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Abstract 
 The principal contributions of this study are four-fold.  First, we propose and 

illustrate a unifying meta-model architecture for fusing information in sensor-based decision 

support systems capable of delivering to the user strong inference results in support of 

tactical decision-making.  Second, we demonstrate the feasibility of a completely automated 

system performing effective estimation of force operational states based on sensor data alone 

using a new web-based interactive tactical simulation.  Third, we show that this architecture 

can readily accommodate several major network inference methods that are designed to 

handle battlespace uncertainty.  And lastly, we discuss how this approach can be used to 

directly assess the information advantage of US Forces relative to opposing force intelligence 

gathering capabilities and the implications of doing so on developing strategic deception 

operations. 
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1. Introduction 

The principal contributions of this study are four-fold.  First, we propose and illustrate a 

unifying meta-model architecture for fusing information in sensor-based decision support 

systems capable of delivering to the user strong inference results in support of tactical 

decision-making.  Second, we demonstrate the feasibility of a completely automated system 

performing effective estimation of force operational states based on sensor data alone using a 

new web-based interactive tactical simulation.  Third, we show that this architecture can 

readily accommodate several major network inference methods that are designed to handle 

battlespace uncertainty.  And lastly, we discuss how this approach can be used to directly 

assess the information advantage of US Forces relative to opposing force intelligence 

gathering capabilities and the implications of doing so on developing strategic deception 

operations..  

  Battlefield sensing technologies and techniques have become increasingly important 

in the transformed Army of the twenty-first century. Commanders seek to leverage 

information to gain unsurpassed battlefield dominance while at the same time reducing 

overall operational risk to soldiers in a variety of deployment scenarios [1, 2]. Our study 

responds directly to these priorities. 

The underlying purpose here should be to enhance a commander’s ability to perform 

effective inference concerning opposing force operational states because doing so leads to a 

natural notion of information advantage:  friendly forces know more about what opposing 

forces are actually doing a significant period of time before the opposing force knows what 

friendly forces are doing.  A simply constructed yet logically robust framework for 

performing this inference needs to avoid undue complexity, both in terms of logical structure 

(for implementation’s sake) and raw information requirements (to avoid information 

overload).  For sensor-based systems in particular, information overload becomes a concern 

if the end user is no longer able to productively use the quantity of information within the 

time scale available [15].   

While new approaches to sensor data handling have been proposed to satisfy some of 

the performance demands of decision support systems [3, 4], tacit to such approaches is a 

design assumption that the quality of the information in such systems increases as the data 
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sample size generated by battlefield sensors increases in both quantity and dimensional 

representation.  This assumption is based on the concept of enumerative logic, which accepts 

that evidence in support of a specific inference is accumulated over time and more evidence 

accumulated over time enhances the strength of this information with respect to this 

inference [6].  Exclusively adopting this philosophy naturally leads engineers to design and 

field increasingly complex battlefield networks capable of gathering, storing, and processing 

this information much faster than it can be understood and exploited by human decision 

makers [14]. 

To avoid information overload one could adopt a philosophy consistent with 

economic theory.  This viewpoint contends that decision relevant information that does not 

alter a pre-existing decision is not information; it is only serves to confirm the decision that 

has been made [6].  We discourage such a parochial philosophy in a tactical setting because it 

fails to recognize the contribution that different forms of information make to a military 

decision-making.  For example, there is tangible military value in conflicting, contradictory, 

and confirmatory information processed in support of verifying military targeting.  These 

types of information typically arise as ancillary evidence, that is, evidence concerning 

evidence that goes to subjective concerns of credibility and believability on the part of users. 

To put it another way, information of this nature, while not information in the technical 

economic sense described above, nevertheless serves the vital military purpose of validating 

operational decisions. This kind of information strengthens rather than diminishing the 

inferential force of existing evidence. On a practical level, it strengthens the resolve behind 

command decisions. 

In contrast to enumerative logic, eliminative logic provides a philosophical basis for 

supporting inference by seeking contradictory evidence that can negate alternative 

explanations.  It is this logic that underscores the well-known practice of disproving 

conjectures by identifying counter-examples.  Taken at its extreme, eliminative logic 

supports a conjecture that when all other possibilities have been eliminated, the remaining 

possibility condition is true.  The culling nature of this philosophy has real potential to limit 

the occurrence of information overload. 

It should be possible to combine both forms of logic: enumerative and eliminative, 

within the logical design of a fusion approach, much in the same way that primal-dual 
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approaches are used in mathematical programming [9] and game theory, playing against each 

other until some predetermined condition is satisfied.  This strategy could exploit some 

portion of the in-flow buildup of real time opportunistic information yet limit the extent of 

overload by simultaneously imposing criteria that could appropriately cull the number of 

possible inference estimates the evidence gathered might reasonably support. 

In this paper, we define and test a logical framework within which such a fusion 

approach could succeed.  Figure 1 illustrates the placement of this study within a spectrum of 

possible systems modeling approaches [35].  While the meta-model architecture stands alone 

as a mechanism for illuminating a new perspective on intelligent systems design, it also 

advocates a general decision support tool that could be integrated in some fashion into a 

common operating picture (COP) for developing situational awareness of enemy operational 

state.  Therefore, the study resides approximately midway between routine decision support 

and representing possible system design and changes in Figure 1. 

This framework, called a meta-model architecture, incorporates the structural concept 

of a sensor network as an information manufacturing system [10] focused on estimating 

enemy intent through the surrogate of identifying the current enemy operational state.  Doing 

so necessitates that we decompose and identify the layers of inference abstraction required to 

make such an identification, which we do in Section 2.  This perspective sets apart our meta-

model from other data fusion approaches such as that developed by the Data Fusion Subpanel 

of the Technology Panel for C3 (command, control, communications) of the Joint Directors 

of Laboratories (JDL) [16].  

In Section 3, we formally introduce a meta-model architecture in the spirit of Wand 

and Weber [5] that simplifies the representation of information flowing in a sensor-based 

decision support system.  Recognizing that such a framework must naturally accommodate 

the inherent uncertainty present in battlefield information, we demonstrate in Section 4 the 

meta-model’s ability to accept three major stochastic network inference models: Bayesian 

Belief Network [19], Fuzzy Logic [20], and Probabilistic Modal Logic [21].   

To illustrate the feasibility of this approach, we use results of recent computational 

experiment in which a new interactive web-based simulation identified a force’s operational 

state by detecting the physical characteristics of force behavior. Following this, in Section 5 

we discuss how this approach leads directly to a natural way of determining the information 
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advantage of US Forces relative to opposing force capabilities, concluding with comments in 

Section 6 pertaining to continued research in this area. 
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Figure 1.  Placement of this study amidst a spectrum of systems modeling approaches. 

 

 

2. Inference Structure 

The layers of inference that must be negotiated in order to estimate operational intent 

increase as one examines the structure of battlefield information in finer granularity.  Here, 

we limit our excursion in this regard to the simplest abstraction sufficient to illustrate both 

our motivation for and the challenges associated with identifying a force’s operational state 

as a surrogate for intent.  Figure 2 illustrates the inference structure underlying our meta-

model approach.  In the illustration, each of the vertical lines dividing the text boxes should 

be interpreted in the classic sense of “given” put forth in conditional logic.   

This structure posits that intent provides the impetus for deciding a force’s 

operational state.  However, since intent is a pure intellectual construct it is not explicitly 

evident in the physical world.  It must be communicated or transformed into action in order 

to become evident.  In doing so, some elements of intent are lost when married to a force’s 
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particular capabilities and resource constraints.  Regardless, such a cognitive transformation 

results in an observable force operational state as an aggregate framework for action.   

In concert with FM 3-0 [13], there are identifiable physical characteristics that enable 

one to distinguish between major force operational states.  For example, the footprint of a 

force, its speed of movement, its massing or un-massing, the types of equipment present, and 

so on are all characteristics that bound what a force can accomplish, all other things being 

equal (e.g., motivation, morale).  The proper structuring and control of these physical 

characteristics define tactics. 

If we assume a rational decision process on the part of a force command, it follows 

that the major operational state selected from those available is one that best represents their 

intent conditioned by pragmatic compromises the command must make.  Because true force 

intent is invisible to the observer, the observable characteristics of the chosen operational 

state serve as a necessary surrogate. This operational state defines physical actions taking 

place on the battlefield which are susceptible to detection, classification and identification by 

various types of sensor networks. 

 At the edge of these networks, sensors act as raw data generators, transforming 

physical indicators of presence and action into digital signals called sensor data.  Rather than 

explicitly decomposing the elements of sensor data and sensor data uncertainty as in [18], we 

instead conceptualize the action of sensors as gathering evidence in support of or against 

various state characteristics, called key descriptors, further defined in Section 3.  It is these 

key descriptors that allow one to distinguish between operational states.   

At the key descriptor level, the inference layers bifurcate into two major paths defined 

by the sensor network purpose.  Presumably, targeting networks would require threshold 

levels for individual elements of each key descriptor set to be met as conditions of 

acceptance.  The composite perspective of each set then provides a targeting profile that 

supports engagement criteria, target identification, ordinance requirements, and supplemental 

actions required.  On the other hand, and consistent with the focus of this paper, the key 

descriptor levels also support situational battlespace awareness.  Along this path, such levels 

facilitate prediction of an enemy operational state which logically acts as a surrogate for 

creating estimates of enemy intent as well. 
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Even in this much simplified inference pathway from true intent to estimated intent, 

one gains a sense of the many layers of inference abstraction being negotiated in the process 

of using sensor data to produce estimates.  The uncertainty introduced during each of the 

various transformations affecting an inferential transition between layers compounds the 

challenge.  Hence, one can certainly understand the belief that ‘more must be better,’ an 

axiom of enumerative logic that leads to extensive information requirements for battlefield 

sensor networks.   

By contrast, in the meta-model construction that follows, we aimed to minimize 

information requirements. Instead, we built an architecture predicated on the concept of 

gathering supporting data in an enumerative fashion and exploiting eliminative evidence in 

order to winnow the possible set of operational states. We relegate to the three probabilistic 

network learning models discussed in section 4 the task of dealing effectively with the 

underlying uncertainty present in such an approach. 

3. Information Meta-model Architecture 

In order to specify the information that a sensor-based system should acquire, it is necessary 

to first define and organize battlefield information in consideration of what is to be done with 

the information once it is obtained.  Here, we introduce a set of ontological constructs and 

rules for defining and deriving battlefield information in support of an information fusion 

process.  We use the term ‘ontology’ in the sense defined by Poli [17]: a theory of items and 

how to logically relate them.  This is a categorical viewpoint that seeks to identify and 

structure universal items present in the domain of battlefield sensor networks and 

information. 

This meta-model architecture affords a unifying framework that achieves several 

objectives.  First, it operates under the condition that information available for inference will 

be limited.  Second, it provides a fundamental definition of battlefield information that is 

directly coupled to estimating and predicting force operational state from low level sensor 

data.  Third, it can accommodate multiple and diverse sensor technologies as a result of 

focusing on the information conveyed and not the technology used to convey it.  Fourth, as 

demonstrated in the computational testing section later in this paper, it nicely accommodates 

several of the major network learning models used to accommodate inference under 
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uncertainty. And lastly, as we discuss later in the paper, it provides an effective operational 

definition for information advantage that can both guide future system development and 

supply a recipe for appropriate deception operations to complement major force operational 

states. 
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Figure 2.  Abstraction layers for estimating enemy intent using sensor networks. 
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By assuming that intent provides a complete and sufficient motivation for force action 

in a battlespace environment, we impose the condition that a body of force acts as a (possibly 

loosely) coordinated organization.  The totality of actions motivated by force intent define an 

operational state.  An operational state ultimately represents evidence supporting an 

underlying operational intent while intermingled with intentioned deception and operational 

errors.  Since battlefield sensors cannot discriminate between these elements, it seems 

reasonable to expect the structure of any battlefield information framework to somehow 

process all three in such a way that the actual operational state eventually becomes 

predominant.  We assume that deception and operational errors represent a minority 

propotion of the total evidence present on the battlefield based on the principles of warfare 

discussed in FM 3-0.  FM 3-0 also supports our assumption that, excepting minor variations 

in theme, the major number of independent (possibly unique) operational states a particular 

force is able to assume in a known battlespace is finite. 

3.1. Model structure 

The meta-model, M, we propose is concisely defined by a 5-tuple M= (S, V, K, O, E) that 

captures the necessary elements of the battlespace we need to identify operational state.  

Figure 3 shows a graphical illustration of the entity arrangement that follows.   In the 

ontological framework proposed by Wand and Weber [5], M corresponds to a modeling 

grammar.  In the following paragraphs, we define each member of this tuple using standard 

notation suggested by Wymore [22].  The underlying inference logic connecting each of the 

elements of information within this structure is Pascalian, meaning that support for or against 

a particular hypothesis concerning activity is accumulated over time.   

Let S represent a finite set of m sensors, S = {s1, s2, … , sm}. Here we refer to sensors 

in the generic sense allowing for the inclusion of human and other sources capable of 

generating  battlespace information products.  Each of these sensors performs a constrained 

functional transformation of activity in the physical world to various information products.  

These products can span a host of mediums and forms ranging from simple items of 

primitive data to complex ones such as summary reports constructed by multimode, multi-

process sensor networks.  As such, let V represent a finite collection of n possible sensor 
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information product values, V = {v1, v2,..,vn}, where sensor sm assuming the value vn is 

denoted by sm(vn). 

Let K represent a finite set of q key descriptors, K= {kd1, kd2, … , kdq}.  Each key 

descriptor acts as a discriminant function kdi = { (x, p) : x = sm(vn) ⊆ S X V,  p ∈ R  } by 

mapping subsets of feasible sensor-value pairs sm(vn) to a support value, p.  Each real value p 

represents a certainty metric associated with the truth-value of a particular key descriptor 

based on the presence of its associated sensor values.  We intentionally define p over the 

entire set of real numbers R  to accommodate various forms of uncertainty modeling.  

Specific implementations of this meta-model will most likely restrict p to a certain subset of 

R, as is the case with Kolmogorov probability measures [15] that limit the range of 

probability to 0 to 1.  

Let O represent a finite set of t mutually exclusive operational states, O = {o1, o2, …, 

ot}.  Each operational state characterizes a distinct, organized, major force action whose 

motivation is supplied by force intent.  Each operational state is of the form oi = { (y, p) :  y 

⊆ K,  ,  p ∈ R  },  

and maps subsets of key descriptor values to a final level of support value p in R .  The value 

p represents the certainty associated with the truth-value of an operational state. 

E represents an operational state estimation function, E = { (z, e)  :  z ⊆ O,  e = { e1, 

e2, …, et}, ei ∈ R} in which each value ei corresponds to the overall certainty of an 

operational state oi when evaluated in the context of all operational states.  This function is 

necessary for obtaining meaningful fusion results as one or more operational states may 

individually incur competing certainty values.  The estimation function provides flexibility in 

defining how each operational state’s certainty is interpreted with respect to other operational 

states' certainty.   For example, if the risk posed to friendly force for a particular operational 

state is high, then even a small level of certainty for that operational state may be more 

significant than a high level of certainty from a lower risk operational state. 

The definitions for K, O, and E represent the main mechanisms for data fusion in our 

model and are deliberately defined in general terms to enhance the meta-model’s 

applicability to a wide range of underlying fusion techniques.  This generalization avoids 

over-constraining how one defines either the mapping of sensors to key descriptors and key 

descriptors to operational states so that the meta-model can readily accept the wide variety of 
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such mappings offered by major network inference methods designed to deal with 

uncertainty.   
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Figure 3.  Entity arrangement of the information meta-model. 

 

Lastly, to avoid unnecessary complications at this stage of inquiry we chose to 

exempt explicit time factors from the various functional mappings used in our architecture.  

A straightforward modification of either estimation functions or key descriptor mappings can 

easily incorporate time effects such as the value of tactical information [25], or on the 

timeliness of data within the network flow [23], if such factors were of direct interest.  

The following examples illustrate how one employs this architecture to capture 

various information elements necessary to support effective inference concerning force 

operational state. 
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3.1.1. Example Model 1 

Let M1 = (S, V, K, O, E) and define each of the elements of M as follows:  S = {Acoustic1, 

Soldier1, Radar1, Acoustic2, Soldier2, Radar2}.   

Here, a sensor type and an index distinguish each sensor.  To clarify, Acoustic1 

indicates the first sensor in the class of acoustic sensors.   In this example, the sensors with 

subscripts equal to one are located on the west side of a hypothetical battlefield while the 

sensors with subscript equal to two are located on the east side of the battlefield.   

V = {vacoustic ∪ vsoldier ∪ vradar :   

vsoldier  ={tank, truck, aircraft, artillery_impact}  

vacoustic = {vehicle, aircraft, explosion}  

vradar = {friendly, enemy, unknown }} 

The domain of all possible sensor values is defined in terms of the possible values for each 

sensor type. 

 K = {{kd1, kd2, kd3,  kd4} : 

 kd1 = ( (x, p) : x = { (Soldier1(a1) , Acoustic1(a2) } , 

p ∈ RLS[-1, 1]; 

if a1 = tank and a2 = vehicle then p = 1.0,  

else p = 0.0), 

 kd2 = ( (x, p) : x = { (Soldier2(a1) , Acoustic2(a2) } , 

p ∈ RLS[-1, 1]; 

if a1 = tank and a2 = vehicle then p = 1.0,  

else p = 0.0), 

 kd3 = ( (x, p) : x = { Radar1(a1) } , p ∈ RLS[-1, 1]; 

if a1 = enemy then p = 1.0,  

else p = 0.0) 

 kd4 = ( (x, p) : x = { Radar4(a1) } , p ∈ RLS[-1, 1]; 

if a1 = enemy then p = 1.0,  

else p = 0.0)} 
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For this example, we define each key descriptor as a predicate logic formula that maps a 

subset of sensor-value pairs to a certainty factor measure adapted from that used in the 

MYCIN expert system [24].  A certainty factor of 1.0 represents absolute certainty that the 

key descriptor is true or present.  A certainty factor of –1.0 represents absolute certainty that 

the key descriptor is false, or not present.  A value of 0.0 represents complete uncertainty.   In 

this sense, the specific implementation of each function kdi is similar to rules used in a 

knowledge base or expert system. 

O = { {o1 , o2}: 

o1  = ( (x, p) : x ={kd1, kd3} , p ∈ RLS[-1, 1]; 

 if (kd1=1.0) and (kd3=1.0) then p = 1.0, 

else p = 0.0) 

o2  = ( (x, p) : x ={kd2, kd4} , p ∈ RLS[-1, 1]; 

 if (kd2=1.0) and (kd4=1.0) then p = 1.0, 

else p = 0.0)} 

To enhance readability we can optionally assign meaningful terms to each operational state 

such as: o1 = attack_east, o2 = attack_west .  We again define our functions as a series of 

predicate logic formulas and restrict values of p to represent a certainty factor.   

Finally, define the estimate function as a normalization of each state's certainty factor 

as: 

  E = {(x, (e1, e2)) : x = {o1, o2}; ei = oi / (o1 + o2) for i = {1, 2}} 

Figure 4 depicts a graphical version of the model for this example.  To fuse information with 

this meta-model, suppose that each of our sensors generates the following information: 

Soldier1(tank), Soldier2(truck), Acoustic1(vehicle) 

Acoustic2(vehicle), Radar1(enemy), Radar2(unknown) 

Calculating the values of key descriptors yields: { kd1, kd2, kd3, kd4 } = {1.0, 0.0, 1.0, 0.0}.  

These in turn produce the operational state values: {o1, o2} = {1.0, 0.0}.  From this result, we 

apply the estimation function and derive the following overall estimates for e1, and e2: {1.0, 

0.0}.  From these estimates, we infer that most likely enemy operational state is o1, or 

attack_west.  
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3.1.2. Example Model 2 

While Example 1 serves to illustrate the basic mechanics of the meta-model, it does 

not address one of the major difficulties in information fusion – uncertainty.  Model M1’s 

minimal set of sensors that defines each key descriptor is mutually exclusive.  Likewise, the 

minimal set of key descriptors that defines each operational state is also mutually exclusive.  

Under these conditions, identifying the enemy’s operational state is a relatively simple matter 

of detecting what is and is not present on the battlefield.  More interesting is the case where 

such sets possess elements that are not mutually exclusive – e.g. one or more sensors 

provides information in support or against more than one key descriptor, or one or more key 

descriptors provides information about one or more operational states.  As Antony stresses 

[12], this type of uncertainty is a likely result of any fusion process: 

 

“Despite a more global perspective and the use of all the available sensor derived 

information, the nondeterministic nature of the domain, and the largely exception-

based character of the reasoning process virtually assures that there will exist some 

degree of uncertainty in the fusion product.” 

 

This second example provides a more complicated scenario that demonstrates how the meta-

model can accommodate such uncertainty.  Figures 5, 6, and 7 show several “cartoon 

sketches” that best introduce the example.  We now formally introduce the model, M2: 

O = {o1 = withdraw, o2 = defend, o3 = west_attack, o4 = east_attack, o5 = dual_attack } 

S= {S1, S2, S3, S4, S5, S6 } 

V = {tank, fuel_truck, recon_vehicle } 

 

For ease of readability, we replace the mathematical definition of key descriptors with the 

following compact definition: 

(S1= x, S2 = x , … , Sn = xn) ⇒ pr(KDi) = p 
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This definition states that if each listed sensor value has the specified value, then KDi 

adopts a degree of certainty p (and adopts a value of zero otherwise).  We now define our key 

descriptors using this notation: 

 

K = {(S1= tank, S2 = fuel_truck) ⇒ pr(KD1) = 1.0 

  (Si = ∅ ∀ i = {3,..,7}) ⇒ pr(KD2) = 1.0 

(S2= tank, S3 = recon_vehicle, S4 = recon_vehicle) ⇒ pr(KD3) = 1.0 

(Si ≠ tank ∀ i = {5,6,7}) ⇒ pr(KD4) = 1.0 

(S3= tank, S6 = tank) ⇒ pr(KD5) = 1.0 

(Si ≠ tank ∀ i = {5,7}) ⇒ pr(KD6) = 1.0 

(S4= tank, S7 = tank) ⇒ pr(KD7) = 1.0 

(Si ≠ tank ∀ i = {5,6}) ⇒ pr(KD8) = 1.0 

(S3= tank, S5 ≠ tank, S6 = tank) ⇒ pr(KD9) = 1.0 

(S4= tank, S5 ≠ tank, S7 = tank) ⇒ pr(KD10) = 1.0 

(Si = tank ∀ i = {3,4,5}) ⇒ pr(KD11) = 1.0 

(S6= recon_vehicle, S7 = recon_vehicle) ⇒ pr(KD12) = 1.0 

(S3= tank, S4 = tank) ⇒ pr(KD13) = 1.0} 

 

We use the same compact form to specify our operational states: 

O = { (kd1=1.0,  kd2=1.0) ⇒ pr(withdraw) = 1.0  (r1) 

(kd3=1.0, kd4=1.0) ⇒ pr(defend) = 1.0  (r2) 

(kd5=1.0, kd6=1.0) ⇒ pr(west_attack) = 1.0  (r3) 

(kd7=1.0, kd8=1.0) ⇒ pr(east_attack) = 1.0  (r4) 

(kd9=1.0, kd10=1.0) ⇒ pr(dual_attack) = 1.0  (r5) 

 

  

Each of the first five rules for operational states exclusively define one particular state.  The 

key descriptors in these rules do not appear in any other rules.  We now define several 

additional rules containing key descriptors that provide supporting information to more than 

one operational state: 
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(kd11=1.0) ⇒ pr(dual_attack) = 0.5  (r6) 

(kd11=1.0) ⇒ pr(west_attack) = 0.5  (r7) 

(kd11=1.0) ⇒ pr(east_attack) = 0.5  (r8) 

(kd12=1.0) ⇒ pr(defend) = 0.1  (r9) 

(kd12=1.0) ⇒ pr(west_attack) = 0.3  (r10) 

(kd12=1.0) ⇒ pr(east_attack) = 0.3  (r11) 

(kd12=1.0) ⇒ pr(dual_attack) = 0.3  (r12) 

(kd13=1.0) ⇒ pr(dual_attack) = 0.33  (r13) 

(kd13=1.0) ⇒ pr(west_attack) = 0.33  (r14) 
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Figure 4 – Graphical Depiction of Example Model M1

 

(kd13=1.0) ⇒ pr(east_attack) = 0.33  (r15) 

      pr(ok) = pr(ok)|ri + pr(ok)|rj –  

    pr(ok)|ri × pr(ok)|rj    ∀ k }   (r16) 
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The last element in O, (r16), which commonly appears in expert systems such as 

MYCIN, is needed to resolve contradictory levels of support that might arise in the 

evaluation of r1 - r15.  For example, when presented with KD9, KD10, and KD11, rules r5, r6, r7, 

and r8 would all trigger. Two of these rules, r5 and r6, provide a contradictory certainty factor 

relevant to operational state o5 (dual_attack).  Rule r5 yields a certainty factor of 1.0 while r6 

yields a certainty factor of 0.5.   The estimation e(o5) assumes a different value depending on 

which rule triggered first.  The formulation of r16 allows for the meaningful combination of 

all applicable values independent of sequential order of activation.   

 

  

 

Figure 5.  Example Model M2 (Legend and Withdraw State) 
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Figure 6.   Example Model M2 (Defend and West Attack States) 
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Figure 7.   Example Model M2 (East and Dual Attack States) 
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 Finally, we define an estimator function as a normalizing function across all 

operational state values: 

E = {(x, (e1, e2, ..., e5)) : x = {o1, o2, … , o5}; 

   ei = oi / (o1 + o2 + o3 + o4 + o5 ) for i = {1,2, .. , 5} 

When this model is presented with a piece of new information: S2(tank), support is provided 

for {KD2, KD4, KD6, KD8 }.  However, these KDs do not activate any of the rules in O.  

Therefore, the following probabilities are assigned to each operational state: 

pr(oi) = 0.0 ∀ i = {1, …,5} 

Suppose now that additional information becomes available: S2(tank), S3(recon_vehicle), 

S4(recon_vehicle), which activate the set {KD3, KD4, KD6,  KD8 }. 

This set of key descriptors uniquely satisfies r2 , so we update the certainty factor of 

o2 (defend) to 1.0.  Likewise, pr(oi)  ∀ i ≠ 2 remains at 0.0.  Updating the values of E yields 

the following estimates (ei) for each operational state – {0.0 , 1.0, 0.0, 0.0, 0.0 }.  From this 

result, we deduce that the enemy’s operational state is to defend. 

Assuming that the battlefield situation continues to develop, suppose that new 

information is generated into the sensor network:  S2(tank), S3(tank), S4(tank), S6(tank), 

S7(recon_vehicle).  These sensors, activate {KD5, KD6,  KD9 , KD13 }, and this set of key 

descriptors satisfies rules r3, r13, r14, and r15.  Note, our combining rule, r16 must be applied to 

resolve the conflict of r3 and r14.   The resultant values for O are: 

pr(withdraw) = 0.0 

pr(defend) = 0.0 

pr(west_attack) = 1.00 

pr(east_attack) = 0.33 

pr(dual_attack) = 0.33 

Applying the estimation function E yields the following estimates for each 

operational state:  {0, 0, 0.60, 0.20, 0.20}.    From this result we deduce that o5, or 

dual_attack, is the actual operational state. 
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4. Computational Experiments 

As stated earlier in the paper, our interest in computational testing is two-fold: to examine 

how easily the major network inference models can exploit the meta-model framework, and 

to assess the quality of each of their resulting inferences concerning a force’s actual 

operational state in the face of inherent uncertainty.   

We designed a web-based computational experiment [11] involving three major 

network inference models.  The experiment featured an interactive Java-based simulation of 

an unopposed force executing one of thirty-four possible missions.  These missions, authored 

by individual human interaction with the simulation, reflected possible adaptations of one of 

five force operational states –Sustainment, Decisive Attack, Shaping Attack, Decisive 

Defense, and Shaping Defense [13].  Within this test environment, each participant had the 

ability to structure their force layout and movement in any way they desired so long as they 

arrayed these activities to achieve the assigned mission. 

Once an operation was executed, a set of simulated sensors gathered evidence of low-

level activity for several hundred enemy agents while continually updating a set of sixteen 

key descriptors.  We forged these key descriptors during pre-experiment tuning by applying 

expert tactical knowledge to a set of test missions.  For each mission, the three simultaneous 

implementations of the meta-model used these key descriptors to identify the actual enemy 

operational state.   The following paragraphs briefly describe each implementation.  While a 

full discussion and design specification for each of the network learning models is beyond 

the scope of this paper, it is available in [11] and can be supplied upon request of the authors. 

 The first network learning model implementation of the meta-model featured a 

Bayesian Belief Network (BBN) design.  This implementation designates each of the five 

possible operational states as one of five hypotheses.  Each hypothesis is assigned a preset 

prior probability based on the enemy’s last known operational state, the initial prior being the 

usual naïve neutral.  The design establishes conditional probabilities for each operational 

state-key descriptor pair reflecting the likelihood of each state given the presence of the key 

descriptor.  Figure 8 illustrates a scaled-down, three hypotheses version of this design.   

 During simulation, the BBN implementation executes the following algorithm.   As 

the enemy carries out his mission, the fusion coordinator updates key descriptor values based 

19 



on sensor detection of enemy agents.  The fusion coordinator then computes a posterior 

probability by applying standard Bayesian updating methods [8] to the previously described 

BBN.  Once the fusion coordinator obtains a certain threshold in posterior values (i.e. one 

operational state hypothesis dominates the others), a new set of priors is loaded and the 

algorithm repeated.   

The second implementation featured a Probabilistic Modal Logic (PML) design 

largely championed by Halpern [7].  This design conceptualizes operational states as possible 

worlds – one world for each of the five possible operational states introduced previously.  

The PML relationship function between the possible worlds reflects the likelihood that, given 

the enemy’s perceived operational state, the enemy is actually in another alternate 

operational state.  We created these relationship functions based on the similarities of the five 

operational states to one another in both time and space dimensions.  For each world, we 

designated a compact rule set that uses the support for specific key descriptors to reason 

about the enemy’s next state.   

 The PML fusion algorithm functions similarly to the BBN algorithm.  The fusion 

coordinator first establishes a perceived operational enemy state as the current world.  The 

algorithm then updates key descriptor values based on simulation events, and uses these 

values to trigger the specific rule sets in the current world and all adjoining possible worlds.   

The algorithm then uses combined reasoning across all worlds to arrive at truth-values for the 

enemy’s next state.  Once one particular next state probability dominates, the fusion 

coordinator establishes a new current world and repeats the algorithm. 

 The third implementation used a Fuzzy Logic approach [20].  The design centers 

around thirty-two fuzzy logic rules.  Each rule’s antecedent includes one fuzzy variable for 

the current state, and one or more fuzzy variables for the key descriptor values.   The rule 

consequents contain one or more variables for the next state.  The current state and next state 

fuzzy variables contains five fuzzy sets, where each fuzzy set defines one possible 

operational state.  Given an assumed operational state, the membership function for each of 

these five sets indicates how much each possible state in the universe of discourse satisfies 

the assumed operational state.  This allows the model to capture the "likeness" of operational 

states that might be similar in time or space.  For example, Figure 9 depicts a sustainment 

fuzzy set for the Current State and Next State fuzzy variables.  
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The Fuzzy Logic algorithm first establishes a value for the Current State fuzzy 

variable based on the enemy’s last known operational state.  The fusion coordinator then 

updates key descriptor fuzzy variables based on sensor perception of enemy agents inside the 

simulation.  The fusion coordinator then evaluates each fuzzy rule, and uses Fuzzy Logic to 

combine the rule conclusions into a combined estimate about the enemy's next state.  If one 

of these estimates exceeds the decision threshold, then the fusion coordinator updates the 

current state fuzzy variable and repeats the algorithm.   

 

4.1. Computational Results 

 As previously mentioned, we used a portion of our original data to tune each meta-

model implementation before opening the experiment to the test authors.  This tuning phase 

involved simulating twenty-five missions (five randomly selected from each operational 

state) and modifying various parameters in each implementation (e.g. conditional 

probabilities in BBN, rule sets in PML, fuzzy membership functions in Fuzzy) until the 

implementations performed in an acceptable manner.  We defined acceptable performance as 

an implementation’s estimated operational state equal to the actual enemy operational state at 

simulation termination for all tuning missions.  

Following this tuning, thirty-four new missions were introduced by various authors, 

each from one of the various five operational states.  We again note that authors were 
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Figure 8.  Meta-model BBN implementation. 
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Figure 9.  Sustainment fuzzy set used for meta-model implementation. 

 

 

to position their forces and their movement in any way desired, no matter how unorthodox 

their choice, as long as it was consistent with achieving the mission.  Our desire was to not 

constrain the boundaries of the operational state space any more than absolutely necessary so 

that we adequately stressed the meta-model framework.
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MISSION # BBN PML FUZZY
#2329 0 0 0
#9473 0 0 0
#1010 0 0 0
#5100 0 0 0
#7338 0 0 0
#7306 0 0 0
#0285 0 0 0
#6018 0 0 0
#6463 0 0 0
#4263 0 0 0
#2772 0 0 0
#5265 0 0 0
#4007 0 0 0
#4402 0 0 0
#7581 0 0 0
#0179 0 0 0
#2990 0 0 0
#1301 0 0 0
#1746 0 0 0
#6087 0 0 0
#5995 0 0 0
#7446 0 0 0
#6312 0 0 0
#9026 1 1 1
#7733 0 0 0
#2775 0 0 0
#7266 0 0 0
#5412 1 1 1
#3668 0 0 0
#0810 1 1 1
#9437 0 0 0
#8069 0 0 0
#8214 0 0 0
#9360 0 0 0
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MISSION # BBN PML FUZZY
#2329 0 0 0
#9473 0 0 0
#1010 0 0 0
#5100 0 0 0
#7338 0 0 0
#7306 0 0 0
#0285 0.0889 0.0889 0.037
#6018 0.0343 0.0343 0.0294
#6463 0.049 0.049 0.0455
#4263 0.1213 0.1011 0.1169
#2772 0.254 0.254 0.1111
#5265 0.2761 0.2761 0.2515
#4007 0.0482 0.0482 0.0442
#4402 0.2117 0.2117 0.1892
#7581 0.1416 0.1416 0.2124
#0179 0.1767 0.1767 0.1729
#2990 0.1692 0.1662 0.8852
#1301 0.1232 0.1327 0.6351
#1746 0.0814 0.2073 0.601
#6087 0.0389 0.0389 0.6721
#5995 0.4405 0.4277 0.8103
#7446 0.4751 0.9669 0.4807
#6312 0.8157 0.959 0.9556
#9026 1 1 1
#7733 0.053 0.0436 0.0398
#2775 0.381 0.381 0.381
#7266 0.2584 0.2584 0.2472
#5412 0.9669 1 0.5626
#3668 0.2491 0.4555 0.3701
#0810 1 1 1
#9437 0.1741 0.1741 1
#8069 0.3261 1 0.3435
#8214 0.7343 0.7762 0.7762
#9360 0.3723 0.3333 0.3936
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0

Table 1.  PM4 results.    Table 2.  PM6 results. 
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4.2. Estimating Operational State 

During each simulation, nine performance measures were initially developed to 

determine the effectiveness of each implementation [11] with respect to various concerns.  Of 

the nine used, two measures are significant for our purposes herein – Performance Measure 4 

(PM4) and Performance Measure 6 (PM6).  PM4 was a modification of the tuning criteria, 

measuring how far out of first place (in a ranking of most likely states) the actual operational 

state is at simulation termination (less is better).  PM6 measured the fraction of time the 

implementation’s estimated state did not match the enemy's actual state during the entire 

simulation run (less is better).    

  A summary of the simulation results are depicted in Tables 1 and 2.   Examining PM4 

(Table 1), we see all three implementations successfully predicted the actual enemy 

operational state at termination in thirty-one of thirty-four trials (97% accuracy).  Of the three 

mistaken estimates, all three coordinators ranked the actual operational state second at 

simulation termination on missions  #9026 and #0810, while the Fuzzy coordinator alone 

correctly identified decisive attack on mission  #5412. 

The accuracy of PM4 validates our principal research objective, to wit: the meta-

model’s ability to fuse low-level sensor information into a meaningful and accurate result 

when our interest is a static prediction of operational state.  In this capacity all three of the 

network inference methods were able to ultimately resolve operational uncertainty by sensing 

enemy activity alone.  Additionally, the consistency in PM4 performance across all three 

implementations suggests that a strategy of adopting a unifying and implementation-

independent quality in the meta-model approach to sensor fusion makes sense.  Furthermore, 

it provides a logical architecture for developing pure information models of military 

operations. This capability is essential for an accurate understanding of how future forces 

might leverage information to compensate for reductions in more traditional force-

effectiveness dimensions such as pure power and lethality afforded by heavily armored and 

fitted force. 
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 PM6 provides more information on how the implementations performed throughout 

the simulation.  Here, implementation performance varied greatly among the inference 

models.   

 

-1 -0.5 0 .5
PML - Fuzzy

-0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 .1
BBN - PML

-1 -0.8 -0.6 -0.4 -0.2 0 .2 .4 .6
BBN - Fuzzy

 
 Shapiro-Wilk W Test

  0.801234
W

  <.0001
Prob<W

 

 Shapiro-Wilk W Test

  0.446877
W

  <.0001
Prob<W

 

 Shapiro-Wilk W Test

  0.721765
W

  <.0001
Prob<W

 
Figure 10.  Shapiro-Wilk goodness-of-fit testing for normality of difference distributions. 

 

 

Some implementations did well predicting some operational states, while others did 

not.  For example, all implementations successfully predicted the sustainment missions 

across all mission lifetimes, and performed well throughout the simulation for defense, 

deliberate attack, and shaping attack as well.   However, during retrograde missions, the BBN 

implementation spent approximately 30% of the simulation time in an incorrect estimation 
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mode of the actual operational state, while the PML and Fuzzy implementations spent 41% 

and 72% of the simulation time, respectively, in an incorrect estimation state. 

To assess whether the observed differences in PM6 were statistically significant, we 

turned to a paired testing because the results are linked via individual authors.  The 

assumption of normality on the distribution of computed differences required by both the 

Student’s t-Test and Tukey-Kramer Highest Significant Difference (HSD) was unsupported 

by the data when examined with both Shapiro-Wilks (Figure 10) and Ryan-Joiner (Figure 11) 

goodness-of-fit tests.  
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Figure 11.  Ryan-Joiner test results for normality of difference distributions: all p-values 

<0.010. 
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All Missions N n’ W p-value 

BBN – PML 34 13 19.0 0.069 

BBN – Fuzzy 34 25 105.0 0.125 

PML - Fuzzy 34 24 146.0 0.920 

Defense  

BBN – PML 10 1 1.0 1.000 

BBN – Fuzzy 10 10 46.0 0.067 

PML - Fuzzy 10 10 41.0 0.185 

Retrograde  

BBN – PML 7 6 4.0 0.208 

BBN – Fuzzy 7 7 0.0 0.022 

PML - Fuzzy 7 7 5.0 0.151 

Decisive Attack  

BBN – PML 6 3 1.0 0.423 

BBN – Fuzzy 6 4 7.0 0.584 

PML - Fuzzy 6 4 10.0 0.100 

Shaping Attack  

BBN – PML 5 3 1.0 0.423 

BBN – Fuzzy 5 4 0.0 0.100 

PML - Fuzzy 5 3 2.0 0.789 

 

Table 3.  Wilcoxon signed-rank test for differences in median performance on PM6. 

 

We instead used the more robust nonparametric Wilcoxon signed-rank test [30] 

which does not require the normality assumption. The results in Table 3 support that the 

differences observed in PM6 are not statistically significant for standard values of 

significance ( 1.001.0 ≤≤α ), although the small sample sizes lead us to conclude this with 

caution. 

In terms of the observable differences on PM6, we believe that culpability for this 

behavior is attributable to three principle causes.  First, while the static criteria of end-state 

estimation imbedded in the tuning phase implicitly drives each coordinator to achieve a 

successful prediction of operational state as soon as possible via a minimization, it is 

inadequate to the task of maintaining a lock onto such a prediction enroute to this state.  The 
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tuning phase for this experimentation adhered to currently accepted conventions [31] by 

using 25 missions (5 per operational state) to tune the parameters of each coordinator until 

each of the coordinators successfully estimated the actual operational state at simulation 

termination.  These parameters included the conditional probability values in the Bayesian 

coordinator, the state transition probabilities in the PML coordinator, and the fuzzy variable 

membership functions in the Fuzzy coordinator.  We then discarded the 25 missions 

comprising this training set, and used 34 new user-generated missions to assess our meta-

model architecture.  We made no attempt to measure or control coordinator behavior prior to 

termination because the issue at-hand concerned assessing the meta-model’s capability of 

accommodating each of the coordinators.  In retrospect, this static tuning limits our ability to 

make maximum use of this architecture.  Investigation into appropriate alternative tuning 

methods that focus on improving inference model performance during the simulation’s state 

transition stages is on-going. 

Secondly, the inherent difference in the manner in which each coordinator represents 

uncertainty induces a natural variability in their comparative performance.  The Bayesian 

coordinator uses a pure mathematical definition of probability as a measure of uncertainty 

[25].  In the PML coordinator, the rapid growth in the key descriptor state space forced us to 

abandon probability-based transitions in the face of less mathematical, albeit time proven, 

certainty factors advocated in the literature [7].  The Fuzzy model uses yet another definition 

of uncertainty altogether [32].  These differences reflect accepted applications of these 

frameworks in uncertainty modeling [28].  However, there is an emerging interest [29] in 

examining the interfaces between phenomena, uncertainty calculi and observers to move 

away from mutually exclusive approach to imbedded representations.  For information fusion 

within this meta-model architecture, perhaps a hybrid approach of the three inference 

methods would prove more effective still. 

Lastly, we used a different definition of key descriptor values in the Fuzzy model.  In 

the Bayesian and PML models, key descriptor values were calculated as strict binaries (i.e., 

present or not-present).  In the Fuzzy model, each key descriptor was represented as a fuzzy 

variable.  For example, consider KD7, which indicates when the force center is in the 

southwest quadrant of the simulated battlefield.  In the Bayesian and PML models, KD7 was 

activated when the center was exactly across an imaginary set of grid lines.  In the Fuzzy 
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model, the enemy center could assume varying degrees of “southwestness” as the center 

approached the same grid lines.  Fuzziness at the key descriptor level of the meta-model 

directly translates into the calculation of the final predicted enemy state fuzzy variable when 

fuzzy rules are evaluated and combined; as a result, it could account for some of the observed 

differences in performance overall. 

5. Discussion 

Existing information fusion techniques, comprised of mostly augmented human 

systems, are largely bottom-up driven, consequently producing localized results with regard 

to time and space.  By this we mean that with the exception of specialized national and 

theater assets, battlefield information is generally fused along echelons of command and unit 

size.  Each commander analyzes sensor data within his/her purview, and reports an opposing 

force’s activities within the context of their constrained view of the battlefield.  The top-

down manner in which we derive operational states from enemy intent, and key descriptors 

from operational states allows one to specify exactly how and where low-level sensor 

information products are combined, thereby reshaping the typical localized filtering process 

and transcending unit boundaries, locations, and echelons.   In this scenario, a satellite image 

might very well combine with a soldier’s report on one side of the battlefield to assemble 

evidence for a key descriptor.  Thus, the meta-model’s underlying fusion approach is directly 

aligned with the type of future battlespace structure envisioned under current force 

transformation efforts. 

Our choice to develop this meta-model architecture with a focus on a single force’s 

behavior increases its applicability for modeling purposes.  By creating a modular unit that 

can be combined with other meta-models, the architecture can be used in pure information-

based force-on-force simulations.   Moreover, by focusing one meta-model on opposing force 

operations and a separate one on friendly force operations, a practical operational measure 

for assessing information advantage results.  In the following discussion, we assume that we 

have applied an alternative tuning method for the parameters of the network learning model 

as described earlier.  
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5.1. Information Advantage 

Using the meta-model architecture, suppose that we select a particular network inference 

method, say BBN, for its ability to out-perform the others by having a higher rate of 

accurately estimating and locking onto the actual operational state of a force in the context of 

the force’s specific battlespace presence in a minimal amount of time.  Herein we assumed a 

conventional force presence in which five force operations defined the suite of possible 

operational states.1   

Let { })(,),(),( 21 vsvsvsIC fF K=  represent the set of intelligence gathering capabilities 

for friendly forces, and   do so for an opposing force (Figure 12).  

These capabilities are represented directly in each meta-model through the specification and 

distribution of sensor types (S) and the associated sensor information value mapping 

functions (V). 

{ )(,),(),( 21 vsvsvsIC oO K= }

Select any pair of potential battlespace force-on-force friendly ( ) and opposing 

force ( )operational states.  Let 

fO

OO ( )OIC O
F

*τ   and ( )fIC O
O

*τ  represent the time that each meta-

model locks on to its estimate of the actual operational state for opposing forces and friendly 

forces, respectively.  The information asymmetry existing in the battlespace through 

inference on these operational states is measured by the difference: 

( ) ( )fICOIC OO
Of

*** τττ −=∆ .  When , information asymmetry exists in favor of 

friendly forces.  The structure of friendly intelligence gathering capabilities provides them 

with an ability to accurately estimate the opposing force operational state  in less time 

than that required by the opposing force to do the same regarding .  Conversely, when 

 information advantage goes to the opposing forces.  Parity exists when . 

0* <∆τ

OO

fO

0* >∆τ 0* ≈∆τ

                                                 
1 The meta-model could just as well have used stability or sustainment operations as the focus of inference 

estimates, decomposing these into sets of key descriptors and adjusting the uncertainty metrics accordingly. 
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Figure 12.  Asymmetric intelligence gathering capabilities. 

 

To assess the overall force capability in this regard, one could apply an aggregate 

measure across all possible pairs of operational states.  However, because this would tend to 

hide important operational weaknesses, a better approach would be to simply profile the 

comparison in using a tornado graph or similar display, hypothetically shown in Figure 13.  

This approach would highlight operational strong and weak points in this regard, illuminate 

where intelligence capabilities require augmentation, and suggest how one might consider 

cross-leveling capability to achieve a more globally strategic information advantage for the 

force.  

For the pairwise comparisons of hypothetical friendly operational states (OF*) to 

opposing force operational states (OO*) shown in Figure 13, we would conclude that the 

opposing force has a complete information advantage when it is conducting OO3 since the 

friendly forces at best achieve parity when choosing to conduct OF1 in response.  Friendly 

forces have a strong information advantage against OO2 except for the case when it is paired 

with OF1. 
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Figure 13.  Hypothetical information asymmetry profile of force on force. 

 

In 2 of the 3 missions,  indicates that friendly forces should possess an accurate estimate 

of opposing force operational state much sooner than theirs is known to the enemy. Against 

OO1, friendly forces again have an information advantage except for the case when OO1 is 

paired with OF3.  The prescription for mitigating the information asymmetry in any one of 

these pairwise comparisons is to adopt one of the three strategies noted earlier. 

*τ∆

We note for completeness that any changes in intelligence capability would 

necessitate a change in sensor specification along with sensor value functions in the meta-

model which, in turn, would induce a response in ( )OIC O
F

*τ  or ( )fIC O
O

*τ  as appropriate.  

It is attractive to further consider the opportunity to rank order the effectiveness of 

proposed changes in capability via a marginal returns assessment, using either improvements 

in sensor capability: ( ) fOIC vO
F

∂∂ *τ , or sensor type: ( ) fOIC sO
F

∂∂ *τ .  Both quantities are 

obtainable if one restricts the support for key descriptors to behave monotonically or quasi-

monotonically.  If the underpinning logic is purely enumerative, this is the case; more is 

better, or at least more is not worse with respect to levels of support for key descriptors.  

However, as one incorporates  eliminative logic into the structure, the monotonicity of kd 

behavior would depend upon the estimation function as well.   And, while imposing 
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diminishing marginal returns to information gained through the sensor-based system [27], the 

assessment results in this regard would help systems designers prioritize investment 

decisions under the usual ‘bang-for-the-buck’ criteria. 

Since an operational state is solely a function of a core minimal set of key descriptors 

that allows an observing system to distinguish between states, the meta-model architecture 

provides specific guidance as to how to establish and maintain information advantage:  

reduce the opposing forces intelligence gathering capabilities ( )OIC , maintain and/or 

increase the span and intensity of friendly intelligence gathering capabilities , or 

engage in deception operations that create evidence that most effectively support those key 

descriptors not part of the actual operational state or most effectively contradict evidence 

supporting the actual operational state.  While the first two options follow directly from the 

immediately preceding discussion, the latter option is a uniquely enticing aspect of the meta-

model.  The mapping between observable battlespace actions and operational state key 

descriptors allows one to couple efficient complementary deception operations to specific 

friendly force operations with an eye towards minimizing the effectiveness of opposing force 

inference in a global fashion spanning the entire battlespace.  Developing such a strategic 

deception planning model is not without its challenges, however, and the effectiveness of any 

deception operation is recognizably dependent upon the ability of the opposing force to 

receive and process it.  This line of reasoning is currently under investigation by the authors. 

( FIC )

The meta-model architecture naturally frames the challenge of designing deception 

operations as a strategic issue in consideration of the specific operational states in existence 

on the battlefield.  Providing evidential support for key descriptors in deception operations is 

strongly dependent upon the opposing force’s ability to receive the signals being sent, 

regardless of the specific channels selected to provide this mis-information.  Potential 

misinformation supplied to the battlespace by friendly intelligence assets can also be 

analyzed for effectiveness based on their measurable impact on ( )fIC O
O

*τ .   

6. Conclusion 

Possessing an accurate estimate of an opposing force’s actual operational state 

provides friendly commanders an ability to shape friendly battlefield activities to disrupt this 

operational state and hence alter enemy-generated activities as a consequence.   
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The meta-model architecture we introduce in this study provides a framework within 

which one can accurately estimate an opposing force’s actual operational state in concert 

with any one of a number of automated network learning systems.  This architecture also 

provides a methodology for determining the degree of information asymmetry between pairs 

of competing operational states, leading to a suggested methodology for structuring efficient 

strategic deception operations.   Commanders understanding that this information asymmetry 

is directly linked to evidential support for key descriptors could shape battlefield activities to 

disrupt the opposing force’s operational state.  The point we are making here is subtle.  We 

are advocating shifting the battlespace focus from responding to and interdicting enemy 

activities to estimating and disrupting enemy operational states, which naturally aligns 

mission focus at the same conceptual level of abstraction as command intent and thereby 

directly supports effects-based operations. 

A force’s operational state can be significantly influenced by a host of complicating 

factors not considered in this study, such as training, motivation, capability, environmental 

conditions, and of course its adversary’s operational state.  Some of these complicating 

factors, in particular those that have elements that are directly observable by sensor systems, 

can be accommodated in the meta-model in a straightforward manner by expanding the set of 

key descriptors accordingly.  Others require significant modifications to the meta-model.  As 

an example, for this architecture we implicitly assume that a force’s operational state is 

independent of that chosen by its adversary since there are no looping constructs in the 

inference chain shown in Figure 1.  However, if evolving force interaction is of interest in 

further work, then this assumption should be avoided so that first and possibly second order 

feedback behavior is considered in the inference chain as well. One could furthermore 

incorporate expert opinion into the architecture by applying selective convex weighting 

coefficients to the individual operational states within the model’s estimation functions.  

Such a preferential weighting could also be applied to the estimation functions themselves 

using methods specifically designed to aggregate subjective distributions under uncertainty 

[33]. 

Fusion systems using the meta-model architecture can define a discrete and minimum 

set of battlefield sensors and key descriptors that completely differentiate all possible 

opposing force operational states.  To accomplish this, one could adopt a two-stage optimal 
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matching of available sensors to key descriptors and a matching of key descriptors to 

operational states in order to reduce the sets of key descriptors used in a meta-model to their 

minimum size.   Possible optimality objectives under such an approach could include 

minimizing total sensor quantity, minimizing operational state uncertainty, maximizing 

sensor redundancy, or minimizing ontological overlap [34].  This final objective is the logical 

analog to maximizing mutual exclusivity between key descriptor sets.  One could also 

consider applying a principle of diminishing marginal returns under constrained time-space 

considerations in order to identify efficient allocation of sensors [27]. 

Force designers could easily make use of this information to establish guidelines for 

sensor survivability, sensor scheduling, and sensor communication networks [26].  Since the 

meta-model framework is inclusive of any type of sensor including human, mixed-mode and 

composite suite design is also afforded by the results.  Since the meta-model, culling as it 

does from deployed systems those that have very low marginal contributions to inference, 

can yield information about how much each sensor contributes to the operational state 

estimation process, one might use the meta-model architecture as a tool for evaluating an 

existing sensor organization. 

Finally, we note that successfully using this architecture for fusing battlefield 

information depends on carefully constructing definitions for key descriptors with the goal of 

capturing a core set of differentiating elements.  While our characterization of key descriptors 

based on FM 3.0 appears sufficient for this study, we suspect that more sophisticated 

definitions for these descriptors could improve the estimations provided by the inference 

models, especially for those operational states having less well-defined space and time 

characteristics, such as a retrograde mission.  This option is currently being explored in 

concert with doctrinal researchers at the US Army War College in concert with the Office of 

Force Transformation’s Transformation Research Program. 
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