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DYNAMIC RESPONSE OF AN ELASTIC PLATE
CONTAINING PERIODIC MASSES

1. INTRODUCTION

Plate theory has been researched extensively for many years. Early plate and beam theory'

modeled displacement in thin plates and beams. These early models contain primarily flexural

wave dynamics and are inaccurate at high frequencies and wavenumbers. Rotary inertia and shear

effects 2 were added to the flexural wave model to obtain more accurate results at increased
frequencies. Fully elastic models 3 were developed to incorporate plate dynamics as the wave-

lengths of energy that propagate in the plate began to approach and surpass the thickness of the

plate. Analysis has also been conducted on the dispersion curves of these systems, particularly in

the area of free wave propagation.4- To a lesser extent, the mode shapes of these systems have

been studied and documented.' 0 , I1

The complexity of plate models has increased over the years by the addition of stiffeners

(ribs) or masses. The modeling technique for adding a stiffener to the plate is similar to that for

adding a discrete mass to the plate. The problem of a fluid-loaded infinite thin plate with infinite

sets of parallel stiffeners excited by a point load has been analyzed in a study that modeled the
stiffeners as line forces. 12 This problem was extended to include a moment exerted by the

stiffeners and forcing functions of plane wave, line, and point forces. 13' 14 The fluid-loaded

infinite plate problem was reformulated for a finite number of equally spaced stiffeners15 and

was further studied for randomly spaced stiffeners.' 6 The problem of a fluid-loaded, aperiodic-

stiffened infinite plate has also been addressed,17 as has the analysis of a finite-sized plate

containing concentrated masses. 18 In these studies, 12-18 the plate model has been either a thin

plate or a thin plate with rotary inertia and shear effects. Finally, the problem was modeled using

finite elements to produce numerical solutions.' 9

This report presents an analytical model that incorporates an infinite number of periodically

spaced masses into the equations of elasticity that model motion and stress in a two-dimensional

solid. The formulation of the problem begins with elasticity theory that models the motion in the

solid as a combination of dilatational and shear waves. From this theory, an expression for plate

displacement is obtained. The displacements are then inserted into stress relationships that are

set equal to the forces acting on the structure by the masses. The problem is then written as a



dynamic system, in matrix form, where the left-hand terms represent the zero-order modes and

are equal to an infinite number of right-hand terms that represent the masses acting on the
structure plus a term that models the plane wave forcing function. Rewriting this zero-order term

by increasing and decreasing the mode index results in an expression for the higher-order modes.

The integer shift property is then applied to the right-hand side of all of the terms, resulting in an

infinite set of equations that model the wave propagation coefficients of all the modes of the
structure. This set of equations is truncated to a finite number of terms, and a solution to the

displacement and stress field is calculated. Two different cases are examined: (1) where the
masses are on the edge of the plate and (2) where the masses reside within the interior of the

plate. The solution is compared to a previously solved problem at low frequency where the

wavelength of the plane wave forcing function is large compared to the thickness of the plate.
A numerical example of a high-frequency problem is included and discussed.
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2. ELASTIC PLATE WITH MASSES ALIGNED
ON THE LOWER SURFACE

The first problem analyzed is that of an elastic plate with discrete (point) masses at the
bottom edge, as shown in figure 1. The masses on the bottom of the plate are equally spaced a
distance of L (meters) in the x-direction and each has a mass per unit length of M (kg/m). The
plate has a thickness of h (meters) and is loaded on the top surface with a forcing function. The
model is based on the following assumptions: (1) the forcing function acting on the plate is a
plane wave at any definite wavenumber and frequency, (2) the corresponding response of the
plate is at definite wavenumber and frequency, (3) motion is normal and tangential to the plate in
one direction (two-dimensional system), (4) the plate has infinite spatial extent in the x-direction,
(5) the masses have translational degrees of freedom in the x- and z-directions, and (6) the
particle motion is linear.

h

M M M M M M

L

Figure 1. Elastic Plate with Periodic Edge Masses

The motion of the elastic plate is governed by the equation20

AV 2u + (A + P)VV u= , (1)
t2'

at2

where p is the density (kg/im 3), A and pu are the Lamd constants (N/m 2), t is time (seconds),
0 denotes a vector dot product, and u is the two-dimensional Cartesian coordinate displacement
vector of the plate. Equation (1) can be expanded and rewritten using four boundary conditions.

3



The normal stress at the top of the plate (z = b) is equal to the opposite of the forcing function

and is expressed as

rz z~x~b~t (2+ 2/)Ou (x,b,t) du X (x,b,t)(2= -y + ".=-~ ,t,(2)

0z Ox

where u, (x,z,t) is the displacement in the z-direction (meters), ux (x,z,t) is the displacement in
the x-direction (meters), and f(x,t) is the forcing function exciting the plate expressed in force

per unit area (N/m2). The tangential stress at the top of the plate is zero and is written as

b ) x (x, b, t) + z (x, b, t)
rZX (xLb, t) dl 6Z Ox

The normal stress at the bottom of the plate (z = a) due to the forces induced by the motion of
the masses is equal to the summation of the mass multiplied by the acceleration in the z-direction
times the spatial delta Dirac function. This expression is

rzz(X,a,t)=(2+21) duz (x, a,t) du2 U(x(,a,t) n=M' 0 2uz(x,a,t)
(z +x -= M 2 -(x-nL). (4)0ZCX n=--oo dt2

The tangential stress at the bottom of the plate is equal to the summation of the mass multiplied
by the acceleration in the x-direction times the spatial delta Dirac function. This equation is
written as

rz(~at dlIUx(X,a,t) dU z(X,a,t)] n=oc g2U(x(, a, t)
Z=X(Xat) ==u jzZ M x -(x-,nL) (5)I z Ox n=--o dt2"

It is noted that each mass can also be attached to ground with a parallel spring and damper by
replacing the mass times vertical acceleration term

d2 Uz (x,a,t)M Z(6a)

dt
2

with
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M , (xz ,t +p + x ,)4 Kuz (x, a, t) (6b)
6?t 2 dt

in equation (4), where P is the viscous damping coefficient per unit length (Ns/m 2), and K is the

spring constant per unit length (N/m 2). This system, shown in figure 2, corresponds to a

periodically damped and stiffened plate.

"r-..• \ f(C,O\ 0

L
M M MAM

P K P K P K P K

Figure 2. Elastic Plate with Periodic Edge Masses, Dampers, and Springs

Modeling the displacement as a dilatational wave and a shear wave and inserting this term

into equation (1) results in the plate displacements

u, (x, z, t) = Ux (k, z, wo)exp(ikx)exp(icot)

= [A(k, co)ik sin(az) + B(k, co)ik cos(az)

- C(k, co)/ cos(/lz) + D(k, co)/8 sin(/Jz)]exp(ikx) exp(icot), (7)

and
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u, (x, z, t) = Uz (k, z, co)exp(ikx)exp(icot)

= [A(k, co)a cos(az) - B(k, w)a sin(az)

+ C(k, co)ik sin(/3z) + D(k, w)ik cos(fiz)]exp(ikx) exp(iwot), (8)

where A(k,co), B(k,co), C(k,co), and D(k,co) are complex wave propagation coefficients of the plate

(determined by solving the system of equations below); i = vii--1 ; co is the frequency (rad/sec);

a is the modified wavenumber (rad/m) associated with the dilatational wave and is expressed as

a= k2-k2, (9)

where kd is the dilatational wavenumber and is equal to co/cd, with cd being the dilatational

wavespeed (m/s); ,8 is the modified wavenumber (rad/m) associated with the shear wave and is

expressed as

sl- k _k2 ,(10)

where ks is the shear wavenumber (rad/m) equal to co/cs, with cs being the shear wavespeed

(m/s); and k is the spatial wavenumber in the x-direction (rad/m). The relationships between the

wavespeeds cd and cs and the Lamd constants are determined by

cd A+ 2pL
cd = -,u (11)

P

and

C - (12)

Equations (2) through (5) are now transferred into the wavenumber-frequency domain

using equations (7), (8), and

f (x, t) = F exp(ikx)exp(icot), (13)
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n=oo 2U(x(, a, t)Sx n=00

= M Xt2 -J(x-nL) = -Mo2eIZUx(nL'a'o))exp(-iknL) exp(icot), (14)

and

n~o d ' (x, a, t) 2 r=oo.
I M z (, a (x - nL) = - Mwo2 (nL,a,co) exp(-iknL) exp(iwt). (15)n =-oo dt 2n=o I

Additionally, Poisson's summation formula is applied to the right-hand side of equations (14)
and (15), yielding the stresses in the wavenumber-frequency domain as

Tzz(k,b, o) (A + 2p) dUz(kb,o) AOUx(k,b,c) -- F, (16)
Oz Ox

yzx(kb, Co)= dUx(k'b'co) +9Uz(k,b, o)] 0, (17)

Tz (k,a, w)(A+2p)u z (k, a, co) dUx (k, a, co)

dz Ox

-M 2 n=oo 2n-Mo I Uz (k + -, a, co), (18)
L L

L n = -...oo0

and

Tzx(k,a,OUx (k, a, ) dUz (k, a, co)
Tzxk'aIo 67 Z Ox

222=o02zn-Mco Z Ux (k + -,a, w). (19)
L n=---o L

Equations (7) and (8) could be inserted into equations (16) through (19); however, the
substitution alone would not produce a solution to the problem, because the result would be
divergent expressions. Instead, equations (7) and (8) are substituted into equations (16) through

(19) and rewritten as



[A=°)(k)]x(°) =[U(-)(k+ 2nn )]x(-+-) + f , (20)
L

with,

[U(+ý-•)(k + 2)rn) =A '" [U (-1) (k - 2))]L [U(0)(k)] [U(1)(k + IT)L ""'(1

LL L L i

where [A(°)(k)] is a 4 x 4 matrix that models the dynamics of the structure for n = 0, x(°) is the 4 x 1

vector of wave propagation coefficients for n = 0, [U(+•)(k + 2;rn/L)] is the 4 x oo block-partitioned

matrix that represents the periodic mass loading on the structure for n = -- 0 to n = oo, xl 1-) is the

oo x I vector of wave propagation coefficients for n = -- o to n = oo, and f is the 4 x 1 vector that

models the plane wave excitation. (The entries of the matrixes and vectors in equations (20) and

(21) are listed in the appendix.) To facilitate a solution to the problem, the integer shift property

of the infinite summation in equation (20) is used. Equation (20) is m-indexed and becomes

[A (m) (k + 2m i)]x(m) = [U(+±°) (k + -- + 2ff m)]x(+-) + f
L L L

S[U(±") (k + 2 m )]x() + f. (22)
L

Once the [A(m)] matrix is integer-indexed and the displacement load matrix indices have been

shifted, the system equations can be rewritten using all the n-indexed modes as

A x(±+0) = U x(±00) + F , (23)

where A is a block-diagonal matrix and is equal to

8



[A(')(k + 2 g)] 0 0
L

A 0 [A( 0 )(k)] 0 . (24)

00 [A(-1)(k--2)
L

U is a rank deficient, block-partitioned matrix and is written as

L L
U ...[U-1 2ff•) [uO() U1)(k2f]f25

[U(- 1) (k - 2;)] [u(O)(k)] [U(1)(k+ 2)]
L L

and F is the plane wave load vector

F=[- fT fT fT .. T. (26)

The 0 term in equation (24) is a 4 x 4 matrix whose entries are all zeros. Once equation

(23) is assembled, the wave-propagation coefficients that reside in the x vector can be

determined using

x(-+) =[A -U]-'F. (27)

When the coefficients are determined, the displacements of the system can be calculated using

equations (7) and (8) and the n = 0 wave propagation coefficients.
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The elastic plate model can be compared and, thus, validated for a thin plate at low

frequency using the Bernoulli-Euler differential equation of motion applied to a thin, infinite flat

plate containing periodic masses. This model has been previously analyzed' 2' 17 using a line load

excitation and is reformulated here to correspond to plane wave excitation. This expression is

U, (kx,) (O4 h02 )-1 M~2 1~o- -k-,1 _ _ _o I2Z4 (28)

F L D- Dk+ 21r ph2 co2

where

D=- Eh3 (29)
12(1 - )

Figure 3 is a plot of the transfer function of displacement in the z-direction divided by input
force versus wavenumber at a frequency of 200 Hz. This example was generated with the

following system parameters: thickness is 0.01 meter, density is 1200 kg/m3, Lam6 constant A is
2.25 x 108 N/m2 , and Lam6 constant p is 2.50 x 107 N/m2. In figure 3, the dashed line is thin plate
theory without the periodic masses (i.e., M= 0); the solid line is elastic plate theory with M= 0.5

kg/m and L = 0.1 meter and corresponds to equations (8) and (27); and the x symbols are thin
plate theory with M= 0.5 kg/m and L = 0.1 meter and corresponds to equation (28). The elastic

plate model was calculated using seven modes (-3 < n < 3) that produced a 28- x 28-element,

system matrix. The resonance exhibited by the thin plate model is the plate flexural wave. This

energy is shifted higher in wavenumber as masses are added to the system. Additionally, the
added masses allow energy in the system at characteristic lengths-these effects, called Floquet

waves, can be seen at around 20 rad/m and 80 rad/m. The Floquet waves possess stop-bands and

pass-bands that correspond to the characteristic lengths of the structure. Notice in figure 3 that the
thin and elastic plate models with periodic masses compare closely, but not identically. This is

because the elastic plate equations of motion allow the admittance of shear wave effects, rotary
inertia, and higher-order wave motion, which are not present in thin plate theory. The transfer

function in the x-direction is not shown because the thin plate Bernoulli-Euler equation of motion

does not support a degree of freedom in this longitudinal direction.
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Normal Displacement at 200 Hz
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Figure 3. Transfer Function of Displacement Divided by Excitation Force
Versus Wavenumber at 200 Hz
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Figure 4 is a plot of the elastic plate transfer function calculated using one, three, five, and

seven terms compared to thin plate theory for the above example. The wavenumber axis has

been expanded to 250 radim. This plot illustrates the behavior of the model as more terms are
added to the truncated model. Notice that more terms, in general, correspond to dynamics at

higher wavenumbers.

,i'-120 .
-1 4 0 _. J il... .. . I � ......... . .... ! ......... ....... !................ - e . T..... -- • .. -.

rn-16 0  . . *... ... ... . .. .... ..... . . .. ............ .

-180 ........... ........
"E -200 ............. ........... V.......... I

-.220 , •. .
2 0 50 100 150 200 250

"R -120
-Three Terms

-n-160  ... ..

S- 1 8 0 . . . . .. . . ... '.. . . . . .. .. . .. . .. . "

01 2 0 a -, .'... ..- ,. a. .'
. t .........S_2200 , .t. ......

0 50 100 150 200 250

-120
. :Five TermsE -1 4 0 ...... ...... . ...... .......... ................ :............. . : v....... .... .

rn -1 6 0  
a

-1 6 0 ......... . . . .. . ......... ?. ..... ......... :.-...... }... .

It 
fta
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-140 - . .... Seven Terms
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Wavenumber (rad/m)

Figure 4. Comparison of the Elastic Plate Transfer Function Calculated Using One, Three,
Five, and Seven Terms (Solid Line) and the Thin Plate Theory (Dashed Line)
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3. ELASTIC PLATE WITH EMBEDDED INTERIOR MASSES

The elastic plate model can be changed so that the periodic masses are moved from the

edge into the interior of the plate, as shown in figure 5.

z ýC

M M M M M Mz=b - 0 M1 X0 0

z-a

L

Figure 5. Elastic Plate with Periodic Interior Masses

The solution to this problem is divided into two parts based on the value of z. The upper

region of the plate, location b < z < c, is denoted with a prefix superscript (2), and the lower

region of the plate, location a < z < b, is denoted with a prefix superscript (1). The displacement

in the x-direction is

I (2)LUý(kz,co)exp(ikx)exp(icot) b _ z • c

Ux (X,Zt) =

I 'Ux (k,z,w)exp(ikx)exp(icot) a _ z < b, (30)

where

(2)Ux (k, z, co) A(k, w)ik sin(az) + B(k, co)ik cos(az)

- C(k, co)fl cos(flz) + D(k, eo)fl sin(/Jz) (31)

and

13



Ux (k, z, (o)= E(k, w)ik sin(az) + F(k, wo)ik cos(az)

- G(k, co)f/ cos(flz) + H(k, co)/J sin(flz). (32)

The displacement in the z-direction is

(2) U, (k, z, co)exp(ikx)exp(i ct) b < z < c

u=(xz't) (33)

U-U (k, z, co)exp(ikx)exp(icot) a < z < b,

where

( 2)Uz (k, z, w) = A(k, co)a cos(az) - B(k, o)a sin(az)

+ C(k, cw)ik sin(/lz) + D(k, w)ik cos(/Jz) (34)

and

(uz (k, z, wa) = E(k, w)a cos(az) - F(k, w)a sin(az)

+ G(k, co)ik sin(/Jz) + H(k, co)ik cos(f/z). (35)

There are eight equations of motion that model the system. The first two equations, i.e.,
(36) and (37), are the normal and tangential stress, respectively, at the top surface of the plate:

,zz (k,c, w) = (36)

and

(2) Tzx (k, c, co) = 0. (37)

The next four are the interface equations at the plane on which the masses reside: two (equations
(38) and (39)) model the normal and tangential stress balances, respectively, between the upper
and lower region of the plate, and the other two (equations (40) and (41)) model the continuity of
displacement in the x- and z-directions, respectively. These interface equations are

14



L n=-oo 2(2)Tzz(k,b,2 )-T z,(k,b, co) - (1)Uz(k + ,b, co), (38)L - L

(2•~''c)()zxkb =) - Mw° Z (1U~ ,b,w°), (39)

L n=-oo L

(2MU (k, b, co)-(1) U, (k, b, w) = 0, (40)

and

(2)Ux (k, b, co)-(1) Ux (k, b, W= 0. (41)

The final two equations of motion are the normal and tangential stress at the bottom surface of

the plate:

(1)Tzz(k,a, co) 0, (42)

and

1) Tzx (k, a, co) = 0. (43)

Equations (30) through (35) are now substituted into equations (36) through (43) yielding

[B( 0 )(k)]y 0 = [V-(±) (k + 27n )]y(+±-) + g (44)
L

where [B(°)(k)] is an 8 x 8 matrix that models the dynamics of the structure for n = 0, y(O) is the
8 x 1 vector of wave propagation coefficients for n = 0, [V (±+) (k + 2zrn / L)] is the 8 x 00 block-
partitioned matrix that represents the periodic mass loading on the structure for n = --o0 to n = X,
y(+-) is the co x 1 vector of wave propagation coefficients for n = --0 to n = Xo, and g is the 8 x 1
vector that models the plane wave excitation. (The matrix and vector entries in equation (44) are
listed in the appendix.) The problem solution is identical to that shown in section 2 for the plate
with edge masses, although each n-indexed vector has eight entries associated with it instead of
the four entries when the masses are on the edge of the plate. Thus, the solution becomes

15



y(+c) [B - V]-1 G. (45)

The example problem of an elastic plate with discrete masses at the bottom edge was re-

analyzed and the displacement results were identical in the z-direction and nearly identical in the

x-direction. This indicates that moving the masses into the interior has no effect on the z-

displacement and only a slight effect on the x-displacement at this frequency, which is an
expected result because this is a low-frequency example where the wavelengths of the forcing

function are much larger than the thickness of the plate.
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4. NUMERICAL EXAMPLE

A numerical example is now analyzed to show the dynamic response of elastic plates with

masses on the edge and in the interior. This example was generated with the following system

parameters: thickness is 0.1 meter, density is 1200 kg/mr3, Lam6 constant A is 4.5 x 108 N/m 2,

Lam6 constant p is 5.0 x 107 N/m 2, mass per unit length is 0.5 kg/m, and the mass separation

distance is 0.3 meter. Both elastic plate models were calculated using 15 modes (-7 < n < 7) that

produced a 60- x 60-element system matrix for the edge mass problem and a 120- x 120-element

system matrix for the interior mass problem. For the interior mass problem, the masses were

located at the mid-plane of the plate. The displacement values were output at location of 0.25h

(0.025 meter) from the top of the plate. This problem is constructed so that the wavelengths of

the shear and dilatational waves (0.204 and 0.677 meter, respectively) were on the order of the

length scales of the plate and mass separation distance.

Figure 6 is a plot of the dispersion curve for the plate with edge masses, which corresponds

to free-wave propagation of the system. A frequency range of 0-2000 Hz was chosen so that the

first three waves are present in the plot. The three dark, solid lines represent locations in the

wavenumber-frequency plane waves that are centered about k = 0. These waves are also present

in the infinite plate without periodic masses. The other waves (Floquet waves), shown as dashed

lines, correspond to waves that share an integer multiple of a characteristic wavenumber. This

wavenumber is determined by

2,r
kc L 2- (46)L

and is equal to 20.9 rad/m. These Floquet waves represent energy that is (partially) trapped in
the spaces between the periodic masses and is converted into additional free-wave propagation.

Figures 7 and 8 present the transfer function of tangential displacement and normal

displacement, respectively, divided by excitation force versus frequency and wavenumber for the

plate with edge masses. In both figures, the data are displayed in the decibel scale referenced to

meters per Pascal. The free wave that appears in the dispersion curve is clearly evident in both

the tangential (figure 7) and normal (figure 8) displacement data. Figures 9 and 10 present the

transfer function between tangential displacement and the normal displacement, respectively, and

force versus wavenumber at 1000 Hz. Figures 9 and 10 are divided into two plots for clarity; the

upper plot is the problem of an elastic plate with edge masses and the lower plot is the elastic
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plate with interior masses. The dashed line in all four plots is the elastic plate solution with the

absence of masses (M= 0).

Upon examination of figures 9 and 10, several features are noted. The energy field has
become modally dense as the mass (with its characteristic length) now introduces additional
resonances and anti-resonances in the wavenumber space. This result is expected because the
model has changed from a continuous, homogeneous infinite structure to a structure that
periodically inhibits wave motion by the addition of discrete masses. Additionally, this effect
has also been evident in previously developed low-frequency (bending-wave) models. The

overall energy levels are approximately the same between the models with masses and the
models without masses. This is because higher-frequency models are influenced more by
stiffness of the system than by mass. Mass effects are seen more predominately at lower

frequencies (see figure 3).
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5. CONCLUSIONS

The solution of an elastic plate containing periodic edge and embedded masses has been

derived and found to compare favorably with previously developed thin plate models at low

frequency. A numerical example of high-frequency dynamics was presented and the details

discussed. The dispersion curve and transfer functions of tangential and normal displacements

were illustrated. It was shown that the lower- and higher-frequency waves propagate at spatial

lengths that correspond to integer multiples of the separation distance of the periodic masses.

This characteristic makes the system become modally dense, even at low frequency and low

wavenumber.
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APPENDIX
MATRIX AND VECTOR ENTRIES

The entries of the matrixes in equations (20) and (21) are listed below. Without loss of

generality, the bottom of the plate is defined as z = a 0. For the [A(n)(k + 2;/yL)] matrix, the

nonzero entries are

al= n(an2 ) 2an2/uAkn)sin(an h) , (A-I)

a (-a2 A 2a2 p-ýa12 = n(a2 n 2a)- 2k2)cos(anh) (A-2)

a 13 = 2i/knfin cos(/Jnh) , (A-3)

a14 = -2ipkn,/n sin(,8nh) , (A-4)

a2 1 = 2ijzknan cos(anh) , (A-5)

a22 = -2itkn~an sin(anh) , (A-6)

2 2a 23 = (8,2 -kn )csin(8nh) , (A-7)

2 2 2
a4= -i kn ) cos(fln h) ,(A-8

a32 =-a2A - 2a2np - An (A-9)

a33 = 2idcknfln , (A-10)

A-1



a41 =2ipuknan , (A-11)

and

22
a4 =P,('82 - kn2) (A-I12)

where

kn =,k+ + (A-13)
L

a k2 _2i7 k -n (A- 14)

and

2. 2 -15)

For the [U(n) (k + 2rn /L)] matrix, the nonzero entries are

U31 = - 2n ,(A-16)
L

u34 =- -- 2ikn ,(A- 17)

L

-Mwo2

U4 2 =- - ikn (A-18)
L

and

U43 = in (A- 19)

L

A-2



The x(0) vector entries are

x(0) = [A(k,ow) B(k,oa) C(k, c) D(k,wo)]T = [A(0) B(0) C(0) D(0)]T. (A-20)

The x(±+) vector entries are

x(+-) =[... A- 1 ) B() C( 1-) D(-1) A(0) B(0 )
(A-21)

C (o) D (o) A (1) B (1) C (1) D (1) ... ]T.

The f vector entries are

f=[-F 0 0 o]T (A-22)

The entries of the matrixes in equation (44) are listed below. Without loss of generality,

the location of the masses in the z-direction is defined as z = b = 0. For the [B(n)(k + 2,rn/L)]

matrix, the nonzero entries are

2 2 2

b12 =(-an 2 - 2an p -Akn )cos(anC) , (A-24)

b1 3 = 2ip'kn,6n cosGfne) ' (A-25)

b14 = -2i/.knfln sin(fine) ,(A-26)

b21 = 2iukn~an cos(anc) , (A-27)

b22 = -2i/.k nan sin(anc) ,(A-28)

A-3



=b3 •(82 k2 )sn(/flnc) ' (A-29)

22b4= ufln-kn ) cos(f8nC) ,(A-30)

2 2 2

b3 2 A-2+2a-2n-uAk , (A-31)

b33 = 2iPknn, (A-32)

b = a22 2an2 + k2 (A-33)

b37 = -2iPk nf , (A-34)

b41 = 2i-knn , (A-35)

b44 = fn2 - k2) (A-36)

b45 = -2i•nn , (A-37)

b48 -/l(,q2n -kn2) ,(A-38)

bs1 = an ' (A-39)

b54 = ikn , (A-40)

b55 = -an , (A-41)

b58 = -ikn , (A-42)

A-4



b62 =ikn , (A-43)

b63 = -8n I (A-44)

b66 -ikn , (A-45)

b67  83in I (A-46)

b75 = (-a2n A_ 2an/. - Ak2 sin(an a) ,(A-47)

b76  2n n n2an2k _ )cos(an a) , (A-48)

b77 = 2i/tknf8n cos(/3na) , (A-49)

b78 = -2iuknfln sin(/Jna) , (A-50)

b85 = 2ikncan cos(ana) , (A-51)

b86 = -2i/ukna• sin(ana) , (A-52)

b87 = A n2 - k2 )sin(,Bna) (A-53)

and

b88 = P(/82 - k 2n )cos(flna) (A-54)

The [V (n) (k + 2f-n / L)] matrix can be written as

A-5



[u(n) (k + __)2 7m ) 0

v(n) (k + 2-- 7m L (A-55)

0 0 -

where [U(n)(k + 2ff nL)] is defined in equations (A-16) through (A-19) and 0 is a 4 x 4 matrix

whose entries are all zero. The y(O) vector entries are

y(0)=[A(k,Tco) B(k,co) Ck,co) D(k,co) E(k,co) F(k,co) G(k,eo) H(k,co)]T

=-[-(0) B( 0) C( 0) D( 0) E(0) F(0 ) G(0 ) H(0 )]T. (A-56)

The y(+00) vector entries are

y (+00) = .. A(-') B(-1) C(-1) D(-1) E(-l) F(-1) G(_I) H(_l)

A(o) B(0) C (o) D (0) E (0) F (o) G (o) H (0)

A (1) B (1) C (1) D (1) E (1) F (1) G (1) H (1) ... ]IT. (A-57)

The g vector entries are

g=[-F 0 0 0 0 0 0 0 ]T. (A-58)

A-6
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