
%now we begin the primary loop, which estimates the UUV position 
%for each time-stamped set of ranges 
for(t=1:1:N) 

clear pairs phi x y psi W WF x_fin y_fin 
 
ranges=range_data(t,:); %define single line of data as range data 
 
%now we determine which node pairs will yield a non-imag. soln. 
intersections=zeros(size(range_set,1),size(range_set,2)); 
for(i=1:1:size(intersections,1)) 

      for(j=1:1:size(intersections,1)) 
          if(i~=j) 
              R_1=ranges(a,i); 
              R_2=ranges(a,j); 

            R_3=range_set(i,j); 
            theta_a=cosines_law(R_1,R_3,R_2); 

if((imag(theta_a)==0) & (theta_a~=0)) %two distinct  
intersections 

                intersections(i,j)=2; 
                intersections(j,i)=intersections(i,j); 
            elseif((imag(theta_a)==0) & (theta_a~=0)) %one 
"double" intersection 
                intersections(i,j)=1; 
                intersections(j,i)=intersections(i,j); 
            elseif(imag(theta_a)~=0) 
                intersections(i,j)=0; 
                intersections(j,i)=intersections(i,j); 
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            end 
        end 
    end 
end 
 
%now we determine the xy coordinates of the two possible 
%solutions for each pair 
%that yields a real solution for theta 
c=1; 
for(i=1:1:size(intersections,1)) 
    for(j=i:1:size(intersections,1)) 
        if((i~=j)& ranges(a,i)>=150 & ranges(a,j)>=150) 
            org=[grid(i,1) grid(i,2)]; 
            xax=[grid(j,1) grid(j,2)]; 
            L_o_x=range_set(i,j); 
            delta_x=xax(1,1)-org(1,1); 
            delta_y=xax(1,2)-org(1,2); 
            if(delta_x==0) %case of vertical tangent 
                if(org(1,2)>xax(1,2)) 
                    phi=-pi/2; 
                else 
                    phi=pi/2; 
                end 
            else 
                phi_prime=atan(abs(delta_y)/abs(delta_x)); 
                if((org(1,1)<=xax(1,1))&(org(1,2)<=xax(1,2))) 
                    phi=phi_prime;     
                elseif((org(1,1)>xax(1,1))&(org(1,2)<=xax(1,2))) 
                    phi=pi-phi_prime; %2nd quadrant 
                elseif((org(1,1)>=xax(1,1))&(org(1,2)>xax(1,2))) 
                    phi=phi_prime+pi; %3rd quadrant 
                elseif((org(1,1)<xax(1,1))&(org(1,2)>xax(1,2))) 
                    phi=2*pi-phi_prime; %4th quadrant 
                end 
            end 
            if(intersections(i,j)==2) | (intersections(i,j)==1) 

%find abs value of angle of solution offset 
%from new xaxis 
%this is easily determined using the law of 
%cosines, 
%where "opp side" (see function code) is range: 
%xax to mobile node 

                theta=cosines_law(ranges(a,i),L_o_x,ranges(a,j)); 
                 
                %coordinates, angle equal to gamma (a or b)  
                gamma_a=phi+theta; 
                gamma_b=phi-theta; 
                x(c,1)=org(1,1)+ranges(a,i)*cos(gamma_a); 
                x(c+1,1)=org(1,1)+ranges(a,i)*cos(gamma_b); 
                y(c,1)=org(1,2)+ranges(a,i)*sin(gamma_a); 
                y(c+1,1)=org(1,2)+ranges(a,i)*sin(gamma_b); 
            else  %(zero intersections case) 

%now we determine which of three possible cases 
%for non-intersecting 

                %circles has occured (Chapter II, section E.2) 
                
if((ranges(a,i)<range_set(i,j))&(ranges(a,j)<range_set(i,j))) 
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                        x(c,1)=grid(i,1)+ranges(a,i)*cos(phi); 
                        y(c,1)=grid(i,2)+ranges(a,i)*sin(phi); 
                        x(c+1,1)=grid(j,1)-ranges(a,j)*cos(phi); 
                        y(c+1,1)=grid(j,2)-ranges(a,j)*sin(phi); 
                
elseif((ranges(a,i)>=ranges(a,j))&(ranges(a,i)>=range_set(i,j))) 
                        x(c,1)=grid(i,1)+ranges(a,i)*cos(phi); 
                        y(c,1)=grid(i,2)+ranges(a,i)*sin(phi); 
                        x(c+1,1)=grid(j,1)+ranges(a,j)*cos(phi); 
                        y(c+1,1)=grid(j,2)+ranges(a,j)*sin(phi); 
                elseif((ranges(a,j)>=ranges(a,i))& 
(ranges(a,j)>=range_set(i,j))) 
                        x(c,1)=grid(i,1)-ranges(a,i)*cos(phi); 
                        y(c,1)=grid(i,2)-ranges(a,i)*sin(phi); 
                        x(c+1,1)=grid(j,1)-ranges(a,j)*cos(phi); 
                        y(c+1,1)=grid(j,2)-ranges(a,j)*sin(phi); 
                end     
            end 
 

 %Calculate Weight values 
 W=zeros(size(x,1),1); 
 for(i=1:1:size(x,1)) 
  for(j=1:1:size(x,1)) 
   if(i~=j) 
    alpha=1;  %”optimal” value 
    x_diff=x(i)-x(j); 
    y_diff=y(i)-y(j); 
    Wadj=WF(i)*WF(j); %shallow angle correction 
    W(i)=Wadj*(W(i)+(x_diff^2+y_diff^2)^-alpha); 
   end 
  end 
 end 
 

W_sum=sum(W);  %the total weight is the sum of indiv. Wts. 
  

for(i=1:1:size(W,1)) 
      x_fin(i)=((W(i)/W_sum)*x(i));  %”weighted average” 
      y_fin(i)=((W(i)/W_sum)*y(i)); 

end 
 

soln(a,:)=[sum(x_fin) sum(y_fin)];  %estimated soln. 
 

end %close the primary loop 
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