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Abstract

This thesis presents a perceptual system for a humanoid robot that integrates abilities such as object
localization and recognition with the deeper developmental machinery required to forge those com-
petences out of raw physical experiences. It shows that a robotic platform can build up and maintain
a system for object localization, segmentation, and recognition, starting from very little. What the
robot starts with is a direct solution to achieving figure/ground separation: it simply ‘pokes around’
in a region of visual ambiguity and watches what happens. If the arm passes through an area, that
area is recognized as free space. If the arm collides with an object, causing it to move, the robot
can use that motion to segment the object from the background. Once the robot can acquire reliable
segmented views of objects, it learns from them, and from then on recognizes and segments those
objects without further contact. Both low-level and high-level visual features can also be learned
in this way, and examples are presented for both: orientation detection and affordance recognition,
respectively.

The motivation for this work is simple. Training on large corpora of annotated real-world data
has proven crucial for creating robust solutions to perceptual problems such as speech recognition
and face detection. But the powerful tools used during training of such systems are typically stripped
away at deployment. Ideally they should remain, particularly for unstable tasks such as object
detection, where the set of objects needed in a task tomorrow might be different from the set of
objects needed today. The key limiting factor is access to training data, but as this thesis shows,
that need not be a problem on a robotic platform that can actively probe its environment, and carry
out experiments to resolve ambiguity. This work is an instance of a general approach to learning a
new perceptual judgment: find special situations in which the perceptual judgment is easy and study
these situations to find correlated features that can be observed more generally.

Thesis Supervisor: Rodney A. Brooks
Title: Fujitsu Professor of Computer Science and Engineering
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CHAPTER 1

Introduction

Everything starts somewhere, although many physicists disagree. But people have al-
ways been dimly aware of the problems with the start of things. They wonder aloud
how the snowplough driver gets to work, or how the makers of dictionaries look up the
spellings of words. (Pratchett, 1996)

The goal of this work is to build a perceptual system for a robot that integrates useful “mature”
abilities, such as object localization and recognition, with the deeper developmental machinery
required to forge those competences out of raw physical experiences. The motivation for doing
so is simple. Training on large corpora of real-world data has proven crucial for creating robust
solutions to perceptual problems such as speech recognition and face detection. But the powerful
tools used during training of such systems are typically stripped away at deployment. For problems
that are more or less stable over time, such as face detection in benign conditions, this is acceptable.
But for problems where conditions or requirements can change, then the line between training and
deployment cannot reasonably be drawn. The resources used during training should ideally remain
available as a support structure surrounding and maintaining the current perceptual competences.
There are barriers to doing this. In particular, annotated data is typically needed for training, and
this is difficult to acquire online. But that is the challenge this thesis addresses. It will show that a
robotic platform can build up and maintain a quite sophisticated object localization, segmentation,
and recognition system, starting from very little.

1.1 The place of perception in Al

If the human brain were a car, this message would be overlaid on all our mental reflections: “cau-
tion, perceptual judgements may be subtler then they appear”. Time and time again, the difficulty
of implementing analogues of human perception has been underestimated by Al researchers. For
example, the Summer Vision Project of 1966 at the MIT Al Lab apparently expected to implement
figure/ground separation and object recognition on a limited set of objects such as balls and cylin-
ders in the month of July, and then extend that to cigarette packs, batteries, tools and cups in August
(Papert, 1966). That “blind spot” continues to the current day — for example, the proposal for the
thesis you are reading blithely assumed the existence of perceptual abilities that now consume entire
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chapters. But there has been progress. Results in neuroscience continue to drive home the sophis-
tication of the perceptual machinery in humans and other animals. Computer vision and speech
recognition have become blossoming fields in their own right. Advances in consumer electronics
have led to a growing drive towards advanced human/computer interfaces, which bring machine
perception to the forefront. What does all this mean for Al, and its traditional focus on representa-
tion, search, planning, and plan execution? For devices that need to operate in rich, unconstrained
environments, the emphasis on planning may have been premature:

“I suspect that this field will exist only so long as it is considered acceptable to test
these schemes without a realistic perceptual interface. Workers who have confronted
perception have found that on the one hand it is a much harder problem than action
selection and that on the other hand once it has been squarely faced most of the diffi-
culties of action selection are eliminated because they arise from inadequate perceptual
access in the first place.” (Chapman, 1990)

It is undeniable that planning and search are crucial for applications with complex logistics,
such as shipping and chess. But for robotics in particular, simply projecting from the real world
onto some form where planning and search can be applied seems to be the key research problem:
“This abstraction process is the essence of intelligence and the hard part of the problem being
solved” (Brooks, 1991b). Early approaches to machine perception in Al focused on building and
maintaining detailed, integrated models of the world that were as complete as possible given the
sensor data available. This proved extremely difficult, and over time more practical approaches
were developed. Here are cartoon-caricatures of some of them:

> Stay physical: Stay as close to the raw sensor data as possible. In simple cases, it may
be possible to use the world as its own model and avoid the difficulties involved in creating
and maintaining a representation of a noisily- and partially-observed world (Brooks, 1991b).
Tasks such as obstacle avoidance can be achieved reactively, and Connell (1989) gives a
good example of how a task with temporal structure can be performed by maintaining state
in the world and the robot’s body rather than within its control system. This work clearly
demonstrates that the structure of a task is logically distinct from the structures required to
perform it. Activity that is sensitive to some external structure in the world does not imply a
control system that directly mirrors that structure in its organization.

> Stay focused: Adopt a point of view from which to describe the world that is sufficient for
your task and which simplifies the kind of references that need to be made, hopefully to the
point where they can be easily and accurately maintained. Good examples include deictic
representations like those used in Pengi (Chapman and Agre, 1987), or Toto’s representations
of space (Mataric, 1990).

> Stay open: Use multiple representations, and be flexible about switching between representa-
tions as each run into trouble (Minsky, 1985). This idea overlaps with the notion of encoding
common sense (Lenat, 1995), and using multiple partial theories rather than searching — per-
haps vainly — for single unified representations.

While there are some real conflicts in the various approaches that have been adopted, they also
have a common thread of pragmatism running through them. Some ask “what is the minimal rep-
resentation possible”, others “what choice of representation will allow me to develop my system
most rapidly?” (Lenat, 1995). They are also all steps away from an all-singing, all-dancing mono-
lithic representation of the external world. Perhaps they can be summarized (no doubt kicking and
screaming) with the motto “robustness from perspective” — if you look at a problem the right way,
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it may be relatively easy. This idea was present from the very beginning of Al, with the emphasis
on finding the right representations for problems, but it seemed to get lost once division of labor set
in and the problems (in some cases) got redefined to match the representations.

There is another approach to robust perception that has developed, and that can perhaps be de-
scribed as “robustness from experience”. Drawing on tools from machine learning, just about any
module operating on sensor input can be improved. At a minimum, its performance can be charac-
terized empirically, to determine when it can be relied upon and when it fails, so that its output can
be appropriately weighed against other sources. The same process can be applied at finer granularity
to any parameters within the module that affect its performance in a traceable way. Taking statistical
learning of this kind seriously leads to architectures that seem to contradict the above approaches, in
that they derive benefit from representations that are as integrated as possible. For example, when
training a speech recognition system, it is useful to be able to combine acoustic, phonological,
language models so that optimization occurs over the largest scope possible (Mou and Zue, 2001).

The success of statistical, corpus-based methods suggests the following additional organizing
principle to the ones already enunciated :-

> Stay connected: Statistical training creates an empirical connection between parameters in
the system and experience in the world that leads to robustness. If we can maintain that
connection as the environment changes, then we can maintain robustness. This will require
integrating the tools typically used during training with the deployed system itself, and engi-
neering opportunities to replace the role that annotation plays.

This thesis argues that robots must be given not just particular perceptual competences, but
the tools to forge those competences out of raw physical experiences. Three important tools for
extending a robot’s perceptual abilities whose importance have been recognized individually are
related and brought together. The first is active perception, where the robot employs motor action
to reliably perceive properties of the world that it otherwise could not. The second is development,
where experience is used to improve perception. The third is interpersonal influences, where the
robot’s percepts are guided by those of an external agent. Examples are given for object segmen-
tation, object recognition, and orientation sensitivity; initial work on action understanding is also
described.

1.2 Why use a robot?

The fact that vision can be aided by action has been noted by many researchers (Aloimonos et al.,
1987; Bajcsy, 1988; Ballard, 1991; Gibson, 1977). Work in this area focuses almost uniformly
on the advantages afforded by moving cameras. For example, Klarquist and Bovik (1998) use a
pair of cameras mounted on a track to achieve precise stereoscopic vision. The track acts as a
variable baseline, with the system physically interpolating between the case where the cameras
are close — and therefore images from them are easy to put into correspondence — and the case
where the cameras are separated by a large baseline — where the images are different enough for
correspondences to be hard to make. Tracking correspondences from the first to the second case
allows accurate depth estimates to be made on a wider baseline than could otherwise be supported.

In this thesis, the work described in Chapter 3 extends the basic idea of action-aided vision
to include simple manipulation, rather than just moving cameras. Just as conventional active vi-
sion provides alternate approaches to classic problems such as stereo vision and object tracking,
the approach developed here addresses the classic problem of object segmentation, giving the vi-
sual system the power to recruit arm movements to probe physical connectivity. This thesis is a
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Figure 1-1: Training data is worth its weight in ice cream in the speech recognition research com-
munity (certificate created by Kate Saenko).

step towards visual monitoring of robot action, and specifically manipulation, for the purposes of
correction. If the robot makes a clumsy grasp due to an object being incorrectly segmented by its
visual system, and ends up just brushing against an object, then this thesis shows how to exploit that
motion to correctly segment the object — which is exactly what the robot needs to get the grasp right
the next time around. If an object is awkwardly shaped and tends to slip away if grasped in a certain
manner, then the affordance recognition approach is what is needed to learn about this and combat
it. The ability to learn from clumsy motion will be an important tool in any real, general-purpose
manipulation system.

Certain elements of this thesis could be abstracted from the robotic implementation and used in
a passive system, such as the object recognition module described in Chapter 5. A protocol could
be developed to allow a human teacher to present an object to the system and have it enrolled for
object recognition without requiring physical action on the robot’s part. For example the work of
Nayar et al. (1996) detects when the scene before a camera changes, triggering segmentation and
object enrollment. However, it relies on a very constrained environment — a dark background with
no clutter, and no extraneous environmental motion. Another approach that uses human-generated
motion for segmentation — waving, pointing, etc. — is described in Arsenio et al. (2003). The SAIL
robot (Weng et al., 2000a) can be presented with an object by placing the object in its gripper, which
it then rotates 360° in depth, recording views as it goes. But all these protocols that do not admit
of autonomous exploration necessarily limit the types of applications to which a robot can be ap-
plied. This thesis serves as a proof of concept that this limitation is not essential. Other researchers
working on autonomous development are motivated by appeals to biology and software complexity
(Weng et al., 2000b). The main argument added here is that autonomy is simply unavoidable if we
wish to achieve maximum robustness. In the absence of perfect visual algorithms, it is crucial to
be able to adapt to local conditions. This is particularly clear in the case of object recognition. If
a robot moves from one locale to another, it will meet objects that it has never seen before. If it
can autonomously adapt to these, then it will have a greater range of applicability. For example,
imaging a robot asked to “clear out the junk in this basement.” The degree of resourcefulness re-
quired to deal with awkwardly shaped and situated objects make this a very challenging task, and
experimental manipulation would be a very helpful technology for it.
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(a)

Figure 1-2: Cartoon motivation for active segmentation. Human vision is excellent at figure/ground
separation (top left), but machine vision is not (center). Coherent motion is a powerful cue (right)
and the robot can invoke it by simply reaching out and poking around.

1.3 Replacing annotation

Suppose there is some property P of the environment whose value the robot cannot usually deter-
mine. Further suppose that in some very special situations, the robot can reliably determine the
property. Then there is the potential for the robot to collect training data from such special situa-
tions, and learn other more robust ways to determine the property P. This process will be referred
to as “developmental perception” in this thesis.

Active and interpersonal perception are identified as good sources of these “special situations™
that allow the robot to temporarily reach beyond its current perceptual abilities, giving the oppor-
tunity for development to occur. Active perception refers to the use of motor action to simplify
perception (Ballard, 1991), and has proven its worth many times in the history of robotics. It allows
the robot to experience percepts that it (initially) could not without the motor action. Interpersonal
perception refers to mechanisms whereby the robot’s perceptual abilities can be influenced by those
around it, such as a human helper. For example, it may be necessary to correct category boundaries
or communicate the structure of a complex activity.

By placing all of perception within a developmental framework, perceptual competence be-
comes the result of experience evoked by a set of behaviors and predispositions. If the machinery
of development is sufficient to reliably lead to the perceptual competence in the first place, then it is
likely to be able to regenerate it in somewhat changed circumstances, thus avoiding brittleness.

1.4 Active perception

The idea of using action to aid perception is the basis of the field of “active perception” in robotics
and computer vision Ballard (1991); Sandini et al. (1993). The most well-known instance of active
perception is active vision. The term “active vision” has become essentially synonymous with
moving cameras, but it need not be. There is much to be gained by taking advantage of the fact that
robots are actors in their environment, not simply passive observers. They have the opportunity to
examine the world using causality, by performing probing actions and learning from the response.
In conjunction with a developmental framework, this could allow the robot’s experience to expand
outward from its sensors into its environment, from its own arm to the objects it encounters, and
from those objects both back to the robot itself and outwards to other actors that encounter those
same objects.

Active vision work on the humanoid robot Cog is oriented towards opening up the potentially
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Figure 1-3: The benefits of active segmentation using poking. The robot can accumulate training
data on the shape and appearance of objects. It can also locate the arm as it strikes objects, and
record its appearance. At a lower level, the robot can sample edge fragments along the segmented
boundaries and annotate them with their orientation, facilitating an empirical approach to orientation
detection. Finally, tracking the motion of the object after poking is straightforward since there is a
segmentation to initialize the tracker — hence the robot can record the motion that poking causes in
different objects.

rich area of manipulation-aided vision, which is still largely unexplored. Object segmentation is an
important first step. Chapter 3 develops the idea of active segmentation, where a robot is given a
“poking” behavior that prompts it to select locations in its environment, and sweep through them
with its arm. If an object is within the area swept, then the motion generated by the impact of the
arm can be used to segment that object from its background, and obtaining a reasonable estimate of
its boundary (see Figure 1-3). The image processing involved relies only on the ability to fixate the
robot’s gaze in the direction of its arm. This coordination can be achieved either as a hard-wired
primitive or through learning. Within this context, it is possible to collect good views of the objects
the robot pokes, and the robot’s own arm. Giving the robot this behavior has several benefits.
(i) The motion generated by the impact of the arm with an object greatly simplifies segmenting
that object from its background, and obtaining a reasonable estimate of its boundary. This will
prove to be key to automatically acquiring training data of sufficient quality to support the forms
of learning described in the remainder of this thesis. (ii) The poking activity also leads to object-
specific consequences, since different objects respond to poking in different ways. For example,
a toy car will tend to roll forward, while a bottle will roll along its side. (7ii) The basic operation
involved, striking objects, can be performed by either the robot or its human companion, creating a
controlled point of comparison between robot and human action.

Figure/ground separation is a long-standing problem in computer vision, due to the fundamental
ambiguities involved in interpreting the 2D projection of a 3D world. No matter how good a passive
system is at segmentation, there will be times when only an active approach will work, since visual
appearance can be arbitrarily deceptive. Of course, there will be plenty of limitations on active
segmentation as well. Segmentation through poking will not work on objects the robot cannot
move, either because they are too small or too large. This is a constraint, but it means we are well
matched to the space of manipulable objects, which is an important class for robotics.
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Figure 1-4: The top row shows sample views of a toy car that the robot sees during poking. Many
such views are collected and segmented. The views are aligned to give an average prototype for the
car (and the robot arm and human hand that acts upon it). To give a sense of the quality of the data,
the bottom row shows the segmented views that are the best match with these prototypes. The car,
the robot arm, and the hand belong to fundamentally different categories. The robot arm and human
hand cause movement (are actors), the car suffers movement (is an object), and the arm is under the
robot’s control (is part of the self).

1.5 Developmental perception

Active segmentation provides a special situation in which the robot can observe the boundary of
an object. Outside of this situation, locating the object boundary is basically guesswork. This is
precisely the kind of situation that a developmental framework could exploit. The simplest use
of this information is to empirically characterize the appearance of boundaries and oriented visual
features in general. Once an object boundary is known, the appearance of the edge between the
object and the background can be sampled along it, and labelled with the orientation of the boundary
in their neighborhood. This is the subject of Chapter 4. At a higher-level, the segmented views
provided by poking objects can be collected and clustered as shown in Figure 1-4. Such views are
just what is needed to train an object detection and recognition system, which will allow the robot
to locate objects in other, non-poking contexts. Developing object localization and recognition is
the topic of Chapter 5.

Poking moves us one step outwards on a causal chain away from the robot and into the world,
and gives a simple experimental procedure for segmenting objects. One way to extend this chain
out further is to try to extract useful information from seeing a familiar object manipulated by
someone else. This offers another opportunity for development — in this case, learning about other
manipulators. Locating manipulators is covered in Chapter 6.

Another opportunity that poking provides is to learn how objects move when struck — both in
general, for all objects, and for specific objects such as cars or bottles that tend to roll in particular
directions. Given this information, the robot can strike an object in the direction it tends to move
most, hence getting the strongest response and essentially evoking the “rolling affordance™ offered
by these objects. This is the subject of Chapter 7.




1.6 Interpersonal perception

Perception is not a completely objective process; there are choices to be made. For example, whether
two objects are judged to be the same depends on which of their many features are considered
essential and which are considered incidental. For a robot to be useful, it should draw the same
distinctions a human would for a given task. To achieve this, there must be mechanisms that allow
the robot’s perceptual judgements to be channeled and moulded by a caregiver. This is also useful
in situations where the robot’s own abilities are simply not up to the challenge, and need a helping
hand. This thesis identifies three channels that are particularly accessible sources of shared state:
space, speech, and task structure. Robot and human both inhabit the same space. Both can observe
the state of their workspace, and both can manipulate it, although not to equal extents. Chapter 8
covers a set of techniques for observing and maintaining spatial state. Another useful channel for
communicating state is speech, covered in Chapter 9. Finally, the temporal structure of states and
state transitions is the topic of Chapter 10.

1.7 Roadmap

- Overview of robot platforms and computational architecture
Active segmentation of objects using poking

Learning the appearance of oriented features

Learning the appearance of objects

Learning the appearance of manipulators

Exploring an object affordance

Spatially organized knowledge

Recognizing and responding to words

Interpersonal perception and task structure

| Discussion and conclusions
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CHAPTER 2

The campaign for real time: robot bodies and brains

Wobbler had written an actual computer game like this once. It was called “Journey to
Alpha Centauri.” It was a screen with some dots on it. Because, he said, it happened in
real time, which no-one had ever heard of until computers. He’d seen on TV that it took
three thousand years to get to Alpha Centauri. He had written it so that if anyone kept
their computer on for three thousand years, they’d be rewarded by a little dot appearing
in the middle of the screen, and then a message saying, “Welcome to Alpha Centauri.
Now go home.” (Pratchett, 1992a)

This work was implemented on two robots, Cog and Kismet (see Figure 2-1), developed at the
Humanoid Robotics Group at the MIT AI Lab by various students over the past decade. More
accurately, it was implemented on their sprawling “brains” — racks of computers connected to the
bodies by a maze of cables, an extravagant sacrifice offered up to the gods of real-time performance.
This chapter dips into the minimum detail of these systems necessary to understand the rest of the
thesis. The interested reader is referred to the excellent theses of Williamson (1999), Breazeal
(2000), and Scassellati (2001), on whose shoulders the author stands (or is at least trying to peer
over).

2.1 Cog, the strong silent type

Cog is an upper torso humanoid that has previously been given abilities such as visually-guided
pointing (Marjanovi¢ et al., 1996), rhythmic operations such as turning a crank or driving a slinky
(Williamson, 1998a), and responding to some simple forms of joint attention (Scassellati, 2000).
For a good overview of the research agenda that Cog embodies, see Brooks et al. (1999).

2.1.1 Low-level arm control

Cog has two arms, each of which has six degrees of freedom organized as shown in Figure 2-2. The
joints are driven by series elastic actuators (Williamson, 1995) — essentially a motor connected to
its load via a spring (think strong and torsional rather than loosely coiled). The arm is not designed
to enact trajectories with high fidelity. For that a very stiff arm is preferable. Rather, it is designed
to perform well when interacting with a poorly characterized environment. The spring acts as a
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Figure 2-1: The robots Cog (top) and Kismet (bottom). Kismet is an expressive anthropomorphic
head useful for human interaction work; Cog is an upper torso humanoid more adept at object
interaction.

low pass filter for the friction and backlash effects introduced by gears, and protects the gear teeth
from shearing under the impact of shock loads. A drawback to the use of series elastic actuators is
that they limit the control bandwidth in cases where the applied force needs to change rapidly. The
force applied by an electric motor can normally be changed rapidly, since it is directly proportional
to the current supplied. By putting a motor in series with a spring, this ability is lost, since the
motor must now drive a displacement of the spring’s mass before the applied force changes. For the
robot’s head, which under normal operation should never come into contact with the environment,
and which needs to move continuously and rapidly, series elastic actuators were not used. But for
the arms, the tradeoff between control bandwidth and safety is appropriate. Robot arms are usually
employed for the purposes of manipulation, but for this work they instead serve primarily as aides
to the visual system. The target of a reaching operation is not assumed to be well characterized;
in fact the reaching operation serves to better define the characteristics of the target through active
segmentation (see Chapter 3). Hence the arm will habitually be colliding with objects. Sometimes
the collisions will be with rigid, more or less unyielding structures such as a table. Sometimes the
collisions will be with movable objects the robot could potentially manipulate. And sometimes the
collisions will be with people. So it is important that both the physical nature of the arms, and the
manner in which they are controlled, be tolerant of “obstacles”.

The arms are driven by two nested controllers. The first implements force control, driving each
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Figure 2-2: Kinematics of the arm, following Williamson (1999). There are a total of six joints,
divided into a pair for each of the shoulder, elbow, and wrist/flipper.
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Figure 2-3: Control of a joint in the arm, following Williamson (1999). An inner loop controls
the series elastic actuator in terms of force, working to achieve a desired deflection of the spring as
measured by a strain gauge. An outer loop controls the deflection setpoint to achieve a desired joint
angle, as measured by a potentiometer.

motor until a desired deflection of the associated spring is achieved, as measured by a strain gauge.
This high-speech control loop is implemented using an 8-axis motor controller from Motion En-
gineering, Inc. A second loop controls the deflection setpoint to achieve a desired joint angle as
measured by a potentiometer. Figure 2-3 shows this second loop, following (Williamson, 1999).
Various extensions and modifications to this basic approach have been made, for example to in-
corporate a feed-forward gravity compensating term, but the details are beyond the scope of this
thesis.

2.1.2 Low-level head control

Figure 2-4 shows the degrees of freedom associated with Cog’s head. In each “eye”, a pair of
cameras with different fields of view provides a step-wise approximation to the smoothly varying
resolution of the human fovea (Scassellati, 1998). The eyes pan independently and tilt together.
The head rolls and tilts through a differential drive. There is a further pan and tilt associated with
the neck. There are a number of redundancies in the degrees of freedom to permit rapid movement
of the eyes followed by a slower compensating motion of the relatively massive head. The head
contains a 3-axis inertial sensor to simplify gaze stabilization.

The motors of the head are connected to optical encoders and driven by an 8-axis motor con-
troller from Motion Engineering, Inc. The motor controller is configured to permit both position
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Figure 2-4: The motors of Cog’s head, following Scassellati (2001). The degrees of freedom are
loosely organized as pertaining to either the eyes, head, or neck. Pan and tilt (but not roll) of the
eyes can be achieved at high speed without moving the mass of the head.

Figure 2-5: Kismet, the cute one.

and velocity control. Much has been written about both the low-level and strategic control of such
a head — see, for example Scassellati (2001) — so the details will be omitted here.

2.2 Kismet, the cute one

Parts of this work were developed on and reported for Kismet. Kismet is an “infant-like” robot
whose form and behavior is designed to elicit nurturing responses from humans (Breazeal et al.,
2001). It is essentially an active vision head augmented with expressive facial features so that it can
both send and receive human-like social cues. Kismet has a large set of expressive features - eyelids,
eyebrows, ears, jaw, lips, neck and eye orientation. The schematic in Figure 2-1 shows the degrees
of freedom relevant to visual perception (omitting the eyelids!). The eyes can turn independently
along the horizontal (pan), but turn together along the vertical (tilt). The neck can turn the whole
head horizontally and vertically, and can also crane forward. Two cameras with narrow fields of
view rotate with the eyes. Two central cameras with wide fields of view rotate with the neck. These
cameras are unaffected by the orientation of the eyes.

The reason for this mixture of cameras is that typical visual tasks require both high acuity and a
wide field of view. High acuity is needed for recognition tasks and for controlling precise visually
guided motor movements. A wide field of view is needed for search tasks, for tracking multiple
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Figure 2-6: Communications model. Every process or thread can own any number of ports. Every
port can be directed to send data to any number of other ports. Since different processes will access
this data at different rates, it is useful to consider each port as owning several “portlets” that manage
each individual link to another port. Given the most conservative quality of service settings, data
will persist in the communications system as long as is necessary to send it on the slowest link.

objects, compensating for involuntary ego-motion, etc. A common trade-off found in biological
systems is to sample part of the visual field at a high enough resolution to support the first set of
tasks, and to sample the rest of the field at an adequate level to support the second set. This is
seen in animals with foveate vision, such as humans, where the density of photoreceptors is highest
at the center and falls off dramatically towards the periphery. This can be implemented by using
specially designed imaging hardware, space-variant image sampling (Schwartz et al., 1995), or by
using multiple cameras with different fields of view, as we have done.

2.3 The cluster

Cog is controlled by a network of 32 computers, with mostly 800 MHz processors. Kismet is
controlled by a similar but smaller network and four Motorola 68332 processors. The network
was designed with the demands of real-time vision in mind; clearly if it was acceptable to run
more slowly (say, one update a second instead of thirty) then a single machine could be used. The
primary engineering challenge is efficient interprocess communication across the computer nodes.
We chose to meet this challenge by using QNX, a real-time operating system with a very clean,
transparent message-passing system. On top of this was build an abstraction to support streaming
communications and modular, subsumption-like design.

2.4 Cluster communication
Any process or thread can create a set of Ports. Ports are capable of communicating with each other,

and shield the complexity of that communication from their owner. As far as a client process or
thread is concerned, a Port is a fairly simple object. The client assigns a name to the Port, which
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gets registered in a global namespace. The client can hand the Port a piece of data to transmit, or
read data the Port has received either by polling, blocking, or callback. There are some subtleties
in the type of service required. The client can specify the kind of service required — a sender
can specify whether transmission be guaranteed, or whether new data override data not yet sent; a
receiver can independently specify whether, of the data the sender attempts to pass on, reception
should be guaranteed or whether new data received by a Port should override data not yet read by
its owner, and under what conditions the sending Port should be made to wait for the receiver.

Objects passed to the communications system obey a Pool interface. They can be cloned and
recycled. The Port will clone objects as necessary, with an associated Pool growing to whatever size
is required. This will depend on the rates at which all the links attached to the Port (via Portlets)
read data at. By default, the owner of the Port is insulated from needing to know about that. For
simple objects, cloning can be achieved with simple copies. The complex objects, such as images, a
reference counting approach is worth using. Overall, this approach avoids unnecessary copies, and
minimizes the allocation/deallocation of objects in the communications system. It is compatible
with the existence of “special” memory areas managed by other entities, such as a framegrabber.

Ports and Portlets either use native QNX messaging for transport, or sockets if running on or
communicating with a non-QNX system. The name server used is QNX’s native name loc service,
or a simple socket-based wide nameloc service for communicating with a non-QNX system. By
default, these issues are transparent to client code. The system can operate transparently alongside
other methods of communication, since it doesn’t require any special resources such as control of
the main process.
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CHAPTER 3

First contact: tapping into the world

The Bursar shrugged.

“This pot,” he said, peering closely, “is actually quite an old Ming vase.”

He waited expectantly.

“Why’s it called Ming?” said the Archchancellor, on cue.

The Bursar tapped the pot. It went *ming*. (Pratchett, 1990)

Vision and action are intertwined at a very basic level in humans (Iacoboni et al., 1999). Re-
searchers in machine vision have found many pragmatic reasons for integrating sensing tightly with
motor control on an active vision head. This chapter extends this logic to simple object manipula-
tion, showing how a simple tapping/poking behavior can help figure/ground separation. Poking an
object makes it move, and motion is a powerful cue for visual segmentation. Poking itself does not
require that an object be accurately segmented, since it can be performed simply as a sweep of the
arm through a general neighborhood The periods immediately before and after the moment of im-
pact turn out to be particularly informative, and give visual evidence for the boundary of the object
that is well suited to segmentation using graph cuts. Of course, an experienced adult can interpret
visual scenes perfectly well without acting upon them, and ideally our robots should do the same.
Poking is proposed as a fallback segmentation method when all else fails, and a developmental op-
portunity for training up a contact-free object segmentation module. This topic is elaborated in later
chapters.

One contribution of this work is to clearly formulate a new object segmentation challenge not
yet attended to in the machine vision literature, but which will become increasingly important in
robotics. That challenge is: how can segmentation best be performed if exploratory manipulation
is permissible? Another contribution is to demonstrate an approach that makes use of the most
rudimentary manipulation possible to achieve segmentation, establishing a qualitative lower bound
on what is possible, and showing that the benefits are non-trivial. Of course, segmentation is just
the start of what can ultimately be learned through manipulation — but it is a good start, and given
the complexity of dextrous manipulation, it is encouraging that even very simple motor control can
lead to worthwhile results.

29




Edges of table

and cube
rl
overlap Color of cube and
table are poorly
Cube has P
misleading

surface pattern

Maybe some cruel
grad-student
glued the cube to
the table

Figure 3-1: A cube on a table, to illustrate some problems in segmentation. The edges of the table
and cube happen to be aligned, the colors of the cube and table are not well separated, and the cube
has a potentially confusing surface pattern. And even if dense 3D information were available, there
is no way to be really be sure the cube is an independently manipulable entity, and not connected to
the table below it.

3.1 Active vision

A vision system is said to be active if it is embedded within a platform that can change its physical
configuration to improve perceptual performance. For example, a robot’s cameras might servo a
rapidly moving target in order to stabilize the image and keep the target in view. The term is also
used when processing is adapted to the current situation. Historically, a number of logically distinct
ideas are often associated with active vision. The first is that vision should be approached within
the the context of an overall task or purpose (Aloimonos et al., 1987). Another idea is that if an
observer can engage in controlled motion, it can integrate visual data from moment to moment
to solve problems that are ill-posed statically. Well-chosen motion can simplify the computation
required for widely studied vision problems, such as stereo matching (Bajcsy, 1988; Ballard, 1991).
These interwoven ideas about active vision are teased apart in Tarr and Black (1994).

This work seeks to add two new threads to the mix. The first is that although active vision
is often equated with moving cameras, the entire body of a robot could potentially be recruited
to cooperate with the vision system. In this chapter, movement of the robot’s arm is recruited to
augment its visual system, and in particular to solve the figure/ground separation problem by active
means. The second thread is that active systems have the potential to perform experiments that
get close to accessing physical ground truth, and so potentially admit of a perceptual system that
develops autonomously. The poking behavior gives the robot access to high quality training data
that can be used to support object localization, segmentation, and recognition. It also provides a
simpler “fall-back™ mechanism for segmentation, so that the robot is not entirely at the mercy of the
failures of these higher-level competences.

3.2 Manipulation-driven vision

There are at least three clear situations in which it is useful for manipulation to guide vision, rather
than the other way around, as is typical in robotics :-
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Figure 3-2: Resolving visual ambiguity by active means. The robot (left) reaches towards an object
in its environment while fixating it with a camera. The robot’s view is shown on the right. The
boundary between the cube and the table it is sitting on is clear to human eyes, but too subtle to be
reliably segmented by current automatic methods. But once the robot arm comes in contact with the
object, it can be easily segmented from the background using the motion due to the impact.

> Experimentation: Making progress when perception is ambiguous.
> Correction: Recovering when perception is misleading.
> Development: Bootstrapping when perception is dumb.

Experimentation

Rather than simply failing in visually ambiguous situations, an active robotic platform has the po-
tential to perform experiments on its environment that resolve the ambiguity. Consider the example
in Figure 3-1. Visually, there are difficulties with segmenting this scene, due to some unfortunate
coincidences in the alignment and color of the cube and the table. Rather than simply giving up on
such situations, we could instead simply dispatch the robot’s arm to the ambiguous region and poke
around a bit. Several methods for characterizing the shape of an object through tactile information
have been developed, such as shape from probing (Cole and Yap, 1987; Paulos, 1999) or pushing
(Jia and Erdmann, 1998; Moll and Erdmann, 2001). The work in this chapter exploits the fact that
the visual feedback generated when the robot moves an object is highly informative, even when
the motion is short and poorly controlled, or even accidental. The vocabulary used to describe the
robot’s motion — “tapping” or poking” as opposed to “probing” — is deliberately chosen to convey
the idea of a quick jab (to evoke visual data) instead of an extended grope (for tactile data). Although
tactile and visual information could usefully be combined, no tactile or proprioceptive information
is assumed in this chapter — not even to determine whether the robot is in contact with an object.
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Figure 3-3: The upper sequence shows an arm extending into a workspace, tapping an object, and
retracting. This is an exploratory mechanism for finding the boundaries of objects, and essentially
requires the arm to collide with objects under normal operation, rather than as an occasional acci-
dent. The lower sequence shows the shape identified from the tap using simple image differencing
and flipper tracking.

Recovery

How a robot should grasp an object depends on its size and shape. Such parameters can be esti-
mated visually, but this is bound to be fallible — particularly for unrecognized, unfamiliar objects.
Failure may result in a clumsy grasp or glancing blow against the object. If the robot does not learn
something from the encounter, then it will be apt to repeat the same mistake again and again. As
already foreshadowed, this chapter shows how to recover information about an object’s extent by
poking it, either accidentally or deliberately. This opens the door to extracting information from
failed actions such as a glancing blow to an object during an attempt at manipulation, giving the
robot the data it needs to do better next time.

Development

It would be cumbersome to always have to poke around to segment an object each time it comes into
view. But the cleanly segmented views of objects generated by poking are exactly what is needed to
train up an object recognition system, which in turn makes contact-free segmentation possible. So
the kind of active segmentation proposed here can serve as an online teacher for passive segmenta-
tion techniques. Analogously, while an experienced adult can interpret visual scenes perfectly well
without acting upon them, linking action and perception seems crucial to the developmental process
that leads to that competence (Fitzpatrick and Metta, 2002).

3.3 Implementing active segmentation

Figure 3-3 shows frames from an early experiment where a robot arm was driven through a pre-
programmed open-loop trajectory that swept through an area above a table, watched by a fixed
camera. In the course of this trajectory, the arm came into contact with a cube sitting on a table,
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and disturbs it. The challenge is to identify and isolate this disturbance, and to use it to segment
the cube, or whatever object the arm might encounter. The video stream from this and similar
experiments were used to develop a baseline implementation of active segmentation and to clarify
the requirements in terms of processing and behavior. The remainder of this chapter then fits this
work into an actual behaving robot.

A reasonable way to segment the object would be to track the motion of the arm as it swings
outwards, and to look for any motion that is not plausibly associated with the arm itself, but never-
theless appears to be physically adjacent to it. For this simple motivating example, the end-effector
(or “flipper”) is localized as the arm sweeps rapidly outwards using the heuristic that it lies at the
highest point of the region of optic flow swept out by the arm in the image. The reaching trajec-
tory of the robot relative to the camera orientation is controlled so that this is true. The sweeping
motion is also made rather gentle, to minimize the opportunity for the motion of the arm itself to
cause confusion. The motion of the flipper is bounded around the endpoint whose location we know
from tracking during the extension phase, and can be subtracted easily. Flow not connected to the
end-effector can be ignored as a distractor.

The sequence shown in Figure 3-3 is about the simplest case possible for segmenting the motion
of the object. In practice, we would rather have less constraints on the motion of the arm, so we can
approach the object from any convenient direction. It is also desirable to be able to explore areas
where an object is likely to be, rather than simply sweeping blindly. But if objects are not already
segmented, where can a target for poking come from? This is in fact very straightforward. As
described in Section 2, Cog has an attentional system that allows it to locate and track salient visual
stimuli. This is based entirely on low-level features such as color, motion, and binocular disparity
that are well defined on small patches of the image, as opposed to features such as shape, size, and
pose which only make sense on well-segmented objects. If Cog’s attention system locates a patch
‘of the image that seems reachable (based on disparity and overall robot pose) that is all it needs to
know to reach toward it and attempt to poke it so that it can determine the physical extent of the
object to which that patch belongs. A human can easily encourage this behavior by bringing an
object close to the robot, moving it until the robot fixates it, and then leaving it down on the table.
The robot will track the object down to the table (without the need or the ability to actually segment
it), observe that it can be reached, and poke it. Still, there are many things that could go wrong.
Here is a list of the many potential pitfalls that could result in an inaccurate segmentation :-

> Object motion may not be particularly visible — if it is not highly textured, then there may be
regions on its projection where optic flow is low or non-existent.
The motion of the manipulator might be incorrectly separated from the motion of an object it
comes in contact with.
Unrelated motion in the background might be mistaken for movement of the manipulator or
an impacted object.
The manipulator might fail to come into contact with any object.
The manipulator might obscure the robot’s view of an object as it hits it.
The object might not move rigidly, or might move too little or too much to be processed well.
Motion of the camera might be mistaken for movement of the manipulator or an impacted
object.

The first three points are dealt with by using a segmentation method based on graph cuts that
allows diverse local evidence to be factored into making a good approximation to a globally optimal
segmentation. Optic flow in textured regions provides evidence of movement, lack of optic flow in
textured regions suggests lack of motion, comparing motion before and after the moment of impact
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Figure 3-4: The moment of (ground) truth — detecting the point of impact between the robot’s arm
and an object. As the arm swings in, its motion is tracked frame by frame and aggregated within
relatively low-resolution bins (highlighted squares). When an implausibly large spread in motion is
detected across these bins, higher resolution processing is activated and segmentation begins.

gives evidence for what part of the image is the manipulator. The next three points are dealt with by
careful engineering of the kinds of motion the robot makes. The final point is dealt with simply by
keeping the camera fixated during poking. There is no real advantage to moving it, and segmentation
based on motion viewed by a fixed camera is well understood and has been explored exhaustively
(see for example Ross (2000); Stauffer (1999)).

3.4 First contact

If the object is to be segmented based on motion, we need to differentiate its motion from any other
sources in the scene — particularly that of the robot itself. A high-quality opportunity to do this
arises right at the moment of first contact between the robot and the object. This contact could
be detected from tactile information, but it is also straightforward to detect visually, which is the
method described here. The advantage of using visual information is that the same techniques can
be applied to contact events about which the robot has no privileged knowledge, such as a human
hand poking an object (see Section 6).

For real-time operation, the moment of contact is first detected using low-resolution processing,
and then the images before and after the contact are subjected to more detailed (and slower) analysis
as described in the following section. Figure 3-4 shows a visualization of the procedure used. When
the robot is attempting to poke a target, it suppresses camera movement and keeps the target fixated
for maximum sensitivity to motion. A simple Gaussian model is maintained for the (R, G, B) color
values of each pixel, based on their value over the last ten frames (one third of a second) received.
Significant changes in pixel values from frame to frame are detected and flagged as possible motion.
As the arm moves in the scene, its motion is tracked and discounted, along with its shadow and any
background motion. Any area that the arm moves through is marked as “clear” of the object for a
brief period — but not permanently since the arm may cross over the object before swinging back to
strike it. An impact event is detected through a signature explosion of movement that is connected
with the arm but spread across a much wider distance than the arm could reasonably have moved
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Figure 3-5: For a two-label problem on a 2D image, the input to a minimum-cut algorithm is typ-
ically as shown on the left. There is a node for each pixel, and two special nodes corresponding to
the labels (foreground/background). Visual evidence is encoded on edges between the nodes. The
output of the algorithm is shown on the right. The graph is cut into two disjoint sets, each con-
taining exactly one of the special nodes, such that the total cost of the edges cut is (approximately)
minimized.

in the time available. Since the object is stationary before the robot pokes it, we can expect the
variance of the Gaussians associated with the individual pixel models to be low. Hence they will be
very sensitive to the pixel value changes associated with the sudden motion of the object. Once the
impact is detected, we can drop briefly out of real-time operation for a few seconds and perform the
detailed analysis required to actually cleanly segment the object based on the apparent motion.

3.5 Figure/ground separation

Once the moment of contact is known, the motion visible before contact can be compared with the
motion visible after contact to isolate the motion due to the object. Since we observe pixel variation
rather than true motion, we can also factor in how we expect them to relate — for example, a highly
textured region with no observed change over time can be confidently declared to be stationary,
while a homogeneous region may well be in motion even if there is little observed change. In
general, the information we have is sparse in the image and can be framed as probabilities that a
pixel belongs to the foreground (the object) or the background (everything else). Let us first look
at a simpler version of this problem, where for those pixels that we do have foreground/background
information, we are completely confident in our assignments.

Suppose we have some information about which pixels in an image I(x,y) are part of the
foreground and which are part of the background. We can represent this as:

b

, I(z,y) is background
A(z,y) = 0, I(z,y) is unassigned
, I(x,y) is foreground

[

We now wish to assign every pixel in the image to foreground or background as best we can with the
sparse evidence we have. One approach would be to create a cost function to evaluate potential seg-
mentations, and choose the segmentation with minimum cost. If we are willing to accept constraints
on the kind of cost function we can use, then there is a family of maximum-flow/minimum-cut al-
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Figure 3-6: The segmentation algorithm is sensitive to the length of the perimeters around fore-
ground regions. It is important that the local pixel connectivity not be so sparse as to introduces
artifacts into that perimeter. For example, suppose we just used 4-connected regions. The cost
of a zig-zag approximation to a diagonal edge would be v/2 = 1.41 times what it ought to be.
8-connected regions are better, but still distort the perimeter cost significantly, up to a factor of

“\“/52 = 1.08. The neighborhood shown here, which is 8-connected plus “knight moves”, in-

troduces a distortion of at most % = 1.02. Further increases in neighborhood size increases
computation time without bringing significant benefit.

gorithms that can provide good approximate solutions to this problem (Boykov and Kolmogorov,
2001). To apply them, we need to translate our problem into the form of a graph, as shown in
Figure 3-5. Each pixel maps to a node in the graph, and is connected by edges to the nodes that
represent neighboring pixels. There are two special nodes corresponding to the labels we wish to
assign to each pixel (foreground or background). The problem the minimum-cut algorithms can
solve is how to split this graph into two disjoint parts, with the foreground node in one and the
background node in the other, such that the total cost of the edges broken to achieve this split is
minimized. So our goal should be to assign costs to edges such that a minimum cut of the graph
will correspond to a sensible segmentation.

Let N(z,y) be the node corresponding to pixel I(z,y). Let N be the node representing the
foreground, and /N_; be the node representing the background. If we are completely confident in
our classification of pixel I (z, y) into background or foreground, we may encode this knowledge by
assigning infinite cost to the edge from N (z,y) to N(,,) and zero cost to the edge from N (z,y)

to N—A(x,y)-

00, A‘T’, =1
C(N(z,y),Ny1) = { 0 ot(her!‘/;zise

o0, A(z,y)=-1
C(N(.Z’,y),N_l) = { 0 ot(herzzise

This will force the minimum-cut algorithm to assign that pixel to the desired layer. In practice, the
visual information will be more ambiguous, and these weights should be correspondingly “softer”.

Costs also need to be assigned to edges between pixel nodes. Suppose we expect foreground
information to be available most reliably around the edges of the object, as is in fact the case for mo-
tion data. Then a reasonable goal would be to use the minimum cut to minimize the total perimeter
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length of segmented regions, and so merge partial boundary segments into their bounding region.
To do this, we could simply assign the actual 2D Euclidean distance between the pixels as the cost.
This is not quite sufficient if our edge information is noisy, because it permits almost “zero-area”
cuts around individual isolated foreground pixels. We need to place an extra cost on cutting around a
foreground pixel so that it becomes preferable to group near-neighbors and start generating regions
of non-zero area. For this example, we simply double the cost of cutting edges that are connected
to pixels known to be foreground or background.

C(N(zo,¥0), N(z1,91)) A(x1,91) =0

2D, otherwise

{ D. A(zo,y0) =0,

where D = \/(:Eo —z1)% + (yo — 11)?

Edges are only placed between neighboring pixel nodes, to prevent an explosion in connectivity. A
neighborhood is defined as shown in Figure 3-6.

Figure 3-7 shows examples of minimum-cuts in operation. The first image (top left) has two
(noisy) lines of known foreground pixels, of length w. The minimum cut must place these pixels
inside a foreground region. If the regions are disjoint, the total perimeter will be at least 4w. If
the the lines are instead placed inside the same region, the cost could be as little as 2w + 2h where
h is the distance between the two lines, which is less than w. The figure shows that this is in fact
the solution the minimum-cut algorithm finds. The next two examples show what this minimum
perimeter criterion will group and what it will leave separate. The fourth example shows that by
introducing known background pixels, the segmentation can change radically. The patch of back-
ground increases the perimeter cost of the previous segmentation by poking a hole in it that is large
enough to tip the balance in favor of individual rather than merged regions. This basic formulation
can be extended without difficulty to natural data, where foreground/background assignments are
soft.

3.6 Before and after

The previous section showed that if there is some evidence available about which pixels are part
of the foreground and which are part of the background, it is straightforward to induce a plausible
segmentation across the entire image. Figure 3-8 shows an example of how the necessary visual
evidence is derived in practice. The statistical significance of changes in pixel values (the “appar-
ent motion”) is measured in the frames directly following the contact event, using the continuously
updated Gaussian models. The measurements are combined over two frames to avoid situations
where the contact event occurs just before the first frame, early enough to generate enough motion
for the contact event to be detected but late enough not to generate enough motion for a successful
segmentation. The frames are aligned by searching for the translation that best matches the appar-
ent motion in the two frames (rotation can be neglected for these very short intervals). A similar
measurement of apparent motion from immediately before the contact event is also aligned, and is
used to partially mask out motion belonging to the robot arm, its shadow, and unrelated movement
in the environment. The remaining motion is passed to the segmentation algorithm by giving pixels
a strong “foreground” allegiance (high cost on edge to special foreground node). Importantly, the
motion mask from before contact is also passed to the algorithm as a strong “background” alle-
giance (high cost on edge to background node). This prevents the segmented region from growing
to include the arm without requiring the masking procedure to be precise. The maximum-flow
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Figure 3-7: Some simple segmentation examples. Input images are shown on the upper row, output
is shown as filled regions on the lower row. In the first three cases, the border of the image is set to
be background, and the dark pixels are foreground. In the fourth case, a small extra patch of pixels
known to be in the background is added, which splits the large segmented region from the previous
case in two. The final case shows that the algorithm is robust to noise, where 1% of the pixels are
assigned to foreground or background at random. This is in fact a very harsh kind of noise, since
we have assumed complete certainty in the data.

implementation used is due to (Boykov and Kolmogorov, 2001).

Perimeter-minimization seems particularly appropriate for the kind of motion data available,
since for textureless objects against a textureless background (the worst case for motion segmenta-
tion) motion is only evident around the edges of the object, with a magnitude that increases with
the angle that edge makes to the direction of motion. A textured, cluttered background could only
make life simpler, since it makes it easier to confidently assert that background regions are in fact
not moving.

3.7 Experimental results

How well does active segmentation work? The segmentation in Figure 3-8 is of the object shown
in the introduction (Figure 3-2), a cube with a yellow exterior sitting on a yellow table. Active
segmentation has a clear advantage in situations like this where the color and texture difference
between object and background would be too small for conventional segmentation but is sufficient
to generate apparent motion when the object is poked. Figure 3-11 shows poking from different
directions. Figure 3-9 shows about 60 successive pokes of the cube, to give a sense of the kinds of
errors that occur. Figures 3-10 and 3.7 shows results for particularly difficult situations. Figure 3-13
shows the area plotted against the second Hu moment (a measure of anisotropy) for a set of four
objects that were poked repeatedly. The second Hu moment @ for a region R with centroid (xq, o)
and area jiq is:

Dy

l

(Vzo —v)? + 4

Upg = // x — x0)P(y — yo)%dzdy
ﬂoo

38



Motion in frame Aligned motion Masking out Result of Largest Refinement of
immediately from before prior motion segmentation connected segmentation
after impact impact region found

Figure 3-8: Collecting the motion evidence required for segmentation. The apparent motion after
contact, when masked by the motion before contact, identifies seed foreground (object) regions.
Such motion will generally contain fragments of the arm and environmental motion that escaped
masking. Motion present before contact is used to identify background (non-object) regions. This
prevents the region assigned to the object motion from growing to include these fragments. The
largest connected region, with a minor post-processing clean-up, is taken as the official segmentation
of the object.

If these two features are used to build a simple nearest neighbor classifier, leave-one-out cross
validation gives a classification accuracy of 89.8% (chance level is about 25%). So the shape infor-
mation is a good predictor of object identity.

Qualitatively, poking turned out to be quite a robust procedure, with data gathered opportunisti-
cally during the unconstrained interaction of a human with the robot. For example, while the robot
was being trained, a teenager visiting the laboratory happened to wander by the robot, and became
curious as to what it was doing. He put his baseball cap on Cog’s table, and it promptly got poked,
was correctly segmented, and became part of the robot’s training data.

3.8 Future directions

A unique advantage robots have for object segmentation is that they can reach out and touch the
world. Imagine the classical face/vase illusion — this is trivial to resolve if you can simply poke it to
see which part is free space and which is not. But poking is simply the lowest-hanging fruit in the
set of active strategies a robot could use for achieving object segmentation. If the robot is unsure
where the boundaries of an object lie, here are some strategies it can use :-

1. Poke the object gently. Tapping a solid object will induce a small motion of that object. This
will result in a coherent region of optic flow on the image plane. If the object is non-rigid,
or attached to other objects, then the response will be messy and complicated — but this is in
some sense inevitable, since it is in just such cases that the idea of a unique “object boundary”
runs into trouble

. Thump the object savagely. A big disturbance is apt to generate a confusing motion that
is hard to process directly. But it will move the object away from its local surroundings,
giving another “role of the dice” — an opportunity for the robot to see the object against a
new background, perhaps with better contrast. Frequently visual ambiguity is only a local,
accidental effect.
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Figure 3-9: Results of a training session, where a toy cube was repeatedly offered to the robot for
poking. Each image of the cube corresponds to the segmentation found for it during a single poke.
The most common failure mode is inclusion of the robot arm in the segmentation.

3. Try to get the arm’s endpoint beside the object. Anywhere the endpoint can reach is presum-
ably free space, constraining the boundary of the object. We can use the arm’s endpoint as a
mobile reference object to confirm our theories of where free space lies.

. Try to get the arm’s endpoint behind the object. This has the advantage of putting a known
background behind the object. Imagine the arm painted bright red to see the advantage of this
for identifying the object’s boundary.

. Ask the human to present the object. A human bringing an object near the robot offers the
dual advantage of motion cues and a known (if complicated) partial background — the hand.

. Another alternative is to displace the robot’s own head and body, again to get another “role of
the dice”, or to access three-dimensional information over a longer baseline than is available
from the stereo cameras.

This does not even begin to exhaust the space of active strategies that are possible for object
segmentation, and at the Humanoid Robotics Group at MIT we are investigating several others
(Arsenio et al., 2003).




Figure 3-10: Challenging segmentations. The example on the right, a blue and white box on a
glossy poster, is particularly difficult since it has complex shadows and reflections, but the algorithm
successfully distinguishes both the blue and white part of the box from the background.

motion segmentation

motion

“bgck slap”

Figure 3-11: Cog batting a cube around from different directions. The images in the first column are
from the moment of collision between the arm and the cube, which is detected automatically. The
middle column shows the motion information at the point of contact. Red is new motion, purple and
blue are pre-existing motion. Notice in the bottom row that the chair is moving. The bright regions
in the images in the final column show the segmentations produced for the object.
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Figure 3-12: An example of the power of active segmentation. The images marked “scene” show
two presentations of a yellow toy car sitting on a yellow table. The robot extends its arm across
the table. In the upper sequence it strikes from below, in the lower sequence it strikes from the side
(“action” images). Once the arm comes in contact with the car, it begins to move, and it can be
segmented from the stationary background (“object”). On the left of the figure, a zoomed view of
the car/table boundary is shown — the difference between the two is very subtle.
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Figure 3-13: A large collection of segmentations are grouped by object identity, and then plotted
(area versus second Hu moment). The enlarged markers show hand-segmented reference values.
The segmentations are quite consistent, although area tends to be a fraction smaller than in the
hand-segmented instances.
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CHAPTER 4

The outer limits: learning about edges and orientation

The Disc, being flat, has no real horizon. Any adventurous sailors who got funny ideas
Jfrom staring at eggs and oranges for too long and set out for the antipodes soon learned
that the reason why distant ships sometimes looked as though they were disappearing
over the edge of the world was that they were disappearing over the edge of the world.

(Pratchett, 1986)

The previous chapter showed how elementary sensitivity to motion is sufficient to gather segmenta-
tions of objects in the robot’s vicinity, with some support from the robot’s behavior to evoke easily
processed scenarios. Once this data is coming in, there is a lot that can be learned from it. One
reasonable use of the data would be to learn about the appearance of specific objects, and the next
chapter (Chapter 5) will address that. But even before that, it is also possible to simply learn some-
thing about the appearance of boundaries, since the robot now has a collection of such boundaries
side by side with their visual appearance. In particular, this allows an orientation detector to be
trained on automatically annotated data. Orientation information is present in images at all scales.
Itis typically detected using quadrature filters applied at many locations and scales (Freeman, 1992),
an approach developed to be independent of contrast polarity and to act equally well on edges and
lines. With the data the robot collects, the opportunity arises to take a complementary, empirical
approach, where the appearance of edges is learned from experience rather than derived theoreti-
cally. The main challenge is whether the appearance of edges can be sampled densely enough to
get good coverage on a reasonable timescale. The answer to this is shown to be yes, primarily be-
cause orientation information is quite robust to pixel-level transformations. It turns out that a useful
orientation filter can be constructed a a simple interpolating look-up table, mapping from a very
small window size (4 x 4 pixels) directly to orientation. This allows for extremely rapid access to
orientation information right down at the finest scale visible.

The contribution of this work is to demonstrate that orientation detection is amenable to empir-
ical treatment, and that it can be performed at a very high speed. This work is critical to a real-time
implementation of the object recognition method that will be proposed in Chapter 5.
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Figure 4-1: The goal of orientation detection is to take an image such as the one shown on the left
here, and annotate every point in it with a direction, if there is a well-defined orientation that can be
associated with it. For example, on the right is a color-coded orientation map corresponding to the
first image, where all horizontal lines and edges are colored red, etc. This map is produced by the
methods developed in this chapter. It shows only orientation that is clear from local information —
the “illusory contours” present in the Kanizsa triangles are not detected.

4.1 What is orientation?

Natural images are full of discontinuities and local changes. This anisotropy can be used to associate
directions with regions of the image. These directions are potentially more robust to image-wide
transformations than the individual pixels upon which they are based. The most obvious example
is a luminance edge, where there is a discontinuity between a dark and light region. The direction
associated with this edge remains unchanged even if overall illumination on the regions change their
appearance dramatically. Contours of constant luminance on a shaded surface behave somewhat
like edges also, with luminance change being minimal parallel to the contour and maximal when
measured perpendicular to them. For such directional changes in luminance, or any other property, it
is natural to associate a direction or orientation in which change is minimal. In this chapter, we will
be concerned with the orientation associated with edges in luminance at the finest scale available.
This is certainly not all that is to be said about orientation (see, for example, Figure 4-1). But it is
a useful case, particularly for object localization and recognition. Orientation detection will prove
key to achieving orientation and scale invariance in these tasks.

Orientation is associated with neighborhoods rather than individual points in an image, and so
is inherently scale dependent. At very fine scales, relatively few pixels are available from which to
judge orientation. Lines and edges at such scales are extremely pixelated and rough. Orientation
filters derived from analytic considerations, with parameters chosen assuming smooth, ideal straight
lines or edges (for example, Chen et al. (2000)) are more suited to larger neighborhoods with more
redundant information. For fine scales, an empirical approach seems more promising, particularly
given that when the number of pixels involved is low, it is practical to sample the space of all possible
appearances of these pixels quite densely. At very fine scales, the interpretation of an image patch
could hinge on a relatively small number of pixels. Noise sensitivity becomes a critical issue. But
even beyond that, it seems that the assignment of labels to image patches is likely to be quite a
non-linear process.

4.2 Approaches to orientation detection

Most methods for detecting local orientation fall into one of two categories. Gradient-based ap-
proaches such as that of Kass and Witkin (1987) are relatively direct, and operate by applying spa-
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Figure 4-2: An example of a steerable filter, following Freeman and Adelson (1991). G is the
second derivative of a Gaussian, and H is an approximation to its Hilbert transform. These two
filters are said to be in quadrature. From its even form, G'5 will respond well to vertical lines. Ho
is odd, and will respond well to vertically oriented step edges. The theory associated with steerable
filters shows that the response of an image with a small set of basis filters at discrete angles, as
shown here, can be used to compute the response of one of the filter rotated to any angle. Orientation
detection then becomes applying these filters and computing the angles that would give maximum
response.

tial derivatives to the output of an isotropic edge-detecting filter (such as a Laplacian or difference of
Gaussians). A different approach often used is to examine the response of each neighborhood in the
image to a set of oriented filters, chosen so that some of them respond to edges (‘cosine-phase’), and
some respond to bars (‘sine-phase’), analogous to the receptive fields found by Hubel and Wiesel
in the visual cortex of cats (Hubel and Wiesel, 1962). The filter set may be overcomplete and non-
orthogonal since image reconstruction is not the goal. Figure 4-2 shows an example of a possible
filter set. If the filter is chosen carefully, then it need only be replicated at a discrete number of orien-
tations, and the response of the image to any other orientation computed from the response to those
few. Such filters are said to be steerable (Freeman and Adelson, 1991). Orientation is computed by
finding the orientation that maximizes the response of the image to the filter (here the cosine-phase
and sine-phase filters can be thought of as the real and imaginary components of a single quadrature
filter).

4.3 Empirical orientation detection

Poking allows the robot to build up a reference “catalog” of the manifold appearances real edges
can take on. At fine scales, with relatively few pixels, we can hope to explore the space of pos-
sible appearances of such a neighborhood quite exhaustively, and collect empirical data on how
appearance relates to orientation. This chapter is basically an exploration of how edges in “natural”
images appear when viewed through an extremely small window (4 by 4 pixels). This window size
is chosen to be large enough to actually allow orientation to be well-defined, but small enough for
the complete range of possible appearances to be easily characterized and visualized. Even at this
scale, manual data collection and labelling would be extremely tedious, so it is very advantageous
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Figure 4-3: Sampling the appearance of edges at an object boundary. The object is detected and
segmented as described in Chapter 3. Its boundary is sampled, and quantized window appearance
is stored along with the actual angle of the boundary at that point.

Figure 4-4: Some examples of boundary samples. Dotted pixels belong to a segmented object. The
four-by-four grid overlaid on the boundary shows the result of thresholding.

to have a robot to take care of this. The robot automatically compiles a database of the appearance
of oriented features using the poking behavior.

Oriented features were extracted by sampling image patches along object boundaries, which
were in turn determined using active segmentation. The resulting “catalog” of edge appearances
proved remarkably diverse, although the most frequent appearances were indeed the “ideal” straight,
noise-free edge (Section 4.3). Finally, it is a simple matter to take this catalog of appearances and
use it as a fast memory-based image processing filter (Section 4.3).

The details of the robot’s behavior are as described in Chapter 3, and are briefly reviewed here.
A robot equipped with an arm and an active vision head was given a simple “poking” behavior,
whereby it selected objects in its environment, and tapped them lightly while fixating them. As
described in Chapter 3, the motion signature generated by the impact of the arm with a rigid object
greatly simplifies segmenting that object from its background, and obtaining a reasonable estimate
of its boundary. Once this boundary is known, the appearance of the visual edge between the ob-
ject and the background can be sampled along it (see Figure 4-3). These samples are labelled with
the orientation of the boundary in their neighborhood (estimated using a simple discrete deriva-
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Figure 4-5: Edges have diverse appearances. This figure shows the orientations assigned to a test
suite prepared by hand. Each 4 x 4 grid is a single test edge patch, and the dark line centered in
the grid is the orientation that patch was observed to have in the training data. The oriented features
represented include edges, thin lines, thick lines, zig-zags, corners etc.

tive of position along the boundary). The samples are assumed to contain two components that
are distinguished by their luminance. The pixels of each sample are quantized into binary values
corresponding to above average and below average luminance. Quantization is necessary to keep
the space of possible appearances from exploding in size. The binary quantization gives a very
manageable 65536 possible appearances. About 500 object boundaries were recorded and sampled.
49616 of the possible appearances (76%) were in fact observed; the remaining 24% were all within
a Hamming distance of one of an observed appearance. The orientation of these unobserved appear-
ances were interpolated from their immediate neighbors in Hamming space. If the same appearance
was observed multiple times, the orientations associated with these observations are averaged using
a double-angle representation (Granlund, 1978).

It is a straightforward matter to use the data we have collected to filter an image for fine scale
orientation features. A 4 x 4 window is moved across the image, sampling it as described earlier in
Section 4.3. Each sample is used as an index into a table mapping appearance to orientation.

4.4 Results

Figure 4-5 shows that although the data collection procedure operates on views of simple physi-
cal edges, the appearance of these edges can be quite complex. Nevertheless, the most common
appearances observed are ideal, noise-free edges, as Figure 4-6 shows. The first four appearances
shown (top row, left) make up 7.6% of all observed appearances by themselves. Line-like edges
are less common, but do occur, which means that it is perfectly possible for the surfaces on either
side of an edge to be more like each other than they are like the edge itself. This was completely
serendipitous — it was anticipated that obtaining and automatically labelling such examples would
be very difficult.

Figure 4-5 shows the most frequently occurring image appearances with a particular orientation.
Here it is clearer that the most frequent patches are generally “ideal” forms of the edges, followed
by very many variations on those themes with distracting noise. Amidst the edge-like patterns
are examples of a line with single-pixel thickness, and a pair of such lines running parallel. It is
encouraging that examples of such appearances can be collected without difficulty and united with
more classical edge patches of the same orientation.
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Figure 4-9: The orientation filter applied to some synthetic test images (on left), modeled after an
example in (Freeman and Adelson, 1991). The second column shows the output of the orientation
filter, color coded by angle (if viewed in color). The third column shows the same information in
vector form. The fourth column shows the orientation determined using steerable quadrature filters
Folsom and Pinter (1998) applied on the same scale. The results are remarkably similar, but the
quadrature filters are much more computationally expensive to apply.



Figure 4-10: Some more test images, but on a much smaller scale — the individual pixels
are plainly visible, and no smoothing is applied. These tests are modeled after an example in
(Folsom and Pinter, 1998), but significantly scaled down.
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Figure 4-9 shows the orientations measured for a 64 x 64 image consisting of a circle and square.
This is based on an example in (Freeman and Adelson, 1991). The detector gives good results for
solid edges with arbitrary contrast, and various kinds of lines. The response to edges is diffuse by
design — during data collection, samples are taken both along the boundary and slightly to either side
of it, and treated identically. If a sharper response is desired, these side-samples could be dropped,
or their offset from the boundary could be recorded. Figure 4-10 shows the filter operating on a
very small image of a cube. Each visible edge of the cube is clearly and faithfully represented in
the output.

Figure 4-13 systematically explores the effect of adding noise to an “ideal” edge. The resilience
of the orientation measure is encouraging, although a small number of gaps in coverage are revealed,
suggesting that further data should be collected.

4.5 Discussion and Conclusions

The orientation detection scheme presented in this chapter has an unusual combination of properties,
some of which are essential to the approach and some which are incidental details :-

> Data driven (versus model based). Detection relies heavily on the existence of training
data — it is not achieved directly based on a formal model of edges instantiated in an algorithm.

> Uses look-up table (versus neural network, support vector machine, etc.). The use of
training data is simply to populate a look-up table, rather than anything more elaborate.

> Autonomous data collection (versus human annotation). Training data is collected by the
robot, and not a human.

Data driven

Work on edge and orientation detection has historically been model based, rather than data driven.
To make progress analytically, the nature of edges was grossly simplified — for example, researchers
worked with additive Gaussian noise overlaid on a luminance step (see, for example Canny (1986)).
Before long it was pointed out that edges can take a diversity of forms beyond steps or lines
(Perona and Malik, 1990). With the introduction of diverse cases, an empirical approach becomes
more attractive. Jitendra Malik’s group are now looking at how to locate boundaries between objects
in images using features trained on human-produced segmentations (Martin et al., 2002). Many
other parameters of a modern edge detector can also profit from empirical training, and can be op-
timized per domain (Konishi et al., 2003). So there is clea<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>