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Abstract

This thesis investigates the application of acoustic measurements in the deep and shallow
ocean to infer the sound velocity profile (svp) in the seabed. For the deep water ocean, an
exact method based on the Gelfand-Levitan integral equation is evaluated. The input
data is the complex plane-wave reflection coefficient estimated from measurements of
acoustic pressure in water. We apply the method to experimental data and estimate
both the reflection coefficient and the seabed svp. A rigorous inversion scheme is hence
applied in a realistic problem.

For the shallow ocean, an inverse eigenvalue technique is developed. The input
data are the eigenvalues associated with propagating modes, measured as a function of
source-receiver range. We investigate the estimation of eigenvalues from acoustic fields
measured in laterally varying environments. We also investigate the errors associated
with estimating varying modal eigenvalues, analogous to the estimation of time-varying
frequencies in multicomponent signals, using time-varying autoregressive (TVAR) meth-
ods. We propose and analyze two AR sequential estimators, one for model coefficients,
another for the zeros of the AR characteristic polynomial. The decimation of the pressure
field defined in a discrete range grid is analyzed as a tool to improve AR estimation.

The nonlinear eigenvalue inverse problem of estimating the svp from a sequence of
eigenvalues is solved by iterating linearized approximations. The solution to the inverse
problem is proposed in the form of a Kalman filter. The resolution and variance of
the eigenvalue inverse problem are analyzed in terms of the Cramer—-Rao lower bound
and the Backus-Gilbert (BG) resolution theory. BG theory is applied to the design
of shallow-water experiments. A method is developed to compensate for the Doppler
deviation observed in experiments with moving sources.

Thesis Supervisor: George V. Frisk
Title: Scientist Emeritus, WHOI
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Chapter 1

Introduction

1.1 Background

This thesis deals with the problem of measuring geoacoustic properties of the ocean
subbottom, the region of the seabed close to the water interface, from acoustic mea-
surements in the water column. One important problem in Ocean Acoustics, as well as
other branches of Acoustics, is the prediction of the sound field produced by a source in
a given environment, the so called forward problem. The environment is characterized
by its geometry and the physical properties of the water and surrounding media. In the
ocean the geometry is determined by the bathymetry, the varying sea surface position,
and the location of source and receiver.

For sound propagation prediction purposes and at sufficiently low frequencies, the
sea surface is reasonably and simply modeled as a plane, pressure release surface where
the acoustic pressure is zero. The water column and the seabed require a more complex
description. In the water, the most important parameters are the sound velocity and
absorption coefficient. Sediments may, in many cases, be also characterized as a fluid,
but shear speed and absorption become important depending on the frequency and how
close the source and receiver are to the bottom. More elaborate sediment models may

require 13 or more parameters[72]. The sensitivity of the acoustic field with respect to



these geoacoustic properties suggests the idea of using sound measurements to infer their
values, the geoacoustic inverse problem.

The idea is far from new. For decades marine geophysicists have used sound pro-
duced in the water to infer properties of the sea floor, and low frequency echo sounders
or subbottom profilers have been used to obtain pictures of the bottom structure[10].
For the purpose of underwater propagation prediction, however, the subbottom must
be characterized down to tens of meters below the water interface, not the kilometers
geophysicists usually focus on. In the eighties, for example, a set of experiments were
conducted in the Icelandic Basin, ultimately to characterize the seabed for application
to propagation modeling [21]. When the US Navy started focusing on littoral warfare,
the Office of Naval Research sponsored efforts to measure the properties of sediments
in shallow waters down to a few hundred meters[71]. The geoacoustic inverse problem
is an active area in Ocean Acoustics. The inversion for the sound velocity profile in the
subbottom, modeled as a fluid, from acoustic data in water is the focus of the thesis.

Inverse methods can be broadly classified in three groups. One group includes tech-
niques that solve iteratively the forward problem. Starting from a background environ-
mental model, the forward solution is compared to a set of noisy measurements and the
environmental parameters are adjusted in order to minimize a measure of the fitting er-
ror. These parameter search/optimization methods may involve hundreds of thousands
of forward solutions, and are computationally intensive. They are the most used today
by the Ocean Acoustics community, as can be inferred from the large number of books,
articles, and conference presentations on the subject[9, 26, 74, 13].

On the other extreme are the methods based on a rigorous or exact formulation of the

inverse problem[70, 45]. These theories relate some quantity inferred from the measured

field (e.g., reflection coefficient, normal mode characteristic wavenumbers) to the desired
property (sound velocity profile). Conditions for existence and uniqueness of solutions
are usually established. The exact methods are developed for idealized conditions and

require data whose measurement may not be feasible. Measurement error (noise) is not




usually considered.

Perturbative inverse techniques[43, 67, 61] provide a compromise between exact
methods and those based on parameter search/optimization. The perturbative ap-
proach relies on the fact that the typical range of sound velocities and densities in
the ocean and seabed are small compared to their mean value. Contrary to the pa-
rameter search/optimization methods, perturbative techniques are easily implemented
and computationally inexpensive (the solution of the wave equation is computed a small
number of times). One advantage over the exact methods is that measurement errors

can be easily dealt with.

1.2 Thesis Overview

Exact formulations may lead to effective sound velocity profile measurement techniques
that do not depend on initial guesses of the solution or its properties, and for which
the conditions for uniqueness of the solution, if not attainable, are at least known. The
mathematical framework make them suitable candidates for reference inverse methods.

Chapter 2 discusses the application of an exact inverse theory to actual experimental
data. The exact theory was developed by Merab[45] and is based on the work of Gelfand
and Levitan[25] developed in the context of potential inversion from scattering data in
Quantum Mechanics. The input data required by Merab’s method is the complex plane-
wave reflection coefficient of the bottom.

The measurement of the magnitude and phase of the bottom reflection coefficient is
an important issue in ocean acoustics by itself. In Chapter 2, a technique developed by
Frisk and co-workers[22, 46] is applied to the measurement of the reflection coefficient
using monochromatic acoustic data from the deep water experiment at the Icelandic
Basin described by Frisk, Doutt, and Hays[21].

Apparently, there is a view in the Ocean Acoustics community

"that there is a difficulty in applying rigorous inversion schemes in realistic

10



problem, as the latter require much more information than is available in the

experiments|74, p. v.|.”

As shown in Chapter 2, this is not necessarily true. The reflection coefficient is estimated
from actual experimental pressure data, which is then used as input to Merab’s method.
The sound velocity profile in the seabed is recovered, and the errors explained.

In order to construct analytically tractable inverse problems, simplifying assump-
tions such as, for example, depth-only dependence of the geoacoustic parameters and
lack of shear rigidity, are made. The results of rigorous methods may be, despite the
simplifying assumptions, satisfactory for applications in acoustic propagation prediction.
In addition, the inverted sound velocity profile may be used as the initial solution in
a non rigorous iterative inversion technique using a more realistic description of the
environment.

Normal modes are a dominant feature of the acoustic field in shallow water. In terms
of the wavenumber spectrum, most of the power is concentrated in certain characteristic
wavenumbers. Estimating the reflection coefficient required by Merab’s method in such
conditions, for example, is still an open problem. In shallow-water it seems reasonable
to use the modal characteristic wavenumbers, which depend on the environmental prop-
erties, as the input data of an inverse method. Perturbative techniques that explore
this modal information have been developed by Rajan and co-workers[61]. Chapters 3
and 4 discuss the extension of Rajan’s method to environments whose properties are
range-dependent.

Chapter 3 deals with the high-resolution, sequential eigenvalue estimation required
for the characterization of range-dependent environments. It shows that the modal sum
in a range-dependent environment can be exactly represented by a recursive difference
equation, which justifies the application of autoregressive (AR) techniques as proposed
by Becker[6]. Chapter 3 also shows, however, that the AR eigenvalue estimation is

biased in range dependent environments. Synthetic data from a workshop on inverse

techniques [9] is analyzed. The sequential estimators, associated with a competitive

11




smoother[51], successfully estimate jumps in eigenvalues caused by abrupt environmen-
tal changes, a problem that motivated Chapter 3. Data from the Modal Mapping Exper-
iments (MOMAX)[18] are analyzed. The data consist of monochromatic acoustic fields
measured as a function of position in a shallow-water environment, where horizontal
synthetic aperture arrays are formed by drifting buoys or by a moving source.

Chapter 4 discusses the eigenvalue inversion problem. Backus-Gilbert theory[4] is
applied to the analysis of the trade-off between resolution and variance in the eigenvalue
inverse problem. The framework of estimation theory is also applied to the analysis
of the problem. Measurements of acoustic fields produced by moving sources result in
eigenvalue estimation bias due to the Doppler effect. A method is developed to account
for these eigenvalue estimation errors directly in the perturbative formulation. Finally,
a state-space formulation of the inverse eigenvalue problem leads to a Kalman filter
solution suitable for range-dependent environments. Sequences of eigenvalues estimated
as a function of range with the techniques of Chapter 3 are then inverted for sound

velocity profiles in the seabed.
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Chapter 2

Inversion for Subbottom Sound

Velocity Profiles in the Deep Ocean:

Application of an Exact Inverse

Method

2.1 Introduction

This chapter discusses the application of an exact inverse theory to actual experimental
data. The exact theory was developed by Merab[45] and is based on the work of Gelfand
and Levitan[25] on potential inversion from scattering data in Quantum Mechanics. The
input data required by Merab’s method is the complex plane-wave reflection coefficient
at a fixed frequency.

The measurement of the magnitude and phase of the reflection coefficient of the
ocean bottom is an important issue in Ocean Acoustics by itself. In this chapter, we
apply a technique developed by Frisk and co-workers[22, 46] to the measurement of the

reflection coefficient using monochromatic acoustic data from the deep water experiment




at the Icelandic Basin described by Frisk, Doutt, and Hays[21].

Section 2.1 reviews Merab’s method and Frisk’s technique. Section 2.2 describes
the Icelandic Basin experiment. Section 2.3 analyzes the experimental data up to the
measurement of the reflection coefficient. We use simulated pressure fields to discuss the
data analysis procedure and to evaluate the effects of experimental factors not accounted
for in the underlying acoustic model, such as source depth variations with range. We
introduce the concept of residual pressure, an extension of Mook’s[46] residual phase,
and apply it to the analysis of the measured and simulated fields. The residual pressure
analysis allowed us to identify measurement errors and recover the pressure data phase.
We estimate the complex, plane-wave reflection coefficient at the experimental site.

Section 2.4 applies Merab’s method to the reflection coefficient measured in Section
2.3. Various issues associated with the use of this method in realistic ocean environments
are discussed and illustrated by examples. We introduce a density discontinuity com-
pensation procedure that allows the use of Merab’s method in more realistic settings,
and correct an expression for the cutoff frequency for trapped modes in the subbottom.

Finally, we estimate the sound velocity profile at the Icelandic Basin experiment site.

2.1.1 Inversion from Reflection Coefficient Data

A plane wave!, p;n.(z) = e***, incident from a homogeneous half-space onto a boundary
at z = 0 (Figure 2-1) at an angle 6 is partially reflected and transmitted into the lower
half-space. The wavenumber vector ko = (k, k) has a vertical component k, = ko cos 0
and horizontal component k, = kqsin @, where ky = w/cy is the magnitude of ko. The
ratio of reflected and incident waves is the plane-wave reflection coefficient R}, a function
of the frequency w, the incidence angle 6, and the geoacoustic properties of both half-
spaces, in particular of the sound velocity profile ¢(z) of the lower half-space.
Merab[45] developed a method for inverting reflection coefficient data for the seabed

sound velocity profile in a horizontally stratified media. The method is based on a work

IThe time dependence e~** is assumed.
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Figure 2-1: Reflection coefficient

by Gelfand and Levitan[25] related to the potential inversion in Quantum Mechanics.
The input data is the complex plane-wave reflection coefficient as a function of the
vertical wavenumber k, measured in the water at the water-seabed interface at a single
frequency, Ry(k.).

The Fourier transform of the reflection coefficient, seen as a function of the vertical

wavenumber k,,

ro(2) o, /°° Ry(k,)e *=*dk,, (2.1)

T o e
is related to the index of refraction n(z) = co/c(z) through the Gelfand-Levitan integral

equation

z

K(z,y) + (2 +y) +/ ro(t +y)K(z,t)dt =0, y < 2, (2.2)
-y
and the potential
dK (z,z)

i =— == ki [1 —n%(z)], >0, (2.3)

Note that the reference potential is V(z) = 0, z < 0, corresponding to the sound velocity

in water, ¢(z) = ¢g, n(2) = 1, z < 0. The computation of the Fourier transform, eq.(2.1),

15




is reduced to the interval 0 < k. < oo by using the conjugate-symmetry property

Ry(—k.) = R;(k.), and simplifies to

)= 7] [ Rilhean ). (2.4

where R{-} denotes the real part.

Equations (2.1) and (2.4) are valid strictly only in absence of trapped modes in
the seabed, which may be excited due to sound velocity profile minima smaller than
the water sound velocity. These trapped modes are analogous to the bound states of
Quantum Mechanics that may occur in regions of negative potential V. When trapped
modes are excited in the seabed, an additional term in eq.(2.1) is required in order to
satisfy ry(2) = 0, z < 0. The term is related to the poles of the reflection coefficient
in the upper k., complex plane. The poles and their residues should, therefore, be also
measured.

As pointed out in [45], however, such trapped modes can be avoided by measuring

the reflection coefficient at sufficiently low frequencies given by the condition

e\ 2
w< gVv3 <1 - com) . (2.5)

where g = dc/dz (sec™!) is the constant, positive sound velocity gradient and ¢, < co
is the minimum sound velocity in the seabed. Equation (2.5) is valid for linear sound
velocity profiles in the seabed.

In Subsection 2.4.1 we show that eq.(2.5) is valid, in fact, when the sound velocity
minimum occur away from the boundary z = 0, for a bilinear velocity profile (where g is
the magnitude of the gradient above and below the minimum). We derive an expression
to account for the case when the minimum sound velocity occurs at the boundary.

One limitation of the Merab method is that the starting point is the standard wave

equation? over all domain —co < z < 0o, where density is assumed constant. Consid-

2We refer to the standard form of the time-independent, depth-dependent pressure wave equation
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ering that density discontinuities may be present in the water-seabed interface, this is
a major restriction of the method. In the presence of smooth density variations, the

acoustic wave equation can be reduced to the standard form with a modified index of

Y 4 k2 [L@ _3 <1@>1 (26)

and Merab’s method can be used to recover n'(z).

refraction[45]

Density discontinuities, on the other hand, can not be directly dealt with. First, as
|k.| — 0o, Ry(k.) — O(k;?)[45] when the density is constant, but tends to a constant
in the presence of density discontinuities, and the Fourier transform in eq.(2.1) would
require a representation in terms of impulses. In fact, the time-independent, depth-
dependent pressure wave equation, which includes derivatives of density, is not valid at
points of density discontinuity. This is circumvented by introducing interfaces at these
points and imposing continuity of pressure and normal particle velocity. We discuss this
issue in Section 2.4.1.

Another important issue on the application of Merab’s method is the truncation of
Ry(k.) to a limited aperture a < k, < b. In practice, the reflection coefficient will be usu-
ally available on a range corresponding to real angles of incidence 0 < k, < k,, and the
Fourier integral must be truncated. In a series of simulations, Merab[45] shows a degra-
dation of the inverted profile as the k, range decreases, where the reconstructed profile is
a smoothed version of the original. The reconstruction was shown to be reasonably accu-
rate when the range includes the critical incidence region 0 < k, < k,criticat = ko cos 6.,
where |Ry| = 1.

Merab’s method requires solving the integral equation (2.2) at each depth. In the
Nystrom method[29], the integral is approximated by a quadrature by setting ¢, =
—y +nAz and K(z,y) is evaluated at the discrete points y,, = —z + mAz. If the data

[rs(2)] are available at depths z, = ¢gAz, ¢ = 0, ,1, ..., the resulting linear system is

u”(2) + k2(z)u(z) = 0, as opposed to the more general form p(2) (' (2)/p(2)) + k2(2)u(z) = 0.

17




given by

K (zq, —24 + mAz) + rp(mA2)+

Aziwnmrb(nAz)K(zq,zq —(m-n)A2)=0,m=1,...,2q (2.7)
n=0
where, from eq.(2.2), K(z,—z) = —7(0). After solving for K(z,y), the derivative in
eq.(2.3) is computed numerically. Notice that the system (2.7) has dimensions 2¢ x 2g,
which increases with depth and requires r,(2) in the range 0 < z < 2gAz.
Another method that incorporates the computation of the derivatives of K (z,y) into
the linear system was introduced by Khanh([39] and is based on the Hermite corrector

formula of order two
b M h h2
[ 9@z =3~ 2ot + o)) + 15 10 @ - S O) + O, (28)
= k=1

By differentiating eq.(2.2) with respect to z and y, including the mixed derivative, three
other integral equations are obtained. The discretization of the four integral equations
using eq.(2.8) leads to four coupled linear systems of dimensions (4q + 2) x (4q + 2)
where, in addition to K(z,y), the derivatives 0,K(z,y) and 9,K(z,y) are obtained.
The potential can be computed as [cf. eq.(2.3)]

V(z2q) = 2[0.K(zq,y) + 0y K (24, 9)]

y=2zq )

which avoids the approximation of derivatives by finite differences. The main issues with
Khanh’s method are (1) the linear system dimension grows fast with depth, and (2) the
use of the first and second derivatives of 7,(2) imposes more restrictive requirements on
the behavior of R,(k.) near infinity.

Other solution methods are described in [45]. One that avoids the solution of linear

18




systems is based on the series expansion of the integral equation (2.2), leading to

V(z) =VOR)+ V() + VA(2) +---, (2.9)
where
vO(z) = —2%(2,2) (2.10)

corresponds to the Born approximation, and the other two lowest order terms are
VO (2) = 4r,(22) {2.11)
and

VO () = 4ry(22) / " 2 (t)di+2 1 i /. t syl il n)%(z +tydndt. (2.12)

0

2.1.2 Measurement of the Reflection Coefficient
From Acoustic Pressure to Reflection Coefficient

The technique described here was developed by Frisk and co-workers[22, 46]. Figure 2-2
is a model for the reflection coefficient measurement setup in deep water, as described by
Frisk, Doutt, and Hays[21]. A monochromatic sound source drifts away from a receiver
close to the bottom, in a homogeneous water half-space overlying a horizontally stratified

seabed. The signal recorded at the receiver is given by the Hankel transform
p(r;z,20) = /g(kr, z, 29)Jo (k1) k. dk,, (2.13)
0

where g(k;, 2, zp) is the depth dependent Green’s function and k, is the horizontal com-
ponent of the water wavenumber ko = w/co, which is related to the vertical wavenumber

k. by ki = k? + k? (see Figure 2-1).
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Figure 2-2: Reflection coefficient measurement model: a homogeneous water half-space
overlaying a horizontally stratified seabed.

For the environment of Figure 2-2 the depth dependent Green’s function is given by

9(kr; 2,20) = — [*1*7" + Ry(k,) €™+ (2.14)
Notice that the reflection coefficient R, is described as a function of k., not k, as in
Merab’s method.

Given the pressure as a function of range at constant source and receiver depth, the

Green’s function can be computed as the inverse transform
902, 20) = [ plri 2 20) ol (215)
0

The Hankel transform is performed numerically using the Fourier-Bessel series 76, 47]

2= [ )Jomyydy—XZZw( (—y}f;(’;i)yﬁ,osmx, (2.16)

where the function f to be transformed is given on the grid y, = A\,/X, A, is the n-th
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Figure 2-3: Reflection Coefficient Measurement Technique. (a) The basic method: from
a measured pressure field as a function of range r to the reflection coefficient. The Hankel
transform (H ) of the pressure is the depth dependent Green’s function, from which the
plane-wave reflection coefficient is calculated. (b) A more detailed description, including
the pressure normalization (computation of residual pressure to slow down the rate of
change of the phase with range), the interpolation for the ranges r, required by the
Fourier-Bessel series, and the recovery of the pressure data from the residual pressure.

zero of Jo(2), X is the bandwidth of f, i.e. f(z) = 0forz > X, and w(y,) is a windowing
sequence.

Given the Green’s function, the reflection coefficient is obtained as a function of the
horizontal wavenumber k, using eq.(2.14). In principle, the reflection coefficient can
be computed not only for real angles of incidence, where 0 < k, < ko, but also for
evanescent waves with k. > k.

The steps of the reflection coeflicient measurement technique are shown in Figure 2-3.
In order to compute the Hankel transform of the pressure field using eq.(2.16), the field
must be interpolated in a range grid determined by the zeros A, of Jo(z), r, = \/K,
where K is the bandwidth of the Green’s function g(k;).

Although the magnitude of the pressure changes slowly with distance (as seen, for

21




example, in Figure 2-5), the phase is dominated by a geometric phase factor exp{ikoRy},
corresponding to a 27 radian variation in phase per wavelength change in the distance,
a reasonably fast change. In order to assist the interpolation process, the phase rate of
the pressure field is reduced by normalizing the pressure signal (the phase slow-down
block of Figure 2-3), resulting in the residual pressure. After interpolation, the signal is

denormalized and transformed to obtain the Green’s function.

Analysis of The Pressure Field - Residual Pressure

As described above, the rate of phase of the acoustic pressure signal is reduced for
interpolation. This is accomplished by removing the contribution exp{ikoRo} from the
field. This phase factor corresponds to the direct field that would be observed in the
absence of the seabed. By removing it, we obtain a signal, the residual pressure, whose
phase variations reflect the seabed contribution to the total field. We analyze properties
of the residual signal, which is useful in the interpretation of experimental data.

The pressure field given by eqgs.(2.13) and (2.14) can be decomposed into direct and

bottom interacting (or reflected) components as [23]

direct field bottom interacting

e X

ikoR 71
plriz.n) = eR +i/k—Rb(kr)eik’(““)Jo(k,r)k,dkr (2.17)
(4 0 z
gikoRo .
=% + B(r; 2, z) e (mi#%0) (2.18)
where Ry = /7% + (2 — 2)? is the slant distance source-receiver. Mook [46] introduced

the concept of residual phase, which is the phase of the pressure when the geometrical
phase component k,R, is removed. When this dominant phase component is removed,
the remaining phase variations, due to bottom interaction, change slowly with range.
This slowly varying pressure can be easily interpolated into the range grid required

by the Fourier-Bessel series, eq.(2.16). The residual phase is the phase of the residual
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pressure obtained by normalizing the total pressure by the direct field. From eq.(2.17),

the residual pressure is given by
p,(7; 2, 20) = Roe *efop(r; 2, 20) = 1 + B(r; 2, z9) Rpe'1(ri#20) ko o] (2.19)

with magnitude

lpr(7; 2, 20)| = \/1 + 2B(r; 2, 20) Ry cos [Y(r; 2, 20) — koRo] + B2(r;2,20)R2  (2.20)

and (residual) phase

B(r; z, 20) Ry sin [y(r; 2, 20) — koRo)
1+ B(r; z, z9) Ro cos [y(r; 2, 20) — koRo]’

¢.(r;2,20) = tan™! (2.21)

The behavior of the residual magnitude and phase as a function of range can be
qualitatively assessed by looking at two extreme conditions[23]. If the reflected field is
small compared to the direct field, then B is small and BRy < 1. To the first order in

BRy, the residual magnitude and pressure are given by

|pr(7; 2,20)| = 1+ B(r; 2, 20) Ro cos [y(r; 2, 20) — koRo) (2.22)

¢r(r; 2, 20) =~ B(r; 2, 20) Ro sin [y(r; 2, 20) — koRo] , (2.23)

which indicates that variations of magnitude and residual phase with range are similar
and small in those conditions.

When the pressure magnitude goes through a minimum, eqgs.(2.20) and (2.22) indi-
cate that cos [y — k,Ro] ~ —1 and, therefore, v — k,Ro ~ (2n+1)7. Near the magnitude
minima, the argument (y—k,Ro) changes from some value [(2n+1)7—¢] to [(2n+1)7+¢€],

where ¢ is some small value. The change in residual phase around a minimum is, as a




consequence,
B(r;z, zp)Rosine

o & 12 =& ’ 4
A e 1 — B(r; z,20)Rocos e (2:24)
When, in addition, BRy is small,

|A¢,| ~ 2B(r; z, z0) Ry sine, (2.25)

a small change of phase for a small change in magnitude near a minimum. If, on the
other hand, BRy is close to one, the minimum will be nearly a magnitude null and the

change in residual phase A¢ approaches 7.

2.2 The Icelandic Basin Experiment

The acoustic pressure data were obtained in 1981 in the Icelandic Basin. A detailed
description can be found in reference [21] (the data are from a region referred to as site
B4). As shown in Figure 2-4, an acoustic source was towed away from two low-frequency
receivers located at 1.2 m and 54.6 m from the bottom. The whole system, including the
receivers, an 11 kHz pinger, and the 220 Hz source, was lowered on a single cable. When
the mooring system anchor reached 35 m from the bottom, the receivers were released
with the anchors. The ship drifted away at about 0.5 knots. The average source height
during the experiment was 124.9 meters.

Every 12 seconds, the source emitted a 220-Hz, 4-s long CW pulse. Simultaneously,
the pinger transmitted a CW pulse of 11 kHz used to signal the receivers to start the
220-Hz pulse acquisition. The 11-kHz signal was also used for measuring the pinger-
receivers propagating times, and, in conjunction with the towing ship’s depth recorder,
the source depth. The 11 kHz receivers were located near the low-frequency units, at
2.54 m and 54.37 m from the bottom.

The receivers sampled the complex envelope of the 220 Hz signal at a 5 Hz sampling

rate and stored 30 pulse samples and the times of emission and reception of each pulse.
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Figure 2-4: The experimental setup in the Icelandic basin. The sound velocity near the
bottom was 1495 m/s and the gradient, 0.009 s~!. The average source height was 124.9
m. The source drifted away from the fixed receivers at 0.5 knots. Every 12 s, a pulse was
simultaneously emitted from the source and the pinger. The distance between emissions
was, therefore, about 3.1 m, close to half-wavelength at 220 Hz[21, 23].




From this raw data, the posterior analysis used only one sample of each received pulse.
The fourth sample was selected for the receiver at 1.2 m (that is, 4/5 s after the 11 kHz
pulse reception) and the fifth sample (1 s after the 11 kHz pulse), for the 54.6 m receiver.
The surface reflected pulse arrived at the receivers after these chosen sample times (for
distances up to about 3700 meters). Therefore, these samples are representative of the
sum of the direct and bottom interacting field components.

In Figure 2-5 the magnitude of the samples are shown as a function of distance,
along with simulated fields. These simulated fields are based on a seabed model shown
in Figure 2-6, previously inferred from the magnitudes of the measured fields[21]. Mea-
surements taken with a 3.5 kHz echo sounder suggests that the environment is range-
independent in the region of interest. The use of the water half-space model of eq.(2.14)
is justified by the small sound velocity gradient near the bottom and by the use of signal
samples free of the surface reflected signal.

The good fit between measured and computed fields in Figure 2-5 suggests that
the range-independent, fluid subbottom model of Figure 2-6 captures the essential en-
vironmental characteristics that influence the acoustic field at 220 Hz, for the given
experimental geometry.

One important deviation from the basic acoustic model of Section 2.1.2 during the
experiment is the source depth variation as a function of range. Measured source height
variations are shown in Figure 2-7. The source height changed by about 30 meters during

the experiment, a large change when compared to the wavelength of 6.8 meters.
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Figure 2-5: Magnitude of the Icelandic Basin receiver outputs, one sample per pulse
(dots). The solid lines correspond to fields computed for a geoacoustic model of Figure
(2-6), obtained by matching the pattern of the measured magnitude[21]. The units
are dB relative 1 Volt. The computed field magnitudes are adjusted by the receiver
calibration factor (see Table 2.1 on page 45).
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Figure 2-6: Geoacoustic model of the Icelandic Basin (site B4) based on direct mea-
surements of water sound velocity and seabed density, 3.5 kHz echo soundings, and the
magnitude of the acoustic pressure measured at 220 Hz as a function of range[21].
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Figure 2-7: Source height variations observed during the Icelandic Basin experiment.
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2.3 Icelandic Basin Data Analysis - Computing the
Reflection Coefficient

2.3.1 Simulated Field Analysis
The Ideal and Synthetic Simulated Fields

Simulated fields were generated for the Icelandic model shown in Figure 2-6, in order to
evaluate the measurement technique and compare with the experimental results. The
computed reflection coefficient and the Green’s function for a source height of 124.9
m and receiver heights of 1.2 m and 54.6 m are shown in Figure 2-8. Notice the pole
in the reflection coefficient at a horizontal wavenumber nearly 0.08% above the water
wavenumber due to a trapped mode in the sediment near the water interface.

The pressure fields were computed using the Fourier-Bessel series, eq.(2.16), with an
uniform window w(k,,) = 1 and X = 70, = 2 x 10*m, above which the field is assumed
zero. The output of the Fourier-Bessel series was smoothed to remove oscillations (due
to aliasing) introduced by the assumption of null field for 7 > 7,4z.

Two simulated (residual) pressure fields are in shown in Figure 2-9 as a function of
distance. The first, here called ideal, was computed for a constant source height of 124.9
m and on the range grid required by the inverse Hankel transform, in order to avoid the
interpolation process shown in Figure 2-3 when inverting for the reflection coefficient.

The second field, called synthetic, was computed with the source height variations
shown in Figure 2-7 and on the range grid of the experimental field, resulting in a
more realistic simulation of the experimental conditions. The magnitude of both fields
have the same general behavior—the difference is the location of the magnitude and
phase extrema. This indicates that source height variations causes changes in the phase
difference between direct and reflected fields, as expected.

Corresponding fields with similar characteristics were computed for the 54.6 m re-

ceiver. Another set of fields were generated by interpolating the ideal field into the
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Figure 2-8: (a) Icelandic model (Figure 2-6) reflection coefficient at 220 Hz; (b) Green’s
function magnitude and phase for a source at zp = 124.9 m and a receiver at z = 54.6 m;
(c) Green’s function magnitude and phase for a source at zp = 124.9 m and a receiver
at 2 = 1.2 m. All plots are versus the ratio k,/ko (sine of the angle of incidence for
k./ko < 1 ). Total reflection starts at k,/ko = co/cs = 0.6795, corresponding to a
critical angle of incidence of 42.8°. The minimum in sound velocity in the seabed results
in the pole of the reflection coefficient, observed at k,/ko ~ 1.0008.
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experiment range grid, which allowed to verify the effect of the interpolation stage of
Figure 2-3.

The phase shown in Figure 2-9 excludes the geometric phase factor exp{ikoRo} and
is the phase of the residual pressure at the output of the first block of Figure 2-3b. In
order to assess qualitatively the effect of an error in the source position measurement,

the residual phase of the field with source height variations is computed in two ways:

e Ignore the source height variations: an average source height was used to compute
the slant distances R, in the phase slow-down step (first block of Figure 2-3b).
The result, shown in the lower plot of Figure 2-9, is a large change in the residual

phase in the first 1000 meters.

e Use the correct, variable source heights to compute the slant distances. As shown
in the lower plot of Figure 2-9, the resulting residual phase has the same general
behavior of the constant height source. The large phase trend observed previously

is eliminated.

The effect of the source height variations (when correctly accounted for) on the residual
phase is observed mainly as a (non constant) shift in range of the phase and magnitude
extrema, as compared to the constant height case (compare the solid and dashed lines
in Figure 2-9).

When the wrong source height is used to slow down the phase, though, the residual
phase presents a large change as the distances increases from zero (about 12 radians in
the first 1000 meters), but the phase error tends to a constant at larger ranges, suggesting

that the depth variations have stronger effects at smaller ranges.

Migration - Compensating for Source Height Variations

The ideal and synthetic fields are used as input for the reflection coefficient measurement
technique described in Section 2.1.2 and shown schematically in Figure 2-3. As shown

in eq.(2.15), the Green’s function is the Hankel transform of the measured pressure field,
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Figure 2-9: Synthetic residual pressure at z = 1.2m. The upper plot shows the resid-
ual magnitudes for an ideal, constant source depth (124.9 m, solid line), and for the
source depth variations shown in Figure 2-7 (dashed line). The lower plot shows the
corresponding residual phases. When source height variations are ignored in the compu-
tation of the residual phase and an average value is used instead, an error is introduced,
as shown by the dash-dot line.




assuming both the source and receiver heights are independent of range. In order to apply
eq. (2.15) to the pressure field, a migration process was implemented to compensate, at
least partially, the synthetic fields for the source height variations.

As described above, the effect of the height variations is to shift the residual mag-
nitude and phase extrema. It is reasonable to assume, therefore, that the residual field
can be approximately described as the field of a source at a certain constant height.
The migration process consists of using an average source height to compute the slant
distances R, when restoring the pressure after interpolation (third block of Figure 2-3b),
instead of the actual varying height.

As can be seen from Eq. (2.17), the direct field can be modified to any source height
by simply computing R, corresponding to that source height. This migration process
is, therefore, exact for the direct field. On the other hand, there is no simple relation
between the phase of the reflected field and the slant distance R,, and the migration will
not compensate exactly the source height variation effect on the bottom reflected field.

If migration actually compensated for the height variations, the plots labeled ” z,
variable” and ” 2, constant” in Figure 2-9 would superimpose (the constant source height
in the later case and the average source height in the former are the same). This
migration method is a simplification of the compensation technique described in [23],
a report of an initial analysis of the Icelandic Basin data where the compensation for
the source height variations consisted in adjusting, separately, the phase of the direct
and bottom-interacted fields according to a geometrical acoustics approximation model.
Results using either technique are qualitatively indistinguishable.

The measured source heights at closer ranges, where the influence of the height
variations is greater, averages 136 m, and this value is used for migration of the synthetic

and experimental fields.
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Extrapolation of the Fields at Short Ranges

The experimental range grid started at nearly » = 26 m, which is larger than the
initial distance required by the Fourier-Bessel series, eq.(2.16). In order to extrapolate
the measurements for these few points while minimizing numerical artifacts, computed
values for the direct field alone (setting p, = 1) were used.

As an alternative, we used values based on the geometric acoustics approximation
associated with a simple half-space model. At these small ranges, the geometrical inci-
dence angle is below 20° for both receivers, and we approximate the reflection coefficient
by that of normal incidence.

At normal incidence, the reflection coefficient for a plane wave incident from the
water (sound velocity c,, density p,) onto the boundary to a half-space of sound velocity

c1 and density p; is given by
_ p1/po — co/c1

= . 2.26
*7 oi/po + cofer %)

For a density ratio of 1.6 (as in the Icelandic Basin sites), and assuming c,/c; =~ 1 (a
reasonable assumption for a sediment layer), the reflection coefficient at normal inci-
dence is R, =~ 0.6/2.6 = 0.23. Therefore, the residual pressure field at those ranges is
approximately given, from eq.(2.19), by

. B .
pr(r; 2, 20) = p(r; 2, o) Roe~FoRe = 1 4+ 0.23%6””(&‘&’), (2.27)

where R; is the distance from the source to the image of the receiver at the bottom,

Ry = [r? + (2 + 2,)/2.

2.3.2 From Simulated Fields to Reflection Coefficient
Green’s Function

The Green’s function is computed from the simulated fields using eq.(2.16), assuming a

bandwidth K = X = 1.8492 = 2k,. For the values of 2y (=~ 125 m) and z (> 1.2 m)
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used in the Icelandic Basin experiment, the magnitude of the Green’s function g decays
fast to zero for k, > ko, as can be inferred from Eq. (2.14) and shown in Figure 2-8.
A window based on the Hamming window of spectral analysis was employed to reduce

oscillations caused by the truncation of the pressure field, and is given by

w(ry) = 0.5 + 0.5 cos(nry/Rmaz) = 0.5 + 0.5cos(mA,/Ay), n=1, ..., N, (2.28)

where 7, = A\,,/K, Rpmer = An/K, and N was chosen to use all available data up to 3700
m, where the water half-space model is assumed valid, as discussed in Section 2.2.

Figure 2-10 shows the Green’s functions estimated from the simulated fields at z =
1.2m. The reference Green’s function (used to compute the ideal, constant source height
field and also shown in Figure 2-8) is shown in the upper plots. There is no significant
difference between the ideal field result and the reference Green’s function, indicating
that the implementation of the basic method (without interpolation, smoothing, or
migration) is correct.

The general characteristics of the Green’s function estimated from the synthetic
(varying source height) fields are similar to the ideal case, although, because of the
different source heights, an exact agreement between the two (i.e., ideal versus synthetic)
is not to be expected. Figure 2-11 shows analogous results for the z = 54.6m simulated
fields. The quality of the results for the lower receiver (as compared to the ideal case)
is better than the one at 54.6 m.

When analyzing these results, it should be taken into account that the synthetic
field was extrapolated for small distances (r < 26 m). From a geometrical acoustics
perspective, the data that supports results for low k, (less than 0.2k, for the 1.2 m

receiver; less than 0.14k, for the 54.6 m receiver) comes from that region.
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Figure 2-10: Green’s functions (in Newton) obtained from computed fields at z = 1.2
m. gr.s is the reference Green’s function used to compute the ideal field (same as in
Figure 2-8). gideat Was computed from the ideal (constant source depth) field. gsyn: was
computed from the synthetic field and include effects of the interpolation and migration

of the pressure field.
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Figure 2-11: Green'’s functions (in Newton) obtained from computed fields at z = 54.6m.
gres is the reference Green'’s function used to compute the ideal field (same as in Figure 2-
8). Gidear Wwas computed from the ideal (constant source depth) field. gsyn: was computed
from the synthetic field and include effects of the interpolation and migration of the
pressure field.




Reflection Coefficient Computation

Figures 2-12 (2 = 1.2m) and 2-13 (z = 54.6m) show the reflection coefficients estimated
from the simulated fields using eq.(2.14). For the ideal field, the result differs only
slightly from the reference reflection coefficient, which is an indication of the small
errors introduced by the approximation of the Hankel transform by the Fourier-Bessel

series of eq. (2.16).

A noticeable error in the ideal field result is the reduction in the magnitude of the

reflection coefficient in the neighborhood of k, = k,. The dip in the magnitude is caused
by the windowing of the pressure field [w(r,) in eq. (2.28)], which reduces the pressure
at the longer ranges that dominates the Green’s function for high (near k,) k.. This
effect is negligible when using a uniform window [w(r,) = 1] (not shown), at the cost of
a poorer reflection coefficient estimate for low k.

The reflection coefficients obtained from the synthetic field can be regarded as a
reasonable estimate of the model reflection coefficient. Given that reliable results for
small k, could not be expected, as discussed in the last paragraph of Section 2.3.2 on
the Green’s functions results, the synthetic reflection coefficient estimates are reasonably
good in that region.

Critical incidence on both results is near the true value of k, = 0.68k,. For larger
k., the estimated reflection coefficient has a behavior similar to the reference, both in
magnitude and phase. The main error is the large oscillation of the reflection coefficient
magnitude in the supercritical region, where, at some points, it is larger than one.

Results from a synthetic field computed with a constant source height (but at dis-
tances r that required the interpolation step) doe not show these large oscillations, which
suggests that they are caused by the wrong application of the Hankel transform to fields
that do not satisfy the assumption of a constant source height and also shows that the

migration process is an approximated compensation for the source height variations.
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Figure 2-12: Reflection coefficient inferred from the simulated fields. The upper plots
are the magnitude and phase of the reference reflection coefficient used to compute the
fields and shown in Figure 2-8. The middle plot is the reflection coefficient estimated
from the ideal, constant source height field. The lower plots are from the synthetic,
varying source height field and illustrate the effect of the partial compensation due to

the migration process.
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Figure 2-13: Reflection coefficient inferred from the simulated fields at z = 54.6m. The
upper plots are the magnitude and phase of the reference reflection coefficient used to
compute the fields and shown in Figure 2-8. The middle plot is the reflection coefficient
estimated from the ideal, constant source height field. The lower plots are from the
synthetic, varying source height field and illustrate the effect of the partial compensation
due to the migration process.
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2.3.3 Analysis of the Measured Acoustic Field
Identifying Phase Measurement Errors

The residual pressure for the synthetic and experimental pressure fields at z = 1.2m
are plotted in Figure 2-14. The variations of magnitude and phase of the synthetic
field are in agreement with the qualitative analysis of residual magnitude and phase in
Section 2.1.2. For short ranges, the variations in magnitude and phase are small and
nearly equal. At these distances, waves near normal incidence dominate, the value of
the reflection coefficient is small and the field at the receiver is mainly the direct field,
that is, BR, is small and egs. (2.22), (2.23), and (2.25) apply.

As the range increases, the variations of the magnitude and phase become larger,
again in agreement with the analysis of Section 2.1.2. For large distances, waves reflected
at critical and above critical incidence dominate the reflected field (large BR,).

The measured field residual magnitude and phase variations are not compatible.
The magnitude variations are similar to those of the synthetic field, except in a region
of distances between approximately 50 m and 100 m, where the magnitude presents a
dip. The changes in magnitude of the experimental field are consistent with the picture
delineated above involving the reflected fields, magnitude of reflection coefficient and
distances. The residual phase, however, presents large variations (up to distances of
approximately 500 m) that are not compatible with the changes in magnitude, neither
in terms of value nor in terms of length scale.

Notice that the measured source height variations were taken into account in com-
puting the experimental residual pressure, which was sufficient to eliminate the same
kind of phase variations observed in the synthetic field when source height variations

were initially neglected, as shown in Figure 2-9.

3The term length scale refers to the range-varying distance between peaks of the residual magnitude
and phase plots.
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Figure 2-14: Residual pressure and unwrapped phase. (a) Synthetic, variable source
height field. (b) Experimental field, receiver at 1.2 m. In both cases the pressure
normalization took the source height variations into account. The vertical scales on
these plots, with exception of the experimental phase, are the same.

42



Phase Error Compensation

As discussed above, the large and slow changes in residual phase with range are not
compatible with the residual pressure magnitude and, therefore, not consistent with the
physical model underlying the measurement process. These changes can be regarded as
resulting from measurement errors.

In the analysis of the plots in Figure 2-9, it was observed that errors in the source

height (that is, assuming the height is constant when computing the residual pressure)

lead to errors in the residual phase similar to those observed in Figure 2-14. Con-
sequently, errors in the measurement of the source position or, equivalently, receiver
synchronization could explain the observed residual phase.

The error in the residual phase is responsible for the poor results in the previous
analysis[23], even after the field was migrated using the measured source height varia-
tions. Errors in the measured data preclude the estimation of the reflection coefficient.

However, these errors can be partially compensated for. Those phase variations
not compatible with the residual pressure magnitude can be regarded as trends due to
measurement errors. In Figure 2-15, the residual phase (from the measured pressure at
the 1.2 m receiver) is plotted along with a trend corresponding to those large slow phase
changes mentioned above. The phase after the removal of the trend is also shown. The
resulting de-trended field can be regarded as an estimation of the actual field.

The phase trend was obtained by fitting a 10-th degree polynomial to the phase in
the region r < 500 m, which models the large, slow change in the unwrapped phase. For
distances above 500 m, the trend was assumed a constant value equal to the polynomial
value at 500 m, which is a multiple of 2w. Therefore, no further phase adjustment was
necessary.

Not all phase errors can be compensated for and the process is not unique. First,
as discussed above, only errors that cause phase variations incompatible with the model
can be identified. For example, the model predicts small residual phase variations at

small distances. In the present analysis, only the large, slow changes of phase at small
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Figure 2-15: Residual phase of the measured field and trend removal for the receiver at
1.2 m (cf. Figure 2-14). The dots are the residual phase; the dashed line is a polynomial
fit by parts of the slow, large phase variations observed up to r =500 m, interpreted as
a measurement error; the solid line is the residual phase after the trend removal.

distances were discarded, as shown by the polynomial fit in Figure 2-15.
Second, the de-trend process is not unique because the exact form of the trend error
is not known a priori. Depending on the chosen form of the polynomial fit to the phase,

different trend estimations may result.

The Field at the 54.6 m Receiver

During the experiment, the receiving calibration factors (conversion from measured sig-
nal voltage to pressure) were measured while the system was being lowered from the
research vessel, when the source and receivers were on the same vertical and reasonably
far from both the surface and bottom. The magnitude of the measured and synthetic
fields in the lower (1.2 m) receiver show good agreement, after compensation for the

calibration factor, as shown in Figure 2-14. The removal of the phase trend left, essen-

tially, a 27 rad difference in phase at long ranges, also suggesting that the phase of the

calibration factor was correct.

For the higher (54.6 m) receiver, the calibration factor magnitude had to be adjusted
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Table 2.1: The calibration factor go(Pa/V) is used to convert the voltage measured at the
receiver output to acoustic pressure. p(r)/qo reduces the values recorded at the receiver
output p(r) (Volts) to the receiver input pressure (Pa) relative to a source level of 0 dB
ref. 1 Pa@1 m, [that is, equivalent to a source term —47d(r—ro) in the wave equation]. go
was measured using data acquired while the mooring system was being lowered and the
source and receivers were connected to the same cable from the research vessel (column
measured). The values shown in the inferred column were estimated during the present
analysis of phase and magnitude errors.

| receiver (m) | o] | Zgo (deg) |
measured | inferred | measured | inferred
1.2 27T — 127.9 128.5

54.6 2424 4286 -7.4 -134.7

by about 5dB through comparison with the synthetic field. The phase was adjusted by
—127.3° using the difference in phase remaining at long ranges after the phase trend
removal. Both measured and inferred calibration factors are shown in Table 2.1.

A qualitative analysis of the residual pressure at the 54.6 m receiver, based on the
characteristics of the residual phase, as discussed in Section 2.1.2 and shown in Figure

2-16, reveals that:

e For » > 1000 m, phase and magnitude are of reasonable quality; below 1000 m,

the phase presents a slow, large change with distance, as observed (below 500 m)

for the 1.2 m receiver;

e Under 170 m, the measured phase seem degraded, and the rate of change of phase

is larger than above 170 m;

e Below 100 m, the behavior of the phase changes again, presenting even larger

fluctuations.

The de-trend process was implemented on the 54.6 m receiver data through four poly-

nomial fits, roughly according to the above regions:
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Figure 2-16: Residual phase of the measured field and trend removal for the receiver at
54.6 m (cf. Figure 2-15). The dots are the residual phase; the dashed line is a polynomial
fit by parts of the slow, large phase variations observed up to r =1000 m, interpreted as
a measurement error; the solid line is the residual phase after the trend removal.

e A polynomial of degree 15 for r < 100 m;
e Two polynomials of degree 5 for 100 < r < 170 m, and 150 < r < 500 m;

e A polynomial of degree 3 for 450 < r < 1000 m.

The polynomial fits were applied in the order given above. The overlap between regions
allowed for reduced discontinuities in the transition points. Figure 2-16 illustrates the
process. The trend line above 1000 m is a constant, as in the other receiver. The
constant, in the present case, was not an integer multiple of 27, which required a further
phase correction in the complex calibration factor g,, as shown in Table 2.1. The final
residual pressure, including the synthetic field for comparison, is shown in Figure 2-17.
Notice that below 100 m the residual magnitude is noticeably smaller than one, which
is not to be expected in a region where the direct field dominates (cf. Figure 2-14 for
z = 1.2m). This may suggest an additional experimental error mechanism for the first

20 data samples.
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Figure 2-17: Residual pressure and unwrapped phase of the synthetic, variable source
height field and of the experimental field (after phase de-trend), receiver at 54.6 m. The
vertical scales on these plots are the same.
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Figure 2-18: The complete reflection coefficient estimation includes compensation for
source height variations (migration) and phase measurement errors (phase de-trend), in
addition to the basic steps of Figure 2-3.

The Complete Reflection Coefficient Measurement Process

The process of estimation of the reflection coefficient that includes migration and phase

de-trend is shown in Figure 2-18 (cf. Figure 2-3). After the phase slow-down stage, the

estimated residual phase trend is removed and the residual pressure is interpolated.
After the interpolation, the phase factor removed during the first stage is restored

using a new geometric phase factor based on a constant, average source height zpay,:

exp{ikoRoavg} = exp{ikO\/ 72+ (2 = Z0aug)?}

This is the migration process discussed in Section 2.3.1. The interpolated and migrated
pressure data is the input for the computation of the Green’s function and the reflection

coefficient.
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2.3.4 Reflection Coefficient from Experimental Data
Experimental Green’s Function

The residual pressure was interpolated into the range grid required by the Fourier-
Bessel series, eq.(2.16), associated to the zeros of Jy(-). A smoothing cubic spline was
used for the interpolation as implemented in Matlab®1 by the functions csaps.m and
spaps.m[12].

Results are shown for two degrees of pressure field smoothing, in order to verify its
effect on the final result, which is to obtain estimates with different degrees of smooth-
ness. When applied to the synthetic fields, the same degrees of smoothing do not affect
the result appreciably.

The smoothed/interpolated fields at the two receivers are shown in Figures 2-19 and
2-20. For small ranges, the fields were extrapolated using the geometrical acoustic model
of eq.(2.27), as explained in Section 2.3.1.

The general characteristics of the estimated Green’s functions, shown in Figure 2-21,
are reasonably close to the synthetic case (cf. Figures 2-10 and 2-11). As k, increases, the
magnitude goes from slowly to quickly changing with pronounced nulls. The behavior
of the phase is also similar. The effect of the extra residual pressure smoothing is to
produce a smoother estimate of the Green’s function, which indicates that the additional

smoothed signal still captures some essential characteristics of the measured fields.

Inferred Reflection Coefficient

The inferred reflection coefficients are shown in Figure 2-22 (cf. Figures 2-12 and 2-13).
Smoothing of the residual pressure has the effect of also smoothing the estimated reflec-
tion coefficient and reducing its peaks. The phase of the reflection coefficient computed
from the 1.2 m receiver has, for k., > 0.55kq, a negative slope, as observed in the model

reflection coefficient and the synthetic field results for large k.. This is only observed for

4Matlab is a registered trademark of The MathWorks, Inc.
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Figure 2-19: Experimental residual fields, 2 = 1.2m, original (dots) and smoothed and
interpolated (solid lines); two degrees of smoothing are shown. The final results preserve
the main features of the measured experimental field. In order to preserve these features,
the total range was divided in up to 5 regions with different smoothing parameters.




r(m)

Figure 2-20: Experimental residual fields, z = 54.6m, original (dots) and smoothed and
interpolated (solid lines); two degrees of smoothing are shown. The final results preserve
the main features of the measured experimental field. In order to preserve these features,
the total range was divided in up to 4 regions with different smoothing parameters.
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Figure 2-21: Green’s function (in Newton, relative to source level of 0 dB ref. 1Pa @ 1
m) estimated from the measured fields for z = 54.6m (upper plot) and z = 1.2m. The
solid lines are results from the smoother signals shown in Figures 2-19 and 2-20.
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Figure 2-22: Reflection coefficient inferred from the experimental fields at z = 54.6m

(upper plot) and 1.2 m. The solid lines corresponds to the smoother fields shown in
Figures 2-19 and 2-20.

k. > 0.75k, on the 54.6 m receiver, which indicates a better quality of the 1.2 m receiver
estimate. The large magnitude oscillations in the supercritical region k, > 0.78k, is sim-
ilar to those observed in the synthetic results, suggesting a similar cause (degradation
of the Hankel transform due to source height variations).

The magnitude of the reflection coefficient estimated from the 54.6 m receiver data
has a pronounced change at k./k, ~ 0.78 typical of critical incidence, suggesting a
basement sound velocity of 1917 m/s, instead of 2200 m/s as previously obtained by

matching the field magnitude[21]. The 1.2 m receiver results present similar changes
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Figure 2-23: Reflection coefficient inferred from the experimental fields at z = 54.6m
(upper plot) and 1.2 m, using an alternate smoothing scheme, extrapolation of fields
using only direct field, and Fourier-Bessel series with uniform window.

in magnitude at k,/k, =~ 0.75, although not so well defined, resulting in a basement
velocity estimate of 1993 m/s.
Figure 2-23 shows the resulting reflection coefficients when using still another smooth-

ing scheme on the experimental fields, where the field was extrapolated for small ranges

using only the direct field, and a uniform window [w(r,) = 1] was used when computing

the Green’s function.
The results using this simpler scheme are qualitatively similar to those shown previ-

ously (Figure 2-22), indicating a certain degree of insensitivity of the estimate to details
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in the data processing. The more obvious features are:

e The magnitude is closer to one near k, = k,; (caused by the use of the uniform

window);
e The critical region is better defined in the 1.2 m receiver result, although not as
well as in the other receiver’s.

Fields Computed from Inferred Reflection Coefficients

An assessment of the quality of the estimate can be achieved by comparing the mea-

sured field with a synthetic field generated from the inferred reflection coefficients. The

estimated reflection coefficients were first extended to high k, values (k, < k, < 2k,)

by assuming a constant value of -1 in that region.

In order to observe the effect of such extension, fields were computed using the model
reflection coefficient truncated to k. = k, and then extended to k, = 2k, as described
above. The result is shown in the upper plot of Figure 2-24. A noticeable, but not
significant error in the magnitude of the field is observed only at large distances.

The remaining plots show computed fields at 54.6 m using the reflection coefficient of
Figures 2-12 and 2-13, inferred from the synthetic fields. The deterioration observed on
these other plots is also more pronounced at large distances, suggesting that the estimate
of the reflection coefficient is worse near k. = ko. In addition, these plots suggest that
the reflection coefficient estimate is better from the z = 1.2m data.

The analogous results for the experimental reflection coefficients are shown in Figures
2-25 and 2-26. The mismatch at large distances is qualitatively similar to that observed
with the synthetic fields, suggesting a comparable quality of the reflection coefficient
estimate for large k,. At smaller distances, the fields differ more than in the synthetic

case, which can be explained by the phase errors at these distances.
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Figure 2-24: Magnitude (dB re 1V at the receiver output) of the original synthetic
field at z =54.6 m from the model reflection coefficient (dashed lines) compared with
a new set of synthetic fields computed from reflection coefficients inferred the original
synthetic fields(solid lines) shown in Figures 2-12 and 2-13. The reflection coefficients
were extended to the region k, < k. < 2ko by assuming R, = —1 in that region. (a)
model R; truncated to ko, for reference; (b) R, inferred from the synthetic field at
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z = 54.6m; (c) R, inferred from the synthetic field at z = 1.2m.
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Figure 2-25: Magnitude (dB re 1V at the receiver output) of measured (dots) and
synthetic (solid lines) fields generated from reflection coefficients estimated from experi-
mental data: (a) smooth Rb estimate from receiver at 54.6 m (Figure 2-22, upper plot);
(b) smooth Rb estimate from receiver at 1.2 m (Figure 2-22 lower plot); (c) alternate
smooth scheme, Rb from receiver at 54.6 m (upper plot of Figure 2-23); (d) alternate
smooth scheme, Rb from receiver at 1.2 m (lower plot of Figure 2-23).
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Figure 2-26: Residual phase of measured (dots) and synthetic (solid lines) fields gen-
erated from reflection coefficients estimated from experimental data, corresponding to
Figure 2-25: (a) smooth Rb estimate from receiver at 54.6 m (Figure 2-22, upper plot);
(b) smooth Rb estimate from receiver at 1.2 m (Figure 2-22 lower plot); (c) alternate
smooth scheme, Rb from receiver at 54.6 m (upper plot of Figure 2-23); (d) alternate
smooth scheme, Rb from receiver at 1.2 m (lower plot of Figure 2-23).




2.4 Inversion from Reflection Coefficient Data

2.4.1 Practical Issues Related to the Application of Merab’s
Method

Merab’s method is based on the exact inverse theory of estimating the potential from
scattering data in Quantum Mechanics. It requires knowledge of the reflection coefficient
in the domain 0 < k, < oo and, when trapped modes are present, the location and
residues of its poles in the upper half-plane. In actual measurements, the reflection
coefficient is estimated only in a finite region of the real line, usually in the range
0 < k. < ko corresponding to real angles of incidence, and no method to measure the
required information about its poles has yet been devised. Another issue is its validity

only in regions free of density discontinuities. This Section discusses these issues.

Compensating for Density Discontinuity

As pointed out in Section 2.1.1, Merab’s method is not valid in the presence of density
discontinuities, which is a major restriction of its application to the measurement of
sound velocity in the seabed.

A density discontinuity at the water-seabed interface can, however, be compensated
for by modifying the reflection coefficient[66]. The continuity of the vertical impedance
imposes a relation between the values of the reflection coefficient measured on each side

of the interface [75] (see Figure 2-27)

po 1+ Ryo(k-0) _pl+ Ry (K1) (2.29)
kzo1— Ryo(kz0) ka1l — Ru(kn)’
where the subscript 0’ refers to the water side, and '1’ to the seabed side, and k,; =

k.(z = 0%) = \/(w/c1)? — (w/co)? + k%,. If the density of the water were ”increased”

to p1, the new measured reflection coefficient at z = 0~ f{bo(kzo), would satisfy, from




Ol Po, Co l\ﬁbo(lﬁzo)
l i I\A/Rt)l(kzl>

2

1 o
0| P1, Co \/]/%bo(k‘zo)
\szl, @ Ml(kzl)

Figure 2-27: Density discontinuity compensation of the seabed reflection coefficient. If po
is changed to p;, the density discontinuity is eliminated, resulting in a different reflection
coefficient Ryo.

eq.(2.29), )
p1 1+ Ryo(kz0) _pl+ Ry (k1)
kzO 1-— RbO(kzO) kzl 1= Rbl(kzl).

Comparing egs.(2.29) and (2.30), one obtains

(2.30)

) 12+ (1+2) Ryo(kwo)
Ryo(kz0) = E - : (2.31)
1+ 2+ (1-2) Ryg(kuo)

Equation (2.31) can be used to compensate the measured reflection coefficient, given the

seabed density at the interface.

Avoiding Excitation of Trapped Modes

For the Icelandic model of Figure 2-6, the water sound velocity is ¢y = 1495 m/s, the
minimum sound velocity in the seabed is ¢, = 1483.34 m/s, and the sound velocity

gradient is g = 0.62 s~!. For these parameters, eq.(2.5) predicts that frequencies below
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248 Hz do not excite trapped modes, but the pole at the reflection coefficient in Figure
2-8 shows otherwise.

In [45], the starting point to establish the criterion for non excitation of trapped
modes, eq.(2.5), is an expression derived for bound states in a central field of force.
A more realistic criterion is obtained by using the WKB approximation for modes, in

which traveling waves have phase factors of the form

exp {:i:z/ kz(z')dz'},
where k, = \/[w/c(2)]® — k2 is real.

For the Icelandic model, where trapped modes reflect at the surface and refract back
from below, a mode is defined by setting to 27n, n integer, the total phase change of
a wave traveling from a reference depth to the lower turning point zp, to the water

interface at z = 0 where it is reflected, and back to the reference depth[75]:
zr T
2/ k.(2)dz + g Prw =20, =1, 2,...; (2.33)
0

where the first term corresponds to the WKB approximation of phase change due to
the propagation, 7/2 accounts for the total reflection at the lower turning point (when
contributions from other layers below 27 are neglected), and ¢g,, is the phase of the

reflection coefficient at the water interface, given by

pvk =~k kg} . (2.34)

Po kz

¢R10 = —2tan"! |:

Equation (2.33) is solved for the modal eigenvalues k,,. Substituting eq.(2.34) into

eq.(2.33) and taking the tangent on both sides, one obtains the eigenvalue characteristic

i ( /0 " Elija= 1) _avE-kK (2.35)

4 Po kz

equation
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A closed form expression for the integral can be obtained for the constant gradient profile
with a minimum at the water interface, ¢(z) = ¢min + g2, which, upon the substitution

u = k,(2)/k(z), for which u(z7) = 0, becomes

zr
/ k(2)dz =2 (0.51n s —y) ,
0 g X =3

where y = u(0) = k,(0)/k(0) is the cosine of the angle of incidence at the water interface.

Using the variable y, the characteristic equation (2.35) becomes, for a linear sound

velocity profile,

1 P
tan [“’ (O.SIn it y) - E] =B¥: _H (2.36)

g 1-y 4] p oy

where a = /1 — (cmin/co)?. Trapped modes are the roots of eq.(2.36) in the interval
0 < y < a corresponding to evanescent waves in the water (k, > ko).

In order to avoid trapped modes, eq.(2.36) can not have solutions. As shown in
Figure 2-28, the right-hand side of eq.(2.36) is a positive function in 0 < y < a that
decreases monotonically to zero at y = a. The left-hand side is (—1) at y = 0 and
increases monotonically to zero at the point y, where the argument of the tangent
function becomes zero. Therefore, solutions in the interval (0, a) will not exist if a < yo,
or, equivalently, if the left-hand side of eq.(2.36) is negative at y = a, i.e.,

w l1+a (l
= 51 o e
(05n1 a)<4,

from which the criterion for no trapped modes is

e >
YSP0smE g

(2.37)

For typical environments, cmin/co ~ 1, @ = \/1 — (Cmin/c0)? =~ V24/1 — Cmin/ Co, and
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Figure 2-28: Terms of the trapped mode equation (2.36), illustration of a single solution
(mode). Axis scales are arbitrary. No solution exists when a < yo.

eq.(2.37) simplifies to®

a3 o\ "2
w< — [ s = 2.38
8\/§g( Co ) ( )

which is nearly 52% below eq.(2.5). Back to the Icelandic Basin model of Figure 2-6,
eq.(2.38) predicts that no mode is excited below 119 Hz, not the 248 Hz predicted by
eq.(2.5). Using the KRAKEN([57] normal mode code, trapped modes were found down
to 112 Hz for that model, 6% below eq.(2.38). Equation (2.38) is the criterion that must
be applied when the sound velocity minimum is close to the water interface.

If the sound velocity minimum is away from the water interface and the modal
solutions have two turning points (instead of being reflected by the water interface),

eq.(2.33) is modified by taking ¢r,, = m/2 (neglecting the effect of the water interface).

5The Taylor series expansion of the denominator in eq.(2.37) is

1 3 5
+a—a=a—+%+---,0§a<1.

051
S s 3
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Following an analogous analysis, but now for a symmetric, bi-linear profile of gradient
+g near the minimum, modes with characteristic wavenumbers below that of the water

are avoided if

37l_ Comi —3/2
w< —— ; . 2.39
2o ( g ) (2.39)

which is just 4% below Merab’s criterion, eq.(2.5). The present result suggests that his
“starting point” of a central field of force mentioned above is related to the two turning
point case.

As shown in eq.(2.38), trapped modes can be avoided by using a sufficiently low
frequency that depends on the ratio ¢, /co between the minimum sound velocity in the
sediment and the velocity in water. If trapped modes are excited, but the information
about the bound state (that is, the poles of the reflection coefficient) is not included in
the inversion, as in eq.(2.4), the inferred sound velocity profile would not include the
corresponding minima.

For the Icelandic Basin model of Figure 2-6 trapped modes are excited at 220 Hz,
the frequency of the experiment. In order to avoid trapped modes at a given frequency,

the sound velocity in water should satisfy, from eq.(2.38),

min 8 in
co < - e L8 (2.40)
1=

[37g/(8wv/2)] 3 8—(3g/f)*%

where w = 27 f. In order to avoid trapped modes in the Icelandic model seabed (cpmin =
1483.34 m/s, g = 0.62 s7!) at f =220 Hz, the water sound velocity should be, from
eq.(2.40), smaller than 1491.07 m/s, which is not satisfied by the model.

If a measured reflection coefficient is modified to account for a smaller water sound
velocity, say ¢, = co — €, then the inverted profile may change to include sound velocities
down to this new water sound velocity, indicating a possible trapped mode in the original

environment®. Using the continuity condition of eq.(2.29) with the lower sound velocity

6Joyce R. McLaughlin, Dept. of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY.
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¢y, and the new vertical wavenumber

Ko = V@I — k2 = [ (w/ch)? — (w]co)® + K,

one obtains
&1 + Rw(k;o) - ﬂl + Rbl(kzl)
k;0 1= RbO(k/zo) Kyl = Rbl(kn),

which, when compared with eq.(2.29), results in

_ klzo B kzo ot (k;o £S5 kZO)RbO(kzo)

’
RbO(kzo) = k;o + ko + (k;o — kzo)RbO(kzo)-

(2.42)

The original reflection coefficient is available for vertical wavenumbers k.o > 0. The mod-

ified coefficient can, therefore, be computed, from eq.(2.41), for k., > /(w/c))? — (w/co)? ~
w/co/2€/co. In the region 0 < kL, < w+/2€/co/co, which corresponds to information not
available in the original measurement, the reflection coefficient must be extrapolated.

This suggests that €/co must be small.

2.4.2 Simulation Results
Inversion from a Numerical Reflection Coefficient

As a first example, the reflection coefficient for the Icelandic model shown in Figure 2-8
is used as input data to Merab’s method. The reflection coefficient as a function of the
vertical wavenumber is shown in Figure 2-29 after the density discontinuity compensation
of eq.(2.31). The coefficient was computed at the Icelandic Basin Experiment frequency,
220 Hz, and at 50 Hz, for comparison of the recovered profiles. Only the region 0 <
k. < ko is shown and is used for the inversion in order to illustrate the smoothing effect
of the truncation to real angles of incidence.

The inverted profiles are shown in Figure 2-30. The 220 Hz result tracks the gradient
better than the 50 Hz. The numerical solution of the Gelfand-Levitan integral equation




Reflection Coefficient after Density Compensation
Icelandic Profile

T T

—— 220 Hz
c, = 1495 m/s | 50 Hz
p, = 1000 kg/m®

a = 0.018 dB/mvkHz
p, = 1600 kg/m®

—~

G, = 2200 m/s
P, = 1600 kg/m®

1500 1550
¢ (m/s)

1

1600

Figure 2-29: Icelandic model (from Figure 2-6) and reflection coefficient at two fre-

quencies, after compensation for the density discontinuity at the seabed interface. The
vertical wavenumber k, is shown in rad/m.
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Figure 2-30: Profiles inverted from the Icelandic model numerical reflection coefficients.

becomes unstable below a certain depth, about 50 m for 220 Hz and 75 m for 50 Hz,
but both profiles show an abrupt increase of the sound velocity near z =51 m.

A closer view of the sediment region 0 < z < 51m is shown in Figure 2-30. The effect

of the trapped mode neglected in the 220 Hz inversion is a degradation of the recovered

profile near the minimum at the interface. The smoothing effect of the truncation in
k. is clearly shown. At 50 Hz no trapped mode is excited (cutoff is 112 Hz for this
environment) and the inverted sound velocity at 2z = 0 is below that of the water, close
to the actual value. This result suggests that, in the absence of trapped modes, the

velocity minimum is recovered.
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Figure 2-31: Profiles inverted from the Icelandic model numerical reflection coefficients.
Zoom in the sediment.
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Figure 2-32: Profiles inverted from the Icelandic model numerical reflection coefficient at
220 Hz. By reducing the water sound velocity to 1490 m/s, the modified reflection coeffi-
cient inversion gives an indication of a sound velocity minimum near the interface[68, 24].

As discussed in connection with eq.(2.40), trapped modes are not excited if the water
sound velocity is, for the Icelandic model of Figure 2-29, below 1483.34 m/s. In order to
verify the effect of a small reduction in the water sound speed, we used eqs.(2.41) and
(2.42) with ¢f = 1490 m/s to modify the “measured” reflection coefficient at 220 Hz.

The new inverted sound velocity is shown in Figure 2-32 together with the original
inversion result. The inverted velocity at the water interface was reduced, which indicates

the presence of trapped modes in the original data.
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Figure 2-33: Reflection coefficient from the synthetic field from Figure 2-12 as a function
of the vertical wavenumber k., before density discontinuity compensation (solid line).
The dashed line shows the reference (numerical) reflection coefficient.

Inversion from a Synthetic Pressure Field Data

As a second and more realistic example, the inversion is performed using the reflection
coefficient, shown in the lower plot of Figure 2-12, ”estimated” from the synthetic field
that includes the effect of source height variations. In Figure 2-33, R, is plotted as a
function of the vertical wavenumber together with the numerical reflection coefficient
used in Section 2.4.2.

As discussed in Section 2.3.2, source height variations manifest as high values (>1)

of the magnitude of the reflection coefficient in the critical incidence region. In addition
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Figure 2-34: Reflection Coefficients of Figure 2-33 after density discontinuity compen-
sation and magnitude truncation.

to the density discontinuity compensation, the magnitude of the reflection coefficient is
hard-clipped to one prior to its use for inversion, as shown in Figure 2-34.
The inverted profile is shown in Figure 2-35. Compared to Figure 2-31, the errors

introduced by the source height variations manifest as oscillations in the profile.

2.4.3 Inversion from the Icelandic Basin Data

The reflection coefficient estimated from the Icelandic Basin experiment data, shown
in the lower plot of Figure 2-23, is used to recover the sound velocity profile. The

resulting Ry, after density discontinuity compensation and magnitude hard-clipping to
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Figure 2-35: Inversion from the reflection coefficient from Figure 2-34, inferred from the
synthetic field at 1.2m, which includes source height variations.
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Figure 2-36: Experimental reflection coefficient (solid line) after compensation for den-

sity discontinuity and magnitude clipping. The Icelandic model reflection coefficient
(dashed line) is shown for reference.

one is shown in Figure 2-36.

Contrasted to the synthetic case above, the effect of density compensation on the
magnitude is small, suggesting that other environmental factors, such as additional
density variations (discontinuous or not), could be at play.

The recovered profile is shown in Figure 2-37. The general behavior is similar to
the synthetic case of Figure 2-35, suggesting similar error mechanisms: truncation of
the reflection coefficient to real angles of incidence and source height variations, and a

degradation of the integral equation solver result as depth increases.
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Figure 2-37: Profile recovered from the reflection coefficient of Figure 2-36, inferred
from the Icelandic Basin experiment data at 1.2 m. The Icelandic model (dashed line)
is included as a reference only and must not be interpreted as the right answer”.
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There are additional sources of error in the experimental data analysis, such as
the phase de-trend discussed in Section 2.3.3, and an apparently inaccurate density
compensation or, equivalently, lack of a more detailed information about the density
structure. The similarity with the synthetic, or even the fact that ”reasonable” sound
velocity values were estimated, is somehow surprising. In fact, as discussed in relation to
eq.(2.6), the recovered profile is possibly contaminated by the density profile, and could

only be expected to be recovered by a measurement in a second frequency.

2.5 Summary and Conclusions

2.5.1 Reflection Coefficient

Section 2.3 analyzes the Icelandic Basin pressure data. We investigated the application
of the technique developed by Frisk and co-workers [22, 46] for the measurement of
the reflection coefficient to experimental data. We generated simulated fields in order
“to assess the influence of the experimentally observed source height variations on the
technique and lack of data at close range.

We showed that the residual pressure, essentially a normalization of the pressure
field by the direct field component, had characteristics that could be explored for the
analysis of experimental data. We used the residual pressure to identify and compensate
for errors in the experimental data.

We observed that the simulated field had residual phase and magnitude variations
similar to the one observed in the experimental data, which were compensated by mi-
grating the synthetic field to a constant depth by changing the direct field. The effect
of source height variations was observed mainly as fluctuations on the magnitude of the
inferred reflection coefficient in the total reflection region.

The synthetic results indicate that the adopted migration process does not entirely

compensate for the source height variations. Even without the phase error observed in

75




the actual data, the reflection coefficient obtained from the synthetic field (as opposed

to the ideal field) has magnitude larger than 1 for some angles of incidence. The wrong

(non-physical) relation between the direct and bottom reflected fields (caused by the

migration) reflects itself as this non-physical value of the coefficient. Nevertheless, the
general characteristics of the model reflection coefficient used to compute the synthetic
fields, such as critical angle of incidence and behavior of the phase with k,, are recovered
in the inferred reflection coefficients.

We showed that even after migration, the experimental field residual phase still had
variations not compatible with the physical model, as indicated by comparing residual
phase and magnitude fluctuations. By estimating the phase trend and removing it
through a polynomial fit, we obtained a signal with compatible magnitude and phase
variations. In this process, we also identified apparent errors in one receiver calibration
factor. We proposed a modification of the basic methodology to take into account source
height variations and phase de-trend.

Errors in the experimental reflection coefficients are qualitatively similar to the errors
observed (and explained) for the synthetic case. This suggests a similar error mechanism,
the source height variations with range. It also suggests that the de-trend procedure,
based on the analysis of the residual pressure, is a valid technique.

Phase error compensation (de-trend) and smoothing schemes are not unique and
influence, to some degree, the results. The large fluctuations of the experimental reflec-
tion coefficient magnitudes and the behavior of its phase (as compared to the synthetic
results) may result from imperfect phase de-trend associated with the simple range-
independent, fluid bottom model.

We tested the sensitivity of the method to slight different analysis approaches. We
inferred the reflection coefficient using two smoothing and extrapolation schemes. The
results were mixed. The estimate from the receiver close to the bottom improved, as
observed by a better defined critical angle. The change in the estimate using the upper

receiver data was marginal.




2.5.2 Sound Velocity Profile Inversion

We extended Merab’s method to deal with a density discontinuity at the water-seabed
interface, becoming more suitable to ocean environments. The criterion for trapped
modes was corrected for the case of reflection at the water interface, and a method for
checking for velocity minima after the inversion was tested.

We corrected the expression for the modal cutoff frequency when the seabed sound
velocity minima occurs at the water interface and verified that Merab’s expression is
valid for modes that do not interact with the water interface.

We inverted for the sound velocity profile in the seabed using a reflection coefficient
inferred from experimental data (Figure 2-37), a result not previously available.

We showed, by simulation, that the effect of source height variations on the estimation
of the reflection coefficient is to introduce oscillations in the inverted profile, as long as
the magnitude of the reflection coefficient is clipped at one.

When inverting for experimental data, the density discontinuity compensation had
little effect on the reflection data, suggesting that the density of the seabed is not
constant. Measurements at more than one frequency, as suggested in [45], could be used
to test this hypothesis, if the density profile in the seabed is sufficiently smooth.

The recovered sound velocity profile has characteristics similar to the synthetic case,
suggesting similar error mechanisms, in addition to the possible density variations in the
experiment site.

Merab’s method reveals some of the advantages and restrictions of methods based
in exact theories. The requirements for uniqueness are well established, in the present
case, the reflection coefficient must be given on the half-line 0 < k, < oo, and the poles
in the upper k, complex plane must be known (position and residue). Such requirement
on the input data is not realistic, in the sense that input data is measured only in a
limited finite region, and no information regarding the poles could be extracted from the
available data. The effects of truncating the domain to 0 < k, < ko and of neglecting

the trapped modes are, nevertheless, well understood. Another issue is the effect of
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measurement noise, not usually included in such theories.

This is a one dimensional theory, which requires that the environment be well approx-
imated by a range-independent model. The plane-wave reflection coefficient measure-
ment technique of Section 2.3 requires measurement in a reasonably large aperture where
the properties of the environment are assumed constant, and therefore, is restricted to
reasonably range independent environments.

Application to coastal, shallow-water environments presents two major difficulties.
First, the assumption of range independence over large apertures is usually not valid.
Spatial variations in the seabed structure and bathymetry, and temporal variations in
the water column induced by currents and internal waves, in particular tides and tide-
induced solitary waves, are the norm in such environments.

Second, the low-frequency acoustic field is usually dominated by normal modes, and
the continuous wavenumber spectrum, such as the one represented by the Green’s func-
tions of Section 2.3, is small compared to the discrete, modal spectral lines.

In practice, even if the range independence assumption is valid, estimating the re-
flection coefficient at wavenumbers different from the modes in such conditions is, to put
it mildly, challenging.

Exact methods in shallow-water based on measurements of the continuous spectrum
of the field may be feasible if, first, no modes are excited (requiring a sufficiently low
frequency in typical coastal environments), and second, the data can be acquired in
small regions in order to be considered representative of local properties. In fact, by

requiring that no mode be excited, the field may fall-off fast enough with range to be

considered representative of the local environment. Stickler[70] has proposed a method

for shallow-water whose requirement is that no mode be excited.




Chapter 3

Range-Dependent Modal Eigenvalue

Sequential Estimation

3.1 Introduction

This chapter investigates the high-resolution estimation of range-dependent modal eigen-
values. It extends the technique described by Becker and Frisk[7] and Becker, Rajan,
and Frisk[5], which uses a sliding-window, autoregressive (AR) spectral estimator. The
use of AR techniques is an improvement over the short-time Fourier transform proposed
by Ohta and Frisk[54], which requires large range apertures to resolve low order modes,
resulting in poor tracking of modal evolution in range.

When the environment changes rapidly with range, for example due to a sudden
change in the seabed type, the assumption, implicit in these techniques, of constant
modal content over a range analysis window is not valid, and the spectra degrade sig-
nificantly.

We propose the use of sequential AR estimation, where the properties are allowed
to change on a sample-by-sample basis, associated with competitive smoothing, which
combines estimates generated by different estimators and results in improved spatial

tracking characteristics. Synthetic and experimental data results are presented.
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Section 3.1 reviews the normal mode representation of acoustic fields in shallow water
and the estimation of modal eigenvalues. Section 3.1.3 describes the modal mapping
experiments (MOMAX), which provide the data to be analyzed. Appendix A discusses
the issue of acoustic data analysis in MOMAX.

In Section 3.2 we raise the issue of the validity of modeling a sum of modes as an
AR process and investigate the errors associated with the use of the AR techniques in
estimating range-varying eigenvalues. The theory of the exact representation of a sum
of time-varying real sinusoids introduced by Kayhan [38] is reviewed, and we derive the
analogous model for complex exponentials. A detailed derivation is given in Appendix
B.

Section 3.3 presents two sequential estimator implementations, based on the Kalman
filter[2, 51] and an adaptive filter[48]. One of our motivations for this work was the
need to improve the estimation of eigenvalues when the environment changes abruptly.

For this purpose, we apply a technique developed by NiedZwiecki, the competitive

smoother[49], which improves the tracking characteristics of the estimators. In Ap-

pendices C and D we discuss the design of the adaptive filter of Section 3.3 and a second
order Kalman filter.

In Section 3.3 we investigate, in addition, the application of signal decimation prior
to the eigenvalue estimation. Decimation allows for a reduction on the size of the AR
model, while maintaining or improving the tracking characteristics of AR estimators.
Smaller model size also results in reduced computational load. Ultimately, the discussion
is about the selection of a suitable range sampling interval (Ar) for the pressure signal.

In Section 3.4 we present and discuss estimation results from numerical and experi-
mental data. In particular, we show the improvement in the measurement of eigenvalues

that change abruptly.




3.1.1 The Shallow Water Acoustic Channel

Consider the propagation of a time-harmonic wave of frequency w in the waveguide
shown in Figure 3-1. As a first approximation the medium is considered horizontally
stratified, i.e., the acoustic parameters of interest!, namely, the sound speed ¢ and den-
sity p, can be considered a function of depth only. The sea surface is modeled as a
plane pressure-release boundary, and the basement (last layer in the seabed) as a plane
boundary characterized by the normal acoustic impedance ¢ or, equivalently, the reflec-
tion coefficient Ry, functions of the sound speed and density of the seabed.

Under these assumptions, the pressure field at a depth z and range r from a point

source localized at a depth z, is given by the Hankel transform[19]?

p(r,z;zo)=/ g(ks, 2; 20 ) (ki) Ky dky,
0

- / 9(ks, 7 20) HO (k)b dby, (3.1)

oo

where the depth-dependent Green’s function g is the solution of the boundary value

problem (BVP),

010
Phagte . ¥ kf)] 9(kr, 75 25) = =26(z — 2,) (3.2)
g=Datz=1, (3.3)
1 9g _

where p = p(z) is assumed to be a smooth function of depth, k(z) = w/c(z2), &€ = £(k,),
and h is the depth of the basement.
If the basement is included in the problem domain, the radiation condition is applied

at z = oo, which imposes, for the waveguide in Figure 3-1, a decaying exponential

1The absorption coefficient a will be ignored in this discussion.
2A time dependence e~** is assumed for the pressure field.
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Figure 3-1: The shallow water acoustic channel.
solution in the basement, g ~ exp{—7s2}, 2 > h, where 7o = /k2 — (W/Ce0)? > 0.
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